WO2021036934A1 - 发送和接收指示的方法和装置 - Google Patents

发送和接收指示的方法和装置 Download PDF

Info

Publication number
WO2021036934A1
WO2021036934A1 PCT/CN2020/110538 CN2020110538W WO2021036934A1 WO 2021036934 A1 WO2021036934 A1 WO 2021036934A1 CN 2020110538 W CN2020110538 W CN 2020110538W WO 2021036934 A1 WO2021036934 A1 WO 2021036934A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
port
indication
transmission
subcarriers
Prior art date
Application number
PCT/CN2020/110538
Other languages
English (en)
French (fr)
Inventor
范利
种稚萌
毕晓艳
葛士斌
金黄平
尹海帆
刘永
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021036934A1 publication Critical patent/WO2021036934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of wireless communication, and more specifically, to methods and devices for sending and receiving instructions.
  • Massive MIMO massive multiple-input multiple output
  • network equipment can reduce the interference between multiple users and the interference between multiple signal streams of the same user through precoding technology. Thereby improving signal quality, realizing space division multiplexing, and improving spectrum utilization. Therefore, the acquisition accuracy of channel state information (CSI) such as precoding quality indicator (PMI) and channel quality indicator (CQI) is particularly important.
  • CSI channel state information
  • PMI precoding quality indicator
  • CQI channel quality indicator
  • the uplink channel and the downlink channel do not meet the direct reciprocity relationship, and the uplink channel information cannot be used to make accurate Downlink precoding.
  • the uplink and downlink channels in the FDD system have partial reciprocity, including the reciprocity of multipath angle and delay.
  • some a priori information can be obtained from the uplink channel, including the angle and delay information of the uplink channel, and then the network device loads the obtained angle or delay on the downlink reference signal, and informs the terminal device to measure and feed back to the network
  • the network device After the supplementary information that the device needs to obtain, the network device finally reconstructs the downlink channel or precoding according to the information measured through the uplink reference signal and the supplementary information fed back by the terminal device.
  • the present application provides a method and device for sending and receiving instructions, so that the terminal can be more targeted in CSI calculation.
  • a method for receiving instructions is provided.
  • the method may be executed by the terminal, or may also be executed by a chip configured in the terminal, which is not limited in this application.
  • the method includes: the terminal receives indication information from the network device, the indication information is used to indicate one or more first transmission ports of the downlink reference signal, and the first transmission port is an occupied downlink reference signal transmission port There are transmission ports of subcarriers meeting predetermined conditions in the subcarriers, and the indication information is also used to indicate one or more subcarriers meeting the predetermined conditions corresponding to each of the first transmission ports; the terminal according to the instruction Information, determine the one or more first transmission ports, and one or more subcarriers that meet a predetermined condition corresponding to each of the first transmission ports.
  • the terminal can learn which transmission port is a transmission port that meets the predetermined condition among the occupied subcarriers, and which subcarrier among the subcarriers occupied by the transmission port meets the predetermined condition.
  • the terminal can determine the one or more first transmission ports and one or more subcarriers that meet predetermined conditions corresponding to each of the first transmission ports according to the instruction information, so that the terminal performs the CSI calculation At the same time, it can be considered and processed in a targeted manner, which can further improve the accuracy of the CSI feedback information.
  • this application provides a method for sending instructions.
  • This method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: generating indication information, the indication information is used to indicate one or more first transmission ports of the downlink reference signal, and the first transmission port is a subcarrier that is occupied in the downlink reference signal transmission port.
  • the instruction information is further used to indicate one or more subcarriers that meet the predetermined condition corresponding to each of the first transmitting ports; and send the instruction information to the terminal. It can be understood that the method can indicate which transmission port of the terminal is a transmission port of a subcarrier that meets the predetermined condition among the occupied subcarriers, and which subcarrier of the subcarriers occupied by the transmission port meets the predetermined condition.
  • the terminal can take these into consideration when calculating the CSI. Ports and their corresponding subcarriers that meet predetermined conditions can improve the accuracy of CSI feedback information.
  • the method further includes: the terminal performs subcarrier accumulation on each of the first transmission ports according to the instruction information and according to a preset rule.
  • the terminal When the terminal performs CSI calculation and accumulates the subcarriers of each transmission port, it can perform targeted processing according to the indication information according to a preset rule.
  • the preset rule includes: when subcarrier accumulation is performed on each of the first transmission ports, ignoring the satisfying predetermined conditions corresponding to each of the first transmission ports Sub-carriers.
  • the signal-to-noise ratio is improved, and the subcarriers are performed on these ports.
  • the carrier is accumulated, the sub-carriers that meet the predetermined conditions are not considered.
  • the predetermined condition includes:
  • the transmit power of the sub-carrier is lower than the preset threshold
  • the transmission power of the sub-carrier is zero.
  • the indication information includes first indication information and second indication information, and the first indication information is used to indicate the one or more first indication information.
  • a transmission port where the second indication information is used to indicate one or more subcarriers that meet a predetermined condition corresponding to each of the first transmission ports.
  • the first indication information is carried in a bitmap bitmap; the second indication information is carried in L bitmaps, and L is equal to the first bitmap. The number of the first sending port indicated by an indication information.
  • the first indication information is carried in a bitmap; the second indication information is one or more indication values; or, the The first indication information is an indication value, and the second indication information is carried in one or more bitmaps.
  • the indication information is an indication value.
  • the indicator value corresponds to The number of a case in this case; N is a positive integer greater than or equal to 1, which is the total number of downlink reference signal transmission ports scheduled by the network device for the terminal, and n is less than or equal to N, which is the maximum number that can be indicated.
  • a method for receiving instructions is provided.
  • the method may be executed by the terminal, or may also be executed by a chip configured in the terminal, which is not limited in this application.
  • the method includes: the terminal receives indication information from a network device, the indication information is used to indicate whether there are one or more first transmission ports of a downlink reference signal, and the first transmission port is a downlink reference signal transmission port There are transmission ports of subcarriers that meet a predetermined condition among the occupied subcarriers; the terminal determines whether the one or more first transmission ports exist according to the indication information. It can be understood that the method can indicate which transmission port of the terminal is a transmission port of a subcarrier that satisfies a predetermined condition among the occupied subcarriers, and which transmission port is not a transmission port of a subcarrier that satisfies the predetermined condition among the occupied subcarriers.
  • the terminal can determine whether there are one or more of the first transmission ports according to the indication information, so that the terminal can specifically consider and process the CSI calculation, which can further improve the accuracy of the CSI feedback information. .
  • this application provides a method for sending instructions.
  • This method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: generating indication information, the indication information being used to indicate whether there are one or more first transmission ports of the downlink reference signal, and the first transmission port is a subcarrier occupied in the downlink reference signal transmission port There are transmission ports of sub-carriers that meet the predetermined condition in the data; and the instruction information is sent to the terminal. It can be understood that the method can indicate which transmission port of the terminal is a transmission port of a subcarrier that satisfies a predetermined condition among the occupied subcarriers, and which transmission port is not a transmission port of a subcarrier that satisfies the predetermined condition among the occupied subcarriers.
  • the terminal can specifically consider and process the CSI when calculating the CSI, thereby improving the accuracy of the CSI feedback information.
  • the method further includes: if the first transmission port exists, the terminal performs a check on each of the first transmission port according to a preset rule according to the instruction information. Perform subcarrier accumulation.
  • the terminal When the terminal performs CSI calculation and accumulates the subcarriers of each transmission port, it can perform targeted processing according to the indication information according to a preset rule.
  • the preset rule includes: when performing subcarrier accumulation on each of the first transmitting ports, ignoring the satisfying predetermined conditions corresponding to each of the first transmitting ports Sub-carriers.
  • the signal-to-noise ratio is improved, and the subcarriers are performed on these ports.
  • the carrier is accumulated, the sub-carriers that meet the predetermined conditions are not considered.
  • the predetermined condition includes:
  • the transmit power of the sub-carrier is lower than the preset threshold
  • the transmission power of the sub-carrier is zero.
  • the indication information is carried in a bitmap.
  • the first indication information is an indication value; the indication value corresponds to the information associated with the M sending ports The number of one of the cases; M is a positive integer greater than or equal to 1, which is the number of all transmission ports scheduled by the network device for the terminal; N 1 is less than or equal to M, which is the first transmission port that can be indicated at most The number of.
  • the indication information is further used to indicate whether there are subcarriers that meet a predetermined condition.
  • the indication information is further used to indicate whether each of the first transmission ports has one or more corresponding subcarriers that meet a predetermined condition.
  • the indication information is also used to indicate whether there is a subcarrier that meets a predetermined condition
  • the indication information is an indication value
  • the indication value corresponds to The number of a case in this case; N is a positive integer greater than or equal to 1, which is the total number of downlink reference signal transmission ports scheduled by the network device for the terminal, and n is less than or equal to N, which is the maximum number that can be indicated.
  • K is a positive integer greater than or equal to 1, which is the total number of subcarriers occupied by each first transmitting port, and k is less than or equal to K, which is the maximum that can be indicated for each first transmitting port to meet the predetermined The number of conditional subcarriers.
  • the indication information is also used to indicate whether each of the first transmission ports has one or more corresponding ones Subcarriers that meet a predetermined condition; or the indication information is further used to indicate one or more subcarriers that meet the predetermined condition corresponding to each of the first transmission ports.
  • the indication information includes first indication information and second indication information, and the first indication information is used to indicate whether the one or more The first transmission port, where the second indication information is used to indicate whether each of the first transmission ports has one or more corresponding subcarriers that meet a predetermined condition.
  • the first indication information is carried in a bitmap bitmap; the second indication information is carried in M bitmaps, and M is equal to carrying the The number of bits in the bitmap of the first indication information.
  • the first indication information is carried in a bitmap; the second indication information is one or more indication values; or, the The first indication information is an indication value, and the second indication information is carried in one or more bitmaps. It is understandable that when the second indication information is one or more indication values, the number of indication values is equal to the number of bits in the bitmap carrying the first indication information; the second indication information is carried in one or more bitmaps In bitmap, the number of bitmaps is equal to the total number of downlink reference signal transmission ports;
  • the indication information includes first indication information and second indication information, and the first indication information is used to indicate whether the one or more The first transmission port, where the second indication information is used to indicate one or more subcarriers that meet a predetermined condition corresponding to each of the first transmission ports.
  • the first indication information is carried in a bitmap bitmap; the second indication information is carried in L bitmaps, and L is equal to the first The number of the first sending port indicated by an indication information.
  • the first indication information is carried in a bitmap; the second indication information is one or more indication values; or, the The first indication information is an indication value, and the second indication information is carried in one or more bitmaps. It is understandable that when the second indication information is one or more indication values, the number of indication values is equal to the total number of the first transmission ports; when the second indication information is carried in one or more bitmaps, the bitmap The number of is equal to the total number of the first sending ports;
  • a communication device which includes various modules or units, such as a processing unit and/or a communication unit, for executing the method in any one of the possible implementation manners of the first aspect or the third aspect.
  • the communication unit is configured to receive instruction information from a network device, the instruction information is used to indicate one or more first transmission ports of a downlink reference signal, and the first transmission port is a downlink Among the subcarriers occupied by the reference signal transmission port, there are transmission ports of subcarriers meeting predetermined conditions, and the indication information is also used to indicate one or more subcarriers meeting the predetermined conditions corresponding to each of the first transmission ports;
  • the processing unit is configured to determine the one or more first transmission ports and one or more subcarriers that meet a predetermined condition corresponding to each of the first transmission ports according to the instruction information.
  • the communication unit is configured to receive indication information from a network device, where the indication information is used to indicate whether there are one or more first transmission ports of a downlink reference signal, and the first transmission port is a downlink Among the sub-carriers occupied by the reference signal transmission port, there are transmission ports of sub-carriers meeting a predetermined condition; the processing unit is configured to determine whether the one or more first transmission ports exist according to the indication information.
  • the communication device is a terminal device.
  • the communication unit may be a transceiver or an input/output interface; and the processing unit may be a processor.
  • the communication device is a chip or a chip system configured in a terminal device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system;
  • the processing unit may be a processor, a processing circuit, a logic circuit, or the like.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the method in any one of the foregoing first aspect or the third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system configured in a terminal device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device which includes various modules or units, such as a processing unit and/or a communication unit, for executing the method in any one of the second aspect or the fourth aspect.
  • the processing unit is configured to generate indication information, the indication information is used to indicate one or more first transmission ports of a downlink reference signal, and the first transmission port is a downlink reference signal transmission Among the subcarriers occupied in the port, there are transmission ports of subcarriers meeting predetermined conditions, and the indication information is also used to indicate one or more subcarriers meeting the predetermined conditions corresponding to each of the first transmission ports; the communication unit , Used to send the instruction information to the terminal.
  • the processing unit is configured to generate indication information, where the indication information is used to indicate one or more first transmission ports of a downlink reference signal, and the first transmission port is one of the downlink reference signal transmission ports There are transmission ports of subcarriers meeting predetermined conditions among the occupied subcarriers; the communication unit is configured to send the indication information to the terminal.
  • the communication device is a network device.
  • the communication unit may be a transceiver or an input/output interface; and the processing unit may be a processor.
  • the communication device is a chip or a chip system configured in a network device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system;
  • the processing unit may be a processor, a processing circuit, a logic circuit, or the like.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the method in any one of the foregoing second aspect or the fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system configured in a network device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processing device including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processing device executes the first aspect, the second aspect, the third aspect, or the fourth aspect, as well as the first aspect, The method in any one of the possible implementation manners of the second aspect, the third aspect, or the fourth aspect.
  • the above-mentioned processing device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processing device and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter to execute the first, second, third, or fourth aspects, as well as the first and second aspects.
  • the method in any one of the possible implementation manners of the second aspect, the third aspect, or the fourth aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving instruction information may be a process of receiving input instruction information by the processor.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the above tenth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, When implemented, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is run, causes a computer to execute the first aspect or The second aspect, and the method in any one of the possible implementation manners of the first aspect or the second aspect.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned first aspect or The second aspect, and the method in any one of the possible implementation manners of the first aspect or the second aspect.
  • a computer program also called code, or instruction
  • a communication system including the aforementioned network equipment and terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system applicable to the device for sending and receiving instructions in an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a device for sending and receiving instructions provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram illustrating the first indication information and the second indication information provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram illustrating yet another type of first indication information and second indication information provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart of another device for sending and receiving instructions provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as: LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), and worldwide interoperability for microwave access, WiMAX) communication system, fifth generation (5G) system or new radio (NR), etc.
  • the 5G mobile communication system described in this application includes a non-standalone (NSA) 5G mobile communication system or a standalone (SA) 5G mobile communication system.
  • SA standalone
  • the technical solution provided in this application can also be applied to future communication systems, such as the sixth-generation mobile communication system.
  • the communication system can also be a Public Land Mobile Network (PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, and a device-to-device (D2D) communication system.
  • PLMN Public Land Mobile Network
  • D2D device-to-device
  • M2M machine-to-machine
  • D2D device-to-device
  • IoT Internet of Things
  • the network device in the communication system can be any device with wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved Node B (eNB), node B (Node B, NB), base station controller (Base Station Controller, BSC), base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit ( BaseBand Unit, BBU), the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or sending and receiving point in a wireless fidelity (Wireless Fidelity, WIFI) system (TRP), etc.
  • 5G such as NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panel of the base station in the 5G system, or, It may also be a network node that constitutes a gNB or a transmission
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link.
  • RLC radio link control
  • media access control media access control
  • MAC physical (physical, PHY) layer functions. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, or the CU can be divided into network equipment in the core network CN, which is not limited here.
  • the terminal equipment in the communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user Terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiments of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, and so on.
  • the embodiments of this application do not limit the application scenarios.
  • TDD time division duplexing
  • the uplink and downlink channels transmit signals on the same frequency domain resources but different time domain resources.
  • a relatively short time for example, the coherence time of channel propagation
  • the network equipment can measure the uplink channel based on the uplink reference signal, such as a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the downlink channel can be estimated according to the uplink channel, so that the precoding matrix for downlink transmission can be determined.
  • the uplink and downlink channels do not have complete reciprocity, and the uplink channel is used to determine the frequency for downlink transmission.
  • the precoding matrix may not be able to adapt to the downlink channel.
  • the uplink and downlink channels in the FDD mode still have partial reciprocity, for example, the reciprocity of angle and the reciprocity of delay. Therefore, angle and delay can also be called reciprocity parameters.
  • the signal Since the signal is transmitted through the wireless channel, it can reach the receiving antenna through multiple paths from the transmitting antenna. Multipath delay spreading leads to frequency selective fading, which is the change of frequency domain channel.
  • the time delay is the transmission time of the wireless signal on different transmission paths, which is determined by the distance and speed, and has nothing to do with the frequency domain of the wireless signal. Therefore, the uplink and downlink channels in FDD mode with delay can be considered the same, or in other words, reciprocal.
  • the angle may refer to the angle of arrival (AOA) at which the signal reaches the receiving antenna via the wireless channel, or may refer to the angle of departure (AOD) at which the signal is transmitted through the transmitting antenna.
  • AOA angle of arrival
  • AOD angle of departure
  • the angle may refer to the angle of arrival at which the uplink signal reaches the network device, and may also refer to the angle of departure at which the network device transmits the downlink signal. Due to the reciprocity of the transmission paths of the uplink and downlink channels on different frequencies, the arrival angle of the uplink reference signal and the departure angle of the downlink reference signal can be considered to be reciprocal.
  • each angle can be characterized by an angle vector.
  • Each delay can be characterized by a delay vector. Therefore, in the embodiment of the present application, an angle vector may represent an angle, and a delay vector may represent a time delay.
  • Reference signal reference signal
  • the reference signal may also be referred to as a pilot (pilot), reference sequence, and so on.
  • the reference signal may be a reference signal used for channel measurement.
  • the reference signal may be a channel state information reference signal (CSI-RS), a sounding reference signal (sounding reference signal, SRS), etc.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • the reference signal in the embodiment of the present application may be referred to as a downlink reference signal, which is a reference signal obtained by a network device after precoding the reference signal based on a channel reciprocity parameter.
  • the precoding may specifically include beamforming and/or phase rotation. Wherein, beamforming may be implemented by precoding the reference signal based on one or more angle vectors, for example.
  • the phase rotation can be achieved, for example, by precoding the reference signal with one or more delay vectors.
  • Precoding the downlink reference signal based on one or more angle vectors can also be referred to as loading one or more angle vectors on the downlink reference signal.
  • Precoding the downlink reference signal based on one or more delay vectors may also be referred to as loading one or more delay vectors on the downlink reference signal.
  • FDD downlink channel reconstruction also called CSI acquisition based on FDD partial reciprocity
  • the CSI-based downlink channel reconstruction method of the FDD system includes the following steps:
  • Step 1 The network device receives the SRS sent by the terminal device, and uses the uplink SRS to estimate the information (for example, direction angle, time delay, etc.) that has reciprocity between the uplink and the downlink;
  • the information for example, direction angle, time delay, etc.
  • Step 2 The network device sends a downlink reference signal to the terminal device. Specifically, the network device loads the obtained uplink and downlink reciprocity information on the downlink reference signal, and informs the terminal device to measure and feed back the supplementary information that the network device needs to obtain;
  • Step 3 The terminal equipment uses the downlink reference signal to re-estimate and feed back supplementary information (for example, it may be the full-band complex amplitude corresponding to each port);
  • Step 4 The network equipment uses the information obtained in the steps 1 and 3 to reconstruct the downlink channel.
  • Transmission port In this application, it may be referred to as an antenna port, a downlink reference signal transmission port, and a reference signal transmission port, and may also be referred to as a port or a Tx port for short. Used for signal or data transmission, the transmitting antenna recognized by the receiving end device, or the transmitting antenna that can be distinguished in space. Port is a logical meaning. For each virtual antenna, one antenna port can be configured, each virtual antenna can be a weighted combination of multiple physical antennas, and each antenna port can correspond to a reference signal port. The antenna port is used to carry at least one of a specific physical channel and a physical signal.
  • the channels corresponding to the paths they experience in the space transmission can be regarded as the same or related (such as large-scale channel characteristics, such as channel Matrix H, same). That is to say, for the signals sent on the same antenna port, the receiving end can consider their channels to be the same or related during demodulation. That is to say, the antenna port defines the channel on a certain symbol, and the antenna ports of two symbols mean that the channel on one symbol can be inferred from the channel on the other symbol.
  • a “special transmission port” (which may also be the first transmission port) is used to indicate that there are transmission ports that satisfy a predetermined condition among the subcarriers occupied in the transmission port.
  • Channel state information may include at least one of the following information: channel quality indicator (CQI), precoding matrix indicator (PMI), CSI-RS resource indicator (CSI-RS resource indicator), synchronization signal block (SSB) resource indicator (SS/PBCH block resource indicator, SSBRI), layer indicator (layer indicator, LI), rank indicator (rank indicator, RI), reference signal received power (reference signal received power, RSRP).
  • RSRP may be layer 1 RSRP (L1-RSRP).
  • the channel state information may also include synchronization measurement results or indication information of synchronization measurement results.
  • Subcarriers used to carry signals and occupy a section of bandwidth in the frequency domain, which can be embodied as resource elements (RE).
  • RE resource elements
  • special subcarrier is used to indicate subcarriers that meet predetermined conditions.
  • used to indicate can include both used for direct indication and used for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the information indicated by the instruction information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated or the information to be indicated. Indicates the index of the information, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the pre-arranged order (for example, stipulated by the agreement) of various information, thereby reducing the indication overhead to a certain extent.
  • the information to be instructed can be sent together as a whole, or can be divided into multiple sub-information to be sent separately, and the sending period and/or sending timing of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be pre-defined, for example, pre-defined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example, but not limited to, one or a combination of at least two of radio resource control signaling, media access control (media access control, MAC) layer signaling, and physical layer signaling.
  • radio resource control signaling such as packet radio resource control (RRC) signaling
  • MAC layer signaling for example, includes MAC control element (CE);
  • physical layer signaling for example, includes downlink control information (downlink control). information, DCI).
  • the first, second, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application.
  • the first and the second may be used as a type distinction in this embodiment of the present application, rather than as a target content distinction.
  • the "saving" mentioned in the embodiments of the present application may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, WLAN protocol, and related protocols in other communication systems, which are not limited in this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B, and c.
  • a, b, and c can be single or multiple.
  • the communication system may include at least one network device 110 and at least one terminal 120.
  • the network device 110 and the terminal 120 may communicate with each other through multi-antenna technology.
  • the network equipment needs to estimate the information (for example, direction angle, time delay, etc.) that has reciprocity between the uplink and the downlink based on the SRS sent by the terminal; and obtain the information that has the reciprocity between the uplink and the downlink. Load it on the downlink reference signal, send the reference signal to the terminal to measure and feed back the supplementary information that the network device needs to obtain;
  • the terminal has 1 antenna
  • the network device has M antennas to form a uniform linear array (ULA) array.
  • One network device’s transmitting port corresponds to a frequency domain channel (that is, one path complex is estimated).
  • Coefficient as an example, the weighted downlink reference signal occupies N subcarriers, and the weighted downlink channel can be expressed as follows for different resource elements (RE):
  • h i is the i on channel subcarriers
  • w i is the weight corresponding to the subcarrier
  • n i is the noise of the corresponding subcarriers.
  • the terminal performs linear superposition on the estimation results of the frequency domain channel corresponding to the transmitting port to obtain the full-band complex amplitude c on the transmitting port:
  • the terminal feeds back the full-band complex amplitude corresponding to each transmission port to the network device.
  • the network equipment uses the directional angle and time delay of each propagation path estimated in the uplink, and the full-band complex amplitude of each transmission port re-estimated and fed back by the terminal to reconstruct the downlink channel.
  • the network equipment will instruct the terminal to consider these transmission ports and the sub-carriers that will affect the CSI information, so that the terminal can have specific considerations when calculating the full-band complex amplitude of each transmission port.
  • the sub-carriers that will have an impact are ignored.
  • the estimation result of the frequency domain channel corresponding to the sub-carrier is not superimposed; optionally, the frequency corresponding to the sub-carrier can be superimposed.
  • the estimation result of the domain channel is superimposed after special processing; the above is only an example, and this application does not limit how to deal with the estimation result of the frequency domain channel corresponding to the sub-carrier that will have an impact in a targeted manner.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided by the embodiments of the present application, as long as the program that records the code of the method provided by the embodiments of the present application can be executed according to the present application.
  • the method provided in the application embodiment only needs to communicate.
  • the execution subject of the method provided in the embodiment of the application may be a terminal or a network device, or a functional module that can call and execute the program in the terminal or the network device.
  • the interaction between the network device and the terminal is taken as an example to describe in detail the method for sending and receiving instructions provided in the embodiments of the present application.
  • the embodiments of this application are developed based on the behavior of the terminal and the network device on multiple sides, and the overall description is made from the perspective of multiple interactions, but it is by no means limited to the improvement in the system on each side of interaction The steps must be performed together.
  • the technical solutions proposed in the embodiments of this application have improvements on each side of the system.
  • FIG. 2 is a schematic flowchart of a method 200 for sending and receiving instructions according to an embodiment of the present application, shown from the perspective of device interaction.
  • the method 200 of the embodiment of the present application may include step 210 to step 240.
  • the steps in the device 200 are described in detail below:
  • the network device In step 210, the network device generates indication information, the indication information is used to indicate one or more special transmission ports of the downlink reference signal, and indicate one or more special subcarriers corresponding to each special transmission port;
  • the transmission port is a transmission port where the special subcarrier exists among the subcarriers occupied in the transmission port, and the special subcarrier is a subcarrier that meets a predetermined condition.
  • the subcarrier that meets the predetermined condition is a specific subcarrier indicated to the terminal by the network device, for example, a subcarrier with a transmission power lower than a first preset threshold, a subcarrier with a transmission power of zero, and a transmission power higher than a second Preset threshold sub-carriers and so on.
  • the terminal can consider the impact of these subcarriers when calculating for the transmitting port.
  • the network device indicates to the terminal which of the occupied sub-carriers there are sub-carriers that meet the predetermined conditions (hereinafter collectively expressed as "special transmission ports") which one or more of the transmission ports (hereinafter collectively expressed as "special transmission ports”), and also indicates the one or more corresponding to each special transmission port. Describes the sub-carriers that meet the predetermined conditions (hereinafter collectively expressed as "special sub-carriers"). It should be noted that the network device can indicate all the special transmission ports in all the transmission ports for the terminal, or it can indicate some special transmission ports; for each special transmission port in the special transmission ports, the network device can indicate all the corresponding special transmission ports. Special subcarriers can also indicate some of the special subcarriers corresponding to them.
  • the part of the special transmission ports or the part of the special subcarriers may be selected according to predetermined rules or protocol provisions, for example, the top N special transmission ports among all the special transmission ports according to the number of occupied special subcarriers, from most to least. , As the part of the special transmission port instructions to the terminal; similarly, among the special subcarriers occupied by each special transmission port, some subcarriers can be selected according to certain rules to indicate to the terminal; it can also be used for different special transmissions according to rules or conditions.
  • Ports (such as special transmission port 1, special transmission port 2, special transmission port 3) distinguish and indicate, for example, for special transmission port 1, all special subcarriers occupied by it can be indicated, and special transmission port 2 cannot be indicated for occupation For all the special sub-carriers, the special sub-carrier occupied by the special transmission port 2 is indicated, and the special transmission port 3 is the same as the special transmission port 2.
  • the number of subcarriers occupied by different transmission ports and the subcarriers occupied may be different.
  • the sub-carrier 1, sub-carrier 2 described below are to distinguish the corresponding sub-carriers for each transmitting port respectively, and it does not mean that the sub-carrier 1 corresponding to different transmitting ports must be the same sub-carrier.
  • step 220 the network device sends the instruction information, and the terminal receives the instruction information.
  • the form of the indication information is not limited, and it may be directly indicated or indirectly indicated, and the indication may be realized through different indication methods.
  • the indication information includes first indication information and second indication information, the first indication information is used to indicate the one or more special transmission ports, and the second indication information is used to indicate each special transmission One or more special subcarriers corresponding to the port.
  • the first indication information and the second indication information may be sent together or separately.
  • the second indication information includes one or more sub-indication information.
  • the multiple sub-indication information can be sent together or separately, and the multiple sub-indication information is used to respectively indicate special subcarriers occupied by different special transmission ports.
  • the first indication information and the second indication information may be in the form of a bitmap, the first indication information is carried in one bitmap, and the second indication information is carried in L bitmaps, where L is equal to the first The number of special sending ports indicated by the indication information. Assuming that there are a total of M sending ports for the terminal, a maximum of 1+M bitmaps are required (if all sending ports are special sending ports). As shown in Figure 3, the bitmap numbered 0 (take 0 as an example) is used to indicate a special sending port. Optionally, the indication of the special sending port can be indicated by its port identifier. The sending port corresponding to the bit with a value of 1 is the special sending port.
  • At least sending port 2 and sending port 5 are special sending ports among the total of 6 sending ports for this terminal; then L The value is 2, the bitmap numbered 1 is used to indicate the special sub-carrier of transmit port 2, and the bitmap numbered 2 is used to indicate the special sub-carrier of transmit port 5.
  • the sub-carrier can be indicated by its position Logo to indicate.
  • the subcarriers at position 1 and position 3 are special subcarriers; for the transmission port 5, at least the subcarriers occupied by it include positions 1, position 2, and The subcarrier at position 4 is a special subcarrier; FIG. 3 is only an example, and the indication rule may not be limited to this.
  • the bit value may be 0 to indicate a special transmission port or a special subcarrier.
  • the value of the bits can all be 0, that is, there is no special sending port.
  • the value of L can be fixed to M, then for non-special transmission ports (the special subcarrier does not exist in the occupied subcarriers), the bitmap indicated by the corresponding subcarrier will also be sent , But the values of the bits in the bitmap are all 0, and the terminal will not read the bitmaps for sub-carrier indication corresponding to these non-special sending ports when reading.
  • the first indication information is carried in a bitmap, and the second indication information is one or more indication values.
  • the use of bitmap for the first indication information is similar to the above-mentioned way 1, and will not be repeated here.
  • the value of the bits can all be 0, that is, it indicates that there is no special transmission port.
  • the indication value can have one and take a specific value, or the indication information can have M'pieces, M'is less than or equal to M, and each indication information can take a specific value.
  • N 2 2 can indicate at most 2 special subcarriers for each transmission port, then there is There are two possibilities, one is to indicate 1 special subcarrier, and the other is to indicate 2 special subcarriers, then:
  • the special subcarrier is the subcarrier 1 with the position identifier 1;
  • the special sub-carrier is sub-carrier 2 with a position identifier of 2;
  • the special subcarrier is the subcarrier 3 with the position identifier 3;
  • Case 4 The special sub-carrier is sub-carrier 4 whose position identifier is 4.
  • Case 5 The special subcarriers are subcarrier 1 and subcarrier 2 with position identifiers 1 and 2;
  • the special subcarriers are subcarrier 1 and subcarrier 3 with position identifiers 1 and 3;
  • Case 7 The special subcarriers are subcarrier 1 and subcarrier 4 with position identifiers 1 and 4;
  • the special subcarriers are subcarrier 2 and subcarrier 3 with position identifiers 2 and 3;
  • Case 9 The special subcarriers are subcarrier 2 and subcarrier 4 with position identifiers 2 and 4;
  • Case 10 The special subcarriers are subcarrier 3 and subcarrier 4 with position identifiers 3 and 4.
  • the terminal can determine which subcarrier is a special subcarrier among the subcarriers occupied by a certain transmission port.
  • the correspondence relationship shown in Table 1 is only an example, and the correspondence relationship may be preset or stipulated by agreement, or the terminal and the network device may maintain the correspondence relationship table separately.
  • the terminal learns that among the total 6 sending ports for the terminal, at least sending port 2 and sending port 5 are special sending ports. Then the second indication information associated with the sending port 2 is the indication value 0010, then the terminal can learn that at least subcarrier 3 of the subcarriers occupied by the sending port 2 is a special subcarrier; then the second indication information associated with the sending port 5 is the indication value 0111 , Then the terminal can learn that at least subcarrier 2 and subcarrier 3 of the subcarriers occupied by the transmitting port 5 are special subcarriers.
  • the value of the bits can all be 0, that is, it indicates that there is no special transmission port.
  • the second indication information may not be sent, or the second indication information may take a specific value as described above.
  • the indication information is an indication value
  • the third method is equivalent to a joint indication for a special transmission port and a special subcarrier.
  • the indicated value corresponds to The number of a case in this case; N is a positive integer greater than or equal to 1, which is the total number of downlink reference signal transmission ports scheduled by the network device for the terminal, and n is less than or equal to N, which is the maximum number that can be indicated.
  • the number of transmitting ports; K is a positive integer greater than or equal to 1, which is the total number of subcarriers occupied by each first transmitting port, and k is less than or equal to K, which is the maximum that can be indicated for each first transmitting port to meet the predetermined The number of conditional subcarriers.
  • the indication value corresponds to The number of one of the cases, compared to The additional indication value of "+1" is used to indicate that there is no special subcarrier.
  • the special sending port is the sending port 1 with the port ID of 1;
  • the special sending port is the sending port 2 with the port ID of 2;
  • the special sending port is the sending port 3 with the port ID of 3;
  • the special sending port is sending port 4 with a port ID of 4.
  • the special sending ports are sending port 1 and sending port 2 with port identifiers 1 and 2;
  • the special sending ports are sending port 1 and sending port 3 with port identifiers 1 and 3;
  • the special sending ports are sending port 1 and sending port 4 with port identifiers 1 and 4;
  • the special sending ports are sending port 2 and sending port 3 with port identifiers 2 and 3;
  • the special sending ports are sending port 2 and sending port 4 with port identifiers 2 and 4;
  • the special sending ports are sending port 3 and sending port 4 with port identifiers 3 and 4.
  • the special sub-carrier is sub-carrier 1 whose position identifier is 1;
  • the special subcarrier is the subcarrier 2 with the position identifier 2;
  • Case 3 The special sub-carrier is sub-carrier 3 whose position identifier is 3.
  • the special subcarriers are subcarrier 1 and subcarrier 2 with position identifiers 1 and 2;
  • the special subcarriers are subcarrier 1 and subcarrier 3 with position identifiers 1 and 3;
  • the special subcarriers are subcarrier 2 and subcarrier 3 with position identifiers 2 and 3.
  • the special transmission port is the transmission port 1 with the port ID of 1, and the special subcarrier is the subcarrier 1 with the location ID of 1;
  • the special transmission port is the transmission port 1 with the port ID of 1, and the special subcarrier is the subcarrier 2 with the location ID of 2;
  • Case 3 The special transmission port is the transmission port 1 with the port ID of 1, and the special subcarrier is the subcarrier 3 with the location ID of 3;
  • the special transmission port is the transmission port 1 with the port ID of 1, and the special subcarriers are the subcarrier 1 and the subcarrier 2 with the location IDs of 1 and 2;
  • the special transmission port is the transmission port 1 with the port ID of 1, and the special subcarriers are the subcarrier 1 and the subcarrier 3 with the location IDs of 1 and 3;
  • the special transmission port is the transmission port 1 with the port ID of 1, and the special subcarriers are the subcarrier 2 and the subcarrier 3 with the location IDs of 2 and 3;
  • the special transmission port is the transmission port 2 with the port ID of 2
  • the special subcarrier is the subcarrier 1 with the location ID of 1;
  • the special transmission port is the transmission port 2 with the port ID of 2
  • the special subcarrier is the subcarrier 2 with the location ID of 2;
  • the special transmission port is the transmission port 4 with the port identifier 4, and the special subcarriers are subcarrier 1 and subcarrier 3 with position identifiers 1 and 3;
  • Case 24 The special transmission port is the transmission port 4 with the port identifier 4, and the special subcarriers are the subcarrier 2 and the subcarrier 3 with the location identifiers 2 and 3.
  • Special transmission ports are transmission port 1 and transmission port 2 with port IDs 1 and 2, the special subcarrier occupied by transmission port 1 is subcarrier 1 with location ID 1, and the special subcarrier occupied by transmission port 2 is location Subcarrier 1 identified as 1;
  • Special transmission ports are transmission port 1 and transmission port 2 with port IDs 1 and 2, the special subcarrier occupied by transmission port 1 is subcarrier 1 with location ID 1, and the special subcarrier occupied by transmission port 2 is location Subcarrier 2 identified as 2;
  • Special transmission ports are transmission port 1 and transmission port 2 with port IDs 1 and 2, the special subcarrier occupied by transmission port 1 is subcarrier 1 with location ID 1, and the special subcarrier occupied by transmission port 2 is location Subcarrier 3 identified as 3;
  • Special transmission ports are transmission port 1 and transmission port 2 with port IDs 1 and 2, the special subcarrier occupied by transmission port 1 is subcarrier 1 with location ID 1, and the special subcarrier occupied by transmission port 2 is location Subcarrier 1 and subcarrier 2 identified as 1 and 2;
  • Special transmission ports are transmission port 1 and transmission port 2 with port IDs 1 and 2, the special subcarrier occupied by transmission port 1 is subcarrier 1 with location ID 1, and the special subcarrier occupied by transmission port 2 is location Subcarrier 1 and subcarrier 3 identified as 1 and 3;
  • Special transmission ports are transmission port 1 and transmission port 2 with port IDs 1 and 2, the special subcarrier occupied by transmission port 1 is subcarrier 1 with location ID 1, and the special subcarrier occupied by transmission port 2 is location Subcarrier 2 and subcarrier 3 identified as 2 and 3;
  • Special transmission ports are transmission port 1 and transmission port 2 with port IDs 1 and 2, the special subcarrier occupied by transmission port 1 is subcarrier 2 with location ID 2, and the special subcarrier occupied by transmission port 2 is location Subcarrier 1 identified as 1;
  • Special transmission ports are transmission port 1 and transmission port 2 with port identifiers 1 and 2, special subcarriers occupied by transmission port 1 are subcarrier 1 and subcarrier 2 with position identifiers 1 and 2, and transmission port 2 occupies
  • the special sub-carrier is sub-carrier 1 whose position identifier is 1;
  • Special transmission ports are transmission port 1 and transmission port 2 with port identifiers 1 and 2, the special subcarriers occupied by transmission port 1 are subcarrier 1 and subcarrier 2 with position identifiers 1 and 2, and transmission port 2 occupies
  • the special subcarrier is the subcarrier 2 with the position identifier 2;
  • Special transmission ports are transmission port 1 and transmission port 2 with port identifiers 1 and 2, and the special subcarriers occupied by transmission port 1 are subcarrier 1 and subcarrier 2 with position identifiers 1 and 2, and transmission port 2 occupies
  • the special subcarriers are subcarrier 2 and subcarrier 3 with position identifiers 2 and 3;
  • Case 36 Special transmission ports are transmission port 1 and transmission port 2 with port identifiers 1 and 2, and the special subcarriers occupied by transmission port 1 are subcarrier 2 and subcarrier 3 with position identifiers 2 and 3, and transmission port 2 occupies The special subcarriers are subcarrier 2 and subcarrier 3 with position identifiers 2 and 3;
  • Special transmission ports are transmission port 1 and transmission port 3 with port identifiers 1 and 3, the special subcarrier occupied by transmission port 1 is subcarrier 1 with location identifier 1, and the special subcarrier occupied by transmission port 2 is location Subcarrier 1 identified as 1;
  • the special transmission ports are transmission port 3 and transmission port 4 with port identifiers 3 and 4
  • the special subcarriers occupied by transmission port 3 are subcarrier 2 and subcarrier 3 with position identifiers 2 and 3
  • the transmission port 4 occupies
  • the special subcarriers are subcarrier 2 and subcarrier 3 with position identifiers 2 and 3.
  • the special transmission port is the transmission port 1 with the port ID of 1, and the special subcarrier is the subcarrier 1 with the location ID of 1;
  • the special transmission port is the transmission port 1 with the port ID of 1, and the special subcarrier is the subcarrier 2 with the location ID of 2;
  • Case 3 The special transmission port is the transmission port 1 with the port ID of 1, and the special subcarrier is the subcarrier 3 with the location ID of 3;
  • Case 4 The special transmission port is the transmission port 1 with the port ID of 1, and the special subcarriers are the subcarrier 1 and the subcarrier 2 with the location IDs of 1 and 2;
  • Case 24 The special transmission port is the transmission port 4 with the port identifier 4, and the special subcarriers are the subcarrier 2 and the subcarrier 3 with the location identifiers 2 and 3.
  • the special transmission ports are the transmission port 1 and the transmission port 2 with port IDs 1 and 2, the special subcarrier occupied by the transmission port 1 is the subcarrier 1 with the location ID 1, and the special subcarrier occupied by the transmission port 2 Is the subcarrier 1 whose location identifier is 1;
  • the special transmission ports are the transmission port 1 and the transmission port 2 with port identifiers 1 and 2, the special subcarrier occupied by the transmission port 1 is the subcarrier 1 with the position identifier 1, and the special subcarrier occupied by the transmission port 2 Is the subcarrier 2 whose location identifier is 2;
  • the special transmission ports are transmission port 3 and transmission port 4 with port identifiers 3 and 4, and the special subcarriers occupied by transmission port 3 are subcarrier 2 and subcarrier 3 with position identifiers 2 and 3.
  • the transmission port The special subcarriers occupied by 4 are subcarrier 2 and subcarrier 3 with position identifiers 2 and 3.
  • the terminal can determine which transmission port is a special transmission port, and which subcarrier is a special subcarrier among the subcarriers occupied by each special transmission port.
  • the correspondence relationship shown in Table 2 is only an example, and the correspondence relationship may be preset or stipulated by agreement, or the terminal and the network device may maintain the correspondence relationship table separately.
  • a specific value can be sent to indicate that there is a value corresponding to a situation in which the above "+1" is more than one.
  • the first indication information is an indication value
  • the second indication information is carried in X bitmaps
  • X is a positive integer, which is determined according to the first indication information.
  • the indication value corresponds to the M sending ports associated The number of a case in this case; M is a positive integer greater than or equal to 1, which is the number of all transmission ports scheduled by the network device for the terminal; N 1 is less than or equal to M, which is the maximum number of special transmission ports that can be indicated Number.
  • M is a positive integer greater than or equal to 1
  • N 1 is less than or equal to M, which is the maximum number of special transmission ports that can be indicated Number.
  • the indication value corresponds to The number of one of the cases, compared to The additional indication value of "+1" is used to indicate that there is no special sending port.
  • Case 1 The special sending port is the sending port 1 with the port ID of 1;
  • Case 3 The special sending port is the sending port 3 with the port ID of 3;
  • the special sending ports are sending port 1 and sending port 2 with port identifiers 1 and 2;
  • the special sending ports are sending port 1 and sending port 3 with port identifiers 1 and 3;
  • the special sending ports are sending port 1 and sending port 4 with port identifiers 1 and 4;
  • the special sending ports are sending port 2 and sending port 3 with port identifiers 2 and 3;
  • the special sending ports are sending port 2 and sending port 4 with port identifiers 2 and 4;
  • Table 3 illustrates the relationship between the indicated values, conditions, and the indicated special sending port as an example:
  • the terminal can determine which of the sending ports is a special sending port.
  • the correspondence relationship shown in Table 3 is only an example, and the correspondence relationship may be preset or stipulated by agreement, or the terminal and the network device may maintain the correspondence relationship table separately.
  • the second indication information is carried in X bitmaps, and X is determined according to the first indication information. For example, according to the above example, if the first indication information is 0010, then X is equal to 1, indicating one or more special subcarriers occupied by the transmission port 3. If the first indication information is 1000, X is equal to 2, and there are 2 bitmaps corresponding to sending port 2 and sending port 4.
  • a bitmap with a lower number or a higher number corresponds to a transmission port with a lower transmission port identifier, and a bitmap with a higher number or a lower number corresponds to the transmission port with a higher transmission port identifier, which is not limited in this embodiment.
  • the indication value may take a specific value, that is, there is a value corresponding to a situation where the above "+1" is more than one.
  • the second indication information is not sent.
  • the network device can use different instruction methods to send instruction information to the terminal.
  • step 230 the terminal determines the one or more special transmission ports and one or more special subcarriers corresponding to each special transmission port according to the indication information.
  • the terminal can learn which transmission port is the special transmission port, and which subcarrier is the special subcarrier among the subcarriers corresponding to each special transmission port.
  • step 240 the terminal processes each of the special sending ports according to a preset rule according to the instruction information.
  • Step 240 is an optional step.
  • the terminal may process each special transmission port according to a preset rule (for example, subcarrier accumulation, filtering processing during channel estimation, etc.);
  • the special subcarriers occupied by the special transmission port can be ignored when subcarrier accumulation is performed, and the influence of the special subcarrier on other subcarriers can be reduced when the channel estimation is performed on the special transmission port and the joint filtering between the subcarriers is performed.
  • This embodiment mainly focuses on the description of special transmission ports.
  • the terminal can also perform subcarrier accumulation on non-special transmission ports, and can process all transmission ports.
  • the preset rules include: ignoring the special subcarriers when processing each of the special transmission ports, and performing special processing on the calculation of the special subcarriers (for example, reducing the channel estimation on the special subcarriers)
  • the weights w i ) or the channel estimation on special subcarriers are processed separately, and so on.
  • the method for sending and receiving instructions in the embodiments of the present application enables the terminal to determine which transmission ports and their corresponding subcarriers require special consideration through the instructions of the network device, so that the terminal can perform targeted processing when performing calculations. .
  • FIG. 5 is a schematic flowchart of the apparatus 500 for sending and receiving instructions according to an embodiment of the present application, shown from the perspective of device interaction.
  • this embodiment and subsequent embodiments are described by taking the interaction between the terminal and the network device as an example, and the application is not limited to this.
  • this embodiment and subsequent embodiments are based on the multi-side behavior of the terminal and the network device, and the overall description is made from the perspective of multi-party interaction, but it is by no means limited to the steps in the system that are improved in each side of the interaction It must be implemented together.
  • the technical solution proposed in this application has improvements on each side of the system.
  • FIG. 2 The difference between this embodiment and the embodiment corresponding to FIG. 2 is that the embodiment of FIG. 2 is described from the perspective of indicating a special transmission port and the corresponding special subcarrier, while this embodiment is viewed from the overall perspective of the transmission port and indicates whether There is a special sending port, and the content that is the same as or similar to the foregoing embodiment will not be repeated here.
  • the method 500 of the embodiment of the present application may include step 510 to step 530.
  • the steps in the method 500 are described in detail below:
  • step 510 the network device generates indication information, where the indication information is used to indicate whether there is a special transmission port for downlink reference signals.
  • the embodiment shown in FIG. 5 may also adopt the indication methods of Mode 1 to Mode 4 in the embodiment of FIG. 2. If the network device indicates a special transmission port to the terminal in the instruction manners of the first to the fourth manner, the instruction information indicates that there is a special transmission port of the downlink reference signal.
  • the first indication information in the first or second mode is indicated by bitmap, then if there is a bit with a value of 1 in the bitmap, it can be considered to indicate the presence of a special transmission port for the downlink reference signal; if all the bits are If the values of are all set to 0, it can be considered to indicate that there is no special sending port for the downlink reference signal.
  • the special sending port is indicated by different predetermined indication values, it is equivalent to indicating that there is a special sending port, and if the special sending port is indicated by the specific indication value, it is equivalent to not having a special sending port. port.
  • the indication information further includes second indication information, and the second indication information is used to indicate the subcarriers corresponding to each special transmission port that meet a predetermined condition.
  • the indication manner of the second indication information may refer to the content of indicating special subcarriers described in the above manner 1, manner 2, or manner 4, and details are not described herein again.
  • the indication information further includes third indication information, and the third indication information is used to indicate whether there is a subcarrier that meets a predetermined condition among the subcarriers occupied by each transmission port.
  • the third indication information is used to indicate whether there is a subcarrier that meets a predetermined condition among the subcarriers occupied by each transmission port.
  • the second indication information described in Manner 2 or Manner 4 indicates that there is no special subcarrier, which is equivalent to that there is no special subcarrier.
  • the indication information further includes fourth indication information, the fourth indication information being used to indicate whether there is a subcarrier that meets a predetermined condition among the subcarriers occupied by a part of the transmission ports of all the transmission ports of the terminal.
  • fourth indication information refer to the second indication information described in Manner 1, Manner 2, or Manner 4 for indicating the content of the special subcarrier. Indicating the special subcarrier is equivalent to indicating the existence of the special subcarrier.
  • the second indication information described in Manner 2 or Manner 4 indicates that there is no special subcarrier, which is equivalent to that there is no special subcarrier.
  • the indication information may not include the above-mentioned second indication information, third indication information, or fourth indication information, or may include fifth indication information, where the fifth indication information is used for It indicates that there is no corresponding sub-carrier that satisfies the predetermined condition for each transmission port of all transmission ports of the terminal.
  • step 210 for content that satisfies a predetermined condition, indicates all special transmission ports or indicates some special transmission ports when there are special transmission ports, indicates all special subcarriers corresponding to each special transmission port or indicates the correlation of some special subcarriers
  • the content is similar to the embodiment shown in FIG. 2, and reference may be made to the description of step 210, which will not be repeated here.
  • step 520 the network device sends the instruction information, and the terminal receives the instruction information.
  • the form of the indication information is not limited, and it may be directly indicated or indirectly indicated, and the indication may be realized through different indication methods.
  • the instructions can be sent together or separately.
  • step 530 the terminal determines whether the special sending port exists.
  • the terminal determines that the special transmission port exists, the terminal takes special consideration into the calculation of the special transmission port, and if the terminal determines that the special transmission port does not exist, no special processing is required.
  • the method for sending and receiving instructions in the embodiments of the present application enables the terminal device to determine whether there is a special sending port and whether special processing is required through the instruction of the network device, so that the terminal device can perform targeted processing when the terminal device performs calculation.
  • Fig. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a communication unit 1100 and a processing unit 1200.
  • the communication device 1000 may correspond to the terminal device in the above device embodiment, for example, it may be a terminal device or a chip configured in the terminal device.
  • the communication device 1000 may correspond to the terminal device in the method 200 according to the embodiment of the present application, and the communication device 1000 may include a unit for executing the method executed by the terminal device in the method 200 in FIG. 2.
  • the units in the communication device 1000 and the other operations and/or functions described above are respectively intended to implement the corresponding process of the method 200 in FIG. 2.
  • the communication unit 1100 can be used to execute the step 220 in the method 200 that involves terminal reception, and the processing unit 1200 can be used to execute the step 230 in the method 200.
  • the communication device 1000 may correspond to the terminal device in the method 500 according to the embodiment of the present application, and the communication device 1000 may include a unit for executing the method executed by the terminal device in the method 500 in FIG. 5.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 500 in FIG. 5.
  • the communication unit 1100 may be used to execute step 520 in the method 500 involving terminal reception, and the processing unit 1200 may be used to execute step 530 in the method 500.
  • the communication unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 7, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 7.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface, an interface circuit, an output/input circuit, a pin, or a related circuit.
  • the processing unit 1200 may be a processor, a processing circuit, or a logic circuit.
  • the communication device 1000 may correspond to a network device in the method 200 according to an embodiment of the present application, and the communication device 1000 may include a unit for executing the method executed by the network device in the method 200 in FIG. 2.
  • the units in the communication device 1000 and the other operations and/or functions described above are respectively intended to implement the corresponding process of the method 200 in FIG. 2.
  • the communication unit 1100 can be used to execute the step 220 in the method 200 that involves network equipment sending, and the processing unit 1200 can be used to execute the step 210 in the method 200.
  • the communication device 1000 may correspond to the network device in the method 500 according to the embodiment of the present application, and the communication device 1000 may include a unit for executing the device executed by the network device in the method 500 in FIG. 5.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 500 in FIG. 5.
  • the communication unit 1100 can be used to execute the step 520 in the method 500 that involves a network device sending step, and the processing unit 1200 can be used to execute the step 510 in the method 500.
  • the communication unit in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 8, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 3100 in the network device 3000 shown in FIG. 8.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface, an interface circuit, an output/input circuit, a pin, or a related circuit.
  • the processing unit 1200 may be a processor, a processing circuit, or a logic circuit.
  • FIG. 7 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002, and the memory 2030 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for transmitting the uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the above-mentioned processor 2010 and the memory 2030 may be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to realize the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 6.
  • the aforementioned transceiver 2020 may correspond to the communication unit in FIG. 6, and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 7 can implement various processes involving the terminal device in the method embodiments shown in FIG. 2 and FIG. 5.
  • the operations and/or functions of each module in the terminal device 2000 are respectively for implementing the corresponding processes in the foregoing apparatus embodiments.
  • the above-mentioned processor 2010 can be used to execute the actions described in the previous device embodiments implemented by the terminal device, and the transceiver 2020 can be used to execute the terminal device described in the previous device embodiment to send to or receive from the network device. action.
  • the transceiver 2020 can be used to execute the terminal device described in the previous device embodiment to send to or receive from the network device. action.
  • the description in the previous device embodiment please refer to the description in the previous device embodiment, which will not be repeated here.
  • the aforementioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the network equipment 3000 may include CU, DU, and AAU.
  • the network equipment consists of one or more radio frequency units, such as a remote radio unit (RRU) and one or more radio frequency units.
  • RRU remote radio unit
  • BBU baseband unit
  • the non-real-time part of the original BBU will be divided and redefined as CU, which is responsible for processing non-real-time protocols and services.
  • Part of the physical layer processing functions of the BBU are merged with the original RRU and passive antennas into AAU, and the remaining functions of the BBU are redefined as DU.
  • CU and DU are distinguished by the real-time nature of processing content, and AAU is a combination of RRU and antenna.
  • FIG. 8 is only an example, and does not limit the scope of protection of the present application.
  • the deployment form may also be DU deployment in the BBU computer room, CU centralized deployment or DU centralized deployment, CU higher-level centralized deployment, and so on.
  • the AAU 3100 that can implement the transceiver function is called the transceiver unit 3100, which corresponds to the communication unit 1100 in FIG. 6.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the CU and DU3200 that can implement internal processing functions are referred to as a processing unit 3200, which corresponds to the processing unit 1200 in FIG. 6.
  • the processing unit 3200 may control network devices, etc., and may be referred to as a controller.
  • the AAU, CU, and DU may be physically set together, or may be physically separated.
  • the network equipment is not limited to the form shown in FIG. 8, but may also be in other forms: for example, including BBU and adaptive radio unit (ARU), or including BBU and active antenna unit (AAU). ); It can also be customer premises equipment (CPE), or other forms, which are not limited in this application.
  • BBU and adaptive radio unit ARU
  • BBU and active antenna unit AAU
  • CPE customer premises equipment
  • the processing unit 3200 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access mode, or may respectively support different access modes Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is used to control the network device to perform necessary actions, for example, to control the network device to execute the operation flow of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the network device 3000 shown in FIG. 8 can implement the network device functions involved in the method embodiments of FIG. 2 and FIG. 5.
  • the operations and/or functions of each unit in the network device 3000 are respectively for implementing the corresponding process executed by the network device in the method embodiment of the present application. To avoid repetition, detailed description is omitted here.
  • the structure of the network device illustrated in FIG. 8 is only a possible form, and should not constitute any limitation in the embodiment of the present application. This application does not exclude the possibility of other types of network equipment structures that may appear in the future.
  • the above-mentioned CU and DU 3200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the AAU 3100 can be used to perform the network device described in the previous method embodiment to send or receive from the terminal device action.
  • the AAU 3100 can be used to perform the network device described in the previous method embodiment to send or receive from the terminal device action.
  • An embodiment of the present application also provides a processing device, including a processor and a communication interface; the processor is configured to execute a computer program, so that the processing device implements the method in the foregoing method embodiment.
  • the processing device may be a chip or a chip system.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the steps of the above-mentioned device can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the device disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above device in combination with its hardware. In order to avoid repetition, detailed description is omitted here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the above-mentioned device embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the devices, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the device disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above device in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer is caused to execute the steps shown in Figs. 2 to 4
  • the device of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium, the computer-readable medium stores a program code, when the program code runs on a computer, the computer executes the steps shown in Figures 2 to 4 The device of any one of the embodiments is shown.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc), SSD)) etc.
  • the network equipment in each of the above-mentioned device embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the device embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or receiving in the device embodiment.
  • the processing unit processor
  • the functions of specific units refer to the corresponding device embodiments. Among them, there may be one or more processors.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and device may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the apparatus described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送和接收指示的方法,该方法中为了使得终端获知需针对性考虑或处理的特殊发送端口,网络设备向终端发送指示信息,所述指示信息用于指示下行参考信号的一个或多个特殊发送端口,所述特殊发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口,所述指示信息还用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波。这样终端能够获知终端可以获知哪个发送端口是占用的子载波中存在满足预定条件的子载波的发送端口,以及发送端口占用的子载波中哪个子载波满足预定条件,从而终端在进行信道信息计算时,能够有针对性处理。

Description

发送和接收指示的方法和装置
本申请要求于2019年8月23日提交中国专利局、申请号为201910783828.1、发明名称为“发送和接收指示的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及发送和接收指示的方法以及装置。
背景技术
在大规模多输入多输出(massive multiple-input multiple output,Massive MIMO)技术中,例如网络设备可以通过预编码技术减小多用户之间的干扰以及同一用户的多个信号流之间的干扰,从而提高信号质量,实现空分复用,提高频谱利用率。因此,如预编码矩阵指示(precoding quality indicator,PMI)、信道质量指示(channel quality indicator,CQI)等信道状态信息(channel state information,CSI)的获取精度,显得尤为重要。
目前,在频分双工(frequency division duplex,FDD)系统中,由于上下行信道存在较大的频点间隔,上行信道与下行信道不满足直接互易关系,无法用上行信道信息来做准确的下行预编码。但是FDD系统中上下行信道具有部分互易性,包括多径角度和时延的互易性。因此,可以利用从上行信道来获取部分先验信息,包括上行信道的角度和时延信息,然后网络设备将得到的角度或者时延加载到下行参考信号上,并通知终端设备去测量并反馈网络设备需要获取的补充信息,最终网络设备根据通过上行参考信号测得的信息和终端设备反馈的补充信息来重构下行信道或者预编码。
在现有技术的方案中,网络设备将角度或者时延加载到下行参考信号上时,可能存在某些发送端口的子载波会影响终端设备进行CSI计算时的精度,会导致信噪比较低,影响CSI反馈信息的准确度,终端设备无法针对性考虑这些影响,目前现有技术中还没有相关解决方案。
发明内容
本申请提供一种发送和接收指示的方法以及装置,以使得终端在CSI计算时能够更有针对性。
第一方面,提供了一种接收指示的方法。该方法可以由终端执行,或者也可以由配置于终端中的芯片执行,本申请对此不作限定。
具体地,该方法包括:终端接收来自网络设备的指示信息,所述指示信息用于指示下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口,所述指示信息还用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波;所述终端根据所述指示信息,确定所述一个或多个第一发送端口,以及各所述第一发送端口对应的一个或多个满足预定条件的子载波。可以理解,该方法中通过网络设备的指示,终端可以获知哪个发送端口是占用的子载波中存在满足预定条件的子载波的发送端口,以及发送端口占用的子载波中哪个子载波满足预定条件。
因此,终端根据所述指示信息,能够确定所述一个或多个所述第一发送端口,以及各所述第一发送端口对应的一个或多个满足预定条件的子载波,这样终端在CSI计算时,能够有针对性考虑和处理,进一步能够提高CSI反馈信息的准确度。
第二方面,本申请提供了一种发送指示的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:生成指示信息,所述指示信息用于指示下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口,所述指示信息还用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波;向终端发送所述指示信息。可以理解,该方法中可以指示终端哪个发送端口是占用的子载波中存在满足预定条件的子载波的发送端口,以及发送端口占用的子载波中哪个子载波满足预定条件。
因此,通过指示终端所述一个或多个第一发送端口,以及各所述第一发送端口对应的一个或多个满足预定条件的子载波,使得终端在CSI计算时,就能够针对性考虑这些端口及其对应满足预定条件的子载波,从而能够提高CSI反馈信息的准确度。
结合第一方面,在某些可能的实现方式中,所述方法还包括:所述终端根据所述指示信息,按照预设规则对各所述第一发送端口进行子载波累加。
终端在做CSI计算进行各发送端口的子载波累加时,能够按照预设规则根据所述指示信息有针对性的处理。
结合第一方面,在某些可能的实现方式中,所述预设规则包括:对各所述第一发送端口进行子载波累加时,忽略各所述第一发送端口对应的所述满足预定条件的子载波。
考虑到所述一个或多个第一发送端口中每一个所述第一发送端口对应的一个或多个满足预定条件的子载波可能带来噪声,提高了信噪比,在对这些端口进行子载波累加时,不考虑其中满足预定条件的子载波。
结合第一方面或第二方面,在某些可能的实现方式中,所述预定条件包括:
子载波的发射功率低于预设阈值;或
子载波的发射功率为零。
结合第一方面或第二方面,在某些可能的实现方式中,所述指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述一个或多个第一发送端口,所述第二指示信息用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息携带在一个比特图bitmap中;所述第二指示信息携带在L个bitmap中,L等于所述第一指示信息指示的所述第一发送端口的个数。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息携带在一个比特图bitmap中;所述第二指示信息为一个或多个指示值;或,所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中。
结合第一方面或第二方面,在某些可能的实现方式中,当所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值时,所述指示值对应各第一发送端口关联的(i=1N2CNi)种情况中一种情况的编号;N为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,N 2小于或等于N,为对于每个第一发送端口最多 能够指示的满足预定条件的子载波的个数;当所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中时,所述指示值对应M个发送端口关联的
Figure PCTCN2020110538-appb-000001
种情况中一情况的编号;M为大于等于1的正整数,为所述网络设备为所述终端调度的下行参考信号发送端口的个数;N 1小于等于M,为最多能够指示的第一发送端口的个数。
结合第一方面或第二方面,在某些可能的实现方式中,所述指示信息为指示值。
结合第一方面或第二方面,在某些可能的实现方式中,所述指示值对应
Figure PCTCN2020110538-appb-000002
种情况中一种情况的编号;N为大于等于1的正整数,是所述网络设备为所述终端调度的下行参考信号发送端口的总个数,n小于等于N,为最多能够指示的第一发送端口的个数;K为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,k小于等于K,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数。
第三方面,提供了一种接收指示的方法。该方法可以由终端执行,或者也可以由配置于终端中的芯片执行,本申请对此不作限定。
具体地,该方法包括:终端接收来自网络设备的指示信息,所述指示信息用于指示是否存在下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口;所述终端根据所述指示信息,确定是否存在所述一个或多个第一发送端口。可以理解,该方法中可以指示终端哪个发送端口是占用的子载波中存在满足预定条件的子载波的发送端口,以及哪个发送端口不是占用的子载波中存在满足预定条件的子载波的发送端口。
因此,终端根据所述指示信息,能够确定是否存在所述一个或多个所述第一发送端口,这样终端在CSI计算时,能够有针对性考虑和处理,进一步能够提高CSI反馈信息的准确度。
第四方面,本申请提供了一种发送指示的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:生成指示信息,所述指示信息用于指示是否存在下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口;向终端发送所述指示信息。可以理解,该方法中可以指示终端哪个发送端口是占用的子载波中存在满足预定条件的子载波的发送端口,以及哪个发送端口不是占用的子载波中存在满足预定条件的子载波的发送端口。
因此,通过指示终端是否存在所述一个或多个第一发送端口,使得终端在CSI计算时,就能够针对性考虑和处理,从而能够提高CSI反馈信息的准确度。
结合第三方面,在某些可能的实现方式中,所述方法还包括:若存在所述第一发送端口,所述终端根据所述指示信息,按照预设规则对各所述第一发送端口进行子载波累加。
终端在做CSI计算进行各发送端口的子载波累加时,能够按照预设规则根据所述指示信息有针对性的处理。
结合第三方面,在某些可能的实现方式中,所述预设规则包括:对各所述第一发送端口进行子载波累加时,忽略各所述第一发送端口对应的所述满足预定条件的子载波。
考虑到所述一个或多个第一发送端口中每一个所述第一发送端口对应的一个或多个满足预定条件的子载波可能带来噪声,提高了信噪比,在对这些端口进行子载波累加时,不考虑其中满足预定条件的子载波。
结合第三方面或第四方面,在某些可能的实现方式中,所述预定条件包括:
子载波的发射功率低于预设阈值;或
子载波的发射功率为零。
结合第三方面或第四方面,在某些可能的实现方式中,所述指示信息携带在一个比特图bitmap中。
结合第三方面或第四方面,在某些可能的实现方式中,所述第一指示信息为指示值;所述指示值对应M个发送端口关联的
Figure PCTCN2020110538-appb-000003
种情况中一情况的编号;M为大于等于1的正整数,为所述网络设备为所述终端调度的所有发送端口的个数;N 1小于等于M,为最多能够指示的第一发送端口的个数。
结合第三方面或第四方面,在某些可能的实现方式中,所述指示信息还用于指示是否存在满足预定条件的子载波。
结合第三方面或第四方面,在某些可能的实现方式中,所述指示信息还用于指示各所述第一发送端口是否存在对应的一个或多个满足预定条件的子载波。
结合第三方面或第四方面,在某些可能的实现方式中,若所述指示信息还用于指示是否存在满足预定条件的子载波,所述指示信息为指示值,所述指示值对应
Figure PCTCN2020110538-appb-000004
种情况中一种情况的编号;N为大于等于1的正整数,是所述网络设备为所述终端调度的下行参考信号发送端口的总个数,n小于等于N,为最多能够指示的第一发送端口的个数;K为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,k小于等于K,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数。
结合第三方面或第四方面,在某些可能的实现方式中,若存在所述第一发送端口,所述指示信息还用于指示各所述第一发送端口是否存在对应的一个或多个满足预定条件的子载波;或所述指示信息还用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波。
结合第三方面或第四方面,在某些可能的实现方式中,所述指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示是否存在所述一个或多个第一发送端口,所述第二指示信息用于指示各所述第一发送端口是否存在对应的一个或多个满足预定条件的子载波。
结合第三方面或第四方面,在某些可能的实现方式中,所述第一指示信息携带在一 个比特图bitmap中;所述第二指示信息携带在M个bitmap中,M等于携带所述第一指示信息的bitmap中的比特位数。
结合第三方面或第四方面,在某些可能的实现方式中,所述第一指示信息携带在一个比特图bitmap中;所述第二指示信息为一个或多个指示值;或,所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中。可以理解的,第二指示信息为一个或多个指示值时,指示值的个数等于携带所述第一指示信息的bitmap中的比特位数;第二指示信息携带在一个或多个比特图bitmap中时,bitmap的个数等于下行参考信号发送端口的总数;
结合第三方面或第四方面,在某些可能的实现方式中,当所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值时,所述指示值对应各第一发送端口关联的(i=1N2CNi)+1种情况中一种情况的编号;N为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,N 2小于或等于N,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数。
结合第三方面或第四方面,在某些可能的实现方式中,所述指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示是否存在所述一个或多个第一发送端口,所述第二指示信息用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波。
结合第三方面或第四方面,在某些可能的实现方式中,所述第一指示信息携带在一个比特图bitmap中;所述第二指示信息携带在L个bitmap中,L等于所述第一指示信息指示的所述第一发送端口的个数。
结合第三方面或第四方面,在某些可能的实现方式中,所述第一指示信息携带在一个比特图bitmap中;所述第二指示信息为一个或多个指示值;或,所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中。可以理解的,第二指示信息为一个或多个指示值时,指示值的个数等于携带所述第一发送端口的总数;第二指示信息携带在一个或多个比特图bitmap中时,bitmap的个数等于所述第一发送端口的总数;
结合第三方面或第四方面,在某些可能的实现方式中,当所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值时,所述指示值对应各第一发送端口关联的(i=1N2CNi)种情况中一种情况的编号;N为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,N 2小于或等于N,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数;当所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中时,所述指示值对应M个发送端口关联的
Figure PCTCN2020110538-appb-000005
种情况中一情况的编号;M为大于等于1的正整数,为所述网络设备为所述终端调度的下行参考信号发送端口的总个数;N 1小于等于M,为最多能够指示的第一发送端口的个数。
第五方面,提供了一种通信装置,包括用于执行第一方面或第三方面中任一种可能实现方式中的方法的各个模块或单元,如处理单元和/或通信单元。其中,对应第一方面,所述通信单元,用于接收来自网络设备的指示信息,所述指示信息用于指示下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口,所述指示信息还用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波;所述处理单元,用于根据所述指示信息,确定所述一个或多个第一发送端口,以及各所述第一发送端口对应的一个或多个满足预定条件的子载波。对应第三方面,所述通信单元,用于接收来自网络设备的指示信息,所述指示信息用于指示是否存在下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口;所述处理单元,用于根据所述指示信息,确定是否存在所述一个或多个第一发送端口。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信单元可以是收发器,或,输入/输出接口;所述处理单元可以是处理器。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。当该通信装置为配置于终端设备中的芯片或芯片系统时,所述通信单元可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第三方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。当该通信装置为配置于终端设备中的芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种通信装置,包括用于执行第二方面或第四方面中任一种可能实现方式中的方法的各个模块或单元,如处理单元和/或通信单元。其中,对应于第二方面,所述处理单元,用于生成指示信息,所述指示信息用于指示下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口,所述指示信息还用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波;所述通信单元,用于向终端发送所述指示信息。对应于第四方面,所述处理单元,用于生成指示信息,所述指示信息用于指示下行参考 信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口;所述通信单元,用于向终端发送所述指示信息。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信单元可以是收发器,或,输入/输出接口;所述处理单元可以是处理器。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。当该通信装置为配置于网络设备中的芯片或芯片系统时,所述通信单元可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第八方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第四方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。当该通信装置为配置于网络设备中的芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第九方面,提供了一种处理装置,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理装置执行第一方面、第二方面、第三方面或第四方面,以及第一方面、第二方面、第三方面或第四方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理装置及各种电路的具体实现方式不做限定。
第十方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面、第二方面、第三方面或第四方面,以及第一方面、第二方面、第三方面或第四方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离 设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收指示信息可以为处理器接收输入指示信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面,以及第一方面或第二方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面,以及第一方面或第二方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的发送和接收指示的装置的通信系统的示意图;
图2是本申请实施例提供的一种发送和接收指示的装置的示意性流程图;
图3是本申请实施例提供的第一指示信息和第二指示信息的说明示意图;
图4是本申请实施例提供的又一种第一指示信息和第二指示信息的说明示意图;
图5是本申请实施例提供的又一种发送和接收指示的装置的示意性流程图;
图6是本申请实施例提供的通信装置的示意性框图;
图7是本申请实施例提供的终端设备的结构示意图;
图8是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等。本申请中所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(Public  Land Mobile Network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of Things,IoT)通信系统或者其他通信系统。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(TRP)等,还可以为5G,如NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
还应理解,该通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,首先对本申请中涉及的几个术语做简单说明。
1、信道互易性:在时分双工(time division duplexing,TDD)模式下,上下行信道在相同的频域资源、不同的时域资源上传输信号。在相对较短的时间(如,信道传播的相干时间)之内,可以认为上、下行信道上的信号所经历的信道衰落是相同的。这就是上下行信道的互易性。基于上下行信道的互易性,网络设备可以根据上行参考信号,如探测参考信号(sounding reference signal,SRS),测量上行信道。并可以根据上行信道来估计下行信道,从而可以确定用于下行传输的预编码矩阵等。
然而,在频分双工(frequency division duplexing,FDD)模式下,由于上下行信道的 频带间隔远大于相干带宽,上下行信道不具有完整的互易性,利用上行信道来确定用于下行传输的预编码矩阵可能并不能够与下行信道相适配。但是,FDD模式下的上下行信道仍然具有部分的互易性,例如,角度的互易性和时延的互易性。因此,角度和时延也可以称为互易性参数。
由于信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延扩展导致频率选择性衰落,就是频域信道的变化。时延是无线信号在不同传输路径上的传输时间,由距离和速度决定,与无线信号的频域没有关系。因此,时延在FDD模式下的上下行信道可以认为是相同的,或者说,互易的。
此外,角度可以是指信号经由无线信道到达接收天线的到达角(angle of arrival,AOA),也可以是指通过发射天线发射信号的离开角(angle of departure,AOD)。在本申请实施例中,该角度可以是指上行信号到达网络设备的到达角,也可以是指网络设备发射下行信号的离开角。由于上下行信道在不同频率上的传输路径的互易,所以该上行参考信号的到达角和下行参考信号的离开角可以认为是互易的。
因此可以认为,时延和角度在FDD模式下的上下行信道具有互易性。在本申请实施例中,每个角度可以通过一个角度向量来表征。每个时延可通过一个时延向量来表征。因此,在本申请实施例中,一个角度向量可以表示一个角度,一个时延向量可以表示一个时延。
2、参考信号(reference signal,RS):参考信号也可以称为导频(pilot)、参考序列等。在本申请实施例中,参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)、探测参考信号(sounding reference signal,SRS)等。应理解,上文列举的参考信号仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
本申请实施例中的参考信号,可以称为下行参考信号,是网络设备基于信道互易性参数对参考信号进行预编码后得到的参考信号。预编码具体可以包括波束赋形(beamforming)和/或相位旋转。其中,波束赋形例如可以通过基于一个或多个角度向量对参考信号进行预编码来实现。相位旋转例如可以通过将一个或多个时延向量对参考信号进行预编码来实现。基于一个或多个角度向量对下行参考信号进行预编码,也可以称为,将一个或多个角度向量加载到下行参考信号上。基于一个或多个时延向量对下行参考信号进行预编码,也可以称为将一个或多个时延向量加载到下行参考信号上。
3、FDD下行信道重构(也可称为基于FDD部分互易性的CSI获取):
FDD系统的基于CSI的下行信道重建方法包括以下步骤:
步骤一:网络设备接收终端设备发送的SRS,并利用上行SRS估计出上下行具有互易性的信息(例如,方向角、时延等);
步骤二:网络设备向终端设备发送下行参考信号,具体地,网络设备将得到的上下行具有互易性的信息加载到下行参考信号上,通知终端设备测量并反馈网络设备需要获取的补充信息;
步骤三:终端设备利用下行参考信号重新估计并反馈补充信息(例如,可以是每个端口对应的全带复幅度);
步骤四:网络设备利用所述步骤一和步骤三中获取的信息,重建下行信道。
4、发送端口(transmission port):本申请中可以称为天线端口、下行参考信号的发送端口、参考信号的发送端口,也可以简称端口或Tx port。用于进行信号或数据的发送,被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。端口是一种逻辑上的含义,针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号端口对应。天线端口用于承载具体的物理信道和物理信号中至少一种。通过相同天线端口所发送的信号,无论这些信号是否是通过相同或不同的物理天线发送,他们在空间传输所经历的路径所对应的信道可视为相同或者相关(比如大尺度信道特性,如信道矩阵H,相同)。也就是说,在相同的天线端口所发送的信号,接收端在解调时可以认为其信道相同或者相关。也就是说,天线端口定义了在某个符号上的信道,两个符号的天线端口一样是说在一个符号上的信道可以通过另一个符号上的信道推知。
本申请实例中,采用“特殊发送端口”(也可以成为第一发送端口)来表示发送端口中占用的子载波中存在满足预定条件的子载波的发送端口。
5、信道状态信息(channel state information,CSI):可以包括以下至少一项信息:信道质量指示(channel quality indicator,CQI),预编码矩阵指示(precoding matrix indicator,PMI),CSI-RS资源指示(CSI-RS resource indicator),同步信号块(SSB)资源指示(SS/PBCH block resource indicator,SSBRI),层指示(layer indicator,LI),秩指示(rank indicator,RI),参考信号接收功率(reference signal received power,RSRP)。RSRP可以是层1的RSRP(L1-RSRP)。在本申请中,信道状态信息还可以包括同步测量结果或同步测量结果的指示信息。
6、子载波:用于承载信号,频域上占据一段带宽,可以体现为资源元素(resource element,RE)。本申请实例中,采用“特殊子载波”来表示满足预定条件的子载波。
此外,为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、媒体接入控制(media access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例 如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括下行控制信息(downlink control information,DCI)。
第二,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,第一、第二在本申请实施例中可以作为类型区分,并不作为对象内容区分。
第三,本申请实施例中涉及的“保存”,可以是指保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第四,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议、WLAN协议以及其他通信系统中的相关协议,本申请对此不做限定。
第五,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
上文结合图1简单说明本申请实施例能够应用的场景,以及介绍了本申请实施例中可能涉及到的基本概念,下面将结合附图详细说明本申请实施例提供的用于信道测量的方法。
应理解,本申请实施例提供的方法可以应用于通过多天线技术通信的系统,例如,图1中所示的通信系统100。该通信系统可以包括至少一个网络设备110和至少一个终端120。网络设备110和终端120之间可通过多天线技术通信。网络设备为了进行FDD下行信道重构,需要基于终端发送的SRS,估计出上下行具有互易性的信息(例如,方向角、时延等);并将得到的上下行具有互易性的信息加载到下行参考信号上,发送该参考信号给终端测量并反馈网络设备需要获取的补充信息;
不失一般性,假设终端有1根天线,网络设备有M根天线组成均匀线性阵列(uniform linear array,ULA)阵列,以1个网络设备的发送端口对应频域信道(即估计1个路径复系数)为例,加权后的下行参考信号占用N个子载波,则加权后的下行信道针对不同的资源单元(resource element,RE)可以表示为:
h 1w 1+n 1(针对RE 1);
h 2w 2+n 2(针对RE 2);
……
h N-1w N-1+n N-1(针对RE N-1);
h Nw N+n N(针对RE N);
其中,h i为第i个子载波上的信道,w i为对应子载波上的权值,n i为对应子载波上的噪声。
终端对该发送端口对应的频域信道的估计结果进行线性叠加,得到该发送端口上的全带复幅度c:
c=i=1Nhiwi+ni
终端向网络设备反馈各发送端口对应的全带复幅度。网络设备利用上行估计的每条传播路径的方向角和时延,以及终端重估并反馈的各发送端口的全带复幅度,重建下行信道。
本申请实施例中,考虑到可能存在某些发送端口的子载波会影响终端进行CSI计算时的精度,会导致信噪比较低,影响CSI反馈信息的准确度。因此,网络设备会指示终端这些需要针对考虑的发送端口,及其会影响CSI信息的子载波,以便终端在进行各发送端口的全带复幅度计算时,有针对性考虑,例如,对于对发送端口的全带复幅度计算时忽略会产生影响的子载波,在上述线性叠加时,不叠加上该子载波对应的频域信道的估计结果;可选的,也可以对该子载波对应的频域信道的估计结果进行特殊处理后再叠加;以上仅为示例,本申请对于如何针对性地去处理会产生影响的子载波对应的频域信道的估计结果不做限定。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或网络设备,或者,是终端或网络设备中能够调用程序并执行程序的功能模块。
以下,不失一般性,以网络设备与终端之间的交互为例详细说明本申请实施例提供的发送和接收指示的方法。需要说明的是,为了便于方案理解,在描述时,本申请实施例皆以终端和网络设备多侧的行为展开,从交互多方的角度进行整体描述,但绝非限定系统中改进在于交互各侧的步骤必须合在一起执行,本申请实施例提出的技术方案,在系统中每一侧均有改进。
图2是从设备交互的角度示出的本申请实施例提供的发送和接收指示的方法200的示意性流程图。
如图2所示,本申请实施例的方法200可以包括步骤210至步骤240。下面详细说明装置200中的各步骤:
在步骤210中,网络设备生成指示信息,所述指示信息用于指示下行参考信号的一个或多个特殊发送端口,以及指示各特殊发送端口对应的一个或多个特殊子载波;其中所述特殊发送端口为发送端口中占用的子载波中存在所述特殊子载波的发送端口,所述特殊子载波为满足预定条件的子载波。
可选的,满足预定条件的子载波是网络设备指示给终端特定的子载波,比如,发射功率低于第一预设阈值的子载波、发射功率为零的子载波、发射功率高于第二预设阈值的子载波等等。这样终端了在针对发送端口进行计算时,可以对这些考虑这些子载波产生的影响。
网络设备指示给终端,占用的子载波中存在满足预定条件的子载波的发送端口(下文统一用“特殊发送端口”表达)是哪个或哪些,还指示各特殊发送端口对应的一个或 多个所述满足预定条件的子载波(下文统一用“特殊子载波”表达)。需要说明的,网络设备可以指示针对该终端的所有发送端口中的所有特殊发送端口,也可以指示部分特殊发送端口;对于特殊发送端口中的每一特殊发送端口,网络设备可以指示其对应的所有特殊子载波,也可以指示其对应的部分特殊子载波。所述部分特殊发送端口或所述部分特殊子载波可以根据预定规则或协议规定来选取,例如,根据占用特殊子载波数量的由多到少将所有特殊发送端口中排在前N位的特殊发送端口,作为所述部分特殊发送端口指示给终端;类似的,每个特殊发送端口占用的特殊子载波中,可以根据一定规则选取部分子载波指示给终端;还可以依据规则或条件针对不同的特殊发送端口(如,特殊发送端口1、特殊发送端口2、特殊发送端口3)区分指示,例如,对于特殊发送端口1可以指示其占用的所有的特殊子载波,对于特殊发送端口2不可以指示其占用的所有的特殊子载波,那么对于特殊发送端口2就指示其占用的部分的特殊子载波,对于特殊发送端口3与特殊发送端口2一样。
需要说明的是,不同发送端口占用的子载波数量和占用的子载波可以不同。下文描述的子载波1、子载波2……是分别对于每个发端端口而言区分其所对应的子载波,不是代表不同发送端口对应的子载波1一定是同一子载波。
在步骤220中,网络设备发送所述指示信息,终端接收所述指示信息。
本申请实施例中,对于指示信息的形式不进行限制,其可以直接指示也可以间接指示,可以通过不同的指示方式实现指示。
可选的,所述指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述一个或多个特殊发送端口,所述第二指示信息用于指示各特殊发送端口对应的一个或多个特殊子载波。可选的,第一指示信息和第二指示信息可以一起发送或分别发送。第二指示信息包括一个或多个子指示信息,多个子指示信息可以一起发送或分别发送,多个子指示信息用于分别指示不同的特殊发送端口所占用的特殊子载波。
下面给出几种示例性的指示方式:
方式一:
所述第一指示信息和第二指示信息可以采用比特图(bitmap)的形式,所述第一指示信息携带在一个bitmap中,所述第二指示信息携带在L个bitmap中,L等于第一指示信息指示的特殊发送端口的个数,假设针对该终端总共有M个发送端口,那么最多需要1+M个bitmap(如果所有发送端口都是特殊发送端口)。如图3所示,编号为0(取0仅为示例)的bitmap用于指示特殊发送端口,可选的,特殊发送端口的指示可以通过其端口标识进行指示。其中取值为1的比特位对应的发送端口即为所述特殊发送端口,如图可知针对该终端的总共6个发送端口中,至少有发送端口2、发送端口5为特殊发送端口;那么L取值为2,编号为1的bitmap用于指示发送端口2的特殊子载波,编号为2的bitmap用于指示发送端口5的特殊子载波,可选的,对子载波的指示可以通过其位置标识进行指示。如图可知,对于发送端口2,其占用的子载波中至少有位置1和位置3上的子载波为特殊子载波;对于发送端口5,其占用的子载波中至少有位置1、位置2和位置4上的子载波为特殊子载波;图3仅为示例,指示规则可以不限于此,如还可以比特位取值为0来指示特殊发送端口或特殊子载波。
可选的,用于指示特殊发送端口的bitmap中,比特位的取值可以皆为0,即不存在特殊发送端口。可选的,无论是否存在特殊发送端口,L的取值可以固定为M,那么对于 非特殊发送端口(占用子载波中不存在所述特殊子载波),也会发送对应的子载波指示的bitmap,只是bitmap中的比特位取值皆为0,终端在读取时,不会读取这些非特殊发送端口对应的用于子载波指示的bitmap。
可选的,如果针对该终端的所有发送端口中不存在特殊子载波,则仅送一个bitmap,其中比特位的取值皆为0,用于指示不存在特殊发送端口。
方式二:
所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值。第一指示信息采用bitmap类似上述方式一,在此不再赘述。作为第二指示信息的所述指示值可以有一个或多个,分别对应M个发送端口关联的(i=1N2CNi)种情况中一情况的编号;M为大于等于1的正整数,为所述网络设备为所述终端调度的所有发送端口的个数;N为大于等于1的正整数,为每个发送端口总共占用的子载波个数,N 2小于或等于N,为对于每个发送端口最多能够指示的特殊子载波的个数。可选的,如果还需要指示不存在特殊发送端口和不存在特殊子载波,那么用于指示特殊发送端口的所述bitmap中,比特位的取值可以皆为0,即指示不存在特殊发送端口;所述指示值可以有一个并取特定值,或者所述指示信息可以有M’个,M’小于或等于M,各指示信息可以皆取一特定值。
以不需要指示不存在特殊发送端口的情况为例,如果M取值为6,N的取值为4,如果N 2=2对于每个发送端口最多能够指示2个特殊子载波,那么就存在两种可能,一种可能是指示1个特殊子载波,另一种可能是指示2个特殊子载波,那么:
Figure PCTCN2020110538-appb-000006
Figure PCTCN2020110538-appb-000007
代表4个子载波中,如果存在特殊子载波,指示1个特殊子载波,那么就对应四种情况:
情况一、特殊子载波为位置标识为1的子载波1;
情况二、特殊子载波为位置标识为2的子载波2;
情况三、特殊子载波为位置标识为3的子载波3;
情况四、特殊子载波为位置标识为4的子载波4。
Figure PCTCN2020110538-appb-000008
代表4个子载波中,如果存在特殊子载波,指示2个特殊子载波,那么就又对应六种情况:
情况五、特殊子载波为位置标识为1和2的子载波1和子载波2;
情况六、特殊子载波为位置标识为1和3的子载波1和子载波3;
情况七、特殊子载波为位置标识为1和4的子载波1和子载波4;
情况八、特殊子载波为位置标识为2和3的子载波2和子载波3;
情况九、特殊子载波为位置标识为2和4的子载波2和子载波4;
情况十、特殊子载波为位置标识为3和4的子载波3和子载波4。
对于指示值、情况和所指示的特殊子载波的关联关系通过表1进行示例性说明:
表1
Figure PCTCN2020110538-appb-000009
Figure PCTCN2020110538-appb-000010
可见,根据网络设备指示的不同指示值,终端可以确定某发送端口占用的子载波中,哪个子载波是特殊子载波。
对于表1中所示出的对应关系仅为示例,该对应关系可以预先设定或协议规定,也可以终端和网络设备各自维护对应关系表。
如图4所示,通过bitmap指示,终端获知针对该终端的总共6个发送端口中,至少有发送端口2、发送端口5为特殊发送端口。那么发送端口2关联的第二指示信息为指示值0010,那么终端可以获知发送端口2占用的子载波中至少子载波3为特殊子载波;那么发送端口5关联的第二指示信息为指示值0111,那么终端可以获知发送端口5占用的子载波中至少子载波2和子载波3为特殊子载波。
可选的,用于指示特殊发送端口的bitmap中,比特位的取值可以皆为0,即指示不存在特殊发送端口。这种情况下可选的,可以不发送第二指示信息,或者第二指示信息如上所述取特定值。
方式三:
所述指示信息为指示值,方式三下相当于对于特殊发送端口和特殊子载波进行联合指示。所述指示值对应
Figure PCTCN2020110538-appb-000011
种情况中一种情况的编号;N为大于等于1的正整数,是所述网络设备为所述终端调度的下行参考信号发送端口的总个数,n小于等于N,为最多能够指示的第一发送端口的个数;K为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,k小于等于K,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数。可选的,如果还需要指示不存在特殊子载波(相当于不存在特殊发送端口),那么所述指示值对应
Figure PCTCN2020110538-appb-000012
种情况中一情况的编号,相比于
Figure PCTCN2020110538-appb-000013
多出来的“+1”这一种情况对应的指示值,用于指示不存在特殊子载 波。
以不需要指示不存在特殊子载波(相当于不存在特殊发送端口)的情况为例,如果N取值为4,K的取值为3,如果n=2最多能够指示2个特殊发送端口,那么就存在两种可能,一种可能是指示1个特殊发送端口,另一种可能是指示2个特殊发送端口;k=2对于每个发送端口最多能够指示2个特殊子载波,那么就存在两种可能,一种可能是指示1个特殊子载波,另一种可能是指示2个特殊子载波,那么:
Figure PCTCN2020110538-appb-000014
Figure PCTCN2020110538-appb-000015
代表4个发送端口中,如果存在特殊发送端口,指示1个特殊发送端口,那么就对应四种情况:
情况1、特殊发送端口为端口标识为1的发送端口1;
情况2、特殊发送端口为端口标识为2的发送端口2;
情况3、特殊发送端口为端口标识为3的发送端口3;
情况4、特殊发送端口为端口标识为4的发送端口4。
Figure PCTCN2020110538-appb-000016
代表4个个发送端口中,如果存在特殊个发送端口,指示2个个发送端口,那么就又对应六种情况:
情况5、特殊发送端口为端口标识为1和2的发送端口1和发送端口2;
情况6、特殊发送端口为端口标识为1和3的发送端口1和发送端口3;
情况7、特殊发送端口为端口标识为1和4的发送端口1和发送端口4;
情况8、特殊发送端口为端口标识为2和3的发送端口2和发送端口3;
情况9、特殊发送端口为端口标识为2和4的发送端口2和发送端口4;
情况10、特殊发送端口为端口标识为3和4的发送端口3和发送端口4。
Figure PCTCN2020110538-appb-000017
代表3个子载波中,如果存在特殊子载波,指示1个特殊子载波,那么就对应三种情况:
情况1、特殊子载波为位置标识为1的子载波1;
情况2、特殊子载波为位置标识为2的子载波2;
情况3、特殊子载波为位置标识为3的子载波3。
Figure PCTCN2020110538-appb-000018
代表3个子载波中,如果存在特殊子载波,指示2个特殊子载波,那么就又对应三种情况:
情况4、特殊子载波为位置标识为1和2的子载波1和子载波2;
情况5、特殊子载波为位置标识为1和3的子载波1和子载波3;
情况6、特殊子载波为位置标识为2和3的子载波2和子载波3。
Figure PCTCN2020110538-appb-000019
如果存在特殊发送端口和特殊子载波,指示1个特殊发送端口的情况下,对应的24种情况:
情况1、特殊发送端口为端口标识为1的发送端口1,特殊子载波为位置标识为1的子载波1;
情况2、特殊发送端口为端口标识为1的发送端口1,特殊子载波为位置标识为2的子载波2;
情况3、特殊发送端口为端口标识为1的发送端口1,特殊子载波为位置标识为3的 子载波3;
情况4、特殊发送端口为端口标识为1的发送端口1,特殊子载波为位置标识为1和2的子载波1和子载波2;
情况5、特殊发送端口为端口标识为1的发送端口1,特殊子载波为位置标识为1和3的子载波1和子载波3;
情况6、特殊发送端口为端口标识为1的发送端口1,特殊子载波为位置标识为2和3的子载波2和子载波3;
情况7、特殊发送端口为端口标识为2的发送端口2,特殊子载波为位置标识为1的子载波1;
情况8、特殊发送端口为端口标识为2的发送端口2,特殊子载波为位置标识为2的子载波2;
……
情况23、特殊发送端口为端口标识为4的发送端口4,特殊子载波为位置标识为1和3的子载波1和子载波3;
情况24、特殊发送端口为端口标识为4的发送端口4,特殊子载波为位置标识为2和3的子载波2和子载波3。
Figure PCTCN2020110538-appb-000020
如果存在特殊发送端口和特殊子载波,指示2个特殊发送端口的情况下,对应的216种情况:
情况1、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1的子载波1,发送端口2占用的特殊子载波为位置标识为1的子载波1;
情况2、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1的子载波1,发送端口2占用的特殊子载波为位置标识为2的子载波2;
情况3、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1的子载波1,发送端口2占用的特殊子载波为位置标识为3的子载波3;
情况4、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1的子载波1,发送端口2占用的特殊子载波为位置标识为1和2的子载波1和子载波2;
情况5、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1的子载波1,发送端口2占用的特殊子载波为位置标识为1和3的子载波1和子载波3;
情况6、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1的子载波1,发送端口2占用的特殊子载波为位置标识为2和3的子载波2和子载波3;
情况7、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为2的子载波2,发送端口2占用的特殊子载波为位置标识为1的子载波1;
……
情况19、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1和2的子载波1和子载波2,发送端口2占用的特殊子载波为位置标识为1的子载波1;
情况20、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1和2的子载波1和子载波2,发送端口2占用的特殊子载波为位置标识为2的子载波2;
……
情况24、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1和2的子载波1和子载波2,发送端口2占用的特殊子载波为位置标识为2和3的子载波2和子载波3;
……
情况36、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为2和3的子载波2和子载波3,发送端口2占用的特殊子载波为位置标识为2和3的子载波2和子载波3;
情况37、特殊发送端口为端口标识为1和3的发送端口1和发送端口3,发送端口1占用的特殊子载波为位置标识为1的子载波1,发送端口2占用的特殊子载波为位置标识为1的子载波1;
……
情况216、特殊发送端口为端口标识为3和4的发送端口3和发送端口4,发送端口3占用的特殊子载波为位置标识为2和3的子载波2和子载波3,发送端口4占用的特殊子载波为位置标识为2和3的子载波2和子载波3。
因此,根据
Figure PCTCN2020110538-appb-000021
因此,得知总共有240种情况,分别是:
情况一:特殊发送端口为端口标识为1的发送端口1,特殊子载波为位置标识为1的子载波1;
情况二、特殊发送端口为端口标识为1的发送端口1,特殊子载波为位置标识为2的子载波2;
情况三、特殊发送端口为端口标识为1的发送端口1,特殊子载波为位置标识为3的子载波3;
情况四、特殊发送端口为端口标识为1的发送端口1,特殊子载波为位置标识为1和2的子载波1和子载波2;
……
情况二十四、特殊发送端口为端口标识为4的发送端口4,特殊子载波为位置标识为2和3的子载波2和子载波3。
情况二十五、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1的子载波1,发送端口2占用的特殊子载波为位置标识为1的子载波1;
情况二十六、特殊发送端口为端口标识为1和2的发送端口1和发送端口2,发送端口1占用的特殊子载波为位置标识为1的子载波1,发送端口2占用的特殊子载波为位置标识为2的子载波2;
……
情况二百四十、特殊发送端口为端口标识为3和4的发送端口3和发送端口4,发送端口3占用的特殊子载波为位置标识为2和3的子载波2和子载波3,发送端口4占用的特殊子载波为位置标识为2和3的子载波2和子载波3。
对于指示值、情况和所指示的特殊发送端口和特殊子载波的关联关系通过表2进行示例性说明:
表2
Figure PCTCN2020110538-appb-000022
可见,根据网络设备指示的不同指示值,终端可以确定哪个发送端口是特殊发送端口,各特殊发送端口占用的子载波中,哪个子载波是特殊子载波。
对于表2中所示出的对应关系仅为示例,该对应关系可以预先设定或协议规定,也可以终端和网络设备各自维护对应关系表。
可选的,如果不存在特殊子载波(相当于不存在特殊发送端口),可以发送特定取值来指示,即存在上述“+1”多出来的一种情况对应的取值。
方式四:
所述第一指示信息为指示值,所述第二指示信息携带在X个bitmap中,X为正整数,根据所述第一指示信息确定。
所述指示值对应M个发送端口关联的
Figure PCTCN2020110538-appb-000023
种情况中一情况的编号;M为大于等于1的正整数,为所述网络设备为所述终端调度的所有发送端口的个数;N 1小于等于M,为最多能够指示的特殊发送端口的个数。可选的,如果还需要指示不存在特殊发送端口,那么所述指示值对应
Figure PCTCN2020110538-appb-000024
种情况中一情况的编号,相比于
Figure PCTCN2020110538-appb-000025
多出来的“+1”这一种情况对应的指示值,用于指示不存在特殊发送端口。
以不需要指示不存在特殊发送端口的情况为例,如果M取值为6,如果N 1=2对于终端最多能够指示2个特殊发送端口,那么就存在两种可能,一种可能是指示1个特殊发送端口,另一种可能是指示2个特殊发送端口,那么:
Figure PCTCN2020110538-appb-000026
Figure PCTCN2020110538-appb-000027
代表4个发送端口中,如果存在特殊发送端口,指示1个特殊发送端口,那么就对应四种情况:
情况一、特殊发送端口为端口标识为1的发送端口1;
情况二、特殊发送端口为端口标识为2的发送端口2;
情况三、特殊发送端口为端口标识为3的发送端口3;
情况四、特殊发送端口为端口标识为4的发送端口4。
Figure PCTCN2020110538-appb-000028
代表4个发送端口中,如果存在特殊发送端口,指示2个特殊发送端口,那么就又对应六种情况:
情况五、特殊发送端口为端口标识为1和2的发送端口1和发送端口2;
情况六、特殊发送端口为端口标识为1和3的发送端口1和发送端口3;
情况七、特殊发送端口为端口标识为1和4的发送端口1和发送端口4;
情况八、特殊发送端口为端口标识为2和3的发送端口2和发送端口3;
情况九、特殊发送端口为端口标识为2和4的发送端口2和发送端口4;
情况十、特殊发送端口为端口标识为3和4的发送端口3和发送端口4。
对于指示值、情况和所指示的特殊发送端口的关联关系通过表3进行示例性说明:
表3
Figure PCTCN2020110538-appb-000029
可见,根据网络设备指示的不同指示值,终端可以确定发送端口中,哪个发送端口是特殊发送端口。
对于表3中所示出的对应关系仅为示例,该对应关系可以预先设定或协议规定,也可以终端和网络设备各自维护对应关系表。
所述第二指示信息携带在X个bitmap中,X根据所述第一指示信息确定。例如,按照上面的示例,如果第一指示信息为0010,则X就等于1,指示发送端口3占用的一个或多个特殊子载波。如果第一指示信息为1000,则X就等于2,有2个bitmap分别对应发送端口2和发送端口4。可选的,编号小或靠前的bitmap对应发送端口标识小的发送端口,也可以编号大或靠后的bitmap对应发送端口标识大的发送端口,本实施例不做限定。
可选的,如果不存在特殊发送端口,则所述指示值可以取特定值,即存在上述“+1”多出来的一种情况对应的取值。可选的,不发送所述第二指示信息。
可见,网络设备可以采用不同的指示方式向终端发送指示信息。
在步骤230中,终端根据所述指示信息,确定所述一个或多个所述特殊发送端口,以及各特殊发送端口对应的一个或多个特殊子载波。
终端根据网络设备发送的指示信息,能够获知哪个发送端口是特殊发送端口,各特殊发送端口对应的子载波中,哪个子载波是特殊子载波。
在步骤240中,所述终端根据所述指示信息,按照预设规则对各所述特殊发送端口进行处理。
步骤240为可选步骤,终端在确定所述特殊发送端口和对应的特殊子载波后,可以按照预设规则对各特殊发送端口进行处理(例如,子载波累加、信道估计时进行滤波处理等;可以对特殊发送端口进行子载波累加时忽略其所占用的特殊子载波,可以在对特殊发送端口进行信道估计进行子载波间的联合滤波时,降低特殊子载波对其他子载波影响)。本实施例中主要针对特殊发送端口描述,这里终端还可以对非特殊发送端口进行子载波累加,可以对所有发送端口进行处理。
可选的,所述预设规则包括:对各所述特殊发送端口进行处理时,忽略所述特殊子载波、对所述特殊子载波的计算进行特殊处理(例如,降低特殊子载波上信道估计的权值w i)或者单独处理特殊子载波上的信道估计等等。
本申请实施例的发送和接收指示的方法,通过网络设备的指示,能够使终端确定对哪些发送端口和其对应的子载波是需要特殊考虑的,从而在终端进行计算时,能够有针对性处理。
图5是从设备交互的角度示出的本申请实施例提供的发送和接收指示的装置500的示意性流程图。需要说明的是,本实施例及后续实施例皆以终端与网络设备之间交互为例进行描述,本申请不限于此。为了便于方案理解,在描述时,本实施例及后续实施例皆以终端和网络设备多侧的行为展开,从交互多方的角度进行整体描述,但绝非限定系统中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。
本实施例与图2对应的实施例的区别在于,图2的实施例从指示特殊发送端口和对应的特殊子载波的角度进行描述,而本实施例从发送端口的整体角度去看,指示是否存在特殊发送端口,与上述实施例相同或相似的内容在此不再赘述。
如图5所示,本申请实施例的方法500可以包括步骤510至步骤530。下面详细说明方法500中的各步骤:
在步骤510中,网络设备生成指示信息,所述指示信息用于指示是否存在下行参考信号的特殊发送端口。
可选的,图5所示的实施例,也可以采用所述图2的实施例中方式一至方式四的指示方法。如果如所述方式一至所述方式四的指示方式中网络设备向终端指示了特殊发送端口,那么所述指示信息即指示存在下行参考信号的特殊发送端口。
如所述方式一或方式二中的第一指示信息采用bitmap来指示,那么如果bitmap中有取值置1的比特位,则可以认为指示了存在下行参考信号的特殊发送端口;如果所有比特位的取值都置0,则可以认为指示了不存在下行参考信号的特殊发送端口。
如所述方式三至四,如果通过不同预定指示值指示了特殊发送端口,则相当于指示了存在特殊发送端口,如果通过特定指示值指示了不存在特殊发送端口,则相当于不存在特殊发送端口。
可选的,如果存在特殊发送端口,所述指示信息还包括第二指示信息,所述第二指示信息用于指示各特殊发送端口对应的满足预定条件的子载波。可选的,第二指示信息的指示方式可以参见上述方式一、方式二或方式四中描述的指示特殊子载波的内容,在此不再赘述。
可选的,所述指示信息还包括第三指示信息,所述第三指示信息用于指示各发送端口占用的子载波中是否存在满足预定条件的子载波。可选的,可以参见上述方式一、方式二或方式四中描述的第二指示信息指示特殊子载波的内容,指示了特殊子载波则相当于指示了存在特殊子载波,如果如上述方式一、方式二或方式四中描述的第二指示信息指示不存在特殊子载波,则相当于不存在特殊子载波。
可选的,所述指示信息还包括第四指示信息,所述第四指示信息用于指示针对该终端的所有发送端口中部分发送端口占用的子载波中是否存在满足预定条件的子载波。可选的,可以参见上述方式一、方式二或方式四中描述的第二指示信息指示特殊子载波的内容,指示了特殊子载波则相当于指示了存在特殊子载波,如果如上述方式一、方式二或方式四中描述的第二指示信息指示不存在特殊子载波,则相当于不存在特殊子载波。
可选的,如果不存在特殊发送端口,所述指示信息可以不包括上述第二指示信息、第三指示信息或第四指示信息,也可以包括第五指示信息,所述第五指示信息用于指示针对该终端的所有发送端口的每一个发送端口,不存在对应的满足预定条件的子载波。
可选的,对于满足预定条件、在存在特殊发送端口时是指示所有特殊发送端口或者指示部分特殊发送端口的相关内容,指示各特殊发送端口对应的所有特殊子载波或者指示部分特殊子载波的相关内容,类似图2所示实施例,可参见步骤210的描述,在此不再赘述。
在步骤520中,网络设备发送所述指示信息,终端接收所述指示信息。
本申请实施例中,对于指示信息的形式不进行限制,其可以直接指示也可以间接指示,可以通过不同的指示方式实现指示。指示信息可以一起发送或者分开发送。
在步骤530中,根据所述指示信息,终端确定是否存在所述特殊发送端口。
可选的,如果终端确定存在所述特殊发送端口,则终端对特殊发送端口在计算时做特殊考虑,如果终端确定不存在所述特殊发送端口,则无需特殊处理。
本申请实施例的发送和接收指示的方法,通过网络设备的指示,能够使终端设备确定是否存在特殊发送端口,是否需要特殊处理,从而在终端设备进行计算时,能够有针对性处理。
以上,结合图2至图5详细说明了本申请实施例提供的方法。以下,结合图6至图8详细说明本申请实施例提供的通信装置。
图6是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括通信单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可对应于上文装置实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200中的终端设备,该通信装置1000可以包括用于执行图2中的方法200中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,通信单元1100可用于执行方法200中的步骤220涉及终端接收的步骤,处理单元1200可用于执行方法200中的步骤230。
具体地,该通信装置1000可对应于根据本申请实施例的方法500中的终端设备,该通信装置1000可以包括用于执行图5中的方法500中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图5中的方法500的相应流程。
其中,当该通信装置1000用于执行图5中的方法500时,通信单元1100可用于执行方法500中的步骤520涉及终端接收的步骤,处理单元1200可用于执行方法500中的步骤530。
应理解,各单元执行上述相应步骤的具体过程在上述装置实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的通信单元1100可对应于图7中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图7中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片或芯片系统时,该通信装置1000中的通信单元1100可以为输入/输出接口、接口电路、输出/输入电路、管脚或相关电路等,处理单元1200可以为处理器、处理电路或逻辑电路。
具体地,该通信装置1000可对应于根据本申请实施例的方法200中的网络设备,该通信装置1000可以包括用于执行图2的方法200中的网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,通信单元1100可用于执行方法200中的步骤220涉及网络设备发送的步骤,处理单元1200可用于执行方法200中的步骤210。
具体地,该通信装置1000可对应于根据本申请实施例的方法500中的网络设备,该通信装置1000可以包括用于执行图5的方法500中的网络设备执行的装置的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图5中的方法500的相应流程。
其中,当该通信装置1000用于执行图5中的方法500时,通信单元1100可用于执 行方法500中的步骤520涉及网络设备发送的步骤,处理单元1200可用于执行方法500中的步骤510。
应理解,各单元执行上述相应步骤的具体过程在上述装置实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的通信单元为可对应于图8中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200可对应于图8中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片或芯片系统时,该通信装置1000中的通信单元1100可以为输入/输出接口、接口电路、输出/输入电路、管脚或相关电路等,处理单元1200可以为处理器、处理电路或逻辑电路。
图7是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。
如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图6中的处理单元对应。
上述收发器2020可以与图6中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图7所示的终端设备2000能够实现图2、图5所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述装置实施例中的相应流程。具体可参见上述装置实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器2010可以用于执行前面装置实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面装置实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面装置实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图8是本申请实施例提供的网络设备的结构示意图,该网络设备3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。
在5G通信系统中,网络设备3000可以包括CU、DU和AAU相比于LTE通信系 统中的网络设备由一个或多个射频单元,如远端射频单元(remote radio unit,RRU)和一个或多个基带单元(base band unit,BBU)来说:
原BBU的非实时部分将分割出来,重新定义为CU,负责处理非实时协议和服务、BBU的部分物理层处理功能与原RRU及无源天线合并为AAU、BBU的剩余功能重新定义为DU,负责处理物理层协议和实时服务。简而言之,CU和DU,以处理内容的实时性进行区分、AAU为RRU和天线的组合。
CU、DU、AAU可以采取分离或合设的方式,所以,会出现多种网络部署形态,一种可能的部署形态如图8所示与传统4G网络设备一致,CU与DU共硬件部署。应理解,图8只是一种示例,对本申请的保护范围并不限制,例如,部署形态还可以是DU部署在BBU机房,CU集中部署或DU集中部署,CU更高层次集中等。
所述AAU3100可以实现收发功能称为收发单元3100,与图6中的通信单元1100对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述CU和DU3200可以实现内部处理功能称为处理单元3200,与图6中的处理单元1200对应。可选地,该处理单元3200可以对网络设备进行控制等,可以称为控制器。所述AAU与CU和DU可以是物理上设置在一起,也可以物理上分离设置的。
另外,网络设备不限于图8所示的形态,也可以是其它形态:例如:包括BBU和自适应无线单元(adaptive radio unit,ARU),或者包括BBU和有源天线单元(active antenna unit,AAU);也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
在一个示例中,所述处理单元3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制网络设备进行必要的动作,例如用于控制网络设备执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图8所示的网络设备3000能够实现图2、图5的方法实施例中涉及的网络设备功能。网络设备3000中的各个单元的操作和/或功能,分别为了实现本申请方法实施例中由网络设备执行的相应流程。为避免重复,此处适当省略详述描述。图8示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
上述CU和DU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和通信接口;所述处理器,用于执行计算机程序,使得所述处理装置实现上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片或芯片系统。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。所述通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在实现过程中,上述装置的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的装置的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述装置的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述装置实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各装置、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的装置的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述装置的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和装置的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的装置,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执 行图2-图4所示实施例中任意一个实施例的装置。
根据本申请实施例提供的装置,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2-图4所示实施例中任意一个实施例的装置。
根据本申请实施例提供的装置,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和装置实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行装置实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的装置实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同装置来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述装置实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和装置,可以 通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述装置的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (44)

  1. 一种接收指示的方法,其特征在于,包括:
    终端接收来自网络设备的指示信息,所述指示信息用于指示下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口,所述指示信息还用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波;
    所述终端根据所述指示信息,确定所述一个或多个第一发送端口,以及各所述第一发送端口对应的一个或多个满足预定条件的子载波。
  2. 根据权利要求1所述的方法,其特征在于,所述预定条件包括:
    子载波的发射功率低于预设阈值;或
    子载波的发射功率为零。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括,所述终端根据所述指示信息,按照预设规则对各所述第一发送端口进行子载波累加。
  4. 根据权利要求3所述的方法,其特征在于,所述预设规则包括:
    对各所述第一发送端口进行子载波累加时,忽略各所述第一发送端口对应的所述满足预定条件的子载波。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述一个或多个第一发送端口,所述第二指示信息用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波。
  6. 根据权利要求5所述的方法,其特征在于,所述第一指示信息携带在一个比特图bitmap中;所述第二指示信息携带在L个bitmap中,L等于所述第一指示信息指示的所述第一发送端口的个数。
  7. 根据权利要求5所述的方法,其特征在于,所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值;或
    所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中。
  8. 根据权利要求7所述的方法,其特征在于,当所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值时,所述指示值对应各第一发送端口关联的(i=1N2CNi)种情况中一种情况的编号;N为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,N 2小于或等于N,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数;
    当所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中时,所述指示值对应M个发送端口关联的
    Figure PCTCN2020110538-appb-100001
    种情况中一情况的编号;M为大于等于1的正整数,为所述网络设备为所述终端调度的下行参考信号发送端口的总个数;N 1小于等于M,为最多能够指示的第一发送端口的个数。
  9. 根据权利要求1-4任一项所述的方法,其特征在于,所述指示信息为指示值。
  10. 根据权利要求9所述的方法,其特征在于,所述指示值对应
    Figure PCTCN2020110538-appb-100002
    种情况中一种情况的编号;N为大于等于1的正整数,是所述网络设备为所述终端调度的下行 参考信号发送端口的总个数,n小于等于N,为最多能够指示的第一发送端口的个数;K为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,k小于等于K,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数。
  11. 一种发送指示的方法,其特征在于,包括:
    生成指示信息,所述指示信息用于指示下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口,所述指示信息还用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波;
    向终端发送所述指示信息。
  12. 根据权利要求11所述的方法,其特征在于,所述预定条件包括:
    子载波的发射功率低于预设阈值;或
    子载波的发射功率为零。
  13. 根据权利要求11或12所述的方法,其特征在于,所述指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述一个或多个第一发送端口,所述第二指示信息用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波。
  14. 根据权利要求13所述的方法,其特征在于,所述第一指示信息携带在一个比特图bitmap中;所述第二指示信息携带在L个bitmap中,L等于所述第一指示信息指示的所述第一发送端口的个数。
  15. 根据权利要求13所述的方法,其特征在于,所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值;或
    所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中。
  16. 根据权利要求15所述的方法,其特征在于,当所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值时,所述指示值对应各第一发送端口关联的(i=1N2CNi)种情况中一种情况的编号;N为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,N 2小于或等于N,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数;
    当所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中时,所述指示值对应M个发送端口关联的
    Figure PCTCN2020110538-appb-100003
    种情况中一情况的编号;M为大于等于1的正整数,为所述网络设备为所述终端调度的下行参考信号发送端口的总个数;N 1小于等于M,为最多能够指示的第一发送端口的个数。
  17. 根据权利要求11或12所述的方法,其特征在于,所述指示信息为指示值。
  18. 根据权利要求17所述的方法,其特征在于,所述指示值对应
    Figure PCTCN2020110538-appb-100004
    种情况中一种情况的编号;N为大于等于1的正整数,是所述网络设备为所述终端调度的下行参考信号发送端口的总个数,n小于等于N,为最多能够指示的第一发送端口的个数;K为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,k小于等于K,为对 于每个第一发送端口最多能够指示的满足预定条件的子载波的个数。
  19. 一种接收指示的装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的指示信息,所述指示信息用于指示下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口,所述指示信息还用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波;
    处理单元,用于根据所述指示信息,确定所述一个或多个第一发送端口,以及各所述第一发送端口对应的一个或多个满足预定条件的子载波。
  20. 根据权利要求19所述的装置,其特征在于,所述预定条件包括:
    子载波的发射功率低于预设阈值;或
    子载波的发射功率为零。
  21. 根据权利要求19所述的装置,其特征在于,所述处理单元还用于,根据所述指示信息,按照预设规则对各所述第一发送端口进行子载波累加。
  22. 根据权利要求21所述的装置,其特征在于,所述预设规则包括:
    对各所述第一发送端口进行子载波累加时,忽略各所述第一发送端口对应的所述满足预定条件的子载波。
  23. 根据权利要求19-22任一项所述的装置,其特征在于,所述指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述一个或多个第一发送端口,所述第二指示信息用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波。
  24. 根据权利要求23所述的装置,其特征在于,所述第一指示信息携带在一个比特图bitmap中;所述第二指示信息携带在L个bitmap中,L等于所述第一指示信息指示的所述第一发送端口的个数。
  25. 根据权利要求23所述的装置,其特征在于,所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值;或
    所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中。
  26. 根据权利要求25所述的装置,其特征在于,当所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值时,所述指示值对应各第一发送端口关联的(i=1N2CNi)种情况中一种情况的编号;N为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,N 2小于或等于N,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数;
    当所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中时,所述指示值对应M个发送端口关联的
    Figure PCTCN2020110538-appb-100005
    种情况中一情况的编号;M为大于等于1的正整数,为所述网络设备为所述终端调度的下行参考信号发送端口的总个数;N 1小于等于M,为最多能够指示的第一发送端口的个数。
  27. 根据权利要求19-22任一项所述的装置,其特征在于,所述指示信息为指示值。
  28. 根据权利要求27所述的装置,其特征在于,所述指示值对应
    Figure PCTCN2020110538-appb-100006
    种情况中一种情况的编号;N为大于等于1的正整数,是所述网络设备为所述终端调度的下行参考信号发送端口的总个数,n小于等于N,为最多能够指示的第一发送端口的个数;K为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,k小于等于K,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数。
  29. 根据权利要求19-28任一项所述的装置,其特征在于,所述通信单元为收发器,所述处理单元为处理器。
  30. 一种发送指示的装置,其特征在于,包括:
    处理单元,用于生成指示信息,所述指示信息用于指示下行参考信号的一个或多个第一发送端口,所述第一发送端口为下行参考信号发送端口中占用的子载波中存在满足预定条件的子载波的发送端口,所述指示信息还用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波;
    通信单元,用于向终端发送所述指示信息。
  31. 根据权利要求30所述的装置,其特征在于,所述预定条件包括:
    子载波的发射功率低于预设阈值;或
    子载波的发射功率为零。
  32. 根据权利要求30或31所述的装置,其特征在于,所述指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述一个或多个第一发送端口,所述第二指示信息用于指示各所述第一发送端口对应的一个或多个满足预定条件的子载波。
  33. 根据权利要求32所述的装置,其特征在于,所述第一指示信息携带在一个比特图bitmap中;所述第二指示信息携带在L个bitmap中,L等于所述第一指示信息指示的所述第一发送端口的个数。
  34. 根据权利要求32所述的装置,其特征在于,所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值;或
    所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中。
  35. 根据权利要求34所述的装置,其特征在于,当所述第一指示信息携带在一个比特图bitmap中,所述第二指示信息为一个或多个指示值时,所述指示值对应各第一发送端口关联的(i=1N2CNi)种情况中一种情况的编号;N为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,N 2小于或等于N,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数;
    当所述第一指示信息为指示值,所述第二指示信息携带在一个或多个比特图bitmap中时,所述指示值对应M个发送端口关联的
    Figure PCTCN2020110538-appb-100007
    种情况中一情况的编号;M为大于等于1的正整数,为所述网络设备为所述终端调度的下行参考信号发送端口的总个数;N 1小于等于M,为最多能够指示的第一发送端口的个数。
  36. 根据权利要求30或31所述的装置,其特征在于,所述指示信息为指示值。
  37. 根据权利要求36所述的装置,其特征在于,所述指示值对应
    Figure PCTCN2020110538-appb-100008
    种情况中一种情况的编号;N为大于等于1的正整数,是所述网络设备为所述终端调度的下行参考信号发送端口的总个数,n小于等于N,为最多能够指示的第一发送端口的个数;K为大于等于1的正整数,为各第一发送端口占用的子载波的总个数,k小于等于K,为对于每个第一发送端口最多能够指示的满足预定条件的子载波的个数。
  38. 根据权利要求30-37任一项所述的装置,其特征在于,所述通信单元为收发器,所述处理单元为处理器。
  39. 一种处理装置,包括处理器和通信接口,所述处理器通过所述通信接口与外部通信,所述处理器用于执行计算机程序,使得所述处理装置实现如权利要求1至18中任一项所述的方法。
  40. 如权利要求39所述处理装置,其特征在于,所述处理装置为芯片或芯片系统。
  41. 一种处理装置,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行所述计算机程序,使得所述处理装置实现如权利要求1至18中任一项所述的方法。
  42. 如权利要求41所述处理装置,其特征在于,所述处理装置为芯片或芯片系统。
  43. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至18中任一项所述的装置。
  44. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至18中任一项所述的装置。
PCT/CN2020/110538 2019-08-23 2020-08-21 发送和接收指示的方法和装置 WO2021036934A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910783828.1 2019-08-23
CN201910783828.1A CN112422245B (zh) 2019-08-23 2019-08-23 发送和接收指示的方法和装置

Publications (1)

Publication Number Publication Date
WO2021036934A1 true WO2021036934A1 (zh) 2021-03-04

Family

ID=74684870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110538 WO2021036934A1 (zh) 2019-08-23 2020-08-21 发送和接收指示的方法和装置

Country Status (2)

Country Link
CN (1) CN112422245B (zh)
WO (1) WO2021036934A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107911153A (zh) * 2017-10-31 2018-04-13 东南大学 一种面向fdd系统的基于上行csi的下行信道重建方法
CN108023631A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 传输信息的方法和设备
CN109150427A (zh) * 2017-06-15 2019-01-04 电信科学技术研究院 一种信号处理方法、装置、电子设备及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040004951A1 (en) * 2002-07-05 2004-01-08 Interdigital Technology Corporation Method for performing wireless switching
CN101459641A (zh) * 2007-12-14 2009-06-17 华为技术有限公司 资源获取方法及系统、终端和基站
US9762372B2 (en) * 2010-06-15 2017-09-12 Texas Instruments Incorporated CSI reporting on PUSCH for carrier aggregation
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
CN107026681B (zh) * 2016-02-01 2022-01-14 北京三星通信技术研究有限公司 信号发送方法、接收方法、发射机和接收机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023631A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 传输信息的方法和设备
CN109150427A (zh) * 2017-06-15 2019-01-04 电信科学技术研究院 一种信号处理方法、装置、电子设备及计算机可读存储介质
CN107911153A (zh) * 2017-10-31 2018-04-13 东南大学 一种面向fdd系统的基于上行csi的下行信道重建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "On the channel reciprocity support for CSI acquisition", 3GPP DRAFT; R1-1708914, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 6 May 2017 (2017-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051262763 *
ZTE: "Discussion on CSI-RS and CSI enhancement for EBF/FD-MIMO", 3GPP DRAFT; R1-152985 CSI-RS AND CSI FEEDBACK ENHANCEMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Fukuoka, Japan; 20150525 - 20150529, 24 May 2015 (2015-05-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050973969 *

Also Published As

Publication number Publication date
CN112422245B (zh) 2022-04-22
CN112422245A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
JP7283705B2 (ja) 端末デバイスの能力を報告する方法および通信装置
WO2020125422A1 (zh) 一种信道状态信息csi上报的配置方法和通信装置
WO2020143647A1 (zh) 传输信道状态信息的方法和装置
WO2020143829A1 (zh) 发送和接收指示的方法和装置
WO2020207369A1 (zh) 一种信道测量方法和通信装置
WO2022048593A1 (zh) 信道测量的方法和装置
WO2021052473A1 (zh) 通信方法和通信装置
WO2020143577A1 (zh) 参数配置方法和通信装置
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
WO2020211681A1 (zh) 一种信道测量方法和通信装置
WO2017132793A1 (en) Method, system and apparatus
WO2021056588A1 (zh) 一种配置预编码的方法及装置
US20230379020A1 (en) Precoding method and apparatus
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2020192702A1 (zh) 通信方法和通信装置
CN115088224B (zh) 一种信道状态信息反馈方法及通信装置
WO2019219022A1 (zh) 通信方法、终端设备和网络设备
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
US11784853B2 (en) Channel measurement method and communication apparatus
US20220271900A1 (en) Method for configuring transmit port of downlink reference signal and communication apparatus
WO2021036934A1 (zh) 发送和接收指示的方法和装置
WO2021189302A1 (zh) 更新的方法和通信装置
WO2023222021A1 (zh) 一种信道测量方法及装置
WO2022147709A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857161

Country of ref document: EP

Kind code of ref document: A1