WO2024008151A1 - Apparatus and methods of uplink transmission with multiple tcl states - Google Patents

Apparatus and methods of uplink transmission with multiple tcl states Download PDF

Info

Publication number
WO2024008151A1
WO2024008151A1 PCT/CN2023/106086 CN2023106086W WO2024008151A1 WO 2024008151 A1 WO2024008151 A1 WO 2024008151A1 CN 2023106086 W CN2023106086 W CN 2023106086W WO 2024008151 A1 WO2024008151 A1 WO 2024008151A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
states
pusch transmission
pusch
tci
Prior art date
Application number
PCT/CN2023/106086
Other languages
French (fr)
Inventor
Li Guo
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Publication of WO2024008151A1 publication Critical patent/WO2024008151A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to apparatuses and methods of uplink transmission with multiple transmission configuration indicator (TCI) states such as solutions for physical uplink shared channel (PUSCH) transmission using multiple TCI states.
  • TCI transmission configuration indicator
  • New radio (NR) system introduces a multi-transmission/reception point (TRP) based non-coherent joint transmission.
  • TRP multi-transmission/reception point
  • Multiple TRPs are connected through backhaul link for coordination.
  • the backhaul link can be ideal or non-ideal.
  • the TRPs can exchange dynamic physical downlink shared channel (PDSCH) scheduling information with short latency and thus different TRPs can coordinate a PDSCH transmission per PDSCH transmission.
  • PDSCH physical downlink shared channel
  • the information exchange between TRPs has large latency and thus the coordination between TRPs can only be semi-static or static.
  • PUSCH physical uplink shared channel
  • UE user equipment
  • Tx transmission
  • TDM Time division multiplexing
  • TCI transmission configuration indicator
  • An object of the present disclosure is to propose apparatuses and methods of uplink transmission with multiple transmission configuration indicator (TCI) states such as solutions for physical uplink shared channel (PUSCH) transmission using multiple TCI states, which can support a PUSCH transmission through a frequency-domain repetition transmission scheme and/or improve reliability of uplink transmission.
  • TCI transmission configuration indicator
  • a method of uplink transmission with multiple transmission configuration indicator (TCI) states, by a user equipment (UE) includes being configured, by a base station, with a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the UE is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • PUSCH physical uplink shared channel
  • a method of uplink transmission with multiple transmission configuration indicator (TCI) states by a base station includes configuring, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the base station requests the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • PUSCH physical uplink shared channel
  • a UE in a third aspect of the present disclosure, includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the UE is configured to perform the above method.
  • a base station in a fourth aspect of the present disclosure, includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the base station is configured to perform the above method.
  • a UE in a fifth aspect of the present disclosure, includes a determiner and a transmitter.
  • the determiner is configured to determine a first physical uplink shared channel (PUSCH) transmission mode.
  • the transmitter In the first PUSCH transmission mode, the transmitter is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • PUSCH physical uplink shared channel
  • a base station includes an allocator configured to allocate, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the allocator requests the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • PUSCH physical uplink shared channel
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
  • a computer readable storage medium in which a computer program is stored, causes a computer to execute the above method.
  • a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
  • a computer program causes a computer to execute the above method.
  • FIG. 1A is a schematic structural diagram of an example of multi-transmission/reception point (TRP) based non-coherent joint transmission.
  • TRP multi-transmission/reception point
  • FIG. 1B is a schematic structural diagram of another example of multi-TRP based non-coherent joint transmission.
  • FIG. 2 is a block diagram of one or more user equipments (UEs) and a base station of communication in a communication network system according to an embodiment of the present disclosure.
  • UEs user equipments
  • FIG. 3 is a block diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 4 is a block diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating a method of uplink transmission with multiple transmission configuration indicator (TCI) states performed by a UE according to an embodiment of the present disclosure.
  • TCI transmission configuration indicator
  • FIG. 6 is a block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 7 is a block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating a method of uplink transmission with multiple transmission configuration indicator (TCI) states performed by a base station according to an embodiment of the present disclosure.
  • TCI transmission configuration indicator
  • FIG. 9 is a flowchart illustrating an example of a procedure of transmitting physical uplink shared channel (PUSCH) transmission occasion of one transport block (TB) with two TCI states associated with non-overlapping frequency domain resource allocation according to an embodiment of the present disclosure.
  • PUSCH physical uplink shared channel
  • TB transport block
  • FIG. 10A is a flowchart illustrating an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
  • TCI transmission configuration indicator
  • FIG. 10B is a flowchart illustrating an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
  • TCI transmission configuration indicator
  • FIG. 10C is a flowchart illustrating an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
  • TCI transmission configuration indicator
  • FIG. 10D is a flowchart illustrating an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
  • TCI transmission configuration indicator
  • FIG. 11 is a block diagram of an example of a computing device according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a communication system according to an embodiment of the present disclosure.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE-A advanced long term evolution
  • NR new radio
  • NR global interoperability for microwave access
  • WLAN wireless local area networks
  • Wi-Fi wireless fidelity
  • 5G future 5th generation
  • a base station mentioned in the embodiments of the present application can provide a communication coverage for a specific geographic area and can communicate with a user equipment (UE) located in the coverage area.
  • the base station may be a gNB, a base transceiver station (BTS) in the GSM or in the CDMA system, or may be a NodeB (NB) in the WCDMA system, or may be an evolutional Node B (eNB or eNodeB) in the LTE system, or a radio controller in a cloud radio access network (CRAN) .
  • BTS base transceiver station
  • NB NodeB
  • eNB or eNodeB evolutional Node B
  • CRAN cloud radio access network
  • the UE may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the access terminal may be a cellular radio telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , a handheld device with wireless communication functions, a computing device, other processing devices coupled with a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, a terminal device in a future evolved PLMN, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where the licensed spectrum can also be considered an unshared spectrum.
  • New radio (NR) system introduces a multi-transmission/reception point (TRP) based non-coherent joint transmission.
  • TRP multi-transmission/reception point
  • Multiple TRPs are connected through backhaul link for coordination.
  • the backhaul link can be ideal or non-ideal.
  • the TRPs can exchange dynamic physical downlink shared channel (PDSCH) scheduling information with short latency and thus different TRPs can coordinate a PDSCH transmission per PDSCH transmission.
  • PDSCH physical downlink shared channel
  • the information exchange between TRPs has large latency and thus the coordination between TRPs can only be semi-static or static.
  • FIG. 1A illustrates an example of multi-transmission/reception point (TRP) based non-coherent joint transmission.
  • FIG. 1B illustrates another example of multi-TRP based non-coherent joint transmission.
  • FIG. 1A and FIG. 1B illustrate that, in non-coherent joint transmission, different transmission/reception points (TRPs) use different physical downlink control channels (PDCCHs) to schedule physical downlink sharing channel (PDSCH) transmission independently.
  • PDCCHs physical downlink control channels
  • PDSCH physical downlink sharing channel
  • Each TRP can send one downlink control information (DCI) to schedule one PDSCH transmission.
  • DCI downlink control information
  • PDSCHs from different TRPs can be scheduled in the same slot or different slots. Two different PDSCH transmissions from different TRPs can be fully overlapped or partially overlapped in PDSCH resource allocation.
  • a user equipment is requested to receive PDCCH from multiple TRPs and then receive PDSCH sent from multiple TRPs.
  • the UE can feedback a hybrid automatic repeat request-acknowledge (HARQ-ACK) information to a network.
  • HARQ-ACK hybrid automatic repeat request-acknowledge
  • the UE can feedback the HARQ-ACK information for each PDSCH transmission to the TRP transmitting the PDSCH.
  • the UE can also feedback the HARQ-ACK information for a PDSCH transmission sent from any TRP to one particular TRP.
  • FIG. 1A An example of multi-TRP based non-coherent joint transmission is illustrated in FIG. 1A.
  • a UE receives a PDSCH based on non-coherent joint transmission from two TRPs: TRP1 and TRP2.
  • the TRP1 sends one DCI to schedule a transmission of PDSCH 1 to the UE and the TRP2 sends one DCI to schedule a transmission of PDSCH 2 to the UE.
  • the UE receives and decodes DCI from both TRPs. Based on the DCI from the TRP1, the UE receives and decodes the PDSCH 1 and based on the DCI from the TRP2, the UE receives and decodes the PDSCH 2.
  • the UE reports HARQ-ACK for PDSCH 1 and PDSCH2 to the TRP1 and the TRP 2, respectively.
  • the TRP1 and the TRP 2 use different control resource sets (CORESETs) and search spaces to transmit DCI scheduling PDSCH transmission to the UE. Therefore, the network can configure multiple CORESETs and search spaces.
  • Each TRP can be associated with one or more CORESETs and also the related search spaces. With such configuration, the TRP would use the associated CORESET to transmit DCI to schedule a PDSCH transmission to the UE.
  • the UE can be requested to decode DCI in CORESETs associated with either TRP to obtain PDSCH scheduling information.
  • FIG. 1B Another example of multi-TRP transmission is illustrated in FIG. 1B.
  • a UE receives PDSCH based on non-coherent joint transmission from two TRPs: TRP1 and TRP2.
  • the TRP1 sends one DCI to schedule a transmission of PDSCH 1 to the UE and the TRP2 sends one DCI to schedule the transmission of PDSCH 2 to the UE.
  • the UE receives and decodes DCI from both TRPs. Based on the DCI from the TRP1, the UE receives and decodes the PDSCH 1 and based on the DCI from the TRP2, the UE receives and decodes the PDSCH 2.
  • FIG. 1B A UE receives PDSCH based on non-coherent joint transmission from two TRPs: TRP1 and TRP2.
  • the TRP1 sends one DCI to schedule a transmission of PDSCH 1 to the UE
  • the TRP2 sends one DCI to schedule the transmission of PDSCH 2 to
  • the UE reports HARQ-ACK for both PDSCH 1 and PDSCH2 to the TRP, which is different from the HARQ-ACK reporting in the example illustrated in FIG. 1A.
  • the example illustrated in FIG. 1B needs ideal backhaul between the TRP 1 and the TRP 2, while the example illustrated in FIG. 1A can be deployed in the scenarios that the backhaul between the TRP 1 and the TRP 2 is ideal or non-ideal.
  • PUSCH physical uplink shared channel
  • UE user equipment
  • Tx transmission
  • TDM Time division multiplexing
  • TCI transmission configuration indicator
  • PUSCH physical uplink shared channel
  • the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
  • FIG. 2 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., next generation NodeB (gNB) or eNB) 20 of communication in a communication network system 30 (e.g., an NR system) according to an embodiment of the present disclosure are provided.
  • the communication network system 30 includes the one or more UEs 10 and the base station 20.
  • the one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • the processor 11 is configured, by a base station, with a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the transceiver 13 is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • PUSCH physical uplink shared channel
  • the transceiver 13 is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • TRP multi-transmission/reception point
  • the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
  • the processor 21 may configure, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the processor 21 may request the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • PUSCH physical uplink shared channel
  • FIG. 3 illustrates an example of a UE 300 according to an embodiment of the present application.
  • the UE 300 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the UE 300 using any suitably configured hardware and/or software.
  • the UE 300 a determiner 301 and a transmitter 302.
  • the determiner 301 is configured to determine a first physical uplink shared channel (PUSCH) transmission mode.
  • the transmitter 302 is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • TB transport block
  • TRP multi-transmission/reception point
  • the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
  • FIG. 4 illustrates an example of a UE 400 according to an embodiment of the present disclosure.
  • the UE 400 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the UE 400 using any suitably configured hardware and/or software.
  • the UE 400 may include a memory 401, a transceiver 402, and a processor 403 coupled to the memory 401 and the transceiver 402.
  • the processor 403 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 403.
  • the memory 401 is operatively coupled with the processor 403 and stores a variety of information to operate the processor 403.
  • the transceiver 402 is operatively coupled with the processor 403, and the transceiver 402 transmits and/or receives a radio signal.
  • the processor 403 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 401 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 402 may include baseband circuitry to process radio frequency signals.
  • the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • the modules can be stored in the memory 401 and executed by the processor 403.
  • the memory 401 can be implemented within the processor 403 or external to the processor 403 in which case those can be communicatively coupled to the processor 403 via various means as is known in the art.
  • the processor 403 is configured, by a base station, with a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the transceiver 402 is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • PUSCH physical uplink shared channel
  • the transceiver 402 is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • TRP multi-transmission/reception point
  • the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
  • FIG. 5 is an example of a method 500 of uplink transmission with multiple transmission configuration indicator (TCI) states performed by a UE according to an embodiment of the present disclosure.
  • the method 500 of uplink transmission with multiple TCI states performed by a UE is configured to implement some embodiments of the disclosure.
  • Some embodiments of the disclosure may be implemented into the method 500 of uplink transmission with multiple TCI states performed by a UE using any suitably configured hardware and/or software.
  • N is equal to 2.
  • the at least one of the N TCL states includes a joint TCI state or an uplink (UL) TCI state.
  • one reference signal is configured to provide reference for determining a UL transmission spatial filter for one of physical uplink shared channel (PUSCH) transmission occasions.
  • the joint TCI state or the UL TCI state is associated with one path loss reference signal (RS) and/or at least one uplink power control parameter.
  • the at least one uplink power control parameter includes a P0 parameter, an alpha, and/or a closed loop index for each PUSCH transmission occasion.
  • a UE specific part is independently configured for the UE, which may reflect an interference level suffered by the base station and a power adjustment deviation of the UE.
  • interferences on different receiving beams of the base station are different, so the configuration needs to be based on the receiving beams of the base station.
  • the base station selects some possible receiving beams for the UE, and determines a UE specific P0 according to these beams, which may be independently configured by the receiving beams of the base station or be independently configured by the receiving beams of the base station by groups.
  • This value is used as an initial calculation value of the power control, and the accuracy of the configuration according to beams is not necessary, so it is more feasible to configure according to the receiving beam group.
  • An error between the configured value and the actual value is compensated by the closed-loop power control process.
  • the UE in the first PUSCH transmission mode, is further configured by the base station with N sounding reference signal (SRS) resource sets for the PUSCH transmission occasion.
  • the N SRS resource sets are used for a codebook based PUSCH transmission or for a non-codebook based PUSCH transmission.
  • 3GPP 3rd generation partnership project
  • a UE in codebook based transmission, may be configured with one SRS resource set with “usage” set to “codebook. ” The UE may be configured with a maximum number of four SRS resources within the SRS resource set.
  • Each SRS resource is RRC-configured with a number of ports (nrofSRS-Ports ) .
  • the SRS resource indicator (SRI) field in the uplink (UL) DCI indicates one SRS resource.
  • the number of ports configured for the indicated SRS resource determines the number of antenna ports for PUSCH.
  • the PUSCH is transmitted with the same spatial domain filter (i.e., UL beam) as the indicated SRS resources.
  • the number of layers (rank) and TPMI (precoder) for the scheduled PUSCH can be determined from a separate DCI field (e.g., “Precoding information and number of layers”) .
  • a UE in non-codebook based transmission, can be configured with one SRS resource set with “usage” set to “noncodebook. ” Similar to the codebook based situation, the UE may be configured with a maximum number of four SRS resources within the SRS resource set. The UE may be configured with a maximum number of four SRS resources within the SRS resource set. Each SRS resource has one port.
  • the SRI field in the UL DCI indicates one or multiple SRS resources. The number of indicated SRS resources determines the rank (i.e. number of layers) for the scheduled PUSCH.
  • the PUSCH is transmitted with the same precoder as well as spatial domain filter (i.e., beam) as the indicated SRS resources (indicated by the SRI) .
  • the SRS resource set can optionally be configured with one associated non-zero-power channel state information reference signal (NZP CSI-RS) resource (by RRC parameter associated with CSI-RS) .
  • the UE may calculate the precoder used for the transmission of SRS resources within the set based on measurement of the associated NZP CSI-RS resource.
  • At least one of the N SRS resource sets is associated with one part of the PUSCH transmission occasion. In some embodiments, at least one of the N SRS resource sets is associated with one of non-overlapping frequency domain resource allocations associated with one of joint TCI states or UL TCI states.
  • the UE in the first PUSCH transmission mode, is further configured by the base station with at least one configuration, and the at least one configuration includes a frequency domain resource allocation, a time domain resource allocation, an indicator of at least one SRS resource for the frequency domain resource allocation associated with the at least one of the N TCL states, an indicator of at least one precoding vector for the frequency domain resource allocation associated with the at least one of the N TCL states, and/or a number of layers in the PUSCH transmission occasion.
  • the UE in the first PUSCH transmission mode, derives the non-overlapping frequency domain resource allocation associated with the at least one of the N TCL states according to the at least one configuration.
  • the at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation.
  • the UE is configured by the base station with the first PUSCH transmission mode through a higher layer parameter.
  • the higher layer parameter includes a radio resource control (RRC) or a downlink control information (DCI) .
  • RRC radio resource control
  • DCI downlink control information
  • first PRBs are assigned to a first SRS resource set, and remaining PRBs are assigned to a second SRS resource set, the first PRBs are assigned to a first joint TCI state or a first UL TCI state, and the remaining PRBs are assigned to a second joint TCI state or a second UL TCI state, the first PRBs are assigned to the second SRS resource set, and the remaining PRBs are assigned to the first SRS resource set, or the first PRBs are assigned to the second joint TCI state or the second UL TCI state, and the remaining PRBs are assigned to the first joint TCI state or the first UL TCI state.
  • one DCI codepoint is used to indicate that: first PRBs are assigned to a first SRS resource set, and remaining PRBs are assigned to a second SRS resource set, the first PRBs are assigned to a first joint TCI state or a first UL TCI state, and the remaining PRBs are assigned to a second joint TCI state or a second UL TCI state, the first PRBs are assigned to the second SRS resource set, and the remaining PRBs are assigned to the first SRS resource set, or the first PRBs are assigned to the second joint TCI state or the second UL TCI state, and the remaining PRBs are assigned to the first joint TCI state or the first UL TCI state.
  • FIG. 6 illustrates an example of base station 600 according to an embodiment of the present application.
  • the base station 600 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the base station 600 using any suitably configured hardware and/or software.
  • the base station 600 includes an allocator 601 configured to allocate, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the allocator 601 requests the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • UE user equipment
  • PUSCH physical uplink shared channel
  • TRP multi-transmission/reception point
  • the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
  • the transceiver 702 is operatively coupled with the processor 703, and the transceiver 702 transmits and/or receives a radio signal.
  • the processor 703 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 701 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 702 may include baseband circuitry to process radio frequency signals.
  • the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • the modules can be stored in the memory 701 and executed by the processor 703.
  • the memory 701 can be implemented within the processor 703 or external to the processor 703 in which case those can be communicatively coupled to the processor 703 via various means as is known in the art.
  • the processor 703 may configure, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the processor 703 may request the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • PUSCH physical uplink shared channel
  • FIG. 8 is an example of a method 800 of uplink transmission with multiple transmission configuration indicator (TCI) states performed by a base station according to an embodiment of the present disclosure.
  • the method 800 of uplink transmission with multiple TCI states performed by the base station is configured to implement some embodiments of the disclosure.
  • Some embodiments of the disclosure may be implemented into the method 800 of uplink transmission with multiple TCI states performed by the base station using any suitably configured hardware and/or software.
  • the method 800 of uplink transmission with multiple TCI states performed by the base station includes: an operation 802, configuring, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, and an operation 804, in the first PUSCH transmission mode, the base station requests the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  • TRP multi-transmission/reception point
  • the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
  • a UE can be configured to transmit a single PUSCH transmission occasion of one TB with N>1 TCI states and each TCI state can be associated to a non-overlapping frequency domain resource allocation.
  • N can be 2.
  • the UE can be configured or indicated with two TCI states for PUSCH transmission.
  • the TCI state can be a joint TCI state or a UL TCI state.
  • the UE can be indicated with a first joint TCI state and a second joint TCI state for PUSCH transmission.
  • the UE can be indicated with a first UL TCI state and a second UL TCI state for PUSCH transmission.
  • one reference signal is configured to provide reference for determining UL Tx spatial filter for one of those PUSCH transmission occasion.
  • Each joint TCI state or UL TCI state can be associated with one path loss RS and one set of uplink power control parameters including P0, alpha and closed loop index for each PUSCH transmission occasion.
  • a UE can be configured with N>1 SRS resource sets for PUSCH transmission, for example for codebook-based PUSCH or for non-codebook based PUSCH.
  • Each SRS resource set is associated with one part of the PUSCH transmission occasion.
  • Each SRS resource set can be associated with one of the non-overlapping frequency domain resource allocations that is associated with one of the joint TCI states or UL TCI states.
  • the gNB can use RRC or DCI format to configure/indicate such a PUSCH transmission.
  • the gNB can provide one or more of the following information:
  • Frequency domain resource allocation Based on that, the UE can be requested to derive the frequency domain resource allocation for each joint TCI state or UL TCI state.
  • the UE when the UE receives the configuration/indication from the gNB, the UE can be requested to transmit the PUSCH transmission occasion of the TB with those two TCI states and each TCI state is associated with non-overlapping frequency domain resource allocation that the UE determines based on the frequency domain resource allocation indicated by the gNB. On the frequency domain resource allocation associated with each TCI state, the UE can apply the corresponding TCI state and the corresponding indicated indicator of SRS resource (s) and precoding vector (s) .
  • FIG. 9 illustrates an example of a procedure 900 of transmitting physical uplink shared channel (PUSCH) transmission occasion of one transport block (TB) with two TCI states associated with non-overlapping frequency domain resource allocation according to an embodiment of the present disclosure.
  • PUSCH physical uplink shared channel
  • TB transport block
  • FIG. 9 illustrates that, in some embodiments, the procedure 900 of transmitting physical uplink shared channel (PUSCH) transmission occasion of one transport block (TB) with two TCI states associated with non-overlapping frequency domain resource allocation includes at least one of following operations:
  • Operation 904 The gNB indicates two TCI states for PUSCH transmission: a first TCI state and a second TCI state.
  • the gNB configures two SRS resource sets for PUSCH transmission (for codebook-based or non-codebook based) .
  • Operation 906 The gNB configures/indicates the PUSCH transmission to the UE and the gNB can provide the frequency domain resource allocation, time domain resource allocation, indicator of SRS resource (s) , indication of precoding vector (s) and number of layers for the PUSCH transmission.
  • Operation 908 The UE derives the non-overlapping frequency domain resource allocation that is associated with each TCI state according to the configuration provided by the gNB.
  • Operation 910 The UE transmits the PUSCH transmission occasion with two TCI states and each TCI state is associated with the derived non-overlapping frequency domain resource allocation.
  • the UE can also apply the indicated corresponding indicated SRS resource (s) and precoding vector (s) on each non-overlapping frequency domain resource allocation associated with each TCI state.
  • FIG. 10A illustrates an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
  • the method of uplink transmission with multiple transmission configuration indicator (TCI) states includes at least one operation 1002:
  • a gNB can indicate a first higher layer parameter set to one first value to a UE to indicate that the UE can transmit a single PUSCH transmission occasion of one TB with two TCI states and each TCI state is associated with non-overlapping frequency domain resource allocation.
  • the UE if the UE is configured with the first higher layer parameter set to the first value, the UE does not expect to be configured with time domain repetition transmission for PUSCH.
  • FIG. 10B illustrates an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
  • the method of uplink transmission with multiple transmission configuration indicator (TCI) states includes at least one operation 1004:
  • a UE is indicated to transmit a single PUSCH transmission occasion of one TB with two TCI states and each of the TCI states is associated with non-overlapping frequency domain resource allocation. If the UE is indicated with frequency domain resource allocation with total n PRB PRBs allocated to the UE.
  • the UE can be requested to determine the frequency domain resource allocation for each PUSCH transmission occasion as one or more of followings:
  • the first PRBs are assigned to the first SRS resource set and the remaining PRBs are assigned to the second SRS resource set.
  • the first PRBs are assigned to the first joint TCI state or uplink (UL) TCI state and the remaining PRBs are assigned to the second joint TCI state or UL TCI state.
  • One DCI codepoint can be used to indicate that:
  • the first PRBs are assigned to the first joint TCI state or UL TCI state (or the first SRS resource set) and the remaining PRBs are assigned to the second joint TCI state or UL TCI state (or the second SRS resource set) .
  • the first PRBs are assigned to the second joint TCI state or UL TCI state (or the second SRS resource set) and the remaining PRBs are assigned to the first joint TCI state or UL TCI state (or the first SRS resource set) .
  • the first PRBs are assigned to the first joint TCI state or UL TCI state (or the first SRS resource set) and the remaining PRBs are assigned to the second joint TCI state or UL TCI state (or the second SRS resource set) .
  • the DCI field “SRS resource set indicator” is 11
  • the first PRBs are assigned to the second joint TCI state or UL TCI state (or the second SRS resource set) and the remaining PRBs are assigned to the first joint TCI state or UL TCI state (or the first SRS resource set) .
  • FIG. 10C illustrates an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
  • the method of uplink transmission with multiple transmission configuration indicator (TCI) states includes at least one operation 1006:
  • a UE is indicated to transmit a single PUSCH transmission occasion of one TB with two TCI states and each of the TCI states is associated with non-overlapping frequency domain resource allocation.
  • the UE can be requested to determine the UL PT-RS transmission of that PUSCH as follows:
  • UL PT-RS frequency density is determined by the number of PRBs associated with each TCI state (or each SRS resource set) .
  • UL PT-RS resource element mapping is associated to the allocated PRBs for each TCI state (or each SRS resource set) .
  • FIG. 10D illustrates an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
  • the method of uplink transmission with multiple transmission configuration indicator (TCI) states includes at least one operation 1008:
  • a UE is indicated to transmit a single PUSCH transmission occasion of one TB with two TCI states and each of the TCI states is associated with non-overlapping frequency domain resource allocation.
  • the UE can be requested to determine the UL Tx power for PUSCH with one or more of the followings:
  • the UE can be provided with a maximum output power for each of the TCI states (or each SRS resource set) .
  • the UE can be provided with a maximum output power for each of the SRS resource sets configured for PUSCH transmission (codebook-based or non-codebook based) , for example a first maximum output power for the first SRS resource set and a second maximum output power for the second SRS resource set.
  • the UE can be requested to calculate the PUSCH transmission power frequency-domain resource allocation associated with the first SRS resource set according to the first maximum output power and the power control parameters associated with the first joint TCI state or UL TCI state.
  • the UE can be requested to calculate the PUSCH transmission power for frequency domain resource allocation associated with the second SRS resource set according to the second maximum output power and the power control parameters associated with the second joint TCI state or UL TCI state.
  • the UE can be provided with a maximum output power and the UE can be requested to calculate the Tx power of both PUSCH transmission occasions by assuming the sum of Tx power of both PUSCH transmission occasions does not exceed the provided maximum output power.
  • the UE can be requested to use this provided maximum output power to derive a first maximum output power for PUSCH transmission occasion associated with the first SRS resource set and a second maximum output power for PUSCH transmission occasion associated with the second SRS resource set. Then the UE can calculate the Tx power for the PUSCH transmission occasion associated with the first SRS resource set according to the determined first maximum output power and the UE can calculate the Tx power for the PUSCH transmission occasion associated with the second SRS resource set according to the determined second maximum output power.
  • the first maximum output power can be the half of the provided maximum output power and the second maximum output power can be the half of the provided maximum output power.
  • the UE can partition the provided maximum output power to the first maximum output and the second maximum output according to the path loss, alpha and/or closed loop power adjustment associated with the first joint TCI state or UL TCI state and the second joint TCI state or UL TCI state.
  • the UE can be provided with a maximum output power.
  • the UE can be requested to first calculate the Tx power for the first PUSCH transmission occasion and the second PUSCH transmission occasion. If the total Tx power of the first PUSCH transmission occasion and the second PUSCH transmission occasion exceed the provided maximum output power, the UE can be requested to scale the Tx power for the first PUSCH transmission occasion and the second PUSCH transmission occasion accordingly.
  • Some embodiments of the present disclosure are used by chipset vendors, video system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR/MR device maker for example gaming, conference/seminar, education purposes.
  • Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in video standards to create an end product.
  • Some embodiments of the present disclosure propose technical mechanisms.
  • the at least one proposed solution, method, system, and apparatus of some embodiments of the present disclosure may be used for current and/or new/future standards regarding communication systems such as a UE, a base station, and/or a communication system.
  • FIG. 11 is an example of a computing device 1100 according to an embodiment of the present disclosure. Any suitable computing device can be used for performing the operations described herein.
  • FIG. 11 illustrates an example of the computing device 1100 that can implement the communication network system of FIG. 2, the UE of FIG. 3, the UE of FIG. 4, the base station of FIG. 6, the base station of FIG. 7, the method of FIG. 1A, FIG. 1B, FIG. 5, FIG. 8, FIG. 9, FIG. 10A, FIG. 10B, FIG. 10C, or FIG. 10D using any suitably configured hardware and/or software.
  • the computing device 1100 can include a processor 1112 that is communicatively coupled to a memory 1114 and that executes computer-executable program code and/or accesses information stored in the memory 1114.
  • the processor 1112 may include a microprocessor, an application-specific integrated circuit ( “ASIC” ) , a state machine, or other processing device.
  • the processor 1112 can include any of a number of processing devices, including one.
  • Such a processor can include or may be in communication with a computer-readable medium storing instructions that, when executed by the processor 1112, cause the processor to perform the operations described herein.
  • the memory 1114 can include any suitable non-transitory computer-readable medium.
  • the computer-readable medium can include any electronic, optical, magnetic, or other storage device capable of providing a processor with computer-readable instructions or other program code.
  • Non-limiting examples of a computer-readable medium include a magnetic disk, a memory chip, a read-only memory (ROM) , a random access memory (RAM) , an application specific integrated circuit (ASIC) , a configured processor, optical storage, magnetic tape or other magnetic storage, or any other medium from which a computer processor can read instructions.
  • the instructions may include processor-specific instructions generated by a compiler and/or an interpreter from code written in any suitable computer-programming language, including, for example, C, C++, C#, visual basic, java, python, perl, javascript, and actionscript.
  • the computing device 1100 can also include a bus 1116.
  • the bus 1116 can communicatively couple one or more components of the computing device 1100.
  • the computing device 1100 can also include a number of external or internal devices such as input or output devices.
  • the computing device 1100 is illustrated with an input/output ( “I/O” ) interface 1118 that can receive input from one or more input devices 1120 or provide output to one or more output devices 1122.
  • the one or more input devices 1120 and one or more output devices 1122 can be communicatively coupled to the I/O interface 1118.
  • the communicative coupling can be implemented via any suitable manner (e.g., a connection via a printed circuit board, connection via a cable, communication via wireless transmissions, etc. ) .
  • Non-limiting examples of input devices 1120 include a touch screen (e g., one or more cameras for imaging a touch area or pressure sensors for detecting pressure changes caused by a touch) , a mouse, a keyboard, or any other device that can be used to generate input events in response to physical actions by a user of a computing device.
  • Non-limiting examples of output devices 1122 include a liquld crystal display (LCD) screen, an external monitor, a speaker, or any other device that can be used to display or otherwise present outputs generated by a computing device.
  • LCD liquld crystal display
  • the computing device 1100 can execute program code that configures the processor 1112 to perform one or more of the operations described above with respect to FIG. 1A, FIG. 1B, FIG. 5, FIG. 8, FIG. 9, FIG. 10A, FIG. 10B, FIG. 10C, or FIG. 10D.
  • the program code may be resident in the memory 1114 or any suitable computer-readable medium and may be executed by the processor 1112 or any other suitable processor.
  • the computing device 1100 can also include at least one network interface device 1124.
  • the network interface device 1124 can include any device or group of devices suitable for establishing a wired or wireless data connection to one or more data networks 1128.
  • Non limiting examples of the network interface device 1124 include an Ethernet network adapter, a modem, and/or the like.
  • the computing device 1100 can transmit messages as electronic or optical signals via the network interface device 1124.
  • FIG. 12 is a block diagram of an example of a communication system 1200 according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the communication system 1200 using any suitably configured hardware and/or software.
  • FIG. 12 illustrates the communication system 1200 including a radio frequency (RF) circuitry 1210, a baseband circuitry 1220, an application circuitry 1230, a memory/storage 1240, a display 1250, a camera 1260, a sensor 1270, and an input/output (I/O) interface 1280, coupled with each other at least as illustrated.
  • RF radio frequency
  • the application circuitry 1230 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the communication system 1200 can execute program code that configures the application circuitry 1230 to perform one or more of the operations described above with respect to FIG. 1A, FIG. 1B, FIG. 5, FIG. 8, FIG. 9, FIG. 10A, FIG. 10B, FIG. 10C, or FIG. 10D.
  • the program code may be resident in the application circuitry 1230 or any suitable computer-readable medium and may be executed by the application circuitry 1230 or any other suitable processor.
  • the baseband circuitry 1220 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that may enable communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as
  • the baseband circuitry 1220 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 1210 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 1210 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the communication network system of FIG. 2, the UE of FIG. 3, the UE of FIG. 4, the base station of FIG. 6, or the base station of FIG. 7 may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC application specific integrated circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • the memory/storage 1240 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • the I/O interface 1280 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • the sensor 1270 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display 1250 may include a display, such as a liquid crystal display and a touch screen display.
  • the communication system 1200 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, an AR/VR glasses, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Abstract

A method of uplink transmission with multiple transmission configuration indicator (TCI) states, by a user equipment (UE) includes being configured, by a base station, with a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the UE is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.

Description

APPARATUS AND METHODS OF UPLINK TRANSMISSION WITH MULTIPLE TCL STATES TECHNICAL FIELD
The present disclosure relates to the field of communication systems, and more particularly, to apparatuses and methods of uplink transmission with multiple transmission configuration indicator (TCI) states such as solutions for physical uplink shared channel (PUSCH) transmission using multiple TCI states.
BACKGROUND
New radio (NR) system introduces a multi-transmission/reception point (TRP) based non-coherent joint transmission. Multiple TRPs are connected through backhaul link for coordination. The backhaul link can be ideal or non-ideal. In the case of ideal backhaul, the TRPs can exchange dynamic physical downlink shared channel (PDSCH) scheduling information with short latency and thus different TRPs can coordinate a PDSCH transmission per PDSCH transmission. While, in non-ideal backhaul case, the information exchange between TRPs has large latency and thus the coordination between TRPs can only be semi-static or static.
In current physical uplink shared channel (PUSCH) transmission schemes, a user equipment (UE) can only transmit PUSCH with one transmission (Tx) beam at one time. If the Tx beam meets blockage, the PUSCH transmission could be lost due to poor link quality. Time division multiplexing (TDM) -based PUSCH repetition transmission is introduced to improve reliability. But the issue of TDM-based PUSCH repetition transmission is large latency and thus it might not be suitable for the service requiring low latency and high reliability.
Therefore, there is a need for apparatuses and methods of uplink transmission with multiple transmission configuration indicator (TCI) states such as solutions for physical uplink shared channel (PUSCH) transmission using multiple TCI states.
SUMMARY
An object of the present disclosure is to propose apparatuses and methods of uplink transmission with multiple transmission configuration indicator (TCI) states such as solutions for physical uplink shared channel (PUSCH) transmission using multiple TCI states, which can support a PUSCH transmission through a frequency-domain repetition transmission scheme and/or improve reliability of uplink transmission.
In a first aspect of the present disclosure, a method of uplink transmission with multiple transmission configuration indicator (TCI) states, by a user equipment (UE) includes being configured, by a base station, with a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the UE is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
In a second aspect of the present disclosure, a method of uplink transmission with multiple transmission configuration indicator (TCI) states, by a base station includes configuring, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the base station requests the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
In a third aspect of the present disclosure, a UE includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The UE is configured to perform the above method.
In a fourth aspect of the present disclosure, a base station includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The base station is configured to perform the above method.
In a fifth aspect of the present disclosure, a UE includes a determiner and a transmitter. The determiner is configured to determine a first physical uplink shared channel (PUSCH) transmission mode. In the first PUSCH transmission mode, the transmitter is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
In a sixth aspect of the present disclosure, a base station includes an allocator configured to allocate, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the allocator requests the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
In a seventh aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In an eighth aspect of the present disclosure, a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
In a ninth aspect of the present disclosure, a computer readable storage medium, in which a computer program is stored, causes a computer to execute the above method.
In a tenth aspect of the present disclosure, a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
In an eleventh aspect of the present disclosure, a computer program causes a computer to execute the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to illustrate the embodiments of the present disclosure or related art more clearly, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1A is a schematic structural diagram of an example of multi-transmission/reception point (TRP) based non-coherent joint transmission.
FIG. 1B is a schematic structural diagram of another example of multi-TRP based non-coherent joint transmission.
FIG. 2 is a block diagram of one or more user equipments (UEs) and a base station of communication in a communication network system according to an embodiment of the present disclosure.
FIG. 3 is a block diagram of a UE according to an embodiment of the present disclosure.
FIG. 4 is a block diagram of a UE according to an embodiment of the present disclosure.
FIG. 5 is a flowchart illustrating a method of uplink transmission with multiple transmission configuration indicator (TCI) states performed by a UE according to an embodiment of the present disclosure.
FIG. 6 is a block diagram of a base station according to an embodiment of the present disclosure.
FIG. 7 is a block diagram of a base station according to an embodiment of the present disclosure.
FIG. 8 is a flowchart illustrating a method of uplink transmission with multiple transmission configuration indicator (TCI) states performed by a base station according to an embodiment of the present disclosure.
FIG. 9 is a flowchart illustrating an example of a procedure of transmitting physical uplink shared channel (PUSCH) transmission occasion of one transport block (TB) with two TCI states associated with non-overlapping frequency domain resource allocation according to an embodiment of the present disclosure.
FIG. 10A is a flowchart illustrating an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
FIG. 10B is a flowchart illustrating an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
FIG. 10C is a flowchart illustrating an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
FIG. 10D is a flowchart illustrating an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure.
FIG. 11 is a block diagram of an example of a computing device according to an embodiment of the present disclosure.
FIG. 12 is a block diagram of a communication system according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
The technical solutions of the embodiments of the present disclosure can be applied to various communication systems, such as a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) system, a general packet radio service (GPRS) , a long term evolution (LTE) system, a LTE frequency division duplex (FDD) system, a LTE time division duplex (TDD) system, an advanced long term evolution (LTE-A) system, a new radio (NR) system, an evolution system of a NR system, a LTE-based access to unlicensed spectrum (LTE-U) system, a NR-based access to unlicensed spectrum (NR-U) system, an universal mobile telecommunication system (UMTS) , a global interoperability for microwave access (WiMAX) communication system, wireless local area networks (WLAN) , wireless fidelity (Wi-Fi) , a future 5th generation (5G) system (may also be called a new radio (NR) system) or other communication systems, etc.
Optionally, a base station mentioned in the embodiments of the present application can provide a communication coverage for a specific geographic area and can communicate with a user equipment (UE) located in the coverage area. Optionally, the base station may be a gNB, a base transceiver station (BTS) in the GSM or in the CDMA system, or may be a NodeB (NB) in the WCDMA system, or may be an evolutional Node B (eNB or eNodeB) in the LTE system, or a radio controller in a cloud radio access network (CRAN) .
The UE may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device. The access terminal may be a cellular radio telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , a handheld device with wireless communication functions, a computing device, other processing devices coupled with a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, a terminal device in a future evolved PLMN, etc.
Optionally, the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or the communication  system in the embodiment of the present application may also be applied to a licensed spectrum, where the licensed spectrum can also be considered an unshared spectrum.
New radio (NR) system introduces a multi-transmission/reception point (TRP) based non-coherent joint transmission. Multiple TRPs are connected through backhaul link for coordination. The backhaul link can be ideal or non-ideal. In the case of ideal backhaul, the TRPs can exchange dynamic physical downlink shared channel (PDSCH) scheduling information with short latency and thus different TRPs can coordinate a PDSCH transmission per PDSCH transmission. While, in non-ideal backhaul case, the information exchange between TRPs has large latency and thus the coordination between TRPs can only be semi-static or static.
FIG. 1A illustrates an example of multi-transmission/reception point (TRP) based non-coherent joint transmission. FIG. 1B illustrates another example of multi-TRP based non-coherent joint transmission. FIG. 1A and FIG. 1B illustrate that, in non-coherent joint transmission, different transmission/reception points (TRPs) use different physical downlink control channels (PDCCHs) to schedule physical downlink sharing channel (PDSCH) transmission independently. Each TRP can send one downlink control information (DCI) to schedule one PDSCH transmission. PDSCHs from different TRPs can be scheduled in the same slot or different slots. Two different PDSCH transmissions from different TRPs can be fully overlapped or partially overlapped in PDSCH resource allocation. To support multi-TRP based non-coherent joint transmission, a user equipment (UE) is requested to receive PDCCH from multiple TRPs and then receive PDSCH sent from multiple TRPs. For each PDSCH transmission, the UE can feedback a hybrid automatic repeat request-acknowledge (HARQ-ACK) information to a network. In multi-TRP transmission, the UE can feedback the HARQ-ACK information for each PDSCH transmission to the TRP transmitting the PDSCH. The UE can also feedback the HARQ-ACK information for a PDSCH transmission sent from any TRP to one particular TRP.
An example of multi-TRP based non-coherent joint transmission is illustrated in FIG. 1A. A UE receives a PDSCH based on non-coherent joint transmission from two TRPs: TRP1 and TRP2. As illustrated in FIG. 1A, the TRP1 sends one DCI to schedule a transmission of PDSCH 1 to the UE and the TRP2 sends one DCI to schedule a transmission of PDSCH 2 to the UE. At the UE side, the UE receives and decodes DCI from both TRPs. Based on the DCI from the TRP1, the UE receives and decodes the PDSCH 1 and based on the DCI from the TRP2, the UE receives and decodes the PDSCH 2. In the example illustrated in FIG. 1A, the UE reports HARQ-ACK for PDSCH 1 and PDSCH2 to the TRP1 and the TRP 2, respectively. The TRP1 and the TRP 2 use different control resource sets (CORESETs) and search spaces to transmit DCI scheduling PDSCH transmission to the UE. Therefore, the network can configure multiple CORESETs and search spaces. Each TRP can be associated with one or more CORESETs and also the related search spaces. With such configuration, the TRP would use the associated CORESET to transmit DCI to schedule a PDSCH transmission to the UE. The UE can be requested to decode DCI in CORESETs associated with either TRP to obtain PDSCH scheduling information.
Another example of multi-TRP transmission is illustrated in FIG. 1B. A UE receives PDSCH based on non-coherent joint transmission from two TRPs: TRP1 and TRP2. As illustrated in FIG. 1B, the TRP1 sends one DCI to schedule a transmission of PDSCH 1 to the UE and the TRP2 sends one DCI to schedule the transmission of PDSCH 2 to the UE. At the UE side, the UE receives and decodes DCI from both TRPs. Based on the DCI from the TRP1, the UE receives and decodes the PDSCH 1 and based on the DCI from the TRP2, the UE receives and decodes the PDSCH 2. In the example illustrated in FIG. 1B, the UE reports HARQ-ACK for both PDSCH 1 and PDSCH2 to the TRP, which is different from the HARQ-ACK reporting in the example illustrated in FIG. 1A. The example illustrated in FIG. 1B needs ideal backhaul between the TRP 1 and the TRP 2, while the example illustrated in FIG. 1A can be deployed in the scenarios that the backhaul between the TRP 1 and the TRP 2 is ideal or non-ideal.
In current physical uplink shared channel (PUSCH) transmission schemes, a user equipment (UE) can only transmit PUSCH with one transmission (Tx) beam at one time. If the Tx beam meets blockage, the PUSCH transmission  could be lost due to poor link quality. Time division multiplexing (TDM) -based PUSCH repetition transmission is introduced to improve reliability. But the issue of TDM-based PUSCH repetition transmission is large latency and thus it might not be suitable for the service requiring low latency and high reliability.
Therefore, there is a need for apparatuses and methods of uplink transmission with multiple transmission configuration indicator (TCI) states such as solutions for physical uplink shared channel (PUSCH) transmission using multiple TCI states. The proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
FIG. 2 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., next generation NodeB (gNB) or eNB) 20 of communication in a communication network system 30 (e.g., an NR system) according to an embodiment of the present disclosure are provided. The communication network system 30 includes the one or more UEs 10 and the base station 20. The one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21. The memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21. The transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
The processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The transceiver 13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21. The memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
In some embodiments, the processor 11 is configured, by a base station, with a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the transceiver 13 is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1. This can solve issues in the prior art, utilize multi-transmission/reception point (TRP) reception, improve uplink reliability, provide a good communication performance, and/or provide high reliability. Further, the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
In some embodiments, the processor 21 may configure, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the processor 21 may request the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1. This can solve issues in the prior art, utilize multi-transmission/reception point (TRP) reception, improve uplink reliability, provide a good communication performance, and/or provide high reliability. Further, the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
FIG. 3 illustrates an example of a UE 300 according to an embodiment of the present application. The UE 300 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the UE 300 using any suitably configured hardware and/or software. The UE 300 a determiner 301 and a transmitter 302. The determiner 301 is configured to determine a first physical uplink shared channel (PUSCH) transmission mode. In the first PUSCH transmission mode, the transmitter 302 is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1. This can solve issues in the prior art, utilize multi-transmission/reception point (TRP) reception, improve uplink reliability, provide a good communication performance, and/or provide high reliability. Further, the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
FIG. 4 illustrates an example of a UE 400 according to an embodiment of the present disclosure. The UE 400 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the UE 400 using any suitably configured hardware and/or software. The UE 400 may include a memory 401, a transceiver 402, and a processor 403 coupled to the memory 401 and the transceiver 402. The processor 403 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 403. The memory 401 is operatively coupled with the processor 403 and stores a variety of information to operate the processor 403. The transceiver 402 is operatively coupled with the processor 403, and the transceiver 402 transmits and/or receives a radio signal. The processor 403 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The memory 401 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The transceiver 402 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the memory 401 and executed by the processor 403. The memory 401 can be implemented within the processor 403 or external to the processor 403 in which case those can be communicatively coupled to the processor 403 via various means as is known in the art.
In some embodiments, the processor 403 is configured, by a base station, with a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the transceiver 402 is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1. This can solve issues in the prior art, utilize multi-transmission/reception point (TRP) reception, improve uplink reliability, provide a good communication performance, and/or provide high reliability. Further, the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
FIG. 5 is an example of a method 500 of uplink transmission with multiple transmission configuration indicator (TCI) states performed by a UE according to an embodiment of the present disclosure. The method 500 of uplink transmission with multiple TCI states performed by a UE is configured to implement some embodiments of the disclosure.  Some embodiments of the disclosure may be implemented into the method 500 of uplink transmission with multiple TCI states performed by a UE using any suitably configured hardware and/or software. In some embodiments, the method 500 of uplink transmission with multiple TCI states performed by a UE includes: an operation 502, being configured, by a base station, with a first physical uplink shared channel (PUSCH) transmission mode, and an operation 504, in the first PUSCH transmission mode, the UE is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1. This can solve issues in the prior art, utilize multi-transmission/reception point (TRP) reception, improve uplink reliability, provide a good communication performance, and/or provide high reliability. Further, the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
In some embodiments, N is equal to 2. In some embodiments, the at least one of the N TCL states includes a joint TCI state or an uplink (UL) TCI state. In some embodiments, in the joint TCI state or the UL TCI state, one reference signal is configured to provide reference for determining a UL transmission spatial filter for one of physical uplink shared channel (PUSCH) transmission occasions. In some embodiments, the joint TCI state or the UL TCI state is associated with one path loss reference signal (RS) and/or at least one uplink power control parameter. In some embodiments, the at least one uplink power control parameter includes a P0 parameter, an alpha, and/or a closed loop index for each PUSCH transmission occasion. For example, for a P0 parameter, a UE specific part is independently configured for the UE, which may reflect an interference level suffered by the base station and a power adjustment deviation of the UE. For example, in a multi-beam scenario, interferences on different receiving beams of the base station are different, so the configuration needs to be based on the receiving beams of the base station. According to uplink and downlink beam measurement results, the base station selects some possible receiving beams for the UE, and determines a UE specific P0 according to these beams, which may be independently configured by the receiving beams of the base station or be independently configured by the receiving beams of the base station by groups. This value is used as an initial calculation value of the power control, and the accuracy of the configuration according to beams is not necessary, so it is more feasible to configure according to the receiving beam group. An error between the configured value and the actual value is compensated by the closed-loop power control process.
In some embodiments, in the first PUSCH transmission mode, the UE is further configured by the base station with N sounding reference signal (SRS) resource sets for the PUSCH transmission occasion. In some embodiments, the N SRS resource sets are used for a codebook based PUSCH transmission or for a non-codebook based PUSCH transmission. For example, two types of PUSCH transmissions, codebook and non-codebook based PUSCH transmissions, are supported in a current 3rd generation partnership project (3GPP) Release. In some examples, in codebook based transmission, a UE may be configured with one SRS resource set with “usage” set to “codebook. ” The UE may be configured with a maximum number of four SRS resources within the SRS resource set. Each SRS resource is RRC-configured with a number of ports (nrofSRS-Ports ) . The SRS resource indicator (SRI) field in the uplink (UL) DCI (scheduling PUSCH) indicates one SRS resource. The number of ports configured for the indicated SRS resource determines the number of antenna ports for PUSCH. The PUSCH is transmitted with the same spatial domain filter (i.e., UL beam) as the indicated SRS resources. The number of layers (rank) and TPMI (precoder) for the scheduled PUSCH can be determined from a separate DCI field (e.g., “Precoding information and number of layers") .
In some examples, in non-codebook based transmission, a UE can be configured with one SRS resource set with “usage” set to “noncodebook. ” Similar to the codebook based situation, the UE may be configured with a maximum number of four SRS resources within the SRS resource set. The UE may be configured with a maximum number of four SRS resources within the SRS resource set. Each SRS resource has one port. The SRI field in the UL DCI (scheduling PUSCH) indicates one or multiple SRS resources. The number of indicated SRS resources determines the rank (i.e. number of layers) for the scheduled PUSCH. The PUSCH is transmitted with the same precoder as well as spatial domain filter (i.e., beam) as the indicated SRS resources (indicated by the SRI) . The SRS resource set can optionally be configured with one associated non-zero-power channel state information reference signal (NZP CSI-RS) resource (by RRC parameter associated with CSI-RS) . The UE may calculate the precoder used for the transmission of SRS resources within the set based on measurement of the associated NZP CSI-RS resource.
In some embodiments, at least one of the N SRS resource sets is associated with one part of the PUSCH transmission occasion. In some embodiments, at least one of the N SRS resource sets is associated with one of non-overlapping frequency domain resource allocations associated with one of joint TCI states or UL TCI states. In some embodiments, in the first PUSCH transmission mode, the UE is further configured by the base station with at least one configuration, and the at least one configuration includes a frequency domain resource allocation, a time domain resource allocation, an indicator of at least one SRS resource for the frequency domain resource allocation associated with the at least one of the N TCL states, an indicator of at least one precoding vector for the frequency domain resource allocation associated with the at least one of the N TCL states, and/or a number of layers in the PUSCH transmission occasion. In some embodiments, in the first PUSCH transmission mode, the UE derives the non-overlapping frequency domain resource allocation associated with the at least one of the N TCL states according to the at least one configuration. In some embodiments, the at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation.
In some embodiments, the UE is configured by the base station with the first PUSCH transmission mode through a higher layer parameter. In some embodiments, the higher layer parameter includes a radio resource control (RRC) or a downlink control information (DCI) . In some embodiments, if the UE is configured, by the base station, with a first higher layer parameter set to a first value for the first PUSCH transmission mode, the UE does not expect to be configured with a time domain repetition transmission for the PUSCH transmission occasion. In some embodiments, in the first PUSCH transmission mode, if the UE is indicated, by the base station, with a frequency domain resource allocation with total nPRB physical resource blocks (PRBs) allocated to the UE, the UE is requested to determine the frequency domain resource allocation for each PUSCH transmission occasion, where nPRB is a positive integer.
In some embodiments, in the frequency domain resource allocation, firstPRBs are assigned to a first SRS resource set, and remainingPRBs are assigned to a second SRS resource set, the firstPRBs are assigned to a first joint TCI state or a first UL TCI state, and the remainingPRBs are assigned to a second joint TCI state or a second UL TCI state, the firstPRBs are assigned to the second SRS resource set, and the remainingPRBs are assigned to the first SRS resource set, or the firstPRBs are assigned to the second joint TCI state or the second UL TCI state, and the remainingPRBs are assigned to the first joint TCI state or the first UL TCI state.
In some embodiments, in the frequency domain resource allocation, one DCI codepoint is used to indicate that: firstPRBs are assigned to a first SRS resource set, and remainingPRBs are assigned to a second SRS  resource set, the firstPRBs are assigned to a first joint TCI state or a first UL TCI state, and the remainingPRBs are assigned to a second joint TCI state or a second UL TCI state, the firstPRBs are assigned to the second SRS resource set, and the remainingPRBs are assigned to the first SRS resource set, or the firstPRBs are assigned to the second joint TCI state or the second UL TCI state, and the remainingPRBs are assigned to the first joint TCI state or the first UL TCI state.
In some embodiments, in the first PUSCH transmission mode, the UE is configured to determine a UL phase tracking reference signal (PT-RS) transmission of the PUSCH transmission occasion. In some embodiments, the UE is configured to determine a UL PT-RS frequency density according to a number of PRBs associated with at least one TCI state or at least one SRS resource set. In some embodiments, the UE is configured to determine a UL PT-RS resource element mapping associated to allocated PRBs for at least one TCI state or at least one SRS resource set. In some embodiments, in the first PUSCH transmission mode, the UE is configured to determine a UL transmission power for the PUSCH transmission occasion. In some embodiments, the UE is configured to determine a maximum output power for at least one TCI state or at least one SRS resource set.
FIG. 6 illustrates an example of base station 600 according to an embodiment of the present application. The base station 600 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the base station 600 using any suitably configured hardware and/or software. The base station 600 includes includes an allocator 601 configured to allocate, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the allocator 601 requests the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1. This can solve issues in the prior art, utilize multi-transmission/reception point (TRP) reception, improve uplink reliability, provide a good communication performance, and/or provide high reliability. Further, the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
FIG. 7 illustrates an example of a base station 700 according to an embodiment of the present disclosure. The base station 700 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the base station 700 using any suitably configured hardware and/or software. The base station 700 may include a memory 701, a transceiver 702, and a processor 703 coupled to the memory 701 and the transceiver 702. The processor 703 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 703. The memory 701 is operatively coupled with the processor 703 and stores a variety of information to operate the processor 703. The transceiver 702 is operatively coupled with the processor 703, and the transceiver 702 transmits and/or receives a radio signal. The processor 703 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The memory 701 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The transceiver 702 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the memory 701  and executed by the processor 703. The memory 701 can be implemented within the processor 703 or external to the processor 703 in which case those can be communicatively coupled to the processor 703 via various means as is known in the art.
In some embodiments, the processor 703 may configure, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the processor 703 may request the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1. This can solve issues in the prior art, utilize multi-transmission/reception point (TRP) reception, improve uplink reliability, provide a good communication performance, and/or provide high reliability. Further, the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
FIG. 8 is an example of a method 800 of uplink transmission with multiple transmission configuration indicator (TCI) states performed by a base station according to an embodiment of the present disclosure. The method 800 of uplink transmission with multiple TCI states performed by the base station is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the method 800 of uplink transmission with multiple TCI states performed by the base station using any suitably configured hardware and/or software. In some embodiments, the method 800 of uplink transmission with multiple TCI states performed by the base station includes: an operation 802, configuring, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, and an operation 804, in the first PUSCH transmission mode, the base station requests the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1. This can solve issues in the prior art, utilize multi-transmission/reception point (TRP) reception, improve uplink reliability, provide a good communication performance, and/or provide high reliability. Further, the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted.
Exemplary Technical Solutions:
In one embodiment, a UE can be configured to transmit a single PUSCH transmission occasion of one TB with N>1 TCI states and each TCI state can be associated to a non-overlapping frequency domain resource allocation. One example of N can be 2. The UE can be configured or indicated with two TCI states for PUSCH transmission. The TCI state can be a joint TCI state or a UL TCI state. The UE can be indicated with a first joint TCI state and a second joint TCI state for PUSCH transmission. The UE can be indicated with a first UL TCI state and a second UL TCI state for PUSCH transmission.
For example, in a joint TCI state or UL TCI state, one reference signal is configured to provide reference for determining UL Tx spatial filter for one of those PUSCH transmission occasion. Each joint TCI state or UL TCI state can be associated with one path loss RS and one set of uplink power control parameters including P0, alpha and closed loop index for each PUSCH transmission occasion.
In one embodiment, a UE can be configured with N>1 SRS resource sets for PUSCH transmission, for example for codebook-based PUSCH or for non-codebook based PUSCH. Each SRS resource set is associated with one part of the PUSCH transmission occasion. Each SRS resource set can be associated with one of the non-overlapping frequency domain resource allocations that is associated with one of the joint TCI states or UL TCI states. The gNB can use RRC or DCI format to configure/indicate such a PUSCH transmission. The gNB can provide one or more of the following information:
Frequency domain resource allocation. Based on that, the UE can be requested to derive the frequency domain resource allocation for each joint TCI state or UL TCI state.
Time domain resource allocation.
Indicator of SRS resource (s) for the frequency domain resource allocation associated with each TCI state.
Indicator of precoding vector (s) for the frequency domain resource allocation associated with each TCI state.
The number of layers in the PUSCH transmission, i.e, the rank of PUSCH transmission.
In one embodiment, when the UE receives the configuration/indication from the gNB, the UE can be requested to transmit the PUSCH transmission occasion of the TB with those two TCI states and each TCI state is associated with non-overlapping frequency domain resource allocation that the UE determines based on the frequency domain resource allocation indicated by the gNB. On the frequency domain resource allocation associated with each TCI state, the UE can apply the corresponding TCI state and the corresponding indicated indicator of SRS resource (s) and precoding vector (s) .
FIG. 9 illustrates an example of a procedure 900 of transmitting physical uplink shared channel (PUSCH) transmission occasion of one transport block (TB) with two TCI states associated with non-overlapping frequency domain resource allocation according to an embodiment of the present disclosure.
FIG. 9 illustrates that, in some embodiments, the procedure 900 of transmitting physical uplink shared channel (PUSCH) transmission occasion of one transport block (TB) with two TCI states associated with non-overlapping frequency domain resource allocation includes at least one of following operations:
Operation 902: A gNB configures a UE with a first PUSCH transmission mode through a higher layer parameter. In the first PUSCH transmission mode, the UE can be requested to transmit a single PUSCH transmission occasion of one TB with multiple TCI states (such as two TCI states) associated with non-overlapping frequency domain resource allocation.
Operation 904: The gNB indicates two TCI states for PUSCH transmission: a first TCI state and a second TCI state. The gNB configures two SRS resource sets for PUSCH transmission (for codebook-based or non-codebook based) .
Operation 906: The gNB configures/indicates the PUSCH transmission to the UE and the gNB can provide the frequency domain resource allocation, time domain resource allocation, indicator of SRS resource (s) , indication of precoding vector (s) and number of layers for the PUSCH transmission.
Operation 908: The UE derives the non-overlapping frequency domain resource allocation that is associated with each TCI state according to the configuration provided by the gNB.
Operation 910: The UE transmits the PUSCH transmission occasion with two TCI states and each TCI state is associated with the derived non-overlapping frequency domain resource allocation. The UE can also apply the indicated corresponding indicated SRS resource (s) and precoding vector (s) on each non-overlapping frequency domain resource allocation associated with each TCI state.
FIG. 10A illustrates an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure. FIG. 10A illustrates that, in some embodiments, the method of uplink transmission with multiple transmission configuration indicator (TCI) states includes at least one operation 1002: In the at least one operation 1002, a gNB can indicate a first higher layer parameter set to one first value to a UE to indicate that the UE can transmit a single PUSCH transmission occasion of one TB with two TCI states and each TCI state is associated with non-overlapping frequency domain resource allocation. In one example, if the UE is configured with the first higher layer parameter set to the first value, the UE does not expect to be configured with time domain repetition transmission for PUSCH.
FIG. 10B illustrates an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure. FIG. 10B illustrates that, in some embodiments, the method of uplink transmission with multiple transmission configuration indicator (TCI) states includes at least one operation 1004: In the at least one operation 1004, a UE is indicated to transmit a single PUSCH transmission occasion of one TB with two TCI states and each of the TCI states is associated with non-overlapping frequency domain resource allocation. If the UE is indicated with frequency domain resource allocation with total nPRB PRBs allocated to the UE. The UE can be requested to determine the frequency domain resource allocation for each PUSCH transmission occasion as one or more of followings:
The firstPRBs are assigned to the first SRS resource set and the remainingPRBs are assigned to the second SRS resource set.
The firstPRBs are assigned to the first joint TCI state or uplink (UL) TCI state and the remainingPRBs are assigned to the second joint TCI state or UL TCI state.
One DCI codepoint can be used to indicate that:
The firstPRBs are assigned to the first joint TCI state or UL TCI state (or the first SRS resource set) and the remainingPRBs are assigned to the second joint TCI state or UL TCI state (or the second SRS resource set) .
Alternatively, the firstPRBs are assigned to the second joint TCI state or UL TCI state (or the second SRS resource set) and the remainingPRBs are assigned to the first joint TCI state or UL TCI state (or the first SRS resource set) .
In one example, if the DCI field “SRS resource set indicator” is 10, the firstPRBs are assigned to the first joint TCI state or UL TCI state (or the first SRS resource set) and the remainingPRBs are assigned to the second joint TCI state or UL TCI state (or the second SRS resource set) . And if the DCI field “SRS resource set indicator” is 11, the firstPRBs are assigned to the second joint TCI state or UL TCI state (or the second SRS resource set) and the remainingPRBs are assigned to the first joint TCI state or UL TCI state (or the first SRS resource set) .
FIG. 10C illustrates an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure. FIG. 10C illustrates that, in some embodiments, the method of uplink transmission with multiple transmission configuration indicator (TCI) states includes at least one operation 1006: In the at least one operation 1006, a UE is indicated to transmit a single PUSCH transmission occasion of one TB with two TCI states and each of the TCI states is associated with non-overlapping frequency domain resource allocation. The UE can be requested to determine the UL PT-RS transmission of that PUSCH as follows:
UL PT-RS frequency density is determined by the number of PRBs associated with each TCI state (or each SRS resource set) .
UL PT-RS resource element mapping is associated to the allocated PRBs for each TCI state (or each SRS resource set) .
FIG. 10D illustrates an example of a method of uplink transmission with multiple transmission configuration indicator (TCI) states according to an embodiment of the present disclosure. FIG. 10D illustrates that, in some embodiments, the method of uplink transmission with multiple transmission configuration indicator (TCI) states includes at least one operation 1008: In the at least one operation 1008, a UE is indicated to transmit a single PUSCH transmission occasion of one TB with two TCI states and each of the TCI states is associated with non-overlapping frequency domain resource allocation. The UE can be requested to determine the UL Tx power for PUSCH with one or more of the followings:
In one example, the UE can be provided with a maximum output power for each of the TCI states (or each SRS resource set) . In other word, the UE can be provided with a maximum output power for each of the SRS resource sets configured for PUSCH transmission (codebook-based or non-codebook based) , for example a first maximum output power for the first SRS resource set and a second maximum output power for the second SRS resource set. The UE can be requested to calculate the PUSCH transmission power frequency-domain resource allocation associated with the first SRS resource set according to the first maximum output power and the power control parameters associated with the first joint TCI state or UL TCI state. The UE can be requested to calculate the PUSCH transmission power for frequency domain resource allocation associated with the second SRS resource set according to the second maximum output power and the power control parameters associated with the second joint TCI state or UL TCI state.
In one example, the UE can be provided with a maximum output power and the UE can be requested to calculate the Tx power of both PUSCH transmission occasions by assuming the sum of Tx power of both PUSCH transmission occasions does not exceed the provided maximum output power. The UE can be requested to use this provided maximum output power to derive a first maximum output power for PUSCH transmission occasion associated with the first SRS resource set and a second maximum output power for PUSCH transmission occasion associated with the second SRS resource set. Then the UE can calculate the Tx power for the PUSCH transmission occasion associated with the first SRS resource set according to the determined first maximum output power and the UE can calculate the Tx power for the PUSCH transmission occasion associated with the second SRS resource set according to the determined second maximum output power. In one example, the first maximum output power can be the half of the provided maximum output power and the second maximum output power can be the half of the provided maximum output power. In one example, the UE can partition the provided maximum output power to the first maximum output and the second maximum output according to the path loss, alpha and/or closed loop power adjustment associated with the first joint TCI state or UL TCI state and the second joint TCI state or UL TCI state.
In one example, the UE can be provided with a maximum output power. The UE can be requested to first calculate the Tx power for the first PUSCH transmission occasion and the second PUSCH transmission occasion. If the total Tx power of the first PUSCH transmission occasion and the second PUSCH transmission occasion exceed the provided maximum output power, the UE can be requested to scale the Tx power for the first PUSCH transmission occasion and the second PUSCH transmission occasion accordingly.
Commercial interests for some embodiments are as follows. 1. Solve issues in the prior art. 2. Utilize multi-transmission/reception point (TRP) reception. 3. Improve uplink reliability. 4. Provide a good communication performance. 6. Provide high reliability. 7. Further, the proposed some embodiments can support an NR system to transmit PUSCH through a frequency-domain repetition transmission scheme and thus reliability of uplink transmission is boosted. Some embodiments of the present disclosure can be used in many applications. Some embodiments of the present disclosure are used by chipset vendors, video system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR/MR device maker for example gaming, conference/seminar, education purposes. Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in video standards to create an end product. Some embodiments of the present disclosure propose technical mechanisms. The at least one proposed solution, method, system, and apparatus of some embodiments of the present disclosure may be used for current and/or new/future standards regarding communication systems such as a UE, a base station, and/or a communication system. Compatible products follow at least one proposed solution, method, system, and apparatus of some embodiments of the present disclosure. The proposed solution, method, system, and apparatus are widely used in a UE, a base station, and/or a communication system. With the implementation of the at least one proposed solution, method, system, and apparatus of some embodiments of the present disclosure, at least one modification to methods and apparatus of uplink transmission with multiple transmission configuration indicator (TCI) states are considered for standardizing.
FIG. 11 is an example of a computing device 1100 according to an embodiment of the present disclosure. Any suitable computing device can be used for performing the operations described herein. For example, FIG. 11 illustrates an example of the computing device 1100 that can implement the communication network system of FIG. 2, the UE of FIG. 3, the UE of FIG. 4, the base station of FIG. 6, the base station of FIG. 7, the method of FIG. 1A, FIG. 1B, FIG. 5, FIG. 8, FIG. 9, FIG. 10A, FIG. 10B, FIG. 10C, or FIG. 10D using any suitably configured hardware and/or software. In some embodiments, the computing device 1100 can include a processor 1112 that is communicatively coupled to a memory 1114 and that executes computer-executable program code and/or accesses information stored in the memory 1114. The processor 1112 may include a microprocessor, an application-specific integrated circuit ( “ASIC” ) , a state machine, or other processing device. The processor 1112 can include any of a number of processing devices, including one. Such a processor can include or may be in communication with a computer-readable medium storing instructions that, when executed by the processor 1112, cause the processor to perform the operations described herein.
The memory 1114 can include any suitable non-transitory computer-readable medium. The computer-readable medium can include any electronic, optical, magnetic, or other storage device capable of providing a processor with computer-readable instructions or other program code. Non-limiting examples of a computer-readable medium include a magnetic disk, a memory chip, a read-only memory (ROM) , a random access memory (RAM) , an application specific integrated circuit (ASIC) , a configured processor, optical storage, magnetic tape or other magnetic storage, or any other medium from which a computer processor can read instructions. The instructions may include processor-specific instructions generated by a compiler and/or an interpreter from code written in any suitable computer-programming language, including, for example, C, C++, C#, visual basic, java, python, perl, javascript, and actionscript.
The computing device 1100 can also include a bus 1116. The bus 1116 can communicatively couple one or more components of the computing device 1100. The computing device 1100 can also include a number of external or internal devices such as input or output devices. For example, the computing device 1100 is illustrated with an input/output ( “I/O” ) interface 1118 that can receive input from one or more input devices 1120 or provide output to one or more output devices 1122. The one or more input devices 1120 and one or more output devices 1122 can be communicatively coupled to the I/O interface 1118. The communicative coupling can be implemented via any suitable manner (e.g., a connection via a printed circuit board, connection via a cable, communication via wireless transmissions, etc. ) . Non-limiting examples of input devices 1120 include a touch screen (e g., one or more cameras for imaging a touch area or pressure sensors for detecting pressure changes caused by a touch) , a mouse, a keyboard, or any other device that can be used to generate input events in response to physical actions by a user of a computing device. Non-limiting examples of output devices 1122 include a liquld crystal display (LCD) screen, an external monitor, a speaker, or any other device that can be used to display or otherwise present outputs generated by a computing device.
The computing device 1100 can execute program code that configures the processor 1112 to perform one or more of the operations described above with respect to FIG. 1A, FIG. 1B, FIG. 5, FIG. 8, FIG. 9, FIG. 10A, FIG. 10B, FIG. 10C, or FIG. 10D. The program code may be resident in the memory 1114 or any suitable computer-readable medium and may be executed by the processor 1112 or any other suitable processor.
The computing device 1100 can also include at least one network interface device 1124. The network interface device 1124 can include any device or group of devices suitable for establishing a wired or wireless data connection to one or more data networks 1128. Non limiting examples of the network interface device 1124 include an Ethernet network adapter, a modem, and/or the like. The computing device 1100 can transmit messages as electronic or optical signals via the network interface device 1124.
FIG. 12 is a block diagram of an example of a communication system 1200 according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the communication system 1200 using any suitably configured hardware and/or software. FIG. 12 illustrates the communication system 1200 including a radio frequency (RF) circuitry 1210, a baseband circuitry 1220, an application circuitry 1230, a memory/storage 1240, a display 1250, a camera 1260, a sensor 1270, and an input/output (I/O) interface 1280, coupled with each other at least as illustrated.
The application circuitry 1230 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system. The communication system 1200 can execute program code that configures the application circuitry 1230 to perform one or more of the operations described above with respect to FIG. 1A, FIG. 1B, FIG. 5, FIG. 8, FIG. 9, FIG. 10A, FIG. 10B, FIG. 10C, or FIG. 10D. The program code may be resident in the application circuitry 1230 or any suitable computer-readable medium and may be executed by the application circuitry 1230 or any other suitable processor.
The baseband circuitry 1220 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that may enable communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network  (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry 1220 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency. The RF circuitry 1210 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. In various embodiments, the RF circuitry 1210 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the communication network system of FIG. 2, the UE of FIG. 3, the UE of FIG. 4, the base station of FIG. 6, or the base station of FIG. 7 may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) . The memory/storage 1240 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface 1280 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface. In various embodiments, the sensor 1270 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display 1250 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the communication system 1200 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, an AR/VR glasses, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software  for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (27)

  1. A method of uplink transmission with multiple transmission configuration indicator (TCI) states, by a user equipment (UE) , comprising:
    being configured, by a base station, with a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the UE is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  2. The method of claim 1, wherein N is equal to 2.
  3. The method of claim 1, wherein the at least one of the N TCL states comprises a joint TCI state or an uplink (UL) TCI state.
  4. The method of claim 3, wherein in the joint TCI state or the UL TCI state, one reference signal is configured to provide reference for determining a UL transmission spatial filter for one of PUSCH transmission occasions.
  5. The method of claim 3, wherein the joint TCI state or the UL TCI state is associated with one path loss reference signal (RS) and/or at least one uplink power control parameter.
  6. The method of claim 5, wherein the at least one uplink power control parameter comprises a P0 parameter, an alpha, and/or a closed loop index for each PUSCH transmission occasion.
  7. The method of claim 1, wherein in the first PUSCH transmission mode, the UE is further configured by the base station with N sounding reference signal (SRS) resource sets for the PUSCH transmission occasion.
  8. The method of claim 7, wherein the N SRS resource sets are used for a codebook based PUSCH transmission or for a non-codebook based PUSCH transmission.
  9. The method of claim 7, wherein at least one of the N SRS resource sets is associated with one part of the PUSCH transmission occasion.
  10. The method of claim 7, wherein at least one of the N SRS resource sets is associated with one of non-overlapping frequency domain resource allocations associated with one of joint TCI states or UL TCI states.
  11. The method of claim 7, wherein in the first PUSCH transmission mode, the UE is further configured by the base station with at least one configuration, and the at least one configuration comprises a frequency domain resource allocation, a time domain resource allocation, an indicator of at least one SRS resource for the frequency domain resource allocation associated with the at least one of the N TCL states, an indicator of at least one precoding vector for the frequency domain resource allocation associated with the at least one of the N TCL states, and/or a number of layers in the PUSCH transmission occasion.
  12. The method of claim 11, wherein in the first PUSCH transmission mode, the UE derives the non-overlapping frequency domain resource allocation associated with the at least one of the N TCL states according to the at least one configuration.
  13. The method of claim 12, wherein the at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation.
  14. The method of claim 1, wherein the UE is configured by the base station with the first PUSCH transmission mode through a higher layer parameter.
  15. The method of claim 14, wherein the higher layer parameter comprises a radio resource control (RRC) or a downlink control information (DCI) .
  16. The method of claim 1, wherein if the UE is configured, by the base station, with a first higher layer parameter set to a first value for the first PUSCH transmission mode, the UE does not expect to be configured with a time domain repetition transmission for the PUSCH transmission occasion.
  17. The method of claim 1, wherein in the first PUSCH transmission mode, if the UE is indicated, by the base station, with a frequency domain resource allocation with total nPRB physical resource blocks (PRBs) allocated to the UE, the UE is requested to determine the frequency domain resource allocation for each PUSCH transmission occasion, where nPRB is a  positive integer.
  18. The method of claim 17, wherein in the frequency domain resource allocation,
    firstPRBs are assigned to a first SRS resource set, and remainingPRBs are assigned to a second SRS resource set;
    the firstPRBs are assigned to a first joint TCI state or a first UL TCI state, and the remainingPRBs are assigned to a second joint TCI state or a second UL TCI state;
    the firstPRBs are assigned to the second SRS resource set, and the remainingPRBs are assigned to the first SRS resource set; or
    the firstPRBs are assigned to the second joint TCI state or the second UL TCI state, and the remainingPRBs are assigned to the first joint TCI state or the first UL TCI state.
  19. The method of claim 17, wherein in the frequency domain resource allocation, one DCI codepoint is used to indicate that:
    firstPRBs are assigned to a first SRS resource set, and remainingPRBs are assigned to a second SRS resource set;
    the firstPRBs are assigned to a first joint TCI state or a first UL TCI state, and the remainingPRBs are assigned to a second joint TCI state or a second UL TCI state;
    the firstPRBs are assigned to the second SRS resource set, and the remainingPRBs are assigned to the first SRS resource set; or
    the firstPRBs are assigned to the second joint TCI state or the second UL TCI state, and the remainingPRBs are assigned to the first joint TCI state or the first UL TCI state.
  20. The method of claim 1, wherein in the first PUSCH transmission mode, the UE is configured to determine a UL phase tracking reference signal (PT-RS) transmission of the PUSCH transmission occasion.
  21. The method of claim 20, wherein the UE is configured to determine a UL PT-RS frequency density according to a number of PRBs associated with at least one TCI state or at least one SRS resource set.
  22. The method of claim 20, wherein the UE is configured to determine a UL PT-RS resource element mapping associated to allocated PRBs for at least one TCI state or at least one SRS resource set.
  23. The method of claim 1, wherein in the first PUSCH transmission mode, the UE is configured to determine a UL transmission power for the PUSCH transmission occasion.
  24. The method of claim 23, wherein the UE is configured to determine a maximum output power for at least one TCI state or at least one SRS resource set.
  25. A method of uplink transmission with multiple transmission configuration indicator (TCI) states, by a base station comprising:
    configuring, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the base station requests the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  26. A user equipment (UE) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured, by a base station, with a first physical uplink shared channel (PUSCH) transmission mode; and
    wherein in the first PUSCH transmission mode, the transceiver is configured to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
  27. A base station, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to configure, to a user equipment (UE) , a first physical uplink shared channel (PUSCH) transmission mode, wherein in the first PUSCH transmission mode, the processor requests the UE to transmit a single PUSCH transmission occasion of one transport block (TB) with N TCI states, at least one of the N TCL states is associated with a non-overlapping frequency domain resource allocation, and N is a positive integer greater than 1.
PCT/CN2023/106086 2022-07-08 2023-07-06 Apparatus and methods of uplink transmission with multiple tcl states WO2024008151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263359462P 2022-07-08 2022-07-08
US63/359,462 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024008151A1 true WO2024008151A1 (en) 2024-01-11

Family

ID=89454296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106086 WO2024008151A1 (en) 2022-07-08 2023-07-06 Apparatus and methods of uplink transmission with multiple tcl states

Country Status (1)

Country Link
WO (1) WO2024008151A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066627A1 (en) * 2019-10-03 2021-04-08 엘지전자 주식회사 Method and device for transmitting or receiving data in wireless communication system
WO2021228203A1 (en) * 2020-05-13 2021-11-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method of wireless communication
WO2022000262A1 (en) * 2020-06-30 2022-01-06 Zte Corporation Systems and methods for determining transmission information
CN114467344A (en) * 2019-10-12 2022-05-10 华为技术有限公司 Method and device for configuring frequency domain transmission resources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066627A1 (en) * 2019-10-03 2021-04-08 엘지전자 주식회사 Method and device for transmitting or receiving data in wireless communication system
CN114467344A (en) * 2019-10-12 2022-05-10 华为技术有限公司 Method and device for configuring frequency domain transmission resources
WO2021228203A1 (en) * 2020-05-13 2021-11-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method of wireless communication
WO2022000262A1 (en) * 2020-06-30 2022-01-06 Zte Corporation Systems and methods for determining transmission information

Similar Documents

Publication Publication Date Title
US11490265B2 (en) Apparatus and method of processing collision between SSB transmission and periodic transmission
WO2022052650A1 (en) Apparatus and method of wireless communication
WO2021190358A1 (en) Apparatus and method of wireless communication
WO2021228203A1 (en) Apparatus and method of wireless communication
WO2021098722A1 (en) Apparatus and method of wireless communication
US20230025005A1 (en) Apparatus and method of wireless communication
US20220217590A1 (en) User equipment and method of uplink beam management
US20220124791A1 (en) Apparatus and method of wireless communication
CN113366772B (en) Physical uplink shared channel transmission method and device
WO2024008151A1 (en) Apparatus and methods of uplink transmission with multiple tcl states
WO2022001973A1 (en) Apparatus and method of wireless communication
WO2022012395A1 (en) Apparatus and method of wireless communication
WO2022205071A1 (en) Channel state information reporting for multi-transmission-reception-point operation
WO2022077485A1 (en) User equipment, base station, and method of common beam determination
WO2024061241A1 (en) Apparatus and methods of inter-ue interference beam measurement and reporting
WO2024061322A1 (en) Wireless communication method and relevant apparatus
WO2021185152A1 (en) Apparatus and method of wireless communication
US20230021510A1 (en) Apparatus and method of wireless communication
WO2021228201A1 (en) Apparatus and method of wireless communication
WO2024055938A1 (en) Apparatuses and methods of measuring and reporting carrier phase of multi-path channels
US20220279568A1 (en) User equipment and method of wireless communication
CN118042625A (en) Apparatus and method for wireless communication
WO2023131807A1 (en) Apparatus and method of wireless communication
WO2022053843A1 (en) Apparatus and method of communication
CN117812741A (en) Measurement resource indication method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834918

Country of ref document: EP

Kind code of ref document: A1