WO2018137397A1 - 一种配置信息的方法、装置及系统 - Google Patents

一种配置信息的方法、装置及系统 Download PDF

Info

Publication number
WO2018137397A1
WO2018137397A1 PCT/CN2017/113092 CN2017113092W WO2018137397A1 WO 2018137397 A1 WO2018137397 A1 WO 2018137397A1 CN 2017113092 W CN2017113092 W CN 2017113092W WO 2018137397 A1 WO2018137397 A1 WO 2018137397A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
resource
index
time
indication information
Prior art date
Application number
PCT/CN2017/113092
Other languages
English (en)
French (fr)
Inventor
唐小勇
王晓娜
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710184921.1A external-priority patent/CN108365939B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019015303-9A priority Critical patent/BR112019015303A2/pt
Priority to EP17894072.2A priority patent/EP3567892A4/en
Publication of WO2018137397A1 publication Critical patent/WO2018137397A1/zh
Priority to US16/522,945 priority patent/US11051182B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • Embodiments of the present application relate to the field of communications, and, more particularly, to a method, apparatus, and system for configuring measurement information.
  • the high frequency band (generally the frequency band above 6 GHz is the high frequency band, and the frequency band below 6 GHz is the low frequency band). Due to its rich spectrum resources, it becomes the main working frequency band of 5G technology.
  • the high frequency band since the electromagnetic wave has a large path loss during data transmission and the anti-fading performance is poor, a narrow beam analog weighting technique needs to be introduced.
  • the narrow beams detected by the terminal device may be different at different times with the movement of the terminal device and the time-varying characteristics of the channel, so that the network device needs to be the same terminal device at different times. Configure different narrow beam measurement information. Then, the terminal device measures the narrow beam based on the received narrow beam measurement information and feeds back channel state information of the current narrow beam.
  • LTE and LTE-A long term evolution
  • LTE-A advanced long term evolution
  • the technical problem to be solved by the present invention is to adopt a narrow beam analog weighting technique for the high frequency band, and how to perform measurement based on the narrow beam channel in time and accurately.
  • the embodiment of the present application provides a method, an apparatus, and a system for configuring information.
  • an embodiment of the present invention provides a method for configuring information, where the method includes: generating first configuration information, where the first configuration information includes at least one of the following information:
  • the method further includes:
  • the second configuration information includes at least one of the following information:
  • each of the resource settings includes one or more resource sets.
  • each of the resource sets includes a plurality of resources, and each of the resources includes at least one of the following information:
  • Time-frequency information of the resource index information of the resource, time domain characteristics of the resource, and function indication information of the resource.
  • each of the reporting settings includes at least one of the following information:
  • the information for indicating the time domain characteristic is reported, the information for indicating the frequency domain of the reporting frequency, and the information for indicating the type or content of the report.
  • the link specifically includes at least one of the following information:
  • Resource setting index For Resource setting index, report setting index, and measurement amount.
  • the indication information of the terminal device receiving the beam is one or more of the following information:
  • the indication information of the sending and feedback period of the RS is one or more of the following information: the number of orthogonal frequency division multiplexing OFDM symbols, the number of time transmission intervals TTI, and the time transmission unit.
  • the indication information of activation or deactivation of the RS is one or more of the following information: a resource setting index, a resource set index, a resource index, a port index, and an OFDM symbol index.
  • the time offset indication information of the RS transmission and the CSI feedback is: transmission of one or more reference signal ports and time offset of CSI feedback, one or more reference signal RS transmissions, and Time offset of CSI feedback, or one or more resource set transmissions and CSI feedback time offsets, or one or more resource setting transmissions and CSI feedback time offsets.
  • the time delay indication information of the RS transmission and the CSI feedback is one or more of the following information: the number of OFDM symbols, the number of TTIs, time, obtained by looking up a table or formula A time value.
  • a method of configuring information includes:
  • the first configuration information including at least one of the following information:
  • Channel measurement or interference measurement is performed according to the first configuration information.
  • the method further includes:
  • the second configuration information including at least one of the following information:
  • One or more resource settings one or more reporting settings, links; wherein the link is used to indicate a relationship of the one or more resource settings to one or more reporting settings;
  • each of the resource settings includes one or more resource sets.
  • each of the resource sets includes multiple resources, and each of the resources includes at least one of the following information:
  • Time-frequency information of the resource index information of the resource, time domain characteristics of the resource, and function indication information of the resource.
  • each of the reporting settings includes at least one of the following information:
  • the information for indicating the time domain characteristic is reported, the information for indicating the frequency domain of the reporting frequency, and the information for indicating the type or content of the report.
  • the link specifically includes at least one of the following information:
  • Resource setting index For Resource setting index, report setting index, and measurement amount.
  • the indication information of the terminal device receiving beam is a transmit beam index, a receive beam index, a beam pair index, a quasi co-sited QCL index or a QCL indication, and a combination of any two or more of the foregoing.
  • the indication information of the terminal device receiving beam is a transmit beam index, a receive beam index, a beam pair index, a quasi co-sited QCL index or a QCL indication, and a combination of any one or more of the foregoing.
  • the indication information of the sending and feedback period of the RS is: the number of orthogonal frequency division multiplexing OFDM symbols, the number of time transmission intervals TTI, the number of time transmission unit TTUs, the absolute time, or the check The time value obtained by the table or formula.
  • the indication information of activation or deactivation of the RS is one or more of the following information:
  • Resource setting index resource set index, resource index, port index, OFDM symbol index.
  • the time offset indication information of the RS transmission and the CSI feedback is: transmission of one or more reference signal ports and time offset of CSI feedback, one or more reference signal RS transmissions, and Time offset of CSI feedback, or one or more resource set transmissions and CSI feedback time offsets, or one or more resource setting transmissions and CSI feedback time offsets.
  • the time delay indication information of the RS transmission and the CSI feedback is one or more of the following information: the number of OFDM symbols, the number of TTIs, the absolute time, obtained by looking up a table or formula. A time value.
  • the performing measurement and feedback according to the first configuration information includes:
  • the measurement result is fed back based on the report setting.
  • the embodiment of the present invention further provides a method for configuring information, including:
  • the first configuration information includes one or more of a CSI-RS basic pattern, a number of OFDM symbols used for transmitting a reference signal, time-frequency position information of OFDM for RS transmission, and a CSI-RS transmission period.
  • the CSI-RS base pattern further includes one or more of the following information:
  • CSI-RS channel state information-reference signal
  • OFDM Orthogonal Frequency Division Multiplexing
  • the CSI-RS basic pattern is relatively stable, the delay is small, and the tolerance is large.
  • the CSI-RS basic pattern is transmitted to the terminal device through RRC signaling, which can save signaling overhead.
  • the second configuration information includes at least one of the following information:
  • One or more resource settings, one or more reporting settings, and a link wherein the link is used to identify the one or more resource settings and the one or more Report the relationship and measurement amount.
  • each resource setting corresponds to a resource setting index for uniquely identifying the resource setting.
  • each resource setting includes one or more resource sets, and each resource set corresponds to one resource set index for uniquely identifying the resource set.
  • each resource set further includes one or more CSI-RS resources, and each CSI-RS resource corresponds to one resource index, for uniquely identifying the CSI-RS resource.
  • each CSI-RS resource further includes one or more of the following information: CSI-RS time-frequency location information, time domain characteristics for transmitting the CSI-RS, and functions of the CSI-RS.
  • the indication information, the beam information of the CSI-RS received by the terminal device, the transmission of the CSI-RS, and the indication information of the CSI-RS feedback period, the indication information of the deactivation or activation of the CSI-RS, the CSI-RS transmission, and the CSI The time offset indication information of the feedback and the indication information of the beam scanning method.
  • each reporting setting includes one or more of the following information: an index of the escalation setting for uniquely identifying a reporting setting; a time domain characteristic of CSI measurement and reporting; CSI measurement and reporting Frequency domain granularity; type or content reported by CSI; indication information of beam scanning method.
  • the link includes one or more of the following information: a resource setting index, a reporting setting index, a quantity to be measured, and an indication of a beam scanning method.
  • the indication information of the terminal device receiving beam is a transmit beam index, a receive beam index, a beam pair index, a quasi co-sited QCL index or a QCL indication, and a combination of any one or more of the foregoing.
  • the indication information of the terminal device receiving beam is a transmit beam index, a receive beam index, a beam pair index, a quasi co-sited QCL index or a QCL indication, and a combination of any one or more of the foregoing.
  • the indication information of the transmission and feedback period of the RS is: the number of orthogonal frequency division multiplexing OFDM symbols, the number of time transmission intervals (TTIs), and the time transmission unit (Time Transmission) Unit, TTU), absolute time, or time value obtained by looking up a table or formula.
  • the indication information of activation or deactivation of the RS is one or more index sets, and each index set is a resource setting index, a resource set index, a resource index, and any one of the foregoing or The combination above.
  • the time offset indication information of the RS transmission and the CSI feedback is: transmission of one or more reference signal ports and time offset of CSI feedback, one or more reference signal RS transmissions, and Time offset of CSI feedback, or one or more resource set transmissions and CSI feedback time offsets, or one or more resource setting transmissions and CSI feedback time offsets.
  • the time delay indication information of the RS transmission and the CSI feedback is one or more of the following information: the number of OFDM symbols, the number of TTIs, the absolute time, obtained by looking up a table or formula. A time value.
  • the embodiment of the present invention further provides a method for configuring information, including:
  • the first configuration information includes one or more of a CSI-RS basic pattern, a number of OFDM symbols used for transmitting a reference signal, time-frequency position information of OFDM for RS transmission, and a CSI-RS transmission period.
  • the CSI-RS base pattern further includes one or more of the following information:
  • CSI-RS channel state information-reference signal
  • OFDM Orthogonal Frequency Division Multiplexing
  • the CSI-RS basic pattern is relatively stable, the delay is small, and the tolerance is large.
  • the CSI-RS basic pattern is transmitted to the terminal device through RRC signaling, which can save signaling overhead.
  • the second configuration information includes at least one of the following information:
  • One or more resource settings, one or more reporting settings, and a link wherein the link is used to identify the one or more resource settings and the one or more Report the relationship set.
  • each resource setting corresponds to a resource setting index for uniquely identifying the resource setting.
  • each resource setting includes one or more resource sets, and each resource set corresponds to one resource set index for uniquely identifying the resource set.
  • each resource set further includes one or more CSI-RS resources, and each CSI-RS resource corresponds to one resource index, for uniquely identifying the CSI-RS resource.
  • each CSI-RS resource further includes one or more of the following information: each CSI-RS time-frequency location information, a time domain characteristic of transmitting the CSI-RS, the CSI-RS Function indication information, beam information of the CSI-RS received by the terminal device, indication of the CSI-RS transmission and CSI-RS feedback period, indication information of deactivation or activation of the CSI-RS, the CSI-RS transmission And the time offset indication information of the CSI feedback and the indication information of the beam scanning method.
  • each reporting setting includes one or more of the following information: an index of the escalation setting for uniquely identifying a reporting setting; a time domain characteristic of CSI measurement and reporting; CSI measurement and reporting Characteristics of the frequency domain; type or content reported by the CSI; indication information of the beam scanning method.
  • the link includes one or more of the following information: a resource setting index, a reporting setting index, a quantity to be measured, and an indication of a beam scanning method.
  • the indication information of the terminal device receiving beam is a transmit beam index, a receive beam index, a beam pair index, a quasi co-sited QCL index or a QCL indication, and a combination of any one or more of the foregoing.
  • the indication information of the terminal device receiving beam is a transmit beam index, a receive beam index, a beam pair index, a quasi co-sited QCL index or a QCL indication, and a combination of any one or more of the foregoing.
  • the indication information of the transmission and feedback period of the RS is the number of orthogonal frequency division multiplexing OFDM symbols, the number of time transmission intervals TTI, the number of time transmission unit TTUs, the absolute time, or by looking up the table. Or a time value obtained by a formula, and a combination of any one or more of the above.
  • the indication information of activation or deactivation of the RS is one or more index sets, and each index set includes a resource setting index, a resource set index, a resource index, and any one of the foregoing. Or a combination of the above.
  • the time offset indication information of the RS transmission and the CSI feedback is: transmission of one or more reference signal ports and time offset of CSI feedback, one or more reference signal RS transmissions, and Time offset of CSI feedback, or one or more resource set transmissions and CSI feedback time offsets, or one or more resource setting transmissions and CSI feedback time offsets.
  • the time offset indication information of the RS transmission and the CSI feedback is a number of OFDM symbols, a number of TTIs, an absolute time, a time value obtained by looking up a table or a formula, and any of the foregoing.
  • the time offset indication information of the RS transmission and the CSI feedback is a number of OFDM symbols, a number of TTIs, an absolute time, a time value obtained by looking up a table or a formula, and any of the foregoing.
  • an embodiment of the present invention provides a network device, including a processor and a transceiver, where the processor is configured to generate first configuration information, where the first configuration information includes at least one of the following information:
  • transceiver configured to send the first configuration information to the terminal device by using layer-1 or layer 2 signaling.
  • the processor is further configured to:
  • the second configuration information including at least one of the following information:
  • each of the resource settings includes one or more resource sets
  • the transceiver is configured to send the second configuration information.
  • each of the resource sets includes one or more resources, and each of the resources includes at least one of the following information:
  • Time-frequency information of the resource index information of the resource, time domain characteristics of the resource, and function indication information of the resource.
  • each of the reporting settings includes at least one of the following information:
  • the information for indicating the time domain characteristic is reported, the information for indicating the frequency domain of the reporting frequency, and the information for indicating the type or content of the report.
  • the link specifically includes at least one of the following information:
  • Resource setting index For Resource setting index, report setting index, and measurement amount.
  • the indication information of the terminal device receiving the beam is one or more of the following information:
  • the indication information of the sending and feedback period of the RS is:
  • the number of orthogonal frequency division multiplexing OFDM symbols the number of time transmission intervals TTI, the number of time transmission unit TTUs, and time.
  • the indication information of activation or deactivation of the RS is one or more of the following information:
  • Resource setting index resource set index and resource index, port index, OFDM symbol index.
  • the time offset indication information of the RS transmission and the feedback is:
  • the embodiment of the present invention further provides a terminal device, including a transceiver and a processor, where
  • a transceiver configured to receive first configuration information from the network device, where the first configuration information includes at least one of the following information:
  • the processor is configured to perform channel measurement or interference measurement according to the first configuration information.
  • the indication information of the terminal device receiving the beam is one or more of the following information:
  • the indication information of the sending and feedback period of the RS is:
  • the number of orthogonal frequency division multiplexing OFDM symbols the number of time transmission intervals TTI, the number of time transmission unit TTUs, and time.
  • the indication information of activation or deactivation of the RS includes one or more of the following information:
  • Resource setting index resource set index, resource index, port index, OFDM symbol index.
  • the time offset indication information of the RS transmission and the feedback is:
  • the terminal device is further configured to:
  • the second configuration information including at least one of the following information:
  • each of the resource settings includes one or more resource sets.
  • each of the resource sets includes one or more resources, and each of the resources includes at least one of the following information:
  • Time-frequency information of the resource index information of the resource, time domain characteristics of the resource, and function indication information of the resource.
  • each of the reporting settings includes at least one of the following information:
  • the information for indicating the time domain characteristic is reported, the information for indicating the frequency domain of the reporting frequency, and the information for indicating the type or content of the report.
  • the link specifically includes at least one of the following information:
  • Resource setting index For Resource setting index, report setting index, and measurement amount.
  • the processor is specifically configured to:
  • the report setting is determined, and the measurement result is fed back according to the report setting.
  • an embodiment of the present invention provides a network device, including a processor and a transceiver, where And configured to divide the configuration information into the first configuration information and the second configuration information.
  • the transceiver is configured to send the first configuration information to the terminal device by using RRC signaling, and send the second configuration information to the terminal device by using a MAC CE or a DCI.
  • the first configuration information includes a CSI-RS basic pattern, a number of OFDM symbols used for transmitting a reference signal, time-frequency position information of OFDM for RS transmission, and a CSI-RS transmission period. one or more.
  • the CSI-RS base pattern further includes one or more of the following information:
  • CSI-RS channel state information-reference signal
  • OFDM Orthogonal Frequency Division Multiplexing
  • the CSI-RS basic pattern is relatively stable, the delay is small, and the tolerance is large.
  • the CSI-RS basic pattern is transmitted to the terminal device through RRC signaling, which can save signaling overhead.
  • the second configuration information includes at least one of the following information:
  • One or more resource settings, one or more reporting settings, and a link wherein the link is used to identify the one or more resource settings and the one or more Report the relationship set.
  • each resource setting corresponds to a resource setting index for uniquely identifying the resource setting.
  • each resource setting includes one or more resource sets, and each resource set corresponds to one resource set index for uniquely identifying the resource set.
  • each resource set further includes one or more CSI-RS resources, and each CSI-RS resource corresponds to one resource index, for uniquely identifying the CSI-RS resource.
  • each CSI-RS resource further includes one or more of the following information: each CSI-RS time-frequency location information, a time domain characteristic of transmitting the CSI-RS, the CSI-RS Function indication information, beam information of the CSI-RS received by the terminal device, indication of the CSI-RS transmission and CSI-RS feedback period, indication information of deactivation or activation of the CSI-RS, the CSI-RS transmission And the time offset indication information of the CSI feedback and the indication information of the beam scanning method.
  • each reporting setting includes one or more of the following information: an index of the escalation setting for uniquely identifying a reporting setting; a time domain characteristic of CSI measurement and reporting; CSI measurement and reporting Frequency domain granularity; type or content reported by CSI; indication information of beam scanning method.
  • the link includes one or more of the following information: a resource setting index, a reporting setting index, a quantity to be measured, and an indication of a beam scanning method.
  • the indication information of the terminal device receiving beam is a transmit beam index, a receive beam index, a beam pair index, a quasi co-sited QCL index or a QCL indication, and a combination of any one or more of the foregoing.
  • the indication information of the terminal device receiving beam is a transmit beam index, a receive beam index, a beam pair index, a quasi co-sited QCL index or a QCL indication, and a combination of any one or more of the foregoing.
  • the indication information of the transmission and feedback period of the RS is: the number of orthogonal frequency division multiplexing OFDM symbols, the number of time transmission intervals (TTI), and the time transmission unit. (Time Transmission Unit, TTU) number, absolute time, or time value obtained by looking up a table or formula.
  • the indication information of activation or deactivation of the RS is one or more index sets, and each index set includes a resource setting index, a resource set index, a resource index, and any one of the foregoing. Or a combination of the above.
  • the time offset indication information of the RS transmission and the CSI feedback is: transmission of one or more reference signal ports and time offset of CSI feedback, one or more reference signal RS transmissions, and Time offset of CSI feedback, or one or more resource set transmissions and CSI feedback time offsets, or one or more resource setting transmissions and CSI feedback time offsets.
  • the time offset indication information of the RS transmission and the CSI feedback is a number of OFDM symbols, a number of TTIs, an absolute time, a time value obtained by looking up a table or a formula, and any of the foregoing.
  • the time offset indication information of the RS transmission and the CSI feedback is a number of OFDM symbols, a number of TTIs, an absolute time, a time value obtained by looking up a table or a formula, and any of the foregoing.
  • an embodiment of the present invention provides a terminal device, including a processor and a transceiver, where the transceiver is configured to receive first configuration information from a network device, and receive second configuration information from a transmitter.
  • a processor configured to perform measurement and feedback according to the first configuration information and the second configuration information.
  • the first configuration information includes a CSI-RS basic pattern, a number of OFDM symbols used for transmitting a reference signal, time-frequency position information of OFDM for RS transmission, and one of CSI-RS transmission periods. Or multiple.
  • the CSI-RS base pattern further includes one or more of the following information:
  • CSI-RS channel state information-reference signal
  • OFDM Orthogonal Frequency Division Multiplexing
  • the CSI-RS basic pattern is relatively stable, the delay is small, and the tolerance is large.
  • the CSI-RS basic pattern is transmitted to the terminal device through RRC signaling, which can save signaling overhead.
  • the second configuration information includes at least one of the following information:
  • One or more resource settings, one or more reporting settings, and a link wherein the link is used to identify the one or more resource settings and the one or more Report the relationship set.
  • each resource setting corresponds to a resource setting index for uniquely identifying the resource setting.
  • each resource setting includes one or more resource sets, and each resource set corresponds to one resource set index for uniquely identifying the resource set.
  • each resource set further includes one or more CSI-RS resources, and each CSI-RS resource corresponds to one resource index, for uniquely identifying the CSI-RS resource.
  • each CSI-RS resource further includes one or more of the following information: each CSI-RS time-frequency location information, a time domain characteristic of transmitting the CSI-RS, the CSI-RS Function indication information, beam information of the CSI-RS received by the terminal device, indication of the CSI-RS transmission and CSI-RS feedback period, indication information of deactivation or activation of the CSI-RS, the CSI-RS transmission And the time offset indication information of the CSI feedback and the indication information of the beam scanning method.
  • each reporting setting includes one or more of the following information: an index of the escalation setting for uniquely identifying a reporting setting; a time domain characteristic of CSI measurement and reporting; CSI measurement and reporting Characteristics of the frequency domain; type or content reported by the CSI; indication information of the beam scanning method.
  • the link includes one or more of the following information: a resource setting index, a reporting setting index, a quantity to be measured, and an indication of a beam scanning method.
  • the indication information of the terminal device receiving beam is a transmit beam index, a receive beam index, a beam pair index, a quasi co-sited QCL index or a QCL indication, and a combination of any one or more of the foregoing.
  • the indication information of the terminal device receiving beam is a transmit beam index, a receive beam index, a beam pair index, a quasi co-sited QCL index or a QCL indication, and a combination of any one or more of the foregoing.
  • the indication information of the transmission and feedback period of the RS is the number of orthogonal frequency division multiplexing OFDM symbols, the number of time transmission intervals TTI, the number of time transmission unit TTUs, the absolute time, or by looking up the table. Or a time value obtained by a formula, and a combination of any one or more of the above.
  • the indication information of activation or deactivation of the RS is one or more index sets, and each index set includes a resource setting index, a resource set index, a resource index, and any one of the foregoing. Or a combination of the above.
  • the time offset indication information of the RS transmission and the CSI feedback is: transmission of one or more reference signal ports and time offset of CSI feedback, one or more reference signal RS transmissions, and Time offset of CSI feedback, or one or more resource set transmissions and CSI feedback time offsets, or one or more resource setting transmissions and CSI feedback time offsets.
  • the time offset indication information of the RS transmission and the CSI feedback is a number of OFDM symbols, a number of TTIs, an absolute time, a time value obtained by looking up a table or a formula, and any of the foregoing.
  • the time offset indication information of the RS transmission and the CSI feedback is a number of OFDM symbols, a number of TTIs, an absolute time, a time value obtained by looking up a table or a formula, and any of the foregoing.
  • a further aspect of the present invention provides a communication system comprising a network device and a terminal device, wherein the network device is the network device according to the fifth or seventh aspect, the terminal device is the terminal device according to the sixth or eighth aspect .
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • the indication information of the beam scanning method is index information of a resource setting resource setting.
  • the indication information of the beam scanning method is index information of a resource set resource set.
  • the terminal device receives indication information of a beam, where the indication information is one or more combinations of the following information:
  • the first indication information is used to indicate a beam pair index type corresponding to different types or functions or processes
  • the indication information is a group index Group ID information
  • the indication information is a logical ID or a bit bitmap Bit-Map information of the transmission beam
  • the fourth indication information is a logical ID of the receiving beam or a bit bitmap Bit-Map information.
  • Various embodiments of the present invention provide a scheme for how to configure measurement information in the case where a narrow beam technique is employed in a high frequency band.
  • FIG. 1 is a schematic diagram of a scenario in which the technical solution of the embodiment of the present application is applied;
  • 2A is a schematic flowchart of a method for configuring information according to an embodiment of the present application
  • 2B is a schematic diagram of a second configuration resource according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for configuring information according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a pilot resource transmission time offset according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of a bit bitmap
  • Figure 6 is a schematic diagram of another bit bitmap
  • FIG. 7 is a schematic block diagram of a network device indicated by information according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a terminal device indicated by information according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a scenario in which the technical solution of the embodiment of the present application is applied.
  • the network device has six different transmit beams B1-B6 on the radio channel, and different analog weighting processes are applied to the six identical or different beams.
  • the terminal device 1 has one type of beam A1 as the receiving end of the radio frequency channel, and the terminal device 2 has two kinds of beams A1 and A2 as the receiving end of the radio frequency channel, and the beam pair information is established between the network device and the terminal device 1 through B1-B4 and A1.
  • the network device and the terminal device 2 establish beam pair information through the B5-B6 and the A1-A2, and use the communication between the network device and the terminal device 2. It should be understood that the application is applied. Communication between any network device and terminal device based on analog beam weighting.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • 5G 5th-Generation
  • a terminal device may also be referred to as a user equipment (User Equipment, referred to as "terminal equipment"), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device User Agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SSIP”) phone, a Wireless Local Loop (WLL) station, and a personal digital processing (Personal Digital) Assistant, referred to as "PDA"), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks, or future evolving public land mobiles A terminal device or the like in a network (Public Land Mobile Network, abbreviated as "PLMN").
  • PLMN Public Land Mobile Network
  • the present application describes various embodiments in connection with a network device.
  • the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, abbreviated as "BTS”) and a base station controller (“BSC”) in the GSM system or CDMA.
  • BTS Base Transceiver Station
  • BSC base station controller
  • the base station (NodeB, abbreviated as “NB”) and the radio network controller (Radio Network Controller, abbreviated as “RNC”), and may also be an evolved base station (Evolutional Node B, hereinafter referred to as “eNB” or “eNodeB”), or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and an access network device in a 5G network, such as a next-generation base station, or a Transmission Reception Point (TRP) or Access network equipment in a future evolved PLMN network, and the like.
  • NB NodeB
  • RNC Radio Network Controller
  • the basic principle of the embodiment of the present invention is that, in a high-frequency communication system (through a frequency band greater than 6 GHz), an analog narrow beam is used for receiving and transmitting reference signals and data, and time-frequency resources or port information and reception of reference signals are required.
  • the receiving beam or the transmitting beam of the side is associated, so that the receiving side can obtain which receiving beam or transmitting beam to use for receiving or transmitting the reference signal or data, and the related information needs to be configured to the receiving side before the reference signal or data is transmitted. After the receiving side obtains the configuration information, the correct receiving beam can be used to receive the specific reference signal or data.
  • FIG. 2A shows a schematic flowchart of a method 200 for configuring information according to an embodiment of the present application.
  • the network device generates first configuration information, where the first configuration information includes at least one of the following information:
  • the terminal device receives the indication information of the beam, the indication information of the reference signal RS transmission and the feedback period, the function indication information of the RS, and the indication information of the beam scanning method.
  • S220 Send the first configuration information to the terminal device by using layer-1 or layer 2 signaling.
  • the terminal device receives the signaling of the layer 1 or layer 2, and acquires first configuration information.
  • the layer 1 is downlink control information (DCI).
  • DCI downlink control information
  • the layer 2 signaling is a media access control control element (MAC CE).
  • MAC CE media access control control element
  • the first configuration information further includes the following information:
  • the indication information of the RS activation or deactivation, the RS transmission, and the time offset indication information of the feedback is the indication information of the RS activation or deactivation, the RS transmission, and the time offset indication information of the feedback.
  • the method 200 further includes:
  • the network device generates second configuration information, and sends the second configuration information to the terminal device, where the second configuration information may be referred to as a measurement setting.
  • the second configuration information may include one or more of the following information:
  • FIG. 2B shows a schematic diagram of a measurement setup in which M, N, X, and Y in FIG. 2B are integers greater than one.
  • Each RS resource setting corresponds to a resource setting index, which is used to uniquely identify the resource setting.
  • the second configuration information should be sent before or at the same time as the first configuration information.
  • each resource setting includes: one or more RS resource sets, resource types.
  • the resource type is used to identify the function or use of the reference signal resource. For example, when the resource type takes the first value, it is used to identify the reference signal for beam management; when the resource type takes the second value, it is used to identify the reference signal for channel state information acquisition (CSI acquisition).
  • CSI acquisition channel state information acquisition
  • each RS resource setting corresponds to a resource setting index for uniquely identifying the resource setting.
  • each RS resource set corresponds to a resource set index for uniquely identifying the resource set.
  • each RS resource set includes one or more RS resources, and each RS resource corresponds to one resource index for uniquely identifying the resource.
  • each RS resource includes one or more of the following information:
  • Time domain resource information of each RS Time domain resource information of each RS, time-domain behavior of RS transmission, and function indication information of RS.
  • the function indication information is used to indicate the function of the RS, for example, when the indication information takes the first value, it is used to indicate that the RS is used for interference measurement (IM), and when the indication information is taken as the second
  • IM interference measurement
  • the value is used to indicate that the RS is used for channel state measurement, and when the indication information takes a third value, the RS is indicated to be used for beam management (BM).
  • the information for indicating the function of the RS may be power information.
  • a new field or a new line is added to the power information provided in the existing LTE to identify the function of the RS.
  • the RS is used for interference measurement;
  • a value of other values indicates that the RS is non-zero power for channel estimation.
  • the time domain resource information of each RS includes one or more of the following information: the number of OFDM symbols occupied by the RS, the location information of each OFDM symbol in the subframe, and the number of RS ports on one OFDM symbol.
  • Mapping information mapping to REs
  • This information is mainly used to inform the receiver RS at which time-frequency positions, according to which the receiving side can measure the RS.
  • the time domain behavior may include: periodic, aperiodic, semi-persistent.
  • Periodicity means that the measurement resources of the reference signals configured by the base station occur periodically in time.
  • Semi-static means that the measurement resources of the reference signal configured by the base station periodically appear within a specified length of time. The specified length of time may not be limited.
  • Aperiodic refers to the measurement resource that the base station configures a temporary reference signal for the user equipment.
  • the time domain behavior indicated by the base station is periodic, it is usually necessary to indicate how much time length is one cycle. For example, 50 ms is one cycle and 100 ms is one cycle.
  • the time domain behavior is mainly used to inform the receiver that the transmitter transmits the period, or frequency or time of the reference signal, so that the receiver can receive these reference signals.
  • Each CSI report setting corresponds to a report setting index for uniquely identifying the report setting.
  • Each of the escalation settings includes at least one of the following contents:
  • BM Report beam management
  • CSI type CSI type
  • codebook configuration information such as codebook subset restriction, time-domain behavior, frequency domain granularity (frequency) Granularity
  • measurement restriction configurations CSI type
  • the escalation settings are used to indicate what information the receiver feeds back to the transmitter, and how to feed back the information, or the frequency or period of the feedback.
  • the reporting beam management parameter may include an index of the resource set, an index of the resource set and the resource index, an index of the resource set and an index of the RS port, an index of the resource set, an index of the resource index and the RS port, a resource index, a resource index, and One or more of the RS port index and the RS port index.
  • the frequency domain granularity refers to information of subcarriers corresponding to one or more RS measurement resources in the frequency domain. It may be information such as a subcarrier number, a subcarrier width, or a subcarrier spacing corresponding to a subcarrier in one or more resource blocks (RBs).
  • RBs resource blocks
  • the RS is a CSI-RS.
  • the CSI-RS is used to perform channel states, such as channel quality information (CQI), Precoding Matrix Indicator (PMI), rank indicator (RI) measurement, or beam management.
  • the downlink reference signal, the CSI-RS measurement resource refers to a time-frequency resource configured by the base station to the CSI-RS, and is used for performing beam alignment between the base station and the terminal device.
  • the base station may transmit the CSI-RS on the CSI-RS measurement resource, and the terminal device may receive and measure the CSI-RS sent by the base station on the CSI-RS measurement resource.
  • the foregoing first configuration information may be a random access response after the terminal device completes random access.
  • a message or a physical downlink share channel (PDSCH) is sent to the terminal device.
  • PDSCH physical downlink share channel
  • the RS is a sounding reference signal (SRS).
  • SRS refers to an uplink reference signal used for channel estimation or beam management.
  • the SRS measurement resource refers to a time-frequency resource configured by the base station to the SRS, and is used for performing beam alignment between the base station and the terminal device.
  • the terminal device may send the SRS on the SRS measurement resource, and the base station may receive and measure the SRS sent by the terminal device on the SRS measurement resource.
  • the foregoing first configuration information may be sent to the terminal device by using a random access response message or a physical downlink share channel (PDSCH) after the terminal device is randomly accessed.
  • PDSCH physical downlink share channel
  • the link is used to indicate the correspondence between the resource setting and the report setting and the measurement amount.
  • An escalation setting can be associated with one or more resource settings. Multiple escalation settings can be associated with the same resource setting.
  • the link includes a resource setting index or indication, a report setting index or an indication, and a quantity to be measured.
  • the resource setting index 1 and the report setting index 2 are in one-to-one correspondence.
  • the link may also include a beam scan type.
  • the beam scan type is used to indicate the scanning mode of the network device and the terminal device.
  • the standard agrees to three scanning modes and three uplink scanning modes, namely P1/P2/P3 and U1/U2/U3.
  • the beam scan type field may have 2 bits.
  • 01 indicates that the scan is performed by using P2.
  • the meanings of P1, P2, P3, U1, U2, and U3 can be referred to the definition of the standard, and are not described here.
  • the indication information of the terminal device receiving beam in the first configuration information may be received beam information for indicating one or more reference signal ports, or a receiving beam for indicating one or more reference signal resources.
  • the RS port mentioned in the present invention is used to indicate the time-frequency position of the reference signal in the OFDM symbol, not the physical port.
  • the information indicating the receiving beam of the terminal device may be a transmit beam index, a receive beam index, a beam pair index (for describing a transmit beam and a receive beam), and a quasi-co-location for indicating beam information (Quasi-co-located, QCL) Index or QCL indication, and any combination of the above several indexes.
  • the network device When the network device indicates that the information about the received beam of the terminal device is a beam pair index, it should be understood that, before the indication, the terminal device first feeds back the beam information to the network device, and the network device according to the beam information fed back by the terminal device. Indicates the receiving pair (BPL: Beam pair link) information of the terminal device.
  • BPL Beam pair link
  • the terminal device feeds back the beam information, and specifically may feed back one of the following information or a combination of any two or more:
  • Packet index Group ID receive beam ID, transmit beam ID.
  • the Group ID can be one of the following information or a combination of any two or more:
  • the first information which is packet information obtained according to a predefined or pre-configured rule, including but not limited to antenna packets, antenna panel packets.
  • the beams formed by the ports of the same antenna panel are the same group. .
  • the second information includes, but is not limited to, logical beam ID information, logical group ID information, and bit map based logical beam information.
  • the transmit beam ID may be an index of a resource setting, a resource set index, and a resource set.
  • the receive beam ID may be a logical ID of the receive beam of the terminal device.
  • the logical ID may be a global logical number of all beams selected by the terminal device, or may be a local logical number based on all beams corresponding to the Group ID. It should also be understood that the receiving beams corresponding to the same group may be simultaneously received or transmitted on the terminal device side.
  • the beam pair index information may be a combination of one or more of the following information:
  • the first indication information is used to indicate a beam pair index type corresponding to different types or functions or processes
  • the indication information is a group index Group ID information
  • the indication information is a logical ID or a bit bitmap Bit-Map information of the transmission beam
  • the fourth indication information is a logical ID of the receiving beam or a bit bitmap Bit-Map information.
  • the first indication information may be different types of reference signals, including but not limited to an initial access reference signal, a beam management reference signal, a CSI measurement reference signal, and a data transmission reference signal.
  • the first indication information may also be different communication processes, including but not limited to an initial access phase, a beam management phase, a CSI measurement phase, and a data transmission phase.
  • the first indication information is 2 bits, where 00 represents an initial access reference signal, 01 represents a beam management reference signal, 10 represents a CSI measurement reference signal, and 11 represents a data transmission reference signal.
  • the second indication information is a Group ID
  • the representation form of the Group ID may be one of the following information or a combination of any two or more:
  • the first information which is packet information obtained according to a predefined or pre-configured rule, including but not limited to antenna packets, antenna panel packets.
  • the beams formed by the ports of the same antenna panel are the same group. .
  • the second information includes, but is not limited to, logical beam ID information, logical group ID information, and bit map based logical beam information.
  • the third indication information is a logical ID of the transmission beam, or the beam index is indicated by means of a bit bitmap. Illustratively, as shown in the following table:
  • the fourth indication information is a logical ID of the receiving beam, or the beam index information is indicated by using a bit bitmap.
  • the logical ID may be a global logical number of a beam selected by the terminal device, or may be a local logical number corresponding to the Group ID. It should also be understood that the receiving beam corresponding to the same group can be on the terminal device side. To be received or sent at the same time.
  • the reference information transmission and the indication information of the CSI feedback period in the first configuration information may be: a transmission period of one or more reference signal ports, and a CSI feedback period, and one or more reference signal resources are sent.
  • the period and the CSI feedback period may also be a transmission period of one or more resource sets and a CSI feedback period, a transmission period of one or more resource settings, and a CSI feedback period, and any combination between the foregoing methods. .
  • the transmission for the reference signal and the CSI feedback period information may be the number of slots, the slot index, the number of OFDM symbols, the number of time transmission intervals (TTIs), and the time transmission unit (TTU).
  • the number, the absolute time value, or the time value obtained by querying the table, as shown in Table 1, the periodic index can identify the feedback period.
  • the absolute time may be microseconds (us), milliseconds (ms), or seconds (s), etc., for example, may be 2 ms or 4 ms.
  • the activation or deactivation indication information of the first configuration information reference signal refers to when the network device is configured with multiple reference signals, but only one or several reference signals may be used for a certain terminal device. At this time, the network device can deactivate those reference signal resources that are not used.
  • the network device may indicate which resource sets or resources are deactivated or activated by means of an index, or indicate which resource sets or resources of the terminal device are deactivated or activated by means of a bitmap.
  • the index indication information may indicate which resource sets, or which resources, or which reference signal ports are deactivated or activated.
  • the indication information may include one or more indexes, and the index value may be a combination relationship of multiple indexes ⁇ resource setting index, resource set index, resource index, port index ⁇ . Take 8 resource sets, each resource set contains 3 resources as an example. If it is necessary to indicate that 4 resource sets are invalid resources and 4 resource sets are valid resources, then 4*3 or 12 bits are required.
  • each resource set includes three resources as an example, and a level 2 bitmap is required to indicate, as shown in FIG. 6.
  • 10011001 indicates that the first, fourth, fifth, and eighth resource sets are valid resources, and the second, third, sixth, and seventh resource sets are invalid resources. It is further necessary to further indicate which resources in the first, fourth, fifth, and eighth resource sets are valid, for example, in the first resource set, 1 and the third resource are valid, the second resource is invalid; in the fourth resource set, the third resource is valid, the first and second resources are invalid; all resources in the fifth resource set are valid; and in the eighth resource set, The first and third resources are valid, and the second resource is invalid.
  • the transmission of the reference signal in the first configuration information and the time offset information of the feedback may be: transmission of one or more reference signal ports and feedback time offset, one or more reference signal transmissions, and Feedback time offset, one or more resource set transmissions and feedback time offsets, one or more resource setting transmissions, and feedback time offsets, and any combination between the above four modes.
  • the “transmission time offset” is used to indicate a time interval between the configuration time and the RS transmission time
  • the “feedback time offset” is used to indicate a time interval between the configuration time and the feedback time
  • the time interval may specifically be an OFDM symbol.
  • the number, the time slot, the number of TTIs, the absolute time, a time value T 1 to T N obtained by looking up a table or a formula, or a time offset index are as shown in Table 2.
  • the absolute time may be microseconds (us), milliseconds (ms), or seconds (s), etc., for example, may be 2 ms or 4 ms.
  • Time offset index Time offset 1 T 1 2 T 2 3 T 3 ?? ising N T N
  • the correspondence between the time offset index and the time offset shown in Table 2 above is merely exemplary, and the above Table 1 does not limit the embodiment of the present invention.
  • the time offset information used to indicate the transmission of the reference signal and the feedback is the time offset index
  • the corresponding time offset may be determined according to the correspondence between the preset time offset index and the time offset. the amount,
  • the function indication information of the reference signal in the first configuration information is used to indicate the function or use of the reference signal.
  • the function indication information of the reference signal in the first configuration information is used to indicate the function or use of the reference signal.
  • the function indication information of the reference signal in the first configuration information is used to indicate the function or use of the reference signal.
  • the first way is to indicate the purpose of the reference signal by means of a bit bitmap. Taking 4 reference signal resources as an example, 1100 indicates that the first two resources are used for channel estimation, the latter two resources are used for interference measurement; 1000 indicates that the first resource is used for channel estimation, and the last three resources are used for interference measurement; Indicates that the first two resources are used for interference measurement, the latter two resources are used for channel estimation, and so on, and will not be described again.
  • the second implementation manner is: in the existing power level table, a power level is added to identify the function or use of the reference signal.
  • a power level is added to identify the function or use of the reference signal.
  • the power configuration is 0 or null
  • the RS resource is identified for interference measurement
  • the power is configured to be non-zero
  • the RS resource is identified for CSI measurement.
  • the indication information of the beam scanning method in the first configuration information is used to indicate a beam scanning method corresponding to the reference signal.
  • the beam scan type is used to indicate the scanning mode of the network device and the terminal device.
  • the standard agrees to three scanning modes and three uplink scanning modes, namely P1/P2/P3 and U1/U2/U3.
  • the beam scan type field may have 2 bits.
  • 01 indicates that the scan is performed by using P2.
  • the meanings of P1, P2, P3, U1, U2, and U3 can be referred to the definition of the standard, and are not described here.
  • a resource set or resource, or resource setting, or reporting setting, or link in may be carried in a resource set or resource, or resource setting, or reporting setting, or link in.
  • a sweeping type field can be named, the length of the field is 2 bits, and the 00 identifier beam scanning method is Process 2 (P2), 01 identifies the beam scan.
  • the way is Process 3 (P3).
  • the 00 flag beam scanning mode is uplink 2 (U2)
  • the 01 identity beam scanning mode is uplink 3 (U3).
  • P1, P2, P3, U1, U2, and U3 please refer to the description of the standard, and details are not described here.
  • the embodiment of the present invention may indicate a method of beam scanning in an implicit manner.
  • the method or type of beam scanning is implicitly indicated by indicating index information of a resource setting or a resource set.
  • index information of a resource setting or a resource set Illustratively, as shown in Table 3 or Table 4 below:
  • the resource setting or the mapping relationship between the resource set and the beam scanning type of the table 3 or the table 4 may be sent to the terminal device through RRC signaling or MAC-CE or DCI signaling, or may be pre-stored or pre-configured in the base station and the terminal device. on.
  • the base station configures the corresponding resource set index information or resource setting index information to the terminal device, and the terminal device may according to the resource set index information.
  • the resource set index information may include one or more resource set indexes to implement beam management in conjunction with different beam scanning processes.
  • the time relationship corresponding to different beam scanning types can be determined by the positional relationship in the index information. Illustratively, as shown in Table 3, when the configuration information indicated by the base station is ⁇ resource set#1, resource set#0 ⁇ , it is used to instruct the terminal device to complete beam scanning based on P3, and then perform beam scanning based on P2.
  • the time difference between the two beam scanning processes can be configured by the base station to the terminal device, or a default value can be defined by the standard.
  • the base station can obtain the corresponding resource setting or resource set configuration information according to the corresponding beam scanning indication information by configuring the corresponding resource set index information or the resource setting index information.
  • the beam scanning indication information may include one or more beam scanning methods to implement beam management in conjunction with different beam scanning processes.
  • the time relationship corresponding to different beam scanning types may be determined by the positional relationship in the beam scanning indication information. Exemplarily, as shown in Table 3, when the configuration information indicated by the base station is ⁇ P-3, P-2 ⁇ , it is used to instruct the terminal device to complete beam scanning based on P3, and then perform beam scanning based on P2.
  • the time difference between the two beam scanning processes can be configured by the base station to the terminal device, or a default value can be defined by the standard.
  • the terminal device receives the first configuration from the base station by using signaling of layer1 or layer2. Set the information to obtain the specific information included in the first configuration information exemplified above.
  • the terminal device Before the step 230, the terminal device should also receive the second configuration information from the network device, and obtain the specific information included in the enumerated second configuration information.
  • Performing measurement and feedback according to the first configuration information and the second configuration information specifically including:
  • the receiving side performs measurement according to the first configuration information and the second configuration information, and specifically includes:
  • the terminal device determines the report setting, and feedback the measurement result according to the report setting.
  • the CSI-RS resource indicator CSI-RS resource indicator, CRI
  • PMI precoding matrix indicator
  • the codebook configuration or the rank indicator is specified in the CSI report setting.
  • RI RI
  • CQI channel quality indicator
  • the future 5G standard may consider the RS measurement and the beam management (BM).
  • the indication information may be in the following manner. One or any combination of two or more:
  • the beam index is a combination of ⁇ resource set index, resource index ⁇ or ⁇ resource set index, resource index, port index ⁇ ; or, ⁇ resource set index, resource index, port index, Combination of symbol index ⁇ ;
  • the beam index and the corresponding beam grouping information are fed back by means of a bit bitmap.
  • the beam pair information is indicated by a resource set index and a resource index; or the beam pair information is indicated by a resource set index and a resource index and a port index; or by a resource set index and a resource index and a port index and a symbol index. Indicates the beam pair information.
  • the resource setting when used for beam management (BM), the resource setting may be referred to as a beam management resource setting, the reporting setting may be referred to as a beam management reporting setting, and the link may be referred to as a beam management link.
  • the number of resource sets included in the beam management resource setting is equal to the number of time units (TUs) in the beam scanning period.
  • TU time units
  • multiple beam management reporting settings may be associated with the same beam management resource setting
  • multiple beam management resource settings can be associated with the same beam management reporting setting.
  • different sets of resources in the same beam management resource setting may set the same value for some parameters. These parameters can be the number of ports, time domain behavior.
  • the beam management report setting may be a CSI RS resource set index, a CSI RS resource index, or a reference signal reception power (RSRP) or a port index.
  • RSRP reference signal reception power
  • the solution provided by the embodiment of the present invention provides a technical solution for performing channel measurement and feedback when a narrow beam technology is adopted in a high frequency band.
  • FIG. 3 shows a schematic flowchart of a method 300 for configuring information according to an embodiment of the present application.
  • the network device in FIG. 3 may be the network device in FIG. 1; the terminal device may be the terminal device in FIG. 1.
  • the configuration information is divided into first configuration information and second configuration information.
  • the first configuration information is sent to the terminal device by using layer 2 signaling.
  • the second configuration information is sent to the terminal device by using signaling of layer 1 or layer 2.
  • S340 Receive first configuration information from the network device, and obtain first configuration information.
  • S350 Receive second configuration information from the network device, and obtain second configuration information.
  • S360 Perform channel measurement or interference measurement or beam management according to the first configuration information and the second configuration information.
  • steps 320 and 330 may be adjusted or may be sent simultaneously, without being limited by the number of the steps.
  • the first configuration information may be a parameter with a slower time variation.
  • the second configuration information may be a parameter that is time-varying.
  • the first configuration information may include a basic pattern or a basic subset pattern, a number of OFDMs for transmitting the reference signal, time-frequency position information of the OFDM for the RS transmission, and one or more of the RS transmission periods.
  • the number of OFDMs used for transmitting the reference signal is the maximum number of OFDM symbols that can be carried by the cell where the terminal is located or the transmission receiving point TRP for the RS transmission;
  • the time-frequency location information of the OFDM for the RS transmission is the cell where the terminal device is located or The time-frequency position of the OFDM symbol used by the TRP for RS transmission.
  • the RS base pattern includes at least one of the following information:
  • the number of ports of the reference signal configured on an Orthogonal Frequency Division Multiplexing (OFDM) symbol, the time-frequency domain mapping information or location information of the RS, and the first OFDM symbol used for transmitting the RS The offset or position information in a frame or subframe or slot, the maximum or maximum number of OFDM symbols used to transmit the RS.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the RS basic pattern is relatively stable, the delay is small, and the tolerance is large.
  • the RS basic pattern is transmitted to the terminal device by using RRC signaling, which can save signaling overhead.
  • the layer 2 signaling may be RRC signaling.
  • the RRC signaling may include one or more new fields, and the first measurement information is carried on the one or more newly added fields.
  • the second configuration information includes at least one of the following information:
  • One or more resource settings one or more reporting settings, and links.
  • Each resource setting corresponds to a resource setting index for uniquely identifying the resource setting.
  • Each resource setting includes one or more resource sets, and each resource set corresponds to one resource set index for uniquely identifying the resource set.
  • Each resource set further includes one or more RS resources, and each RS resource corresponds to one resource index for uniquely identifying the RS resource.
  • Each RS resource further includes one or more of the following information:
  • the embodiment of the present invention may indicate the method or type of beam scanning in an implicit manner.
  • the method or type of beam scanning is implicitly indicated by indicating index information of a resource setting or a resource set.
  • index information of a resource setting or a resource set Illustratively, as shown in Table 3 or Table 4:
  • the resource setting or the mapping relationship between the resource set and the beam scanning type of the table 3 or the table 4 may be sent to the terminal device through RRC signaling or MAC-CE or DCI signaling, or may be pre-stored or pre-configured in the base station and the terminal device. on.
  • the base station configures the corresponding resource set index information or resource setting index information to the terminal device, and the terminal device may according to the resource set index information.
  • the resource set index information may include one or more resource set indexes to implement beam management in conjunction with different beam scanning processes.
  • the time relationship corresponding to different beam scanning types can be determined by the positional relationship in the index information. Illustratively, as shown in Table 3, when the configuration information indicated by the base station is ⁇ resource set#1, resource set#0 ⁇ , it is used to instruct the terminal device to complete beam scanning based on P3, and then perform beam scanning based on P2.
  • the time difference between the two beam scanning processes can be configured by the base station to the terminal device, or a default value can be defined by the standard.
  • the base station can obtain the corresponding resource setting or resource set configuration information according to the corresponding beam scanning indication information by configuring the corresponding resource set index information or the resource setting index information.
  • the beam scanning indication information may include one or more beam scanning methods to implement beam management in conjunction with different beam scanning processes.
  • the time relationship corresponding to different beam scanning types may be determined by the positional relationship in the beam scanning indication information. Exemplarily, as shown in Table 3, when the configuration information indicated by the base station is ⁇ P-3, P-2 ⁇ , it is used to instruct the terminal device to complete beam scanning based on P3, and then perform beam scanning based on P2.
  • the time difference between the two beam scanning processes can be configured by the base station to the terminal device, or a default value can be defined by the standard.
  • Each escalation setting includes one or more of the following information:
  • the index set by the report is used to uniquely identify a report setting; the time domain characteristics of the CSI measurement and reporting; the frequency domain characteristics of the CSI measurement and reporting; the type or content of the CSI report; and the indication information of the beam scanning method.
  • the link includes one or more of the following information:
  • the resource setting index the report setting index, the quantity to be measured, and the indication information of the beam scanning method.
  • the terminal device receives the beam information of the RS, the indication information of the RS transmission and the RS feedback period, the indication information of the deactivation or activation of the RS, the time offset indication information of the RS transmission and feedback, and the beam scanning method.
  • a detailed description of the indication information is the same as that of the first embodiment, and details are not described herein again.
  • the time domain characteristic of transmitting the RS may be periodic, non-periodic, and semi-static.
  • the value of the specific period should also be configured. For example, 50ms is a cycle and 10ms is a cycle, as shown in Figure 4.
  • the frequency domain characteristics of the CSI measurement and feedback may be broadband, or narrowband, or partial bandwidth. For example, which subbands are used in the frequency domain for feedback.
  • the type or content of the CSI feedback may be an RS resource indicator (CRI), or a precoding matrix indicator (PMI), or a codebook configuration, or a rank indicator (RI), Or channel quality indicator (CQI).
  • CRI RS resource indicator
  • PMI precoding matrix indicator
  • CQI channel quality indicator
  • the second configuration information may be sent to the terminal device by using a MAC CE or a DCI, where the MAC CE or the DCI may add one or more fields for carrying the second measurement information.
  • the function indication information of the RS is used to indicate the function of the CSI-RS. For example, in a possible implementation manner, when the value of the field is 0 or null (zero or null), the CSI-RS resource setting is used for interference measurement; when the value of the field is NZP CRI-RS configuration, The CSI-RS resource setting is indicated for channel estimation.
  • the RS is a CSI-RS.
  • the CSI-RS is used to perform channel states, such as channel quality information (CQI), Precoding Matrix Indicator (PMI), rank indicator (RI) measurement, or beam management.
  • the downlink reference signal, the CSI-RS measurement resource refers to a time-frequency resource configured by the base station to the CSI-RS, and is used for performing beam alignment between the base station and the terminal device.
  • the base station may transmit the CSI-RS on the CSI-RS measurement resource, and the terminal device may receive and measure the CSI-RS sent by the base station on the CSI-RS measurement resource.
  • the foregoing first configuration information may be sent to the terminal device by using a random access response message or a physical downlink share channel (PDSCH) after the terminal device is randomly accessed.
  • PDSCH physical downlink share channel
  • the RS is a sounding reference signal (SRS).
  • SRS refers to an uplink reference signal used for channel estimation or beam management.
  • the SRS measurement resource refers to a time-frequency resource configured by the base station to the SRS, and is used for performing beam alignment between the base station and the terminal device.
  • the terminal device may send the SRS on the SRS measurement resource, and the base station may receive and measure the SRS sent by the terminal device on the SRS measurement resource.
  • the foregoing first configuration information may be sent to the terminal device by using a random access response message or a physical downlink share channel (PDSCH) after the terminal device is randomly accessed.
  • PDSCH physical downlink share channel
  • the terminal device receives the signaling of the layer 2, and acquires the first configuration information, where the first configuration information is as described above, and details are not described herein again.
  • the terminal device receives the signaling of layer 1 or layer 2, and acquires second configuration information, where the second configuration information is as described above, and details are not described herein.
  • step S260 channel state measurement is performed based on the first configuration information and the second configuration information.
  • interference measurement including:
  • time-frequency domain location information time-frequency information of the RE occupied by the RS
  • b. Determine the function of RS resource setting. For example, when it is determined that the CSI-RS is used for the interference measurement, the received energy value is measured at the corresponding time point and the corresponding RE position to obtain the interference estimation value; when determining the CSI-RS for the channel estimation, at the corresponding time point The corresponding RE position is used for channel estimation, and the channel matrix is calculated.
  • the CSI report setting feedback the corresponding information.
  • the CSI report setting indicates that the terminal device feeds back a CSI-RS resource indicator (CRI), or a precoding matrix indicator (PMI), or a codebook configuration, or a rank indicator. RI), or channel quality indicator (CQI) information, after the terminal device obtains the corresponding information by measurement, and feeds back the above information to the network device.
  • CRI CSI-RS resource indicator
  • PMI precoding matrix indicator
  • CQI channel quality indicator
  • the future 5G standard may consider unifying RS measurement with beam management (BM).
  • BM beam management
  • the terminal device needs to feed back one or more beam pair information, and the beam pair includes a transmit beam and a receive beam.
  • the indication form of the indication information may be one of the following modes or a combination of any two or more:
  • the beam index is a combination of ⁇ resource set index, resource index ⁇ or ⁇ resource set index, resource index, port index ⁇ ; or, ⁇ resource set index, resource index, port index, Combination of symbol index ⁇ ;
  • the beam index and the corresponding beam grouping information are fed back by means of a bit bitmap.
  • the beam pair information is indicated by a resource set index and a resource index; or the beam pair information is indicated by a resource set index and a resource index and a port index; or by a resource set index and a resource index and a port index and a symbol index. Indicates the beam pair information.
  • the resource setting when used for beam management (BM), the resource setting may be referred to as a beam management resource setting, the reporting setting may be referred to as a beam management reporting setting, and the link may be referred to as a beam management link.
  • the number of resource sets included in the beam management resource setting is equal to the number of time units (TUs) in the beam scanning period.
  • TU time units
  • multiple beam management reporting settings may be associated with the same beam management resource setting
  • multiple beam management resource settings can be associated with the same beam management reporting setting.
  • different sets of resources in the same beam management resource setting may set the same value for some parameters. These parameters can be the number of ports, time domain behavior.
  • the beam management report setting may be a CSI RS resource set index, a CSI RS resource index, or a reference signal reception power (RSRP) or a port index.
  • RSRP reference signal reception power
  • the receiving side performs measurement according to the first configuration information and the second configuration information, and specifically includes:
  • the step b determines the beam scanning method according to the beam scanning method indication information, and specifically includes:
  • the beam scanning method is determined according to the resource setting index information or the resource set index information.
  • Embodiments of the present invention provide a solution for how to perform reference signal configuration and measurement when a narrow beam is used in a high frequency scenario.
  • FIG. 7 shows a schematic diagram of a network device that can be applied to the system as shown in Figure 1.
  • the network device 700 includes a processor 710, a memory 720, a transceiver 730, an antenna 740, and a bus 750.
  • the processor 710 controls the operation of the network device 700, for example, the control network device 700 performs the above-mentioned execution of the foregoing S210, part, S310.
  • the processor can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic device.
  • the transceiver 730 is configured to communicate with the terminal device. For example, the S220 part, the S320 part, and the S330 part may be performed. For details, refer to the description in the method embodiment, and details are not described herein again.
  • the transceiver 730 includes a transmitter 732 for transmitting signals and a receiver 734 for receiving signals.
  • the number of the antennas 740 may be one or more.
  • bus 750 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 750 various buses are labeled as bus system 750 in the figure. It should be noted that the foregoing description of the structure of the network device can be applied to the method embodiment of the present application.
  • the memory 720 may include a read only memory (“ROM”) and a random access memory (“RAM”), or other types of dynamic storage devices that can store information and instructions, or may be Disk storage.
  • the memory 720 can be used to save instructions that implement the related methods provided by the embodiments of the present application. It will be appreciated that at least one of the cache and long term storage is programmed or loaded by the processor 710 of the network device 700 by programming or loading executable instructions.
  • the memory is for storing computer executable program code, wherein when the program code includes an instruction, when the processor executes the instruction, the instruction causes the network
  • the memory performs the operations in the foregoing method embodiments. For details, refer to the description in the method embodiments, and details are not described herein again.
  • FIG. 8 is a schematic block diagram of a terminal device 800 indicating information according to an embodiment of the present application.
  • the terminal device can be applied to the system as shown in FIG.
  • the terminal device 800 includes a processor 810, a memory 820, a transceiver 830, an antenna 840, and a bus 850.
  • the processor 810 controls the operation of the terminal device 800, for example, the control terminal device 800 performs the above-mentioned execution of the above-mentioned S240 part, the S360 part.
  • the processor can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic device.
  • the transceiver 830 is configured to communicate with the terminal device. For example, the S230 part, the S340 part, and the S350 part may be performed. For details, refer to the description in the method embodiment, and details are not described herein.
  • the transceiver 830 includes a transmitter 832 for transmitting signals and a receiver 834 for receiving signals. Wherein, the number of antennas 840 The purpose can be one or more.
  • Terminal device 800 may also include a user interface 860 such as a keyboard, microphone, speaker, and/or touch screen. User interface 860 can communicate content and control operations to terminal device 800.
  • bus 850 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus system 850 in the figure. It should be noted that the foregoing description of the structure of the terminal device can be applied to the embodiments of the present application.
  • the memory 820 may include a read only memory (“ROM”) and a random access memory (“RAM”), or other types of dynamic storage devices that can store information and instructions, or may be Disk storage.
  • the memory 820 can be used to save instructions that implement the related methods provided by the embodiments of the present application. It will be appreciated that at least one of the cache and long term storage is programmed or loaded by the processor 810 of the terminal device 800 by programming or loading executable instructions.
  • the memory is configured to store computer executable program code, wherein when the program code includes an instruction, when the processor executes the instruction, the instruction causes the terminal.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种配置信息的方法、装置及系统。其中,所述方法包括网络设备生成第一配置信息,所述第一配置信息包括以下信息中的至少一种:终端设备接收波束的指示信息、所述参考信号RS发送及信道状态信息CSI反馈周期的指示信息、所述RS的功能指示信息、波束扫描方法的指示信息;通过层一或层二的信令向所述终端设备发送所述第一配置信息。本发明实施例提供了一种在高频频段采用窄波束技术下的情况下,如何配置测量信息的方案。

Description

一种配置信息的方法、装置及系统 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种配置测量信息的方法、装置及系统。
背景技术
随着低频段频谱资源的日益紧张,高频频段(一般为大于6GHz以上的频段为高频频段,低于6GHz以下的频段为低频频段)由于其频谱资源丰富,成为5G技术的主要工作频段。使用高频频段时,由于电磁波在数据传输过程中的路径损耗大,抗衰落性能差,需要引入窄波束模拟加权技术。
由于窄波束的覆盖范围通常低于5度,随着终端设备的移动及信道的时变特性,在不同的时刻终端设备检测到的窄波束可能不同,从而网络设备需要在不同时刻为同一终端设备配置不同的窄波束测量信息。然后,终端设备基于收到的窄波束测量信息来测量该窄波束并反馈当前窄波束的信道状态信息。
现有技术中,长期演进(long term evolution,LTE)及增强长期演进(advanced long term evolution,LTE-A)技术通常假设所有的模拟加权波束均为宽波束,可覆盖整个服务小区。因此终端设备在该小区内移动时,网络设备不需要动态地改变参考信号的测量信息。这种方法明显不再适合5G技术下基于模拟窄波束的参考信号测量与反馈。
本发明想要解决的技术问题为:针对高频频段采用窄波束模拟加权技术,如何及时且准确的基于窄波束的信道进行测量。
发明内容
为解决上述问题,本申请实施例提供一种配置信息的方法、装置及系统。
第一方面,本发明实施例提供一种配置信息的方法,所述方法包括:生成第一配置信息,所述第一配置信息包括以下信息中的至少一种:
终端设备接收波束的指示信息、所述参考信号RS发送及信道状态信息CSI反馈周期的指示信息、所述RS激活或去激活的指示信息、所述RS发送以及CSI反馈的时间偏移指示信息、所述RS的功能指示信息、波束扫描方法的指示信息;
通过层一或层二的信令向所述终端设备发送所述第一配置信息。
在一种可能的设计中,所述方法还包括:
生成第二配置信息并向所述终端设备发送所述第二配置信息,所述第二配置信息包括以下信息中的至少一种:
一个或多个资源设置、一个或多个上报设置、链路link;其中,所述链路用于指示所述一个或多个资源设置与一个或多个上报设置的关系;
其中,每一个所述资源设置包括一个或多个资源集合。
在一种可能的设计中,所述每一个资源集合包括多个资源,每个资源中至少包括以下信息中的一种:
所述资源的时频信息、资源的索引信息、发送所述资源的时域特性、所述资源的功能指示信息。
在另一种可能的设计中,所述每一个所述上报设置包括以下信息中的至少一种:
用于指示上报时域特性的信息、用于指示上报频域粒度的信息、用于指示上报类型或内容的信息。
在另一种可能的设计中,所述链路具体包括以下信息中的至少一种:
资源设置索引、上报设置索引、测量量。
在另一种可能的设计中,终端设备接收波束的指示信息为以下信息中的一种或多种:
发送波束索引、接收波束索引、波束对索引、用于指示波束的准共址QCL索引或者QCL指示。
在另一种可能的设计中,所述RS的发送及反馈周期的指示信息为以下信息中的一种或多种:正交频分复用OFDM符号数目、时间传输间隔TTI数目、时间传输单元TTU数目、时间、或者通过查表或公式获取的时间值。
在另一种可能的设计中,所述RS的激活或者去激活的指示信息为以下信息中的一个或多个:资源设置索引、资源集合索引、资源索引、端口索引、OFDM符号索引。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为:一个或多个参考信号端口的发送以及CSI反馈的时间偏移、一个或多个参考信号RS发送以及CSI反馈的时间偏移、或者一个或多个资源集合发送以及CSI反馈时间偏移、或者一个或多个资源设置发送以及CSI反馈时间偏移。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为以下信息中的一个或者多个:OFDM符号数目、TTI数目、时间、通过查表或者公式的方式获取的一个时间值。
第二方面,一种配置信息的方法,包括:
接收来自网络设备的第一配置信息,所述第一配置信息包括以下信息中的至少一种:
终端设备接收波束的指示信息、所述参考信号RS发送及信道状态信息CSI反馈周期的指示信息、所述RS激活或去激活的指示信息、所述RS发送以及CSI反馈的时间偏移指示信息、所述RS的功能指示信息、波束扫描方法的指示信息;
根据所述第一配置信息,进行信道测量或者干扰测量。
在一种可能的设计中,所述方法还包括:
接收来自所述基站的第二配置信息,所述第二配置信息包括以下信息中的至少一种:
一个或多个资源设置、一个或多个上报设置、链路;其中,所述链路用于指示所述一个或多个资源设置与一个或多个上报设置的关系;
其中,每一个所述资源设置包括一个或多个资源集合。
在另一种可能的设计中,所述每一个资源集合包括多个资源,每个资源中至少包括以下信息中的一种:
所述资源的时频信息、资源的索引信息、发送所述资源的时域特性、所述资源的功能指示信息。
在另一种可能的设计中,所述每一个所述上报设置包括以下信息中的至少一种:
用于指示上报时域特性的信息、用于指示上报频域粒度的信息、用于指示上报类型或内容的信息。
在另一种可能的设计中,所述链路具体包括以下信息中的至少一种:
资源设置索引、上报设置索引、测量量。
在另一种可能的设计中,终端设备接收波束的指示信息为发送波束索引、接收波束索引、波束对索引、准共址QCL索引或者QCL指示、以及上述的任意两种或以上的组合。
在另一种可能的设计中,终端设备接收波束的指示信息为发送波束索引、接收波束索引、波束对索引、准共址QCL索引或者QCL指示、以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS的发送及反馈周期的指示信息为:正交频分复用OFDM符号数目、时间传输间隔TTI数目、时间传输单元TTU数目、绝对时间、或者通过查表或公式获取的时间值。
在另一种可能的设计中,所述RS的激活或者去激活的指示信息为以下信息中的一个或多个:
资源设置索引、资源集合索引、资源索引、端口索引、OFDM符号索引。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为:一个或多个参考信号端口的发送以及CSI反馈的时间偏移、一个或多个参考信号RS发送以及CSI反馈的时间偏移、或者一个或多个资源集合发送以及CSI反馈时间偏移、或者一个或多个资源设置发送以及CSI反馈时间偏移。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为以下信息的一个或者多个:OFDM符号数目、TTI数目、绝对时间、通过查表或者公式的方式获取的一个时间值。
另一种可能的设计中,所述根据所述第一配置信息,进行测量及反馈,具体包括:
确定接收波束信息;
确定波束扫描方法;
确定参考信号的时频信息;
根据根据所述参考信号的功能信息,进行测量;
基于所述上报设置,反馈测量结果。
第三方面,本发明实施例还提供了一种配置信息的方法,包括:
将配置信息分为第一配置信息和第二配置信息;
通过RRC信令向终端设备发送所述第一配置信息;
通过MAC CE或者DCI向所述终端设备发送所述第二配置信息;
其中,所述第一配置信息包括CSI-RS基础图案、用于传输参考信号的OFDM符号数目、用于RS传输的OFDM的时频位置信息,CSI-RS发送周期中的一个或多个。
在一种可能的设计中,所述CSI-RS基础图案进一步包括以下信息中的一种或多种:
一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上所配置的信道状态信息参考信息(channel state information-reference signal,CSI-RS)的端口数、所述CSI-RS的时频域映射信息或者位置信息、用于传输CSI-RS的第一个OFDM符号在帧或者子帧或者时隙中的偏移量或者位置信息、用于传输CSI-RS的OFDM符号的最大值或者最大数目。
由于CSI-RS基础图案比较稳定,时延较小,容忍度大,本发明实施例中通过RRC信令来传输该CSI-RS基础图案至终端设备,能够节省信令开销。
在另一种可能的设计中,第二配置信息包括以下信息中的至少一种:
一个或多个资源设置(resource setting)、一个或多个上报设置(reporting setting)、链路(link),其中,链路用于标识所述一个或多个资源设置与所述一个或多个上报设置的关系以及测量量。
在另一种可能的设计中,每一个资源设置对应一个资源设置索引,用于唯一标识该资源设置。
在另一种可能的设计中,每一个资源设置包括一个或多个资源集合,每个资源集合对应一个资源集合索引,用于唯一标识该资源集合。
在另一种可能的设计中,每个资源集合进一步包括一个或多个CSI-RS资源,每个CSI-RS资源对应一个资源索引,用于唯一标识该CSI-RS资源。
在另一种可能的设计中,每一个CSI-RS资源进一步包括以下信息中的一个或多个:CSI-RS时频位置信息、发送该CSI-RS的时域特性、该CSI-RS的功能指示信息、终端设备接收该CSI-RS的波束信息、该CSI-RS的发送及CSI-RS反馈周期的指示信息、该CSI-RS的去激活或者激活的指示信息、该CSI-RS发送及CSI反馈的时间偏移指示信息、波束扫描方法的指示信息。
在另一种可能的设计中,每一个上报设置包括以下信息中的一个或多个:上报设置的索引,用于唯一标识一个上报设置;CSI测量及上报的时域特性;CSI测量及上报的频域粒度;CSI上报的类型或者内容;波束扫描方法的指示信息。
在另一种可能的设计中,链路包括以下信息中的一个或多个:资源设置索引、上报设置索引、测量量(quantity to be measured)、波束扫描方法的指示信息。
在另一种可能的设计中,终端设备接收波束的指示信息为发送波束索引、接收波束索引、波束对索引、准共址QCL索引或者QCL指示、以及上述的任意一种或以上的组合。
在另一种可能的设计中,终端设备接收波束的指示信息为发送波束索引、接收波束索引、波束对索引、准共址QCL索引或者QCL指示、以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS的发送及反馈周期的指示信息为:正交频分复用OFDM符号数目、时间传输间隔(Time Transmission interval,TTI)数目、时间传输单元(Time Transmission Unit,TTU)数目、绝对时间、或者通过查表或公式获取的时间值。
在另一种可能的设计中,所述RS的激活或者去激活的指示信息为一个或多个索引集合,每个索引集合为资源设置索引、资源集合索引、资源索引以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为:一个或多个参考信号端口的发送以及CSI反馈的时间偏移、一个或多个参考信号RS发送以及CSI反馈的时间偏移、或者一个或多个资源集合发送以及CSI反馈时间偏移、或者一个或多个资源设置发送以及CSI反馈时间偏移。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为以下信息的一个或者多个:OFDM符号数目、TTI数目、绝对时间、通过查表或者公式的方式获取的一个时间值。
第四方面,本发明实施例还提供了一种配置信息的方法,包括:
接收来自网络设备的第一配置信息;
接收来自发送器的第二配置信息;
根据所述第一配置信息和第二配置信息,进行测量及反馈;
其中,所述第一配置信息包括CSI-RS基础图案、用于传输参考信号的OFDM符号数目、用于RS传输的OFDM的时频位置信息,CSI-RS发送周期中的一个或多个。
在一种可能的设计中,所述CSI-RS基础图案进一步包括以下信息中的一种或多种:
一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上所配置的信道状态信息参考信息(channel state information-reference signal,CSI-RS)的端口数、所述CSI-RS的时频域映射信息或者位置信息、用于传输CSI-RS的第一个OFDM符号在帧或者子帧或者时隙中的偏移量或者位置信息、用于传输CSI-RS的OFDM符号的最大值或者最大数目。
由于CSI-RS基础图案比较稳定,时延较小,容忍度大,本发明实施例中通过RRC信令来传输该CSI-RS基础图案至终端设备,能够节省信令开销。
在另一种可能的设计中,第二配置信息包括以下信息中的至少一种:
一个或多个资源设置(resource setting)、一个或多个上报设置(reporting setting)、链路(link),其中,链路用于标识所述一个或多个资源设置与所述一个或多个上报设置的关系。
在另一种可能的设计中,每一个资源设置对应一个资源设置索引,用于唯一标识该资源设置。
在另一种可能的设计中,每一个资源设置包括一个或多个资源集合,每个资源集合对应一个资源集合索引,用于唯一标识该资源集合。
在另一种可能的设计中,每个资源集合进一步包括一个或多个CSI-RS资源,每个CSI-RS资源对应一个资源索引,用于唯一标识该CSI-RS资源。
在另一种可能的设计中,每一个CSI-RS资源进一步包括以下信息中的一个或多个:每个CSI-RS时频位置信息、发送该CSI-RS的时域特性、该CSI-RS的功能指示信息、终端设备接收该CSI-RS的波束信息、该CSI-RS的发送及CSI-RS反馈周期的指示信息、该CSI-RS的去激活或者激活的指示信息、该CSI-RS发送及CSI反馈的时间偏移指示信息、波束扫描方法的指示信息。
在另一种可能的设计中,每一个上报设置包括以下信息中的一个或多个:上报设置的索引,用于唯一标识一个上报设置;CSI测量及上报的时域特性;CSI测量及上报的频域的特性;CSI上报的类型或者内容;波束扫描方法的指示信息。
在另一种可能的设计中,链路包括以下信息中的一个或多个:资源设置索引、上报设置索引、测量量(quantity to be measured)、波束扫描方法的指示信息。
在另一种可能的设计中,终端设备接收波束的指示信息为发送波束索引、接收波束索引、波束对索引、准共址QCL索引或者QCL指示、以及上述的任意一种或以上的组合。
在另一种可能的设计中,终端设备接收波束的指示信息为发送波束索引、接收波束索引、波束对索引、准共址QCL索引或者QCL指示、以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS的发送及反馈周期的指示信息为正交频分复用OFDM符号数目、时间传输间隔TTI数目、时间传输单元TTU数目、绝对时间、或者通过查表或公式获取的时间值、以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS的激活或者去激活的指示信息为一个或多个索引集合,每个索引集合包括资源设置索引、资源集合索引、资源索引、以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为:一个或多个参考信号端口的发送以及CSI反馈的时间偏移、一个或多个参考信号RS发送以及CSI反馈的时间偏移、或者一个或多个资源集合发送以及CSI反馈时间偏移、或者一个或多个资源设置发送以及CSI反馈时间偏移。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为OFDM符号数目、TTI数目、绝对时间、通过查表或者公式的方式获取的一个时间值、以及上述的任意一种或以上的组合。
第五方面,本发明实施例提供一种网络设备,包括处理器和收发器,其中,处理器,用于生成第一配置信息,所述第一配置信息包括以下信息中的至少一种:
终端设备接收波束的指示信息、所述参考信号RS发送及信道状态信息CSI反馈周期的指示信息、所述RS激活或去激活的指示信息、所述RS发送以及CSI反馈的时间偏移指示信息、所述RS的功能指示信息、波束扫描方法的指示信息;
收发器,用于通过层一或层二的信令向所述终端设备发送所述第一配置信息。
一种可能的设计中,所述处理器还用于:
生成第二配置信息,所述第二配置信息包括以下信息中的至少一种:
一个或多个资源设置、一个或多个上报设置、链路,其中,所述链路用于指示所述一个或多个资源设置与一个或多个上报设置的关系;
其中,每一个所述资源设置包括一个或多个资源集合;
所述收发器,用于发送所述第二配置信息。
另一种可能的设计中,所述每一个资源集合包括一个或多个资源,每个资源中至少包括以下信息中的一种:
所述资源的时频信息、资源的索引信息、发送所述资源的时域特性、所述资源的功能指示信息。
另一种可能的设计中,所述每一个所述上报设置包括以下信息中的至少一种:
用于指示上报时域特性的信息、用于指示上报频域粒度的信息、用于指示上报类型或内容的信息。
另一种可能的设计中,所述链路具体包括以下信息中的至少一种:
资源设置索引、上报设置索引、测量量。
另一种可能的设计中,终端设备接收波束的指示信息为以下信息中的一种或多种:
发送波束索引、接收波束索引、波束对索引、用于指示波束信息的准共址QCL索引或者QCL指示。
另一种可能的设计中,所述RS的发送及反馈周期的指示信息为:
正交频分复用OFDM符号数目、时间传输间隔TTI数目、时间传输单元TTU数目、时间。
另一种可能的设计中,所述RS的激活或者去激活的指示信息为以下信息中的一种或多种:
资源设置索引、资源集合索引和资源索引、端口索引、OFDM符号索引。
另一种可能的设计中,所述RS发送以及反馈的时间偏移指示信息为:
OFDM符号数目、时间传输间隔TTI数目、时间。
第六方面,本发明实施例还提供一种终端设备,包括收发器和处理器,其中,
收发器,用于接收来自网络设备的第一配置信息,所述第一配置信息包括以下信息中的至少一种:
终端设备接收波束的指示信息、所述参考信号RS发送及信道状态信息CSI反馈周期的指示信息、所述RS激活或去激活的指示信息、所述RS发送以及CSI反馈的时间偏移指示信息、所述RS的功能指示信息、波束扫描方法的指示信息;
所述处理器,用于根据所述第一配置信息,进行信道测量或者干扰测量。
一种可能的设计中,所述终端设备接收波束的指示信息为以下信息中的一个或多个:
发送波束索引、接收波束索引、波束对索引、用于指示波束信息的准共址QCL索引或者QCL指示。
另一种可能的设计中,所述RS的发送及反馈周期的指示信息为:
正交频分复用OFDM符号数目、时间传输间隔TTI数目、时间传输单元TTU数目、时间。
另一种可能的设计中,所述RS的激活或者去激活的指示信息包括以下信息中的一个或多个:
资源设置索引、资源集合索引、资源索引、端口索引、OFDM符号索引。
另一种可能的设计中,所述RS发送以及反馈的时间偏移指示信息为:
OFDM符号数目、时间传输间隔TTI数目、时间。
另一种可能的设计中,,所述终端设备,还用于:
接收来自所述网络设备的第二配置信息,所述第二配置信息包括如下信息中的至少一种:
一个或多个资源设置、一个或多个上报设置、链路,其中,链路用于标识所述一个或多个资源设置与所述一个或多个上报设置的关系,
其中,每一个所述资源设置包括一个或多个资源集合。
另一种可能的设计中,所述每一个资源集合包括一个或多个资源,每个资源中至少包括以下信息中的一种:
所述资源的时频信息、资源的索引信息、发送所述资源的时域特性、所述资源的功能指示信息。
另一种可能的设计中,所述每一个所述上报设置包括以下信息中的至少一种:
用于指示上报时域特性的信息、用于指示上报频域粒度的信息、用于指示上报类型或内容的信息。
另一种可能的设计中,所述链路具体包括以下信息中的至少一种:
资源设置索引、上报设置索引、测量量。
另一种可能的设计中,所述处理器,具体用于:
根据接收波束指示信息,确定接收波束;
根据波束扫描方法指示信息,确定波束扫描方法;
根据RS资源信息,确定参考信号的时频信息;
根据所述参考信号的功能信息,进行测量;
根据链路中指示的资源设置与上报设置的关系信息,确定上报设置,根据上报设置,反馈测量结果。
第七方面,本发明实施例提供一种网络设备,包括处理器和收发器,其中,处理器, 用于将配置信息分为第一配置信息和第二配置信息。
收发器,用于通过RRC信令向终端设备发送所述第一配置信息;通过MAC CE或者DCI向所述终端设备发送所述第二配置信息。
在一种可能的设计中,所述第一配置信息包括CSI-RS基础图案、用于传输参考信号的OFDM符号数目、用于RS传输的OFDM的时频位置信息,CSI-RS发送周期中的一个或多个。
在另一种可能的设计中,所述CSI-RS基础图案进一步包括以下信息中的一种或多种:
一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上所配置的信道状态信息参考信息(channel state information-reference signal,CSI-RS)的端口数、所述CSI-RS的时频域映射信息或者位置信息、用于传输CSI-RS的第一个OFDM符号在帧或者子帧或者时隙中的偏移量或者位置信息、用于传输CSI-RS的OFDM符号的最大值或者最大数目。
由于CSI-RS基础图案比较稳定,时延较小,容忍度大,本发明实施例中通过RRC信令来传输该CSI-RS基础图案至终端设备,能够节省信令开销。
在另一种可能的设计中,第二配置信息包括以下信息中的至少一种:
一个或多个资源设置(resource setting)、一个或多个上报设置(reporting setting)、链路(link),其中,链路用于标识所述一个或多个资源设置与所述一个或多个上报设置的关系。
在另一种可能的设计中,每一个资源设置对应一个资源设置索引,用于唯一标识该资源设置。
在另一种可能的设计中,每一个资源设置包括一个或多个资源集合,每个资源集合对应一个资源集合索引,用于唯一标识该资源集合。
在另一种可能的设计中,每个资源集合进一步包括一个或多个CSI-RS资源,每个CSI-RS资源对应一个资源索引,用于唯一标识该CSI-RS资源。
在另一种可能的设计中,每一个CSI-RS资源进一步包括以下信息中的一个或多个:每个CSI-RS时频位置信息、发送该CSI-RS的时域特性、该CSI-RS的功能指示信息、终端设备接收该CSI-RS的波束信息、该CSI-RS的发送及CSI-RS反馈周期的指示信息、该CSI-RS的去激活或者激活的指示信息、该CSI-RS发送及CSI反馈的时间偏移指示信息、波束扫描方法的指示信息。
在另一种可能的设计中,每一个上报设置包括以下信息中的一个或多个:上报设置的索引,用于唯一标识一个上报设置;CSI测量及上报的时域特性;CSI测量及上报的频域粒度;CSI上报的类型或者内容;波束扫描方法的指示信息。
在另一种可能的设计中,链路包括以下信息中的一个或多个:资源设置索引、上报设置索引、测量量(quantity to be measured)、波束扫描方法的指示信息。
在另一种可能的设计中,终端设备接收波束的指示信息为发送波束索引、接收波束索引、波束对索引、准共址QCL索引或者QCL指示、以及上述的任意一种或以上的组合。
在另一种可能的设计中,终端设备接收波束的指示信息为发送波束索引、接收波束索引、波束对索引、准共址QCL索引或者QCL指示、以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS的发送及反馈周期的指示信息为:正交频分复用OFDM符号数目、时间传输间隔(Time Transmission interval,TTI)数目、时间传输单元 (Time Transmission Unit,TTU)数目、绝对时间、或者通过查表或公式获取的时间值。
在另一种可能的设计中,所述RS的激活或者去激活的指示信息为一个或多个索引集合,每个索引集合包括资源设置索引、资源集合索引、资源索引、以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为:一个或多个参考信号端口的发送以及CSI反馈的时间偏移、一个或多个参考信号RS发送以及CSI反馈的时间偏移、或者一个或多个资源集合发送以及CSI反馈时间偏移、或者一个或多个资源设置发送以及CSI反馈时间偏移。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为OFDM符号数目、TTI数目、绝对时间、通过查表或者公式的方式获取的一个时间值、以及上述的任意一种或以上的组合。
第八方面,本发明实施例提供一种终端设备,包括处理器和收发器,其中,收发器,用于接收来自网络设备的第一配置信息;接收来自发送器的第二配置信息;
处理器,用于根据所述第一配置信息和第二配置信息,进行测量及反馈。
一种可能的设计中,所述第一配置信息包括CSI-RS基础图案、用于传输参考信号的OFDM符号数目、用于RS传输的OFDM的时频位置信息,CSI-RS发送周期中的一个或多个。
在另一种可能的设计中,所述CSI-RS基础图案进一步包括以下信息中的一种或多种:
一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上所配置的信道状态信息参考信息(channel state information-reference signal,CSI-RS)的端口数、所述CSI-RS的时频域映射信息或者位置信息、用于传输CSI-RS的第一个OFDM符号在帧或者子帧或者时隙中的偏移量或者位置信息、用于传输CSI-RS的OFDM符号的最大值或者最大数目。
由于CSI-RS基础图案比较稳定,时延较小,容忍度大,本发明实施例中通过RRC信令来传输该CSI-RS基础图案至终端设备,能够节省信令开销。
在另一种可能的设计中,第二配置信息包括以下信息中的至少一种:
一个或多个资源设置(resource setting)、一个或多个上报设置(reporting setting)、链路(link),其中,链路用于标识所述一个或多个资源设置与所述一个或多个上报设置的关系。
在另一种可能的设计中,每一个资源设置对应一个资源设置索引,用于唯一标识该资源设置。
在另一种可能的设计中,每一个资源设置包括一个或多个资源集合,每个资源集合对应一个资源集合索引,用于唯一标识该资源集合。
在另一种可能的设计中,每个资源集合进一步包括一个或多个CSI-RS资源,每个CSI-RS资源对应一个资源索引,用于唯一标识该CSI-RS资源。
在另一种可能的设计中,每一个CSI-RS资源进一步包括以下信息中的一个或多个:每个CSI-RS时频位置信息、发送该CSI-RS的时域特性、该CSI-RS的功能指示信息、终端设备接收该CSI-RS的波束信息、该CSI-RS的发送及CSI-RS反馈周期的指示信息、该CSI-RS的去激活或者激活的指示信息、该CSI-RS发送及CSI反馈的时间偏移指示信息、波束扫描方法的指示信息。
在另一种可能的设计中,每一个上报设置包括以下信息中的一个或多个:上报设置的索引,用于唯一标识一个上报设置;CSI测量及上报的时域特性;CSI测量及上报的频域的特性;CSI上报的类型或者内容;波束扫描方法的指示信息。
在另一种可能的设计中,链路包括以下信息中的一个或多个:资源设置索引、上报设置索引、测量量(quantity to be measured)、波束扫描方法的指示信息。
在另一种可能的设计中,终端设备接收波束的指示信息为发送波束索引、接收波束索引、波束对索引、准共址QCL索引或者QCL指示、以及上述的任意一种或以上的组合。
在另一种可能的设计中,终端设备接收波束的指示信息为发送波束索引、接收波束索引、波束对索引、准共址QCL索引或者QCL指示、以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS的发送及反馈周期的指示信息为正交频分复用OFDM符号数目、时间传输间隔TTI数目、时间传输单元TTU数目、绝对时间、或者通过查表或公式获取的时间值、以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS的激活或者去激活的指示信息为一个或多个索引集合,每个索引集合包括资源设置索引、资源集合索引、资源索引、以及上述的任意一种或以上的组合。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为:一个或多个参考信号端口的发送以及CSI反馈的时间偏移、一个或多个参考信号RS发送以及CSI反馈的时间偏移、或者一个或多个资源集合发送以及CSI反馈时间偏移、或者一个或多个资源设置发送以及CSI反馈时间偏移。
在另一种可能的设计中,所述RS发送以及CSI反馈的时间偏移指示信息为OFDM符号数目、TTI数目、绝对时间、通过查表或者公式的方式获取的一个时间值、以及上述的任意一种或以上的组合。
本发明的又一方面提供了一种通信系统,包括网络设备和终端设备,其中网络设备如第五或第七方面所述的网络设备,终端设备如第六或第八方面所述的终端设备。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
结合以上所有方面,一种可能的设计中,所述波束扫描方法的指示信息为资源设置resource setting的索引信息。
结合以上所有方面,一种可能的设计中,所述波束扫描方法的指示信息为资源集合resource set的索引信息。
结合以上所有方面,一种可能的设计中,所述终端设备接收波束的指示信息,其中,所述指示信息为以下信息中的一种或多种组合:
第一指示信息,用于指示不同种类或者功能或者过程所对应的波束对索引类型;
第二指示信息,该指示信息为分组索引Group ID信息;
第三指示信息,该指示信息为发送波束的逻辑ID或者比特位图Bit-Map信息;
第四指示信息,该指示信息为接收波束的逻辑ID或者比特位图Bit-Map信息。
本发明各个实施例提供了一种在高频频段采用窄波束技术下的情况下,如何配置测量信息的方案。
附图说明
图1是本申请实施例的技术方案应用的场景的示意图;
图2A是根据本申请实施例的一种配置信息的方法的示意性流程图;
图2B是本发明实施例提供的第二配置资源的示意图;
图3是根据本申请实施例的一种配置信息的方法的示意性流程图;
图4是本发明实施例提供的一种导频资源发送时间偏移的示意图;
图5是比特位图的示意图;
图6是另一种比特位图的示意图;
图7是根据本申请实施例的信息指示的网络设备的示意性框图;
图8是根据本申请实施例的信息指示的终端设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1给出了本申请实施例的技术方案应用的场景的示意图。如图1所示,网络设备在射频通道上存在6种不同的发送波束B1-B6,并对6种相同或者不同的波束采用不同的模拟加权处理。终端设备1作为射频通道的接收端存在1种波束A1,终端设备2作为射频通道的接收端存在2种波束A1和A2,网络设备与终端设备1之间通过B1-B4和A1建立波束对信息,用于网络设备和终端设备1的通信,网络设备与终端设备2之间通过B5-B6和A1-A2建立波束对信息,用于网络设备和终端设备2的通信,应理解,本申请应用于任何基于模拟波束加权下的网络设备与终端设备的通信。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、以及第五代(5th-Generation,简称为“5G”)通信系统等。
本申请结合终端设备描述了各个实施例。终端设备也可以指用户设备(User Equipment,简称为“终端设备”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称为“SIP”)电话、无线本地环路(Wireless Local Loop,简称为“WLL”)站、个人数字处理(Personal Digital Assistant,简称为“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为“PLMN”)中的终端设备等。
本申请结合网络设备描述了各个实施例。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,简称为“BTS”)与基站控制器(Base Station Controller,简称为“BSC”)的结合,也可以是WCDMA系统 中的基站(NodeB,简称为“NB”)与无线网控制器(Radio Network Controller,简称为“RNC”),还可以是LTE系统中的演进型基站(Evolutional Node B,简称为“eNB”或“eNodeB”),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的接入网设备,比如下一代基站,或者发送接收点(Transmission Reception Point,TRP)或未来演进的PLMN网络中的接入网设备等。
本发明实施例的基本原理在于:在高频通信系统中(通过频段大于6GHz以上),采用模拟窄波束进行参考信号、数据的接收和发送,需要将参考信号的时频资源或者端口信息和接收侧的接收波束或者发送波束进行关联,这样接收侧才能获取具体采用哪个接收波束或者发送波束来进行参考信号或者数据的接收与发送,而这些关联信息需要在参考信号或者数据发送之前配置给接收侧,接收侧获取该配置信息后,才能采用正确的接收波束来接收具体的参考信号或者数据。
图2A示出了根据本申请实施例的一种配置信息的方法200的示意性流程图。
S210、网络设备生成第一配置信息,所述第一配置信息包括以下信息中的至少一种:
终端设备接收波束的指示信息、所述参考信号RS发送及反馈周期的指示信息、所述RS的功能指示信息、波束扫描方法的指示信息。
S220、通过层一或层二的信令向所述终端设备发送所述第一配置信息。
S230、终端设备接收所述层一或层二的信令,获取第一配置信息。
S240、基于所述第一配置信息,进行测量或者波束管理。
所述层一(layer 1)为下行控制信息(downlink control information,DCI)。
所述层2(layer 2)的信令为媒体接入控制控制元素(media access control control element,MAC CE)。
可选地,所述第一配置信息还包括以下信息:
所述RS激活或去激活的指示信息、所述RS发送以及反馈的时间偏移指示信息。
在步骤S210之前,所述方法200还包括:
S201、网络设备生成第二配置信息并向所述终端设备发送所述第二配置信息,所述第二配置信息可以称为测量设置(measurement setting)。
第二配置信息可以包括以下信息中的一个或多个:
一个或多个资源设置(resource setting)、一个或多个上报设置(reporting setting)、链路(link)。如图2B所示,图2B示出了一种测量设置的示意图,其中,图2B中的M,N,X,Y均为大于1的整数。
其中,每一个RS资源设置对应一个资源设置索引,用于唯一标识该资源设置。
可选地,所述第二配置信息应该在所述第一配置信息之前或者同时发送。
进一步地,每一个资源设置包括:一个或多个RS资源集合(resource set)、资源类型。其中,资源类型用于标识该参考信号资源的功能或用途。比如,当资源类型取第一值时,用于标识该参考信号用于波束管理;当资源类型取第二值时,用于标识该参考信号用于信道状态信息获取(CSI acquisition)。
进一步地,每一个RS资源设置对应一个资源设置索引,用于唯一标识该资源设置。
进一步地,每一个RS资源集合对应一个资源集合索引,用于唯一标识该资源集合。
进一步地,每一个RS资源集合包括一个或多个RS资源,每个RS资源对应一个资源索引,用于唯一标识该资源。
进一步地,每一个RS资源包括如下信息的一种或多种:
每一个RS的时域资源信息、RS发送的时域行为(time-domain behavior)、RS的功能指示信息。其中,功能指示信息用于指示该RS是用作什么功能,比如:当指示信息取第一值时,用于指示该RS用于干扰测量(interference measurement,IM),当该指示信息取第二值时,用于指示该RS用于信道状态测量,当该指示信息取第三值时,指示该RS用于波束管理(beam management,BM)。
可选地,用于指示RS的功能的信息可以是功率信息。比如,在现有LTE中提供的功率信息中新增一个字段或者新增一行,用于标识RS的功能,当取值为zero或者空(Null)时,表示该RS用于干扰测量;当取值为其他值,表示该RS为非零功率,用于信道估计。
进一步地,每一个RS的时域资源信息包括以下信息中的一种或多种:RS所占用的OFDM符号数目、每个OFDM符号在子帧中的位置信息、一个OFDM符号上RS的端口数目、资源粒子(resource element,RE)的映射信息(mapping to REs)。这些信息主要用于通知接收机RS在哪些时频位置上,根据这些信息,接收侧才可以测量所述RS。
具体地,时域行为可以包括:周期性(periodic)、非周期性(aperiodic)、半静态(semi-persistent)。周期性是指基站配置的参考信号的测量资源在时间上一直周期性出现。半静态是指基站配置的参考信号的测量资源在指定时间长度内周期性出现,指定时间长度之外可以不做限定。非周期是指基站为用户设备配置一个临时的参考信号的测量资源。当基站指示的时域行为为周期性时,通常还需要指示具体多少时间长度为一个周期,比如,50ms为一个周期、100ms为一个周期。时域行为主要用于通知接收机,发射机发射参考信号的周期、或者频率或者时间,以便于接收机能够接收这些参考信号。
每一个CSI上报设置对应一个上报设置索引,用于唯一标识该上报设置。
其中,每一个上报设置至少包括以下内容中的至少一个:
上报波束管理(beam management,BM)参数、CSI类型(CSI type)、码本配置信息,比如码本子集限制(codebook subset restriction)、时域行为(time-domain behavior)、频域粒度(frequency granularity)、测量限制配置(measurement restriction configurations)。
上报设置用于指示接收机反馈哪些信息给发射机,以及如何反馈这些信息、或者反馈的频率或者周期。
其中,上报波束管理参数可以包括资源集合的索引、资源集合的索引和资源索引、资源集合的索引和RS端口的索引、资源集合的索引和资源索引和RS端口的索引、资源索引、资源索引和RS端口索引、RS端口索引中的一项或多项。
其中,频域粒度是指一个或者多个RS测量资源在频域上所对应的子载波的信息。可以是子载波在一个或者多个资源块(resource block,RB)中所对应的子载波序号、子载波宽度、或者子载波间隔等信息。
可选地,所述RS是CSI-RS。其中,CSI-RS是指用于进行信道状态,比如,信道质量信息(channel quality information,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、秩指示(rank indicator,RI)测量或者波束管理时的下行参考信号,CSI-RS测量资源是指基站配置给CSI-RS的时频资源,用于基站与终端设备进行波束对准。在波束对准过程中,基站可以在CSI-RS测量资源上发送CSI-RS,同时终端设备可以在CSI-RS测量资源上接收并测量基站发送的CSI-RS。
可选地,上述第一配置信息可以在所述终端设备随机接入完成之后通过随机接入响应 消息或者物理下行共享信道(physical downlink share channel,PDSCH)发送给所述终端设备。
可选地,所述RS是探测参考信号(sounding reference signal,SRS)。SRS是指用于信道估计或者波束管理时的上行参考信号,SRS测量资源是指基站配置给SRS的时频资源,用于基站与终端设备进行波束对准。在波束对准过程中,终端设备可以在SRS测量资源上发送SRS,同时基站可以在SRS测量资源上接收并测量终端设备发送的SRS。
可选地,上述第一配置信息可以在所述终端设备随机接入完成之后通过随机接入响应消息或者物理下行共享信道(physical downlink share channel,PDSCH)发送给所述终端设备。
具体地,链路用于指示资源设置和上报设置的对应关系以及测量量。一个上报设置可以关联一个或多个资源设置。多个上报设置可以关联同一个资源设置。
所述链路包括资源设置索引或者指示(index or indication)、上报设置索引或者指示、测量量(quantity to be measured)。比如,资源设置索引1与上报设置索引2是一一对应,当网络设备配置的RS资源属于资源设置索引1中的资源时,终端设备反馈RS测量信息时,需要根据上报设置索引2的要求来上报。
进一步地,所述链路还可以包括波束扫描类型。波束扫描类型用于指示网络设备和终端设备的扫描方式。根据当前标准的规定,标准同意了下行三种扫描方式和上行三种扫描方式,分别为P1/P2/P3,U1/U2/U3。比如对于下行导频配置而言,波束扫描类型字段可以有2个比特,比如,01表示采用P2的方式扫描。其中,P1,P2,P3,U1,U2,U3的含义可以参考标准的定义,这里不再赘述。
具体地,步骤210中、第一配置信息中终端设备接收波束的指示信息可以是用于指示一个或多个参考信号端口的接收波束信息、或者用于指示一个或多个参考信号资源的接收波束信息、或者用于指示资源集合的接收波束信息、或者用于指示资源设置的接收波束信息。本发明中提到的RS端口用于指示参考信号在OFDM符号中的时频位置,并非物理端口。
进一步地,指示终端设备接收波束的信息可以是发送波束索引、接收波束索引、波束对索引(用于描述发送波束和接收波束)、用于指示波束信息的准共址(Quasi-co-located,QCL)索引或者QCL指示、以及上述几种索引的任意间的组合。
其中,当网络设备指示终端设备接收波束的信息为波束对索引时,应理解为,在指示之前,终端设备首先反馈波束信息给所述网络设备,网络设备根据所述终端设备反馈的波束信息,指示终端设备的接收波束对(BPL:Beam pair link)信息。
进一步地,终端设备反馈波束信息,具体可以反馈以下信息中的一种或任意两种以上的组合:
分组索引Group ID、接收波束ID、发送波束ID。
Group ID可以是以下信息中的一种或任意两种以上的组合:
第一信息,该信息为根据预定义或者预配置规则获取的分组信息,该规则包括但不限于天线分组、天线面板分组。示例性地,同一个天线面板的端口形成的波束为同一个分组。。
第二信息,该信息包括但不限于逻辑波束ID信息、逻辑分组ID信息、基于比特位图的逻辑波束信息。
发送波束ID可以是资源设置(resource setting)的索引、资源集合(resource set)索引、资 源(resource)索引、端口索引、时间索引、同步块SS block索引中的一个或多个信息的组合。
接收波束ID可以是终端设备接收波束的逻辑ID。示例性地,如下表所示,该逻辑ID可以为对终端设备选择的所有波束的全局逻辑编号、也可以是基于Group ID所对应的所有波束的局部逻辑编号。还应理解,同一个组所对应的接收波束在终端设备侧可以被同时接收或者发送。
Figure PCTCN2017113092-appb-000001
网络设备指示终端设备接收波束的信息为波束对索引(BPL:Beam pair link)时,所述波束对索引信息可以是以下信息中的一种或多种的组合:
第一指示信息,用于指示不同种类或者功能或者过程所对应的波束对索引类型;
第二指示信息,该指示信息为分组索引Group ID信息;
第三指示信息,该指示信息为发送波束的逻辑ID或者比特位图Bit-Map信息;
第四指示信息,该指示信息为接收波束的逻辑ID或者比特位图Bit-Map信息。
第一指示信息可以为不同类型的参考信号,包括但不限于初始接入参考信号、波束管理参考信号、CSI测量参考信号、数据传输参考信号。第一指示信息还可以是不同的通信过程,包括但不限于初始接入阶段、波束管理阶段、CSI测量阶段、数据传输阶段。示例性地,第一指示信息为2bit,其中,00表示初始接入参考信号、01表示波束管理参考信号、10表示CSI测量参考信号、11表示数据传输参考信号。
第二指示信息为Group ID,Group ID的表现形式可以是以下信息中的一种或任意两种以上的组合:
第一信息,该信息为根据预定义或者预配置规则获取的分组信息,该规则包括但不限于天线分组、天线面板分组。示例性地,同一个天线面板的端口形成的波束为同一个分组。。
第二信息,该信息包括但不限于逻辑波束ID信息、逻辑分组ID信息、基于比特位图的逻辑波束信息。
第三指示信息为发送波束的逻辑ID,或者采用比特位图的方式指示波束索引。示例性地,如下表所示:
Figure PCTCN2017113092-appb-000002
第四指示信息为接收波束的逻辑ID,或者采用比特位图的方式指示波束索引信息。示例性地,如下表所示,该逻辑ID可以为终端设备选择的波束的全局逻辑编号、也可以是Group ID所对应的局部逻辑编号。还应理解,同一个组所对应的接收波束在终端设备侧可 以被同时接收或者发送。
终端设备选择的波束信息 全局逻辑编号 局部逻辑编号
4 0 Group#0:0
5 1 Group#0:1
9 2 Group#1:0
12 3 Group#1:1
具体地,步骤210中,第一配置信息中参考信号发送及CSI反馈周期的指示信息,可以是:一个或多个参考信号端口的发送周期以及CSI反馈周期、一个或多个参考信号资源的发送周期以及CSI反馈周期、还可以是一个或多个资源集合的发送周期以及CSI反馈周期、还可以是一个或多个资源设置的发送周期以及CSI反馈周期,以及上述几种方式之间的任意组合。
具体地,用于参考信号的发送及CSI反馈周期信息可以是时隙数目、时隙索引、OFDM符号数目、时间传输间隔(time transmission interval,TTI)数目、时间传输单元(time transmission unit,TTU)数目、绝对时间值、或者通过查询表格的方式获取的时间值,比如表1所示,周期索引可以标识反馈周期。该绝对时间可以是微秒(us)、毫秒(ms)、或者秒(s)等等,比如,可以是2ms、还可以是4ms。
表1
周期索引 CSI反馈周期
1 T1
2 T2
3 T3
…… ……
N TN
具体地,步骤210中,第一配置信息参考信号的激活或去激活指示信息是指当网络设备配置了多个参考信号,但是对于某一个终端设备可能只用到其中的一个或几个参考信号,此时,网络设备可以将不用的那些参考信号资源去激活。网络设备可以通过索引的方式指示哪些资源集合或者资源去激活或者激活,或者通过比特位图(Bitmap)的方式指示终端设备哪些资源集合或者资源去激活或者激活。
比如,当采用索引的方式指示时,该索引指示信息可以指示哪些资源集合、或者哪些资源、或者哪些参考信号端口去激活或者激活。比如,指示信息可以包括一个或多个索引,索引值可以为多种索引的组合关系{资源设置索引、资源集合索引、资源索引、端口索引}。以8个资源集合,每个资源集合包含3个资源为例,如果需要指示其中4个资源集合是无效资源,4个资源集合是有效资源,那么需要4*3即12比特才可以。
比如,当采用bitmap的方式指示时,如图5所示,以8个资源集合,每个资源集合包含3个资源为例,需要2级bitmap来指示,如图6所示。10011001表示第1、第4、第5以及第8个资源集合是有效资源,第2、3、6以及7个资源集合是无效资源。还需要进一步指示第1、4、5以及第8资源集合中哪些资源是有效的,比如,第1个资源集合中,第 1和第3资源有效,第2资源无效;第4个资源集合中,第3资源有效,第1和第2资源无效;第5个资源集合中所有资源均有效;第8个资源集合中,第1和第3资源有效,第2个资源无效。
具体地,步骤210中,第一配置信息中参考信号的发送以及反馈的时间偏移信息,可以是:一个或多个参考信号端口的发送以及反馈时间偏移、一个或多个参考信号发送以及反馈时间偏移、一个或多个资源集合发送及反馈时间偏移、一个或多个资源设置发送以及反馈时间偏移以及上述四种方式之间的任意组合。
进一步地,所述“发送时间偏移”用于指示配置时刻与RS发送时刻的时间间隔,“反馈时间偏移”用于指示配置时刻与反馈时间的时间间隔,该时间间隔具体可以是OFDM符号数目、时隙、TTI数目、绝对时间、通过查表或者公式的方式获取的一个时间值T1~TN、或者时间偏移索引,如表2所示。该绝对时间可以是微秒(us)、毫秒(ms)、或者秒(s)等等,比如,可以是2ms、还可以是4ms。
表2
时间偏移索引 时间偏移量
1 T1
2 T2
3 T3
…… ……
N TN
需要说明的是,上述表2所示的时间偏移索引与时间偏移量之间的对应关系仅为示例性的,上述表1并不对本发明的实施例构成限定。当用于指示参考信号的发送以及反馈的时间偏移信息是时间偏移索引的信息时,可以根据预设的时间偏移索引与时间偏移量之间的对应关系,确定对应的时间偏移量,
具体地,步骤210中,第一配置信息中参考信号的功能指示信息,用于指示该参考信号的功能或用途。比如,是用于干扰测量还是信道估计或者波束管理。
进一步地,有两种可能的实现方式。第一种方式为:通过比特位图bitmap的方式来指示该参考信号的用途。以4个参考信号资源为例,1100表示前两个资源用于信道估计,后两个资源用于干扰测量;1000表示第一个资源用于信道估计,后三个资源用于干扰测量;0011表示前两个资源用于干扰测量,后两个资源用于信道估计,以此类推,不再赘述。
第二种实现方式为:在现有的功率等级表中,新增一种功率等级,用于标识该参考信号的功能或者用途。示例性地,当功率配置为0或者null时,标识该RS资源用于干扰测量;当功率配置为非零值时,标识该RS资源用于CSI测量。
具体地,在步骤210中,第一配置信息中的波束扫描方法的指示信息,用于指示参考信号对应的波束扫描方法。波束扫描类型用于指示网络设备和终端设备的扫描方式。根据当前标准的规定,标准同意了下行三种扫描方式和上行三种扫描方式,分别为P1/P2/P3,U1/U2/U3。比如对于下行导频配置而言,波束扫描类型字段可以有2个比特,比如,01表示采用P2的方式扫描。其中,P1,P2,P3,U1,U2,U3的含义可以参考标准的定义,这里不再赘述。
可选地,可以携带在资源集合中或者资源、或者资源设置、或者上报设置、或者链路 中。比如对于下行导频配置而言,可以命名一个扫描类型(sweeping type)的字段,该字段长度为2个比特,00标识波束扫描的方式为过程2(procedure 2,P2)、01标识波束扫描的方式为过程3(P3)。再比如对于上行导频配置而言,00标识波束扫描的方式为上行2(U2)、01标识波束扫描的方式为上行3(U3)。其中,对于P1、P2、P3、U1、U2、U3的介绍请参考标准的描述,这里不再赘述。
具体地,本发明实施例可以通过隐式的方式指示波束扫描的方法。比如,在一种具体的实现方式中,通过指示资源设置(resource setting)或者资源集合(resource set)的索引信息,来隐式指示波束扫描的方法或类型。示例性地,如下表3或者表4所示:
表3
标准定义的波束扫描方法 资源集合索引
P2 资源集合索引0{resource set#0}
P3 资源集合索引1{resource set#1}
表4
标准定义的波束扫描方法 资源设置索引
P2 资源设置索引0{resource setting#0}
P3 资源设置索引1{resource setting#1}
所述表3或表4的资源设置或者资源集合与波束扫描类型的映射关系信息可以通过RRC信令或者MAC-CE或者DCI信令发送终端设备,也可以预存储或者预配置在基站和终端设备上。
应理解,在半静态(semi-persistent)或者非周期性(aperiodic)波束管理的过程中,基站通过配置相应的资源集合索引信息或者资源设置索引信息给终端设备,终端设备可以根据资源集合索引信息或者资源设置索引信息获取所对应的波束扫描方法。该资源集合索引信息可以包含一个或多个资源集合索引,以实现联合不同波束扫描过程的波束管理。另外,不同波束扫描类型所对应的时间关系可以由索引信息中的位置关系决定。示例性地,如表3所示,当基站指示的配置信息为{resource set#1,resource set#0},则用于指示终端设备先基于P3完成波束扫描,而后基于P2完成波束扫描。其中两个波束扫描过程所间隔的时间差可由基站配置给终端设备,也可以由标准定义一个默认的值。
应理解,基站通过配置相应的资源集合索引信息或者资源设置索引信息给终端设备,终端设备可以根据对应的波束扫描指示信息获取所对应的资源设置或者资源集合配置信息。该波束扫描指示信息可以包含一种或多种波束扫描方法,以实现联合不同波束扫描过程的波束管理。另外,不同波束扫描类型所对应的时间关系可以由波束扫描指示信息中的位置关系决定。示例性地,如表3所示,当基站指示的配置信息为{P-3,P-2},则用于指示终端设备先基于P3完成波束扫描,而后基于P2完成波束扫描。其中两个波束扫描过程所间隔的时间差可由基站配置给终端设备,也可以由标准定义一个默认的值。
应理解,上述表格中仅为示例,实现过程中,可以包含多种波束扫描方法的组合,比如P1+P2,P1+U1等等,这里不再赘述。
具体地,步骤230中,终端设备通过layer1或者layer2的信令接收来自基站的第一配 置信息,获取上面所例举的第一配置信息中包括的具体信息。
在步骤230之前,终端设备还应该接收来自网络设备的第二配置信息,获取上述所列举的第二配置信息中包括的具体信息。
根据第一配置信息和第二配置信息来进行测量并反馈,具体包括:
接收侧根据第一配置信息和第二配置信息,进行测量,具体包括:
a、根据接收波束指示信息,确定接收波束;
b、根据参考信号RS发送及信道状态信息CSI反馈周期的指示信息,确定RS的发送周期;
c、根据RS激活或去激活的指示信息,确定哪些RS资源是可用的;
d、根据所述RS发送以及CSI反馈的时间偏移指示信息,确定RS的时频信息;
e、根据所述参考信号的功能信息,进行测量;
f、根据波束扫描方法指示信息,确定波束扫描方法;
g、根据链路中指示的资源设置与上报设置的关系信息,确定上报设置,根据上报设置,反馈测量结果。比如,CSI上报设置中指定终端设备反馈CSI-RS资源指示(CSI-RS resource indicator,CRI)、或者预编码矩阵指示(precoding matrix indicators,PMI)、或者码本配置、或者秩指示(rank indicator,RI)、或者信道质量指示(channel quality indicator,CQI)这些信息,那么终端设备通过测量确定对应的值,反馈这些值至网络设备。
需要说明的是,以上步骤的执行顺序不分先后,可能同时执行,也可能上述指定的顺序执行,本发明不予限定。
未来5G标准可能会考虑将RS测量与波束管理(beam management,BM)统一起来,在本发明实施例中,如果终端设备需要反馈波束对的指示信息,该指示信息的表现形式可以是以下方式之一或者任意两者或两者以上的组合:
波束索引以及对应的波束分组信息,该波束索引为{资源集合索引,资源索引}或者{资源集合索引、资源索引、端口索引}的组合方式;或者,{资源集合索引、资源索引、端口索引、符号索引}的组合方式;
或者通过比特位图bitmap的方式反馈波束索引以及对应的波束分组信息。
举例说明,通过资源集合索引和资源索引,来指示波束对信息;或者通过资源集合索引和资源索引和端口索引,来指示波束对信息;或者通过资源集合索引和资源索引和端口索引和符号索引来指示波束对信息。
另外,当上述资源设置用于波束管理(beam management,BM)时,资源设置可以称为波束管理资源设置、上报设置可以称为波束管理上报设置、链路可以称为波束管理链路。其中,波束管理资源设置中所包括的资源集合的个数等于波束扫描周期中时间单元(time unit,TU)的个数。对于TU的定义可以参考标准的描述,这里不再赘述。
进一步地,多个波束管理上报设置可以关联同一个波束管理资源设置;
进一步地,多个波束管理资源设置可以关联同一个波束管理上报设置。
可选地,同一个波束管理资源设置中的不同资源集合对于部分参数可以设置相同的值。这些参数可以是端口数目、时域行为。
多个RS资源可以配置为用于波束管理,每一个RS资源对应一个波束。因此,波束管理上报设置中可以为CSI RS资源集合索引、CSI RS资源索引、或者RS接收功率(reference signal reception power,RSRP)或者端口索引。
本发明实施例提供的方案提供了一种在高频频段采用窄波束技术时,进行信道测量与反馈的技术方案。
实施例二
图3示出了根据本申请实施例的一种配置信息的方法300的示意性流程图。图3中的网络设备可以为图1中的网络设备;终端设备可以为图1中的终端设备。
S310、将配置信息分为第一配置信息和第二配置信息;
S320、通过层2信令向终端设备发送所述第一配置信息;
S330、通过层1或层2的信令向所述终端设备发送所述第二配置信息;
S340、接收来自网络设备的第一配置信息,获取第一配置信息;
S350、接收来自网络设备的第二配置信息,获取第二配置信息;
S360、根据所述第一配置信息和第二配置信息,进行信道测量或者干扰测量或者波束管理。
应理解,步骤320和步骤330的执行顺序可以调整,也可以同时发送,不受步骤的编号所限定。
可选地,第一配置信息可以是时变性较慢的参数。
可选地,第二配置信息可以是时变性较快的参数。
具体地,第一配置信息可以包括RS基础图案(basic pattern或者basic subset pattern)、用于传输参考信号的OFDM数目,用于RS传输的OFDM的时频位置信息,RS发送周期中的一个或多个。其中,用于传输参考信号的OFDM数目是终端所在小区或者传输接收点TRP所能承载的用于RS传输的最大OFDM符号数目;用于RS传输的OFDM的时频位置信息是终端设备所在小区或者TRP用于RS传输的OFDM符号时频位置。
具体地,RS基础图案包括以下信息中的至少一种:
一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上所配置的参考信号的端口数、所述RS的时频域映射信息或者位置信息、用于传输RS的第一个OFDM符号在帧或者子帧或者时隙中的偏移量或者位置信息、用于传输RS的OFDM符号的最大值或者最大数目。
由于RS基础图案比较稳定,时延较小,容忍度大,本发明实施例中通过RRC信令来传输该RS基础图案至终端设备,能够节省信令开销。
在一种可能的实现方式中,所述层2信令可以是RRC信令。
具体地,RRC信令可以包括一个或多个新增字段,所述第一测量信息承载在所述一个或多个新增字段上。
具体地,第二配置信息包括以下信息中的至少一种:
一个或多个资源设置(resource setting)、一个或多个上报设置(reporting setting)、链路(link)。
其中,每一个资源设置对应一个资源设置索引,用于唯一标识该资源设置。
每一个资源设置包括一个或多个资源集合,每个资源集合对应一个资源集合索引,用于唯一标识该资源集合。
每个资源集合进一步包括一个或多个RS资源,每个RS资源对应一个资源索引,用于唯一标识该RS资源。
每一个RS资源进一步包括以下信息中的一个或多个:
每个RS时频位置信息、发送该RS的时域特性、该RS的功能指示信息、终端设备接收该RS的波束信息、该RS的发送及RS反馈周期的指示信息、该RS的去激活或者激活的指示信息、该RS发送及反馈的时间偏移指示信息、波束扫描方法的指示信息。
具体地,本发明实施例可以通过隐式的方式指示波束扫描的方法或者类型。比如,在一种具体的实现方式中,通过指示资源设置(resource setting)或者资源集合(resource set)的索引信息,来隐式指示波束扫描的方法或类型。示例性地,如表3或者表4所示:
表3
标准定义的波束扫描方法或类型 资源集合索引
P2 资源集合索引0{resource set#0}
P3 资源集合索引1{resource set#1}
表4
标准定义的波束扫描方法或类型 资源设置索引
P2 资源设置索引0{resource setting#0}
P3 资源设置索引1{resource setting#1}
所述表3或表4的资源设置或者资源集合与波束扫描类型的映射关系信息可以通过RRC信令或者MAC-CE或者DCI信令发送终端设备,也可以预存储或者预配置在基站和终端设备上。
应理解,在半静态(semi-persistent)或者非周期性(aperiodic)波束管理的过程中,基站通过配置相应的资源集合索引信息或者资源设置索引信息给终端设备,终端设备可以根据资源集合索引信息或者资源设置索引信息获取所对应的波束扫描方法。该资源集合索引信息可以包含一个或多个资源集合索引,以实现联合不同波束扫描过程的波束管理。另外,不同波束扫描类型所对应的时间关系可以由索引信息中的位置关系决定。示例性地,如表3所示,当基站指示的配置信息为{resource set#1,resource set#0},则用于指示终端设备先基于P3完成波束扫描,而后基于P2完成波束扫描。其中两个波束扫描过程所间隔的时间差可由基站配置给终端设备,也可以由标准定义一个默认的值。
应理解,基站通过配置相应的资源集合索引信息或者资源设置索引信息给终端设备,终端设备可以根据对应的波束扫描指示信息获取所对应的资源设置或者资源集合配置信息。该波束扫描指示信息可以包含一种或多种波束扫描方法,以实现联合不同波束扫描过程的波束管理。另外,不同波束扫描类型所对应的时间关系可以由波束扫描指示信息中的位置关系决定。示例性地,如表3所示,当基站指示的配置信息为{P-3,P-2},则用于指示终端设备先基于P3完成波束扫描,而后基于P2完成波束扫描。其中两个波束扫描过程所间隔的时间差可由基站配置给终端设备,也可以由标准定义一个默认的值。
应理解,上述表格中仅为示例,实现过程中,可以包含多种波束扫描方法的组合,比如P1+P2,P1+U1等等,这里不再赘述。
每一个上报设置包括以下信息中的一个或多个:
上报设置的索引,用于唯一标识一个上报设置;CSI测量及上报的时域特性;CSI测量及上报的频域的特性;CSI上报的类型或者内容;波束扫描方法的指示信息。
链路包括以下信息中的一个或多个:
资源设置索引、上报设置索引、测量量(quantity to be measured)、波束扫描方法的指示信息。
其中,终端设备接收该RS的波束信息、该RS的发送及RS反馈周期的指示信息、该RS的去激活或者激活的指示信息、该RS发送及反馈的时间偏移指示信息、波束扫描方法的指示信息的具体描述同实施例一的描述,这里不再赘述。
具体地,发送该RS的时域特性可以是周期性的、非周期性的、半静态的。比如,当配置该RS的时域特性为周期性时,还应该配置具体的周期的值。比如,50ms为一个周期、10ms为一个周期,如图4所示。
具体地,CSI测量及反馈的频域特性可以是宽带、或者窄带、或者部分带宽。比如,频域上采用哪几个子带(subband)来反馈。
具体地,CSI反馈的类型或者内容可以是RS资源指示(RS resource indicator,CRI)、或者预编码矩阵指示(precoding matrix indicators,PMI)、或者码本配置、或者秩指示(rank indicator,RI)、或者信道质量指示(channel quality indicator,CQI)。
可选地,第二配置信息可以通过MAC CE或者DCI发送至终端设备,其中,MAC CE或者DCI可以新增一个或多个字段用于承载第二测量信息。
进一步地,RS的功能指示信息,用于指示CSI-RS的功能。比如一种可能的实现方式中,当该字段取值为0或者空(zero或者null)时,指示该CSI-RS资源设置用于干扰测量;当该字段取值为NZP CRI-RS配置时,指示该CSI-RS资源设置用于信道估计。
可选地,所述RS是CSI-RS。其中,CSI-RS是指用于进行信道状态,比如,信道质量信息(channel quality information,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、秩指示(rank indicator,RI)测量或者波束管理时的下行参考信号,CSI-RS测量资源是指基站配置给CSI-RS的时频资源,用于基站与终端设备进行波束对准。在波束对准过程中,基站可以在CSI-RS测量资源上发送CSI-RS,同时终端设备可以在CSI-RS测量资源上接收并测量基站发送的CSI-RS。
可选地,上述第一配置信息可以在所述终端设备随机接入完成之后通过随机接入响应消息或者物理下行共享信道(physical downlink share channel,PDSCH)发送给所述终端设备。
可选地,所述RS是探测参考信号(sounding reference signal,SRS)。SRS是指用于信道估计或者波束管理时的上行参考信号,SRS测量资源是指基站配置给SRS的时频资源,用于基站与终端设备进行波束对准。在波束对准过程中,终端设备可以在SRS测量资源上发送SRS,同时基站可以在SRS测量资源上接收并测量终端设备发送的SRS。
可选地,上述第一配置信息可以在所述终端设备随机接入完成之后通过随机接入响应消息或者物理下行共享信道(physical downlink share channel,PDSCH)发送给所述终端设备。
具体地,在步骤240中,终端设备接收层2的信令,获取第一配置信息,其中第一配置信息如上所述,这里不再赘述。
具体地,在步骤250中,终端设备接收层1或层2的信令,获取第二配置信息,其中,第二配置信息如上所述,这里不在赘述。
进一步地,步骤S260:基于所述第一配置信息以及第二配置信息,进行信道状态测量 或者干扰测量,具体包括:
a、基于RS基础图案以及一个或多个RS资源设置、一个或多个上报设置,确定RS资源的时频域位置信息(RS所占RE的时频信息),以及RS信号发送时间,进而检测到该参考信号;
b、确定RS资源设置的功能。比如,当确定CSI-RS用于干扰测量,则在相应的时间点、相应的RE位置测量接收能量值,获取干扰估计值;当确定CSI-RS用于信道估计时,则在相应的时间点、相应的RE位置做信道估计,计算信道矩阵。
c、根据CSI上报设置,反馈对应的信息。比如,CSI上报设置中指示终端设备反馈CSI-RS资源指示(CSI-RS resource indicator,CRI)、或者预编码矩阵指示(precoding matrix indicators,PMI)、或者码本配置、或者秩指示(rank indicator,RI)、或者信道质量指示(channel quality indicator,CQI)这些信息,那么终端设备通过测量获取到上述对应的信息后,反馈以上这些信息至网络设备。
进一步地,未来5G标准可能会考虑将RS测量与波束管理(beam management,BM)统一起来,在波束管理中,终端设备需要反馈一个或多个波束对信息,波束对包括发送波束和接收波束。
在本发明实施例中,如果终端设备需要反馈波束对的指示信息,该指示信息的表现形式可以是以下方式之一或者任意两者或两者以上的组合:
波束索引以及对应的波束分组信息,该波束索引为{资源集合索引,资源索引}或者{资源集合索引、资源索引、端口索引}的组合方式;或者,{资源集合索引、资源索引、端口索引、符号索引}的组合方式;
或者通过比特位图bitmap的方式反馈波束索引以及对应的波束分组信息。
举例说明,通过资源集合索引和资源索引,来指示波束对信息;或者通过资源集合索引和资源索引和端口索引,来指示波束对信息;或者通过资源集合索引和资源索引和端口索引和符号索引来指示波束对信息。
另外,当上述资源设置用于波束管理(beam management,BM)时,资源设置可以称为波束管理资源设置、上报设置可以称为波束管理上报设置、链路可以称为波束管理链路。其中,波束管理资源设置中所包括的资源集合的个数等于波束扫描周期中时间单元(time unit,TU)的个数。对于TU的定义可以参考标准的描述,这里不再赘述。
进一步地,多个波束管理上报设置可以关联同一个波束管理资源设置;
进一步地,多个波束管理资源设置可以关联同一个波束管理上报设置。
可选地,同一个波束管理资源设置中的不同资源集合对于部分参数可以设置相同的值。这些参数可以是端口数目、时域行为。
多个RS资源可以配置为用于波束管理,每一个RS资源对应一个波束。因此,波束管理上报设置中可以为CSI RS资源集合索引、CSI RS资源索引、或者RS接收功率(reference signal reception power,RSRP)或者端口索引。
接收侧根据第一配置信息和第二配置信息,进行测量,具体包括:
a、根据接收波束指示信息,确定接收波束;
b、根据波束扫描方法指示信息,确定波束扫描方法;
c、根据RS资源信息,确定参考信号的时频信息;
d、根据所述参考信号的功能信息,进行测量;
e、根据链路中指示的资源设置与上报设置的关系信息,确定上报设置,根据上报设置,反馈测量结果。
其中,步骤b中根据波束扫描方法指示信息,确定波束扫描方法,具体包括:
根据资源设置索引信息或者资源集合索引信息,确定波束扫描方法。
本发明实施例提供了一种在高频场景下当采用窄波束时如何进行参考信号配置与测量的方案。
实施例三
图7示出了一种网络设备的示意图,该网络设备可以应用于如图1所示的系统。该网络设备700包括处理器710、存储器720、收发器730、天线740、总线750。
具体地,处理器710控制网络设备700的操作,例如控制网络设备700执行上述执行上述S210,部分,S310部分,具体参见方法实施例中的描述,在此不再赘述。所述处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件。
收发器730用于与终端设备通信,例如可以执行上述S220部分,S320部分,S330部分,具体参见方法实施例中的描述,在此不再赘述。所述收发器730包括发射机732和接收机734,发射机732用于发射信号,接收机734用于接收信号。其中,天线740的数目可以为一个或多个。
网络设备700的各个组件通过总线750耦合在一起,其中总线系统750除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统750。需要说明的是,上述对于网络设备结构的描述,可应用于本申请的方法实施例。
存储器720可以包括只读存储器(Read Only Memory,简称“ROM”)和随机存取存储器(Random Access Memory,简称“RAM”),或者可存储信息和指令的其他类型的动态存储设备,也可以是磁盘存储器。存储器720可用于保存实现本申请实施例提供的相关方法的指令。可以理解,通过编程或装载可执行指令到网络设备700的处理器710,缓存和长期存储中的至少一个。
在一种具体的实施例中,所述存储器,用于存储计算机可执行程序代码,其中,当所述程序代码包括指令,当所述处理器执行所述指令时,所述指令使所述网络设备执行上述方法实施例中的操作,具体参见方法实施例中的描述,在此不再赘述。
实施例四
图8为根据本申请实施例的信息指示的终端设备800的示意性框图。该终端设备可以应用于如图1所示的系统。该终端设备800包括处理器810、存储器820、收发器830、天线840、总线850。
具体地,处理器810控制终端设备800的操作,例如控制终端设备800执行上述执行上述S240部分,上述S360部分,具体参见方法实施例中的描述,在此不再赘述。所述处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件。
收发器830用于与终端设备通信,例如可以执行上述S230部分,S340部分,S350部分,具体参见方法实施例中的描述,在此不再赘述。所述收发器830包括发射机832和接收机834,发射机832用于发射信号,接收机834用于接收信号。其中,天线840的数 目可以为一个或多个。终端设备800还可以包括用户接口860,比如键盘,麦克风,扬声器和/或触摸屏。用户接口860可传递内容和控制操作到终端设备800。
终端设备800的各个组件通过总线850耦合在一起,其中总线系统850除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统850。需要说明的是,上述对于终端设备结构的描述,可应用于本申请的实施例。
存储器820可以包括只读存储器(Read Only Memory,简称“ROM”)和随机存取存储器(Random Access Memory,简称“RAM”),或者可存储信息和指令的其他类型的动态存储设备,也可以是磁盘存储器。存储器820可用于保存实现本申请实施例提供的相关方法的指令。可以理解,通过编程或装载可执行指令到终端设备800的处理器810,缓存和长期存储中的至少一个。
在一种具体的实施例中,所述存储器,用于存储计算机可执行程序代码,其中,当所述程序代码包括指令,当所述处理器执行所述指令时,所述指令使所述终端设备执行上述方法实施例中的操作,具体参见方法实施例中的描述,在此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (51)

  1. 一种配置信息的方法,其特征在于,包括:
    网络设备生成第一配置信息,所述第一配置信息包括以下信息中的至少一种:
    终端设备接收波束的指示信息、所述参考信号RS发送及反馈周期的指示信息、所述RS的功能指示信息、波束扫描方法的指示信息;
    通过层一或层二的信令向所述终端设备发送所述第一配置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一配置信息还包括:
    所述RS激活或去激活的指示信息、所述RS发送以及反馈的时间偏移指示信息。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    生成第二配置信息并向所述终端设备发送所述第二配置信息,所述第二配置信息包括以下信息中的至少一种:
    一个或多个资源设置、一个或多个上报设置、一个或多个链路,其中,所述链路用于指示所述一个或多个资源设置与一个或多个上报设置的关系;
    其中,每一个所述资源设置包括一个或多个资源集合。
    所述每一个资源集合包括一个或多个资源,每个资源中至少包括以下信息中的一种:
    所述资源的时频信息、资源的索引信息、发送所述资源的时域特性、所述资源的功能指示信息。
  4. 根据权利要求2所述的方法,其特征在于,所述每一个所述上报设置包括以下信息中的至少一种:
    用于指示上报时域特性的信息、用于指示上报频域粒度的信息、用于指示上报类型或内容的信息。
  5. 根据权利要求3或4任意一项所述的方法,其特征在于,所述链路具体包括以下信息中的至少一种:
    资源设置索引、上报设置索引、测量量。
  6. 根据权利要求1~5任意一项所述的方法,其特征在于,终端设备接收波束的指示信息为以下信息中的一种或多种:
    发送波束索引、接收波束索引、波束对索引、用于指示波束信息的准共址QCL索引或者QCL指示。
  7. 根据权利要求1~6任意一项所述的方法,其特征在于,所述RS的发送及反馈周期的指示信息为:
    正交频分复用OFDM符号数目、时间传输间隔TTI数目、时间传输单元TTU数目、时间。
  8. 根据权利要求1~7任意一项所述的方法,其特征在于,所述RS的激活或者去激活的指示信息为以下信息中的一种或多种:
    资源设置索引、资源集合索引和资源索引、端口索引、OFDM符号索引。
  9. 根据权利要求1~8所述的方法,其特征在于,所述RS发送以及反馈的时间偏移指示信息为:
    OFDM符号数目、时间传输间隔TTI数目、时间。
  10. 根据权利要求1~9任意一项所述的方法,其特征在于,所述波束扫描方法的指示 信息为资源设置resource setting的索引信息。
  11. 根据权利要求1~9任意一项所述的方法,其特征在于,所述波束扫描方法的指示信息为资源集合resource set的索引信息。
  12. 根据权利要求1~11任意一项所述的方法,其特征在于,所述方法还包括:
    通过层1或层2的信令,向所述终端设备发送资源设置的索引信息或者资源集合的索引信息与波束扫描方法的映射关系信息。
  13. 一种配置信息的方法,其特征在于,所述方法包括:
    接收来自网络设备的第一配置信息,所述第一配置信息包括以下信息中的一种或多种:
    终端设备接收波束的指示信息、所述参考信号RS发送及反馈周期的指示信息、所述RS激活或去激活的指示信息、所述RS发送以及反馈的时间偏移指示信息、所述RS的功能指示信息、波束扫描方法的指示信息;
    根据所述第一配置信息,进行测量及反馈。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备接收波束的指示信息为以下信息中的一个或多个:
    发送波束索引、接收波束索引、波束对索引、用于指示波束信息的准共址QCL索引或者QCL指示。
  15. 根据权利要求13或14所述的方法,其特征在于,所述RS的发送及反馈周期的指示信息为:
    正交频分复用OFDM符号数目、时间传输间隔TTI数目、时间传输单元TTU数目、时间。
  16. 根据权利要求13~15任意一项所述的方法,其特征在于,所述RS的激活或者去激活的指示信息包括以下信息中的一个或多个:
    资源设置索引、资源集合索引、资源索引、端口索引、OFDM符号索引。
  17. 根据权利要求13~16任意一项所述的方法,其特征在于,所述RS发送以及反馈的时间偏移指示信息为:
    OFDM符号数目、时间传输间隔TTI数目、时间。
  18. 根据权利要求13~17任意一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二配置信息,所述第二配置信息包括如下信息中的至少一种:
    一个或多个资源设置、一个或多个上报设置、链路,其中,链路用于标识所述一个或多个资源设置与所述一个或多个上报设置的关系,
    其中,每一个所述资源设置包括一个或多个资源集合。
  19. 根据权利要求18所述的方法,其特征在于,所述每一个资源集合包括一个或多个资源,每个资源中至少包括以下信息中的一种:
    所述资源的时频信息、资源的索引信息、发送所述资源的时域特性、所述资源的功能指示信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述每一个所述上报设置包括以下信息中的至少一种:
    用于指示上报时域特性的信息、用于指示上报频域粒度的信息、用于指示上报类型或 内容的信息。
  21. 根据权利要求18~20任意一项所述的方法,其特征在于,所述链路具体包括以下信息中的至少一种:
    资源设置索引、上报设置索引、测量量。
  22. 根据权利要求13~21任意一项所述的方法,其特征在于,所述波束扫描方法的指示信息为资源设置resource setting的索引信息。
  23. 根据权利要求13~21任意一项所述的方法,其特征在于,所述波束扫描方法的指示信息为资源集合resource set的索引信息。
  24. 根据权利要求13~23任意一项所述的方法,其特征在于,所述方法还包括:
    接收来自网络的资源设置的索引信息或者资源集合的索引信息与波束扫描方法的映射关系信息,或者
    预存储资源设置的索引信息或者资源集合的索引信息与波束扫描方法的映射关系信息。
  25. 根据权利要求13~24任意一项所述的方法,其特征在于,所述根据所述第一配置信息,进行测量及反馈,具体包括:
    确定接收波束信息;
    确定波束扫描方法;
    确定参考信号的时频信息;
    根据根据所述参考信号的功能信息,进行测量;
    基于所述上报设置,反馈测量结果。
  26. 一种网络设备,其特征在于,包括处理器和收发器,其中:
    处理器,用于生成第一配置信息,所述第一配置信息包括以下信息中的至少一种:
    终端设备接收波束的指示信息、所述参考信号RS发送及反馈周期的指示信息、所述RS激活或去激活的指示信息、所述RS发送以及反馈的时间偏移指示信息、所述RS的功能指示信息、波束扫描方法的指示信息;
    所述收发器,用于通过层一或层二的信令向所述终端设备发送所述第一配置信息。
  27. 根据权利要求26所述的网络设备,其特征在于,所述处理器还用于:
    生成第二配置信息,所述第二配置信息包括以下信息中的至少一种:
    一个或多个资源设置、一个或多个上报设置、链路,其中,所述链路用于指示所述一个或多个资源设置与一个或多个上报设置的关系;
    其中,每一个所述资源设置包括一个或多个资源集合;
    所述收发器,用于发送所述第二配置信息。
  28. 根据权利要求27所述的网络设备,其特征在于,所述每一个资源集合包括一个或多个资源,每个资源中至少包括以下信息中的一种:
    所述资源的时频信息、资源的索引信息、发送所述资源的时域特性、所述资源的功能指示信息。
  29. 根据权利要求27或28所述的网络设备,其特征在于,所述每一个所述上报设置包括以下信息中的至少一种:
    用于指示上报时域特性的信息、用于指示上报频域粒度的信息、用于指示上报类型或内容的信息。
  30. 根据权利要求27~29任意一项所述的网络设备,其特征在于,所述链路具体包括以下信息中的至少一种:
    资源设置索引、上报设置索引、测量量。
  31. 根据权利要求26~30任意一项所述的网络设备,其特征在于,终端设备接收波束的指示信息为以下信息中的一种或多种:
    发送波束索引、接收波束索引、波束对索引、用于指示波束信息的准共址QCL索引或者QCL指示。
  32. 根据权利要求26~31任意一项所述的网络设备,其特征在于,所述RS的发送及反馈周期的指示信息为:
    正交频分复用OFDM符号数目、时间传输间隔TTI数目、时间传输单元TTU数目、时间。
  33. 根据权利要求26~32任意一项所述的网络设备,其特征在于,所述RS的激活或者去激活的指示信息为以下信息中的一种或多种:
    资源设置索引、资源集合索引和资源索引、端口索引、OFDM符号索引。
  34. 根据权利要求26~33所述的网络设备,其特征在于,所述RS发送以及反馈的时间偏移指示信息为:
    OFDM符号数目、时间传输间隔TTI数目、时间。
  35. 根据权利要求26~34任意一项所述的网络设备,其特征在于,所述波束扫描方法的指示信息为资源设置resource setting的索引信息。
  36. 根据权利要求26~34任意一项所述的网络设备,其特征在于,所述波束扫描方法的指示信息为资源集合resource set的索引信息。
  37. 根据权利要求26~36任意一项所述的网络设备,其特征在于,所述收发器用于:
    通过层1或层2的信令,向所述终端设备发送资源设置的索引信息或者资源集合的索引信息与波束扫描方法的映射关系信息。
  38. 一种终端设备,其特征在于,包括处理器和收发器,其中:
    收发器,用于接收来自网络设备的第一配置信息,其中,第一配置信息包括以下信息中的至少一种:
    终端设备接收波束的指示信息、所述参考信号RS发送及反馈周期的指示信息、所述RS激活或去激活的指示信息、所述RS发送以及反馈的时间偏移指示信息、所述RS的功能指示信息、波束扫描方法的指示信息;
    处理器,用于根据所述第一配置信息,进行测量及反馈。
  39. 根据权利要求38所述的终端设备,其特征在于,所述终端设备接收波束的指示信息为以下信息中的一个或多个:
    发送波束索引、接收波束索引、波束对索引、用于指示波束信息的准共址QCL索引或者QCL指示。
  40. 根据权利要求38或39所述的终端设备,其特征在于,所述RS的发送及反馈周期的指示信息为:
    正交频分复用OFDM符号数目、时间传输间隔TTI数目、时间传输单元TTU数目、时间。
  41. 根据权利要求38~40任意一项所述的终端设备,其特征在于,所述RS的激活或 者去激活的指示信息包括以下信息中的一个或多个:
    资源设置索引、资源集合索引、资源索引、端口索引、OFDM符号索引。
  42. 根据权利要求38~41任意一项所述的终端设备,其特征在于,所述RS发送以及反馈的时间偏移指示信息为:
    OFDM符号数目、时间传输间隔TTI数目、时间。
  43. 根据权利要求38~42任意一项所述的终端设备,其特征在于,所述收发器,还用于:
    接收来自所述网络设备的第二配置信息,所述第二配置信息包括如下信息中的至少一种:
    一个或多个资源设置、一个或多个上报设置、链路,其中,链路用于标识所述一个或多个资源设置与所述一个或多个上报设置的关系,
    其中,每一个所述资源设置包括一个或多个资源集合。
  44. 根据权利要求43所述的终端设备,其特征在于,所述每一个资源集合包括一个或多个资源,每个资源中至少包括以下信息中的一种:
    所述资源的时频信息、资源的索引信息、发送所述资源的时域特性、所述资源的功能指示信息。
  45. 根据权利要求43或44所述的终端设备,其特征在于,所述每一个所述上报设置包括以下信息中的至少一种:
    用于指示上报时域特性的信息、用于指示上报频域粒度的信息、用于指示上报类型或内容的信息。
  46. 根据权利要求44或45所述的终端设备,其特征在于,所述链路具体包括以下信息中的至少一种:
    资源设置索引、上报设置索引、测量量。
  47. 根据权利要求38~46任意一项所述的终端设备,其特征在于,所述波束扫描方法的指示信息为资源设置resource setting的索引信息。
  48. 根据权利要求38~46任意一项所述的终端设备,其特征在于,所述波束扫描方法的指示信息为资源集合resource set的索引信息。
  49. 根据权利要求38~48任意一项所述的终端设备,其特征在于,所述收发器用于:
    接收来自网络的资源设置的索引信息或者资源集合的索引信息与波束扫描方法的映射关系信息。
  50. 根据权利要求38~48任意一项所述的终端设备,其特征在于,所述终端设备还包括存储器,用于预存储资源设置的索引信息或者资源集合的索引信息与波束扫描方法的映射关系信息。
  51. 根据权利要求38~50任意一项所述的终端设备,其特征在于,所述处理器,具体用于:
    确定接收波束;
    确定波束扫描方法;
    确定参考信号的时频信息;
    根据所述参考信号的功能信息,进行测量;
    根据所述上报设置,反馈测量结果。
PCT/CN2017/113092 2017-01-26 2017-11-27 一种配置信息的方法、装置及系统 WO2018137397A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112019015303-9A BR112019015303A2 (pt) 2017-01-26 2017-11-27 Método de configuração de informação, dispositivo de rede e dispositivo terminal
EP17894072.2A EP3567892A4 (en) 2017-01-26 2017-11-27 INFORMATION CONFIGURATION METHOD, DEVICE AND SYSTEM
US16/522,945 US11051182B2 (en) 2017-01-26 2019-07-26 Information configuration method, apparatus, and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710061848 2017-01-26
CN201710061848.9 2017-01-26
CN201710184921.1 2017-03-24
CN201710184921.1A CN108365939B (zh) 2017-01-26 2017-03-24 一种配置信息的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/522,945 Continuation US11051182B2 (en) 2017-01-26 2019-07-26 Information configuration method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018137397A1 true WO2018137397A1 (zh) 2018-08-02

Family

ID=62978063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113092 WO2018137397A1 (zh) 2017-01-26 2017-11-27 一种配置信息的方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2018137397A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535580A (zh) * 2018-08-08 2019-12-03 中兴通讯股份有限公司 传输控制方法、探测参考信号传输方法、终端、基站及介质
WO2020088315A1 (zh) * 2018-11-02 2020-05-07 维沃移动通信有限公司 信息传输方法及通信设备
CN111586846A (zh) * 2019-02-15 2020-08-25 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
CN111615195A (zh) * 2019-04-08 2020-09-01 维沃移动通信有限公司 确定波束信息的方法及装置、通信设备
WO2020221030A1 (zh) * 2019-04-30 2020-11-05 华为技术有限公司 天线面板信息的配置方法及装置
CN114866202A (zh) * 2021-02-03 2022-08-05 展讯通信(上海)有限公司 Csi反馈方法及装置、存储介质、终端、网络设备
WO2023193672A1 (zh) * 2022-04-05 2023-10-12 上海朗帛通信技术有限公司 用于无线通信的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404689A (zh) * 2010-09-13 2012-04-04 电信科学技术研究院 接收和发送csi-rs配置信息的方法和装置
CN102685795A (zh) * 2012-04-18 2012-09-19 新邮通信设备有限公司 一种无线资源管理rrm测量的配置方法
CN102740447A (zh) * 2011-04-13 2012-10-17 华为技术有限公司 确定定时提前量的方法、终端设备和网络侧设备
WO2015200009A1 (en) * 2014-06-27 2015-12-30 Qualcomm Incorporated Method and apparatus for lightweight messaging during initial synchronization, discovery, and association in directional wireless systems
WO2016130960A1 (en) * 2015-02-13 2016-08-18 Qualcomm Incorporated Eimta in enhanced carrier aggregation
CN106304120A (zh) * 2015-06-08 2017-01-04 中兴通讯股份有限公司 一种波束识别方法、系统和网络节点

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404689A (zh) * 2010-09-13 2012-04-04 电信科学技术研究院 接收和发送csi-rs配置信息的方法和装置
CN102740447A (zh) * 2011-04-13 2012-10-17 华为技术有限公司 确定定时提前量的方法、终端设备和网络侧设备
CN102685795A (zh) * 2012-04-18 2012-09-19 新邮通信设备有限公司 一种无线资源管理rrm测量的配置方法
WO2015200009A1 (en) * 2014-06-27 2015-12-30 Qualcomm Incorporated Method and apparatus for lightweight messaging during initial synchronization, discovery, and association in directional wireless systems
WO2016130960A1 (en) * 2015-02-13 2016-08-18 Qualcomm Incorporated Eimta in enhanced carrier aggregation
CN106304120A (zh) * 2015-06-08 2017-01-04 中兴通讯股份有限公司 一种波束识别方法、系统和网络节点

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535580A (zh) * 2018-08-08 2019-12-03 中兴通讯股份有限公司 传输控制方法、探测参考信号传输方法、终端、基站及介质
CN110535580B (zh) * 2018-08-08 2022-08-23 中兴通讯股份有限公司 传输控制方法、探测参考信号传输方法、终端、基站及介质
US11910202B2 (en) 2018-08-08 2024-02-20 Zte Corporation Transmission control method, sounding reference signal transmission method, terminal, base station and medium
WO2020088315A1 (zh) * 2018-11-02 2020-05-07 维沃移动通信有限公司 信息传输方法及通信设备
CN111586846A (zh) * 2019-02-15 2020-08-25 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
CN111586846B (zh) * 2019-02-15 2024-02-20 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
CN111615195A (zh) * 2019-04-08 2020-09-01 维沃移动通信有限公司 确定波束信息的方法及装置、通信设备
CN111615195B (zh) * 2019-04-08 2023-08-25 维沃移动通信有限公司 确定波束信息的方法及装置、通信设备
WO2020221030A1 (zh) * 2019-04-30 2020-11-05 华为技术有限公司 天线面板信息的配置方法及装置
CN114866202A (zh) * 2021-02-03 2022-08-05 展讯通信(上海)有限公司 Csi反馈方法及装置、存储介质、终端、网络设备
WO2023193672A1 (zh) * 2022-04-05 2023-10-12 上海朗帛通信技术有限公司 用于无线通信的方法和装置

Similar Documents

Publication Publication Date Title
CN108365939B (zh) 一种配置信息的方法、装置及系统
US11804943B2 (en) Method and device for configuring reference signal
CN111201733B (zh) 参考信号的指示方法、用户设备及接入点
US10615859B2 (en) Systems and methods for determining transmitter and receiver configurations for a wireless device
WO2018137397A1 (zh) 一种配置信息的方法、装置及系统
EP4099578A1 (en) System and method for indicating wireless channel status
US11991682B2 (en) Method and apparatus for fast beam management
KR101953961B1 (ko) 적응성 복조 기준 신호 송신을 지원하기 위한 피드백의 사용자 장비 생성 및 시그널링
CN105229949B (zh) 时分双工无线通信系统
US11265063B2 (en) Wireless communication method, network device, and terminal device
US10925034B2 (en) Resource indication method, apparatus, and system
CN113273251B (zh) 用于探测参考信号传输和接收的设备、网络和方法
US11539483B2 (en) Wireless communication method and apparatus
IL266710B2 (en) A method for transmitting a reference signal and a communication device
WO2019137441A1 (zh) 一种通信方法及装置
JP2020516124A (ja) 基準信号を送信する方法および装置、ならびに基準信号を受信する方法および装置
US10944598B2 (en) Method for signal transmission, network device and terminal device
WO2018126944A1 (zh) 信道状态信息测量的配置方法及相关设备
WO2023028738A1 (en) Systems and methods for pdsch based csi measurement
EP3584983A1 (en) Method for transmitting and receiving reference signal, network device and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019015303

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017894072

Country of ref document: EP

Effective date: 20190807

ENP Entry into the national phase

Ref document number: 112019015303

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190725