WO2019085637A1 - 一种信道测量方法和用户设备 - Google Patents

一种信道测量方法和用户设备 Download PDF

Info

Publication number
WO2019085637A1
WO2019085637A1 PCT/CN2018/104085 CN2018104085W WO2019085637A1 WO 2019085637 A1 WO2019085637 A1 WO 2019085637A1 CN 2018104085 W CN2018104085 W CN 2018104085W WO 2019085637 A1 WO2019085637 A1 WO 2019085637A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
antenna
user equipment
information
access device
Prior art date
Application number
PCT/CN2018/104085
Other languages
English (en)
French (fr)
Inventor
王文会
戎璐
李波杰
毕晓艳
韩玮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019085637A1 publication Critical patent/WO2019085637A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the embodiments of the present invention relate to channel measurement technologies, and in particular, to a channel measurement method and user equipment.
  • MIMO Multiple Input Multiple Output
  • next-generation wireless communication systems will upgrade MIMO technology and deploy more antennas on the transmitting device and the receiving device.
  • This upgraded MIMO technology is also called Massive MIMO. technology.
  • the number of antennas deployed on the base station side can reach 64, 128 or more, and the number of antennas deployed on the terminal side will also be correspondingly improved. It is not difficult to imagine that the large increase in the number of antennas is expected to significantly improve the performance of next-generation wireless communication systems.
  • CSI channel state information
  • a user equipment is provided to help reduce the CSI feedback overhead caused by the increase in the number of antennas.
  • a channel measurement method including:
  • the determining the N antennas among the M antennas includes:
  • antenna indication information that is fed back based on the M uplink reference signals, where the antenna indication information is used to indicate the N antennas;
  • the determining the N antennas among the M antennas includes:
  • the N antennas are determined based on the downlink reference signal.
  • the determining the N antennas among the M antennas includes:
  • antenna indication information that is fed back based on the antenna recommendation information, where the antenna indication information is used to indicate the number of antennas N;
  • the N antennas are determined among the X antennas based on the antenna indication information.
  • the determining the N antennas among the M antennas includes:
  • antenna indication information that is fed back based on the antenna recommendation information, where the antenna indication information is used to indicate N antennas;
  • the N antennas are determined based on the antenna indication information.
  • the sending the antenna recommendation information to the access device includes: sending the antenna recommendation information to the access device when determining that the preset condition is met.
  • the method further includes:
  • the antenna recommendation information is specifically used to indicate a difference between the quantity X and the current number of antennas.
  • the antenna indication information is specifically used to indicate a difference between the number N of the antennas and the current number of antennas.
  • a user equipment including:
  • a processing module configured to determine N antennas among M antennas, where M>0, M ⁇ N>0;
  • a transceiver module configured to send N uplink reference signals by using N antennas of the M antennas, and receive channel state information determined by the access device based on the uplink reference signal.
  • the transceiver module is further configured to send M uplink reference signals by using the M antennas, and receive antenna indication information that is received by the access device based on the M uplink reference signals, where The antenna indication information is used to indicate the N antennas, and the processing module is specifically configured to determine the N antennas according to the antenna indication information.
  • the transceiver module is further configured to receive, by using the M antennas, a downlink reference signal that is sent by the access device, where the processing module is specifically configured to determine the N according to the downlink reference signal. Root antenna.
  • the transceiver module is further configured to receive, by using the M antennas, a downlink reference signal that is sent by the access device, where the processing module is specifically configured to determine, according to the downlink reference signal, an X antenna.
  • M>X ⁇ N the transceiver module is further configured to send antenna recommendation information to the access device, where the antenna recommendation information is used to indicate the determined number of antennas X, and the receiving access device is based on And the antenna indication information is used to indicate the number of antennas N; the processing module is further configured to determine the N antennas in the X antennas based on the antenna indication information.
  • the transceiver module is further configured to receive, by using the M antennas, a downlink reference signal that is sent by the access device, where the processing module is specifically configured to determine, according to the downlink reference signal, an X antenna.
  • M>X ⁇ N the transceiver module is further configured to send antenna recommendation information to the access device, where the antenna recommendation information is used to indicate the determined X antennas, and the receiving access device is based on the Antenna indication information of the antenna recommendation information, wherein the antenna indication information is used to indicate N antennas; and the processing module is further configured to determine the N antennas based on the antenna indication information.
  • the processing module is further configured to determine whether the preset condition is met; the transceiver module is further configured to send the antenna recommendation information to the access device when the processing module determines that the preset condition is met.
  • the transceiver module is further configured to receive configuration information from an access device, where the configuration information is used to configure the preset condition, and the processing module is further configured to configure according to the configuration information.
  • the preset condition is further configured to configure according to the configuration information.
  • the antenna recommendation information is specifically used to indicate a difference between the quantity X and the current number of antennas.
  • the antenna indication information is specifically used to indicate a difference between the number N of the antennas and the current number of antennas.
  • a user equipment including:
  • a processor configured to determine N antennas among M antennas, where M>0, M ⁇ N>0;
  • a transceiver configured to send N uplink reference signals by using N antennas of the M antennas, and receive channel state information determined by the access device based on the uplink reference signal.
  • the transceiver is further configured to send M uplink reference signals by using the M antennas, and receive antenna indication information that is received by the access device based on the M uplink reference signals, where The antenna indication information is used to indicate the N antennas, and the processor is specifically configured to determine the N antennas according to the antenna indication information.
  • the transceiver is further configured to receive, by using the M antennas, a downlink reference signal that is sent by the access device, where the processor is specifically configured to determine the N according to the downlink reference signal. Root antenna.
  • the transceiver is further configured to receive, by using the M antennas, a downlink reference signal that is sent by the access device, where the processor is specifically configured to determine, according to the downlink reference signal, an X antenna.
  • M>X ⁇ N the transceiver is further configured to send antenna recommendation information to the access device, wherein the antenna recommendation information is used to indicate the determined number X of antennas, and the receiving access device is based on And the antenna indication information is used to indicate the number of antennas N; the processor is further configured to determine the N antennas in the X antennas based on the antenna indication information.
  • the transceiver is further configured to receive, by using the M antennas, a downlink reference signal that is sent by the access device, where the processor is specifically configured to determine, according to the downlink reference signal, an X antenna.
  • M>X ⁇ N the transceiver is further configured to send antenna recommendation information to the access device, wherein the antenna recommendation information is used to indicate the determined X antennas, and the receiving access device is based on the The antenna indication information is fed back by the antenna recommendation information, wherein the antenna indication information is used to indicate N antennas; and the processor is further configured to determine the N antennas based on the antenna indication information.
  • the processor is further configured to determine whether a preset condition is met; the transceiver is further configured to send antenna recommendation information to the access device when the processor determines that the preset condition is met.
  • the transceiver is further configured to receive configuration information from an access device, where the configuration information is used to configure the preset condition; and the processor is further configured to configure according to the configuration information.
  • the preset condition is further configured to configure according to the configuration information.
  • the antenna recommendation information is specifically used to indicate a difference between the quantity X and the current number of antennas.
  • the antenna indication information is specifically used to indicate a difference between the number N of the antennas and the current number of antennas.
  • an antenna feedback method including:
  • the antenna indication information is used to indicate N antennas.
  • an antenna feedback method comprising:
  • antenna recommendation information from the user equipment, where the antenna recommendation information is used to indicate the number X of antennas determined by the user equipment based on the downlink reference signal;
  • the antenna indication information is used to indicate the number N of antennas, so that the user equipment determines N antennas among the X antennas, wherein the user equipment is configured with M antennas, and M ⁇ X ⁇ N>0.
  • an antenna feedback method including:
  • antenna recommendation information from the user equipment, where the antenna recommendation information is used to indicate X antennas determined by the user equipment based on the downlink reference signal;
  • the antenna indication information is used to indicate N antennas, wherein the user equipment is configured with M antennas, and M ⁇ X ⁇ N>0.
  • an access device including:
  • a transceiver module configured to receive M uplink reference signals sent by the user equipment through the M antennas
  • a processing module configured to determine N antennas based on M uplink reference signals, where M ⁇ N>0;
  • the transceiver module is further configured to feed back antenna indication information, where the antenna indication information is used to indicate N antennas.
  • an access device comprising:
  • a transceiver module configured to transmit a downlink reference signal, and receive antenna recommendation information from the user equipment, where the antenna recommendation information is used to indicate the number X of antennas determined by the user equipment based on the downlink reference signal;
  • a processing module configured to determine an antenna number N based on the antenna recommendation information
  • the transceiver module is further configured to feed back antenna indication information, where the antenna indication information is used to indicate the number of antennas N, so that the user equipment determines N antennas in the X antennas, where the user equipment is configured with M antennas, and M ⁇ X ⁇ N > 0.
  • an access device including:
  • a transceiver module configured to transmit a downlink reference signal, and receive antenna recommendation information from the user equipment, where the antenna recommendation information is used to indicate the X antennas determined by the user equipment based on the downlink reference signal;
  • a processing module configured to determine N antennas based on the antenna recommendation information
  • the transceiver module is further configured to feed back antenna indication information, where the antenna indication information is used to indicate N antennas, wherein the user equipment is configured with M antennas, and M ⁇ X ⁇ N>0.
  • an access device including:
  • a transceiver configured to receive M uplink reference signals sent by the user equipment through the M antennas
  • a processor configured to determine N antennas based on M uplink reference signals, where M ⁇ N>0;
  • the transceiver is further configured to feed back antenna indication information, wherein the antenna indication information is used to indicate N antennas.
  • an access device comprising:
  • the transceiver is configured to transmit a downlink reference signal, and receive antenna recommendation information from the user equipment, where the antenna recommendation information is used to indicate the number X of antennas determined by the user equipment based on the downlink reference signal;
  • a processor configured to determine an antenna number N based on the antenna recommendation information
  • the transceiver is further configured to feed back antenna indication information, where the antenna indication information is used to indicate the number of antennas N, so that the user equipment determines N antennas in the X antennas, where the user equipment is configured with M antennas, and M ⁇ X ⁇ N > 0.
  • an access device including:
  • a transceiver configured to transmit a downlink reference signal, and receive antenna recommendation information from the user equipment, where the antenna recommendation information is used to indicate the X antennas determined by the user equipment based on the downlink reference signal;
  • a processor configured to determine N antennas based on the antenna recommendation information
  • the transceiver is further configured to feed back antenna indication information, wherein the antenna indication information is used to indicate N antennas, wherein the user equipment is configured with M antennas, and M ⁇ X ⁇ N>0.
  • the processor can be used to perform, for example, without limitation, baseband related processing, and the transceiver can be used to perform, for example, without limitation, radio frequency transceiving.
  • the above devices may be respectively disposed on chips independent of each other, or may be disposed at least partially or entirely on the same chip.
  • the transceiver may be disposed on the transceiver chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor, wherein the analog baseband processor can be integrated on the same chip as the transceiver, and the digital baseband processor can be disposed on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be referred to as a system on chip. Separate devices on different chips or integrated on one or more chips often depends on the specific needs of the product design. The specific implementation form of the above device is not limited in the embodiment of the present invention.
  • a processor for performing the various methods described above.
  • the steps related to transmission and reception can be understood as the process of outputting and receiving input.
  • the processor when performing N uplink reference signals transmitted by N antennas of the M antennas, it can be understood that the processor outputs the N uplink reference signals so that the N uplink reference signals are transmitted through the M antennas. It is not difficult to understand that other processing may be required between the output of the N uplink reference signals and the transmission of the N uplink reference signals through the M antennas.
  • the processor when receiving the channel state information determined by the access device based on the uplink reference signal, it may be understood that the processor receives channel state information input to the processor, where the channel state information is that the access device is based on the uplink The reference signal is determined. For example, when transmitting the antenna recommendation information to the access device, it may be understood that the processor outputs the antenna recommendation information to send the antenna recommendation information to the access device. It should be understood by those skilled in the art that operations such as transmission, transmission, and reception involved in the processor may be more general unless otherwise specified, or if they do not contradict the actual role or internal logic in the related description. Sexual understanding is the operation of the processor output and receiving input, rather than the transmitting and receiving operations directly by the RF circuit and the antenna.
  • the above-mentioned processors may be processors dedicated to performing the methods, or may be processors executing computer instructions in the memory to perform the methods, such as a general purpose processor.
  • the above memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated on the same chip as the processor, or may be separately disposed on different chips.
  • ROM read only memory
  • the embodiment does not limit the type of the memory and the manner in which the memory and the processor are arranged.
  • a fourteenth aspect of the embodiments of the present invention there is provided a computer readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform the various methods described above. Still further, the computer readable storage medium is a non-transitory computer readable storage medium.
  • a fourteenth aspect of the embodiments of the present invention there is provided a computer program product comprising instructions which, when run on a computer, cause the computer to perform the various methods described above.
  • the technical solution provided by the embodiment of the present invention transmits N uplink reference signals by N antennas of the M antennas, thereby performing channel measurement. Compared with the use of all antennas for channel measurement, the technical solution provided by the embodiments of the present invention uses only a part of the antennas for channel measurement. In other words, the technical solution provided by the embodiments of the present invention performs channel measurement through a subset of the antenna array, thereby facilitating Reduce the overhead caused by feedback CSI.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network in accordance with an embodiment of the present invention
  • FIG. 2 is an exemplary flowchart of a channel measurement method in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing an exemplary logical structure of a user equipment according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing an exemplary hardware structure of a user equipment according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing an exemplary logical structure of an access device according to an embodiment of the invention.
  • FIG. 6 is a schematic diagram of an exemplary hardware structure of an access device according to an embodiment of the invention.
  • next-generation wireless communication system currently under development is also known as the New Radio (NR) system or the 5G system.
  • NR New Radio
  • 5G 5th Generation
  • massive MIMO technology more accurate beamforming techniques, precoding techniques, and/or receive combining techniques, next-generation wireless communication systems are expected to achieve greater diversity gain and antenna array gain, and system capacity and spectrum utilization will be further Upgrade.
  • the performance improvement is not without cost, and the increase in the number of antennas will also increase the complexity of the system design.
  • feedback CSI will bring more overhead.
  • an increase in the number of antennas means that more Reference Signals (RSs) need to be configured to obtain CSI, and correspondingly, transmitting these reference signals will occupy more time-frequency resources.
  • an increase in the number of antennas means an increase in the size of the channel matrix, and the calculation process of the CSI will bring about a larger amount of calculation.
  • an increase in the number of antennas means that the calculated amount of CSI is larger, and the feedback CSI will occupy more time-frequency resources. Without effective control, after increasing the number of antennas, the system performance will not be improved, but may be reduced. Therefore, the use of massive MIMO technology needs to solve the problem of the overhead of feedback CSI.
  • the antennas in the antenna array that contribute to the data transmission are typically a subset of the antenna array, rather than the entire antenna array. It is not difficult to understand that the CSI overhead corresponding to the subset of the above antenna array is smaller than the CSI overhead corresponding to the entire antenna array. Therefore, determining the CSI based on the subset of the antenna array described above helps to reduce the overhead caused by feedback CSI. Further, the subset of the antenna array may change with the change of the channel environment. Therefore, before determining the CSI based on the subset of the antenna array, the subset needs to be determined first.
  • the embodiment of the present invention provides a technical solution, which can determine CSI based on a subset of the foregoing antenna array instead of the entire antenna array, and has an overhead for reducing feedback CSI.
  • the wireless communication network 100 includes base stations 102-106 and terminal devices 108-122, wherein the base stations 102-106 can pass backhaul links with each other (e.g., lines between base stations 102-106) Communication is shown, which may be a wired backhaul link (eg, fiber optic, copper) or a wireless backhaul link (eg, microwave).
  • the terminal devices 108-122 can communicate with the corresponding base stations 102-106 via a wireless link (as indicated by the broken line between the base stations 102-106 and the terminal devices 108-122).
  • the base stations 102-106 typically serve as access devices to provide wireless access services for the terminal devices 108-122 that are typically user equipment.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown in each ellipse area in FIG. 1), and the terminal device entering the area can communicate with the base station by using a wireless signal to receive the base station.
  • Wireless access service provided.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminal devices in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 102 overlaps with the service coverage area of the base station 104, and the terminal device 112 is within the overlapping area, so the terminal device 112 can receive the wireless signals from the base station 102 and the base station 104.
  • the base station 102 and the base station 104 can cooperate with each other to provide services to the terminal device 112.
  • the service coverage areas of the base station 102, the base station 104, and the base station 106 have a common overlapping area, and the terminal device 120 is within the overlapping area, so the terminal device 120 can receive the base station.
  • the wireless signals 102, 104, and 106, the base stations 102, 104, and 106 can cooperate with each other to provide services to the terminal device 120.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station, etc.
  • future base stations may use other names.
  • the terminal devices 108-122 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless devices.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminal devices 108-122 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 102-106 and the terminal devices 108-122 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Further, the base stations 102-106 and the terminal devices 108-122 can support single-user MIMO (SU-MIMO) technology or multi-user MIMO (Multi-User MIMO, MU-MIMO). MU-MIMO can be implemented based on Space Division Multiple Access (SDMA) technology. Due to the configuration of multiple antennas, the base stations 102-106 and the terminal devices 108-122 can also flexibly support Single Input Single Output (SISO) technology, Single Input Multiple Output (SIMO) and multiple input.
  • SISO Single Input Single Output
  • SIMO Single Input Multiple Output
  • MISO Multiple Input Single Output
  • multiplexing technology to implement various diversity (such as but not limited to transmit diversity and receive diversity) and multiplexing techniques, where diversity techniques may include, for example, but not limited to, Transmit Diversity (TD) Technology and Receive Diversity (RD) technology
  • the multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • TD Transmit Diversity
  • RD Receive Diversity
  • the foregoing various technologies may also include multiple implementations.
  • the transmit diversity technology may include, for example, but not limited to, Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (Space-Frequency Transmit Diversity, SFTD), Time Switched Transmit Diversity (TSTD), Frequency Switching Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD)
  • STTD Space-Time Transmit Diversity
  • SFTD Space-Frequency Transmit Diversity
  • TSTD Time Switched Transmit Diversity
  • FSTD Frequency Switching Transmit Diversity
  • OFTD Orthogonal Transmit Diversity
  • CDD Cyclic Delay Diversity
  • the equal-diversity mode and the diversity methods obtained after deriving, evolving, and combining the various diversity methods described above.
  • the current LTE (Long Term Evolution) standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space
  • transmit diversity also includes other various implementations. Therefore, the above description should not be construed as limiting the technical solution of the present invention, and the technical solution of the present invention should be understood to be applicable to various possible transmit diversity schemes.
  • the base stations 102-106 and the terminal devices 108-122 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (Frequency Division Multiple Access, FDMA) technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) Technology, Single Carrier FDMA (SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • SDMA Space Division Multiple Access
  • the above wireless communication technology is adopted as a radio access technology (RAT) by many wireless communication standards, thereby constructing various wireless communication systems (or networks) well known today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi defined by the 802.11 series of standards, Worldwide Interoperability for Microwave Access (WiMAX), long-term Evolution (Long Term Evolution, LTE), LTE-Advanced (LTE-A), and evolution systems of these wireless communication systems.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband CDMA
  • WiFi defined by the 802.11 series of standards
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE long-term Evolution
  • LTE-A LTE-Advanced
  • evolution systems of these wireless communication systems evolution systems of these wireless communication systems.
  • the wireless communication network 100 shown in FIG. 1 is for example only and is not intended to limit the technical solution of the present invention. It should be understood by those skilled in the art that in a specific implementation process, the wireless communication network 100 may also include other devices, and the number of base stations and terminal devices may also be configured according to specific needs.
  • channel measurement method 200 is an exemplary flow diagram of a channel measurement method 200 in accordance with an embodiment of the present invention.
  • channel measurement method 200 may be performed by, for example, but not limited to, a user equipment.
  • the user equipment may be, for example but not limited to, the terminal devices 108-122 shown in FIG.
  • Step 202 Determine N antennas among the M antennas, where M>0, M ⁇ N>0.
  • each of the foregoing M antennas may be implemented by using one antenna oscillator, or may be implemented by multiple antenna oscillators.
  • the specific implementation process has been clearly described in the prior art. This article will not go into details.
  • the antenna can be understood as an antenna port, and thus can be replaced with an antenna port.
  • M antennas can be understood as M antenna ports
  • N antennas can be understood as N antenna ports and the like. The concept of an antenna port has been clearly described in the prior art, and thus the present invention will not be described again.
  • Step 204 Send N uplink reference signals by N antennas of the M antennas, and receive channel state information determined by the access device based on the uplink reference signal.
  • the uplink reference signal may be, for example, but not limited to, a Sounding Reference Signal (SRS) or other reference signal, for example, transmitted by the user equipment and received by the access device for use by the user.
  • SRS Sounding Reference Signal
  • the access device may be, for example but not limited to, the base stations 102-106 shown in FIG. 1.
  • the access device when performing downlink channel measurement, transmits a reference signal, and the user equipment performs downlink channel measurement according to the reference signal, thereby obtaining downlink channel state information.
  • the user equipment When performing uplink channel measurement, transmits a reference signal, and the access device performs uplink channel measurement according to the reference signal, thereby obtaining uplink channel state information.
  • the channel state information determined by the access device based on the uplink reference signal is the uplink channel state information.
  • the types of information included in the downlink channel state information and the uplink channel state information may be the same or different.
  • the downlink channel state information and the uplink channel state information may include at least one of the following information: Modulation and Coding Scheme (MCS), Precoding Matrix information, and Layer (Layer) Numbers, etc.
  • MCS Modulation and Coding Scheme
  • Precoding Matrix information Precoding Matrix information
  • Layer (Layer) Numbers Layer
  • the specific content of the downlink channel state information and the uplink channel state information may be referred to the prior art, and the specific content of the present invention is not limited.
  • the foregoing information may be the same or different in the specific presentation manner of the downlink channel state information and the uplink channel state information. For details, refer to the prior art, which is not limited by the disclosure.
  • the downlink channel state information may be transmitted by using Uplink Control Information (UCI).
  • UCI Uplink Control Information
  • the MCS may transmit through a Modulation and coding scheme and redundancy version field.
  • the uplink channel state information may be transmitted by using Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the precoding matrix information and the number of transmission layers may pass the precoding information and the layer number field in the DCI (Precoding information and number of Layers) to indicate.
  • the technical solution provided by the embodiment of the present invention transmits N uplink reference signals by N antennas of the M antennas, thereby performing channel measurement.
  • the technical solution provided by the embodiments of the present invention uses only a part of the antennas for channel measurement.
  • the technical solution provided by the embodiments of the present invention performs channel measurement through a subset of the antenna array, thereby facilitating Reduce the overhead caused by feedback CSI.
  • the N antennas are determined in the M antennas by using various methods.
  • the specific method used in the embodiment of the present invention is not limited.
  • a specific implementation process may be employed, such as, but not limited to, the following method to determine N antennas among M antennas.
  • determining the N antennas in the M antennas includes:
  • the user equipment sends M uplink reference signals through the M antennas;
  • antenna indication information that is fed back based on M uplink reference signals, where the antenna indication information is used to indicate the N antennas;
  • the first method described above can be applied to both a Time-Division Duplexing (TDD) system and a Frequency-Division Duplexing (FDD) system.
  • TDD Time-Division Duplexing
  • FDD Frequency-Division Duplexing
  • the user equipment sends M uplink reference signals through the M antennas, so that the access device can determine the N antennas in the M antennas by measuring the M uplink reference signals, for example, However, it is not limited to N antennas with the best transmission quality or transmission quality.
  • the M uplink reference signals may be any type of uplink reference signals that can achieve the foregoing purposes.
  • the uplink reference signals may be the same as or different from the types of the N uplink reference signals.
  • the embodiment of the present invention does not limit whether the same uplink reference signal exists in the M uplink reference signals and the N uplink reference signals.
  • the access device can set the standard used when determining the N antennas from the M antennas according to specific needs, for example, one or more factors, such as the transmission quality and the interference, which are not limited in the embodiment of the present invention. .
  • the access device may use various methods to determine the N antennas with the best transmission quality among the M antennas. The specific implementation is not limited to the prior art.
  • various information transmitted between the user equipment and the access device such as the foregoing channel state information, antenna indication information, and antenna recommendation information, which will be described later, may be Various implementation forms are employed as long as they can indicate corresponding technical characteristics.
  • there are multiple indication manners such as, but not limited to, directly indicating the information to be indicated; and indicating the information to be indicated by indicating other information, where the other information exists between the information to be indicated.
  • the association relationship may also indicate only a part of the information to be indicated, and other parts of the information to be indicated are known.
  • the to-be-informed information may be sent together as a whole, or may be separately transmitted into multiple sub-information, and the transmission period and/or transmission timing of the sub-information may be the same or different.
  • the specific transmission method reference may be made to the prior art, which is not limited by the present invention.
  • the access device needs to perform an antenna feedback method, and the method includes:
  • the antenna indication information is used to indicate N antennas.
  • determining the N antennas in the M antennas includes:
  • the N antennas are determined based on the downlink reference signal.
  • the second method described above can be applied to a TDD system.
  • the purpose of the user equipment receiving the downlink reference signal transmitted by the access device by using the foregoing M antennas is to determine N antennas in the M antennas by measuring the downlink reference signals, such as, but not limited to, signals. Receive N antennas with the best quality or transmission quality.
  • the uplink transmission and the downlink transmission occupy the same carrier, and thus the channel environments of the uplink transmission and the downlink transmission may be regarded as the same or similar.
  • the N antennas with the best reception quality among the M antennas can also be regarded as the N antennas with the best transmission quality among the M antennas.
  • the above-mentioned reference signal may be any type of downlink reference signal that can achieve the above purpose, and the number of the downlink reference signal is not limited as long as the above purpose can be achieved.
  • the reference signal may be, for example but not limited to, a Cell-specific Reference Signal (CRS), a Channel State Information Reference Signal (CSI-RS), or a demodulation reference signal. (Demodulation Reference Signal, DMRS).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DMRS demodulation Reference Signal
  • the user equipment can set the standard used for determining the N antennas from the M antennas according to specific needs. For example, one or more factors such as the receiving quality and the interference can be referred to.
  • the user equipment may use various methods to determine the N antennas with the best reception quality among the M antennas. The specific implementation is not limited to the prior art.
  • determining N antennas among the M antennas includes:
  • antenna indication information that is fed back based on the antenna recommendation information, where the antenna indication information is used to indicate the number of antennas N;
  • the N antennas are determined among the X antennas based on the antenna indication information.
  • the third method described above can be applied to a TDD system.
  • the technical means for determining the X antennas based on the downlink reference signal may be similar to the technical method used for determining the N antennas based on the downlink reference signal in the second method, and the difference lies in the determined antenna.
  • the number can vary.
  • the user equipment can determine the number X of antennas based on the downlink reference signal, and report the number X to the access device, and then determine, by the access device, the number N of antennas to be used based on the foregoing number. It can be seen that in the third method, the user equipment cannot determine the N antennas that can be used by itself, and needs to negotiate with the access device. In contrast, it can be found that in the second method described above, the user equipment determines N antennas by itself without further negotiation with the access device.
  • the access device may determine the number N of antennas according to, for example, but not limited to, the current load of the access device itself. In addition, the number N of antennas determined by the access device is usually less than or equal to the number X of antennas reported by the user equipment.
  • the user equipment may report the determined number of antennas X through the antenna recommendation information, and the access device may indicate the determined number of antennas N by using the antenna indication information.
  • the antenna recommendation information may be specifically indicated, for example, but not limited to, a difference between the number X and the current number of antennas.
  • the current number of antennas refers to currently transmitting an uplink reference signal, so that the access device determines channel state information based on the uplink reference signal.
  • the number of antennas therefore, referred to herein, may be, for example, but not limited to, the most recent Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • the antenna indication information may be specifically indicated, for example, but not limited to, a difference between the number N of antennas relative to the current number of antennas, or a difference between the number N of antennas and the number X of antennas.
  • the user equipment may determine the N antennas to be used according to the antenna indication information.
  • the specific method for determining the N antennas is not limited in the present invention.
  • the user equipment may select the N antennas with the best reception quality among the above X antennas (or the above M antennas), and regard the N antennas as the best N of the best transmission quality based on channel reciprocity. antenna.
  • the access device needs to perform an antenna feedback method, and the method includes:
  • antenna recommendation information from the user equipment, where the antenna recommendation information is used to indicate the number X of antennas determined by the user equipment based on the downlink reference signal;
  • the antenna indication information is used to indicate the number N of antennas, so that the user equipment determines N antennas among the X antennas, wherein the user equipment is configured with M antennas, and M ⁇ X ⁇ N>0.
  • the antenna indication information is different in the specific content carried in the first method described above and the third method described above.
  • the antenna indication information fed back by the access device is used to indicate the N antennas determined by the access device based on the M uplink reference signals; in the second method, the access device feedback The antenna indication information is used to indicate the number N of antennas that the access device feeds back based on the number of antennas X. It can be seen that in the first method, the antenna indication information is used to indicate N antennas.
  • the antenna indication information only needs to indicate the number N of antennas, and it is not necessary to indicate which antennas of the N antennas are specific.
  • the access device can determine the number N of antennas by various methods, such as, but not limited to, current processing load and the like.
  • the number N of antennas indicated by the access device is usually less than or equal to the number X of antennas reported by the user equipment.
  • the number of antennas N may be greater than the number of antennas X.
  • the user equipment needs to determine the number N of antennas from the M antennas.
  • the number of antennas X is greater than M, it is indicated that all M antennas of the user equipment can send an uplink reference signal for the access device to determine channel state information.
  • determining N antennas among the M antennas includes:
  • antenna indication information that is fed back based on the antenna recommendation information, where the antenna indication information is used to indicate N antennas;
  • the N antennas are determined based on the antenna indication information.
  • the third method described above can be applied to a TDD system.
  • the fourth method is basically the same as the foregoing third method.
  • the antenna recommendation information is used to indicate the number of antennas X
  • the antenna indication information is used to indicate the number of antennas N
  • the user equipment is The N antennas are determined in the X antennas.
  • the antenna recommendation information is used to indicate the X antennas
  • the antenna indication information is used to indicate the N antennas
  • the user equipment may determine the N according to the antenna indication information. Root antenna.
  • the access device needs to perform an antenna feedback method, and the method includes:
  • antenna recommendation information from the user equipment, where the antenna recommendation information is used to indicate X antennas determined by the user equipment based on the downlink reference signal;
  • the antenna indication information is used to indicate N antennas, wherein the user equipment is configured with M antennas, and M ⁇ X ⁇ N>0.
  • the step of sending antenna recommendation information to the access device may be further optimized, for example, sending antenna recommendation information to the access device includes: When the condition is set, the antenna recommendation information is sent to the access device.
  • the foregoing preset condition may be configured by the access device.
  • the user equipment may receive configuration information from the access device, where the configuration information is used to configure the preset condition, and determine the preset condition according to the configuration information.
  • the access device needs to generate the foregoing configuration information and send the generated configuration information.
  • the preset condition may be set based on a comparison result between the determined number X of antennas and the reference number.
  • the preset condition may be that the quantity X is not equal to the reference quantity, and the quantity X is less than the reference quantity. , or the quantity X is greater than the reference quantity, and so on.
  • the reference number may be, for example, but not limited to, the current number of antennas described above, or may be the number of antennas that transmit the uplink reference signal for the access device to determine channel state information based on the uplink reference signal within the last preset duration.
  • the average duration, etc. may be, for example, but not limited to, one or more TTIs.
  • the foregoing preset conditions are only examples. In the specific implementation process, the foregoing preset conditions are not limited in the embodiment of the present invention.
  • the specific number of antennas X may not be indicated, but only the number of antennas needs to be increased or decreased.
  • a set of antenna numbers may also be set in advance, for example, ⁇ 0, 1, 2, 4 ⁇ , in which case the value of the number of antennas N may be selected from the set.
  • the value of the number of antennas X can also be selected from the set. In this way, when the number of antennas X is reported by the antenna recommendation information, the number of antennas X may also be indicated as the first value before or after the current number of antennas in the antenna number set.
  • various information that is transmitted between the user equipment and the access device may be implemented by using the following signaling:
  • L1 signaling is also referred to as Layer 1 (L1) signaling, which can typically be carried by a control portion in a physical layer frame.
  • L1 signaling is the Downlink Control Information (DCI) and the Physical Uplink Control Channel (PUCCH) carried in the physical downlink control channel (PDCCH) defined in the LTE standard.
  • DCI Downlink Control Information
  • PUCCH Physical Uplink Control Channel
  • UCI Uplink Control Information
  • the L1 signaling may also be carried by a data part in a physical layer frame.
  • the UCI may also be carried by a Physical Uplink Shared Channel (PUSCH). It is not difficult to see that the transmission period or signaling period of L1 signaling is usually the period of the physical layer frame.
  • PUSCH Physical Uplink Shared Channel
  • Signaling resource allocation information For example, if the antenna recommendation information is carried by the UCI, a specific one or more bits may be allocated in the UCI to carry the antenna recommendation information for transmission together with other information that can be carried by the UCI, wherein the other information may be For example, but not limited to, scheduling request, CQI, PMI, RI, and ACK/NACK.
  • the UCI carrying the antenna recommendation information is transmitted through the PUCCH, a specific format may be set for the UCI, so that the access device determines that the UCI carries the antenna recommendation information according to the format.
  • the UCI carrying the antenna recommendation information is transmitted through the PUSCH, the UCI may be allocated a specific transmission resource (for example, a time-frequency resource), so that the access device acquires the UCI in the transmission resource.
  • Media Access Control (MAC) layer signaling belongs to Layer 2 signaling, which can typically be carried by, for example, but not limited to, a frame header of a Layer 2 frame.
  • the foregoing frame header may also carry information such as, but not limited to, a source address and a destination address.
  • the second layer of frames usually also contains the frame body.
  • L2 signaling may also be carried by the frame body of the second layer frame.
  • a typical example of Layer 2 signaling is the signaling carried in the Frame Control field in the frame header of the MAC frame in the 802.11 series of standards, or the Control Entity (MAC-CE) defined in some protocols.
  • the second layer frame can usually be carried in the data portion of the physical layer frame.
  • the foregoing various information related to the embodiments of the present invention such as but not limited to antenna indication information and antenna recommendation information, may also be sent through other Layer 2 signaling other than media access control layer signaling.
  • Radio Resource Control (RRC) signaling belongs to Layer 3 signaling, which is usually some control message, and L3 signaling can usually be carried in the frame body of the second layer frame.
  • the transmission period or control period of the L3 signaling is usually long, and is suitable for transmitting information that does not change frequently.
  • L3 signaling is usually used to carry some configuration information.
  • the above various information related to the embodiments of the present invention such as but not limited to antenna indication information and antenna recommendation information, may also be transmitted through other layer 3 signaling other than RRC signaling.
  • the access device may allocate corresponding reference signal resources in advance, and the allocation process may be based on the request of the user equipment. It can also be based on various a priori information grasped by the access device, including, for example, but not limited to, various information collected by the access device during the interaction between the access device and the user device. Furthermore, the above-described allocation process can also be carried out based on corresponding regulations in the communication standard.
  • the scheme of determining the N antennas according to the downlink reference signal based on the reciprocity of the uplink and downlink channels is adopted, when the number of the transmitting and receiving antennas of the user equipment is not equal, only the receiving antennas having the same number of transmitting antennas as the user equipment are needed. The number can receive the downlink reference signal.
  • the technical solution provided by the embodiment of the present invention may need to indicate an antenna, such as, but not limited to, indicating N antennas by using antenna indication information in the first method, or indicating by antenna recommendation information in the fourth method.
  • X antennas which indicate N antennas through antenna indication information.
  • various methods may be used to indicate an antenna, and the specific method is not limited in the embodiment of the present invention.
  • the antennas may be indicated by methods such as, but not limited to, the methods described below.
  • an antenna that requires an indication such as the above-described N antennas or X antennas is referred to as a selected antenna.
  • the selected antenna can be indicated by a bitmap.
  • a bitmap For example, a corresponding bit sequence is set for the M antennas, and each bit in the bit sequence corresponds to one of the M antennas. When the bit is 0, the antenna corresponding to the bit is not selected; when the bit is 1, the antenna corresponding to the bit is selected.
  • the selected antenna may be indicated in conjunction with a system frame number and a Cyclic Redundancy Check (CRC) scrambling code of the DCI.
  • CRC Cyclic Redundancy Check
  • the antenna can be selected by a CRC scrambling code.
  • M system frames can be continuously received. For each system frame, whether the antenna corresponding to the system frame is selected is determined by the CRC. In this way, the selected antennas of the M antennas can be confirmed after M system frames.
  • the selected antenna may be indicated by a precoding matrix, wherein each of the M antennas is indicated by a corresponding element in the precoding matrix, and if an element takes a value of zero, the corresponding antenna of the element is not Selected; if an element is not zero, the corresponding antenna of the element is selected.
  • each of the M antennas may also be indicated by a corresponding row or column in the precoding matrix. If the row or column contains a non-zero element, the antenna corresponding to the row or column is selected; If the row or column does not contain a non-zero element, the antenna corresponding to the row or column is not selected. For example, if each antenna is sequentially indicated by each row of the precoding matrix, then when the precoding matrix is:
  • the second antenna and the fourth antenna are not selected because the first and third rows of the precoding matrix contain non-zero elements, and second Lines and fourth lines do not contain non-zero elements.
  • the precoding matrix is:
  • the precoding matrix is:
  • the first to fourth antennas are selected.
  • the antenna indication information and the antenna recommendation information may include an indication of the precoding matrix, such as an index of the precoding matrix.
  • the corresponding precoding matrix can be searched by the precoding matrix index, and the selected antenna is determined based on the above rules.
  • the precoding matrix index corresponds to the selected antenna, so the selected antenna can also be directly determined by the precoding matrix index without first finding the corresponding precoding matrix, and then determining according to the above rules. Selected antenna.
  • the number of antennas X is indicated by the antenna recommendation information, or the number N of antennas is indicated by the antenna indication information, and the indication may be indicated by using a precoding matrix. For example, for each row in the precoding matrix, if the row contains non-zero elements, then an antenna is selected. In this way, the number of rows containing non-zero elements in the precoding matrix can be calculated to determine the number of antennas. It is not difficult to understand that other elements in the precoding matrix can be used instead of the above rows, for example, using columns, or dividing elements in the precoding matrix into several element groups, replacing the above rows with element groups to achieve the same The function.
  • the antenna indication information and the antenna recommendation information include an indication of the precoding matrix, such as an index of the precoding matrix.
  • the corresponding precoding matrix can be searched by the precoding matrix index, and the number of antennas can be determined based on the above rules.
  • the precoding matrix index corresponds to the number of antennas, so the number of antennas can also be directly determined by the precoding matrix index without first finding the corresponding precoding matrix, and then determining the number of antennas based on the above rules. .
  • the number of selected antennas or antennas may also be determined by other methods, such as, for example, what pre-conditions are met by the precoding matrix index. For example, the number of selected antennas or antennas may be determined according to the range in which the precoding matrix index is located. For example, if the precoding matrix index is between 16 and 23, the selected antenna is the first antenna and the third antenna, and the number of antennas is 2. It should be noted that in determining the number of antennas or antennas, in addition to the reference precoding matrix index, other information may be combined, such as but not limited to the number of data layers, which is usually indicated by RI.
  • a corresponding validity period may be set for the determined N antennas or the number of antennas N.
  • the determined N antennas, or the number of antennas N corresponds to an expiration date.
  • the length of the validity period may be, for example but not limited to, one or more TTIs and the like.
  • the above validity period may be indicated by at least one of, for example, but not limited to, an effective time, an expiration time, and a validity period.
  • the foregoing validity period may be pre-agreed in the communication protocol, or may be configured by the access device to the user equipment. For example, the access device may indicate to the user equipment the start and end time of the validity period.
  • the effective condition may be, for example, if the number of N antennas or antennas that are indicated multiple times in succession is the same, the N antennas or the number of antennas N are applied.
  • the effective condition may be that the indicated number of N antennas or antennas remains unchanged for a preset duration.
  • the information to be instructed may be sent together as a whole, or may be separately transmitted by being divided into multiple sub-information, and the transmission periods of the sub-information may be the same or different.
  • the related information (such as but not limited to) in various information (such as, but not limited to, antenna indication information and antenna recommendation information, etc.) transmitted between the user equipment and the access device in the technical solution provided by the embodiment of the present invention.
  • the specific scheme used for the indication of the number of antennas or antennas can be referred to the above description.
  • FIG. 3 is a schematic diagram showing an exemplary logical structure of a user equipment 300 according to an embodiment of the invention.
  • the user equipment 300 includes a processing module 302 and a transceiver module 304.
  • the processing module 302 is configured to determine N antennas among the M antennas, where M>0, M ⁇ N>0;
  • the transceiver module 304 is configured to send N uplink reference signals by using N antennas of the M antennas, and receive channel state information determined by the access device based on the uplink reference signal.
  • the transceiver module 304 is further configured to send M uplink reference signals by using the M antennas, and receive antenna indication information that is received by the access device based on the M uplink reference signals, where the antenna The indication information is used to indicate the N antennas; the processing module 302 is specifically configured to determine the N antennas according to the antenna indication information.
  • the transceiver module 304 is further configured to receive, by using the M antennas, a downlink reference signal that is sent by the access device, where the processing module 302 is specifically configured to determine the N according to the downlink reference signal. Root antenna.
  • the transceiver module 304 is further configured to receive, by using the M antennas, a downlink reference signal that is sent by the access device, where the processing module 302 is configured to determine, according to the downlink reference signal, an X antenna.
  • the transceiver module 304 is further configured to receive, by using the M antennas, a downlink reference signal that is sent by the access device, where the processing module 302 is configured to determine, according to the downlink reference signal, an X antenna, Wherein M ⁇ X ⁇ N; the transceiver module 304 is further configured to send antenna recommendation information to the access device, where the antenna recommendation information is used to indicate the determined X antennas, and the receiving access device is based on the The antenna indication information is fed back by the antenna recommendation information, wherein the antenna indication information is used to indicate the N antennas; and the processing module 302 is further configured to determine the N antennas based on the antenna indication information.
  • the processing module 302 is further configured to determine whether the preset condition is met; the transceiver module 304 is further configured to send the antenna recommendation information to the access device when the processing module determines that the preset condition is met.
  • configuration information is received from an access device, where the configuration information is used to configure the preset condition.
  • the antenna recommendation information is specifically used to indicate a difference between the quantity X and a current number of antennas.
  • the antenna indication information is specifically used to indicate a difference between the number N of the antennas and the current number of antennas.
  • the user equipment 300 is configured to perform the above-described channel measurement method 200.
  • the related technical content has been described in detail above in connection with the method 200, and thus is not described herein again.
  • FIG. 4 is a schematic diagram showing an exemplary hardware structure of a user equipment 400 according to an embodiment of the present invention.
  • user equipment 400 includes a processor 402, a transceiver 404, a plurality of antennas 406, a memory 408, an I/O (Input/Output) interface 410, and a bus 412.
  • Memory 408 is further used to store instructions 4082 and data 4084.
  • processor 402, transceiver 404, memory 408, and I/O interface 410 are communicatively coupled to one another via a bus 412, and a plurality of antennas 406 are coupled to transceiver 404.
  • the processor 402, the transceiver 404, the memory 408, and the I/O interface 410 may also be communicatively coupled to each other by using other connections than the bus 412.
  • the processor 402 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 402 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 402 may be configured to perform the operations performed by the processing module 302.
  • the processor 402 may be a processor specifically designed to perform the above operations, or may be a processor that performs the above operations by reading and executing the instructions 4082 stored in the memory 408, and the processor 402 may perform the above operations. Data 4084 is required.
  • the transceiver 404 is configured to transmit signals through at least one of the plurality of antennas 406 and to receive signals through at least one of the plurality of antennas 406.
  • the transceiver 404 may be specifically configured to perform operations performed by the transceiver module 304 by using at least one of the plurality of antennas 406.
  • the memory 408 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • the I/O interface 410 is for receiving instructions and/or data from peripheral devices and outputting instructions and/or data to peripheral devices.
  • the user equipment 400 may also include other hardware devices, which are not enumerated herein.
  • FIG. 5 is a schematic diagram showing an exemplary logical structure of an access device 500 according to an embodiment of the invention. As shown in FIG. 5, the access device 500 includes a processing module 502 and a transceiver module 504.
  • the transceiver module 504 is configured to receive M uplink reference signals sent by the user equipment through the M antennas.
  • the processing module 502 is configured to determine N antennas based on the M uplink reference signals, where M ⁇ N>0;
  • the transceiver module 504 is further configured to feed back antenna indication information, where the antenna indication information is used to indicate N antennas.
  • the transceiver module 504 is configured to transmit a downlink reference signal, and receive antenna recommendation information from the user equipment, where the antenna recommendation information is used to indicate the number X of antennas determined by the user equipment based on the downlink reference signal;
  • the processing module 502 is configured to determine the number N of antennas based on the antenna recommendation information
  • the transceiver module 504 is further configured to feed back antenna indication information, where the antenna indication information is used to indicate the number of antennas N, so that the user equipment determines N antennas among the X antennas, where the user equipment configuration There are M antennas, and M ⁇ X ⁇ N > 0.
  • the transceiver module 504 is configured to transmit a downlink reference signal, and receive antenna recommendation information from the user equipment, where the antenna recommendation information is used to indicate the X antennas determined by the user equipment based on the downlink reference signal;
  • the processing module 502 is configured to determine N antennas based on the antenna recommendation information
  • the transceiver module 504 is further configured to feed back antenna indication information, where the antenna indication information is used to indicate N antennas, wherein the user equipment is configured with M antennas, and M ⁇ X ⁇ N>0.
  • FIG. 6 is a schematic diagram of an exemplary hardware structure of an access device 600 according to an embodiment of the invention.
  • the access device 600 includes a processor 602, a transceiver 604, a plurality of antennas 606, a memory 608, an I/O (Input/Output) interface 610, and a bus 612.
  • Memory 608 is further used to store instructions 6082 and data 6084.
  • processor 602, transceiver 604, memory 608, and I/O interface 610 are communicatively coupled to each other via bus 612, and a plurality of antennas 606 are coupled to transceiver 604.
  • the processor 602, the transceiver 604, the memory 608, and the I/O interface 610 may also be communicatively coupled to each other by using other connections than the bus 612.
  • the processor 602 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 602 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 602 may be configured to perform the operations performed by the processing module 502.
  • the processor 602 may be a processor specifically designed to perform the above operations, or may be a processor that performs the above operations by reading and executing the instructions 6082 stored in the memory 608, and the processor 602 may perform the above operations. Data 6084 is required.
  • the transceiver 604 is configured to transmit signals through at least one of the plurality of antennas 606 and to receive signals through at least one of the plurality of antennas 606.
  • the transceiver 604 may be specifically configured to perform operations performed by the transceiver module 504 by using at least one of the plurality of antennas 606.
  • the memory 608 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • the I/O interface 610 is configured to receive instructions and/or data from peripheral devices and to output instructions and/or data to peripheral devices.
  • the access device 600 may also include other hardware devices, which are not enumerated herein.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信道测量方法,包括在M根天线中确定N根天线,其中M>0,M≥N>0;通过M根天线中的N根天线发送N个上行参考信号,以及接收接入设备基于所述上行参考信号确定的信道状态信息。本发明实施例还提供了一种用户设备。本发明实施例提供的技术方案由M根天线中的N根天线发送N个上行参考信号,以此来进行信道测量。相比使用全部天线进行信道测量,本发明实施例提供的技术方案仅仅使用部分天线进行信道测量,换句话说,本发明实施例提供的技术方案通过天线阵列的子集进行信道测量,因此有助于降低反馈CSI而带来的开销。

Description

一种信道测量方法和用户设备
本申请要求于2017年11月1日提交中国专利局、申请号为201711058952.9、发明名称为“一种信道测量方法和用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及信道测量技术,尤其涉及一种信道测量方法和用户设备。
背景技术
多入多出(Multiple Input Multiple Output,MIMO)技术的出现,给无线通信带来了革命性的变化。通过在发射端设备和接收端设备上部署多根天线,MIMO技术可以显著提高无线通信系统的性能。例如,在分集场景下,MIMO技术可有效提升传输可靠性;在复用场景下,MIMO技术可以大大提升传输吞吐量。
为进一步提升系统性能,下一代无线通信系统将对MIMO技术进行升级,在发射端设备和接收端设备部署更多的天线,这种升级后的MIMO技术又被称为大规模MIMO(Massive MIMO)技术。按照目前业界对大规模MIMO的研究进展,在基站侧部署的天线数量或可达到64根,128根甚至更多,终端侧部署的天线数量也将得到相应的提升。不难想象,天线数量的大幅增加有望大幅提升下一代无线通信系统的性能。
然而,在具体实现过程中,大规模MIMO技术仍然面临着一些挑战。例如,天线数量的增加意味着反馈信道状态信息(Channel State Information,CSI)将带来更大的开销。这种开销如果得不到有效控制,将大幅抵消天线数量增加所带来的性能提升,甚至有可能出现性能下降的情况。
发明内容
有鉴于此,实有必要提供一种信道测量方法,有助于降低因天线数量的增加而带来的CSI反馈开销。
同时,提供一种用户设备,有助于降低因天线数量的增加而带来的CSI反馈开销。
根据本发明实施例的第一方面,提供一种信道测量方法,包括:
在M根天线中确定N根天线,其中M>0,M≥N>0;
通过M根天线中的N根天线发送N个上行参考信号,以及接收接入设备基于所述上行参考信号确定的信道状态信息。
在一种可能的设计中,所述在M根天线中确定N根天线包括:
通过所述M根天线发送M个上行参考信号;
接收接入设备基于所述M个上行参考信号反馈的天线指示信息,其中所述天线指示信息用于指示所述N根天线;
根据所述天线指示信息确定所述N根天线。
在一种可能的设计中,所述在M根天线中确定N根天线包括:
通过所述M根天线接收所述接入设备发射的下行参考信号;
基于所述下行参考信号确定所述N根天线。
在一种可能的设计中,所述在M根天线中确定N根天线包括:
通过所述M根天线接收所述接入设备发射的下行参考信号;
基于所述下行参考信号确定X根天线,其中M≥X≥N;
向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的天线的数量X;
接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示天线数量N;
基于所述天线指示信息在所述X根天线中确定所述N根天线。
在一种可能的设计中,所述在M根天线中确定N根天线包括:
通过所述M根天线接收所述接入设备发射的下行参考信号;
基于所述下行参考信号确定X根天线,其中M≥X≥N;
向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的X根天线;
接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示N根天线;
基于所述天线指示信息确定所述N根天线。
在一种可能的设计中,所述向所述接入设备发送天线推荐信息包括,在判定满足预设条件时,向所述接入设备发送天线推荐信息。
在一种可能的设计中,所述方法还包括:
接收来自接入设备的配置信息,所述配置信息用于配置所述预设条件。
在一种可能的设计中,所述天线推荐信息具体用于指示所述数量X相对于当前天线数量之间的差值。
在一种可能的设计中,所述天线指示信息具体用于指示所述天线数量N相对于当前天线数量之间的差值。
根据本发明实施例的第二方面,提供一种用户设备,包括:
处理模块,用于在M根天线中确定N根天线,其中M>0,M≥N>0;
收发模块,用于通过M根天线中的N根天线发送N个上行参考信号,以及接收接入设备基于所述上行参考信号确定的信道状态信息。
在一种可能的设计中,所述收发模块还用于通过所述M根天线发送M个上行参考信号,以及接收接入设备基于所述M个上行参考信号反馈的天线指示信息,其中所述天线指示信息用于指示所述N根天线;所述处理模块具体用于根据所述天线指示信息确定所述N根天线。
在一种可能的设计中,所述收发模块还用于通过所述M根天线接收所述接入设备发射的下行参考信号;所述处理模块具体用于基于所述下行参考信号确定所述N根天线。
在一种可能的设计中,所述收发模块还用于通过所述M根天线接收所述接入设备发射的下行参考信号;所述处理模块具体用于基于所述下行参考信号确定X根天线,其中M>X≥N;所述收发模块还用于向所述接入设备发送天线推荐信息,其中所述天线推荐信 息用于指示所确定的天线的数量X,以及接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示天线数量N;所述处理模块还用于基于所述天线指示信息在所述X根天线中确定所述N根天线。
在一种可能的设计中,所述收发模块还用于通过所述M根天线接收所述接入设备发射的下行参考信号;所述处理模块具体用于基于所述下行参考信号确定X根天线,其中M>X≥N;所述收发模块还用于向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的X根天线,以及接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示N根天线;所述处理模块还用于基于所述天线指示信息确定所述N根天线。
在一种可能的设计中,所述处理模块还用于判断是否满足预设条件;所述收发模块还用于在处理模块判定满足预设条件时向所述接入设备发送天线推荐信息。
在一种可能的设计中,所述收发模块还用于接收来自接入设备的配置信息,所述配置信息用于配置所述预设条件;所述处理模块还用于根据所述配置信息配置所述预设条件。
在一种可能的设计中,所述天线推荐信息具体用于指示所述数量X相对于当前天线数量之间的差值。
在一种可能的设计中,所述天线指示信息具体用于指示所述天线数量N相对于当前天线数量之间的差值。
根据本发明实施例的第三方面,提供一种用户设备,包括:
处理器,用于在M根天线中确定N根天线,其中M>0,M≥N>0;
收发器,用于通过M根天线中的N根天线发送N个上行参考信号,以及接收接入设备基于所述上行参考信号确定的信道状态信息。
在一种可能的设计中,所述收发器还用于通过所述M根天线发送M个上行参考信号,以及接收接入设备基于所述M个上行参考信号反馈的天线指示信息,其中所述天线指示信息用于指示所述N根天线;所述处理器具体用于根据所述天线指示信息确定所述N根天线。
在一种可能的设计中,所述收发器还用于通过所述M根天线接收所述接入设备发射的下行参考信号;所述处理器具体用于基于所述下行参考信号确定所述N根天线。
在一种可能的设计中,所述收发器还用于通过所述M根天线接收所述接入设备发射的下行参考信号;所述处理器具体用于基于所述下行参考信号确定X根天线,其中M>X≥N;所述收发器还用于向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的天线的数量X,以及接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示天线数量N;所述处理器还用于基于所述天线指示信息在所述X根天线中确定所述N根天线。
在一种可能的设计中,所述收发器还用于通过所述M根天线接收所述接入设备发射的下行参考信号;所述处理器具体用于基于所述下行参考信号确定X根天线,其中M>X≥N;所述收发器还用于向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的X根天线,以及接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示N根天线;所述处理器还用于基于所述天线指示信息确定所述N根天线。
在一种可能的设计中,所述处理器还用于判断是否满足预设条件;所述收发器还用于在处理器判定满足预设条件时向所述接入设备发送天线推荐信息。
在一种可能的设计中,所述收发器还用于接收来自接入设备的配置信息,所述配置信息用于配置所述预设条件;所述处理器还用于根据所述配置信息配置所述预设条件。
在一种可能的设计中,所述天线推荐信息具体用于指示所述数量X相对于当前天线数量之间的差值。
在一种可能的设计中,所述天线指示信息具体用于指示所述天线数量N相对于当前天线数量之间的差值。
根据本发明实施例的第四方面,提供一种天线反馈方法,包括:
接收用户设备通过M根天线发送的M个上行参考信号;
基于M个上行参考信号确定N根天线,其中M≥N>0;
反馈天线指示信息,其中所述天线指示信息用于指示N根天线。
根据本发明实施例的第五方面,提供一种天线反馈方法,该方法包括:
发射下行参考信号;
接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的天线的数量X;
基于所述天线推荐信息确定天线数量N;
反馈天线指示信息,其中所述天线指示信息用于指示天线数量N,以便所述用户设备在所述X根天线中确定N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
根据本发明实施例的第六方面,提供一种天线反馈方法,包括:
发射下行参考信号;
接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的X根天线;
基于所述天线推荐信息确定N根天线;
反馈天线指示信息,其中所述天线指示信息用于指示N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
根据本发明实施例的第七方面,提供一种接入设备,包括:
收发模块,用于接收用户设备通过M根天线发送的M个上行参考信号;
处理模块,用于基于M个上行参考信号确定N根天线,其中M≥N>0;
所述收发模块还用于反馈天线指示信息,其中所述天线指示信息用于指示N根天线。
根据本发明实施例的第八方面,提供一种接入设备,该方法包括:
收发模块,用于发射下行参考信号,以及接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的天线的数量X;
处理模块,用于基于所述天线推荐信息确定天线数量N;
所述收发模块还用于反馈天线指示信息,其中所述天线指示信息用于指示天线数量N,以便所述用户设备在所述X根天线中确定N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
根据本发明实施例的第九方面,提供一种接入设备,包括:
收发模块,用于发射下行参考信号,以及接收来自用户设备的天线推荐信息,其中所 述天线推荐信息用于指示用户设备基于所述下行参考信号确定的X根天线;
处理模块,用于基于所述天线推荐信息确定N根天线;
所述收发模块还用于反馈天线指示信息,其中所述天线指示信息用于指示N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
根据本发明实施例的第十方面,提供一种接入设备,包括:
收发器,用于接收用户设备通过M根天线发送的M个上行参考信号;
处理器,用于基于M个上行参考信号确定N根天线,其中M≥N>0;
所述收发器还用于反馈天线指示信息,其中所述天线指示信息用于指示N根天线。
根据本发明实施例的第十一方面,提供一种接入设备,该方法包括:
收发器,用于发射下行参考信号,以及接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的天线的数量X;
处理器,用于基于所述天线推荐信息确定天线数量N;
所述收发器还用于反馈天线指示信息,其中所述天线指示信息用于指示天线数量N,以便所述用户设备在所述X根天线中确定N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
根据本发明实施例的第十二方面,提供一种接入设备,包括:
收发器,用于发射下行参考信号,以及接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的X根天线;
处理器,用于基于所述天线推荐信息确定N根天线;
所述收发器还用于反馈天线指示信息,其中所述天线指示信息用于指示N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上,例如,收发器可以设置在收发器芯片上。又例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本发明实施例对上述器件的具体实现形式不做限定。
根据本发明实施例的第十三方面,提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,有关发送和接收的步骤,可以理解为输出以及接收输入的过程。举例来说,在执行通过M根天线中的N根天线发送N个上行参考信号时,可以理解为,处理器输出上述N个上行参考信号以便上述N个上行参考信号通过M根天线发射。不难理解,在输出上述N个上行参考信号与上述N个上行参考信号通过M根天线发射之间,还有可能需要进行其他的处理。又例如,在接收接入设备基于所述上行参考信号确定的信道状态信息时,可以理解为处理器接收输入给该处理器的信道状态信息,其中该信道状态信息是接入设备基于所述上行参考信号确定的。再例如,在向所述接入设备发送天线推荐信息时, 可以理解为处理器输出该天线推荐信息,以便向接入设备发送该天线推荐信息。本领域的技术人员应当明白,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收输入等操作,而不是直接由射频电路和天线所进行的发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
根据本发明实施例的第十四方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述各种方法。更进一步的,计算机可读存储介质为非瞬时性的计算机可读存储介质。
根据本发明实施例的第十四方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各种方法。
本发明实施例提供的技术方案由M根天线中的N根天线发送N个上行参考信号,以此来进行信道测量。相比使用全部天线进行信道测量,本发明实施例提供的技术方案仅仅使用部分天线进行信道测量,换句话说,本发明实施例提供的技术方案通过天线阵列的子集进行信道测量,因此有助于降低反馈CSI而带来的开销。
附图说明
图1是依照本发明一实施例的无线通信网络的示范性示意图;
图2是依照本发明一实施例的信道测量方法的示范性流程图;
图3是依照本发明一实施例的用户设备的示范性逻辑结构示意图;
图4是依照本发明一实施例的用户设备的示范性硬件结构示意图;
图5是依照本发明一实施例的接入设备的示范性逻辑结构示意图;
图6是依照本发明一实施例的接入设备的示范性硬件结构示意图。
具体实施方式
目前正处于研发阶段的下一代无线通信系统又可称为新无线(New Radio,NR)系统或者5G系统。借助大规模MIMO技术、更加精确的波束赋形技术、预编码技术和/或接收合并技术,下一代无线通信系统有望获得更大的分集增益和天线阵列增益,系统容量和频谱利用率将得到进一步提升。
然而,性能的提升并非是没有代价的,天线数量的增加也会给增加系统设计的复杂性。举例来说,在天线数量大幅增加的情况下,反馈CSI将带来更大的开销。例如,天线数量的增加意味着为获得CSI需要配置更多的参考信号(Reference Signal,RS),相应的,传送这些参考信号将占用更多的时频资源。又例如,天线数量的增加意味着信道矩阵规模的增大,CSI的计算过程将带来更大的计算量。再例如,天线数量的增加意味着计算得到 的CSI的信息量更大,反馈CSI又将占用更多的时频资源。若不进行有效的控制,增加天线数量之后,系统性能非但不会得到提升,反而有可能降低。因此,采用大规模MIMO技术需要解决好反馈CSI的开销问题。
受到天线相关性等因素的影响,在实际的数据传输中,天线阵列中的部分天线对数据传输的贡献很小,因而可以忽略。换句话说,天线阵列中对数据传输做出贡献的天线通常为天线阵列的子集,而非整个天线阵列。不难理解,上述天线阵列的子集所对应的CSI开销,要小于整个天线阵列所对应的CSI开销。因此,基于上述天线阵列的子集来确定CSI,有助于降低反馈CSI而带来的开销。更进一步的,上述天线阵列的子集有可能会随着信道环境的变化而变化,因此,在基于上述天线阵列的子集确定CSI之前,首先需要确定该子集。
本发明实施例提供了一种技术方案,可基于上述天线阵列的子集而非整个天线阵列来确定CSI,有用于降低反馈CSI而带来的开销。以下就结合附图和具体实施例来对本发明提供的技术方案进行详细的描述。
图1是依照本发明一实施例的无线通信网络100的示范性示意图。如图1所示,无线通信网络100包括基站102~106和终端设备108~122,其中,基站102~106彼此之间可通过回程(backhaul)链路(如基站102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如基站102~106与终端设备108~122之间的折线所示)与对应的基站102~106通信。
基站102~106通常作为接入设备来为通常作为用户设备的终端设备108~122提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此这些基站可以进行相互协同,以此来为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,基站102与基站104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自基站102和基站104的无线信号,基站102和基站104可以进行相互协同,来为终端设备112提供服务。又例如,如图1所示,基站102、基站104和基站106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自基站102、104和106的无线信号,基站102、104和106可以进行相互协同,来为终端设备120提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端设备108~122可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、 笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~122还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站102~106,和终端设备108~122均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,基站102~106和终端设备108~122既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站102~106和终端设备108~122还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,例如但不限于,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。上文以举例的方式对发射分集进行了的概括性的描述。本领域技术人员应当明白,除上述实例外,发射分集还包括其他多种实现方式。因此,上述介绍不应理解为对本发明技术方案的限制,本发明技术方案应理解为适用于各种可能的发射分集方案。
此外,基站102~106和终端设备108~122可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.11系列标准中定义的WiFi、全球互通微波存取(Worldwide Interoperability for  Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还可能包括其他设备,同时也可根据具体需要来配置基站和终端设备的数量。
图2是依照本发明一实施例的信道测量方法200的示范性流程图。在具体实现过程中,信道测量方法200可以由,例如但不限于,用户设备来执行。更进一步的,该用户设备可以是,例如但不限于,图1所示的终端设备108~122。
步骤202,在M根天线中确定N根天线,其中M>0,M≥N>0。
在具体实现过程中,上述M根天线中的每一根天线可以通过一个天线振子来实现,也可以通过多个天线振子来实现,其具体实现过程在现有技术中已经进行了清楚的描述,本文不再赘述。在本发明实施例提供的技术方案中,上述天线可以理解为天线端口,因而可以与天线端口相互替换。换句话说,M根天线可以理解为M个天线端口,N根天线可以理解为N个天线端口等。天线端口的概念在现有技术中已经进行了清楚的描述,因此本发明对此不再赘述。
步骤204,通过M根天线中的N根天线发送N个上行参考信号,以及接收接入设备基于所述上行参考信号确定的信道状态信息。
在具体实现过程中,上述上行参考信号可以是,例如但不限于,探测参考信号(Sounding Reference Signal,SRS)或者其他参考信号,例如由用户设备发射并由接入设备接收以便用于对从用户设备到接入设备之间的信道进行信道测量的其他参考信号。更进一步的,上述接入设备可以是,例如但不限于,图1所示的基站102~106。
上述信道状态信息所包含的具体可以参考现有技术,本发明实施例对此不做限定。举例来说,在进行下行信道测量时,接入设备发射参考信号,用户设备根据该参考信号进行下行信道测量,据此获得下行信道状态信息。在进行上行信道测量时,用户设备发射参考信号,接入设备根据该参考信号进行上行信道测量,由此获得上行信道状态信息。不难看出,在本发明实施例提供的技术方案中,接入设备基于上行参考信号确定的信道状态信息为上行信道状态信息。通常来说,下行信道状态信息和上行信道状态信息所包含信息的种类可以相同,也可以不同。一般来说,下行信道状态信息和上行信道状态信息可以包含下列信息之中的至少一种:调制编码方式(Modulation and Coding Scheme,MCS)、预编码矩阵(Precoding Matrix)信息、传输层(Layer)数等。有关下行信道状态信息和上行信道状态信息的具体内容可以参考现有技术,本发明实施例对于上述具体内容不做限定。此外,上述信息在下行信道状态信息和上行信道状态信息的具体呈现形式可以相同也可以不同,具体内容可以参考现有技术,本发明对此不做限定。举例来说,下行信道状态信息可以通过上行控制信息(Uplink Control Information,UCI)来进行传送,在UCI中,MCS可以通过调制编码方式和冗余版本(Modulation and coding scheme and redundancy version)字段进行传送。上行信道状态信息可以通过下行控制信息(Downlink Control Information,DCI)来进行传送,在DCI中,预编码矩阵信息和传输层数可以通过DCI中的预编码信 息和层数字段(Precoding information and number of layers)来指示。
由上述方法200可知,本发明实施例提供的技术方案由M根天线中的N根天线发送N个上行参考信号,以此来进行信道测量。相比使用全部天线进行信道测量,本发明实施例提供的技术方案仅仅使用部分天线进行信道测量,换句话说,本发明实施例提供的技术方案通过天线阵列的子集进行信道测量,因此有助于降低反馈CSI而带来的开销。
在具体实现过程,可以采用各种方法,在M根天线中确定N根天线,本发明实施例对所采用的具体方法不做限定。为便于理解,具体实现过程可以采用,例如但不限于,下列方法,在M根天线中确定N根天线。
第一种方法:
在第一种方法中,上述在M根天线中确定N根天线包括:
用户设备通过M根天线发送M个上行参考信号;
接收接入设备基于M个上行参考信号反馈的天线指示信息,其中所述天线指示信息用于指示所述N根天线;
根据所述天线指示信息确定所述N根天线。
上述第一种方法既可以应用于时分双工(Time-Division Duplexing,TDD)系统,也可以应用于频分双工(Frequency-Division Duplexing,FDD)系统。
在第一种方法中,用户设备通过M根天线发送M个上行参考信号的目的,是便于接入设备通过对上述M个上行参考信号进行测量,来确定M根天线中的N根天线,例如但不限于,发射质量或者传输质量最好的N根天线。由此可见,上述M个上行参考信号可以是能够实现上述目的的任何类型的上行参考信号,例如,该上行参考信号可以与上述N个上行参考信号的类型相同,也可以不同。同时,本发明实施例也不限定上述M个上行参考信号与上述N个上行参考信号之中是否存在相同的上行参考信号。此外,接入设备可以根据具体需要来设置从M根天线中确定N根天线时所采用的标准,例如可以参考发射质量和干扰等一种或者多种因素,本发明实施例对此不做限定。举例来说,接入设备可以采用各种方法来确定M根天线中发射质量最好的N根天线,其具体实现方式属于现有技术,本发明实施例不做限定。
此外,在本发明实施例提供的各个实现方案中,在用户设备与接入设备之间传递的各种信息,例如上述信道状态信息,天线指示信息,以及下文将要描述的天线推荐信息等,可以采用各种实现形式,只要其可以指示相应的技术特性即可。例如,在具体实现过程中,指示的方式有多种,例如但不限于,可以直接指示待指示信息;也可以通过指示其他信息来指示待指示信息,其中该其他信息与待指示信息之间存在关联关系;还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的。具体指示方法可以参考现有技术,例如但不限于现有各种通信协议中规定的指示方法,本发明对此不做限定。此外,待指示信息可以做为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法可以参考现有技术,本发明对此不做限定。
相适应的,对于上述第一种方法,接入设备需要执行一种天线反馈方法,该方法包括:
接收用户设备通过M根天线发送的M个上行参考信号;
基于M个上行参考信号确定N根天线,其中M≥N>0;
反馈天线指示信息,其中所述天线指示信息用于指示N根天线。
第二种方法:
在第二种方法中,上述在M根天线中确定N根天线包括:
通过上述M根天线接收接入设备发射的下行参考信号;
基于所述下行参考信号确定所述N根天线。
上述第二种方法可以应用于TDD系统。
具体来说,用户设备通过上述M根天线接收接入设备发射的下行参考信号的目的,是通过对该下行参考信号进行测量,来确定M根天线中的N根天线,例如但不限于,信号接收质量或者传输质量最好的N根天线。在TDD系统中,上行传输和下行传输占用相同的载波,因此上行传输和下行传输的信道环境可以视为相同或者相近似的。基于信道的互易性(reciprocity),在同一载波上,M根天线中接收质量最好的N根天线,也可视为M根天线中发射质量最好的N根天线。此外,上述参考信号可以是能够实现上述目的的任何类型的下行参考信号,且对该下行参考信号的数量不做限制,只要能实现上述目的即可。具体来说,上述参考信号可以是,例如但不限于,小区专用参考信号(Cell-specific Reference Signal,CRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或者解调参考信号(Demodulation Reference Signal,DMRS)。用户设备可以根据具体需要来设置从M根天线中确定N根天线时所采用的标准,例如可以参考接收质量和干扰等一种或者多种因素,本发明实施例对此不做限定。举例来说,用户设备可以采用各种方法来确定M根天线中接收质量最好的N根天线,其具体实现方式属于现有技术,本发明实施例不做限定。
第三种方法:
在第三种方法中,在M根天线中确定N根天线包括:
通过上述M根天线接收接入设备发射的下行参考信号;
基于所述下行参考信号确定X根天线,其中M≥X≥N>0;
向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的天线的数量X;
接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示天线数量N;
基于所述天线指示信息在所述X根天线中确定所述N根天线。
上述第三种方法可以应用于TDD系统。
有关通过上述M根天线接收接入设备发射的下行参考信号的相关技术内容可以参考上述第二种方法。同时,基于所述下行参考信号确定X根天线所采用的技术手段,可以与上述第二种方法中基于所述下行参考信号确定所述N根天线所采用的技术手段类似,区别在于确定的天线的数量可以有所不同。
在第三种方法中,用户设备可以基于下行参考信号自行确定天线的数量X,并将该数量X上报给接入设备,进而由接入设备基于上述数量确定最终使用的天线数量N。由此可见,在第三种方法中,用户设备无法自行确定可以使用的N根天线,而需要与接入设 备协商。相比之下可以发现,在上述第二种方法中,用户设备自行确定N根天线,而无需与接入设备进一步协商。接入设备可以根据,例如但不限于,接入设备自身当前的负荷等情况,来确定上述天线数量N。此外,接入设备所确定的天线数量N通常小于等于用户设备上报的天线数量X。
在具体实现过程中,用户设备可以通过天线推荐信息来上报确定的天线数量X,接入设备可以通过天线指示信息来指示确定的天线数量N。此外,天线推荐信息可以具体指示,例如但不限于,数量X相对于当前天线数量之间的差值,当前天线数量是指当前发送上行参考信号以便接入设备基于该上行参考信号确定信道状态信息的天线的数量,因此,这里所说的当前,可以是例如但不限于最近一个传输时间间隔(Transmission Time Interval,TTI)。同理,天线指示信息可以具体指示,例如但不限于,天线数量N相对于当前天线数量之间的差值,或者天线数量N相对于天线数量X之间的差值。
用户设备在收到天线指示信息之后,可以根据该天线指示信息,确定最终使用的N根天线,有关确定N根天线的具体方法,本发明不做限定。举例来说,用户设备可以选择上述X根天线(或者上述M根天线)中接收质量最好的N根天线,并基于信道互易性,将这N根天线视为发射质量最好的N根天线。
相适应的,对于上述第三种方法,接入设备需要执行一种天线反馈方法,该方法包括:
发射下行参考信号;
接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的天线的数量X;
基于所述天线推荐信息确定天线数量N;
反馈天线指示信息,其中所述天线指示信息用于指示天线数量N,以便所述用户设备在所述X根天线中确定N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
此外,天线指示信息在上述第一种方法和上述第三种方法中携带的具体内容是不同的。如上文所述,在第一种方法中,接入设备反馈的天线指示信息用于指示接入设备基于上述M个上行参考信号确定的N根天线;在第二种方法中,接入设备反馈的天线指示信息用于指示接入设备基于所述天线数量X反馈的天线数量N。由此可见,在第一种方法中,天线指示信息用于指示N根天线,在第三种方法中,天线指示信息仅需指示天线的数量N,而无需指示N根天线具体是哪些天线。同时,接入设备可以采用各种方法确定天线数量N,例如但不限于,当前处理负担等。
应注意,接入设备所指示的天线数量N通常小于等于用户设备上报的天线数量X。然而,在具体实现过程中,上述天线数量N也可以大于天线数量X,在这种情况下,用户设备需要从M根天线中确定上述天线数量N。特别的,当天线数量X大于M时,说明用户设备所有M根天线均可发送上行参考信号以便接入设备确定信道状态信息。
第四种方法:
在第四种方法中,在M根天线中确定N根天线包括:
通过上述M根天线接收接入设备发射的下行参考信号;
基于所述下行参考信号确定X根天线,其中M≥X≥N>0;
向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的X根 天线;
接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示N根天线;
基于所述天线指示信息确定所述N根天线。
上述第三种方法可以应用于TDD系统。
上述第四种方法与上述第三种方法基本相同,区别在于,在上述第三种方法中,天线推荐信息中用于指示天线数量X,天线指示信息用于指示天线数量N,而用户设备在X根天线中确定N根天线,在第四种方法中,天线推荐信息用于指示X根天线,天线指示信息用于指示N根天线,而用户设备可以基于所述天线指示信息确定所述N根天线。
在第四种方法中,相适应的,接入设备需要执行一种天线反馈方法,该方法包括:
发射下行参考信号;
接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的X根天线;
基于所述天线推荐信息确定N根天线;
反馈天线指示信息,其中所述天线指示信息用于指示N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
此外,结合上述第三种方法描述的其他技术内容,也适用于第四种方法。
对于上述第三种方法和第四种方法,还可以对向所述接入设备发送天线推荐信息的步骤做进一步的优化,例如,向所述接入设备发送天线推荐信息包括,在判定满足预设条件时,向所述接入设备发送天线推荐信息。更进一步的,上述预设条件可以由接入设备进行配置。具体来说,用户设备可以接收来自接入设备的配置信息,所述配置信息用于配置所述预设条件,并根据所述配置信息确定所述预设条件。相应的,接入设备需要生成上述配置信息,并发送生成的配置信息。
在具体实现过程中,可以基于所确定天线的数量X与参考数量之间的比较结果来设置预设条件,例如,上述预设条件可以是,数量X与参考数量不相等,数量X小于参考数量,或者数量X大于参考数量等。参考数量可以是,例如但不限于,上文描述的当前天线数量,也可以是最近一个预设时长内,发送上行参考信号以便接入设备基于该上行参考信号确定信道状态信息的天线的数量的平均值等,该预设时长可以是,例如但不限于,一个或者多个TTI。简单来说,当天线数量X与当前天线数量相同或者相差不大时,可以无需上报天线推荐信息。应理解,上述预设条件仅为举例,在具体实现过程中,本发明实施例对上述预设条件不做限定。
作为替代的,在通过天线推荐信息上报天线数量X时,也可以不指示具体的天线数量X,而仅仅指示天线数量需要增加还是减少。
此外,也可以预先设置天线数量集合,例如,{0,1,2,4},在这种情况下,天线数量N的取值可以从该集合中进行选取。同时,天线数量X的取值也可以从该集合中选取。如此一来,在通过天线推荐信息上报天线数量X时,也可以指示天线数量X为天线数量集合中当前天线数量之前或者之后的第几个值。
在本发明实施例提供的各个实现方案中,在用户设备与接入设备之间传递的各种信息,例如天线指示信息、天线推荐信息和配置信息等,可以采用如下信令来实现:
物理层信令;
媒体访问控制层信令;
无线资源控制信令。
物理层信令也称为第一层(Layer 1,L1)信令,其通常可以由物理层帧中的控制部分来承载。L1信令的典型例子是LTE标准中定义的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载的下行控制信息(Downlink Control Information,DCI)和物理上行控制信道(Physical Uplink Control Channel,PUCCH)中承载的上行控制信息(Uplink Control Information,UCI)。在一些情况下,L1信令也可以由物理层帧中的数据部分来承载,例如,UCI有时也可以通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)来承载。不难看出,L1信令的发送周期或者信令周期通常为物理层帧的周期,因此这种信令通常用于实现一些动态的控制,以传递一些变化频繁的信息,例如,可以通过物理层信令传送资源分配信息。例如,若通过UCI来承载天线推荐信息,则可以在UCI中分配特定的一个或者多个比特,来承载天线推荐信息,以便与可以通过UCI来承载的其他信息一同传送,其中上述其他信息可以是,例如但不限于,调度请求、CQI、PMI、RI和ACK/NACK等。当承载天线推荐信息的UCI通过PUCCH传送时,可以为这种UCI设置特定的格式,以便接入设备根据该格式认定该UCI中承载有天线推荐信息。当承载天线推荐信息的UCI通过PUSCH传送时,可以为该UCI分配特定的传输资源(例如时频资源),以便接入设备在该传输资源获取该UCI。
媒体访问控制(Media Access Control,MAC)层信令属于第二层(Layer 2)信令,其通常可以由,例如但不限于,第二层帧的帧头来承载。上述帧头中还可能携带,例如但不限于,源地址和目的地址等信息。除帧头外,第二层帧通常还包含帧体。在一些情况下,L2信令也可以由第二层帧的帧体来承载。第二层信令的典型例子是802.11系列标准中MAC帧的帧头中的帧控制(Frame Control)字段中携带的信令,或者一些协议中定义的MAC控制实体(Control Entity,MAC-CE)。第二层帧通常可以携带在物理层帧的数据部分。本发明实施例涉及的上述各种信息,例如但不限于天线指示信息和天线推荐信息,也可以通过媒体访问控制层信令之外的其他第二层信令发送。
无线资源控制(Radio Resource Control,RRC)信令属于第三层(Layer 3)信令,其通常是一些控制消息,L3信令通常可以携带在第二层帧的帧体中。L3信令的发送周期或者控制周期通常较长,适用于发送一些不会频繁发生变化的信息,例如,在现有的一些通信标准中,L3信令通常用于承载一些配置信息。本发明实施例涉及的上述各种信息,例如但不限于天线指示信息和天线推荐信息,也可以通过RRC信令之外的其他第三层信令发送。
上文所述仅为物理层信令、MAC层信令、RRC信令、第一层信令、第二层信令和第三层信令的原理性描述,有关三种信令的具体细节可以参考现有技术,因此本文不再赘述。
应注意,在具体实现过程中,无论采用上述哪一种方法来在M根天线中确定N根天线,接入设备都可以提前分配相应的参考信号资源,该分配过程可以基于用户设备的请求,也可以基于接入设备所掌握的各种先验信息,包括例如但不限于,在接入设备与用户设备之间的交互过程中接入设备收集的各种信息。此外,上述分配过程也可以基于通信标准中的相应规定来进行。此外,若采用基于上下行信道的互易性根据下行参考信号确定N根 天线的方案,则当用户设备的收发天线数量不相等时,则仅需要使用与用户设备的发射天线数量相等的接收天线数量接收下行参考信号即可。
本发明实施例提供的技术方案有可能需要对天线进行指示,例如但不限于,在第一种方法中通过天线指示信息来指示N根天线,或者在第四种方法中通过天线推荐信息来指示X根天线,通过天线指示信息来指示N根天线。在具体实现过程中,可以采用各种方法来指示天线,本发明实施例对具体方法不做限定。为便于理解,可以采用,例如但不限于,以下描述的方法来指示天线。为便于描述,将上述N根天线或者X根天线等需要指示的天线称为选中的天线。
具体来说,可以通过比特图(bitmap)的方式来指示选中的天线。例如,为M根天线设置对应的比特序列,该比特序列中的每个比特对应M根天线之中的一根天线。该比特取0时,该比特对应的天线未被选中;该比特取1时,该比特对应的天线被选中。
又例如,可以结合系统帧号和DCI的循环冗余校验(Cyclic redundancy check,CRC)扰码来指示选中的天线。其中,可以通过一种CRC扰码指示天线被选中。在这种情况下,可以连续接收M个系统帧,对于每一系统帧,通过上述CRC判断该系统帧对应的天线是否被选中。如此一来,经过M个系统帧,便可确认M根天线中选中的天线。
又例如,可以通过预编码矩阵来指示选中的天线,其中M根天线之中的每根天线通过预编码矩阵中的对应元素来指示,若一元素取值为零,则该元素对应的天线未被选中;若一元素取值不为零,则该元素对应的天线被选中。作为替代的,M根天线之中的每根天线也可以通过预编码矩阵中的对应行或者列来指示,若该行或者列包含非零元素,则该行或者列所对应的天线被选中;若该行或者列不包含非零元素,则该行或者列对应的天线未被选中。举例来说,若通过预编码矩阵的各行来依次指示各天线,则当预编码矩阵为:
Figure PCTCN2018104085-appb-000001
时,表明第一根天线和第三个根天线被选中,第二根天线和第四根天线未被选中,这是因为预编码矩阵的第一行和第三行包含非零元素,第二行和第四行不包含非零元素。同理,当预编码矩阵为:
Figure PCTCN2018104085-appb-000002
时,表明第二根天线和第四根天线被选中,第一根和第三根天线未被选中。又例如,当预编码矩阵为:
Figure PCTCN2018104085-appb-000003
时,表明第一根至第四根天线均被选中。
不难理解,若通过预编码矩阵来指示选中的天线,则天线指示信息和天线推荐信息可 以包含对上述预编码矩阵的指示,例如该预编码矩阵的索引。在这种情况下,可以通过预编码矩阵索引查找对应的预编码矩阵,再基于上述规则确定选中的天线。不难理解,在这种情况下,预编码矩阵索引与选中的天线相对应,因此也可以通过预编码矩阵索引直接确定选中的天线,而无需先查找对应的预编码矩阵,再基于上述规则确定选中的天线。
如果需要指示天线数量,例如在第三种方法中通过天线推荐信息来指示天线数量X,或者通过天线指示信息来天线数量N,也可以采用预编码矩阵的方式进行指示。例如,对于预编码矩阵中的每一行,若该行中包含非零元素,则表明有一根天线被选中。如此一来,计算预编码矩阵中包含非零元素的行的数量,即可确定天线数量。不难理解,也可以采用预编码矩阵中的其他元素形式,来替代上述行,例如采用列,或者将预编码矩阵中的元素划分为若干个元素组,以元素组替代上述行,以实现相同的功能。
类似的,若通过预编码矩阵来指示天线数量,则天线指示信息和天线推荐信息包含对上述预编码矩阵的指示,例如该预编码矩阵的索引。在这种情况下,可以通过预编码矩阵索引查找对应的预编码矩阵,再基于上述规则确定天线数量。不难理解,在这种情况下,预编码矩阵索引与天线数量相对应,因此也可以通过预编码矩阵索引直接确定天线数量,而无需先查找对应的预编码矩阵,再基于上述规则确定天线数量。
若天线指示信息和天线推荐信息中包含预编码矩阵索引,则也可以通过其他方式(例如预编码矩阵索引满足何种预设条件)来确定选中的天线或者天线数量。例如,可以根据预编码矩阵索引所在的范围,确定选中的天线或者天线数量。举例来说,若预编码矩阵索引为介于16和23之间,则选中的天线为第一根天线和第三根天线,天线数量为2。应注意,在确定天线或者天线数量的过程中,除了参考预编码矩阵索引,还可以结合其他信息,例如但不限于数据层数,该数据层数通常由RI指示。
在具体实现过程中,还可以为确定的N根天线,或者天线数量N,设置相应的有效期,换句话说,确定的N根天线,或者天线数量N,对应一个有效期。该有效期的长度可以是,例如但不限于,一个或者多个TTI等。上述有效期可以通过,例如但不限于,生效时间、失效时间、有效期长度之中的至少一种来表明。上述有效期可以在通信协议中预先约定,也可以由接入设备配置给用户设备。例如,接入设备可以向用户设备指示有效期的起止时刻。
此外,还可以为指示的N根天线,或者天线数量N设置生效条件。在具体实现过程中,该生效条件可以是,例如若连续多次指示的N根天线或者天线数量相同,才开始应用该N根天线或者天线数量N。又例如,该生效条件可以是,指示的N根天线或者天线数量在预设时长内保持不变。应理解,上述指示天线和天线数量的各种方案仅用于举例,并非用于限制本发明实施例的范围,本发明实施例对具体指示方法不做限定。
在具体实现过程中,指示的方式有多种,例如但不限于,可以直接指示待指示信息;也可以通过指示其他信息来指示待指示信息,其中该其他信息与待指示信息之间存在关联关系;还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的。具体指示方法可以参考现有技术,例如但不限于现有各种通信协议中规定的指示方法,本发明对此不做限定。此外,待指示信息可以做为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期可以相同,也可以不同。具体发送方法可以参考现有技术,本发明对此不做限定。有鉴于此,本发明实施例提供的技术方案中在用户设备与接 入设备之间传递的各种信息(例如但不限于天线指示信息和天线推荐信息等)中对相关信息(例如但不限于天线或者天线数量)进行指示时所采用的具体方案,均可以参考上述描述。
图3是依照本发明一实施例的用户设备300的示范性逻辑结构示意图。如图3所示,用户设备300包括处理模块302和收发模块304。
处理模块302用于在M根天线中确定N根天线,其中M>0,M≥N>0;
收发模块304用于通过M根天线中的N根天线发送N个上行参考信号,以及接收接入设备基于所述上行参考信号确定的信道状态信息。
在具体实现过程中,所述收发模块304还用于通过所述M根天线发送M个上行参考信号,以及接收接入设备基于所述M个上行参考信号反馈的天线指示信息,其中所述天线指示信息用于指示所述N根天线;所述处理模块302具体用于根据所述天线指示信息确定所述N根天线。
在具体实现过程中,所述收发模块304还用于通过所述M根天线接收所述接入设备发射的下行参考信号;所述处理模块302具体用于基于所述下行参考信号确定所述N根天线。
在具体实现过程中,所述收发模块304还用于通过所述M根天线接收所述接入设备发射的下行参考信号;所述处理模块302具体用于基于所述下行参考信号确定X根天线,其中M≥X≥N>0;所述收发模块304还用于向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的天线的数量X,以及接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示天线数量N;所述处理模块302还用于基于所述天线指示信息在所述X根天线中确定所述N根天线。
在具体实现过程,所述收发模块304还用于通过所述M根天线接收所述接入设备发射的下行参考信号;所述处理模块302具体用于基于所述下行参考信号确定X根天线,其中M≥X≥N;所述收发模块304还用于向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的X根天线,以及接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示N根天线;所述处理模块302还用于基于所述天线指示信息确定所述N根天线。
在具体实现过程中,所述处理模块302还用于判断是否满足预设条件;所述收发模块304还用于在处理模块判定满足预设条件时向所述接入设备发送天线推荐信息。
在具体实现过程中,接收来自接入设备的配置信息,所述配置信息用于配置所述预设条件。
在具体实现过程中,所述天线推荐信息具体用于指示所述数量X相对于当前天线数量之间的差值。
在具体实现过程中,所述天线指示信息具体用于指示所述天线数量N相对于当前天线数量之间的差值。
用户设备300用于执行上述信道测量方法200,相关技术内容已经在上文结合方法200进行了详细描述,因此此处不再赘述。
图4是依照本发明一实施例的用户设备400的示范性硬件结构示意图。如图4所示,用户设备400包括处理器402、收发器404、多根天线406,存储器408、I/O(输入/输出, Input/Output)接口410和总线412。存储器408进一步用于存储指令4082和数据4084。此外,处理器402、收发器404、存储器408和I/O接口410通过总线412彼此通信连接,多根天线406与收发器404相连。在具体实现过程中,处理器402、收发器404、存储器408和I/O接口410也可以采用总线412之外的其他连接方式彼此通信连接。
处理器402可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器402还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器402可以用于执行上述处理模块302所执行的操作。处理器402可以是专门设计用于执行上述操作的处理器,也可以是通过读取并执行存储器408中存储的指令4082来执行上述操作的处理器,处理器402在执行上述操作的过程中可能需要用到数据4084。
收发器404用于通过多根天线406之中的至少一根天线发送信号,以及通过多根天线406之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,收发器404具体可以用于通过多根天线406之中的至少一根天线执行上述收发模块304所执行的操作。
存储器408可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器408具体用于存储指令4082和数据4084,处理器402可以通过读取并执行存储器408中存储的指令4082,来执行上述操作,在执行上述操作的过程中可能需要用到数据4084。
I/O接口410用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,用户设备400还可以包括其他硬件器件,本文不再一一列举。
图5是依照本发明一实施例的接入设备500的示范性逻辑结构示意图。如图5所示,接入设备500包括处理模块502和收发模块504。
在第一种方案中:
收发模块504用于接收用户设备通过M根天线发送的M个上行参考信号;
处理模块502用于基于M个上行参考信号确定N根天线,其中M≥N>0;
所述收发模块504还用于反馈天线指示信息,其中所述天线指示信息用于指示N根天线。
在第二种方案中:
收发模块504用于发射下行参考信号,以及接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的天线的数量X;
处理模块502用于基于所述天线推荐信息确定天线数量N;
所述收发模块504还用于反馈天线指示信息,其中所述天线指示信息用于指示天线数 量N,以便所述用户设备在所述X根天线中确定N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
在第三种方案中:
收发模块504用于发射下行参考信号,以及接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的X根天线;
处理模块502用于基于所述天线推荐信息确定N根天线;
所述收发模块504还用于反馈天线指示信息,其中所述天线指示信息用于指示N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
图6是依照本发明一实施例的接入设备600的示范性硬件结构示意图。如图6所示,接入设备600包括处理器602、收发器604、多根天线606,存储器608、I/O(输入/输出,Input/Output)接口610和总线612。存储器608进一步用于存储指令6082和数据6084。此外,处理器602、收发器604、存储器608和I/O接口610通过总线612彼此通信连接,多根天线606与收发器604相连。在具体实现过程中,处理器602、收发器604、存储器608和I/O接口610也可以采用总线612之外的其他连接方式彼此通信连接。
处理器602可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器602还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器602可以用于执行上述处理模块502所执行的操作。处理器602可以是专门设计用于执行上述操作的处理器,也可以是通过读取并执行存储器608中存储的指令6082来执行上述操作的处理器,处理器602在执行上述操作的过程中可能需要用到数据6084。
收发器604用于通过多根天线606之中的至少一根天线发送信号,以及通过多根天线606之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,收发器604具体可以用于通过多根天线606之中的至少一根天线执行上述收发模块504所执行的操作。
存储器608可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器608具体用于存储指令6082和数据6084,处理器602可以通过读取并执行存储器608中存储的指令6082,来执行上述操作,在执行上述操作的过程中可能需要用到数据6084。
I/O接口610用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,接入设备600还可以包括其他硬件器件,本文不再一一列举。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产 品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上所述,以上仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (24)

  1. 一种信道测量方法,其特征在于,包括:
    在M根天线中确定N根天线,其中M>0,M≥N>0;
    通过M根天线中的N根天线发送N个上行参考信号,以及接收接入设备基于所述上行参考信号确定的信道状态信息。
  2. 如权利要求1所述的方法,其特征在于,所述在M根天线中确定N根天线包括:
    通过所述M根天线发送M个上行参考信号;
    接收接入设备基于所述M个上行参考信号反馈的天线指示信息,其中所述天线指示信息用于指示所述N根天线;
    根据所述天线指示信息确定所述N根天线。
  3. 如权利要求1所述的方法,其特征在于,所述在M根天线中确定N根天线包括:
    通过所述M根天线接收所述接入设备发射的下行参考信号;
    基于所述下行参考信号确定所述N根天线。
  4. 如权利要求1所述的方法,其特征在于,所述在M根天线中确定N根天线包括:
    通过所述M根天线接收所述接入设备发射的下行参考信号;
    基于所述下行参考信号确定X根天线,其中M≥X≥N;
    向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的天线的数量X;
    接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示天线数量N;
    基于所述天线指示信息在所述X根天线中确定所述N根天线。
  5. 如权利要求1所述的方法,其特征在于,所述在M根天线中确定N根天线包括:
    通过所述M根天线接收所述接入设备发射的下行参考信号;
    基于所述下行参考信号确定X根天线,其中M≥X≥N;
    向所述接入设备发送天线推荐信息,其中所述天线推荐信息用于指示所确定的X根天线;
    接收接入设备基于所述天线推荐信息反馈的天线指示信息,其中所述天线指示信息用于指示N根天线;
    基于所述天线指示信息确定所述N根天线。
  6. 如权利要求4或者5所述的方法,其特征在于,所述向所述接入设备发送天线推荐信息包括,在判定满足预设条件时,向所述接入设备发送天线推荐信息。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    接收来自接入设备的配置信息,所述配置信息用于配置所述预设条件。
  8. 如权利要求4、6或者7中任一项所述的方法,其特征在于,所述天线推荐信息具体用于指示所述数量X相对于当前天线数量之间的差值。
  9. 如权利要求4、6或者7中任一项所述的方法,其特征在于,所述天线指示信息具体用于指示所述天线数量N相对于当前天线数量之间的差值。
  10. 一种用户设备,其特征在于,包括:
    处理模块,用于在M根天线中确定N根天线,其中M>0,M≥N>0;
    收发模块,用于通过M根天线中的N根天线发送N个上行参考信号,以及接收接入设备基于所述上行参考信号确定的信道状态信息。
  11. 一种用户设备,其特征在于,包括:
    处理模块,用于在M根天线中确定N根天线,其中M>0,M≥N>0;
    收发模块,用于通过M根天线中的N根天线发送N个上行参考信号,以及接收接入设备基于所述上行参考信号确定的信道状态信息。
  12. 一种用户设备,其特征在于,包括:
    处理器,用于在M根天线中确定N根天线,其中M>0,M≥N>0;
    收发器,用于通过M根天线中的N根天线发送N个上行参考信号,以及接收接入设备基于所述上行参考信号确定的信道状态信息。
  13. 一种天线反馈方法,其特征在于,包括:
    接收用户设备通过M根天线发送的M个上行参考信号;
    基于M个上行参考信号确定N根天线,其中M≥N>0;
    反馈天线指示信息,其中所述天线指示信息用于指示N根天线。
  14. 一种天线反馈方法,其特征在于,包括:
    发射下行参考信号;
    接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的天线的数量X;
    基于所述天线推荐信息确定天线数量N;
    反馈天线指示信息,其中所述天线指示信息用于指示天线数量N,以便所述用户设备在所述X根天线中确定N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
  15. 一种天线反馈方法,其特征在于,包括:
    发射下行参考信号;
    接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的X根天线;
    基于所述天线推荐信息确定N根天线;
    反馈天线指示信息,其中所述天线指示信息用于指示N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
  16. 一种接入设备,其特征在于,包括:
    收发模块,用于接收用户设备通过M根天线发送的M个上行参考信号;
    处理模块,用于基于M个上行参考信号确定N根天线,其中M≥N>0;
    所述收发模块还用于反馈天线指示信息,其中所述天线指示信息用于指示N根天线。
  17. 一种接入设备,其特征在于,包括:
    收发模块,用于发射下行参考信号,以及接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的天线的数量X;
    处理模块,用于基于所述天线推荐信息确定天线数量N;
    所述收发模块还用于反馈天线指示信息,其中所述天线指示信息用于指示天线数量N,以便所述用户设备在所述X根天线中确定N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
  18. 一种接入设备,其特征在于,包括:
    收发模块,用于发射下行参考信号,以及接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的X根天线;
    处理模块,用于基于所述天线推荐信息确定N根天线;
    所述收发模块还用于反馈天线指示信息,其中所述天线指示信息用于指示N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
  19. 一种接入设备,其特征在于,包括:
    收发器,用于接收用户设备通过M根天线发送的M个上行参考信号;
    处理器,用于基于M个上行参考信号确定N根天线,其中M≥N>0;
    所述收发器还用于反馈天线指示信息,其中所述天线指示信息用于指示N根天线。
  20. 一种接入设备,其特征在于,包括:
    收发器,用于发射下行参考信号,以及接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的天线的数量X;
    处理器,用于基于所述天线推荐信息确定天线数量N;
    所述收发器还用于反馈天线指示信息,其中所述天线指示信息用于指示天线数量N,以便所述用户设备在所述X根天线中确定N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
  21. 一种接入设备,其特征在于,包括:
    收发器,用于发射下行参考信号,以及接收来自用户设备的天线推荐信息,其中所述天线推荐信息用于指示用户设备基于所述下行参考信号确定的X根天线;
    处理器,用于基于所述天线推荐信息确定N根天线;
    所述收发器还用于反馈天线指示信息,其中所述天线指示信息用于指示N根天线,其中,所述用户设备配置有M根天线,且M≥X≥N>0。
  22. 一种处理器,其特征在于,所述处理器用于执行上述各种方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行上述各种方法。
  24. 一种包含指令的计算机程序产品,其特征在于,当该计算机程序产品在计算机上运行时,使得计算机执行上述各种方法。
PCT/CN2018/104085 2017-11-01 2018-09-05 一种信道测量方法和用户设备 WO2019085637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711058952.9 2017-11-01
CN201711058952.9A CN109756255B (zh) 2017-11-01 2017-11-01 一种信道测量方法和用户设备

Publications (1)

Publication Number Publication Date
WO2019085637A1 true WO2019085637A1 (zh) 2019-05-09

Family

ID=66332769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104085 WO2019085637A1 (zh) 2017-11-01 2018-09-05 一种信道测量方法和用户设备

Country Status (2)

Country Link
CN (1) CN109756255B (zh)
WO (1) WO2019085637A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910525B (zh) * 2019-12-03 2022-06-21 深圳市万普拉斯科技有限公司 移动终端的天线切换方法、装置和移动终端
WO2021226928A1 (en) * 2020-05-14 2021-11-18 Nokia Shanghai Bell Co., Ltd. Enhanced csi feedback in ntn with long propagation delay

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统
CN105308879A (zh) * 2013-06-25 2016-02-03 Lg电子株式会社 用于在无线通信系统中执行基于部分天线阵列的波束形成的方法及其装置
WO2016045116A1 (en) * 2014-09-28 2016-03-31 Qualcomm Incorporated Apparatus and method for full-dimensional mimo with one-dimensional csi feedback
CN105934904A (zh) * 2014-01-22 2016-09-07 日本电气株式会社 用于信道测量和反馈的方法和装置
CN107294880A (zh) * 2016-03-31 2017-10-24 上海贝尔股份有限公司 用于确定信道信息的方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7783293B2 (en) * 2006-04-26 2010-08-24 Beceem Communications Inc. Method of training a communication system
US8086272B2 (en) * 2007-08-06 2011-12-27 Mitsubishi Electric Research Laboratories, Inc. Wireless networks incorporating antenna selection based on received sounding reference signals
US8046029B2 (en) * 2007-08-14 2011-10-25 Mitsubishi Electric Research Laboratories, Inc. Method for selecting antennas in a wireless networks
US9654187B2 (en) * 2009-04-24 2017-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Efficient uplink transmission of channel state information
CN101540631B (zh) * 2009-04-27 2014-03-12 中兴通讯股份有限公司 测量参考信号的多天线发送方法及装置
CN105099632B (zh) * 2014-04-23 2019-12-13 北京三星通信技术研究有限公司 一种上行探测参考信号传输的方法和设备
CN106658540B (zh) * 2015-10-28 2021-07-09 索尼公司 无线通信系统中的装置和方法
CN107294588B (zh) * 2016-04-11 2020-06-02 华为技术有限公司 通信设备、参考信号发送方法和信道估计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统
CN105308879A (zh) * 2013-06-25 2016-02-03 Lg电子株式会社 用于在无线通信系统中执行基于部分天线阵列的波束形成的方法及其装置
CN105934904A (zh) * 2014-01-22 2016-09-07 日本电气株式会社 用于信道测量和反馈的方法和装置
WO2016045116A1 (en) * 2014-09-28 2016-03-31 Qualcomm Incorporated Apparatus and method for full-dimensional mimo with one-dimensional csi feedback
CN107294880A (zh) * 2016-03-31 2017-10-24 上海贝尔股份有限公司 用于确定信道信息的方法和设备

Also Published As

Publication number Publication date
CN109756255B (zh) 2022-04-05
CN109756255A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
US11239950B2 (en) Method for configuring channel state information reporting band and communications apparatus
CN110474668B (zh) 指示无线信道状态的系统和方法
JP6850308B2 (ja) 新しい無線のためのアップロード制御シグナリング
CN110831198B (zh) 带宽资源切换方法、指示带宽资源切换方法、终端和网络设备
US10511411B2 (en) Method for configuring channel state information reporting band and communications apparatus
US11445396B2 (en) Channel measurement method and apparatus
WO2020030020A1 (zh) 带宽资源切换方法、指示带宽资源切换方法、终端和网络设备
CN108650711B (zh) 信道测量方法和用户设备
US11290906B2 (en) Channel measurement method
WO2019085637A1 (zh) 一种信道测量方法和用户设备
US20200280963A1 (en) User equipment and access device
US20200128547A1 (en) Frequency Band Indication Method, Frequency Band Determining Method, Transmit End Device, And Receive End Device
CN110574415B (zh) 信道测量方法和用户设备
WO2019105215A1 (zh) 传输指示方法、设备及系统、存储介质
WO2019095970A1 (zh) 一种用户设备、接入设备和预编码方法
CN109802786B (zh) 一种用户设备和信道测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873757

Country of ref document: EP

Kind code of ref document: A1