WO2021212472A1 - Report sounding reference signal resource set indicator for full duplex - Google Patents

Report sounding reference signal resource set indicator for full duplex Download PDF

Info

Publication number
WO2021212472A1
WO2021212472A1 PCT/CN2020/086706 CN2020086706W WO2021212472A1 WO 2021212472 A1 WO2021212472 A1 WO 2021212472A1 CN 2020086706 W CN2020086706 W CN 2020086706W WO 2021212472 A1 WO2021212472 A1 WO 2021212472A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
srs resource
resource set
csi
resource sets
Prior art date
Application number
PCT/CN2020/086706
Other languages
French (fr)
Inventor
Min Huang
Yu Zhang
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/086706 priority Critical patent/WO2021212472A1/en
Publication of WO2021212472A1 publication Critical patent/WO2021212472A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for a user equipment (UE) to report a sounding reference signal (SRS) resource set indicator (SRSI) to a base station (BS) in a full-duplex wireless communications system while considering UE-to-UE interference and for the BS to configure the UE to provide the SRSI to the BS.
  • UE user equipment
  • SRS sounding reference signal
  • BS base station
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) .
  • BSs base stations
  • UEs user equipments
  • a set of one or more base stations may define an eNodeB (eNB) .
  • eNB eNodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a BS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to a BS or DU) .
  • New radio e.g., 5G NR
  • 5G NR is an example of an emerging telecommunication standard.
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • CP cyclic prefix
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • Certain aspects provide a method for wireless communication that may be performed by a base station (BS) .
  • the method generally includes sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • Certain aspects provide a method for wireless communication that may be performed by a user equipment (UE) .
  • the method generally includes receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; selecting a first SRS resource set of the plurality of SRS resource sets; and transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • the apparatus generally includes a processor configured to: send, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receive from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets; and a memory coupled with the processor.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • the apparatus generally includes a processor configured to: receive, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-user equipment interference measurement; select a first SRS resource set of the plurality of SRS resource sets; and transmit to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets; and a memory coupled with the processor.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • the apparatus generally includes means for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and means for receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • the apparatus generally includes means for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-user equipment interference measurement; means for selecting a first SRS resource set of the plurality of SRS resource sets; and means for transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • BS base station
  • CSI channel state information
  • SRS sounding reference signal
  • the computer-readable medium includes instructions that, when executed by a processing system, cause the processing system to perform operations generally including sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • the computer-readable medium includes instructions that, when executed by a processing system, cause the processing system to perform operations generally including receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-user equipment interference measurement; selecting a first SRS resource set of the plurality of SRS resource sets; and transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • BS base station
  • CSI channel state information
  • SRS sounding reference signal
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
  • RAN radio access network
  • FIG. 3 shows an exemplary system model of a Uu interface interaction in a cell using a full-duplex technique, in accordance with certain aspects of the present disclosure.
  • FIGs. 4A &4B show an exemplary system model of a full-duplex wireless communications system using an integrated access and backhaul (IAB) node, in accordance with certain aspects of the present disclosure.
  • IAB integrated access and backhaul
  • FIG. 5 is an exemplary call flow of a full-duplex wireless communications system, in accordance with certain aspects of the present disclosure.
  • FIG. 6 is a flow diagram illustrating example operations for wireless communication by a base station (BS) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • FIG. 7 is a flow diagram illustrating example operations for wireless communication by a user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • UE user equipment
  • FIG. 8 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
  • FIG. 9 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for a user equipment (UE) to report a sounding reference signal (SRS) resource set indicator (SRSI) to a base station (BS) in a full-duplex wireless communications system while considering UE-to-UE interference and for the BS to configure the UE to provide the SRSI to the BS.
  • UE user equipment
  • SRS sounding reference signal
  • BS base station
  • Wireless full-duplex (FD) communications is an emerging technique and is theoretically capable of doubling the link capacity when compared with half-duplex communications.
  • the main idea of wireless full-duplex communications is to enable radio network nodes to transmit and receive simultaneously on the same frequency band in the same time slot. This contrasts with conventional half-duplex operation, where transmission and reception either differ in time or in frequency.
  • a full-duplex network node such as a base station in a cellular network, can communicate simultaneously in uplink (UL) and downlink (DL) with two half-duplex terminals (i.e., user equipments (UEs) ) using the same radio resources.
  • UL uplink
  • DL downlink
  • UEs user equipments
  • a relay node in a wireless full-duplex application can communicate simultaneously with an anchor node and a mobile terminal (e.g., transmitting to the anchor node while receiving from the mobile terminal) in a one-hop scenario, or with two other relay nodes in a multi-hop scenario.
  • a UE receiving a downlink (DL) transmission and a UE transmitting an uplink (UL) transmission employ the same time-frequency resource in a full-duplex wireless communication system, if these two UEs are located a short distance from each other, the UL transmission signal may cause serious co-channel interference to the DL signal reception.
  • a backhaul link and an access link may employ the same time-frequency resource in a full-duplex wireless communication system, and thus if two nodes are located a short distance from each other, communications via the backhaul link and the access link may cause serious co-channel interference with each other.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • network and “system” are often used interchangeably.
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc.
  • NR e.g. 5G RA
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • LTE and LTE-A are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • New Radio is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • NR access e.g., 5G NR
  • 5G NR may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • the wireless communication network 100 may be a full-duplex NR system (e.g., a full-duplex 5G network) .
  • a full-duplex NR system e.g., a full-duplex 5G network
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • the wireless communication network 100 may be a full-duplex NR system (e.g., a full-duplex 5G network) .
  • a full-duplex 5G network e.g., a full-duplex 5G network
  • the UE 120a has a full-duplex CSI reporting module that may be configured for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; for selecting a first SRS resource set of the plurality of SRS resource sets; and for transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets, according to aspects described herein.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • the BS 110a has a full-duplex CSI configuring module that may be configured for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets, according to aspects described herein.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • the wireless communication network 100 may include a number of base stations (BSs) 110 and other network entities.
  • a BS may be a station that communicates with user equipments (UEs) .
  • Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used.
  • NB Node B
  • AP access point
  • DU distributed unit
  • carrier or transmission reception point
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • Wireless communication network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • Wireless communication network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless communication network 100.
  • macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • Wireless communication network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (e.g., 6 RBs) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • the basic transmission time interval (TTI) or packet duration is the 1 ms subframe.
  • a subframe is still 1 ms, but the basic TTI is referred to as a slot.
  • a subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, ...slots) depending on the subcarrier spacing.
  • the NR RB is 12 consecutive frequency subcarriers.
  • NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc.
  • the symbol and slot lengths scale with the subcarrier spacing.
  • the CP length also depends on the subcarrier spacing.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. In some examples, MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. In some examples, multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • a scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates potentially interfering transmissions between a UE and a BS.
  • FIG. 2 illustrates example components of BS 110 and UE 120 (e.g., in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
  • antennas 252, processors 266, 258, 264, and/or controller/processor 280 of the UE 120 and/or antennas 234, processors 220, 230, 238, and/or controller/processor 240 of the BS 110 may be used to perform the various techniques and methods described herein.
  • FIG. 1 illustrates example components of BS 110 and UE 120 (e.g., in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
  • antennas 252, processors 266, 258, 264, and/or controller/processor 280 of the UE 120 and/or antennas 234, processors 220, 230, 238, and/or controller/processor 240 of the BS 110 may be used to perform the various techniques and methods described herein.
  • FIG. 1 illustrates example components of BS 110 and
  • the controller/processor 240 of the BS 110 has a full-duplex CSI configuring module that may be configured for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets, according to aspects described herein.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • the controller/processor 280 of the UE 120 has a full-duplex CSI reporting module that may be configured for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; selecting a first SRS resource set of the plurality of SRS resource sets; and transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets, according to aspects described herein.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a-232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
  • the antennas 252a-252r may receive the downlink signals from the BS 110 and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 280.
  • the transmit processor 264 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the demodulators in transceivers 254a-254r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110.
  • the uplink signals from the UE 120 may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the controllers/processors 240 and 280 may direct the operation at the BS 110 and the UE 120, respectively.
  • the controller/processor 240 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein.
  • the memories 242 and 282 may store data and program codes for BS 110 and UE 120, respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for a user equipment (UE) to report a sounding reference signal (SRS) resource set indicator (SRSI) to a base station (BS) in a full-duplex wireless communications system while considering UE-to-UE interference and for the BS to configure the UE to provide the SRSI to the BS.
  • UE user equipment
  • SRS sounding reference signal
  • BS base station
  • FIG. 3 shows an exemplary system model 300 of a Uu interface interaction in a cell using a full-duplex technique, according to aspects of the present disclosure.
  • full-duplex technique downlink transmissions and uplink transmissions can coexist in the same radio spectrum (i.e., the same frequency band) simultaneously in a Uu interface of a cell.
  • UE 306 (which may be an example of a UE 120, shown in FIG. 1) transmits a signal 310 to base station 302 (which may be an example of BS 110a, shown in FIG. 1) with transmit power P tx dB.
  • UE 304 receives a signal 312 from the base station with receive power P rx dB.
  • the UE 304 measures the channel (i.e., the interference-plus-noise power spectrum) from the base station, determines CSI, and sends an aperiodic (i.e., in response to a command from the base station) or a periodic CSI report 320 to the base station.
  • the base station transmits a downlink signal 312 according to a transport format determined by the base station based on the CSI 320 reported to the base station by the UE 304.
  • the UE-to-UE interference (i.e., from the UL transmission to the DL transmission) 330 is P tx -D dB. If the UE-to-UE interference power spectrum is larger than the original interference-plus-noise power spectrum at UE 304, then the UE-to-UE interference may impair the reception performance of the UE 304 in receiving the downlink signal 312.
  • a UE that generates UE-to-UE interference by sending an UL transmission is referred to as an aggressor UE (e.g., UE 306)
  • a UE that suffers from UE-to-UE interference is referred to as a victim UE (e.g., UE 304) .
  • FIGs. 4A &4B show an exemplary system model 400 of a full-duplex wireless communications system using an integrated access and backhaul (IAB) node 404, according to aspects of the present disclosure.
  • An IAB node 404 (which may be an example of BS 110a, shown in FIG. 1) can be regarded as a relay node through which data can be transmitted from an IAB donor 402 (which may be an example of a BS 110, shown in FIG. 1) to a UE 406 (which may be an example of UE 120a, shown in FIG. 1) , as in FIG. 4A, or from the UE to the IAB donor, as in FIG. 4B.
  • the IAB node 404 can receive first data from an IAB donor 402 via a downlink portion of a backhaul link 410 using a set of time-frequency radio resources and transmit the first data to the UE 406 via a downlink portion of an access link 420 using the same set of time-frequency radio resources, as shown in FIG. 4A. Also with the full-duplex technique, the IAB node 404 can receive second data from the UE 406 via an uplink portion of the access link 420 using the set of time-frequency radio resources and transmit the second data to the IAB donor 402 via an uplink portion of the backhaul link 410 while using the same time-frequency radio resources, as shown in FIG. 4B.
  • the interference 430 from backhaul link 410 to access link 420 may cause a data reception performance deterioration for the UE 406 or the IAB donor 402.
  • a UE can act as an IAB node.
  • the link between the IAB donor and the IAB node may be referred to as a parent link, while the link between the IAB node and another IAB node may be referred to as a child link.
  • the parent link and the child link may interfere with each other.
  • a UE can be configured with a time-frequency resource for interference measurement, referred to as a CSI-IM resource.
  • CSI-IM resources can be periodic or semi-persistent. That is, a UE can be configured with a CSI-IM resource that is periodic and the UE reports CSI measured on the frequency resources included in the CSI-IM resource on a periodic basis, or a UE can be configured with a CSI-IM resource that is semi-persistent and the UE reports CSI measured on the frequency resources included in the CSI-IM resource on a semi-persistent basis.
  • No data or signal is sent to the UE from the base station via the time-frequency resources included in the CSI-IM resource, so that the UE can take these occasions to measure the interference, and then use the measurement result in CSI generation.
  • a non-zero power (NZP) CSI reference signal (CSI-RS) resource is associated with a CSI-IM resource.
  • NZP non-zero power
  • CSI-RS CSI reference signal
  • assigning CSI-IM resources for a UE to measure interference is not suitable to measure the UE-to-UE interference in full-duplex communications systems, for the following reasons.
  • the CSI-IM resource is designed to measure the overall interference from the environment that is suffered by a UE. But the UE-to-UE interference in full-duplex may be variable, depending on different aggressor UE hypotheses. That is, the UE-to-UE interference in full-duplex may vary, depending on which other UEs are transmitting. Since one CSI-IM resource cannot support the measurement of multiple distinguishable aggressor UEs, measuring CSI with multiple possible aggressor UE hypotheses using CSI-IM resources consumes multiple CSI-IM resources, which may be a significant loss to the network.
  • CSI-IM may only be configured in downlink slots, but signals sent by aggressor UEs are in uplink slots.
  • configuring some UEs to use a slot as a downlink slot and configuring other UEs to use the same slot as an uplink slot has a high risk of causing severe interference. And this behavior may not be supported by some legacy UEs or low-cost UEs (e.g., machine-type communication (MTC) UEs) .
  • MTC machine-type communication
  • a UE configured to receive a DL transmission in a period would suffer from co-channel interference from a paired UE transmitting an UL transmission in the same period.
  • the interference strength depends on the distance between these two UEs and on the UL transmit power spectrum by the UE transmitting the UL signal. If the UE receiving the DL transmission has more than one receive antenna and performs coherent antenna reception, the interference strength also depends on the spatial direction of the interference signal.
  • NR Release 16 (Rel-16) communications standards a technique called Cross-Link Interference (CLI) handling is described, which provides an approach for a UE in one cell to measure interference caused to the UE by UEs in other cells.
  • CLI Cross-Link Interference
  • a set of sounding reference signal (SRS) resources are configured to both the victim UE and the aggressor UE by the network. Due to the good multiplexing capability of SRS, the victim UE may have little difficulty differentiating SRS from the aggressor UEs. In these SRS resources, the victim UE is configured to measure the strength of SRS signals sent by the aggressor UEs in neighboring cells.
  • SRS sounding reference signal
  • SRS-RSRP SRS reference signal received power
  • CLI-RSSI CLI received signal strength indicator
  • CLI inter-cell SRS measurement
  • information on SRS configuration needs to be transferred via a backhaul link between the base stations serving the victim UE and the aggressor UEs. Due to the restriction of backhaul transfer latency, such information transfer may be limited to enabling CLI in a static or semi-static mode, and thus, the SRS measurement is limited to being configured in a static or semi-static pattern. Therefore, CLI techniques can only be used for long-term interference management, e.g., allocating non-overlapping radio resources to aggressor UE and victim UE, which may be an inefficient use of system capacity when compared with radio resource reuse.
  • a BS may send an SRS configuration message to a UE to configure the UE for SRS transmission.
  • the SRS configuration message may contain the configuration of a plurality of SRS resource sets.
  • each SRS resource set contains one or more SRS resources that all have a same resource type, which may be aperiodic, semi-persistent or periodic.
  • An aperiodic SRS resource is used for one SRS transmission occasion.
  • a semi-persistent or periodic SRS resource is used for periodic SRS transmissions on multiple occasions.
  • a semi-persistent SRS resource can be temporarily deactivated or activated for SRS transmission by medium access control control element MAC CE messages from a BS.
  • the SRS resources in one SRS resource set have the same resource type.
  • Multiple SRS resource sets can have different resource types.
  • a BS may indicate to a victim UE to measure inter-UE interference based on SRS reception. That is, a victim UE may be directed by a BS to receive and measure SRS from an aggressor UE and report inter-UE interference based on the measurement of the SRS. The victim UE may then add an SRS resource indicator, which indicates the measured SRS, in a CSI report to indicate the selection of the matched aggressor UE and its beam.
  • the BS can obtain information to use in scheduling DL transmissions to the victim UE and UL transmissions from an aggressor UE in order to reduce the interference.
  • the BS may also determine transport formats (e.g., transmission beams, MIMO schemes, or MCS values) to use in scheduling the DL and UL transmissions.
  • transport formats e.g., transmission beams, MIMO schemes, or MCS values
  • MCS values MIMO schemes, or MCS values
  • a victim UE only indicating an SRS resource indicator in CSI report of the victim UE is insufficient.
  • the SRS resources of different aggressor UEs cannot be merged into a single SRS resource set, because each SRS resource set corresponds to only one resource type.
  • a victim UE cannot be matched with multiple aggressor UEs with different SRS resource types in full duplex CSI reporting and full duplex data transmission. This severely impairs the scheduling flexibility and data throughput of full duplex systems.
  • a BS may send a CSI report configuration message to a DL UE (i.e. a UE receiving a PDSCH or victim UE) , indicating a number of SRS resource sets for SRS reception and inter-UE interference measurement.
  • a DL UE i.e. a UE receiving a PDSCH or victim UE
  • each SRS resource set in the CSI report configuration message may contain a number of SRS resources. Multiple SRS resource sets may have identical or different resource types. Each SRS resource set corresponds to a measurement of the interference from an UL UE (i.e., a UE transmitting a PUSCH or an aggressor UE) . Multiple SRS resource sets may correspond to the same UL UE, e.g., when this UL UE transmits SRS with different resource types.
  • Each resource type (e.g., aperiodic, semi-periodic, or periodic) may have one or more SRS resource sets, each of which corresponds to different UL UEs.
  • the DL UE may receive the SRS at the configured SRS resources based on the corresponding resource type, and determine a selected SRS resource set which contains the SRS resource with the minimum interference strength or the largest receive signal-to-interference-and-noise-ratio (SINR) .
  • SINR receive signal-to-interference-and-noise-ratio
  • the SRS resource set selected by the DL UE corresponds to the matched UL UE, and the resource selected by the DL UE corresponds to the matched beam of the matched UL UE, for full duplex communication.
  • the DL UE may send a CSI report message to the BS, indicating the identifier of the selected SRS resource set, referred to as an SRS resource set indicator (SRSI) .
  • SRSI SRS resource set indicator
  • each SRSI value represents an UL UE.
  • the DL UE may also indicate the identifier of the selected SRS resource in the selected SRS resource set, referred to as an SRS resource indicator (SRI) .
  • SRI may represent an UL beam of the UL UE.
  • the BS may merge SRS resources with a same resource type from multiple UL UEs into a single SRS resource set.
  • the bits used for transmission of SRSIs e.g., SRSIs transmitted in a CSI report configuration
  • the bits used for transmission of SRIs may be decreased, while the bits used for transmission of SRIs may be increased.
  • the number of SRS resources in each SRS resource set is not always a power of 2, i.e., 2 n , such SRS resource set merging may reduce the overall number of bits used for transmission of SRSI plus SRI.
  • a BS may indicate an associated CSI-RS resource for one or more SRS resource sets. Then, a UE determines the CSI by treating the CSI-RS at the CSI-RS resource as a desired signal and the SRS at the SRS resource set as interference.
  • a CSI-RS resource is associated with a single SRS resource set
  • reporting e.g., by a UE
  • a CSI-RS resource indicator is equivalent to reporting the SRSI of the associated SRS resource set, so a UE may indicate either CRI or SRSI to identify the aggressor UE in a CSI report.
  • a CSI-RS resource is associated with multiple SRS resource sets, then it is desirable for the victim UE to report SRSI in the CSI report, as reporting CRI is not equivalent to reporting the SRSI.
  • a victim UE can report multiple aggressor UEs with different SRS resource types in full duplex CSI reporting and full duplex data transmission. Enabling a victim UE to report multiple aggressor UEs with different SRS resource types may greatly improve the scheduling flexibility and data throughput of full duplex systems.
  • FIG. 5 is an exemplary call flow 500 of a full-duplex wireless communications system, according to aspects of the present disclosure.
  • the call flow begins with a base station 502 (which may be an example of BS 110a, shown in FIG. 1) sending, at 510, an SRS resource configuration, a CSI report configuration, and an indication that the SRS resource configuration is for reception to victim UE 504.
  • the BS sends the SRS resource configuration and an indication that the SRS resource configuration is for transmission of an aperiodic SRS to a first aggressor UE 506.
  • the BS sends another SRS resource configuration and an indication that the other SRS resource configuration is for transmission of a periodic SRS to a second aggressor UE 508.
  • the first aggressor UE transmits an aperiodic SRS via the configured SRS resources, and the victim UE receives the aperiodic SRS, at 514.
  • the second aggressor UE transmits a periodic SRS via the configured SRS resources, and the victim UE receives the periodic SRS, at 515.
  • the victim UE measures the UE-to-UE interference, based on the received aperiodic SRS and the received periodic SRS.
  • the victim UE then calculates CSI, based on the UE-to-UE interference, at 518.
  • the victim UE transmits a CSI report containing the CSI and an SRS resource set indicator (SRSI) of the measured SRS resource set (which may include the SRS resources on which the first aggressor UE transmitted the aperiodic SRS at 514 and the SRS resources on which the second aggressor UE transmitted the periodic SRS at 515, or a subset of those SRS resources) to the base station at 520.
  • the BS determines to pair the victim UE and the first aggressor UE, for example, for reception and transmission on an allocation of transmission resources and also determines a transport format for a downlink transmission from the BS to the victim UE at 522.
  • the BS sends a grant of the transmission resources for an uplink transmission to the first aggressor UE.
  • the first aggressor UE transmits the uplink transmission via the transmission resources to the BS. Simultaneously, at 528 the BS transmits a downlink transmission to the victim UE via the transmission resources and using the transport format.
  • FIG. 6 is a flow diagram illustrating example operations 600 for wireless communication, in accordance with certain aspects of the present disclosure.
  • the operations 600 may be performed, for example, by a BS (e.g., such as a BS 110 in the wireless communication network 100, shown in FIG. 1) .
  • Operations 600 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 240 of FIG. 2) .
  • the transmission and reception of signals by the BS in operations 600 may be enabled, for example, by one or more antennas (e.g., antennas 234 of FIG. 2) .
  • the transmission and/or reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 240) obtaining and/or outputting signals.
  • the operations 600 may begin, at block 605, with the BS sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement.
  • CSI channel state information
  • Operations 600 may continue, at block 610, by the BS receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • SRSI SRS resource set indicator
  • FIG. 7 is a flow diagram illustrating example operations 700 for wireless communication, in accordance with certain aspects of the present disclosure.
  • the operations 700 may be performed, for example, by UE (e.g., such as a UE 120 in the wireless communication network 100, shown in FIG. 1) .
  • the operations X00 may be complimentary operations by the UE to the operations 700 performed by the BS.
  • Operations 700 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 280 of FIG. 2) .
  • the transmission and reception of signals by the UE in operations 700 may be enabled, for example, by one or more antennas (e.g., antennas 252 of FIG. 2) .
  • the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 280) obtaining and/or outputting signals.
  • the operations 700 may begin, at block 705, by the UE receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement.
  • BS base station
  • CSI channel state information
  • SRS sounding reference signal
  • Operations 700 may continue, at block 710, with the UE selecting a first SRS resource set of the plurality of SRS resource sets.
  • operations 700 continue with the UE transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • SRSI SRS resource set indicator
  • FIG. 8 illustrates a communications device 800 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 6.
  • the communications device 800 includes a processing system 802 coupled to a transceiver 808.
  • the transceiver 808 is configured to transmit and receive signals for the communications device 800 via an antenna 810, such as the various signals as described herein.
  • the processing system 802 may be configured to perform processing functions for the communications device 800, including processing signals received and/or to be transmitted by the communications device 800.
  • the processing system 802 includes a processor 804 coupled to a computer-readable medium/memory 812 via a bus 806.
  • the computer-readable medium/memory 812 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 804, cause the processor 804 to perform the operations illustrated in FIG. 6, or other operations for performing the various techniques discussed herein for configuring CSI reporting in a full-duplex communication system.
  • computer-readable medium/memory 812 stores code 814 for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and code 816 for receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • the processor 804 has circuitry configured to implement the code stored in the computer-readable medium/memory 812.
  • the processor 804 includes circuitry 820 for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and circuitry 824 for receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • FIG. 9 illustrates a communications device 900 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 7.
  • the communications device 900 includes a processing system 902 coupled to a transceiver 908.
  • the transceiver 908 is configured to transmit and receive signals for the communications device 900 via an antenna 910, such as the various signals as described herein.
  • the processing system 902 may be configured to perform processing functions for the communications device 900, including processing signals received and/or to be transmitted by the communications device 900.
  • the processing system 902 includes a processor 904 coupled to a computer-readable medium/memory 912 via a bus 906.
  • the computer-readable medium/memory 912 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 904, cause the processor 904 to perform the operations illustrated in FIG. 7, or other operations for performing the various techniques discussed herein for reporting CSI for a full-duplex communications system.
  • computer-readable medium/memory 912 stores code 914 for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; code 916 for selecting a first SRS resource set of the plurality of SRS resource sets; and code 918 for transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • the processor 904 has circuitry configured to implement the code stored in the computer-readable medium/memory 912.
  • the processor 904 includes circuitry 920 for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; circuitry 924 for selecting a first SRS resource set of the plurality of SRS resource sets; and circuitry 926 for transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • Embodiment 1 A method for wireless communications by a base station, comprising sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • CSI channel state information
  • SRS sounding reference signal
  • Embodiment 2 The method of Embodiment 1, wherein the first SRS resource set is selected by the UE based on the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of the plurality of SRS resource sets.
  • SINR signal-to-interference-and-noise-ratio
  • Embodiment 3 The method of any one of Embodiments 1 and 2, wherein the first SRS resource set is selected by the UE based on an SRS in the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of all the SRS resources in the plurality of SRS resource sets.
  • SINR signal-to-interference-and-noise-ratio
  • Embodiment 4 The method of any one of Embodiments 1-3, further including merging SRS resources, of one type, for multiple UEs into each of the plurality of SRS resource sets, wherein the one type of the SRS resources is selected from a group of types of SRS resources including a first type of SRS resources for aperiodic SRS transmission, a second type of SRS resources for semi-periodic SRS transmission, and a third type of SRS resources for periodic SRS transmission.
  • Embodiment 5 The method of any one of Embodiments 1-4, wherein the SRSI is associated with a CSI-RS resource indicator (CRI) of a CSI-RS resource associated with the first SRS resource set.
  • CRI CSI-RS resource indicator
  • Embodiment 6 The method of Embodiment 5, wherein the CSI report comprises the CRI.
  • Embodiment 7 A method for wireless communications by a first user equipment (UE) , comprising: receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; selecting a first SRS resource set of the plurality of SRS resource sets; and transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  • CSI channel state information
  • SRSI SRS resource set indicator
  • Embodiment 8 The method of Embodiment 7, wherein selecting the first SRS resource set is based on the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of the plurality of SRS resource sets.
  • SINR signal-to-interference-and-noise-ratio
  • Embodiment 9 The method of any one of Embodiments 7-8, wherein selecting the first SRS resource set is based on an SRS in the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of all the SRS resources in the plurality of SRS resource sets.
  • SINR signal-to-interference-and-noise-ratio
  • Embodiment 10 The method of any one of Embodiments 7-9, wherein each SRS resource set comprises SRS resources, of one type, for multiple UEs, wherein the one type of the SRS resources is selected from a group of types of SRS resources including a first type of SRS resources for aperiodic SRS transmission, a second type of SRS resources for semi-periodic SRS transmission, and a third type of SRS resources for periodic SRS transmission.
  • Embodiment 11 The method of any one of Embodiments 7-10, wherein the SRSI is associated with a CSI-RS resource indicator (CRI) of a CSI-RS resource associated with the first SRS resource set.
  • CRI CSI-RS resource indicator
  • Embodiment 12 The method of Embodiment 11, wherein the CSI report comprises the CRI.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Abstract

Certain aspects of the present disclosure provide techniques for a user equipment (UE) to report a sounding reference signal (SRS) resource set indicator (SRSI) to a base station (BS) in a full-duplex wireless communications system while considering UE-to-UE interference and for the BS to configure the UE to provide the SRSI to the BS. In an exemplary method, a UE receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; selecting a first SRS resource set of the plurality of SRS resource sets; and transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.

Description

REPORT SOUNDING REFERENCE SIGNAL RESOURCE SET INDICATOR FOR FULL DUPLEX BACKGROUND
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for a user equipment (UE) to report a sounding reference signal (SRS) resource set indicator (SRSI) to a base station (BS) in a full-duplex wireless communications system while considering UE-to-UE interference and for the BS to configure the UE to provide the SRSI to the BS.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
In some examples, a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) . In an LTE or LTE-A network, a set of one or more base stations may define an eNodeB (eNB) . In other examples (e.g., in a next generation, a new radio (NR) , or 5G network) , a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc. ) in communication with a number of central units (CUs) (e.g., central nodes (CNs) , access node controllers (ANCs) , etc. ) , where a set of one or more DUs, in communication with a CU, may define  an access node (e.g., which may be referred to as a BS, next generation NodeB (gNB or gNodeB) , TRP, etc. ) . A BS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to a BS or DU) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. New radio (e.g., 5G NR) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
Certain aspects provide a method for wireless communication that may be performed by a base station (BS) . The method generally includes sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receiving  from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
Certain aspects provide a method for wireless communication that may be performed by a user equipment (UE) . The method generally includes receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; selecting a first SRS resource set of the plurality of SRS resource sets; and transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
Certain aspects provide an apparatus for wireless communications. The apparatus generally includes a processor configured to: send, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receive from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets; and a memory coupled with the processor.
Certain aspects provide an apparatus for wireless communications. The apparatus generally includes a processor configured to: receive, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-user equipment interference measurement; select a first SRS resource set of the plurality of SRS resource sets; and transmit to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets; and a memory coupled with the processor.
Certain aspects provide an apparatus for wireless communications. The apparatus generally includes means for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and means for receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
Certain aspects provide an apparatus for wireless communications. The apparatus generally includes means for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-user equipment interference measurement; means for selecting a first SRS resource set of the plurality of SRS resource sets; and means for transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
Certain aspects provide a computer-readable medium for wireless communications. The computer-readable medium includes instructions that, when executed by a processing system, cause the processing system to perform operations generally including sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
Certain aspects provide a computer-readable medium for wireless communications. The computer-readable medium includes instructions that, when executed by a processing system, cause the processing system to perform operations generally including receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-user equipment interference measurement; selecting a first SRS resource set of the plurality of SRS resource sets; and transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram illustrating an example architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
FIG. 3 shows an exemplary system model of a Uu interface interaction in a cell using a full-duplex technique, in accordance with certain aspects of the present disclosure.
FIGs. 4A &4B show an exemplary system model of a full-duplex wireless communications system using an integrated access and backhaul (IAB) node, in accordance with certain aspects of the present disclosure.
FIG. 5 is an exemplary call flow of a full-duplex wireless communications system, in accordance with certain aspects of the present disclosure.
FIG. 6 is a flow diagram illustrating example operations for wireless communication by a base station (BS) , in accordance with certain aspects of the present disclosure.
FIG. 7 is a flow diagram illustrating example operations for wireless communication by a user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 8 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
FIG. 9 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for a user equipment (UE) to report a sounding reference signal (SRS) resource set indicator (SRSI) to a base station (BS) in a full-duplex wireless communications system while considering UE-to-UE interference and for the BS to configure the UE to provide the SRSI to the BS.
Fifth generation (5G) wireless networks are expected to provide ultra-high data rates and support a wide scope of application scenarios. Wireless full-duplex (FD) communications is an emerging technique and is theoretically capable of doubling the link capacity when compared with half-duplex communications. The main idea of wireless full-duplex communications is to enable radio network nodes to transmit and receive simultaneously on the same frequency band in the same time slot. This contrasts with conventional half-duplex operation, where transmission and reception either differ in time or in frequency.
According to aspects of the present disclosure, a full-duplex network node, such as a base station in a cellular network, can communicate simultaneously in uplink (UL) and downlink (DL) with two half-duplex terminals (i.e., user equipments (UEs) ) using the same radio resources.
In aspects of the present disclosure, a relay node in a wireless full-duplex application can communicate simultaneously with an anchor node and a mobile terminal (e.g., transmitting to the anchor node while receiving from the mobile terminal) in a one-hop scenario, or with two other relay nodes in a multi-hop scenario.
According to aspects of the present disclosure, it is expected that by doubling each single-link capacity, full duplexing can significantly increase the system throughput  in diverse applications in wireless communication networks, as compared to previously known techniques, and also reduce the transfer latency for time critical services.
Recent research has demonstrated the feasibility of in-band full-duplex transmission. According to aspects of the present disclosure, it is desirable to develop the capability of canceling strong self-interference from downlink to uplink for use with full-duplex transmissions. Currently known full-duplex radio designs can suppress up to 110 dB of such self-interference by combining the technologies of beamforming, analog cancellation, digital cancellation, and antenna cancellation.
In aspects of the present disclosure, since a UE receiving a downlink (DL) transmission and a UE transmitting an uplink (UL) transmission employ the same time-frequency resource in a full-duplex wireless communication system, if these two UEs are located a short distance from each other, the UL transmission signal may cause serious co-channel interference to the DL signal reception.
Similarly, according to aspects of the present disclosure, a backhaul link and an access link may employ the same time-frequency resource in a full-duplex wireless communication system, and thus if two nodes are located a short distance from each other, communications via the backhaul link and the access link may cause serious co-channel interference with each other.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ”  Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication technologies, such as 3GPP Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single-carrier frequency division multiple access (SC-FDMA) , time division synchronous code division multiple access (TD-SCDMA) , and other networks. The terms “network” and “system” are often used interchangeably.
A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . LTE and LTE-A are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
New Radio (NR) is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . NR access (e.g., 5G NR) may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed. For example, the wireless communication network 100 may be a full-duplex NR system (e.g., a full-duplex 5G network) . For example, as shown in FIG. 1, the UE 120a has a full-duplex CSI reporting module that may be configured for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; for selecting a first SRS resource set of the plurality of SRS resource sets; and for transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets, according to aspects described herein. For example, as shown in FIG. 1, the BS 110a has a full-duplex CSI configuring module that may be configured for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets, according to aspects described herein.
As illustrated in FIG. 1, the wireless communication network 100 may include a number of base stations (BSs) 110 and other network entities. A BS may be a station that communicates with user equipments (UEs) . Each BS 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and BS, next generation NodeB (gNB or gNodeB) , access point (AP) , distributed unit (DU) , carrier, or transmission reception point (TRP) may be used interchangeably. In some examples, a cell may not necessarily be stationary, and the geographic area of the  cell may move according to the location of a mobile BS. In some examples, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple (e.g., three) cells.
Wireless communication network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate  communication between the BS 110a and the UE 120r. A relay station may also be referred to as a relay BS, a relay, etc.
Wireless communication network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless communication network 100. For example, macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
Wireless communication network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
network controller 130 may couple to a set of BSs and provide coordination and control for these BSs. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
The UEs 120 (e.g., 120a, 120b, 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or  evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (e.g., 6 RBs) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively. In LTE, the basic transmission time interval (TTI) or packet duration is the 1 ms subframe. In NR, a subframe is still 1 ms, but the basic TTI is referred to as a slot. A subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, …slots) depending on the subcarrier spacing. The NR RB is 12 consecutive frequency subcarriers. NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. The symbol and slot lengths scale with the subcarrier spacing. The CP length also depends on the subcarrier spacing.
NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. In some examples, MIMO configurations in the DL may support up to 8  transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. In some examples, multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
In some examples, access to the air interface may be scheduled. A scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
In some examples, two or more subordinate entities (e.g., UEs) may communicate with each other using sidelink signals. Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications. Generally, a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes. In some examples, the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink. A finely dashed line with double arrows indicates potentially interfering transmissions between a UE and a BS.
FIG. 2 illustrates example components of BS 110 and UE 120 (e.g., in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure. For example, antennas 252,  processors  266, 258, 264, and/or controller/processor 280 of the UE 120 and/or antennas 234,  processors  220, 230, 238, and/or controller/processor 240 of the BS 110 may be used to perform the various techniques and methods described herein. For example, as shown in FIG. 4, the controller/processor 240 of the BS 110 has a full-duplex CSI configuring module that may be configured for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets, according to aspects described herein. For example, as shown in FIG. 4, the controller/processor 280 of the UE 120 has a full-duplex CSI reporting module that may be configured for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; selecting a first SRS resource set of the plurality of SRS resource sets; and transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets, according to aspects described herein.
At the BS 110, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols,  if applicable, and may provide output symbol streams to the modulators (MODs) 232a-232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
At the UE 120, the antennas 252a-252r may receive the downlink signals from the BS 110 and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at UE 120, a transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the demodulators in transceivers 254a-254r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110. At the BS 110, the uplink signals from the UE 120 may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The controllers/ processors  240 and 280 may direct the operation at the BS 110 and the UE 120, respectively. The controller/processor 240 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques  described herein. The  memories  242 and 282 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Example Reporting of Sounding Reference Signal Resource Set Indicator in Full-Duplex
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for a user equipment (UE) to report a sounding reference signal (SRS) resource set indicator (SRSI) to a base station (BS) in a full-duplex wireless communications system while considering UE-to-UE interference and for the BS to configure the UE to provide the SRSI to the BS.
FIG. 3 shows an exemplary system model 300 of a Uu interface interaction in a cell using a full-duplex technique, according to aspects of the present disclosure. With the full-duplex technique, downlink transmissions and uplink transmissions can coexist in the same radio spectrum (i.e., the same frequency band) simultaneously in a Uu interface of a cell. In the example, in uplink, UE 306 (which may be an example of a UE 120, shown in FIG. 1) transmits a signal 310 to base station 302 (which may be an example of BS 110a, shown in FIG. 1) with transmit power P tx dB. In downlink, UE 304 (which may also be an example of a UE 120) receives a signal 312 from the base station with receive power P rx dB. The UE 304 measures the channel (i.e., the interference-plus-noise power spectrum) from the base station, determines CSI, and sends an aperiodic (i.e., in response to a command from the base station) or a periodic CSI report 320 to the base station. The base station transmits a downlink signal 312 according to a transport format determined by the base station based on the CSI 320 reported to the base station by the UE 304.
In aspects of the present disclosure, if the propagation loss from UE 306 to UE 304 is D dB, then the UE-to-UE interference (i.e., from the UL transmission to the DL transmission) 330 is P tx-D dB. If the UE-to-UE interference power spectrum is larger than the original interference-plus-noise power spectrum at UE 304, then the UE-to-UE interference may impair the reception performance of the UE 304 in receiving the downlink signal 312.
According to aspect of the present disclosure, in full duplex, a UE that generates UE-to-UE interference by sending an UL transmission is referred to as an  aggressor UE (e.g., UE 306) , while a UE that suffers from UE-to-UE interference is referred to as a victim UE (e.g., UE 304) .
FIGs. 4A &4B show an exemplary system model 400 of a full-duplex wireless communications system using an integrated access and backhaul (IAB) node 404, according to aspects of the present disclosure. An IAB node 404 (which may be an example of BS 110a, shown in FIG. 1) can be regarded as a relay node through which data can be transmitted from an IAB donor 402 (which may be an example of a BS 110, shown in FIG. 1) to a UE 406 (which may be an example of UE 120a, shown in FIG. 1) , as in FIG. 4A, or from the UE to the IAB donor, as in FIG. 4B. With the full-duplex technique, the IAB node 404 can receive first data from an IAB donor 402 via a downlink portion of a backhaul link 410 using a set of time-frequency radio resources and transmit the first data to the UE 406 via a downlink portion of an access link 420 using the same set of time-frequency radio resources, as shown in FIG. 4A. Also with the full-duplex technique, the IAB node 404 can receive second data from the UE 406 via an uplink portion of the access link 420 using the set of time-frequency radio resources and transmit the second data to the IAB donor 402 via an uplink portion of the backhaul link 410 while using the same time-frequency radio resources, as shown in FIG. 4B.
Similarly to the operation of the Uu interface shown in FIG. 3, when using an IAB node, the interference 430 from backhaul link 410 to access link 420 (from IAB donor 402 to UE 406 in FIG. 4A) or the interference from access link 420 to backhaul link 410 (from UE 406 to IAB donor 402 in FIG. 4B) may cause a data reception performance deterioration for the UE 406 or the IAB donor 402.
In aspects of the present disclosure, a UE can act as an IAB node. In such aspects, the link between the IAB donor and the IAB node may be referred to as a parent link, while the link between the IAB node and another IAB node may be referred to as a child link. The parent link and the child link may interfere with each other.
In previously known communication techniques (e.g., communications according to LTE or NR standards) , a UE can be configured with a time-frequency resource for interference measurement, referred to as a CSI-IM resource. CSI-IM resources can be periodic or semi-persistent. That is, a UE can be configured with a CSI-IM resource that is periodic and the UE reports CSI measured on the frequency resources included in the CSI-IM resource on a periodic basis, or a UE can be configured with a  CSI-IM resource that is semi-persistent and the UE reports CSI measured on the frequency resources included in the CSI-IM resource on a semi-persistent basis. No data or signal is sent to the UE from the base station via the time-frequency resources included in the CSI-IM resource, so that the UE can take these occasions to measure the interference, and then use the measurement result in CSI generation. For one CSI report, a non-zero power (NZP) CSI reference signal (CSI-RS) resource is associated with a CSI-IM resource.
According to aspects of the present disclosure, assigning CSI-IM resources for a UE to measure interference is not suitable to measure the UE-to-UE interference in full-duplex communications systems, for the following reasons. The CSI-IM resource is designed to measure the overall interference from the environment that is suffered by a UE. But the UE-to-UE interference in full-duplex may be variable, depending on different aggressor UE hypotheses. That is, the UE-to-UE interference in full-duplex may vary, depending on which other UEs are transmitting. Since one CSI-IM resource cannot support the measurement of multiple distinguishable aggressor UEs, measuring CSI with multiple possible aggressor UE hypotheses using CSI-IM resources consumes multiple CSI-IM resources, which may be a significant loss to the network.
In previously known techniques, CSI-IM may only be configured in downlink slots, but signals sent by aggressor UEs are in uplink slots. In one cell, configuring some UEs to use a slot as a downlink slot and configuring other UEs to use the same slot as an uplink slot (i.e., in order to enable a UE to measure interference in a CSI-IM resource while another UE is transmitting) has a high risk of causing severe interference. And this behavior may not be supported by some legacy UEs or low-cost UEs (e.g., machine-type communication (MTC) UEs) .
In aspects of the present disclosure, in a cell activating full-duplex communications, a UE configured to receive a DL transmission in a period (e.g., a slot) would suffer from co-channel interference from a paired UE transmitting an UL transmission in the same period. The interference strength depends on the distance between these two UEs and on the UL transmit power spectrum by the UE transmitting the UL signal. If the UE receiving the DL transmission has more than one receive antenna and performs coherent antenna reception, the interference strength also depends on the spatial direction of the interference signal.
In NR Release 16 (Rel-16) communications standards, a technique called Cross-Link Interference (CLI) handling is described, which provides an approach for a UE in one cell to measure interference caused to the UE by UEs in other cells. In the described technique, a set of sounding reference signal (SRS) resources are configured to both the victim UE and the aggressor UE by the network. Due to the good multiplexing capability of SRS, the victim UE may have little difficulty differentiating SRS from the aggressor UEs. In these SRS resources, the victim UE is configured to measure the strength of SRS signals sent by the aggressor UEs in neighboring cells. Because the two UEs are located in different cells, backhaul data transfer rates and latency restrictions may prevent the victim UE from reporting measurements other than the values of SRS reference signal received power (SRS-RSRP) or CLI received signal strength indicator (CLI-RSSI) based on the measurements to the serving base station of the victim UE. SRS-RSRP and CSLI-RSSI may be generated based on the results of long-term measurements, e.g., in a duration of tens or even hundreds of slots.
To enable the inter-cell SRS measurement described in CLI, information on SRS configuration needs to be transferred via a backhaul link between the base stations serving the victim UE and the aggressor UEs. Due to the restriction of backhaul transfer latency, such information transfer may be limited to enabling CLI in a static or semi-static mode, and thus, the SRS measurement is limited to being configured in a static or semi-static pattern. Therefore, CLI techniques can only be used for long-term interference management, e.g., allocating non-overlapping radio resources to aggressor UE and victim UE, which may be an inefficient use of system capacity when compared with radio resource reuse.
According to current wireless communications standards (e.g., Rel-16) , a BS (e.g., a gNB) may send an SRS configuration message to a UE to configure the UE for SRS transmission. The SRS configuration message may contain the configuration of a plurality of SRS resource sets.
In aspects of the present disclosure, each SRS resource set contains one or more SRS resources that all have a same resource type, which may be aperiodic, semi-persistent or periodic. An aperiodic SRS resource is used for one SRS transmission occasion. A semi-persistent or periodic SRS resource is used for periodic SRS transmissions on multiple occasions. A semi-persistent SRS resource can be temporarily  deactivated or activated for SRS transmission by medium access control control element MAC CE messages from a BS.
According to aspects of the present disclosure, the SRS resources in one SRS resource set have the same resource type. Multiple SRS resource sets can have different resource types.
In aspects of the present disclosure, a BS may indicate to a victim UE to measure inter-UE interference based on SRS reception. That is, a victim UE may be directed by a BS to receive and measure SRS from an aggressor UE and report inter-UE interference based on the measurement of the SRS. The victim UE may then add an SRS resource indicator, which indicates the measured SRS, in a CSI report to indicate the selection of the matched aggressor UE and its beam. By directing a victim UE to report an SRS resource indicator causing interference to the victim UE, the BS can obtain information to use in scheduling DL transmissions to the victim UE and UL transmissions from an aggressor UE in order to reduce the interference. The BS may also determine transport formats (e.g., transmission beams, MIMO schemes, or MCS values) to use in scheduling the DL and UL transmissions. However, using that technique is suboptimal for the cases when the SRS resources of multiple aggressor UEs have different resource types. For example, if a first aggressor UE transmits an SRS via an aperiodic SRS resource type, and a second aggressor UE transmits an SRS via a periodic or semi-persistent SRS resource type, then the victim UE reporting an SRS resource indicator for the interference only reports one of the aggressor UEs, because each SRS resource indicator corresponds to an SRS resource set, which has SRS resources of one type. In such a case, a victim UE only indicating an SRS resource indicator in CSI report of the victim UE is insufficient. And the SRS resources of different aggressor UEs cannot be merged into a single SRS resource set, because each SRS resource set corresponds to only one resource type.
Without further improvement of the CSI reporting methods, a victim UE cannot be matched with multiple aggressor UEs with different SRS resource types in full duplex CSI reporting and full duplex data transmission. This severely impairs the scheduling flexibility and data throughput of full duplex systems. Thus, it is desirable to develop improved CSI reporting methods to enable a victim UE to report multiple aggressor UEs with different SRS resource types.
According to aspects of the present disclosure, a BS may send a CSI report configuration message to a DL UE (i.e. a UE receiving a PDSCH or victim UE) , indicating a number of SRS resource sets for SRS reception and inter-UE interference measurement.
In aspects of the present disclosure, each SRS resource set in the CSI report configuration message may contain a number of SRS resources. Multiple SRS resource sets may have identical or different resource types. Each SRS resource set corresponds to a measurement of the interference from an UL UE (i.e., a UE transmitting a PUSCH or an aggressor UE) . Multiple SRS resource sets may correspond to the same UL UE, e.g., when this UL UE transmits SRS with different resource types.
Each resource type (e.g., aperiodic, semi-periodic, or periodic) may have one or more SRS resource sets, each of which corresponds to different UL UEs.
According to aspects of the present disclosure, the DL UE may receive the SRS at the configured SRS resources based on the corresponding resource type, and determine a selected SRS resource set which contains the SRS resource with the minimum interference strength or the largest receive signal-to-interference-and-noise-ratio (SINR) .
In aspects of the present disclosure, the SRS resource set selected by the DL UE corresponds to the matched UL UE, and the resource selected by the DL UE corresponds to the matched beam of the matched UL UE, for full duplex communication.
According to aspects of the present disclosure, the DL UE may send a CSI report message to the BS, indicating the identifier of the selected SRS resource set, referred to as an SRS resource set indicator (SRSI) .
In aspects of the present disclosure, each SRSI value represents an UL UE. The DL UE may also indicate the identifier of the selected SRS resource in the selected SRS resource set, referred to as an SRS resource indicator (SRI) . Each SRI may represent an UL beam of the UL UE.
According to aspects of the present disclosure, the BS may merge SRS resources with a same resource type from multiple UL UEs into a single SRS resource set. In such aspects, there is at most one SRS resource set for each resource type. By merge SRS resources with a same resource type from multiple UL UEs into a single SRS resource set, the bits used for transmission of SRSIs (e.g., SRSIs transmitted in a CSI  report configuration) may be decreased, while the bits used for transmission of SRIs may be increased. Because the number of SRS resources in each SRS resource set is not always a power of 2, i.e., 2 n, such SRS resource set merging may reduce the overall number of bits used for transmission of SRSI plus SRI.
In aspects of the present disclosure, a BS may indicate an associated CSI-RS resource for one or more SRS resource sets. Then, a UE determines the CSI by treating the CSI-RS at the CSI-RS resource as a desired signal and the SRS at the SRS resource set as interference.
According to aspects of the present disclosure, if a CSI-RS resource is associated with a single SRS resource set, then reporting (e.g., by a UE) a CSI-RS resource indicator (CRI) is equivalent to reporting the SRSI of the associated SRS resource set, so a UE may indicate either CRI or SRSI to identify the aggressor UE in a CSI report.
In aspects of the present disclosure, if a CSI-RS resource is associated with multiple SRS resource sets, then it is desirable for the victim UE to report SRSI in the CSI report, as reporting CRI is not equivalent to reporting the SRSI.
According to aspects of the present disclosure, a victim UE can report multiple aggressor UEs with different SRS resource types in full duplex CSI reporting and full duplex data transmission. Enabling a victim UE to report multiple aggressor UEs with different SRS resource types may greatly improve the scheduling flexibility and data throughput of full duplex systems.
FIG. 5 is an exemplary call flow 500 of a full-duplex wireless communications system, according to aspects of the present disclosure. The call flow begins with a base station 502 (which may be an example of BS 110a, shown in FIG. 1) sending, at 510, an SRS resource configuration, a CSI report configuration, and an indication that the SRS resource configuration is for reception to victim UE 504. At 512, the BS sends the SRS resource configuration and an indication that the SRS resource configuration is for transmission of an aperiodic SRS to a first aggressor UE 506. At 513, the BS sends another SRS resource configuration and an indication that the other SRS resource configuration is for transmission of a periodic SRS to a second aggressor UE 508. The first aggressor UE transmits an aperiodic SRS via the configured SRS resources, and the victim UE receives the aperiodic SRS, at 514. Simultaneously, the second  aggressor UE transmits a periodic SRS via the configured SRS resources, and the victim UE receives the periodic SRS, at 515. At 516, the victim UE measures the UE-to-UE interference, based on the received aperiodic SRS and the received periodic SRS. The victim UE then calculates CSI, based on the UE-to-UE interference, at 518. The victim UE transmits a CSI report containing the CSI and an SRS resource set indicator (SRSI) of the measured SRS resource set (which may include the SRS resources on which the first aggressor UE transmitted the aperiodic SRS at 514 and the SRS resources on which the second aggressor UE transmitted the periodic SRS at 515, or a subset of those SRS resources) to the base station at 520. The BS determines to pair the victim UE and the first aggressor UE, for example, for reception and transmission on an allocation of transmission resources and also determines a transport format for a downlink transmission from the BS to the victim UE at 522. At 524, the BS sends a grant of the transmission resources for an uplink transmission to the first aggressor UE. At 526, the first aggressor UE transmits the uplink transmission via the transmission resources to the BS. Simultaneously, at 528 the BS transmits a downlink transmission to the victim UE via the transmission resources and using the transport format.
FIG. 6 is a flow diagram illustrating example operations 600 for wireless communication, in accordance with certain aspects of the present disclosure. The operations 600 may be performed, for example, by a BS (e.g., such as a BS 110 in the wireless communication network 100, shown in FIG. 1) . Operations 600 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 240 of FIG. 2) . Further, the transmission and reception of signals by the BS in operations 600 may be enabled, for example, by one or more antennas (e.g., antennas 234 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 240) obtaining and/or outputting signals.
The operations 600 may begin, at block 605, with the BS sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement.
Operations 600 may continue, at block 610, by the BS receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
FIG. 7 is a flow diagram illustrating example operations 700 for wireless communication, in accordance with certain aspects of the present disclosure. The operations 700 may be performed, for example, by UE (e.g., such as a UE 120 in the wireless communication network 100, shown in FIG. 1) . The operations X00 may be complimentary operations by the UE to the operations 700 performed by the BS. Operations 700 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 280 of FIG. 2) . Further, the transmission and reception of signals by the UE in operations 700 may be enabled, for example, by one or more antennas (e.g., antennas 252 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 280) obtaining and/or outputting signals.
The operations 700 may begin, at block 705, by the UE receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement.
Operations 700 may continue, at block 710, with the UE selecting a first SRS resource set of the plurality of SRS resource sets.
At block 715, operations 700 continue with the UE transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
FIG. 8 illustrates a communications device 800 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 6. The communications device 800 includes a processing system 802 coupled to a transceiver 808. The transceiver 808 is configured to transmit and receive signals for the communications device 800 via an antenna 810, such as the various signals as described herein. The processing system 802 may be configured to perform processing  functions for the communications device 800, including processing signals received and/or to be transmitted by the communications device 800.
The processing system 802 includes a processor 804 coupled to a computer-readable medium/memory 812 via a bus 806. In certain aspects, the computer-readable medium/memory 812 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 804, cause the processor 804 to perform the operations illustrated in FIG. 6, or other operations for performing the various techniques discussed herein for configuring CSI reporting in a full-duplex communication system. In certain aspects, computer-readable medium/memory 812 stores code 814 for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and code 816 for receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets. In certain aspects, the processor 804 has circuitry configured to implement the code stored in the computer-readable medium/memory 812. The processor 804 includes circuitry 820 for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and circuitry 824 for receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
FIG. 9 illustrates a communications device 900 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 7. The communications device 900 includes a processing system 902 coupled to a transceiver 908. The transceiver 908 is configured to transmit and receive signals for the communications device 900 via an antenna 910, such as the various signals as described herein. The processing system 902 may be configured to perform processing functions for the communications device 900, including processing signals received and/or to be transmitted by the communications device 900.
The processing system 902 includes a processor 904 coupled to a computer-readable medium/memory 912 via a bus 906. In certain aspects, the computer-readable  medium/memory 912 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 904, cause the processor 904 to perform the operations illustrated in FIG. 7, or other operations for performing the various techniques discussed herein for reporting CSI for a full-duplex communications system. In certain aspects, computer-readable medium/memory 912 stores code 914 for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; code 916 for selecting a first SRS resource set of the plurality of SRS resource sets; and code 918 for transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets. In certain aspects, the processor 904 has circuitry configured to implement the code stored in the computer-readable medium/memory 912. The processor 904 includes circuitry 920 for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; circuitry 924 for selecting a first SRS resource set of the plurality of SRS resource sets; and circuitry 926 for transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
Example Embodiments
Embodiment 1: A method for wireless communications by a base station, comprising sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
Embodiment 2: The method of Embodiment 1, wherein the first SRS resource set is selected by the UE based on the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of the plurality of SRS resource sets.
Embodiment 3: The method of any one of Embodiments 1 and 2, wherein the first SRS resource set is selected by the UE based on an SRS in the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of all the SRS resources in the plurality of SRS resource sets.
Embodiment 4: The method of any one of Embodiments 1-3, further including merging SRS resources, of one type, for multiple UEs into each of the plurality of SRS resource sets, wherein the one type of the SRS resources is selected from a group of types of SRS resources including a first type of SRS resources for aperiodic SRS transmission, a second type of SRS resources for semi-periodic SRS transmission, and a third type of SRS resources for periodic SRS transmission.
Embodiment 5: The method of any one of Embodiments 1-4, wherein the SRSI is associated with a CSI-RS resource indicator (CRI) of a CSI-RS resource associated with the first SRS resource set.
Embodiment 6: The method of Embodiment 5, wherein the CSI report comprises the CRI.
Embodiment 7: A method for wireless communications by a first user equipment (UE) , comprising: receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; selecting a first SRS resource set of the plurality of SRS resource sets; and transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
Embodiment 8: The method of Embodiment 7, wherein selecting the first SRS resource set is based on the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of the plurality of SRS resource sets.
Embodiment 9: The method of any one of Embodiments 7-8, wherein selecting the first SRS resource set is based on an SRS in the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of all the SRS resources in the plurality of SRS resource sets.
Embodiment 10: The method of any one of Embodiments 7-9, wherein each SRS resource set comprises SRS resources, of one type, for multiple UEs, wherein the one type of the SRS resources is selected from a group of types of SRS resources including a first type of SRS resources for aperiodic SRS transmission, a second type of SRS resources for semi-periodic SRS transmission, and a third type of SRS resources for periodic SRS transmission.
Embodiment 11: The method of any one of Embodiments 7-10, wherein the SRSI is associated with a CSI-RS resource indicator (CRI) of a CSI-RS resource associated with the first SRS resource set.
Embodiment 12: The method of Embodiment 11, wherein the CSI report comprises the CRI.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one  and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a  processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable  Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray
Figure PCTCN2020086706-appb-000001
 disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program  product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For example, instructions for performing the operations described herein and illustrated in FIGs. 6-7.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (18)

  1. A method for wireless communications by a base station (BS) , comprising:
    sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and
    receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  2. The method of claim 1, wherein the first SRS resource set is selected by the UE based on the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of the plurality of SRS resource sets.
  3. The method of claim 1, wherein the first SRS resource set is selected by the UE based on an SRS in the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of all the SRS resources in the plurality of SRS resource sets.
  4. The method of claim 1, further comprising:
    merging SRS resources, of one type, for multiple UEs into each of the plurality of SRS resource sets, wherein the one type of the SRS resources is selected from a group of types of SRS resources including a first type of SRS resources for aperiodic SRS transmission, a second type of SRS resources for semi-periodic SRS transmission, and a third type of SRS resources for periodic SRS transmission, and wherein each of the plurality of SRS resource sets has a respective resource type.
  5. The method of claim 1, wherein the SRSI is associated with a CSI-RS resource indicator (CRI) of a CSI-RS resource associated with the first SRS resource set.
  6. The method of claim 5, wherein the CSI report comprises the CRI.
  7. A method for wireless communications by a first user equipment (UE) , comprising:
    receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement;
    selecting a first SRS resource set of the plurality of SRS resource sets; and
    transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  8. The method of claim 7, wherein selecting the first SRS resource set is based on the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of the plurality of SRS resource sets.
  9. The method of claim 7, wherein selecting the first SRS resource set is based on an SRS in the first SRS resource set having a lowest interference strength or largest signal-to-interference-and-noise-ratio (SINR) of all the SRS resources in the plurality of SRS resource sets.
  10. The method of claim 7, wherein each SRS resource set comprises SRS resources, of one type, for multiple UEs, wherein the one type of the SRS resources is selected from a group of types of SRS resources including a first type of SRS resources for aperiodic SRS transmission, a second type of SRS resources for semi-periodic SRS transmission, and a third type of SRS resources for periodic SRS transmission, and wherein each of the plurality of SRS resource sets has a respective resource type.
  11. The method of claim 7, wherein the SRSI is associated with a CSI-RS resource indicator (CRI) of a CSI-RS resource associated with the first SRS resource set.
  12. The method of claim 11, wherein the CSI report comprises the CRI.
  13. An apparatus for wireless communications, comprising:
    a processor configured to:
    send, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a  plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and
    receive from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets; and
    a memory coupled with the processor.
  14. An apparatus for wireless communications, comprising:
    a processor configured to:
    receive, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-user equipment interference measurement;
    select a first SRS resource set of the plurality of SRS resource sets; and
    transmit to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets; and
    a memory coupled with the processor.
  15. An apparatus for wireless communications, comprising:
    means for sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and
    means for receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  16. An apparatus for wireless communications, comprising:
    means for receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-user equipment interference measurement;
    means for selecting a first SRS resource set of the plurality of SRS resource sets; and
    means for transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  17. A computer-readable medium for wireless communications including instructions that, when executed by a processing system, cause the processing system to perform operations comprising:
    sending, to a first user equipment (UE) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-UE interference measurement; and
    receiving from the first UE a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
  18. A computer-readable medium for wireless communications including instructions that, when executed by a processing system, cause the processing system to perform operations comprising:
    receiving, from a base station (BS) in a full-duplex communications system, a channel state information (CSI) report configuration indicating a plurality of sounding reference signal (SRS) resource sets for SRS reception and inter-user equipment interference measurement;
    selecting a first SRS resource set of the plurality of SRS resource sets; and
    transmitting to the BS a CSI report including an SRS resource set indicator (SRSI) identifying a first SRS resource set of the plurality of SRS resource sets.
PCT/CN2020/086706 2020-04-24 2020-04-24 Report sounding reference signal resource set indicator for full duplex WO2021212472A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086706 WO2021212472A1 (en) 2020-04-24 2020-04-24 Report sounding reference signal resource set indicator for full duplex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086706 WO2021212472A1 (en) 2020-04-24 2020-04-24 Report sounding reference signal resource set indicator for full duplex

Publications (1)

Publication Number Publication Date
WO2021212472A1 true WO2021212472A1 (en) 2021-10-28

Family

ID=78270852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086706 WO2021212472A1 (en) 2020-04-24 2020-04-24 Report sounding reference signal resource set indicator for full duplex

Country Status (1)

Country Link
WO (1) WO2021212472A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061322A1 (en) * 2022-09-21 2024-03-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and relevant apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174641A2 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data in wireless communication system
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
US20190199497A1 (en) * 2017-05-01 2019-06-27 Lg Electronics Inc. Method of sounding a terminal in a wireless communication system and apparatus therefor
US20190260448A1 (en) * 2018-02-16 2019-08-22 Samsung Electronics Co., Ltd. Method and apparatus for resource-based csi acquisition in advanced wireless communication systems
WO2020032571A1 (en) * 2018-08-07 2020-02-13 엘지전자 주식회사 Method for transmitting and receiving sounding reference signal and channel state information in consideration of channel reciprocity, and apparatus therefor
WO2020060337A1 (en) * 2018-09-21 2020-03-26 엘지전자 주식회사 Method for transmitting/receiving channel state information on basis of codebook having high resolution in wireless communication system, and apparatus therefor
WO2020060345A1 (en) * 2018-09-21 2020-03-26 엘지전자 주식회사 Method for transmitting and receiving channel state information on basis of high-resolution codebook in wireless communication system and apparatus therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174641A2 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data in wireless communication system
US20190199497A1 (en) * 2017-05-01 2019-06-27 Lg Electronics Inc. Method of sounding a terminal in a wireless communication system and apparatus therefor
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
US20190260448A1 (en) * 2018-02-16 2019-08-22 Samsung Electronics Co., Ltd. Method and apparatus for resource-based csi acquisition in advanced wireless communication systems
WO2020032571A1 (en) * 2018-08-07 2020-02-13 엘지전자 주식회사 Method for transmitting and receiving sounding reference signal and channel state information in consideration of channel reciprocity, and apparatus therefor
WO2020060337A1 (en) * 2018-09-21 2020-03-26 엘지전자 주식회사 Method for transmitting/receiving channel state information on basis of codebook having high resolution in wireless communication system, and apparatus therefor
WO2020060345A1 (en) * 2018-09-21 2020-03-26 엘지전자 주식회사 Method for transmitting and receiving channel state information on basis of high-resolution codebook in wireless communication system and apparatus therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on CSI measurement framework", 3GPP DRAFT; R1-1611822, vol. RAN WG1, 5 November 2016 (2016-11-05), Reno, USA, pages 1 - 6, XP051190171 *
NOKIA; ALCATEL-LUCENT SHANGHAI BELL: "UL SRS design considerations in NR", 3GPP DRAFT; R1-1701106, vol. RAN WG1, 20 January 2017 (2017-01-20), Spokane, USA, pages 1 - 6, XP051202401 *
ZTE; ZTE MICROELECTRONICS: "Discussion on Measurement and RS Design for CLI Mitigation", 3GPP DRAFT; R1-1700271 - DISCUSSION ON MEASUREMENT AND RS DESIGN FOR CLI, vol. RAN WG1, 16 January 2017 (2017-01-16), Spokane Washington, pages 1 - 8, XP051207809 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061322A1 (en) * 2022-09-21 2024-03-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and relevant apparatus

Similar Documents

Publication Publication Date Title
WO2021077432A1 (en) Uplink transmission (ul tx) preparation time
WO2020238662A1 (en) Channel state information feedback in full-duplex
US11863257B2 (en) User equipment assisted inter-sector interference avoidance
EP3834331B1 (en) Quasi-colocation indication for non-zero power channel state information reference signal port groups
WO2020237650A1 (en) Uplink (ul) beam management enhancement for full-duplex systems
CN114451048A (en) Control channel monitoring based on subcarrier spacing
WO2020239049A1 (en) Downlink and uplink beam management enhancements for full duplex
US11051310B2 (en) UE indication of supported number of trigger states
WO2020237625A1 (en) Beam management enhancements for multi-trp scenarios
WO2021146826A1 (en) Signaling aspects of aperiodic csi reporting triggered by a downlink grant
WO2020252612A1 (en) Low-complexity physical downlink control channels and related signaling
WO2021212472A1 (en) Report sounding reference signal resource set indicator for full duplex
US11576137B2 (en) Synchronization signal block (SSB) configuration for power management
US11510085B2 (en) Channel state information configuration and reporting for ultra reliable low latency communication
US11394433B2 (en) Full dimension multiple-input multiple-output baseband capability indication
WO2020221338A1 (en) Control channel demodulation reference signal bundling
WO2021253142A1 (en) Group sounding reference signal (srs) configuration in full-duplex
CN114557081A (en) Hybrid automatic repeat request (HARQ) codebook enhancement and Physical Uplink Control Channel (PUCCH) resource determination with sidelink feedback forwarding
US20220376757A1 (en) Event-triggered partial update for reference signal based report
US20210235299A1 (en) Indication of single or dual receive beams in group-based report
WO2020237661A1 (en) Downlink beam management enhancement for full duplex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932030

Country of ref document: EP

Kind code of ref document: A1