WO2024055938A1 - Apparatuses and methods of measuring and reporting carrier phase of multi-path channels - Google Patents

Apparatuses and methods of measuring and reporting carrier phase of multi-path channels Download PDF

Info

Publication number
WO2024055938A1
WO2024055938A1 PCT/CN2023/118060 CN2023118060W WO2024055938A1 WO 2024055938 A1 WO2024055938 A1 WO 2024055938A1 CN 2023118060 W CN2023118060 W CN 2023118060W WO 2024055938 A1 WO2024055938 A1 WO 2024055938A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier phase
prs
path
phase measurement
srs
Prior art date
Application number
PCT/CN2023/118060
Other languages
French (fr)
Inventor
Li Guo
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Publication of WO2024055938A1 publication Critical patent/WO2024055938A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to apparatuses and methods of measuring and reporting carrier phase of multi-path channels such as solutions for downlink per-path carrier phase measurement and uplink per-path carrier phase measurement for positioning.
  • Positioning technology is one of core technologies of wireless communication systems and navigation systems. Current positioning methods are based on timing measurement or angle measurements. The accuracy of timing measurement is limited by a bandwidth of positioning reference signal. The bandwidth of the spectrum has a limitation, thus, the accuracy of positioning service based on the method would be restricted. The accuracy of positioning based on angle measurement is also limited by the angle measurement accuracy.
  • An object of the present disclosure is to propose apparatuses and methods of measuring and reporting carrier phase of multi-path channels such as solutions for downlink per-path carrier phase measurement and uplink per-path carrier phase measurement for positioning, which can solve issues in the prior art and other issues.
  • a method of measuring and reporting carrier phase of multi-path channels includes measuring, by a user equipment (UE) , carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) and reporting, by the UE, a carrier phase measurement of the multiple paths of the DL PRS.
  • UE user equipment
  • DL PRS downlink positioning reference signal
  • a method of measuring and reporting carrier phase of multi-path channels includes measuring, by a transmission/reception point (TRP) , carrier phases of multiple paths of a sounding reference signal (SRS) and reporting, by the TRP, a carrier phase measurement of the multiple paths of the SRS.
  • TRP transmission/reception point
  • SRS sounding reference signal
  • a UE in a third aspect of the present disclosure, includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the UE is configured to perform the above method.
  • a TRP includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the base station is configured to perform the above method.
  • a UE in a fifth aspect of the present disclosure, includes a measurer configured to measure carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) and a reporter configured to report a carrier phase measurement of the multiple paths of the DL PRS.
  • DL PRS downlink positioning reference signal
  • a TRP includes a measurer configured to measure carrier phases of multiple paths of a sounding reference signal (SRS) and a reporter configured to report a carrier phase measurement of the multiple paths of the SRS.
  • SRS sounding reference signal
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
  • a computer readable storage medium in which a computer program is stored, causes a computer to execute the above method.
  • a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
  • a computer program causes a computer to execute the above method.
  • FIG. 1 is a schematic structural diagram of an example of positioning based on downlink (DL) measurement configured to perform some embodiments of the present disclosure.
  • DL downlink
  • FIG. 2 is a block diagram of a user equipment (UE) and a transmission/reception point (TRP) of communication in a communication network system according to an embodiment of the present disclosure.
  • UE user equipment
  • TRP transmission/reception point
  • FIG. 3 is a block diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 4 is a block diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating a method of measuring and reporting carrier phase of multi-path channels performed by a UE according to an embodiment of the present disclosure.
  • FIG. 6 is a block diagram of a TRP according to an embodiment of the present disclosure.
  • FIG. 7 is a block diagram of a TRP according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating a method of measuring and reporting carrier phase of multi-path channels performed by a TRP according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart illustrating an example of a procedure of UE measuring and reporting carrier phase of per path of DL PRS resources according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart illustrating an example of a procedure of TRP measuring and reporting carrier phase of per path of SRS resources according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram of an example of a computing device according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a communication system according to an embodiment of the present disclosure.
  • Positioning technology is one of the core technologies of wireless communication systems and navigation systems.
  • 5G NR system supports positioning technology.
  • 3GPP release 16 the following positioning solutions are specified: DL TDOA method, UL TDOA method, multi-RTT method, DL-AoD method, UL AoA method, and E-CID method.
  • downlink positioning reference signal PRS
  • SRS for positioning is introduced to support uplink positioning measurement.
  • the following measurements for positioning can be supported in NR release 16 including DL RSTD measured from DL PRS, UL RTOA measured from SRS for positioning, UE Rx-Tx time difference, gNB Rx-Tx time difference, DL PRS RSRP, UL SRS RSRP, and UL AoA.
  • the NR based positioning solutions involve the following function entities:
  • the UE measures DL PRS resources sent from multiple different TRPs or transmits SRS resource for positioning.
  • TRP For determining the location of one UE, multiple TRPs are involved generally. Each TRP can transmit DL PRS to the UE or receive and measure SRS for positioning transmitted by the UE.
  • Location server it can be referred to as a location management function (LMF) .
  • LMF location management function
  • FIG. 1 illustrates an example of NR positioning based on DL measurement.
  • a procedure may include the following operations.
  • the LMF and TRP coordinate the DL PRS configurations.
  • Each TRP transmits DL PRS resource according to the configuration.
  • the UE measures DL PRS resources transmitted from multiple TRPs and then measures the DL PRS RSRP and/or DL RSTD.
  • the UE reports the positioning measurement results to the LMF.
  • the LMF calculates the location of the UE based on the reported positioning measurement results. For examples, in details, in DL-AoD methods, the UE may measure the RSRP or path RSRP of one or more DL RS resources and then may report the measurement results to LMF.
  • the LMF can determine the angle of departure of one UE with respect to each TRP and then the LMF can calculate the location of the UE.
  • the UE can be configured with one or more DL PRS resource sets and each DL PRS resource set can include one or more DL PRS resources.
  • each DL PRS resource set the UE is provided with the following configuration parameters:
  • dl-PRS-MutingOption1 and dl-PRS-MutingOption2 define the time locations where the DL PRS resource is expected to not be transmitted for a DL PRS resource set. If dl-PRS-MutingOption1 is configured, each bit in the bitmap of dl-PRS-MutingOption1 corresponds to a configurable number provided by higher layer parameter dl-prs-MutingBitRepetitionFactor of consecutive instances of a DL PRS resource set where all the DL PRS resources within the set are muted for the instance that is indicated to be muted.
  • the length of the bitmap can be ⁇ 2, 4, 6, 8, 16, 32 ⁇ bits.
  • each bit in the bitmap of dl-PRS-MutingOption2 corresponds to a single repetition index for each of the DL PRS resources within each instance of a nr-DL-PRS-ResourceSet and the length of the bitmap is equal to the values of dl-PRS-ResourceRepetitionFactor.
  • NR-DL-PRS-SFN0-Offset defines the time offset of the SFN0 slot 0 for the transmitting cell with respect to SFN0 slot 0 of reference cell.
  • the bandwidth of DL PRS resource could be outside the bandwidth of one active BWP and the subcarrier spacing used by a DL PRS resource could be different from the subcarrier spacing of an active BWP too.
  • a measurement gap is needed for a UE to measure DL PRS resource.
  • the measurement gap for positioning is configured through RRC. When a UE needs to measure DL PRS resource and there is no measurement gap, the UE can request measurement gap through RRC signaling.
  • One UE transmits SRS for positioning in uplink to multiple TRPs.
  • Each TRP receives the SRS for positioning from that UE and obtain the corresponding measurement results, which can be arrival timing measurement (called RSTD) , SRS RSRP measurement or angle of arrival measurement. Then the TRP reports the measurement results to the LMF.
  • the LMF can estimate the location of UE based on uplink measurements reported from multiple TRPs.
  • the current positioning methods are based on timing measurement or angle measurements.
  • the accuracy of timing measurement is limited by the bandwidth of positioning reference signal.
  • the bandwidth of the spectrum used in NR FR1 is not more than 100HMz, thus, the accuracy of positioning service based on those method would be restricted.
  • the accuracy of positioning based on angle measurement is also limited by the angle measurement accuracy.
  • the proposed apparatuses and methods in some embodiments of the present disclosure can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE-A advanced long term evolution
  • NR new radio
  • NR global interoperability for microwave access
  • WLAN wireless local area networks
  • Wi-Fi wireless fidelity
  • 5G future 5th generation
  • a base station mentioned in the embodiments of the present application can provide a communication coverage for a specific geographic area and can communicate with a user equipment (UE) located in the coverage area.
  • the base station may be a gNB, a base transceiver station (BTS) in the GSM or in the CDMA system, or may be a NodeB (NB) in the WCDMA system, or may be an evolutional Node B (eNB or eNodeB) in the LTE system, or a radio controller in a cloud radio access network (CRAN) .
  • BTS base transceiver station
  • NB NodeB
  • eNB or eNodeB evolutional Node B
  • CRAN cloud radio access network
  • the UE may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the access terminal may be a cellular radio telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , a handheld device with wireless communication functions, a computing device, other processing devices coupled with a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, a terminal device in a future evolved PLMN, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where the licensed spectrum can also be considered an unshared spectrum.
  • FIG. 2 illustrates that, in some embodiments, a user equipment (UE) 10 and a TRP 20 of communication in a communication network system 30 (e.g., an NR system) according to an embodiment of the present disclosure are provided.
  • the communication network system 30 includes the UE 10 and the TRP 20.
  • the UE 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the TRP 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • the processor 11 is configured to measure carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) and report a carrier phase measurement of the multiple paths of the DL PRS.
  • DL PRS downlink positioning reference signal
  • This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
  • the processor 21 is configured to measure carrier phases of multiple paths of a sounding reference signal (SRS) and report a carrier phase measurement of the multiple paths of the SRS.
  • SRS sounding reference signal
  • FIG. 3 illustrates an example of a UE 300 according to an embodiment of the present application.
  • the UE 300 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the UE 300 using any suitably configured hardware and/or software.
  • the UE 300 includes a measurmer 301 and a reporter 302.
  • the measurmer 301 is configured to measure carrier phases of multiple paths of a downlink positioning reference signal (DL PRS)
  • the reporter 302 is configured to report a carrier phase measurement of the multiple paths of the DL PRS.
  • This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
  • DL PRS downlink positioning reference signal
  • FIG. 4 illustrates an example of a UE 400 according to an embodiment of the present disclosure.
  • the UE 400 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the UE 400 using any suitably configured hardware and/or software.
  • the UE 400 may include a memory 401, a transceiver 402, and a processor 403 coupled to the memory 401 and the transceiver 402.
  • the processor 403 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 403.
  • the memory 401 is operatively coupled with the processor 403 and stores a variety of information to operate the processor 403.
  • the transceiver 402 is operatively coupled with the processor 403, and the transceiver 402 transmits and/or receives a radio signal.
  • the processor 403 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 401 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 402 may include baseband circuitry to process radio frequency signals.
  • the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • the modules can be stored in the memory 401 and executed by the processor 403.
  • the memory 401 can be implemented within the processor 403 or external to the processor 403 in which case those can be communicatively coupled to the processor 403 via various means as is known in the art.
  • the processor 403 is configured to measure carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) and report a carrier phase measurement of the multiple paths of the DL PRS.
  • DL PRS downlink positioning reference signal
  • This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
  • FIG. 5 is an example of a method 500 of method of measuring and reporting carrier phase of multi-path channels performed by a UE according to an embodiment of the present disclosure.
  • the method 500 of method of measuring and reporting carrier phase of multi-path channels performed by a UE is configured to implement some embodiments of the disclosure.
  • Some embodiments of the disclosure may be implemented into the method 500 of method of measuring and reporting carrier phase of multi-path channels performed by a UE using any suitably configured hardware and/or software.
  • the method 500 of method of measuring and reporting carrier phase of multi-path channels performed by a UE includes: an operation 502, measuring, by a user equipment (UE) , carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) , and an operation 504, reporting, by the UE, a carrier phase measurement of the multiple paths of the DL PRS.
  • UE user equipment
  • DL PRS downlink positioning reference signal
  • This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
  • the UE for the carrier phase measurement of the multiple paths of the DL PRS, is configured to report one or more of the followings: an indicator of the DL PRS resource; the carrier phase measurement corresponding to each of the multiple paths of the DL PRS; a reference signal received power (RSRP) measurement corresponding to each of the multiple paths of the DL PRS; a reference signal time difference (RSTD) measurement corresponding to each of the multiple paths of the DL PRS; a UE receive-transmit (Rx-Tx) timing difference measurement corresponding to each of the multiple paths of the DL PRS; and a line-of-sight (LOS) /non-line-of-sight (NLOS) indicator corresponding to each of the multiple paths of the DL PRS.
  • RSRP reference signal received power
  • RSTD reference signal time difference
  • Rx-Tx receive-transmit
  • LOS line-of-sight
  • NLOS non-line-of-sight
  • the method further includes receiving, by the UE, a request configured to request the UE to measure the carrier phases of the multiple paths of the DL PRS and report the carrier phase measurement of the multiple paths of the DL PRS.
  • the method further includes receiving, by the UE, a configuration of the DL PRS.
  • the configuration of the DL PRS includes a configuration of one or multiple frequency layers, in each frequency layer, the UE is provided with a configuration of one or more DL PRS resource sets, and each DL PRS resource set contains one or more DL PRS resources.
  • the UE for the carrier phase measurement of a first path of the DL PRS, is configured to report one or more of the followings: an indicator of the DL PRS resource; the carrier phase measurement corresponding to the first path of the DL PRS resource; the RSRP measurement corresponding to the first path of the DL PRS resource; the RSTD measurement corresponding to the first path of the DL PRS resource; the UE Rx-Tx time difference corresponding to the first path of the DL PRS resource; and the LOS/NOLS indicator corresponding to the first path of the DL PRS resource.
  • the UE is further configured to report the carrier phase measurement of a first path of the DL PRS resource on one or multiple frequency layers.
  • the carrier phase measurement of the first path of the DL PRS resource is reported as a differential carrier phase between different DL PRS resources.
  • the same DL PRS resource is used as reference for both differential carrier phase measurement and RSTD measurement.
  • the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource is reported with one or more of the following values: the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has a value between 0 and 2 ⁇ ; the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has a value between - ⁇ and ⁇ ; the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has an angle value between 0 and 360 degrees; the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has an angle value between -180 degrees and 180 degrees.
  • FIG. 6 illustrates an example of a TRP 600 according to an embodiment of the present application.
  • the TRP 600 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the TRP 600 using any suitably configured hardware and/or software.
  • the TRP 600 includes a measurmer 301 and a reporter 302.
  • the measurmer 301 is configured to measure carrier phases of multiple paths of a sounding reference signal (SRS)
  • the reporter 302 is configured to report a carrier phase measurement of the multiple paths of the SRS.
  • SRS sounding reference signal
  • FIG. 7 illustrates an example of a TRP 700 according to an embodiment of the present disclosure.
  • the TRP 700 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the TRP 700 using any suitably configured hardware and/or software.
  • the TRP 700 may include a memory 701, a transceiver 702, and a processor 703 coupled to the memory 701 and the transceiver 702.
  • the processor 703 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 703.
  • the memory 701 is operatively coupled with the processor 703 and stores a variety of information to operate the processor 703.
  • the transceiver 702 is operatively coupled with the processor 703, and the transceiver 702 transmits and/or receives a radio signal.
  • the processor 703 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 701 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 702 may include baseband circuitry to process radio frequency signals.
  • the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • the modules can be stored in the memory 701 and executed by the processor 703.
  • the memory 701 can be implemented within the processor 703 or external to the processor 703 in which case those can be communicatively coupled to the processor 703 via various means as is known in the art.
  • the processor 703 is configured to measure carrier phases of multiple paths of a sounding reference signal (SRS) and report a carrier phase measurement of the multiple paths of the SRS.
  • SRS sounding reference signal
  • FIG. 8 is an example of a method 800 of measuring and reporting carrier phase of multi-path channels performed by a TRP according to an embodiment of the present disclosure.
  • the method 800 of measuring and reporting carrier phase of multi-path channels performed by the TRP is configured to implement some embodiments of the disclosure.
  • Some embodiments of the disclosure may be implemented into the method 800 of measuring and reporting carrier phase of multi-path channels performed by the TRP using any suitably configured hardware and/or software.
  • the method 800 of u measuring and reporting carrier phase of multi-path channels performed by the TRP includes: an operation 802, measuring, by a transmission/reception point (TRP) , carrier phases of multiple paths of a sounding reference signal (SRS) , and an operation 804, reporting, by the TRP, a carrier phase measurement of the multiple paths of the SRS.
  • TRP transmission/reception point
  • SRS sounding reference signal
  • the TRP is configured to report one or more of the followings: an indicator of the SRS resource; the carrier phase measurement corresponding to each of the multiple paths of the SRS; a reference signal received power (RSRP) measurement corresponding to each of the multiple paths of the SRS; a relative time of arrival (RTOA) measurement corresponding to each of the multiple paths of the SRS; a receive-transmit (Rx-Tx) timing difference measurement corresponding to each of the multiple paths of the SRS; and a line-of-sight (LOS) /non-line-of-sight (NLOS) indicator corresponding to each of the multiple paths of the SRS.
  • RSRP reference signal received power
  • RTOA relative time of arrival
  • Rx-Tx receive-transmit
  • LOS line-of-sight
  • NLOS non-line-of-sight
  • the method further includes receiving, by the TRP, a request configured to request the TRP to measure the carrier phases of the multiple paths of the SRS and report the carrier phase measurement of the multiple paths of the SRS.
  • the method further includes receiving, by the SRS, a configuration of the SRS.
  • the configuration of the SRS includes a configuration of one or multiple frequency layers, in each frequency layer, the TRP is provided with a configuration of one or more SRS resource sets, and each SRS resource set contains one or more SRS resources.
  • the TRP is configured to report one or more of the followings: an indicator of the SRS resource; the carrier phase measurement corresponding to the first path of the SRS resource; the RSRP measurement corresponding to the first path of the SRS resource; the RTOA measurement corresponding to the first path of the SRS resource; the Rx-Tx time difference corresponding to the first path of the SRS resource; and the LOS/NOLS indicator corresponding to the first path of the SRS resource.
  • the TRP is further configured to report the carrier phase measurement of a first path of the SRS resource on one or multiple frequency layers.
  • the carrier phase measurement of the first path of the SRS resource is reported as a differential carrier phase between different SRS resources.
  • the same SRS resource is used as reference for both differential carrier phase measurement and RTOA measurement.
  • the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource is reported with one or more of the following values: the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has a value between 0 and 2 ⁇ ; the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has a value between - ⁇ and ⁇ ; the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has an angle value between 0 and 360 degrees; the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has an angle value between -180 degrees and 180 degrees.
  • a UE can be requested by the system (for example the LMF) to measure and report the carrier phase of the first path of downlink positioning reference signal, for example DL PRS. Additionally, the UE can be requested to measure and report the carrier phase of one or more additional paths of downlink positioning reference signal. For each reported the first path or additional path, the UE can measure and report one or more of the following measurements: arrival timing measurement, RSRP measurement and UE Rx-Tx timing difference measurement. For each carrier phase measurement result, the UE can also report a corresponding LOS/NLOS indicator which indicates whether the corresponding carrier phase is measured from a LOS path or NLOS path.
  • FIG. 9 illustrates of procedure of UE measuring and reporting carrier phase of per path of DL PRS resources according the methods proposed in some embodiments of this disclosure.
  • a system such as LMF can request the UE to measure and report the carrier phase of 1st path of DL PRS resource.
  • the system can first provide the configuration of DL PRS, which include the configuration of one or multiple frequency layers.
  • the UE is provided with the configuration of one or more DL PRS resource sets and each DL PRS resource set can contain one or more DL PRS resources.
  • the carrier phase measurement of one path in DL PRS can be defined as the phase of the received signal at the i-th path delay that carry the DL PRS signal.
  • the UE For each carrier phase measurement of 1st path of DL PRS, the UE can be requested to report one or more of the followings: An indicator of the DL PRS resource.
  • the carrier phase measurement of 1st path of the DL PRS resource. The RSRP measurement of the DL PRS resource.
  • the RSRP of the 1st path of the DL PRS resource. The RSTD measurement corresponding to the 1st path of the DL PRS resource.
  • the UE Rx-Tx time difference corresponding to the 1st path of the DL PRS resource.
  • the UE can be requested to report the carrier phase measurement of 1st path of DL PRS resource on multiple frequency layers.
  • the UE can also be requested to report the following for one or more additional paths of the DL PRS resource: The carrier phase measurement of one additional path.
  • the RSRP measurement of the addition path It can also be the differential RSRP measurement of the additional path with a reference to the RSRP of the 1st path.
  • the carrier phase measurement of 1st path of the DL PRS resource can be reported as the differential carrier phase between different DL PRS resources.
  • a first DL PRS resource is the reference for differential carrier phase measurement.
  • the same DL PRS resource can be used as reference for both differential carrier phase measurement and RSTD measurement.
  • the carrier phase measurement of one path and the differential carrier phase measurement of DL PRS can be reported with one or more of the following alternative values:
  • the reported carrier phase measurement or differential carrier phase measurement can be one value between 0 and 2 ⁇ with the step size equal to for example ⁇ /180, 5 ⁇ /180, 10 ⁇ /180.
  • the reported carrier phase measurement or differential carrier phase measurement can be one value between - ⁇ and ⁇ with the step size equal to for example ⁇ /180, 5 ⁇ /180, 10 ⁇ /180.
  • a TRP can be requested by the system (for example the LMF) to measure and report the carrier phase of the first path of uplink positioning reference signal, for example SRS for positioning.
  • the TRP can be requested to report the carrier phase measurement of the 1st path of one SRS resource.
  • the carrier phase measurement of one path can be defined as the carrier phase measured from the received signal at the i-th path delay that carries the UL SRS signal.
  • the TRP can also report one or more of the followings: the RTOA measurement, the path RSRP measurement and the angle of arrival measurement corresponding to this path, one LOS/NLOS indicator corresponding to this path.
  • the TRP can also report the carrier phase measurement of one or more additional paths of an SRS resource. For each additional path, the TRP can report the relative arrival time with reference to the 1st path, path RSRP measurement and the measurement of angle of arrival.
  • FIG. 140 illustrates of a procedure of TRP measuring and reporting carrier phase of per path of SRS resources according the methods proposed in some embodiments of this disclosure.
  • the TRP can measure and report the carrier phase of 1st path of SRS resource.
  • the TRP can be requested to report one or more of the followings: An indicator of the SRS resource.
  • the gNB Rx-Tx time difference corresponding to the 1st path of the SRS resource.
  • the TRP can also be requested to report the following for one or more additional paths of the SRS resource: The carrier phase measurement of one additional path.
  • the RSRP measurement of the addition path It can also be the differential RSRP measurement of the additional path with a reference to the RSRP of the 1st path.
  • the carrier phase measurement of one path of SRS can be reported with one or more of the following alternative values:
  • the reported carrier phase measurement or differential carrier phase measurement can be one value between 0 and 2 ⁇ with the step size equal to for example ⁇ /180, 5 ⁇ /180, 10 ⁇ /180.
  • the reported carrier phase measurement or differential carrier phase measurement can be one value between - ⁇ and ⁇ with the step size equal to for example ⁇ /180, 5 ⁇ /180, 10 ⁇ /180.
  • TRP multi-transmission/reception point
  • Some embodiments of the present disclosure are used by chipset vendors, video system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR/MR device maker for example gaming, conference/seminar, education purposes.
  • Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in video standards to create an end product.
  • the at least one proposed solution, method, system, and apparatus of some embodiments of the present disclosure may be used for current and/or new/future standards regarding communication systems such as a UE, aTRP, a base station, and/or a communication system.
  • Compatible products follow at least one proposed solution, method, system, and apparatus of some embodiments of the present disclosure.
  • the proposed solution, method, system, and apparatus are widely used in a UE, a TRP, a base station, and/or a communication system.
  • at least one modification to methods and apparatus of measuring and reporting carrier phase of multi-path channels are considered for standardizing.
  • FIG. 11 is an example of a computing device 1100 according to an embodiment of the present disclosure. Any suitable computing device can be used for performing the operations described herein.
  • FIG. 11 illustrates an example of the computing device 1100 that can implement some embodiments of FIG. 1 to FIG. 10 using any suitably configured hardware and/or software.
  • the computing device 1100 can include a processor 1112 that is communicatively coupled to a memory 1114 and that executes computer-executable program code and/or accesses information stored in the memory 1114.
  • the processor 1112 may include a microprocessor, an application-specific integrated circuit ( “ASIC” ) , a state machine, or other processing device.
  • the processor 1112 can include any of a number of processing devices, including one.
  • Such a processor can include or may be in communication with a computer-readable medium storing instructions that, when executed by the processor 1112, cause the processor to perform the operations described herein.
  • the memory 1114 can include any suitable non-transitory computer-readable medium.
  • the computer-readable medium can include any electronic, optical, magnetic, or other storage device capable of providing a processor with computer-readable instructions or other program code.
  • Non-limiting examples of a computer-readable medium include a magnetic disk, a memory chip, a read-only memory (ROM) , a random access memory (RAM) , an application specific integrated circuit (ASIC) , a configured processor, optical storage, magnetic tape or other magnetic storage, or any other medium from which a computer processor can read instructions.
  • the instructions may include processor-specific instructions generated by a compiler and/or an interpreter from code written in any suitable computer-programming language, including, for example, C, C++, C#, visual basic, java, python, perl, javascript, and actionscript.
  • the computing device 1100 can also include a bus 1116.
  • the bus 1116 can communicatively couple one or more components of the computing device 1100.
  • the computing device 1100 can also include a number of external or internal devices such as input or output devices.
  • the computing device 1100 is illustrated with an input/output ( “I/O” ) interface 1118 that can receive input from one or more input devices 1120 or provide output to one or more output devices 1122.
  • the one or more input devices 1120 and one or more output devices 1122 can be communicatively coupled to the I/O interface 1118.
  • the communicative coupling can be implemented via any suitable manner (e.g., a connection via a printed circuit board, connection via a cable, communication via wireless transmissions, etc. ) .
  • Non-limiting examples of input devices 1120 include a touch screen (e g., one or more cameras for imaging a touch area or pressure sensors for detecting pressure changes caused by a touch) , a mouse, a keyboard, or any other device that can be used to generate input events in response to physical actions by a user of a computing device.
  • Non-limiting examples of output devices 1122 include a liquid crystal display (LCD) screen, an external monitor, a speaker, or any other device that can be used to display or otherwise present outputs generated by a computing device.
  • LCD liquid crystal display
  • the computing device 1100 can execute program code that configures the processor 1112 to perform one or more of the operations described above with respect to some embodiments of FIG. 1 to FIG. 10.
  • the program code may be resident in the memory 1114 or any suitable computer-readable medium and may be executed by the processor 1112 or any other suitable processor.
  • the computing device 1100 can also include at least one network interface device 1124.
  • the network interface device 1124 can include any device or group of devices suitable for establishing a wired or wireless data connection to one or more data networks 1128.
  • Non limiting examples of the network interface device 1124 include an Ethernet network adapter, a modem, and/or the like.
  • the computing device 1100 can transmit messages as electronic or optical signals via the network interface device 1124.
  • FIG. 12 is a block diagram of an example of a communication system 1200 according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the communication system 1200 using any suitably configured hardware and/or software.
  • FIG. 12 illustrates the communication system 1200 including a radio frequency (RF) circuitry 1210, a baseband circuitry 1220, an application circuitry 1230, a memory/storage 1240, a display 1250, a camera 1260, a sensor 1270, and an input/output (I/O) interface 1280, coupled with each other at least as illustrated.
  • RF radio frequency
  • the application circuitry 1230 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the communication system 1200 can execute program code that configures the application circuitry 1230 to perform one or more of the operations described above with respect to some embodiments of FIG. 1 to FIG. 10.
  • the program code may be resident in the application circuitry 1230 or any suitable computer-readable medium and may be executed by the application circuitry 1230 or any other suitable processor.
  • the baseband circuitry 1220 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that may enable communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as
  • the baseband circuitry 1220 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 1210 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 1210 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to some embodiments of FIG. 1 to FIG. 10 may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC application specific integrated circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • the memory/storage 1240 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • the I/O interface 1280 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • the sensor 1270 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display 1250 may include a display, such as a liquid crystal display and a touch screen display.
  • the communication system 1200 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, an AR/VR glasses, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Abstract

A method of measuring and reporting carrier phase of multi-path channels includes measuring, by a user equipment (UE), carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) and reporting, by the UE, a carrier phase measurement of the multiple paths of the DL PRS. Another method of measuring and reporting carrier phase of multi-path channels includes measuring, by a transmission/reception point (TRP), carrier phases of multiple paths of a sounding reference signal (SRS) and reporting, by the TRP, a carrier phase measurement of the multiple paths of the SRS.

Description

APPARATUSES AND METHODS OF MEASURING AND REPORTING CARRIER PHASE OF MULTI-PATH CHANNELS TECHNICAL FIELD
The present disclosure relates to the field of communication systems, and more particularly, to apparatuses and methods of measuring and reporting carrier phase of multi-path channels such as solutions for downlink per-path carrier phase measurement and uplink per-path carrier phase measurement for positioning.
BACKGROUND
Positioning technology is one of core technologies of wireless communication systems and navigation systems. Current positioning methods are based on timing measurement or angle measurements. The accuracy of timing measurement is limited by a bandwidth of positioning reference signal. The bandwidth of the spectrum has a limitation, thus, the accuracy of positioning service based on the method would be restricted. The accuracy of positioning based on angle measurement is also limited by the angle measurement accuracy.
Therefore, there is a need for apparatuses and methods of measuring and reporting carrier phase of multi-path channels such as solutions for downlink per-path carrier phase measurement and uplink per-path carrier phase measurement for positioning, which can solve issues in the prior art and other issues.
SUMMARY
An object of the present disclosure is to propose apparatuses and methods of measuring and reporting carrier phase of multi-path channels such as solutions for downlink per-path carrier phase measurement and uplink per-path carrier phase measurement for positioning, which can solve issues in the prior art and other issues.
In a first aspect of the present disclosure, a method of measuring and reporting carrier phase of multi-path channels includes measuring, by a user equipment (UE) , carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) and reporting, by the UE, a carrier phase measurement of the multiple paths of the DL PRS.
In a second aspect of the present disclosure, a method of measuring and reporting carrier phase of multi-path channels includes measuring, by a transmission/reception point (TRP) , carrier phases of multiple paths of a sounding reference signal (SRS) and reporting, by the TRP, a carrier phase measurement of the multiple paths of the SRS.
In a third aspect of the present disclosure, a UE includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The UE is configured to perform the above method.
In a fourth aspect of the present disclosure, a TRP includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The base station is configured to perform the above method.
In a fifth aspect of the present disclosure, a UE includes a measurer configured to measure carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) and a reporter configured to report a carrier phase measurement of the multiple paths of the DL PRS.
In a sixth aspect of the present disclosure, a TRP includes a measurer configured to measure carrier phases of multiple paths of a sounding reference signal (SRS) and a reporter configured to report a carrier phase measurement of the multiple paths of the SRS.
In a seventh aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In an eighth aspect of the present disclosure, a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
In a ninth aspect of the present disclosure, a computer readable storage medium, in which a computer program is stored, causes a computer to execute the above method.
In a tenth aspect of the present disclosure, a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
In an eleventh aspect of the present disclosure, a computer program causes a computer to execute the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to illustrate the embodiments of the present disclosure or related art more clearly, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a schematic structural diagram of an example of positioning based on downlink (DL) measurement configured to perform some embodiments of the present disclosure.
FIG. 2 is a block diagram of a user equipment (UE) and a transmission/reception point (TRP) of communication in a communication network system according to an embodiment of the present disclosure.
FIG. 3 is a block diagram of a UE according to an embodiment of the present disclosure.
FIG. 4 is a block diagram of a UE according to an embodiment of the present disclosure.
FIG. 5 is a flowchart illustrating a method of measuring and reporting carrier phase of multi-path channels performed by a UE according to an embodiment of the present disclosure.
FIG. 6 is a block diagram of a TRP according to an embodiment of the present disclosure.
FIG. 7 is a block diagram of a TRP according to an embodiment of the present disclosure.
FIG. 8 is a flowchart illustrating a method of measuring and reporting carrier phase of multi-path channels performed by a TRP according to an embodiment of the present disclosure.
FIG. 9 is a flowchart illustrating an example of a procedure of UE measuring and reporting carrier phase of per path of DL PRS resources according to an embodiment of the present disclosure.
FIG. 10 is a flowchart illustrating an example of a procedure of TRP measuring and reporting carrier phase of per path of SRS resources according to an embodiment of the present disclosure.
FIG. 11 is a block diagram of an example of a computing device according to an embodiment of the present disclosure.
FIG. 12 is a block diagram of a communication system according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
Terms including definitions and abbreviations:

Positioning technology is one of the core technologies of wireless communication systems and navigation systems. 5G NR system supports positioning technology. In 3GPP release 16, the following positioning solutions are specified: DL TDOA method, UL TDOA method, multi-RTT method, DL-AoD method, UL AoA method, and E-CID method.
In 3GPP NR, downlink positioning reference signal (PRS) is introduced to support downlink positioning measurement, and SRS for positioning is introduced to support uplink positioning measurement. Specially, the following measurements for positioning can be supported in NR release 16 including DL RSTD measured from DL PRS, UL RTOA measured from SRS for positioning, UE Rx-Tx time difference, gNB Rx-Tx time difference, DL PRS RSRP, UL SRS RSRP, and UL AoA.
The NR based positioning solutions involve the following function entities:
UE: the UE measures DL PRS resources sent from multiple different TRPs or transmits SRS resource for positioning.
TRP: For determining the location of one UE, multiple TRPs are involved generally. Each TRP can transmit DL PRS to the UE or receive and measure SRS for positioning transmitted by the UE.
Location server: it can be referred to as a location management function (LMF) .
FIG. 1 illustrates an example of NR positioning based on DL measurement. As illustrated in the example, a procedure may include the following operations. The LMF and TRP coordinate the DL PRS configurations. Each TRP transmits DL PRS resource according to the configuration. The UE measures DL PRS resources transmitted from multiple TRPs and then measures the DL PRS RSRP and/or DL RSTD. The UE reports the positioning measurement results to the LMF. Further, the LMF calculates the location of the UE based on the reported positioning measurement results. For examples, in details, in DL-AoD methods, the UE may measure the RSRP or path RSRP of one or more DL RS resources and then may report the measurement results to LMF. The LMF can determine the angle of departure of one UE with respect to each TRP and then the LMF can calculate the location of the UE.
As specified in NR, the UE can be configured with one or more DL PRS resource sets and each DL PRS resource set can include one or more DL PRS resources. For each DL PRS resource set, the UE is provided with the following configuration parameters:
dl-PRS-Periodicity-and-ResourceSetSlotOffset defines the DL PRS resource periodicity and takes valuesslots, where  μ=0, 1, 2, 3 for dl-PRS-SubcarrierSpacing=15, 30, 60 and 120 kHz respectively and the slot offset for DL PRS resource set with respect to SFN0 slot 0. All the DL PRS resources within one DL PRS resource set are configured with the same DL PRS resource periodicity.
dl-PRS-MutingOption1 and dl-PRS-MutingOption2 define the time locations where the DL PRS resource is expected to not be transmitted for a DL PRS resource set. If dl-PRS-MutingOption1 is configured, each bit in the bitmap of dl-PRS-MutingOption1 corresponds to a configurable number provided by higher layer parameter dl-prs-MutingBitRepetitionFactor of consecutive instances of a DL PRS resource set where all the DL PRS resources within the set are muted for the instance that is indicated to be muted. The length of the bitmap can be {2, 4, 6, 8, 16, 32} bits. If dl-PRS-MutingOption2 is configured each bit in the bitmap of dl-PRS-MutingOption2 corresponds to a single repetition index for each of the DL PRS resources within each instance of a nr-DL-PRS-ResourceSet and the length of the bitmap is equal to the values of dl-PRS-ResourceRepetitionFactor.
NR-DL-PRS-SFN0-Offset defines the time offset of the SFN0 slot 0 for the transmitting cell with respect to SFN0 slot 0 of reference cell.
The bandwidth of DL PRS resource could be outside the bandwidth of one active BWP and the subcarrier spacing used by a DL PRS resource could be different from the subcarrier spacing of an active BWP too. Thus, a measurement gap is needed for a UE to measure DL PRS resource. The measurement gap for positioning is configured through RRC. When a UE needs to measure DL PRS resource and there is no measurement gap, the UE can request measurement gap through RRC signaling.
There are also uplink-based positioning methods. One UE transmits SRS for positioning in uplink to multiple TRPs. Each TRP receives the SRS for positioning from that UE and obtain the corresponding measurement results, which can be arrival timing measurement (called RSTD) , SRS RSRP measurement or angle of arrival measurement. Then the TRP reports the measurement results to the LMF. The LMF can estimate the location of UE based on uplink measurements reported from multiple TRPs.
The current positioning methods are based on timing measurement or angle measurements. The accuracy of timing measurement is limited by the bandwidth of positioning reference signal. The bandwidth of the spectrum used in NR FR1 is not more than 100HMz, thus, the accuracy of positioning service based on those method would be restricted. The accuracy of positioning based on angle measurement is also limited by the angle measurement accuracy.
Therefore, there is a need for apparatuses and methods of measuring and reporting carrier phase of multi-path channels such as solutions for downlink per-path carrier phase measurement and uplink per-path carrier phase measurement for positioning, which can solve issues in the prior art and other issues. The proposed apparatuses and methods in some embodiments of the present disclosure can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
The technical solutions of the embodiments of the present disclosure can be applied to various communication systems, such as a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) system, a general packet  radio service (GPRS) , a long term evolution (LTE) system, a LTE frequency division duplex (FDD) system, a LTE time division duplex (TDD) system, an advanced long term evolution (LTE-A) system, a new radio (NR) system, an evolution system of a NR system, a LTE-based access to unlicensed spectrum (LTE-U) system, a NR-based access to unlicensed spectrum (NR-U) system, an universal mobile telecommunication system (UMTS) , a global interoperability for microwave access (WiMAX) communication system, wireless local area networks (WLAN) , wireless fidelity (Wi-Fi) , a future 5th generation (5G) system (may also be called a new radio (NR) system) or other communication systems, etc.
Optionally, a base station mentioned in the embodiments of the present application can provide a communication coverage for a specific geographic area and can communicate with a user equipment (UE) located in the coverage area. Optionally, the base station may be a gNB, a base transceiver station (BTS) in the GSM or in the CDMA system, or may be a NodeB (NB) in the WCDMA system, or may be an evolutional Node B (eNB or eNodeB) in the LTE system, or a radio controller in a cloud radio access network (CRAN) .
The UE may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device. The access terminal may be a cellular radio telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , a handheld device with wireless communication functions, a computing device, other processing devices coupled with a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, a terminal device in a future evolved PLMN, etc.
Optionally, the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where the licensed spectrum can also be considered an unshared spectrum.
FIG. 2 illustrates that, in some embodiments, a user equipment (UE) 10 and a TRP 20 of communication in a communication network system 30 (e.g., an NR system) according to an embodiment of the present disclosure are provided. The communication network system 30 includes the UE 10 and the TRP 20. The UE 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The TRP 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21. The memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21. The transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
The processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The transceiver 13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures,  functions, and so on) that perform the functions described herein. The modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21. The memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
In some embodiments, the processor 11 is configured to measure carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) and report a carrier phase measurement of the multiple paths of the DL PRS. This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
In some embodiments, the processor 21 is configured to measure carrier phases of multiple paths of a sounding reference signal (SRS) and report a carrier phase measurement of the multiple paths of the SRS. This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
FIG. 3 illustrates an example of a UE 300 according to an embodiment of the present application. The UE 300 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the UE 300 using any suitably configured hardware and/or software. The UE 300 includes a measurmer 301 and a reporter 302. The measurmer 301 is configured to measure carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) , and the reporter 302 is configured to report a carrier phase measurement of the multiple paths of the DL PRS. This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
FIG. 4 illustrates an example of a UE 400 according to an embodiment of the present disclosure. The UE 400 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the UE 400 using any suitably configured hardware and/or software. The UE 400 may include a memory 401, a transceiver 402, and a processor 403 coupled to the memory 401 and the transceiver 402. The processor 403 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 403. The memory 401 is operatively coupled with the processor 403 and stores a variety of information to operate the processor 403. The transceiver 402 is operatively coupled with the processor 403, and the transceiver 402 transmits and/or receives a radio signal. The processor 403 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The memory 401 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The transceiver 402 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can  be stored in the memory 401 and executed by the processor 403. The memory 401 can be implemented within the processor 403 or external to the processor 403 in which case those can be communicatively coupled to the processor 403 via various means as is known in the art.
In some embodiments, the processor 403 is configured to measure carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) and report a carrier phase measurement of the multiple paths of the DL PRS. This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
FIG. 5 is an example of a method 500 of method of measuring and reporting carrier phase of multi-path channels performed by a UE according to an embodiment of the present disclosure. The method 500 of method of measuring and reporting carrier phase of multi-path channels performed by a UE is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the method 500 of method of measuring and reporting carrier phase of multi-path channels performed by a UE using any suitably configured hardware and/or software. In some embodiments, the method 500 of method of measuring and reporting carrier phase of multi-path channels performed by a UE includes: an operation 502, measuring, by a user equipment (UE) , carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) , and an operation 504, reporting, by the UE, a carrier phase measurement of the multiple paths of the DL PRS. This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
In some embodiments, for the carrier phase measurement of the multiple paths of the DL PRS, the UE is configured to report one or more of the followings: an indicator of the DL PRS resource; the carrier phase measurement corresponding to each of the multiple paths of the DL PRS; a reference signal received power (RSRP) measurement corresponding to each of the multiple paths of the DL PRS; a reference signal time difference (RSTD) measurement corresponding to each of the multiple paths of the DL PRS; a UE receive-transmit (Rx-Tx) timing difference measurement corresponding to each of the multiple paths of the DL PRS; and a line-of-sight (LOS) /non-line-of-sight (NLOS) indicator corresponding to each of the multiple paths of the DL PRS.
In some embodiments, the method further includes receiving, by the UE, a request configured to request the UE to measure the carrier phases of the multiple paths of the DL PRS and report the carrier phase measurement of the multiple paths of the DL PRS. In some embodiments, the method further includes receiving, by the UE, a configuration of the DL PRS. In some embodiments, the configuration of the DL PRS includes a configuration of one or multiple frequency layers, in each frequency layer, the UE is provided with a configuration of one or more DL PRS resource sets, and each DL PRS resource set contains one or more DL PRS resources.
In some embodiments, for the carrier phase measurement of a first path of the DL PRS, the UE is configured to report one or more of the followings: an indicator of the DL PRS resource; the carrier phase  measurement corresponding to the first path of the DL PRS resource; the RSRP measurement corresponding to the first path of the DL PRS resource; the RSTD measurement corresponding to the first path of the DL PRS resource; the UE Rx-Tx time difference corresponding to the first path of the DL PRS resource; and the LOS/NOLS indicator corresponding to the first path of the DL PRS resource.
In some embodiments, the UE is further configured to report the carrier phase measurement of a first path of the DL PRS resource on one or multiple frequency layers. In some embodiments, the carrier phase measurement of the first path of the DL PRS resource is reported as a differential carrier phase between different DL PRS resources. In some embodiments, the same DL PRS resource is used as reference for both differential carrier phase measurement and RSTD measurement.
In some embodiments, the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource is reported with one or more of the following values: the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has a value between 0 and 2π; the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has a value between -π and π; the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has an angle value between 0 and 360 degrees; the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has an angle value between -180 degrees and 180 degrees.
FIG. 6 illustrates an example of a TRP 600 according to an embodiment of the present application. The TRP 600 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the TRP 600 using any suitably configured hardware and/or software. The TRP 600 includes a measurmer 301 and a reporter 302. The measurmer 301 is configured to measure carrier phases of multiple paths of a sounding reference signal (SRS) , and the reporter 302 is configured to report a carrier phase measurement of the multiple paths of the SRS. This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
FIG. 7 illustrates an example of a TRP 700 according to an embodiment of the present disclosure. The TRP 700 is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the TRP 700 using any suitably configured hardware and/or software. The TRP 700 may include a memory 701, a transceiver 702, and a processor 703 coupled to the memory 701 and the transceiver 702. The processor 703 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 703. The memory 701 is operatively coupled with the processor 703 and stores a variety of information to operate the processor 703. The transceiver 702 is operatively coupled with the processor 703, and the transceiver 702 transmits and/or receives a radio signal. The processor 703 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The memory 701 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The transceiver 702 may include baseband circuitry to process radio frequency signals. When  the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the memory 701 and executed by the processor 703. The memory 701 can be implemented within the processor 703 or external to the processor 703 in which case those can be communicatively coupled to the processor 703 via various means as is known in the art.
In some embodiments, the processor 703 is configured to measure carrier phases of multiple paths of a sounding reference signal (SRS) and report a carrier phase measurement of the multiple paths of the SRS. This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
FIG. 8 is an example of a method 800 of measuring and reporting carrier phase of multi-path channels performed by a TRP according to an embodiment of the present disclosure. The method 800 of measuring and reporting carrier phase of multi-path channels performed by the TRP is configured to implement some embodiments of the disclosure. Some embodiments of the disclosure may be implemented into the method 800 of measuring and reporting carrier phase of multi-path channels performed by the TRP using any suitably configured hardware and/or software. In some embodiments, the method 800 of u measuring and reporting carrier phase of multi-path channels performed by the TRP includes: an operation 802, measuring, by a transmission/reception point (TRP) , carrier phases of multiple paths of a sounding reference signal (SRS) , and an operation 804, reporting, by the TRP, a carrier phase measurement of the multiple paths of the SRS. This can solve issues in the prior art and other issues. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements.
In some embodiments, for the carrier phase measurement of the multiple paths of the SRS, the TRP is configured to report one or more of the followings: an indicator of the SRS resource; the carrier phase measurement corresponding to each of the multiple paths of the SRS; a reference signal received power (RSRP) measurement corresponding to each of the multiple paths of the SRS; a relative time of arrival (RTOA) measurement corresponding to each of the multiple paths of the SRS; a receive-transmit (Rx-Tx) timing difference measurement corresponding to each of the multiple paths of the SRS; and a line-of-sight (LOS) /non-line-of-sight (NLOS) indicator corresponding to each of the multiple paths of the SRS.
In some embodiments, the method further includes receiving, by the TRP, a request configured to request the TRP to measure the carrier phases of the multiple paths of the SRS and report the carrier phase measurement of the multiple paths of the SRS. In some embodiments, the method further includes receiving, by the SRS, a configuration of the SRS. In some embodiments, the configuration of the SRS includes a configuration of one or multiple frequency layers, in each frequency layer, the TRP is provided with a configuration of one or more SRS resource sets, and each SRS resource set contains one or more SRS resources.
In some embodiments, for the carrier phase measurement of a first path of the SRS, the TRP is configured to report one or more of the followings: an indicator of the SRS resource; the carrier phase  measurement corresponding to the first path of the SRS resource; the RSRP measurement corresponding to the first path of the SRS resource; the RTOA measurement corresponding to the first path of the SRS resource; the Rx-Tx time difference corresponding to the first path of the SRS resource; and the LOS/NOLS indicator corresponding to the first path of the SRS resource.
In some embodiments, the TRP is further configured to report the carrier phase measurement of a first path of the SRS resource on one or multiple frequency layers. In some embodiments, the carrier phase measurement of the first path of the SRS resource is reported as a differential carrier phase between different SRS resources. In some embodiments, the same SRS resource is used as reference for both differential carrier phase measurement and RTOA measurement.
In some embodiments, the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource is reported with one or more of the following values: the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has a value between 0 and 2π; the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has a value between -π and π; the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has an angle value between 0 and 360 degrees; the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has an angle value between -180 degrees and 180 degrees.
Exemplary Technical Solutions:
In a first embodiment, a UE can be requested by the system (for example the LMF) to measure and report the carrier phase of the first path of downlink positioning reference signal, for example DL PRS. Additionally, the UE can be requested to measure and report the carrier phase of one or more additional paths of downlink positioning reference signal. For each reported the first path or additional path, the UE can measure and report one or more of the following measurements: arrival timing measurement, RSRP measurement and UE Rx-Tx timing difference measurement. For each carrier phase measurement result, the UE can also report a corresponding LOS/NLOS indicator which indicates whether the corresponding carrier phase is measured from a LOS path or NLOS path.
FIG. 9 illustrates of procedure of UE measuring and reporting carrier phase of per path of DL PRS resources according the methods proposed in some embodiments of this disclosure.
In some examples, a system such as LMF can request the UE to measure and report the carrier phase of 1st path of DL PRS resource. The system can first provide the configuration of DL PRS, which include the configuration of one or multiple frequency layers. In each frequency layer, the UE is provided with the configuration of one or more DL PRS resource sets and each DL PRS resource set can contain one or more DL PRS resources. The carrier phase measurement of one path in DL PRS can be defined as the phase of the received signal at the i-th path delay that carry the DL PRS signal.
For each carrier phase measurement of 1st path of DL PRS, the UE can be requested to report one or more of the followings: An indicator of the DL PRS resource. The carrier phase measurement of 1st path of the DL PRS resource. The RSRP measurement of the DL PRS resource. The RSRP of the 1st path of the DL PRS  resource. The RSTD measurement corresponding to the 1st path of the DL PRS resource. The UE Rx-Tx time difference corresponding to the 1st path of the DL PRS resource. On LOS/NOLS indicator for the 1st path of DL PRS resource. The UE can be requested to report the carrier phase measurement of 1st path of DL PRS resource on multiple frequency layers.
In some examples, for the DL PRS resource with carrier phase measurement of the 1st path, the UE can also be requested to report the following for one or more additional paths of the DL PRS resource: The carrier phase measurement of one additional path. The arrival time of one additional path with respect to the 1st path. The RSRP measurement of the addition path. It can also be the differential RSRP measurement of the additional path with a reference to the RSRP of the 1st path.
In one example, the carrier phase measurement of 1st path of the DL PRS resource can be reported as the differential carrier phase between different DL PRS resources. For example, a first DL PRS resource is the reference for differential carrier phase measurement. Then the differential carrier phase measurement of a second DL PRS resource can be calculated as: differential carrier phase measurement = the carrier phase measurement of 1st path of the second DL PRS resource –the carrier phase measurement of 1st path of the first DL PRS resource. In one example, the same DL PRS resource can be used as reference for both differential carrier phase measurement and RSTD measurement.
In one example, the carrier phase measurement of one path and the differential carrier phase measurement of DL PRS can be reported with one or more of the following alternative values:
Alt1: the reported carrier phase measurement or differential carrier phase measurement can be one value between 0 and 2π with the step size equal to for example π/180, 5π/180, 10π/180.
Alt2: the reported carrier phase measurement or differential carrier phase measurement can be one value between -π and π with the step size equal to for example π/180, 5π/180, 10π/180.
Alt3: the reported carrier phase measurement or differential carrier phase measurement can be one angle value between 0 and 360 degree with the step size = for example 1 degree, 5 degree, 10 degrees.
Alt4: the reported carrier phase measurement or differential carrier phase measurement can be one angle value between -180 degrees and 180 degree with the step size = for example 1 degree, 5 degree, 10 degrees.
Please note the alternatives of values of PRS phase measurement listed in this example can be applied to all the methods proposed in some embodiments of this disclosure.
In a second embodiment, a TRP can be requested by the system (for example the LMF) to measure and report the carrier phase of the first path of uplink positioning reference signal, for example SRS for positioning. The TRP can be requested to report the carrier phase measurement of the 1st path of one SRS resource. The carrier phase measurement of one path can be defined as the carrier phase measured from the received signal at the i-th path delay that carries the UL SRS signal. For each reported carrier phase measurement of the 1st path, the TRP can also report one or more of the followings: the RTOA measurement, the path RSRP measurement and the angle of arrival measurement corresponding to this path, one LOS/NLOS indicator corresponding to this path. The TRP can also report the carrier phase measurement of one or more additional  paths of an SRS resource. For each additional path, the TRP can report the relative arrival time with reference to the 1st path, path RSRP measurement and the measurement of angle of arrival.
FIG. 140 illustrates of a procedure of TRP measuring and reporting carrier phase of per path of SRS resources according the methods proposed in some embodiments of this disclosure.
In some examples, the TRP can measure and report the carrier phase of 1st path of SRS resource. For each carrier phase measurement of 1st path of SRS, the TRP can be requested to report one or more of the followings: An indicator of the SRS resource. The carrier phase measurement of 1st path of the SRS resource. The RSRP measurement of the SRS resource. The RSRP of the 1st path of the SRS resource. The RTOA measurement corresponding to the 1st path of the SRS resource. The gNB Rx-Tx time difference corresponding to the 1st path of the SRS resource. On LOS/NOLS indicator for the 1st path of SRS resource.
In some examples, for the SRS resource with carrier phase measurement of the 1st path, the TRP can also be requested to report the following for one or more additional paths of the SRS resource: The carrier phase measurement of one additional path. The arrival time of one additional path with respect to the 1st path. The RSRP measurement of the addition path. It can also be the differential RSRP measurement of the additional path with a reference to the RSRP of the 1st path.
In one example, the carrier phase measurement of one path of SRS can be reported with one or more of the following alternative values:
Alt1: the reported carrier phase measurement or differential carrier phase measurement can be one value between 0 and 2π with the step size equal to for example π/180, 5π/180, 10π/180.
Alt2: the reported carrier phase measurement or differential carrier phase measurement can be one value between -π and π with the step size equal to for example π/180, 5π/180, 10π/180.
Alt3: the reported carrier phase measurement or differential carrier phase measurement can be one angle value between 0 and 360 degree with the step size = for example 1 degree, 5 degree, 10 degrees.
Alt4: the reported carrier phase measurement or differential carrier phase measurement can be one angle value between -180 degrees and 180 degree with the step size = for example 1 degree, 5 degree, 10 degrees.
Please note the alternatives of values of PRS phase measurement listed in this example can be applied to all the methods proposed in this disclosure.
Commercial interests for some embodiments are as follows. 1. Solve issues in the prior art and other issues. 2. Utilize multi-transmission/reception point (TRP) reception. 3. Improve uplink reliability. 4. Provide a good communication performance. 6. Provide high reliability. 7. Further, this can support the UE and TRP to measure and report the carrier phase measurement in multi-path environment and the system can improve the performance of location service based on the new measurements. Some embodiments of the present disclosure can be used in many applications. Some embodiments of the present disclosure are used by chipset vendors, video system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR/MR device maker for example gaming, conference/seminar, education purposes. Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in video  standards to create an end product. Some embodiments of the present disclosure propose technical mechanisms. The at least one proposed solution, method, system, and apparatus of some embodiments of the present disclosure may be used for current and/or new/future standards regarding communication systems such as a UE, aTRP, a base station, and/or a communication system. Compatible products follow at least one proposed solution, method, system, and apparatus of some embodiments of the present disclosure. The proposed solution, method, system, and apparatus are widely used in a UE, a TRP, a base station, and/or a communication system. With the implementation of the at least one proposed solution, method, system, and apparatus of some embodiments of the present disclosure, at least one modification to methods and apparatus of measuring and reporting carrier phase of multi-path channels are considered for standardizing.
FIG. 11 is an example of a computing device 1100 according to an embodiment of the present disclosure. Any suitable computing device can be used for performing the operations described herein. For example, FIG. 11 illustrates an example of the computing device 1100 that can implement some embodiments of FIG. 1 to FIG. 10 using any suitably configured hardware and/or software. In some embodiments, the computing device 1100 can include a processor 1112 that is communicatively coupled to a memory 1114 and that executes computer-executable program code and/or accesses information stored in the memory 1114. The processor 1112 may include a microprocessor, an application-specific integrated circuit ( “ASIC” ) , a state machine, or other processing device. The processor 1112 can include any of a number of processing devices, including one. Such a processor can include or may be in communication with a computer-readable medium storing instructions that, when executed by the processor 1112, cause the processor to perform the operations described herein.
The memory 1114 can include any suitable non-transitory computer-readable medium. The computer-readable medium can include any electronic, optical, magnetic, or other storage device capable of providing a processor with computer-readable instructions or other program code. Non-limiting examples of a computer-readable medium include a magnetic disk, a memory chip, a read-only memory (ROM) , a random access memory (RAM) , an application specific integrated circuit (ASIC) , a configured processor, optical storage, magnetic tape or other magnetic storage, or any other medium from which a computer processor can read instructions. The instructions may include processor-specific instructions generated by a compiler and/or an interpreter from code written in any suitable computer-programming language, including, for example, C, C++, C#, visual basic, java, python, perl, javascript, and actionscript.
The computing device 1100 can also include a bus 1116. The bus 1116 can communicatively couple one or more components of the computing device 1100. The computing device 1100 can also include a number of external or internal devices such as input or output devices. For example, the computing device 1100 is illustrated with an input/output ( “I/O” ) interface 1118 that can receive input from one or more input devices 1120 or provide output to one or more output devices 1122. The one or more input devices 1120 and one or more output devices 1122 can be communicatively coupled to the I/O interface 1118. The communicative coupling can be implemented via any suitable manner (e.g., a connection via a printed circuit board, connection via a cable, communication via wireless transmissions, etc. ) . Non-limiting examples of input devices 1120 include a  touch screen (e g., one or more cameras for imaging a touch area or pressure sensors for detecting pressure changes caused by a touch) , a mouse, a keyboard, or any other device that can be used to generate input events in response to physical actions by a user of a computing device. Non-limiting examples of output devices 1122 include a liquid crystal display (LCD) screen, an external monitor, a speaker, or any other device that can be used to display or otherwise present outputs generated by a computing device.
The computing device 1100 can execute program code that configures the processor 1112 to perform one or more of the operations described above with respect to some embodiments of FIG. 1 to FIG. 10. The program code may be resident in the memory 1114 or any suitable computer-readable medium and may be executed by the processor 1112 or any other suitable processor.
The computing device 1100 can also include at least one network interface device 1124. The network interface device 1124 can include any device or group of devices suitable for establishing a wired or wireless data connection to one or more data networks 1128. Non limiting examples of the network interface device 1124 include an Ethernet network adapter, a modem, and/or the like. The computing device 1100 can transmit messages as electronic or optical signals via the network interface device 1124.
FIG. 12 is a block diagram of an example of a communication system 1200 according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the communication system 1200 using any suitably configured hardware and/or software. FIG. 12 illustrates the communication system 1200 including a radio frequency (RF) circuitry 1210, a baseband circuitry 1220, an application circuitry 1230, a memory/storage 1240, a display 1250, a camera 1260, a sensor 1270, and an input/output (I/O) interface 1280, coupled with each other at least as illustrated.
The application circuitry 1230 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system. The communication system 1200 can execute program code that configures the application circuitry 1230 to perform one or more of the operations described above with respect to some embodiments of FIG. 1 to FIG. 10. The program code may be resident in the application circuitry 1230 or any suitable computer-readable medium and may be executed by the application circuitry 1230 or any other suitable processor.
The baseband circuitry 1220 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that may enable communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area  network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry 1220 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency. The RF circuitry 1210 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. In various embodiments, the RF circuitry 1210 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to some embodiments of FIG. 1 to FIG. 10 may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) . The memory/storage 1240 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface 1280 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface. In various embodiments, the sensor 1270 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display 1250 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the communication system 1200 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook,  a smartphone, an AR/VR glasses, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (22)

  1. A method of measuring and reporting carrier phase of multi-path channels, comprising:
    measuring, by a user equipment (UE) , carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) ; and
    reporting, by the UE, a carrier phase measurement of the multiple paths of the DL PRS.
  2. The method of claim 1, wherein for the carrier phase measurement of the multiple paths of the DL PRS, the UE is configured to report one or more of the followings:
    an indicator of the DL PRS resource;
    the carrier phase measurement corresponding to each of the multiple paths of the DL PRS;
    a reference signal received power (RSRP) measurement corresponding to each of the multiple paths of the DL PRS;
    a reference signal time difference (RSTD) measurement corresponding to each of the multiple paths of the DL PRS;
    a UE receive-transmit (Rx-Tx) timing difference measurement corresponding to each of the multiple paths of the DL PRS; and
    a line-of-sight (LOS) /non-line-of-sight (NLOS) indicator corresponding to each of the multiple paths of the DL PRS.
  3. The method of claim 1 or 2, further comprising:
    receiving, by the UE, a request configured to request the UE to measure the carrier phases of the multiple paths of the DL PRS and report the carrier phase measurement of the multiple paths of the DL PRS.
  4. The method of any one of claims 1 to 3, further comprising:
    receiving, by the UE, a configuration of the DL PRS.
  5. The method of claim 4, wherein the configuration of the DL PRS comprises a configuration of one or multiple frequency layers, in each frequency layer, the UE is provided with a configuration of one or more DL PRS resource sets, and each DL PRS resource set contains one or more DL PRS resources.
  6. The method of claim 5, wherein for the carrier phase measurement of a first path of the DL PRS, the UE is configured to report one or more of the followings:
    an indicator of the DL PRS resource;
    the carrier phase measurement corresponding to the first path of the DL PRS resource;
    the RSRP measurement corresponding to the first path of the DL PRS resource;
    the RSTD measurement corresponding to the first path of the DL PRS resource;
    the UE Rx-Tx time difference corresponding to the first path of the DL PRS resource; and
    the LOS/NOLS indicator corresponding to the first path of the DL PRS resource.
  7. The method of claim 5 or 6, wherein the UE is further configured to report the carrier phase measurement of a first path of the DL PRS resource on one or multiple frequency layers.
  8. The method of claim 7, wherein the carrier phase measurement of the first path of the DL PRS resource is reported as a differential carrier phase between different DL PRS resources.
  9. The method of claim 7 or 8, wherein the same DL PRS resource is used as reference for both differential carrier phase measurement and RSTD measurement.
  10. The method of any one of claims 7 to 9, wherein the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource is reported with one or more of the following values:
    the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has a value between 0 and 2π;
    the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has a value between -π and π;
    the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has an angle value between 0 and 360 degrees;
    the carrier phase measurement of one path and/or the differential carrier phase measurement of the DL PRS resource has an angle value between -180 degrees and 180 degrees.
  11. A method of measuring and reporting carrier phase of multi-path channels, comprising:
    measuring, by a transmission/reception point (TRP) , carrier phases of multiple paths of a sounding reference signal (SRS) ; and
    reporting, by the TRP, a carrier phase measurement of the multiple paths of the SRS.
  12. The method of claim 11, wherein for the carrier phase measurement of the multiple paths of the SRS, the TRP is configured to report one or more of the followings:
    an indicator of the SRS resource;
    the carrier phase measurement corresponding to each of the multiple paths of the SRS;
    a reference signal received power (RSRP) measurement corresponding to each of the multiple paths of the SRS;
    a relative time of arrival (RTOA) measurement corresponding to each of the multiple paths of the SRS;
    a receive-transmit (Rx-Tx) timing difference measurement corresponding to each of the multiple paths of the SRS; and
    a line-of-sight (LOS) /non-line-of-sight (NLOS) indicator corresponding to each of the multiple paths of the SRS.
  13. The method of claim 11 or 12, further comprising:
    receiving, by the TRP, a request configured to request the TRP to measure the carrier phases of the multiple paths of the SRS and report the carrier phase measurement of the multiple paths of the SRS.
  14. The method of any one of claims 11 to 13, further comprising:
    receiving, by the SRS, a configuration of the SRS.
  15. The method of claim 14, wherein the configuration of the SRS comprises a configuration of one or multiple frequency layers, in each frequency layer, the TRP is provided with a configuration of one or more SRS resource sets, and each SRS resource set contains one or more SRS resources.
  16. The method of claim 15, wherein for the carrier phase measurement of a first path of the SRS, the TRP is configured to report one or more of the followings:
    an indicator of the SRS resource;
    the carrier phase measurement corresponding to the first path of the SRS resource;
    the RSRP measurement corresponding to the first path of the SRS resource;
    the RTOA measurement corresponding to the first path of the SRS resource;
    the Rx-Tx time difference corresponding to the first path of the SRS resource; and
    the LOS/NOLS indicator corresponding to the first path of the SRS resource.
  17. The method of claim 15 or 16, wherein the TRP is further configured to report the carrier phase measurement of a first path of the SRS resource on one or multiple frequency layers.
  18. The method of claim 17, wherein the carrier phase measurement of the first path of the SRS resource is reported as a differential carrier phase between different SRS resources.
  19. The method of claim 17 or 18, wherein the same SRS resource is used as reference for both differential carrier phase measurement and RTOA measurement.
  20. The method of any one of claims 17 to 19, wherein the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource is reported with one or more of the following values: the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has a value between 0 and 2π;
    the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has a value between -π and π;
    the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has an angle value between 0 and 360 degrees;
    the carrier phase measurement of one path and/or the differential carrier phase measurement of the SRS resource has an angle value between -180 degrees and 180 degrees.
  21. A user equipment (UE) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to:
    measure carrier phases of multiple paths of a downlink positioning reference signal (DL PRS) ; and
    report a carrier phase measurement of the multiple paths of the DL PRS.
  22. A transmission/reception point (TRP) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to:
    measure carrier phases of multiple paths of a sounding reference signal (SRS) ; and
    report a carrier phase measurement of the multiple paths of the SRS.
PCT/CN2023/118060 2022-09-16 2023-09-11 Apparatuses and methods of measuring and reporting carrier phase of multi-path channels WO2024055938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263376055P 2022-09-16 2022-09-16
US63/376,055 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024055938A1 true WO2024055938A1 (en) 2024-03-21

Family

ID=90274263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118060 WO2024055938A1 (en) 2022-09-16 2023-09-11 Apparatuses and methods of measuring and reporting carrier phase of multi-path channels

Country Status (1)

Country Link
WO (1) WO2024055938A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062457A (en) * 2018-01-19 2019-07-26 电信科学技术研究院有限公司 A kind of localization method and relevant device
WO2021155210A1 (en) * 2020-01-30 2021-08-05 Idac Holdings, Inc. Reference signal design and device procedures for downlink-based positioning/ranging using multi-frequency phase difference of arrival

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062457A (en) * 2018-01-19 2019-07-26 电信科学技术研究院有限公司 A kind of localization method and relevant device
WO2021155210A1 (en) * 2020-01-30 2021-08-05 Idac Holdings, Inc. Reference signal design and device procedures for downlink-based positioning/ranging using multi-frequency phase difference of arrival

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "Discussion on positioning based on NR carrier phase measurement", 3GPP DRAFT; R1-2207090, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052275027 *
OPPO: "Discussions on Carrier Phase Measurement for NR Positioning", 3GPP DRAFT; R1-2206274, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052274207 *
ZHIHUA SHI, OPPO: "Discussions on Carrier Phase Measurement for NR Positioning", 3GPP DRAFT; R1-2211435; TYPE DISCUSSION; FS_NR_POS_ENH2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Toulouse, FR; 20221114 - 20221118, 7 November 2022 (2022-11-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052221999 *

Similar Documents

Publication Publication Date Title
CN110012536B (en) Positioning method, device and system for terminal equipment
EP3742829A1 (en) Positioning method and related device
US20220191815A1 (en) Methods and devices for dual-direction positioning of a device
US11782121B2 (en) Method and device for positioning utilizing beam information
US11382059B2 (en) Method and device for sending positioning signal
US20230337175A1 (en) Method for reporting positioning capability, terminal device, and network device
JP2023029999A (en) Apparatus and method for transmission power control of the same
EP3537737A1 (en) Terminal positioning method and device
WO2024055938A1 (en) Apparatuses and methods of measuring and reporting carrier phase of multi-path channels
US20220330041A1 (en) Method for angle based positioning measurement and apparatus therefor
WO2022001973A1 (en) Apparatus and method of wireless communication
WO2022001967A1 (en) Apparatus and method of wireless communication
WO2022007666A1 (en) Apparatus and method of wireless communication
WO2024061241A1 (en) Apparatus and methods of inter-ue interference beam measurement and reporting
WO2024061322A1 (en) Wireless communication method and relevant apparatus
WO2024008151A1 (en) Apparatus and methods of uplink transmission with multiple tcl states
CN116390142B (en) Network detection method and electronic equipment
WO2021208697A1 (en) Apparatus and method of wireless communication
EP4228345A1 (en) Method of transmitting and receiving information for measurement of prs in wireless communication system and apparatus therefor
US20230413221A1 (en) Method and system for improved positioning measurement
EP4340477A1 (en) Method and device for positioning in wireless communication system
WO2024027664A1 (en) Carrier phase positioning method and apparatus, and device and medium
WO2023280052A1 (en) Positioning method and apparatus
WO2024060215A1 (en) Methods and apparatuses for rat-dependent positioning integrity
WO2023207510A1 (en) Method and apparatus for sidelink positioning, and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864670

Country of ref document: EP

Kind code of ref document: A1