WO2024061322A1 - Wireless communication method and relevant apparatus - Google Patents

Wireless communication method and relevant apparatus Download PDF

Info

Publication number
WO2024061322A1
WO2024061322A1 PCT/CN2023/120453 CN2023120453W WO2024061322A1 WO 2024061322 A1 WO2024061322 A1 WO 2024061322A1 CN 2023120453 W CN2023120453 W CN 2023120453W WO 2024061322 A1 WO2024061322 A1 WO 2024061322A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement result
srs
reported
srs resources
resource
Prior art date
Application number
PCT/CN2023/120453
Other languages
French (fr)
Inventor
Li Guo
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Publication of WO2024061322A1 publication Critical patent/WO2024061322A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to a wireless communication method and relevant apparatus, which can provide a good communication performance and/or high reliability.
  • New radio (NR) /fifth-generation (5G) systems support beam management functions.
  • the beam management functions include the functions of beam measurement and reporting and beam indication.
  • the existing beam management mechanism does not support the coordination of uplink Tx beam between different UEs.
  • TDD Time Division Duplex
  • one UE could cause strong interference to the downlink reception of another UE due to ‘wrong’ beam direction for uplink transmission.
  • An object of the present disclosure is to propose an apparatus (such as a user equipment (UE) and/or a base station) and a wireless communication method, which can solve issues in the prior art, suppress the cross-link interference, improve the performance of dynamic TDD system, provide a good communication performance, and/or provide high reliability.
  • UE user equipment
  • a base station a wireless communication method
  • a wireless communication method by a first user equipment including: measuring a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE; and reporting to a base station, measurement result of the SRS signal transmitted on the one or more SRS resources.
  • SRS Sounding Reference Signal
  • a wireless communication method by a base station including: configuring a first user equipment (UE) to measure a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE; and receiving measurement result of the SRS signal transmitted on the one or more SRS resources, reported by the first UE.
  • UE user equipment
  • SRS Sounding Reference Signal
  • a user equipment including: a memory; a transceiver; and a processor coupled to the memory and the transceiver, wherein the processor is configured to call and run program instructions stored in the memory, to execute the above method.
  • a first base station including: a memory; a transceiver; and a processor coupled to the memory and the transceiver, wherein the processor is configured to call and run program instructions stored in the memory, to execute the above method.
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
  • a computer readable storage medium in which a computer program is stored, causes a computer to execute the above method.
  • a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
  • a computer program causes a computer to execute the above method.
  • FIG. 1 is a block diagram of a base station, a first user equipment, and a second user equipment in a communication network system according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart illustrating a wireless communication method by a first user equipment according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating a wireless communication method by a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a flow chart of an exemplary procedure of a first UE measuring SRS resource and reporting measurement result according to an embodiment of the present disclosure.
  • FIG. 5 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • a combination such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” or “A, B, and/or C” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any combination may contain one or more members of A, B, or C.
  • NR/5G system supports multi-beam operation on downlink and uplink physical channels and reference signals.
  • the use case for supporting multi-beam operation mainly is for deployment of high-frequency band system, where high-gain analog beamforming is used to combat large path loss.
  • NR release 15/16 supports the functions of indicating beam used for PDCCH/PDSCH/CSI-RS/PUSCH/SRS/PUCCH through the framework of TCI-state for downlink transmission or spatial relation for uplink transmission.
  • the UE is configured with M TCI-states in higher layer signaling as the candidate QCL configuration.
  • the UE can be configured with one or more TCI-states semi-statically and if more than one TCI-states are configured, one MAC CE command is used to activate one of those TCI-states as the active Tx beam for PDCCH transmission.
  • one MAC CE activation command can activate up to 8 TCI-states and each TCI-state is mapped to one codepoint in the DCI scheduling PDSCH transmission. Then for each individual PDSCH transmission, the NW can dynamically indicate one of those up to 8 TCI-states through the scheduling DCI.
  • the Tx beam information for CSI-RS transmission is indicated through a TCI-state configured or indicated to a CSI-RS resource.
  • the TCI-state is configured in RRC semi-statically.
  • the TCI-state can be configured in RRC semi-statically or indicated in the MAC CE message that activates the transmission of semi-persistent CSI-RS.
  • the TCI-state is configured to the CSI-RS resource in the configuration of aperiodic CSI-RS trigger state in RRC. Then the gNB can use physical layer signaling to dynamically trigger the transmission of aperiodic CSI-RS transmission and also dynamically indicate the Tx beam information.
  • the UE Tx beam is configured or indicated through spatial relation information.
  • the spatial relation information is configured per SRS resource in RRC semi-statically.
  • the spatial relation information can be configured in RRC semi-statically, which is one method, and another method is the NW can use one MAC CE to update/indicate spatial relation information for a SRS resource, which thus provides more dynamic spatial relation information updating.
  • the spatial relation information can be included in the MAC CE activation command that activates the transmission of semi-persistent SRS resources.
  • the UE Tx beam is configured through PUCCH spatial relation information.
  • the UE is provided with one or more than one PUCCH spatial relation information configurations in RRC semi-statically. Then for each PUCCH resource, the UE can be indicated with one PUCCH spatial relation information through a MAC CE activation command.
  • a single MAC CE message is used to indicate the same TCI state ID or the same set of TCI state IDs for PDCCH or PDSCH in multiple Component Carriers (CCs) .
  • CCs Component Carriers
  • the existing beam management mechanism does not support the coordination of uplink Tx beam between different UEs.
  • TDD Time Division Duplex
  • the present disclosure provides solutions for supporting a UE to measure and report the interference signal from another one or more UEs.
  • FIG. 1 illustrates that, in some embodiments, a base station (e.g., gNB or eNB) 10, a first user equipment (UE) 20, and a second UE 30 for transmission adjustment in a communication network system 1 according to an embodiment of the present disclosure are provided.
  • the communication network system 1 includes the base station 10, the first UE 20, and the second UE 30.
  • the base station 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the first UE 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the second UE 30 may include a memory 32, a transceiver 33, and a processor 31 coupled to the memory 32 and the transceiver 33.
  • the processor 11 or 21 or 31 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21 or 31.
  • the memory 12 or 22 or 32 is operatively coupled with the processor 11 or 21 or 32 and stores a variety of information to operate the processor 11 or 21 or 31.
  • the transceiver 13 or 23 or 33 is operatively coupled with the processor 11 or 21 or 31, and the transceiver 13 or 23 or 33 transmits and/or receives a radio signal.
  • the processor 11 or 21 or 31 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 or 32 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 or 33 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 or 32 and executed by the processor 11 or 21 or 31.
  • the memory 12 or 22 or 32 can be implemented within the processor 11 or 21 or 31 or external to the processor 11 or 21 or 31 in which case those can be communicatively coupled to the processor 11 or 21 or 31 via various means as is known in the art.
  • FIG. 2 illustrates a wireless communication method 200 by the first UE 20 according to an embodiment of the present disclosure.
  • the method 200 includes the following.
  • the first UE 20 measures a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE 30.
  • the first UE 10 reports to a base station 10, measurement result of the SRS signal transmitted on the one or more SRS resources.
  • SRS Sounding Reference Signal
  • FIG. 3 illustrates a wireless communication method 300 by a base station 10 according to an embodiment of the present disclosure.
  • the method 300 includes the following.
  • the base station 10 configures a first user equipment (UE) 20 to measure a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE 30.
  • the base station 10 receives measurement result of the SRS signal transmitted on the one or more SRS resources, reported by the first UE 20. This can solve issues in the prior art, suppress the cross-link interference, improve the performance of dynamic TDD system, provide a good communication performance, and/or provide high reliability.
  • SRS Sounding Reference Signal
  • the proposed methods are able to support the NR system to perform beam measurement and reporting and then beam coordination between different UEs.
  • the system can suppress the cross-link interreference and improve the performance of dynamic TDD system.
  • the measurement result of the SRS signal may include at least one of Reference Signal Received Power (RSRP) or Signal to Interference Noise Ratio (SINR) measurement result.
  • RSRP Reference Signal Received Power
  • SINR Signal to Interference Noise Ratio
  • the measurement result of the one or more SRS resources and one indicator for each reported SRS resource may be reported.
  • one or more pairs of the measurement result and one SRS resource indicator that indicates the SRS resource corresponding to the measurement result may be reported.
  • a largest measurement result and at least one differential measurement result calculated by taking the largest measurement result as a reference may be reported.
  • one or more precoding vectors of the SRS resource and the measurement result corresponding to each reported precoding vector of the SRS resource may be reported.
  • one or more pairs of one precoding vector of the SRS resource and the measurement result corresponding to the one precoding vector of the SRS resource may be reported.
  • a largest measurement result and at least one differential measurement result calculated by taking the largest measurement result as a reference may be reported.
  • the measurement result of the one or more SRS resources may be reported through a periodic manner. In some embodiments, the measurement result of the one or more SRS resources may be reported through a semi-persistent manner.
  • the measuring step or the reporting step may be activated or deactivated by a Media Access Control Control Element (MAC CE) command.
  • the method may further includes receiving a DCI format, which indicates a DCI bit field that indicates the first UE to measure the one or more SRS resources and then report the measurement result of the one or more SRS resources.
  • the method may further includes applying QCL (Quasi Co-Location) -TypeD configuration on reception of each of the one or more SRS resources to be measured.
  • the QCL-TypeD configuration may be contained in a Transmission Configuration Indicator (TCI) state for one of the one or more SRS resources.
  • TCI Transmission Configuration Indicator
  • a SS (Synchronization Signal) /PBCH (Physical Broadcast Channel) Block (SSB) resource or a Channel State Information Reference Signal (CSI-RS) resource may serve as the QCL-TypeD configuration for one of the one or more SRS resources.
  • the QCL-TypeD configuration may be applied on downlink channel including Physical Downlink Shared Channel (PDSCH) or Physical Downlink Control Channel (PDCCH) .
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • the QCL-TypeD configuration may be contained in a TCI state indicated through a signaling of unified TCI framework.
  • the method may further includes determining a priority value of a Channel State Information (CSI) report containing the measurement result of the one or more SRS resources, wherein the lower the priority value is, the higher priority the CSI report is.
  • the priority value of the CSI report may be determined based on whether the CSI report is aperiodic, periodic or semi-persistent.
  • the priority value of the CSI report may be determined based on whether the CSI report carries RSRP or SINR measurement result.
  • a first UE can be configured (e.g., by a base station) to measure a SRS signal transmitted on one or more SRS resources from a second UE.
  • the first UE can be requested (e.g., by the base station) to report the measurement results of the SRS signal transmitted on the one or more SRS resources to the system, for example, the serving base station (e.g., a serving cell gNB) .
  • the base station can first provide the configuration of the one or more resources for the second UE for being measured by the first UE.
  • the base station can request the first UE to measure the one or more SRS resources and the first UE then can be requested to report the measurement results of the one or more SRS resources to the base station.
  • the gNB can provide configuration of QCL-TypeD information that can be used by the first UE to obtain proper Rx beam information.
  • the first UE can be requested to apply the QCL-TypeD configuration that is applied on downlink reception on the reception of the one or more SRS resources to be measured.
  • the first UE can be requested to report RSRP measurement (e.g., L1-RSRP measurement) or SINR measurement (e.g., the L1-SINR measurement) of the one or more SRS resources, and the first UE reports one indicator for each reported SRS resource.
  • the first UE can be requested to report one or more precoding vectors and corresponding RSRP or SINR measurement (e.g., L1-RSRP or L1-SINR measurement) of one SRS resource, where the corresponding RSRP is the RSRP of received signal by assuming the reported precoding vector is applied on the SRS resource transmission.
  • the first UE can be requested to report the L1-RSRP measurement of the one or more SRS resources through a periodic manner, for example, in PUCCH resources.
  • the first UE can be requested to report the L1-RSRP measurement of the one or more SRS resources through a semi-persistent manner, where the base station can use a MAC CE command to activate the measurement and reporting of the L1-RSRP measurement of the one or more SRS resources and use a MAC CE command to deactivate the measurement and reporting of the L1-RSRP measurement of the one or more SRS resources.
  • the first UE can be requested to report the L1-RSRP measurement of the one or more SRS resources, which is triggered by a DCI format.
  • the base station can send a DCI format to indicate a DCI bit field that can indicate the first UE to measure the one or more SRS resources and then report the L1-RSRP measurement result.
  • the first UE can be configured by the base station to measure a set of SRS resources.
  • the base station can provide the configuration of N ⁇ 1 SRS resources.
  • the first UE can be requested to measure the L1-RSRP measurement of each of the set of SRS resources. And then the first UE can be requested to report the L1-RSRP measurement results of the set of SRS resources to the base station.
  • the first UE can report one or more pairs of ⁇ L1-RSRP measurement, one SRS resource indicator that indicates the SRS resource corresponding to the L1-RSRP measurement ⁇ .
  • Each L1-RSRP measurement result can be a 7-bit value, for example, and the bit width of each SRS resource indicator can be bits.
  • differential L1-RSRP can be used for reporting L1-RSRP measurement results. If the number of reported SRS resources in UE reporting is one, the first UE reports L1-RSRP measurement result and a SRS resource indicator that indicates the SRS resource corresponding to the reported L1-RSRP measurement. If the number of reported SRS resources is larger than one, the first UE reports L1-RSRP measurement for the reported SRS resource with the largest RSRP and reports differential L1-RSRP of all the other reported SRS resources. To calculate the differential L1-RSRP, the largest RSRP is used as reference. For each reported L1-RSRP or differential L1-RSRP, the first UE also reports one SRS resource indicator that indicates an SRS resource corresponding to the reported L1-RSRP or the reported differential L1-RSRP.
  • the first possible implementation can be applied for FR2 system and the first UE can measure the SRS resources transmitted from the second UE to find the UE Tx beams of the second UE that might cause serve interference to the first UE.
  • the first UE can be configured by the base station to measure one SRS resource.
  • the first UE can be requested to measure one or more precoding vectors of the one SRS resource and the L1-RSRP measurement corresponding to each precoding vector of the one SRS resource.
  • the first UE can be requested to report one or more precoding vectors and L1-RSRP measurement corresponding to each reported precoding vector to the serving base station.
  • This can be applied to FR1 system.
  • the first UE can measure and report the precoding vectors of the second UE that might cause strong interference to the first UE to the base station.
  • the base station can coordinate the uplink transmission configuration of the UE to suppress the interference between UEs.
  • the first UE can be requested to report one or more pairs of ⁇ the index of precoding vector, the corresponding L1-RSRP measurement ⁇ .
  • the corresponding L1-RSRP measurement can be calculated from the signal by assuming the corresponding precoding vector is applied on the SRS resource transmission.
  • differential L1-RSRP can be used for reporting L1-RSRP measurement results. If the number of reported precoding vectors in UE reporting is one, the first UE reports L1-RSRP measurement result and a precoding vector indicator that indicates the precoding vector corresponding to the reported L1-RSRP measurement. If the number of reported precoding vectors is larger than one, the first UE reports L1-RSRP measurement for the reported precoding vector with the largest RSRP and reports differential L1-RSRP of all the other reported precoding vectors. To calculate the differential L1-RSRP, the largest RSRP is used as reference. For each reported L1-RSRP or differential L1-RSRP, the first UE also reports one precoding vector indicator that indicates a precoding vector corresponding to the reported L1-RSRP or the reported differential L1-RSRP
  • the first UE can be configured by the base station to measure a set of SRS resources.
  • the base station can provide the configuration of N ⁇ 1 SRS resources.
  • the first UE can be requested to measure the L1-RSRP measurement of each of the set of SRS resources.
  • the first UE can be provided with QCL-TypeD configuration for receiving one SRS resource in the set of SRS resources.
  • the first UE can be requested to calculate the QCL-TypeD configuration for receiving one SRS resource in the set of SRS resources.
  • the base station can provide a TCI state for one SRS resource in the set of SRS resources. And to receive one SRS resource, the first UE can be requested to apply the QCL-TypeD contained in the provided TCI state.
  • the TCI state can be joint TCI state or a DL TCI state.
  • the base station can provide a SSB or CSI-RS resource as the QCL-TypeD configuration for one SRS resource.
  • the first UE can be requested to apply the configured QCL-TypeD configuration on the reception of the one SRS resource.
  • the first UE can be requested to apply the QCL-TypeD configuration of downlink channel (for example, PDSCH, PDCCH) to receive and measure the SRS resource.
  • the QCL-TypeD configuration of downlink channel for example, PDSCH, PDCCH
  • the first UE when the first UE is configured with unified TCI framework and the first UE is indicated with a joint TCI state or DL TCI state through the signaling of unified TCI framework, the first UE can be requested to apply the QCL-TypeD configuration contained in the indicated joint TCI state or DL TCI state on the reception of the SRS resource.
  • the first UE can be configured by the base station to measure a set of SRS resources.
  • the base station can provide the configuration of N ⁇ 1 SRS resources.
  • the first UE can be requested to measure and report the L1-RSRP measurement of the SRS resource.
  • the first UE can be requested to determine a priority value of a CSI report containing the L1-RSRP measurement of the SRS resource.
  • c is the serving cell index, and N cells is the maximum number of serving cells (e.g., the value of the higher layer parameter maxNrofServingCells) ;
  • s is the report configuration ID (e.g., reportConfigID)
  • M s is the maximum number of CSI report configurations (e.g., the value of the higher layer parameter maxNrofCSI-ReportConfigurations) .
  • a first CSI report is said to have priority over second CSI report if the associated Pri iCSI (y, k, c, s) value is lower for the first report than for the second report.
  • FIG. 4 illustrates an exemplary procedure of a first UE measuring SRS resource and reporting measurement result according to the afore-described embodiments presented in this disclosure.
  • Some embodiments of the present disclosure are used by 5G-NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes.
  • the deployment scenarios include, but not limited to, indoor hotspot, dense urban, urban micro, urban macro, rural, factor hall, and indoor D2D scenarios.
  • Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present disclosure could be adopted in 5G NR licensed and non-licensed or shared spectrum communications. Some embodiments of the present disclosure propose technical mechanisms. The present example embodiment is applicable to NR in unlicensed spectrum (NR-U) . The present disclosure can be applied to other mobile networks, in particular to mobile network of any further generation cellular network technology (6G, etc. ) .
  • FIG. 5 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 5 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • the application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • non-volatile memory such as flash memory.
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, an AR/VR glasses, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication method and relevant apparatus are provided. The method by a first user equipment (UE) includes measuring a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE; and reporting to a base station, measurement result of the SRS signal transmitted on the one or more SRS resources. This can solve issues in the prior art, suppress the cross-link interference, improve the performance of dynamic TDD system, provide a good communication performance, and/or provide high reliability.

Description

WIRELESS COMMUNICATION METHOD AND RELEVANT APPARATUS
BACKGROUND OF DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to the field of communication systems, and more particularly, to a wireless communication method and relevant apparatus, which can provide a good communication performance and/or high reliability.
2. Description of the Related Art
New radio (NR) /fifth-generation (5G) systems support beam management functions. The beam management functions include the functions of beam measurement and reporting and beam indication. However, the existing beam management mechanism does not support the coordination of uplink Tx beam between different UEs. Thus, when dynamic Time Division Duplex (TDD) is implemented in the system, one UE could cause strong interference to the downlink reception of another UE due to ‘wrong’ beam direction for uplink transmission.
Therefore, there is a need to solve the afore-mentioned problem.
SUMMARY
An object of the present disclosure is to propose an apparatus (such as a user equipment (UE) and/or a base station) and a wireless communication method, which can solve issues in the prior art, suppress the cross-link interference, improve the performance of dynamic TDD system, provide a good communication performance, and/or provide high reliability.
In a first aspect of the present disclosure, a wireless communication method by a first user equipment (UE) , including: measuring a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE; and reporting to a base station, measurement result of the SRS signal transmitted on the one or more SRS resources.
In a second aspect of the present disclosure, a wireless communication method by a base station, including: configuring a first user equipment (UE) to measure a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE; and receiving measurement result of the SRS signal transmitted on the one or more SRS resources, reported by the first UE.
In a third aspect of the present disclosure, a user equipment (UE) , including: a memory; a transceiver; and a processor coupled to the memory and the transceiver, wherein the processor is configured to call and run program instructions stored in the memory, to execute the above method.
In a fourth aspect of the present disclosure, a first base station, including: a memory; a transceiver; and a processor coupled to the memory and the transceiver, wherein the processor is configured to call and run program instructions stored in the memory, to execute the above method.
In a fifth aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a sixth aspect of the present disclosure, a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
In a seventh aspect of the present disclosure, a computer readable storage medium, in which a computer program is stored, causes a computer to execute the above method.
In an eighth aspect of the present disclosure, a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
In a ninth aspect of the present disclosure, a computer program causes a computer to execute the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to illustrate the embodiments of the present disclosure or related art more clearly, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a block diagram of a base station, a first user equipment, and a second user equipment in a communication network system according to an embodiment of the present disclosure.
FIG. 2 is a flowchart illustrating a wireless communication method by a first user equipment according to an embodiment of the present disclosure.
FIG. 3 is a flowchart illustrating a wireless communication method by a base station according to an embodiment of the present disclosure.
FIG. 4 is a flow chart of an exemplary procedure of a first UE measuring SRS resource and reporting measurement result according to an embodiment of the present disclosure.
FIG. 5 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
In this document, the symbol "/" should be interpreted to indicate "and/or. " A combination such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” or “A, B, and/or C” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any combination may contain one or more members of A, B, or C.
NR/5G system supports multi-beam operation on downlink and uplink physical channels and reference signals. The use case for supporting multi-beam operation mainly is for deployment of high-frequency band system, where high-gain analog beamforming is used to combat large path loss.
NR release 15/16 supports the functions of indicating beam used for PDCCH/PDSCH/CSI-RS/PUSCH/SRS/PUCCH through the framework of TCI-state for downlink transmission or spatial relation for uplink transmission.
For PDCCH and PDSCH, the UE is configured with M TCI-states in higher layer signaling as the candidate QCL configuration. For each CORESET for PDCCH transmission, the UE can be configured with one or more TCI-states semi-statically and if more than one TCI-states are configured, one MAC CE command is used to activate one of those TCI-states as the active Tx beam for PDCCH transmission. For PDSCH, one MAC CE activation command can activate up to 8 TCI-states and each TCI-state is mapped to one codepoint in the DCI scheduling PDSCH transmission. Then for each individual PDSCH transmission, the NW can dynamically indicate one of those up to 8 TCI-states through the scheduling DCI.
The Tx beam information for CSI-RS transmission is indicated through a TCI-state configured or indicated to a CSI-RS resource. For a periodic CSI-RS resource, the TCI-state is configured in RRC semi-statically. For a semi-persistent CSI-RS resource, the TCI-state can be configured in RRC semi-statically or indicated in the MAC CE message that activates the transmission of semi-persistent CSI-RS. For an aperiodic CSI-RS resource, the TCI-state is configured to the CSI-RS  resource in the configuration of aperiodic CSI-RS trigger state in RRC. Then the gNB can use physical layer signaling to dynamically trigger the transmission of aperiodic CSI-RS transmission and also dynamically indicate the Tx beam information.
For SRS transmission, the UE Tx beam is configured or indicated through spatial relation information. For periodic SRS transmission, the spatial relation information is configured per SRS resource in RRC semi-statically. For aperiodic SRS transmission, the spatial relation information can be configured in RRC semi-statically, which is one method, and another method is the NW can use one MAC CE to update/indicate spatial relation information for a SRS resource, which thus provides more dynamic spatial relation information updating. For semi-persistent SRS transmission, the spatial relation information can be included in the MAC CE activation command that activates the transmission of semi-persistent SRS resources.
For PUCCH transmission, the UE Tx beam is configured through PUCCH spatial relation information. The UE is provided with one or more than one PUCCH spatial relation information configurations in RRC semi-statically. Then for each PUCCH resource, the UE can be indicated with one PUCCH spatial relation information through a MAC CE activation command.
In 3GPP Release 16, to reduce the number of MAC CE messages for indicating TCI-states for PDCCH and PDSCH, a single MAC CE message is used to indicate the same TCI state ID or the same set of TCI state IDs for PDCCH or PDSCH in multiple Component Carriers (CCs) .
The existing beam management mechanism does not support the coordination of uplink Tx beam between different UEs. Thus, when dynamic Time Division Duplex (TDD) is implemented in the system, one UE could cause strong interference to the downlink reception of another UE due to ‘wrong’ beam direction for uplink transmission.
The present disclosure provides solutions for supporting a UE to measure and report the interference signal from another one or more UEs.
FIG. 1 illustrates that, in some embodiments, a base station (e.g., gNB or eNB) 10, a first user equipment (UE) 20, and a second UE 30 for transmission adjustment in a communication network system 1 according to an embodiment of the present disclosure are provided. The communication network system 1 includes the base station 10, the first UE 20, and the second UE 30. The base station 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The first UE 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The second UE 30 may include a memory 32, a transceiver 33, and a processor 31 coupled to the memory 32 and the transceiver 33. The processor 11 or 21 or 31 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21 or 31. The memory 12 or 22 or 32 is operatively coupled with the processor 11 or 21 or 32 and stores a variety of information to operate the processor 11 or 21 or 31. The transceiver 13 or 23 or 33 is operatively coupled with the processor 11 or 21 or 31, and the transceiver 13 or 23 or 33 transmits and/or receives a radio signal.
The processor 11 or 21 or 31 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The memory 12 or 22 or 32 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The transceiver 13 or 23 or 33 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the memory 12 or 22 or 32 and executed by the processor 11 or 21 or 31. The memory 12 or 22 or 32 can be implemented within the processor 11 or 21 or 31 or external to the processor 11 or 21 or 31 in which case those can be communicatively coupled to the processor 11 or 21 or 31 via various means as is known in the art.
FIG. 2 illustrates a wireless communication method 200 by the first UE 20 according to an embodiment of the present disclosure. In some embodiments, the method 200 includes the following. In Block 202, the first UE 20 measures a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE 30. In Block 204, the first UE 10 reports to a base station 10, measurement result of the SRS signal transmitted on the one or more SRS resources. This can solve issues in the prior art, suppress the cross-link interference, improve the performance of dynamic TDD system, provide a good communication performance, and/or provide high reliability.
FIG. 3 illustrates a wireless communication method 300 by a base station 10 according to an embodiment of the present disclosure. In some embodiments, the method 300 includes the following. In Block 302, the base station 10 configures a first user equipment (UE) 20 to measure a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE 30. In Block 304, the base station 10 receives measurement result of the SRS signal transmitted on the one or more SRS resources, reported by the first UE 20. This can solve issues in the prior art, suppress the cross-link interference, improve the performance of dynamic TDD system, provide a good communication performance, and/or provide high reliability.
In short, the proposed methods are able to support the NR system to perform beam measurement and reporting and then beam coordination between different UEs. Thus, the system can suppress the cross-link interreference and improve the performance of dynamic TDD system.
In some embodiments, the measurement result of the SRS signal may include at least one of Reference Signal Received Power (RSRP) or Signal to Interference Noise Ratio (SINR) measurement result.
In some embodiments, in the reporting step, the measurement result of the one or more SRS resources and one indicator for each reported SRS resource may be reported. In an embodiment, one or more pairs of the measurement result and one SRS resource indicator that indicates the SRS resource corresponding to the measurement result may be reported. In another embodiment, for the reported SRS resources, a largest measurement result and at least one differential measurement result calculated by taking the largest measurement result as a reference may be reported.
In some embodiments, in the reporting step, one or more precoding vectors of the SRS resource and the measurement result corresponding to each reported precoding vector of the SRS resource may be reported. In an embodiment one or more pairs of one precoding vector of the SRS resource and the measurement result corresponding to the one precoding vector of the SRS resource may be reported. In another embodiment, for the reported precoding vectors of the SRS resource, a largest measurement result and at least one differential measurement result calculated by taking the largest measurement result as a reference may be reported.
In some embodiments, the measurement result of the one or more SRS resources may be reported through a periodic manner. In some embodiments, the measurement result of the one or more SRS resources may be reported through a semi-persistent manner. The measuring step or the reporting step may be activated or deactivated by a Media Access Control Control Element (MAC CE) command. In some embodiments, the method may further includes receiving a DCI format, which indicates a DCI bit field that indicates the first UE to measure the one or more SRS resources and then report the measurement result of the one or more SRS resources.
In some embodiments, the method may further includes applying QCL (Quasi Co-Location) -TypeD configuration on reception of each of the one or more SRS resources to be measured. In a first embodiment, the QCL-TypeD configuration may be contained in a Transmission Configuration Indicator (TCI) state for one of the one or more SRS resources. In a second embodiment, a SS (Synchronization Signal) /PBCH (Physical Broadcast Channel) Block (SSB) resource or a Channel State Information Reference Signal (CSI-RS) resource may serve as the QCL-TypeD configuration for one of the one or more SRS resources. In a third embodiment, the QCL-TypeD configuration may be applied on downlink channel including  Physical Downlink Shared Channel (PDSCH) or Physical Downlink Control Channel (PDCCH) . In a fourth embodiment, the QCL-TypeD configuration may be contained in a TCI state indicated through a signaling of unified TCI framework.
In some embodiments, the method may further includes determining a priority value of a Channel State Information (CSI) report containing the measurement result of the one or more SRS resources, wherein the lower the priority value is, the higher priority the CSI report is. The priority value of the CSI report may be determined based on whether the CSI report is aperiodic, periodic or semi-persistent. The priority value of the CSI report may be determined based on whether the CSI report carries RSRP or SINR measurement result.
Further details about the invention are provided below.
In the present disclosure, a first UE can be configured (e.g., by a base station) to measure a SRS signal transmitted on one or more SRS resources from a second UE. The first UE can be requested (e.g., by the base station) to report the measurement results of the SRS signal transmitted on the one or more SRS resources to the system, for example, the serving base station (e.g., a serving cell gNB) . The base station can first provide the configuration of the one or more resources for the second UE for being measured by the first UE. The base station can request the first UE to measure the one or more SRS resources and the first UE then can be requested to report the measurement results of the one or more SRS resources to the base station. For each SRS resource to be measured, the gNB can provide configuration of QCL-TypeD information that can be used by the first UE to obtain proper Rx beam information. The first UE can be requested to apply the QCL-TypeD configuration that is applied on downlink reception on the reception of the one or more SRS resources to be measured.
In an exemplary example, the first UE can be requested to report RSRP measurement (e.g., L1-RSRP measurement) or SINR measurement (e.g., the L1-SINR measurement) of the one or more SRS resources, and the first UE reports one indicator for each reported SRS resource. In another exemplary example, the first UE can be requested to report one or more precoding vectors and corresponding RSRP or SINR measurement (e.g., L1-RSRP or L1-SINR measurement) of one SRS resource, where the corresponding RSRP is the RSRP of received signal by assuming the reported precoding vector is applied on the SRS resource transmission.
The first UE can be requested to report the L1-RSRP measurement of the one or more SRS resources through a periodic manner, for example, in PUCCH resources. Alternatively, the first UE can be requested to report the L1-RSRP measurement of the one or more SRS resources through a semi-persistent manner, where the base station can use a MAC CE command to activate the measurement and reporting of the L1-RSRP measurement of the one or more SRS resources and use a MAC CE command to deactivate the measurement and reporting of the L1-RSRP measurement of the one or more SRS resources. Alternatively, the first UE can be requested to report the L1-RSRP measurement of the one or more SRS resources, which is triggered by a DCI format. The base station can send a DCI format to indicate a DCI bit field that can indicate the first UE to measure the one or more SRS resources and then report the L1-RSRP measurement result.
In a first possible implementation, the first UE can be configured by the base station to measure a set of SRS resources. In the set of SRS resources, the base station can provide the configuration of N ≥ 1 SRS resources. The first UE can be requested to measure the L1-RSRP measurement of each of the set of SRS resources. And then the first UE can be requested to report the L1-RSRP measurement results of the set of SRS resources to the base station.
In a first exemplary example, the first UE can report one or more pairs of {L1-RSRP measurement, one SRS resource indicator that indicates the SRS resource corresponding to the L1-RSRP measurement} . Each L1-RSRP measurement result can be a 7-bit value, for example, and the bit width of each SRS resource indicator can bebits.
In a second exemplary example, differential L1-RSRP can be used for reporting L1-RSRP measurement results. If the number of reported SRS resources in UE reporting is one, the first UE reports L1-RSRP measurement result and a SRS resource indicator that indicates the SRS resource corresponding to the reported L1-RSRP measurement. If the number of reported SRS resources is larger than one, the first UE reports L1-RSRP measurement for the reported SRS resource with  the largest RSRP and reports differential L1-RSRP of all the other reported SRS resources. To calculate the differential L1-RSRP, the largest RSRP is used as reference. For each reported L1-RSRP or differential L1-RSRP, the first UE also reports one SRS resource indicator that indicates an SRS resource corresponding to the reported L1-RSRP or the reported differential L1-RSRP.
Please note the first possible implementation can be applied for FR2 system and the first UE can measure the SRS resources transmitted from the second UE to find the UE Tx beams of the second UE that might cause serve interference to the first UE.
In a second possible implementation, the first UE can be configured by the base station to measure one SRS resource. The first UE can be requested to measure one or more precoding vectors of the one SRS resource and the L1-RSRP measurement corresponding to each precoding vector of the one SRS resource. And then the first UE can be requested to report one or more precoding vectors and L1-RSRP measurement corresponding to each reported precoding vector to the serving base station. This can be applied to FR1 system. The first UE can measure and report the precoding vectors of the second UE that might cause strong interference to the first UE to the base station. Thus, the base station can coordinate the uplink transmission configuration of the UE to suppress the interference between UEs.
In a first exemplary example, the first UE can be requested to report one or more pairs of {the index of precoding vector, the corresponding L1-RSRP measurement} . For each reported precoding vector, the corresponding L1-RSRP measurement can be calculated from the signal by assuming the corresponding precoding vector is applied on the SRS resource transmission.
In a second exemplary example, differential L1-RSRP can be used for reporting L1-RSRP measurement results. If the number of reported precoding vectors in UE reporting is one, the first UE reports L1-RSRP measurement result and a precoding vector indicator that indicates the precoding vector corresponding to the reported L1-RSRP measurement. If the number of reported precoding vectors is larger than one, the first UE reports L1-RSRP measurement for the reported precoding vector with the largest RSRP and reports differential L1-RSRP of all the other reported precoding vectors. To calculate the differential L1-RSRP, the largest RSRP is used as reference. For each reported L1-RSRP or differential L1-RSRP, the first UE also reports one precoding vector indicator that indicates a precoding vector corresponding to the reported L1-RSRP or the reported differential L1-RSRP
In a third possible implementation, the first UE can be configured by the base station to measure a set of SRS resources. In the set of SRS resources, the base station can provide the configuration of N ≥ 1 SRS resources. The first UE can be requested to measure the L1-RSRP measurement of each of the set of SRS resources. For proper measurement, the first UE can be provided with QCL-TypeD configuration for receiving one SRS resource in the set of SRS resources. Alternatively, the first UE can be requested to calculate the QCL-TypeD configuration for receiving one SRS resource in the set of SRS resources.
In a first exemplary example, the base station can provide a TCI state for one SRS resource in the set of SRS resources. And to receive one SRS resource, the first UE can be requested to apply the QCL-TypeD contained in the provided TCI state. Here the TCI state can be joint TCI state or a DL TCI state.
In a second exemplary example, the base station can provide a SSB or CSI-RS resource as the QCL-TypeD configuration for one SRS resource. To receive one SRS resource, the first UE can be requested to apply the configured QCL-TypeD configuration on the reception of the one SRS resource.
In a third exemplary example, to receive one SRS resource, the first UE can be requested to apply the QCL-TypeD configuration of downlink channel (for example, PDSCH, PDCCH) to receive and measure the SRS resource.
In a fourth exemplary example, when the first UE is configured with unified TCI framework and the first UE is indicated with a joint TCI state or DL TCI state through the signaling of unified TCI framework, the first UE can be requested  to apply the QCL-TypeD configuration contained in the indicated joint TCI state or DL TCI state on the reception of the SRS resource.
In a fourth possible implementation, the first UE can be configured by the base station to measure a set of SRS resources. In the set of SRS resources, the base station can provide the configuration of N ≥ 1 SRS resources. The first UE can be requested to measure and report the L1-RSRP measurement of the SRS resource. The first UE can be requested to determine a priority value of a CSI report containing the L1-RSRP measurement of the SRS resource. In an example, the first UE can calculate a priority value for CSI report containing L1-RSRP measurement of the SRS resource as follows: CSI reports are associated with a priority value PriiCSI (y, k, c, s) =2·Ncells·Ms·y+Ncells·Ms·k+Ms·c+s, where:
(1) y=0 for aperiodic CSI reports to be carried on PUSCH, y=1 for semi-persistent CSI reports to be carried on PUSCH, y=2 for semi-persistent CSI reports to be carried on PUCCH, and y=3 for periodic CSI reports to be carried on PUCCH;
(2) k=0 for CSI reports carrying L1-RSRP or L1-SINR or L1-RSRP of SRS, and k=1 for CSI reports not carrying L1-RSRP or L1-SINR or L1-RSRP of SRS;
(3) c is the serving cell index, and Ncells is the maximum number of serving cells (e.g., the value of the higher layer parameter maxNrofServingCells) ;
(4) s is the report configuration ID (e.g., reportConfigID) , and Msis the maximum number of CSI report configurations (e.g., the value of the higher layer parameter maxNrofCSI-ReportConfigurations) .
A first CSI report is said to have priority over second CSI report if the associated PriiCSI (y, k, c, s) value is lower for the first report than for the second report.
FIG. 4 illustrates an exemplary procedure of a first UE measuring SRS resource and reporting measurement result according to the afore-described embodiments presented in this disclosure.
The following table includes some abbreviations used in some embodiments of the present disclosure:

Commercial interests for some embodiments are as follows. 1. Solving issues in the prior art. 2. Suppressing the cross-link interference, 3. Improving the performance of dynamic TDD system. 4. Providing a good communication performance. 5. Providing high reliability. Some embodiments of the present disclosure are used by 5G-NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes. The deployment scenarios include, but not limited to, indoor hotspot, dense urban, urban micro, urban macro, rural, factor hall, and indoor D2D scenarios. Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present disclosure could be adopted in 5G NR licensed and non-licensed or shared spectrum communications. Some embodiments of the present disclosure propose technical mechanisms. The present example embodiment is applicable to NR in unlicensed spectrum (NR-U) . The present disclosure can be applied to other mobile networks, in particular to mobile network of any further generation cellular network technology (6G, etc. ) .
FIG. 5 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 5 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated. The application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency. The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) . The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface. In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, an AR/VR glasses, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the  system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (47)

  1. A wireless communication method by a first user equipment (UE) , comprising:
    measuring a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE; and
    reporting to a base station, measurement result of the SRS signal transmitted on the one or more SRS resources.
  2. The method of claim 1, wherein the measurement result of the SRS signal comprises at least one of Reference Signal Received Power (RSRP) or Signal to Interference Noise Ratio (SINR) measurement result.
  3. The method of claim 1, wherein in the reporting step, the measurement result of the one or more SRS resources and one indicator for each reported SRS resource are reported.
  4. The method of claim 3, wherein one or more pairs of the measurement result and one SRS resource indicator that indicates the SRS resource corresponding to the measurement result are reported.
  5. The method of claim 3, wherein for the reported SRS resources, a largest measurement result and at least one differential measurement result calculated by taking the largest measurement result as a reference are reported.
  6. The method of claim 1, wherein in the reporting step, one or more precoding vectors of the SRS resource and the measurement result corresponding to each reported precoding vector of the SRS resource are reported.
  7. The method of claim 6, wherein one or more pairs of one precoding vector of the SRS resource and the measurement result corresponding to the one precoding vector of the SRS resource are reported.
  8. The method of claim 6, wherein for the reported precoding vectors of the SRS resource, a largest measurement result and at least one differential measurement result calculated by taking the largest measurement result as a reference are reported.
  9. The method of any of claims 1 to 8, wherein the measurement result of the one or more SRS resources is reported through a periodic manner.
  10. The method of any of claims 1 to 8, wherein the measurement result of the one or more SRS resources is reported through a semi-persistent manner.
  11. The method of claim 10, wherein the measuring step or the reporting step is activated or deactivated by a Media Access Control Control Element (MAC CE) command.
  12. The method of any of claims 1 to 8, further comprising:
    receiving a DCI format, which indicates a DCI bit field that indicates the first UE to measure the one or more SRS resources and then report the measurement result of the one or more SRS resources.
  13. The method of any of claims 1 to 8, further comprising:
    applying QCL (Quasi Co-Location) -TypeD configuration on reception of each of the one or more SRS resources to be measured.
  14. The method of claim 13, wherein the QCL-TypeD configuration is contained in a Transmission Configuration Indicator (TCI) state for one of the one or more SRS resources.
  15. The method of claim 13, wherein a SS (Synchronization Signal) /PBCH (Physical Broadcast Channel) Block (SSB) resource or a Channel State Information Reference Signal (CSI-RS) resource serves as the QCL-TypeD configuration for one of the one or more SRS resources.
  16. The method of claim 13, wherein the QCL-TypeD configuration is applied on downlink channel including Physical Downlink Shared Channel (PDSCH) or Physical Downlink Control Channel (PDCCH) .
  17. The method of claim 13, wherein the QCL-TypeD configuration is contained in a TCI state indicated through a signaling of unified TCI framework.
  18. The method of any of claims 1 to 8, further comprising:
    determining a priority value of a Channel State Information (CSI) report containing the measurement result of the one or more SRS resources,
    wherein the lower the priority value is, the higher priority the CSI report is.
  19. The method of claim 18, wherein the priority value of the CSI report is determined based on whether the CSI report is aperiodic, periodic or semi-persistent.
  20. The method of claim 18, wherein the priority value of the CSI report is determined based on whether the CSI report carries RSRP or SINR measurement result.
  21. A wireless communication method by a base station, comprising:
    configuring a first user equipment (UE) to measure a Sounding Reference Signal (SRS) signal that is transmitted on one or more SRS resources from a second UE; and
    receiving measurement result of the SRS signal transmitted on the one or more SRS resources, reported by the first UE.
  22. The method of claim 21, wherein the measurement result of the SRS signal comprises at least one of Reference Signal Received Power (RSRP) or Signal to Interference Noise Ratio (SINR) measurement result.
  23. The method of claim 21, wherein in the receiving step, the measurement result of the one or more SRS resources and one indicator for each reported SRS resource are received.
  24. The method of claim 23, wherein one or more pairs of the measurement result and one SRS resource indicator that indicates the SRS resource corresponding to the measurement result are received.
  25. The method of claim 23, wherein for the reported SRS resources, a largest measurement result and at least one differential measurement result calculated by taking the largest measurement result as a reference are received.
  26. The method of claim 21, wherein in the receiving step, one or more precoding vectors of the SRS resource and the measurement result corresponding to each reported precoding vector of the SRS resource are received.
  27. The method of claim 26, wherein one or more pairs of one precoding vector of the SRS resource and the measurement result corresponding to the one precoding vector of the SRS resource are received.
  28. The method of claim 26, wherein for the reported precoding vectors of the SRS resource, a largest measurement result and at least one differential measurement result calculated by taking the largest measurement result as a reference are received.
  29. The method of any of claims 21 to 28, wherein the measurement result of the one or more SRS resources is received through a periodic manner.
  30. The method of any of claims 21 to 28, wherein the measurement result of the one or more SRS resources is received through a semi-persistent manner.
  31. The method of claim 30, wherein the measuring step or the reporting step is activated or deactivated by a Media Access Control Control Element (MAC CE) command.
  32. The method of any of claims 21 to 28, further comprising:
    transmitting a DCI format, which indicates a DCI bit field that indicates the first UE to measure the one or more SRS resources and then report the measurement result of the one or more SRS resources.
  33. The method of any of claims 21 to 28, further comprising:
    providing QCL (Quasi Co-Location) -TypeD configuration for the first UE measuring each of the one or more SRS resources.
  34. The method of claim 33, wherein the QCL-TypeD configuration is contained in a Transmission Configuration Indicator (TCI) state for one of the one or more SRS resources.
  35. The method of claim 33, wherein a SS (Synchronization Signal) /PBCH (Physical Broadcast Channel) Block (SSB) resource or a Channel State Information Reference Signal (CSI-RS) resource serves as the QCL-TypeD configuration for one of the one or more SRS resources.
  36. The method of claim 33, wherein the QCL-TypeD configuration is applied on downlink channel including Physical Downlink Shared Channel (PDSCH) or Physical Downlink Control Channel (PDCCH) .
  37. The method of claim 33, wherein the QCL-TypeD configuration is contained in a TCI state indicated through a signaling  of unified TCI framework.
  38. The method of any of claims 21 to 28, further comprising:
    requesting the first UE to determine a priority value of a Channel State Information (CSI) report containing the measurement result of the one or more SRS resources,
    wherein the lower the priority value is, the higher priority the CSI report is.
  39. The method of claim 38, wherein the priority value of the CSI report is determined based on whether the CSI report is aperiodic, periodic or semi-persistent.
  40. The method of claim 38, wherein the priority value of the CSI report is determined based on whether the CSI report carries RSRP or SINR measurement result.
  41. A user equipment (UE) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver,
    wherein the processor is configured to call and run program instructions stored in the memory, to execute the method of any of claims 1 to 20.
  42. A first base station, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver,
    wherein the processor is configured to call and run program instructions stored in the memory, to execute the method of any of claims 21 to 40.
  43. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 1 to 40.
  44. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any one of claims 1 to 40.
  45. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any one of claims 1 to 40.
  46. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 40.
  47. A computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 40.
PCT/CN2023/120453 2022-09-21 2023-09-21 Wireless communication method and relevant apparatus WO2024061322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263376570P 2022-09-21 2022-09-21
US63/376,570 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024061322A1 true WO2024061322A1 (en) 2024-03-28

Family

ID=90453869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120453 WO2024061322A1 (en) 2022-09-21 2023-09-21 Wireless communication method and relevant apparatus

Country Status (1)

Country Link
WO (1) WO2024061322A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212472A1 (en) * 2020-04-24 2021-10-28 Qualcomm Incorporated Report sounding reference signal resource set indicator for full duplex
US20210368482A1 (en) * 2020-05-22 2021-11-25 Qualcomm Incorporated Uplink beam refinement based on sounding reference signal (srs) with dynamic parameters
US20220247467A1 (en) * 2019-05-30 2022-08-04 Qualcomm Incorporated Channel state information feedback in full-duplex

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220247467A1 (en) * 2019-05-30 2022-08-04 Qualcomm Incorporated Channel state information feedback in full-duplex
WO2021212472A1 (en) * 2020-04-24 2021-10-28 Qualcomm Incorporated Report sounding reference signal resource set indicator for full duplex
US20210368482A1 (en) * 2020-05-22 2021-11-25 Qualcomm Incorporated Uplink beam refinement based on sounding reference signal (srs) with dynamic parameters

Similar Documents

Publication Publication Date Title
WO2022052650A1 (en) Apparatus and method of wireless communication
US11490265B2 (en) Apparatus and method of processing collision between SSB transmission and periodic transmission
WO2021159347A1 (en) Full power uplink transmission enhancement
WO2021190358A1 (en) Apparatus and method of wireless communication
WO2021228203A1 (en) Apparatus and method of wireless communication
US20230025005A1 (en) Apparatus and method of wireless communication
WO2021098076A1 (en) Apparatus and method for transmitting or receiving physical sidelink broadcast channel
WO2021259326A1 (en) Apparatus and method of wireless communication
WO2022253150A1 (en) Data transmission method and apparatus
WO2022001973A1 (en) Apparatus and method of wireless communication
WO2022012395A1 (en) Apparatus and method of wireless communication
WO2022077485A1 (en) User equipment, base station, and method of common beam determination
WO2024061322A1 (en) Wireless communication method and relevant apparatus
WO2022001967A1 (en) Apparatus and method of wireless communication
WO2024061241A1 (en) Apparatus and methods of inter-ue interference beam measurement and reporting
WO2019105430A1 (en) Method and apparatus for identifying interference in a wireless communication system
WO2024008151A1 (en) Apparatus and methods of uplink transmission with multiple tcl states
WO2021185152A1 (en) Apparatus and method of wireless communication
WO2021208697A1 (en) Apparatus and method of wireless communication
WO2021228201A1 (en) Apparatus and method of wireless communication
WO2024055938A1 (en) Apparatuses and methods of measuring and reporting carrier phase of multi-path channels
US20230087543A1 (en) Methods for wireless communication, ue, and base station
WO2024125418A1 (en) Apparatus and method of uplink transmission timing management for mobility
US20240064812A1 (en) Apparatus and method of wireless communication
US20220385417A1 (en) Apparatus and method of communication of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867607

Country of ref document: EP

Kind code of ref document: A1