WO2019127199A1 - 用于上行数据传输的方法和终端设备 - Google Patents

用于上行数据传输的方法和终端设备 Download PDF

Info

Publication number
WO2019127199A1
WO2019127199A1 PCT/CN2017/119323 CN2017119323W WO2019127199A1 WO 2019127199 A1 WO2019127199 A1 WO 2019127199A1 CN 2017119323 W CN2017119323 W CN 2017119323W WO 2019127199 A1 WO2019127199 A1 WO 2019127199A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal resource
data transmission
determining
uplink data
Prior art date
Application number
PCT/CN2017/119323
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to AU2017445393A priority Critical patent/AU2017445393A1/en
Priority to KR1020207021866A priority patent/KR20200104378A/ko
Priority to PCT/CN2017/119323 priority patent/WO2019127199A1/zh
Priority to CN201780097891.9A priority patent/CN111512582A/zh
Priority to JP2020535164A priority patent/JP2021513757A/ja
Priority to EP17936657.0A priority patent/EP3731446B1/en
Publication of WO2019127199A1 publication Critical patent/WO2019127199A1/zh
Priority to US16/911,372 priority patent/US11412531B2/en
Priority to US17/813,491 priority patent/US11849446B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of communications, and in particular, to a method and a terminal device for uplink data transmission.
  • a terminal device can use multiple antenna array panels for uplink data transmission.
  • a panel includes a set of physical antennas, and each panel has an independent RF channel.
  • the terminal device can transmit data on multiple panels at the same time.
  • different panels need to adopt different transmission parameters according to respective channel information. For example, different panels may have different beams and pre-preparations. Encoding and transmission power, etc.
  • SRS sounding reference signal
  • the present application provides a method and a terminal device for uplink data transmission, which can flexibly configure transmission parameters and improve data transmission efficiency.
  • the first aspect provides a method for uplink data transmission, where the method includes: receiving, by a network device, first downlink control information (DCI) for scheduling a first uplink data transmission, where The first DCI includes first reference signal resource set indication information and first reference signal resource indication information; and determining, according to the first reference signal resource set indication information, the first reference signal resource set, where the first reference signal resource set includes At least one reference signal resource; determining, according to the first reference signal resource indication information, at least one first reference signal resource in the first reference signal resource set; determining, according to the at least one first reference signal resource, the The transmission parameters used by the first uplink data transmission.
  • DCI downlink control information
  • the terminal device receives the DCI sent by the network device, and uses different DCIs to schedule uplink transmissions corresponding to different panels, and determines corresponding groups according to different resource sets indicated by different DCIs.
  • the uplink channel information can enable multiple panels to transmit data by using independent transmission parameters, thereby improving the flexibility of multi-panel transmission and uplink spectrum efficiency.
  • first reference signal resource set indication information and the first reference signal resource indication information may be independently coded, or may be jointly coded.
  • the method further includes: receiving first configuration information that is sent by the network device, where the first configuration information is used to indicate a plurality of reference signal resource sets; Determining, according to the first reference signal resource set indication information, the first reference signal resource set, including: determining, according to the first reference signal resource set indication information, the first reference signal resource set A reference signal resource set.
  • the multiple reference signal resource sets are used for reference signal transmission on multiple antenna array blocks.
  • the method before the receiving the first configuration information sent by the network device, the method further includes: sending, to the network device The antenna array block number information, the antenna array block number information is used to indicate the number of antenna array blocks of the terminal device, and the antenna array block number information is used by the network device to determine the multiple reference signal resources The number of collections.
  • the multiple reference signal resource sets are in one-to-one correspondence with a plurality of phase tracking reference signal (PTRS) ports.
  • PTRS phase tracking reference signal
  • the method further includes: according to a correspondence between the multiple reference signal resource sets and the multiple PTRS ports, Determining, by the first PTRS port, the first PTRS port corresponding to the first reference signal resource set; and transmitting the uplink PTRS by using the first PTRS port on the physical resource used by the first uplink data transmission.
  • the network device configures different PTRS ports for different reference signal resource sets corresponding to different panels, so that the phase change of the corresponding panel can be tracked.
  • the method further includes: performing, according to the multiple reference signal resource sets, a plurality of physical uplink shared channels (physical uplink shared channels, The corresponding relationship between the power control parameter groups of the PUSCH is determined, and the first PUSCH power control parameter group corresponding to the first reference signal resource set is determined.
  • the method further includes: according to the first reference signal resource indication information, in the first PUSCH power control parameter group Determining a power control parameter used by the PUSCH transmission indicated by the first DCI.
  • the network device can configure different power control parameter groups for different panels, so that signals transmitted on different panels can be independently controlled for power.
  • the first reference signal resource indication information includes an index of the at least one first reference signal resource.
  • the first reference signal resource indication information includes a bitmap of the first reference signal resource set, where The bits are in one-to-one correspondence with reference signal resources in the first set of reference signal resources.
  • the transmission parameter used by the first uplink data transmission includes: a precoding matrix, a number of transmission layers, an antenna port number, and a sending At least one of a beam, a power control parameter, and an antenna array block.
  • the at least one first reference signal resource is a sounding reference signal SRS resource
  • the at least one first reference signal resource is Determining the transmission parameters used by the first uplink data transmission, including: determining an antenna port number of the SRS resource and a first precoding matrix indicator (PMI) information; and determining, according to the number of antenna ports, PMI information, and And determining, by the correspondence between the coding matrices, a precoding matrix corresponding to the number of antenna ports of the SRS resource and the first PMI information, and the precoding matrix used by the first uplink data transmission.
  • PMI precoding matrix indicator
  • the first DCI includes the first PMI information.
  • the precoding matrix used in the first uplink data transmission of the first DCI scheduling is obtained according to the method, so that data transmission on different panels can adopt an independent precoding matrix, thereby increasing flexibility of uplink scheduling.
  • the at least one first reference signal resource is an SRS resource
  • the determining, according to the at least one first reference signal resource, The transmission parameter used by the first uplink data transmission includes: determining a total antenna port number of the at least one SRS resource and/or a number of the at least one SRS resource as a transport layer of the first uplink data transmission number.
  • the at least one first reference signal resource is an SRS resource
  • the determining, according to the at least one first reference signal resource, The transmission parameter used by the first uplink data transmission includes: precoding a precoding matrix used for transmitting the SRS in the SRS resource, and determining the precoding matrix used for the first uplink data transmission.
  • the at least one first reference signal resource is K SRS resources, and K is equal to the data transmission corresponding to the first uplink data transmission.
  • the number of layers of the layer, the precoding matrix used for transmitting the SRS in the SRS resource, and the precoding matrix used for the first uplink data transmission including: determining K used by the K SRS resources a precoding matrix; the K precoding matrices are determined as K precoding matrices of the data transmission layer, and the K precoding matrices are in one-to-one correspondence with the K data transmission layers.
  • the uplink transmission corresponding to different SRS resources may adopt the same precoding matrix as that on the SRS resource, so as to match the channel information of the panel transmitting the corresponding data.
  • the at least one first reference signal resource is at least one SRS resource, and according to the at least one first reference signal resource, Determining the transmission parameter used by the first uplink data transmission, including: determining, by using the total number of antenna ports of the at least one SRS resource, and/or the number of the at least one SRS resource, by using the first uplink data transmission Number of antenna ports.
  • the terminal device may use the number of antenna ports of the one SRS resource as the number of antenna ports used by the first uplink data transmission.
  • the terminal device may determine the number of the multiple SRS resources as the first uplink data transmission. The number of antenna ports.
  • the number of antenna ports for uplink data transmission is obtained by the method, so that data transmission on different panels can adopt independent antenna port numbers, thereby improving the flexibility of uplink multi-panel scheduling.
  • the at least one first reference signal resource is a channel state information reference signal (CSI-RS) resource
  • Determining, according to the at least one first reference signal resource, the transmission parameter used by the first uplink data transmission including: determining, according to the CSI-RS on the CSI-RS resource, corresponding downlink channel information; The downlink channel information is determined as uplink channel information; and the transmit beam and/or the precoding matrix used by the first uplink data transmission is determined according to the uplink channel information.
  • CSI-RS channel state information reference signal
  • the network device can configure different CSI-RS resources for data transmission on different panels, thereby obtaining uplink channel information, so that the obtained channel information is more accurate.
  • the determining, according to the at least one first reference signal resource, the transmission parameter used by the first uplink data transmission includes: A beam that receives or transmits a reference signal in the at least one first reference signal resource is determined to be a beam used by the first uplink data transmission.
  • the at least one first reference signal resource is an SRS resource
  • the terminal device determines a beam used for transmitting the SRS on the SRS resource as a transmit beam of the first uplink data transmission.
  • the at least one first reference signal resource is a CSI-RS resource
  • the terminal device determines a beam used for receiving the CSI-RS on the CSI-RS resource, and is determined as a receive beam of the first uplink data transmission.
  • the at least one first reference signal resource is K SRS resources, and K is equal to the data transmission corresponding to the first uplink data transmission.
  • the number of layers of the layer; the beam that receives or transmits the reference signal in the at least one first reference signal resource is determined to be the beam used by the first uplink data transmission, including: determining to send the K SRS resources
  • the K transmit beams used by the SRS resources in the medium; the K transmit beams are used as the transmit beams of the K data transmission layers, and the K transmit beams are in one-to-one correspondence with the K data transmission layers.
  • the uplink transmission corresponding to different reference signal resources may use different beams to match the channel information of the panel transmitting the corresponding data.
  • the determining, according to the at least one first reference signal resource, the transmission parameter used by the first uplink data transmission includes: And determining, according to a correspondence between the reference signal resource and the power control parameter, a power control parameter corresponding to the at least one first reference signal resource as a transmit power used by the first uplink data transmission.
  • the method further includes: using the first reference according to a correspondence between the reference signal resource indication information and the power control parameter
  • the power control parameter corresponding to the signal resource indication information is determined as the transmission power used by the first uplink data transmission.
  • the power control parameter includes at least one of an open loop power control parameter, a closed loop power control parameter, and a path loss estimation value.
  • the uplink transmission corresponding to different reference signal resources may use different transmission powers to match the channel gain of the beam or panel transmitting the corresponding data.
  • the determining, according to the at least one first reference signal resource, the transmission parameter used by the first uplink data transmission includes: An antenna array block that receives or transmits a reference signal in the at least one first reference signal resource is determined to be an antenna array block used for the first uplink data transmission.
  • the at least one first reference signal resource is an SRS resource
  • the panel used by the terminal device to send the SRS on the SRS resource is determined to be a panel for transmitting the first uplink data.
  • the at least one first reference signal resource is a CSI-RS resource
  • the panel used by the terminal device to receive the CSI-RS on the CSI-RS resource is determined to be a panel for transmitting the first uplink data.
  • the uplink transmission corresponding to different reference signal resources may adopt different panels, so that data may be transmitted on a better panel according to the reference signal, or the plurality of panels of the terminal may be fully utilized to simultaneously transmit data, thereby improving uplink transmission performance.
  • the method further includes: receiving the second DCI sent by the network device while receiving the first DCI.
  • the terminal can simultaneously detect at least two DCIs and separately schedule data transmission on different panels, thereby supporting different panels to perform uplink transmission at the same time, thereby improving spectrum efficiency of uplink transmission.
  • Receiving the second DCI while receiving the first DCI may include: the terminal device receiving the first DCI and the second DCI in the same time slot, or the terminal device is in the same orthogonal frequency division multiplexing (OFDM) The first DCI and the second DCI are received in the symbol, or the terminal device detects the first DCI and the second DCI in the same control channel.
  • OFDM orthogonal frequency division multiplexing
  • the second DCI includes second reference signal resource set indication information
  • the method further includes: according to the second reference signal The resource set indication information determines a second reference signal resource set, where the second reference signal resource set is different from the first reference signal resource set.
  • the first uplink data transmission of the first DCI scheduling and the second uplink data transmission of the second DCI scheduling are used.
  • Different Demodulation Reference Signal (DMRS) ports are used.
  • the terminal device receives multiple DCIs sent by the network device, and different DCIs are used to schedule uplink transmissions on different panels, and determine different resource sets according to different DCIs.
  • the uplink channel information of the corresponding panel can enable multiple panels to transmit data by using independent transmission parameters, thereby improving the flexibility of multi-panel transmission and uplink spectrum efficiency.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a terminal device comprising: a storage unit for storing instructions for executing instructions stored in the memory, and a processor, and when the processor executes the instructions stored by the memory The execution causes the processor to perform the method of the first aspect or any possible implementation of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer program product comprising instructions for performing the above-described first aspect or any of the possible implementations of the first aspect when the computer runs the finger of the computer program product The method of uplink data transmission.
  • the computer program product can be run on the terminal device of the second aspect described above.
  • FIG. 1 is a schematic flowchart of a method for uplink data transmission according to an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 3 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • GSMC global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE Time Division Duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future fifth generation
  • 5G fifth generation
  • NR new radio
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a base transceiver station (BTS) in a GSMC system or a CDMA system, or a base station (NodeB in a WCDMA system. NB), which may also be an evolved base station (evolutional NodeB, eNB or eNodeB) in the LTE system, or a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may
  • the embodiment of the present application is not limited to a relay station, an access point, an in-vehicle device, a wearable device, a network device in a future 5G network, or a network device in a future evolved PLMN network.
  • FIG. 1 shows a schematic flow diagram of a method 100 for uplink data transmission, which may be performed by a terminal device, in accordance with an embodiment of the present application.
  • the method 100 includes: S110, receiving, by a network device, a first DCI, configured to schedule a first uplink data transmission, where the first DCI includes first reference signal resource set indication information and first reference signal resources.
  • Instructing information S120, determining, according to the first reference signal resource set indication information, a first reference signal resource set, where the first reference signal resource set includes at least one reference signal resource; S130, according to the first reference signal resource indication information, Determining at least one first reference signal resource in the first reference signal resource set; S140, determining, according to the at least one first reference signal resource, a transmission parameter used by the first uplink data transmission.
  • the reference signal resource set in the embodiment of the present application may include at least one reference signal resource, and each reference signal resource set is used for the same function, but different sets may have different functions.
  • Different reference signal resources in the same reference signal resource set have at least one identical parameter.
  • the same parameter may be at least one of the following parameters: power control parameter, transmission bandwidth parameter, number of antenna ports, in one time slot. The number of Orthogonal Frequency Division Multiplexing (OFDM) symbols occupied, the number of signal repetitions in one time slot, the functional configuration, and the transmission time slot, but the embodiment of the present application is not limited thereto.
  • the network side may configure the same parameter for each reference signal resource set, and does not need to separately configure these parameters for each reference signal resource in the set, thereby saving signaling overhead.
  • the reference signal resource set in the embodiment of the present application may be an SRS resource set, where the SRS resource set includes at least one SRS resource, where the SRS resource is used to transmit the SRS; or the reference signal resource set may also be a CSI-RS.
  • the resource set, the CSI-RS resource set may include at least one CSI-RS resource, where the CSI-RS resource is used to transmit the CSI-RS, but the embodiment of the present application is not limited thereto.
  • the terminal device receives the first DCI sent by the network device, where the first DCI may be used to schedule the first uplink data transmission, where the first DCI may include the first reference signal resource set indication information.
  • the first reference signal resource indication information where the first reference signal resource set indication information and the first reference signal resource indication information may be independently coded or jointly coded, and the embodiment of the present application is not limited thereto.
  • the method 100 may further include: the terminal device receiving the first configuration information sent by the network device, where the first The configuration information is used to indicate a plurality of reference signal resource sets.
  • the determining, by the terminal device, the first reference signal resource set according to the first reference signal resource set indication information may include: determining, according to the first reference signal resource set indication information, the plurality of reference signal resource sets A first set of reference signal resources.
  • the terminal device in the embodiment of the present application may have one or more antenna array panels for uplink data transmission, and each panel has an independent radio frequency channel.
  • the plurality of reference signal resource sets can be used for reference signal transmission on multiple antenna array blocks, wherein different sets of reference signal resources can be used for transmission of reference signals on different panels.
  • the network device may configure a corresponding quantity of the multiple reference signal resource sets according to the number of the panels in the terminal device.
  • the terminal device may send the panel number information to the network device, where the number of the panel information is used to indicate the number of the panel of the terminal device, so that the network device receives the number of the panel number, and according to the number of the panel, And determining, by the information, the number of the plurality of reference signal resource sets equal to the number of the panels, and transmitting the first configuration information to the terminal device, where the first configuration information indicates the multiple reference signal resource sets.
  • the terminal device has a plurality of reference signal resource sets corresponding to the plurality of panels in one-to-one correspondence, that is, the first reference signal resource set indicated by the terminal device according to the first reference signal resource set indication information in the first DCI has a corresponding panel transmission.
  • the network device can obtain the uplink channel information of different panels, and then schedule the data transmission on the panel.
  • the multiple reference signal resource sets may also be in one-to-one correspondence with multiple PTRS ports, that is, different reference signal resource sets correspond to different PTRS ports.
  • the terminal device may determine, according to the correspondence between the plurality of reference signal resource sets and the plurality of PTRS ports, the first PTRS port corresponding to the first reference signal resource set; and use the first uplink data transmission On the physical resource, the uplink PTRS is transmitted through the first PTRS port.
  • the multiple PTRS ports that are in one-to-one correspondence with the multiple reference signal resource sets may be configured by the network device for the terminal device by using downlink signaling.
  • the network device can configure different PTRS ports for different reference signal resource sets corresponding to different panels, thereby tracking the phase change of the corresponding panel.
  • different reference signal resource sets in the multiple reference signal resource sets correspond to different PUSCH power control parameters.
  • the terminal device may determine, according to the correspondence between the multiple reference signal resource sets and the PUSCH power control parameter group, the first PUSCH power control parameter group corresponding to the first reference signal resource set.
  • the terminal device may further determine, according to the first reference signal resource indication information, a power control parameter used by the PUSCH transmission indicated by the first DCI in the first PUSCH power control parameter group.
  • the network device can configure different power control parameter groups for different panels, so that signals transmitted on different panels can be independently controlled for power.
  • the terminal device determines, according to the first reference signal resource indication information, a first reference signal resource in the first reference signal resource set.
  • the first reference signal resource indication information may include an index of at least one first reference signal resource, or.
  • the first reference signal resource indication information may further include a bitmap of the first reference signal resource set.
  • the first reference signal resource indication information may include an index of the first reference signal resource.
  • the terminal device determines an index of each reference signal resource in the first reference signal resource set, and determines a corresponding first reference signal resource according to an index included in the first reference signal resource indication information.
  • the first reference signal resource indication information may include a bitmap, the bitmap and a reference in the first reference signal resource set Signal resources correspond one-to-one.
  • the terminal device determines that the first reference signal resource set includes N reference signal resources, and the length of the bitmap in the first reference signal resource indication information is equal to one of the reference signal resources in the first reference signal resource set.
  • the number N by the bitmap, may indicate that the M reference signal resources of the N reference signal resources are at least one first reference signal resource indicated by the first reference signal resource indication information, where N and M are positive integers, M Less than or equal to N.
  • the signal resource is at least one first reference signal resource indicated by the bitmap.
  • the terminal device determines, according to the at least one first reference signal resource, a transmission parameter used by the first uplink data transmission, where the transmission parameter used by the first uplink data transmission includes: a precoding matrix, a transmission layer number, At least one of an antenna port number, a transmit beam, a power control parameter, and an antenna array block.
  • the terminal device may determine the first uplink data according to the correspondence between the number of antenna ports, the PMI information, and the precoding matrix.
  • the precoding matrix used for transmission Specifically, the terminal device determines the number of the antenna ports of the at least one SRS resource and the first PMI information, and the number of the antenna ports of the at least one SRS resource according to the correspondence between the number of the antenna ports, the PMI information, and the precoding matrix.
  • a precoding matrix corresponding to a PMI information is used as a precoding matrix for the first uplink data transmission.
  • the first DCI sent by the terminal device to receive the network device may include the first PMI information.
  • the correspondence between the number of antenna ports, the PMI information, and the precoding matrix may be pre-agreed.
  • the number of antenna ports of the at least one SRS resource is equal to the number of antenna ports included in the panel transmitting the SRS.
  • the precoding matrix used in the first uplink data transmission of the first DCI scheduling is obtained according to the method, so that data transmission on different panels can adopt an independent precoding matrix, thereby increasing flexibility of uplink scheduling.
  • the terminal device may use the total antenna port number of the at least one SRS resource and/or the number of the at least one SRS resource, Determine the number of transmission layers for the first uplink data transmission. For example, if the at least one SRS resource includes K SRS resources, the number of transmission layers of the first uplink data transmission is K.
  • the terminal device may determine, by using the precoding matrix used for transmitting the SRS in the SRS resource, to use the first uplink data transmission. Precoding matrix.
  • the terminal device determines K precoding matrices used by the K SRS resources;
  • the K precoding matrices are respectively determined as K precoding matrices of the data transmission layer, and the K precoding matrices are in one-to-one correspondence with the K data transmission layers, that is, one precoding matrix corresponds to one data transmission layer.
  • the uplink transmission corresponding to different SRS resources may adopt the same precoding matrix as that on the SRS resource, so as to match the channel information of the panel transmitting the corresponding data.
  • the terminal device determines the total antenna port number of the at least one SRS resource and/or the number of the at least one SRS resource as The number of antenna ports used for the first uplink data transmission.
  • the terminal device may use the number of antenna ports of the one SRS resource as the number of antenna ports used by the first uplink data transmission.
  • the terminal device may determine the number of the multiple SRS resources as the first uplink data transmission. The number of antenna ports.
  • the terminal device may further determine a corresponding codebook based on the number of antenna ports used by the first uplink data transmission; and for non-codebook-based transmission, the terminal device may determine, according to the number of the antenna ports. The number of transmission layers corresponding to the uplink data.
  • the number of antenna ports for uplink data transmission is obtained by the method, so that data transmission on different panels can adopt independent antenna port numbers, thereby improving the flexibility of uplink multi-panel scheduling.
  • the terminal device may determine, according to the CSI-RS on the CSI-RS resource, corresponding downlink channel information; The information is determined as uplink channel information; and according to the uplink channel information, a transmit beam and/or a precoding matrix used by the first uplink data transmission is determined.
  • the terminal device determines the corresponding downlink channel information according to the CSI-RS on the CSI-RS resource; and based on the channel reciprocity, the terminal device uses the downlink channel information as the uplink channel information, and further, according to the uplink channel information, A transmit beam and/or a precoding matrix used for the first uplink data transmission is determined.
  • the network device can configure different CSI-RS resources for data transmission on different panels, thereby obtaining uplink channel information, so that the obtained channel information is more accurate.
  • the terminal device may determine, as a beam used by the first uplink data transmission, a beam that receives or transmits a reference signal in the at least one first reference signal resource.
  • the at least one first reference signal resource is an SRS resource
  • the terminal device determines a beam used for transmitting the SRS on the SRS resource as a transmit beam of the first uplink data transmission.
  • the at least one first reference signal resource is a CSI-RS resource
  • the terminal device determines a beam used for receiving the CSI-RS on the CSI-RS resource, and is determined as a receive beam of the first uplink data transmission.
  • the at least one first reference signal resource is K SRS resources, and K is equal to the number of layers of the data transmission layer corresponding to the first uplink data transmission; and the terminal device determines to use when sending the SRS resources in the K SRS resources.
  • the K transmission beams are used as the transmission beams of the K data transmission layers, and the K transmission beams are in one-to-one correspondence with the K data transmission layers.
  • the uplink transmission corresponding to different reference signal resources may use different beams to match the channel information of the panel transmitting the corresponding data.
  • the terminal device may determine, according to the correspondence between the reference signal resource and the power control parameter, the power control parameter corresponding to the at least one first reference signal resource as the first uplink data transmission. Transmit power.
  • the terminal device may determine, according to the correspondence between the reference signal resource indication information and the power control parameter, the power control parameter corresponding to the first reference signal resource indication information as the transmit power used by the first uplink data transmission.
  • the reference signal resource may be an SRS resource, a correspondence between the SRS resource and the power control parameter, and/or a correspondence between the SRS resource indicator SRI and the power control parameter
  • the terminal device is pre-configured by the network device, and the embodiment of the present application is not limited thereto.
  • the power control parameters described above may include at least one of an open loop power control parameter, a closed loop power control parameter, and a path loss estimate.
  • the uplink transmission corresponding to different reference signal resources may use different transmission powers to match the channel gain of the beam or panel transmitting the corresponding data.
  • the terminal device may determine, as a panel used by the first uplink data transmission, a panel that receives or sends a reference signal in the at least one first reference signal resource.
  • the at least one first reference signal resource is an SRS resource
  • the panel used by the terminal device to send the SRS on the SRS resource is determined to be a panel for transmitting the first uplink data.
  • the at least one first reference signal resource is a CSI-RS resource
  • the panel used by the terminal device to receive the CSI-RS on the CSI-RS resource is determined to be a panel for transmitting the first uplink data.
  • the uplink transmission corresponding to different reference signal resources may adopt different panels, so that data may be transmitted on a better panel according to the reference signal, or the plurality of panels of the terminal may be fully utilized to simultaneously transmit data, thereby improving uplink transmission performance.
  • the method 100 may further include: receiving the second DCI sent by the network device while receiving the first DCI, that is, the terminal device simultaneously receives at least two DCIs, the at least two DCIs.
  • the first DCI and the second DCI are included.
  • the terminal can simultaneously detect at least two DCIs and separately schedule data transmission on different panels, thereby supporting different panels to perform uplink transmission at the same time, thereby improving spectrum efficiency of uplink transmission.
  • receiving the first DCI while receiving the first DCI may include: the terminal device receiving the first DCI and the second DCI in the same time slot, or the terminal device receiving the first DCI and the first in the same OFDM symbol.
  • the second DCI, or the terminal device detects the first DCI and the second DCI in the same control channel, and the embodiment of the present application is not limited thereto.
  • the second DCI includes the second reference signal resource set indication information.
  • the method 100 further includes: determining, by the terminal device, the second reference signal resource set according to the second reference signal resource set indication information, the second The reference signal resource set is different from the first reference signal resource set.
  • one DMRS port group may correspond to one panel, and one panel may correspond to multiple DMRS ports.
  • the terminal device may transmit the corresponding DMRS port group on the antenna array block. The data on it.
  • the first uplink data transmission scheduled by the terminal device by using the first DCI and the second uplink data transmission scheduled by the second DCI may use different DMRS ports.
  • the first DCI schedules the first uplink transmission, and the first uplink transmission uses DMRS port 0 and port 1; the second DCI schedules the second uplink transmission, and the second uplink transmission uses DMRS port 2 and port 3.
  • the terminal device receives multiple DCIs sent by the network device, and different DCIs are used to schedule uplink transmissions on different panels, and determine different resource sets according to different DCIs.
  • the uplink channel information of the corresponding panel can enable multiple panels to transmit data by using independent transmission parameters, thereby improving the flexibility of multi-panel transmission and uplink spectrum efficiency.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the terminal device 200 includes: a receiving unit 210 and a determining unit 220, and optionally, a sending unit 230.
  • the receiving unit 210 is configured to: receive, by the network device, first downlink control information DCI for scheduling a first uplink data transmission, where the first DCI includes first reference signal resource set indication information and a first reference signal.
  • the determining unit 220 is configured to: determine, according to the first reference signal resource set indication information, a first reference signal resource set, where the first reference signal resource set includes at least one reference signal resource; the determining unit 220 further uses Determining, according to the first reference signal resource indication information, at least one first reference signal resource in the first reference signal resource set; the determining unit 220 is further configured to: determine, according to the at least one first reference signal resource, The transmission parameters used by the first uplink data transmission.
  • the receiving unit 210 is further configured to: receive the first configuration information that is sent by the network device, where the first configuration information is used to indicate a plurality of reference signal resource sets; the determining unit 220 is specifically configured to: according to the first The reference signal resource set indication information is used to determine the first reference signal resource set in the plurality of reference signal resource sets.
  • the plurality of reference signal resource sets are used for reference signal transmission on multiple antenna array blocks.
  • the sending unit 230 is configured to: before receiving, by the receiving unit 210, the first configuration information that is sent by the network device, send, to the network device, an antenna array block number information, where the antenna array block number information is used. And indicating the number of antenna array blocks of the terminal device, where the number of pieces of the antenna array block is used by the network device to determine the number of the plurality of reference signal resource sets.
  • the plurality of reference signal resource sets are in one-to-one correspondence with the plurality of phase tracking reference signals PTRS ports.
  • the determining unit 220 is further configured to: determine, according to a correspondence between the multiple reference signal resource sets and the multiple PTRS ports, a first PTRS port corresponding to the first reference signal resource set; An uplink PTRS is transmitted through the first PTRS port on a physical resource used for uplink data transmission.
  • the determining unit 220 is further configured to: determine, according to the correspondence between the multiple reference signal resource sets and the multiple physical uplink shared channel PUSCH power control parameter groups, the first PUSCH power corresponding to the first reference signal resource set. Control parameter group.
  • the determining unit 220 is further configured to: determine, according to the first reference signal resource indication information, a power control parameter used by the PUSCH transmission indicated by the first DCI in the first PUSCH power control parameter group.
  • the transmission parameter used by the first uplink data transmission includes at least one of a precoding matrix, a number of transmission layers, an antenna port number, a transmit beam, a power control parameter, and an antenna array block.
  • the at least one first reference signal resource is an SRS resource
  • the determining unit 220 is specifically configured to: determine the number of antenna ports of the SRS resource and the first PMI information; according to the number of antenna ports, PMI information, and a precoding matrix And a precoding matrix corresponding to the number of antenna ports of the SRS resource and the first PMI information is a precoding matrix used for the first uplink data transmission.
  • the first DCI includes the first PMI information.
  • the at least one first reference signal resource is an SRS resource
  • the determining unit 220 is specifically configured to: determine the total antenna port number of the at least one SRS resource and/or the number of the at least one SRS resource as the The number of transmission layers of the first uplink data transmission.
  • the at least one first reference signal resource is an SRS resource
  • the determining unit 220 is specifically configured to: determine a precoding matrix used for transmitting the SRS in the SRS resource, and determine the precoding used by the first uplink data transmission. matrix.
  • the at least one first reference signal resource is K SRS resources, and K is equal to the number of layers of the data transmission layer corresponding to the first uplink data transmission; the determining unit 220 is specifically configured to: determine the K SRS resource usage.
  • K precoding matrices; the K precoding matrices are determined as K precoding matrices of the data transmission layer, and the K precoding matrices are in one-to-one correspondence with the K data transmission layers.
  • the at least one first reference signal resource is at least one SRS resource
  • the determining unit 220 is specifically configured to: determine the total antenna port number of the at least one SRS resource and/or the number of the at least one SRS resource as The number of antenna ports used for the first uplink data transmission.
  • the at least one first reference signal resource is a CSI-RS resource
  • the determining unit 220 is specifically configured to: determine, according to the CSI-RS on the CSI-RS resource, corresponding downlink channel information; Determined as uplink channel information; and according to the uplink channel information, determine a transmit beam and/or a precoding matrix used by the first uplink data transmission.
  • the determining unit 220 is configured to determine, by using a beam that receives or sends the reference signal in the at least one first reference signal resource, a beam used for the first uplink data transmission.
  • the at least one first reference signal resource is K SRS resources, and K is equal to the number of layers of the data transmission layer corresponding to the first uplink data transmission; the determining unit 220 is specifically configured to: determine to send the K SRS resources.
  • the determining unit 220 is configured to determine, according to the correspondence between the reference signal resource and the power control parameter, the power control parameter corresponding to the at least one first reference signal resource as the first uplink data transmission. Transmit power.
  • the determining unit 220 is configured to determine, according to the correspondence between the reference signal resource indication information and the power control parameter, the power control parameter corresponding to the first reference signal resource indication information as the first uplink data transmission. The transmit power used.
  • the power control parameter includes at least one of an open loop power control parameter, a closed loop power control parameter, and a path loss estimate.
  • the determining unit 220 is configured to: determine, by using an antenna array block that receives or sends a reference signal in the at least one first reference signal resource, an antenna array block used for the first uplink data transmission.
  • the at least one first reference signal resource is an SRS resource or a CSI-RS resource.
  • the receiving unit 210 is further configured to: receive the second DCI sent by the network device while receiving the first DCI.
  • the second DCI includes second reference signal resource set indication information, where the determining unit 220 is configured to: determine, according to the second reference signal resource set indication information, a second reference signal resource set, the second reference signal The set of resources is different from the first set of reference signal resources.
  • the first uplink data transmission scheduled by the first DCI and the second uplink data transmission scheduled by the second DCI use different DMRS ports.
  • the terminal device 200 according to the embodiment of the present application may correspond to the method 100 in the embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 200 are respectively implemented in FIG. The corresponding process of the terminal device of the method is not described here for brevity.
  • the terminal device in the embodiment of the present application receives multiple DCIs sent by the network device, and the different DCIs are used to schedule uplink transmissions on different panels, and determine the uplink channel information of the corresponding panel according to different resource sets indicated in different DCIs. It can enable multiple panels to transmit data with independent transmission parameters, which can improve the flexibility of multi-panel transmission and uplink spectrum efficiency.
  • FIG. 3 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes a processor 310 and a transceiver 320.
  • the processor 310 is connected to the transceiver 320, and is optional.
  • the terminal device 300 further includes a memory 330, and the memory 330 is connected to the processor 310.
  • the processor 310, the memory 330 and the transceiver 320 communicate with each other through an internal connection path, and the data signal is transmitted and/or controlled.
  • the memory 330 can be used to store instructions, and the processor 310 is configured to execute the storage of the memory 330.
  • the instruction is used to control the transceiver 320 to send information or a signal, and the transceiver 320 is configured to: receive, by the network device, first downlink control information DCI for scheduling a first uplink data transmission, where the first DCI includes a first reference signal.
  • the resource set indication information and the first reference signal resource indication information; the processor 310 is configured to: determine, according to the first reference signal resource set indication information, a first reference signal resource set, where the first reference signal resource set includes at least one reference
  • the processor 310 is configured to: determine, according to the first reference signal resource indication information, at least one first reference signal resource in the first reference signal resource set; the processor 310 is configured to: according to the at least one A reference signal resource determines a transmission parameter used by the first uplink data transmission.
  • the transceiver 320 is configured to: receive first configuration information that is sent by the network device, where the first configuration information is used to indicate a plurality of reference signal resource sets; and the processor 310 is configured to: The first reference signal resource set indication information is determined by the first reference signal resource set in the plurality of reference signal resource sets.
  • the multiple reference signal resource sets are used for reference signal transmission on multiple antenna array blocks.
  • the transceiver 320 is configured to: before receiving the first configuration information sent by the network device, send, to the network device, an antenna array block number information, where the antenna array block number information is used. And indicating the number of antenna array blocks of the terminal device, where the number of pieces of the antenna array block is used by the network device to determine the number of the plurality of reference signal resource sets.
  • the multiple reference signal resource sets are in one-to-one correspondence with the plurality of phase tracking reference signals PTRS ports.
  • the processor 310 is configured to: determine, according to the correspondence between the multiple reference signal resource sets and the multiple PTRS ports, the first PTRS port corresponding to the first reference signal resource set. And transmitting uplink PTRS through the first PTRS port on the physical resource used by the first uplink data transmission.
  • the processor 310 is configured to: determine, according to the correspondence between the multiple reference signal resource sets and the multiple physical uplink shared channel PUSCH power control parameter groups, the first reference signal resource set The first PUSCH power control parameter set.
  • the processor 310 is configured to: determine, according to the first reference signal resource indication information, a power control parameter used by the first DCI to indicate PUSCH transmission in the first PUSCH power control parameter group. .
  • the transmission parameter used by the first uplink data transmission includes at least one of a precoding matrix, a number of transmission layers, an antenna port number, a transmit beam, a power control parameter, and an antenna array block.
  • the at least one first reference signal resource is a sounding reference signal SRS resource
  • the processor 310 is configured to: determine an antenna port number of the SRS resource and a first precoding matrix indicating PMI information; Determining a correspondence between the number of antenna ports, the PMI information, and the precoding matrix, and determining a precoding matrix corresponding to the number of antenna ports of the SRS resource and the first PMI information is a precoding matrix used for the first uplink data transmission.
  • the first DCI includes the first PMI information.
  • the at least one first reference signal resource is an SRS resource
  • the processor 310 is configured to: the total number of antenna ports of the at least one SRS resource and/or the number of the at least one SRS resource. And determining the number of transmission layers of the first uplink data transmission.
  • the at least one first reference signal resource is an SRS resource
  • the processor 310 is configured to determine, by using a precoding matrix used for transmitting the SRS in the SRS resource, the first uplink data transmission.
  • the precoding matrix used is an SRS resource
  • the at least one first reference signal resource is K SRS resources, and K is equal to a number of layers of the data transmission layer corresponding to the first uplink data transmission; the processor 310 is configured to: determine the K K precoding matrices used by the SRS resources; the K precoding matrices are determined as K precoding matrices of the data transport layer, and the K precoding matrices are in one-to-one correspondence with the K data transport layers.
  • the at least one first reference signal resource is at least one SRS resource
  • the processor 310 is configured to: the total antenna port number of the at least one SRS resource and/or the at least one SRS resource The number is determined as the number of antenna ports used for the first uplink data transmission.
  • the at least one first reference signal resource is a CSI-RS resource
  • the processor 310 is configured to: determine, according to the CSI-RS on the CSI-RS resource, corresponding downlink channel information; The downlink channel information is determined as uplink channel information; and according to the uplink channel information, a transmit beam and/or a precoding matrix used by the first uplink data transmission is determined.
  • the processor 310 is configured to determine, as a beam used by the first uplink data transmission, a beam that receives or transmits a reference signal in the at least one first reference signal resource.
  • the at least one first reference signal resource is K SRS resources, and K is equal to a number of layers of the data transmission layer corresponding to the first uplink data transmission; the processor 310 is configured to: determine to send the K transmission beams used by the SRS resources in the K SRS resources; the K transmission beams are used as K transmission beams of the data transmission layer, and the K transmission beams are in one-to-one correspondence with the K data transmission layers.
  • the processor 310 is configured to determine, according to a correspondence between the reference signal resource and the power control parameter, a power control parameter corresponding to the at least one first reference signal resource as the first uplink. The transmit power used for data transmission.
  • the processor 310 is configured to determine, according to a correspondence between the reference signal resource indication information and the power control parameter, a power control parameter corresponding to the first reference signal resource indication information.
  • the power control parameter includes at least one of an open loop power control parameter, a closed loop power control parameter, and a path loss estimation value.
  • the processor 310 is configured to determine, by using an antenna array block that receives or sends a reference signal in the at least one first reference signal resource, an antenna array block used for the first uplink data transmission. .
  • the at least one first reference signal resource is an SRS resource or a CSI-RS resource.
  • the transceiver 320 is configured to: receive the second DCI sent by the network device while receiving the first DCI.
  • the second DCI includes second reference signal resource set indication information
  • the processor 310 is configured to: determine, according to the second reference signal resource set indication information, a second reference signal resource set, where The second set of reference signal resources is different from the first set of reference signal resources.
  • the first uplink data transmission of the first DCI scheduling and the second uplink data transmission of the second DCI scheduling use different demodulation reference signal DMRS ports.
  • terminal device 300 may correspond to the terminal device 200 in the embodiment of the present application, and may correspond to the corresponding body in the method 100 according to the embodiment of the present application, and each of the terminal devices 300
  • the foregoing and other operations and/or functions of the unit are respectively implemented in order to implement the corresponding processes of the terminal devices in the respective methods in FIG. 1.
  • no further details are provided herein.
  • the terminal device in the embodiment of the present application receives multiple DCIs sent by the network device, and the different DCIs are used to schedule uplink transmissions on different panels, and determine the uplink channel information of the corresponding panel according to different resource sets indicated in different DCIs. It can enable multiple panels to transmit data with independent transmission parameters, which can improve the flexibility of multi-panel transmission and uplink spectrum efficiency.
  • the above method embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices, discrete gates or transistor logic devices, discrete hardware components The methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous DRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及用于上行数据传输的方法和终端设备。该方法包括:接收网络设备发送的用于调度第一上行数据传输的第一下行控制信息DCI,该第一DCI包括第一参考信号资源集合指示信息和第一参考信号资源指示信息;根据该第一参考信号资源集合指示信息,确定第一参考信号资源集合,该第一参考信号资源集合包括至少一个参考信号资源;根据该第一参考信号资源指示信息,在该第一参考信号资源集合中确定至少一个第一参考信号资源;根据该至少一个第一参考信号资源,确定该第一上行数据传输使用的传输参数。本申请实施例的用于上行数据传输的方法和终端设备,能够提高上行数据传输效率。

Description

用于上行数据传输的方法和终端设备 技术领域
本申请涉及通信领域,尤其涉及用于上行数据传输的方法和终端设备。
背景技术
在新无线(new radio,NR)系统中,终端设备可以使用多个天线阵列块(panel)进行上行数据传输,一个panel包含一组物理天线,每个panel有独立的射频通道。终端设备可以同时在多个panel上传输数据,但由于不同panel对应的信道条件是不同的,不同的panel需要根据各自的信道信息采用不同的传输参数,例如不同的panel可以有不同的波束、预编码和发送功率等。
为了获得这些传输参数,需要为不同的panel配置不同的信道探测参考信号(sounding reference signal,SRS)资源集合,进而获得上行信道信息。那么如何让终端设备获取当前数据传输对应的SRS资源集合和所用的传输参数是需要解决的问题。
发明内容
本申请提供了一种用于上行数据传输的方法和终端设备,能够灵活配置传输参数,提高数据传输效率。
第一方面,提供了一种用于上行数据传输的方法,该方法包括:接收网络设备发送的用于调度第一上行数据传输的第一下行控制信息(downlink control information,DCI),所述第一DCI包括第一参考信号资源集合指示信息和第一参考信号资源指示信息;根据所述第一参考信号资源集合指示信息,确定第一参考信号资源集合,所述第一参考信号资源集合包括至少一个参考信号资源;根据所述第一参考信号资源指示信息,在所述第一参考信号资源集合中确定至少一个第一参考信号资源;根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数。
因此,本申请实施例的用于上行数据传输的方法,终端设备接收网络设备发送的DCI,通过不同DCI调度不同的panel对应的上行传输,根据不同DCI中指示不同的资源集合,确定对应的panel的上行信道信息,可以使得 多个panel可以采用独立的传输参数进行数据传输,从而可以提高多panel传输的灵活性和上行频谱效率。
应理解,该第一参考信号资源集合指示信息和第一参考信号资源指示信息可以采用独立编码,也可以采用联合编码。
结合第一方面,在第一方面的一种实现方式中,所述方法还包括:接收所述网络设备发送的第一配置信息,所述第一配置信息用于指示多个参考信号资源集合;所述根据所述第一参考信号资源集合指示信息,确定第一参考信号资源集合,包括:根据所述第一参考信号资源集合指示信息,在所述多个参考信号资源集合中确定所述第一参考信号资源集合。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述多个参考信号资源集合用于多个天线阵列块上的参考信号传输。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,在所述接收所述网络设备发送的第一配置信息之前,所述方法还包括:向所述网络设备发送天线阵列块个数信息,所述天线阵列块个数信息用于指示终端设备的天线阵列块的个数,所述天线阵列块个数信息用于所述网络设备确定所述多个参考信号资源集合的个数。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述多个参考信号资源集合与多个相位跟踪参考信号(phase tracking reference signal,PTRS)端口一一对应。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述方法还包括:根据所述多个参考信号资源集合与所述多个PTRS端口之间的对应关系,确定所述第一参考信号资源集合对应的第一PTRS端口;在所述第一上行数据传输使用的物理资源上,通过所述第一PTRS端口传输上行PTRS。
网络设备为不同panel对应的不同的参考信号资源集合配置不同的PTRS端口,从而可以跟踪对应的panel的相位变化。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述方法还包括:根据所述多个参考信号资源集合与多个物理上行共享信道(physical uplink shared channel,PUSCH)功率控制参数组的对应关系,确定所述第一参考信号资源集合对应的第一PUSCH功率控制参数组。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所 述方法还包括:根据所述第一参考信号资源指示信息,在所述第一PUSCH功率控制参数组中确定所述第一DCI指示的PUSCH传输使用的功率控制参数。
网络设备可以为不同panel配置不同的功率控制参数组,从而不同的panel上传输的信号可以独立进行功率控制。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一参考信号资源指示信息包括所述至少一个第一参考信号资源的索引。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一参考信号资源指示信息包括所述第一参考信号资源集合的位图,所述位图中的比特位与所述第一参考信号资源集合中的参考信号资源一一对应。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一上行数据传输使用的所述传输参数包括:预编码矩阵、传输层数、天线端口数、发送波束、功率控制参数和天线阵列块中的至少一个。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述至少一个第一参考信号资源为探测参考信号SRS资源,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:确定所述SRS资源的天线端口数以及第一预编码矩阵指示(precoding matrix indicator,PMI)信息;根据天线端口数、PMI信息以及预编码矩阵之间的对应关系,确定与所述SRS资源的天线端口数以及所述第一PMI信息对应的预编码矩阵为所述第一上行数据传输使用的预编码矩阵。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一DCI包括所述第一PMI信息。
因此,基于该方法获得第一DCI调度的第一上行数据传输使用的预编码矩阵,使得不同panel上的数据传输可以采用独立的预编码矩阵,从而增加上行调度的灵活性。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述至少一个第一参考信号资源为SRS资源,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:将所述至少一个SRS资源的总天线端口数和/或所述至少一个SRS资源的个数,确定为所述第一上行数据传输的传输层数。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所 述至少一个第一参考信号资源为SRS资源,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:将传输所述SRS资源中的SRS使用的预编码矩阵,确定为所述第一上行数据传输使用的预编码矩阵。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述至少一个第一参考信号资源为K个SRS资源,K等于所述第一上行数据传输对应的数据传输层的层数;所述将传输所述SRS资源中的SRS使用的预编码矩阵,确定为所述第一上行数据传输使用的预编码矩阵,包括:确定所述K个SRS资源使用的K个预编码矩阵;将所述K个预编码矩阵确定为K个所述数据传输层的预编码矩阵,所述K个预编码矩阵与K个所述数据传输层一一对应。
因此,不同SRS资源对应的上行传输可以采用与该SRS资源上相同的预编码矩阵,从而与传输相应数据的panel的信道信息相匹配。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述至少一个第一参考信号资源为至少一个SRS资源,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:将所述至少一个SRS资源的总天线端口数和/或所述至少一个SRS资源的个数确定为所述第一上行数据传输使用的天线端口数。
例如,若该至少一个SRS资源为一个SRS资源,终端设备可以将该一个SRS资源的天线端口数作为该第一上行数据传输使用的天线端口数。
再例如,若该至少一个SRS资源为多个SRS资源,其中每个SRS资源均为单端口的SRS资源,则终端设备可以将该多个SRS资源的个数,确定为第一上行数据传输使用的天线端口数。
因此,通过该方法获得上行数据传输的天线端口数,使得不同panel上的数据传输可以采用独立的天线端口数,从而提高上行多panel调度的灵活性。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述至少一个第一参考信号资源为信道状态信息参考信号(channel state information reference signal,CSI-RS)资源,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:根据所述CSI-RS资源上的CSI-RS,确定对应的下行信道信息;将所述下行信道信息 确定为上行信道信息;根据所述上行信道信息,确定所述第一上行数据传输使用的发送波束和/或预编码矩阵。
因此,网络设备可以为不同panel上的数据传输配置不同的CSI-RS资源,进而获得上行信道信息,使得获得的信道信息更准确。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:将接收或发送所述至少一个第一参考信号资源中的参考信号的波束,确定为所述第一上行数据传输使用的波束。
例如,该至少一个第一参考信号资源为SRS资源,该终端设备将在该SRS资源上发送SRS时使用的波束,确定为该第一上行数据传输的发送波束。
再例如,该至少一个第一参考信号资源为CSI-RS资源,该终端设备将在该CSI-RS资源上接收CSI-RS时使用的波束,确定为该第一上行数据传输的接收波束。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述至少一个第一参考信号资源为K个SRS资源,K等于所述第一上行数据传输对应的数据传输层的层数;所述将接收或发送所述至少一个第一参考信号资源中的参考信号的波束,确定为所述第一上行数据传输使用的波束,包括:确定发送所述K个SRS资源中的SRS资源使用的K个发送波束;将所述K个发送波束作为K个所述数据传输层的发送波束,所述K个发送波束与K个数据传输层一一对应。
因此,不同参考信号资源对应的上行传输可以采用不同的波束,从而与传输相应数据的panel的信道信息相匹配。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:根据参考信号资源与功率控制参数之间的对应关系,将所述至少一个第一参考信号资源对应的功率控制参数确定为所述第一上行数据传输使用的发送功率。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述方法还包括:根据参考信号资源指示信息与功率控制参数之间的对应关系,将所述第一参考信号资源指示信息对应的功率控制参数确定为所述第一 上行数据传输使用的发送功率。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述功率控制参数至少包括:开环功率控制参数、闭环功率控制参数和路损估计值中的一个。
因此,不同参考信号资源对应的上行传输可以采用不同的发送功率,从而与传输相应数据的beam或者panel的信道增益相匹配。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:将接收或发送所述至少一个第一参考信号资源中的参考信号的天线阵列块,确定为所述第一上行数据传输使用的天线阵列块。
例如,该至少一个第一参考信号资源为SRS资源,终端设备将在该SRS资源上发送SRS时使用的panel,确定为传输该第一上行数据的panel。
再例如,该至少一个第一参考信号资源为CSI-RS资源,终端设备将在该CSI-RS资源上接收CSI-RS时使用的panel,确定为传输该第一上行数据的panel。
因此,不同的参考信号资源对应的上行传输可以采用不同的panel,从而可以根据参考信号选择在更好的panel上传输数据,或者充分利用终端的多个panel同时传输数据,提高上行的传输性能。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述方法还包括:在接收所述第一DCI的同时,接收所述网络设备发送的第二DCI。
因此,终端可以同时检测至少两个DCI,分别调度不同panel上的数据传输,从而支持不同panel同时进行上行传输,提高上行传输的频谱效率。
接收第一DCI的同时接收第二DCI可以包括:终端设备在同一时隙中接收该第一DCI和第二DCI,或者,该终端设备在同一正交频分复用(orthogonal frequency division multiplexing,OFDM)符号中接收该第一DCI和第二DCI,或者该终端设备在同一控制信道中检测到该第一DCI和第二DCI。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第二DCI包括第二参考信号资源集合指示信息;所述方法还包括:根据所述第二参考信号资源集合指示信息,确定第二参考信号资源集合,所述第二 参考信号资源集合与所述第一参考信号资源集合不同。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一DCI调度的所述第一上行数据传输与所述第二DCI调度的第二上行数据传输使用不同的解调参考信号(Demodulation Reference Signal,DMRS)端口。
因此,本申请实施例的用于上行数据传输的方法,终端设备接收网络设备发送的多个DCI,不同DCI用于调度不同的panel上的上行传输,根据不同DCI中指示不同的资源集合,确定对应的panel的上行信道信息,可以使得多个panel可以采用独立的传输参数进行数据传输,从而可以提高多panel传输的灵活性和上行频谱效率。
第二方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第三方面,提供了一种终端设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第五方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述第一方面或第一方面的任意可能的实现方式中的用于上行数据传输的方法。具体地,该计算机程序产品可以运行于上述第二方面的终端设备上。
附图说明
图1是根据本申请实施例的用于上行数据传输的方法的示意性流程图。
图2是根据本申请实施例的终端设备的示意性框图。
图3是根据本申请实施例的终端设备的另一示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSMC)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSMC系统或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1示出了根据本申请实施例的用于上行数据传输的方法100的示意性流程图,该方法100可以由终端设备执行。如图1所示,该方法100包括:S110,接收网络设备发送的用于调度第一上行数据传输的第一DCI,该第一 DCI包括第一参考信号资源集合指示信息和第一参考信号资源指示信息;S120,根据该第一参考信号资源集合指示信息,确定第一参考信号资源集合,该第一参考信号资源集合包括至少一个参考信号资源;S130,根据该第一参考信号资源指示信息,在该第一参考信号资源集合中确定至少一个第一参考信号资源;S140,根据该至少一个第一参考信号资源,确定该第一上行数据传输使用的传输参数。
应理解,本申请实施例中的参考信号资源集合可以包括至少一个参考信号资源,每个参考信号资源集合用于相同的功能,但不同的集合可以有不同的功能。同一参考信号资源集合中不同的参考信号资源至少具有一个相同参数,例如,该相同的参数可以为下述参数中的至少一个:功率控制参数,传输带宽参数,天线端口数,在一个时隙内占用的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数,在一个时隙内的信号重复数,功能配置,传输时隙,但本申请实施例并不限于此。网络侧可以为每个参考信号资源集合配置所述相同的参数,不需要为集合中的每个参考信号资源分别配置这些参数,从而节约了信令开销。
应理解,本申请实施例中的参考信号资源集合可以为SRS资源集合,则该SRS资源集合包括至少一个SRS资源,该SRS资源用于传输SRS;或者,参考信号资源集合也可以为CSI-RS资源集合,该CSI-RS资源集合可以包括至少一个CSI-RS资源,该CSI-RS资源用于传输CSI-RS,但本申请实施例并不限于此。
在本申请实施例中,在S110中,终端设备接收网络设备发送的第一DCI,该第一DCI可以用于调度第一上行数据传输,该第一DCI可以包括第一参考信号资源集合指示信息和第一参考信号资源指示信息,其中,该第一参考信号资源集合指示信息和第一参考信号资源指示信息可以采用独立编码,也可以采用联合编码,本申请实施例并不限于此。
应理解,在S120中的终端设备根据第一参考信号资源集合指示信息确定第一参考信号资源集合之前,该方法100还可以包括:终端设备接收该网络设备发送的第一配置信息,该第一配置信息用于指示多个参考信号资源集合。对应的,终端设备该根据该第一参考信号资源集合指示信息,确定第一参考信号资源集合可以具体包括:根据该第一参考信号资源集合指示信息,在该多个参考信号资源集合中确定该第一参考信号资源集合。
应理解,本申请实施例中的终端设备可以有一个或多个天线阵列块(panel)用于上行数据传输,每个panel有独立的射频通道。
对应地,该多个参考信号资源集合可以用于多个天线阵列块上的参考信号传输,其中,不同的参考信号资源集合可以用于不同的panel上的参考信号的传输。
可选地,网络设备可以根据该终端设备中的panel的数量,配置对应数量的该多个参考信号资源集合。具体地,终端设备可以向该网络设备发送panel个数信息,该panel个数信息用于指示终端设备的panel的个数,以便于该网络设备接收该panel个数信息,并根据该panel个数信息,确定与该panel个数相等的该多个参考信号资源集合的个数,并向终端设备发送该第一配置信息,该第一配置信息指示该多个参考信号资源集合。
对应的,终端设备将多个参考信号资源集合与多个panel一一对应,即终端设备根据第一DCI中的第一参考信号资源集合指示信息指示的第一参考信号资源集合有对应的panel的传输。
这样,网络设备可以获得不同panel的上行信道信息,进而调度该panel上的数据传输。
在本申请实施例中,该多个参考信号资源集合还可以与多个PTRS端口一一对应,即不同参考信号资源集合对应不同的PTRS端口。具体地,终端设备可以根据该多个参考信号资源集合与该多个PTRS端口之间的对应关系,确定该第一参考信号资源集合对应的第一PTRS端口;在该第一上行数据传输使用的物理资源上,通过该第一PTRS端口传输上行PTRS。
可选的,与该多个参考信号资源集合一一对应的多个PTRS端口可以由网络设备通过下行信令为终端设备配置。
这样,网络设备可以为不同panel对应的不同的参考信号资源集合配置不同的PTRS端口,从而跟踪对应的panel的相位变化。
在本申请实施例中,该多个参考信号资源集合中不同参考信号资源集合对应不同的PUSCH功率控制参数。具体地,终端设备可以根据该多个参考信号资源集合与PUSCH功率控制参数组的对应关系,确定该第一参考信号资源集合对应的第一PUSCH功率控制参数组。
进一步的,该终端设备还可以根据该第一参考信号资源指示信息,在该第一PUSCH功率控制参数组中确定该第一DCI指示的PUSCH传输使用的 功率控制参数。
因此,网络设备可以为不同panel配置不同的功率控制参数组,从而不同的panel上传输的信号可以独立进行功率控制。
在S130中,终端设备根据第一参考信号资源指示信息,在第一参考信号资源集合中确定指示一个第一参考信号资源。具体地,该第一参考信号资源指示信息可以包括至少一个第一参考信号资源的索引,或者。该第一参考信号资源指示信息还可以包括第一参考信号资源集合的位图。
可选地,若该第一参考信号资源指示信息指示一个第一参考信号资源,则该第一参考信号资源指示信息可以包括该第一参考信号资源的索引。具体地,终端设备确定第一参考信号资源集合中每个参考信号资源的索引,根据第一参考信号资源指示信息中包括的索引,确定对应的第一参考信号资源。
可选地,若该第一参考信号资源指示信息指示多个第一参考信号资源,则该第一参考信号资源指示信息可以包括位图,该位图与该第一参考信号资源集合中的参考信号资源一一对应。具体地,终端设备确定该第一参考信号资源集合中包括N个参考信号资源,则该第一参考信号资源指示信息中的位图的长度等于该第一参考信号资源集合中参考信号资源的个数N,通过该位图,可以指示该N个参考信号资源中的M个参考信号资源为该第一参考信号资源指示信息指示的至少一个第一参考信号资源,N和M为正整数,M小于或者等于N。
例如,当位图中任意一位比特数为“1”时,表示选择;比特数为“0”时,表示不选择,即可以通过该位图获得所有比特数为“1”时对应的参考信号资源,即为该位图指示的至少一个第一参考信号资源。
在S140中,终端设备根据该至少一个第一参考信号资源,确定该第一上行数据传输使用的传输参数,其中,该第一上行数据传输使用的传输参数包括:预编码矩阵、传输层数、天线端口数、发送波束、功率控制参数和天线阵列块中的至少一个。
可选地,作为一个实施例,若该至少一个第一参考信号资源为至少一个SRS资源,终端设备可以根据天线端口数、PMI信息以及预编码矩阵之间的对应关系,确定该第一上行数据传输使用的预编码矩阵。具体地,终端设备确定该至少一个SRS资源的天线端口数以及第一PMI信息,根据天线端口数、PMI信息以及预编码矩阵之间的对应关系,将该至少一个SRS资源的 天线端口数以及第一PMI信息对应的预编码矩阵作为该第一上行数据传输使用的预编码矩阵。
可选地,终端设备接收网络设备发送的第一DCI可以包括该第一PMI信息。
可选地,该天线端口数、PMI信息以及预编码矩阵之间的对应关系可以为预先约定的。
可选地,该至少一个SRS资源的天线端口数等于传输该SRS的panel包括的天线端口数。
因此,基于该方法获得第一DCI调度的第一上行数据传输使用的预编码矩阵,使得不同panel上的数据传输可以采用独立的预编码矩阵,从而增加上行调度的灵活性。
可选地,作为一个实施例,若该至少一个第一参考信号资源为至少一个SRS资源,终端设备可以将该至少一个SRS资源的总天线端口数和/或该至少一个SRS资源的个数,确定为该第一上行数据传输的传输层数。例如,若该至少一个SRS资源包括K个SRS资源,则该第一上行数据传输的传输层数为K。
可选地,作为一个实施例,若该至少一个第一参考信号资源为至少一个SRS资源,终端设备可以将传输该SRS资源中的SRS使用的预编码矩阵,确定为该第一上行数据传输使用的预编码矩阵。
具体地,若该至少一个SRS资源包括K个SRS资源,且K等于该第一上行数据传输对应的数据传输层的层数;终端设备确定该K个SRS资源使用的K个预编码矩阵;将该K个预编码矩阵分别确定为K个该数据传输层的预编码矩阵,该K个预编码矩阵与K个该数据传输层一一对应,即一个预编码矩阵对应一个数据传输层。
因此,不同SRS资源对应的上行传输可以采用与该SRS资源上相同的预编码矩阵,从而与传输相应数据的panel的信道信息相匹配。
可选地,作为一个实施例,若该至少一个第一参考信号资源为至少一个SRS资源,终端设备将该至少一个SRS资源的总天线端口数和/或该至少一个SRS资源的个数确定为该第一上行数据传输使用的天线端口数。
例如,若该至少一个SRS资源为一个SRS资源,终端设备可以将该一个SRS资源的天线端口数作为该第一上行数据传输使用的天线端口数。
再例如,若该至少一个SRS资源为多个SRS资源,其中每个SRS资源均为单端口的SRS资源,则终端设备可以将该多个SRS资源的个数,确定为第一上行数据传输使用的天线端口数。
可选地,对于基于码本的传输,终端设备还可以基于该第一上行数据传输使用的天线端口数确定对应的码本;对于非基于码本的传输,终端设备可以根据该天线端口数确定对应的上行数据的传输层数。
因此,通过该方法获得上行数据传输的天线端口数,使得不同panel上的数据传输可以采用独立的天线端口数,从而提高上行多panel调度的灵活性。
可选地,作为一个实施例,若该至少一个第一参考信号资源为CSI-RS资源,终端设备可以根据该CSI-RS资源上的CSI-RS,确定对应的下行信道信息;将该下行信道信息确定为上行信道信息;根据该上行信道信息,确定该第一上行数据传输使用的发送波束和/或预编码矩阵。
具体地,终端设备根据该CSI-RS资源上的CSI-RS,确定对应的下行信道信息;基于信道互易性,终端设备将该下行信道信息作为上行信道信息,进而根据该上行信道信息,可以确定该第一上行数据传输使用的发送波束和/或预编码矩阵。
因此,网络设备可以为不同panel上的数据传输配置不同的CSI-RS资源,进而获得上行信道信息,使得获得的信道信息更准确。
可选地,作为一个实施例,该终端设备可以将接收或发送该至少一个第一参考信号资源中的参考信号的波束,确定为该第一上行数据传输使用的波束。
例如,该至少一个第一参考信号资源为SRS资源,该终端设备将在该SRS资源上发送SRS时使用的波束,确定为该第一上行数据传输的发送波束。
再例如,该至少一个第一参考信号资源为CSI-RS资源,该终端设备将在该CSI-RS资源上接收CSI-RS时使用的波束,确定为该第一上行数据传输的接收波束。
再例如,该至少一个第一参考信号资源为K个SRS资源,且K等于该第一上行数据传输对应的数据传输层的层数;终端设备确定发送该K个SRS资源中的SRS资源时使用的K个发送波束,并将该K个发送波束作为K个 该数据传输层的发送波束,该K个发送波束与K个数据传输层一一对应。
因此,不同参考信号资源对应的上行传输可以采用不同的波束,从而与传输相应数据的panel的信道信息相匹配。
可选地,作为一个实施例,该终端设备可以根据参考信号资源与功率控制参数之间的对应关系,将该至少一个第一参考信号资源对应的功率控制参数确定为该第一上行数据传输使用的发送功率。
或者,该终端设备也可以根据参考信号资源指示信息与功率控制参数之间的对应关系,将该第一参考信号资源指示信息对应的功率控制参数确定为该第一上行数据传输使用的发送功率。
应理解,该参考信号资源可以为SRS资源,该SRS资源与功率控制参数之间的对应关系,和/或,该SRS资源指示(SRS Resource Indicator)SRI与功率控制参数之间的对应关系,可以由网络设备为该终端设备预先配置,本申请实施例并不限于此。
应理解,上述功率控制参数可以包括:开环功率控制参数、闭环功率控制参数和路损估计值中的至少一个。
因此,不同参考信号资源对应的上行传输可以采用不同的发送功率,从而与传输相应数据的beam或者panel的信道增益相匹配。
可选地,作为一个实施例,该终端设备可以将接收或发送该至少一个第一参考信号资源中的参考信号的panel,确定为该第一上行数据传输使用的panel。
例如,该至少一个第一参考信号资源为SRS资源,终端设备将在该SRS资源上发送SRS时使用的panel,确定为传输该第一上行数据的panel。
再例如,该至少一个第一参考信号资源为CSI-RS资源,终端设备将在该CSI-RS资源上接收CSI-RS时使用的panel,确定为传输该第一上行数据的panel。
因此,不同的参考信号资源对应的上行传输可以采用不同的panel,从而可以根据参考信号选择在更好的panel上传输数据,或者充分利用终端的多个panel同时传输数据,提高上行的传输性能。
在本申请实施例中,该方法100还可以包括:在接收该第一DCI的同时,接收该网络设备发送的第二DCI,即该终端设备同时接收到至少两个DCI,该至少两个DCI包括第一DCI和第二DCI。
因此,终端可以同时检测至少两个DCI,分别调度不同panel上的数据传输,从而支持不同panel同时进行上行传输,提高上行传输的频谱效率。
应理解,接收第一DCI的同时接收第二DCI可以包括:终端设备在同一时隙中接收该第一DCI和第二DCI,或者,该终端设备在同一OFDM符号中接收该第一DCI和第二DCI,或者该终端设备在同一控制信道中检测到该第一DCI和第二DCI,本申请实施例并不限于此。
应理解,该第二DCI包括第二参考信号资源集合指示信息;对应的,该方法100还包括:终端设备根据该第二参考信号资源集合指示信息,确定第二参考信号资源集合,该第二参考信号资源集合与该第一参考信号资源集合不同。
在本申请实施例中,一个DMRS端口组可以对应一个panel,一个panel可以对应多个DMRS端口,终端设备在确定一个panel的传输参数之后,就可以在这一天线阵列块上传输相应DMRS端口组上的数据。对应的,终端设备通过该第一DCI调度的该第一上行数据传输与通过该第二DCI调度的第二上行数据传输可以使用不同的DMRS端口。
例如,第一DCI调度第一上行传输,且第一上行传输采用DMRS端口0和端口1;第二DCI调度第二上行传输,且第二上行传输采用DMRS端口2和端口3。
因此,本申请实施例的用于上行数据传输的方法,终端设备接收网络设备发送的多个DCI,不同DCI用于调度不同的panel上的上行传输,根据不同DCI中指示不同的资源集合,确定对应的panel的上行信道信息,可以使得多个panel可以采用独立的传输参数进行数据传输,从而可以提高多panel传输的灵活性和上行频谱效率。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文中结合图1,详细描述了根据本申请实施例的用于上行数据传输的 方法,下面将结合图2至图3,描述根据本申请实施例的终端设备。
如图2所示,根据本申请实施例的终端设备200包括:接收单元210和确定单元220,可选的,还可以包括发送单元230。
具体地,该接收单元210用于:接收网络设备发送的用于调度第一上行数据传输的第一下行控制信息DCI,该第一DCI包括第一参考信号资源集合指示信息和第一参考信号资源指示信息;该确定单元220用于:根据该第一参考信号资源集合指示信息,确定第一参考信号资源集合,该第一参考信号资源集合包括至少一个参考信号资源;该确定单元220还用于:根据该第一参考信号资源指示信息,在该第一参考信号资源集合中确定至少一个第一参考信号资源;该确定单元220还用于:根据该至少一个第一参考信号资源,确定该第一上行数据传输使用的传输参数。
可选的,该接收单元210还用于:接收该网络设备发送的第一配置信息,该第一配置信息用于指示多个参考信号资源集合;该确定单元220具体用于:根据该第一参考信号资源集合指示信息,在该多个参考信号资源集合中确定该第一参考信号资源集合。
可选的,该多个参考信号资源集合用于多个天线阵列块上的参考信号传输。
可选的,该发送单元230用于:在通过该接收单元210接收该网络设备发送的第一配置信息之前,向该网络设备发送天线阵列块个数信息,该天线阵列块个数信息用于指示终端设备的天线阵列块的个数,该天线阵列块个数信息用于该网络设备确定该多个参考信号资源集合的个数。
可选的,该多个参考信号资源集合与多个相位跟踪参考信号PTRS端口一一对应。
可选的,该确定单元220还用于:根据该多个参考信号资源集合与该多个PTRS端口之间的对应关系,确定该第一参考信号资源集合对应的第一PTRS端口;在该第一上行数据传输使用的物理资源上,通过该第一PTRS端口传输上行PTRS。
可选的,该确定单元220还用于:根据该多个参考信号资源集合与多个物理上行共享信道PUSCH功率控制参数组的对应关系,确定该第一参考信号资源集合对应的第一PUSCH功率控制参数组。
可选的,该确定单元220还用于:根据该第一参考信号资源指示信息, 在该第一PUSCH功率控制参数组中确定该第一DCI指示的PUSCH传输使用的功率控制参数。
可选的,该第一上行数据传输使用的该传输参数包括:预编码矩阵、传输层数、天线端口数、发送波束、功率控制参数和天线阵列块中的至少一个。
可选的,该至少一个第一参考信号资源为SRS资源,该确定单元220具体用于:确定该SRS资源的天线端口数以及第一PMI信息;根据天线端口数、PMI信息以及预编码矩阵之间的对应关系,确定与该SRS资源的天线端口数以及该第一PMI信息对应的预编码矩阵为该第一上行数据传输使用的预编码矩阵。
可选的,该第一DCI包括该第一PMI信息。
可选的,该至少一个第一参考信号资源为SRS资源,该确定单元220具体用于:将该至少一个SRS资源的总天线端口数和/或该至少一个SRS资源的个数,确定为该第一上行数据传输的传输层数。
可选的,该至少一个第一参考信号资源为SRS资源,该确定单元220具体用于:将传输该SRS资源中的SRS使用的预编码矩阵,确定为该第一上行数据传输使用的预编码矩阵。
可选的,该至少一个第一参考信号资源为K个SRS资源,K等于该第一上行数据传输对应的数据传输层的层数;该确定单元220具体用于:确定该K个SRS资源使用的K个预编码矩阵;将该K个预编码矩阵确定为K个该数据传输层的预编码矩阵,该K个预编码矩阵与K个该数据传输层一一对应。
可选的,该至少一个第一参考信号资源为至少一个SRS资源,该确定单元220具体用于:将该至少一个SRS资源的总天线端口数和/或该至少一个SRS资源的个数确定为该第一上行数据传输使用的天线端口数。
可选的,该至少一个第一参考信号资源为CSI-RS资源,该确定单元220具体用于:根据该CSI-RS资源上的CSI-RS,确定对应的下行信道信息;将该下行信道信息确定为上行信道信息;根据该上行信道信息,确定该第一上行数据传输使用的发送波束和/或预编码矩阵。
可选的,该确定单元220具体用于:将接收或发送该至少一个第一参考信号资源中的参考信号的波束,确定为该第一上行数据传输使用的波束。
可选的,该至少一个第一参考信号资源为K个SRS资源,K等于该第 一上行数据传输对应的数据传输层的层数;该确定单元220具体用于:确定发送该K个SRS资源中的SRS资源使用的K个发送波束;将该K个发送波束作为K个该数据传输层的发送波束,该K个发送波束与K个数据传输层一一对应。
可选的,该确定单元220具体用于:根据参考信号资源与功率控制参数之间的对应关系,将该至少一个第一参考信号资源对应的功率控制参数确定为该第一上行数据传输使用的发送功率。
可选的,该确定单元220具体用于:根据参考信号资源指示信息与功率控制参数之间的对应关系,将该第一参考信号资源指示信息对应的功率控制参数确定为该第一上行数据传输使用的发送功率。
可选的,该功率控制参数至少包括:开环功率控制参数、闭环功率控制参数和路损估计值中的一个。
可选的,该确定单元220具体用于:将接收或发送该至少一个第一参考信号资源中的参考信号的天线阵列块,确定为该第一上行数据传输使用的天线阵列块。
可选的,该至少一个第一参考信号资源为SRS资源或CSI-RS资源。
可选的,该接收单元210还用于:在接收该第一DCI的同时,接收该网络设备发送的第二DCI。
可选的,该第二DCI包括第二参考信号资源集合指示信息;该确定单元220具体用于:根据该第二参考信号资源集合指示信息,确定第二参考信号资源集合,该第二参考信号资源集合与该第一参考信号资源集合不同。
可选的,该第一DCI调度的该第一上行数据传输与该第二DCI调度的第二上行数据传输使用不同的DMRS端口。应理解,根据本申请实施例的终端设备200可对应于执行本申请实施例中的方法100,并且终端设备200中的各个单元的上述和其它操作和/或功能分别为了实现图1中的各个方法的终端设备相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的终端设备,接收网络设备发送的多个DCI,不同DCI用于调度不同的panel上的上行传输,根据不同DCI中指示不同的资源集合,确定对应的panel的上行信道信息,可以使得多个panel可以采用独立的传输参数进行数据传输,从而可以提高多panel传输的灵活性和上行频谱效率。
图3示出了根据本申请实施例的终端设备300的示意性框图,如图3所示,该终端设备300包括:处理器310和收发器320,处理器310和收发器320相连,可选地,该终端设备300还包括存储器330,存储器330与处理器310相连。其中,处理器310、存储器330和收发器320之间通过内部连接通路互相通信,传递和/或控制数据信号,该存储器330可以用于存储指令,该处理器310用于执行该存储器330存储的指令,以控制收发器320发送信息或信号,该收发器320用于:接收网络设备发送的用于调度第一上行数据传输的第一下行控制信息DCI,该第一DCI包括第一参考信号资源集合指示信息和第一参考信号资源指示信息;该处理器310用于:根据该第一参考信号资源集合指示信息,确定第一参考信号资源集合,该第一参考信号资源集合包括至少一个参考信号资源;该处理器310用于:根据该第一参考信号资源指示信息,在该第一参考信号资源集合中确定至少一个第一参考信号资源;该处理器310用于:根据该至少一个第一参考信号资源,确定该第一上行数据传输使用的传输参数。
可选的,作为一个实施例,该收发器320用于:接收该网络设备发送的第一配置信息,该第一配置信息用于指示多个参考信号资源集合;该处理器310用于:根据该第一参考信号资源集合指示信息,在该多个参考信号资源集合中确定该第一参考信号资源集合。
可选的,作为一个实施例,该多个参考信号资源集合用于多个天线阵列块上的参考信号传输。
可选的,作为一个实施例,该收发器320用于:在接收该网络设备发送的第一配置信息之前,向该网络设备发送天线阵列块个数信息,该天线阵列块个数信息用于指示终端设备的天线阵列块的个数,该天线阵列块个数信息用于该网络设备确定该多个参考信号资源集合的个数。
可选的,作为一个实施例,该多个参考信号资源集合与多个相位跟踪参考信号PTRS端口一一对应。
可选的,作为一个实施例,该处理器310用于:根据该多个参考信号资源集合与该多个PTRS端口之间的对应关系,确定该第一参考信号资源集合对应的第一PTRS端口;在该第一上行数据传输使用的物理资源上,通过该第一PTRS端口传输上行PTRS。
可选的,作为一个实施例,该处理器310用于:根据该多个参考信号资 源集合与多个物理上行共享信道PUSCH功率控制参数组的对应关系,确定该第一参考信号资源集合对应的第一PUSCH功率控制参数组。
可选的,作为一个实施例,该处理器310用于:根据该第一参考信号资源指示信息,在该第一PUSCH功率控制参数组中确定该第一DCI指示的PUSCH传输使用的功率控制参数。
可选的,作为一个实施例,该第一上行数据传输使用的该传输参数包括:预编码矩阵、传输层数、天线端口数、发送波束、功率控制参数和天线阵列块中的至少一个。
可选的,作为一个实施例,该至少一个第一参考信号资源为探测参考信号SRS资源,该处理器310用于:确定该SRS资源的天线端口数以及第一预编码矩阵指示PMI信息;根据天线端口数、PMI信息以及预编码矩阵之间的对应关系,确定与该SRS资源的天线端口数以及该第一PMI信息对应的预编码矩阵为该第一上行数据传输使用的预编码矩阵。
可选的,作为一个实施例,该第一DCI包括该第一PMI信息。
可选的,作为一个实施例,该至少一个第一参考信号资源为SRS资源,该处理器310用于:将该至少一个SRS资源的总天线端口数和/或该至少一个SRS资源的个数,确定为该第一上行数据传输的传输层数。
可选的,作为一个实施例,该至少一个第一参考信号资源为SRS资源,该处理器310用于:将传输该SRS资源中的SRS使用的预编码矩阵,确定为该第一上行数据传输使用的预编码矩阵。
可选的,作为一个实施例,该至少一个第一参考信号资源为K个SRS资源,K等于该第一上行数据传输对应的数据传输层的层数;该处理器310用于:确定该K个SRS资源使用的K个预编码矩阵;将该K个预编码矩阵确定为K个该数据传输层的预编码矩阵,该K个预编码矩阵与K个该数据传输层一一对应。
可选的,作为一个实施例,该至少一个第一参考信号资源为至少一个SRS资源,该处理器310用于:将该至少一个SRS资源的总天线端口数和/或该至少一个SRS资源的个数确定为该第一上行数据传输使用的天线端口数。
可选的,作为一个实施例,该至少一个第一参考信号资源为CSI-RS资源,该处理器310用于:根据该CSI-RS资源上的CSI-RS,确定对应的下行 信道信息;将该下行信道信息确定为上行信道信息;根据该上行信道信息,确定该第一上行数据传输使用的发送波束和/或预编码矩阵。
可选的,作为一个实施例,该处理器310用于:将接收或发送该至少一个第一参考信号资源中的参考信号的波束,确定为该第一上行数据传输使用的波束。
可选的,作为一个实施例,该至少一个第一参考信号资源为K个SRS资源,K等于该第一上行数据传输对应的数据传输层的层数;该处理器310用于:确定发送该K个SRS资源中的SRS资源使用的K个发送波束;将该K个发送波束作为K个该数据传输层的发送波束,该K个发送波束与K个数据传输层一一对应。
可选的,作为一个实施例,该处理器310用于:根据参考信号资源与功率控制参数之间的对应关系,将该至少一个第一参考信号资源对应的功率控制参数确定为该第一上行数据传输使用的发送功率。
可选的,作为一个实施例,该处理器310用于:根据参考信号资源指示信息与功率控制参数之间的对应关系,将该第一参考信号资源指示信息对应的功率控制参数确定为该第一上行数据传输使用的发送功率。
可选的,作为一个实施例,该功率控制参数至少包括:开环功率控制参数、闭环功率控制参数和路损估计值中的一个。
可选的,作为一个实施例,该处理器310用于:将接收或发送该至少一个第一参考信号资源中的参考信号的天线阵列块,确定为该第一上行数据传输使用的天线阵列块。
可选的,作为一个实施例,该至少一个第一参考信号资源为SRS资源或CSI-RS资源。
可选的,作为一个实施例,该收发器320用于:在接收该第一DCI的同时,接收该网络设备发送的第二DCI。
可选的,作为一个实施例,该第二DCI包括第二参考信号资源集合指示信息;该处理器310用于:根据该第二参考信号资源集合指示信息,确定第二参考信号资源集合,该第二参考信号资源集合与该第一参考信号资源集合不同。
可选的,作为一个实施例,该第一DCI调度的该第一上行数据传输与该第二DCI调度的第二上行数据传输使用不同的解调参考信号DMRS端口。
应理解,根据本申请实施例的终端设备300可对应于本申请实施例中的终端设备200,并可以对应于执行根据本申请实施例的方法100中的相应主体,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图1中的各个方法中终端设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的终端设备,接收网络设备发送的多个DCI,不同DCI用于调度不同的panel上的上行传输,根据不同DCI中指示不同的资源集合,确定对应的panel的上行信道信息,可以使得多个panel可以采用独立的传输参数进行数据传输,从而可以提高多panel传输的灵活性和上行频谱效率。
应注意,本申请上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable rom,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM, DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (52)

  1. 一种用于上行数据传输的方法,其特征在于,包括:
    接收网络设备发送的用于调度第一上行数据传输的第一下行控制信息DCI,所述第一DCI包括第一参考信号资源集合指示信息和第一参考信号资源指示信息;
    根据所述第一参考信号资源集合指示信息,确定第一参考信号资源集合,所述第一参考信号资源集合包括至少一个参考信号资源;
    根据所述第一参考信号资源指示信息,在所述第一参考信号资源集合中确定至少一个第一参考信号资源;
    根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第一配置信息,所述第一配置信息用于指示多个参考信号资源集合;
    所述根据所述第一参考信号资源集合指示信息,确定第一参考信号资源集合,包括:
    根据所述第一参考信号资源集合指示信息,在所述多个参考信号资源集合中确定所述第一参考信号资源集合。
  3. 根据权利要求2所述的方法,其特征在于,所述多个参考信号资源集合用于多个天线阵列块上的参考信号传输。
  4. 根据权利要求2或3所述的方法,其特征在于,在所述接收所述网络设备发送的第一配置信息之前,所述方法还包括:
    向所述网络设备发送天线阵列块个数信息,所述天线阵列块个数信息用于指示终端设备的天线阵列块的个数,所述天线阵列块个数信息用于所述网络设备确定所述多个参考信号资源集合的个数。
  5. 根据权利要求2所述的方法,其特征在于,所述多个参考信号资源集合与多个相位跟踪参考信号PTRS端口一一对应。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    根据所述多个参考信号资源集合与所述多个PTRS端口之间的对应关系,确定所述第一参考信号资源集合对应的第一PTRS端口;
    在所述第一上行数据传输使用的物理资源上,通过所述第一PTRS端口 传输上行PTRS。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述多个参考信号资源集合与多个物理上行共享信道PUSCH功率控制参数组的对应关系,确定所述第一参考信号资源集合对应的第一PUSCH功率控制参数组。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    根据所述第一参考信号资源指示信息,在所述第一PUSCH功率控制参数组中确定所述第一DCI指示的PUSCH传输使用的功率控制参数。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一上行数据传输使用的所述传输参数包括:预编码矩阵、传输层数、天线端口数、发送波束、功率控制参数和天线阵列块中的至少一个。
  10. 根据权利要求9所述的方法,其特征在于,所述至少一个第一参考信号资源为探测参考信号SRS资源,
    所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:
    确定所述SRS资源的天线端口数以及第一预编码矩阵指示PMI信息;
    根据天线端口数、PMI信息以及预编码矩阵之间的对应关系,确定与所述SRS资源的天线端口数以及所述第一PMI信息对应的预编码矩阵为所述第一上行数据传输使用的预编码矩阵。
  11. 根据权利要求10所述的方法,其特征在于,所述第一DCI包括所述第一PMI信息。
  12. 根据权利要求9所述的方法,其特征在于,所述至少一个第一参考信号资源为至少一个SRS资源,
    所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:
    将所述至少一个SRS资源的总天线端口数和/或所述至少一个SRS资源的个数,确定为所述第一上行数据传输的传输层数。
  13. 根据权利要求9所述的方法,其特征在于,所述至少一个第一参考信号资源为SRS资源,
    所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输 使用的传输参数,包括:
    将传输所述SRS资源中的SRS使用的预编码矩阵,确定为所述第一上行数据传输使用的预编码矩阵。
  14. 根据权利要求13所述的方法,其特征在于,所述至少一个第一参考信号资源为K个SRS资源,K等于所述第一上行数据传输对应的数据传输层的层数;
    所述将传输所述SRS资源中的SRS使用的预编码矩阵,确定为所述第一上行数据传输使用的预编码矩阵,包括:
    确定所述K个SRS资源使用的K个预编码矩阵;
    将所述K个预编码矩阵确定为K个所述数据传输层的预编码矩阵,所述K个预编码矩阵与K个所述数据传输层一一对应。
  15. 根据权利要求9所述的方法,其特征在于,所述至少一个第一参考信号资源为至少一个SRS资源,
    所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:
    将所述至少一个SRS资源的总天线端口数和/或所述至少一个SRS资源的个数确定为所述第一上行数据传输使用的天线端口数。
  16. 根据权利要求9所述的方法,其特征在于,所述至少一个第一参考信号资源为信道状态信息参考信号CSI-RS资源,
    所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:
    根据所述CSI-RS资源上的CSI-RS,确定对应的下行信道信息;
    将所述下行信道信息确定为上行信道信息;
    根据所述上行信道信息,确定所述第一上行数据传输使用的发送波束和/或预编码矩阵。
  17. 根据权利要求9所述的方法,其特征在于,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:
    将接收或发送所述至少一个第一参考信号资源中的参考信号的波束,确定为所述第一上行数据传输使用的波束。
  18. 根据权利要求17所述的方法,其特征在于,所述至少一个第一参考信号资源为K个SRS资源,K等于所述第一上行数据传输对应的数据传 输层的层数;
    所述将接收或发送所述至少一个第一参考信号资源中的参考信号的波束,确定为所述第一上行数据传输使用的波束,包括:
    确定发送所述K个SRS资源中的SRS资源使用的K个发送波束;
    将所述K个发送波束作为K个所述数据传输层的发送波束,所述K个发送波束与K个数据传输层一一对应。
  19. 根据权利要求9所述的方法,其特征在于,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:
    根据参考信号资源与功率控制参数之间的对应关系,将所述至少一个第一参考信号资源对应的功率控制参数确定为所述第一上行数据传输使用的发送功率。
  20. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    根据参考信号资源指示信息与功率控制参数之间的对应关系,将所述第一参考信号资源指示信息对应的功率控制参数确定为所述第一上行数据传输使用的发送功率。
  21. 根据权利要求19或20所述的方法,其特征在于,所述功率控制参数至少包括:开环功率控制参数、闭环功率控制参数和路损估计值中的一个。
  22. 根据权利要求9所述的方法,其特征在于,所述根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数,包括:
    将接收或发送所述至少一个第一参考信号资源中的参考信号的天线阵列块,确定为所述第一上行数据传输使用的天线阵列块。
  23. 根据权利要求17、19、20或22所述的方法,其特征在于,所述至少一个第一参考信号资源为SRS资源或CSI-RS资源。
  24. 根据权利要求1至23中任一项所述的方法,其特征在于,所述方法还包括:
    在接收所述第一DCI的同时,接收所述网络设备发送的第二DCI。
  25. 根据权利要求24所述的方法,其特征在于,所述第二DCI包括第二参考信号资源集合指示信息;
    所述方法还包括:
    根据所述第二参考信号资源集合指示信息,确定第二参考信号资源集合,所述第二参考信号资源集合与所述第一参考信号资源集合不同。
  26. 根据权利要求24所述的方法,其特征在于,所述第一DCI调度的所述第一上行数据传输与所述第二DCI调度的第二上行数据传输使用不同的解调参考信号DMRS端口。
  27. 一种终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的用于调度第一上行数据传输的第一下行控制信息DCI,所述第一DCI包括第一参考信号资源集合指示信息和第一参考信号资源指示信息;
    确定单元,用于根据所述第一参考信号资源集合指示信息,确定第一参考信号资源集合,所述第一参考信号资源集合包括至少一个参考信号资源;
    所述确定单元还用于:根据所述第一参考信号资源指示信息,在所述第一参考信号资源集合中确定至少一个第一参考信号资源;
    所述确定单元还用于:根据所述至少一个第一参考信号资源,确定所述第一上行数据传输使用的传输参数。
  28. 根据权利要求27所述的终端设备,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的第一配置信息,所述第一配置信息用于指示多个参考信号资源集合;
    所述确定单元具体用于:
    根据所述第一参考信号资源集合指示信息,在所述多个参考信号资源集合中确定所述第一参考信号资源集合。
  29. 根据权利要求28所述的终端设备,其特征在于,所述多个参考信号资源集合用于多个天线阵列块上的参考信号传输。
  30. 根据权利要求28或29所述的终端设备,其特征在于,所述终端设备还包括:
    发送单元,用于在通过所述接收单元接收所述网络设备发送的第一配置信息之前,向所述网络设备发送天线阵列块个数信息,所述天线阵列块个数信息用于指示终端设备的天线阵列块的个数,所述天线阵列块个数信息用于所述网络设备确定所述多个参考信号资源集合的个数。
  31. 根据权利要求28所述的终端设备,其特征在于,所述多个参考信号资源集合与多个相位跟踪参考信号PTRS端口一一对应。
  32. 根据权利要求31所述的终端设备,其特征在于,所述确定单元还 用于:
    根据所述多个参考信号资源集合与所述多个PTRS端口之间的对应关系,确定所述第一参考信号资源集合对应的第一PTRS端口;
    在所述第一上行数据传输使用的物理资源上,通过所述第一PTRS端口传输上行PTRS。
  33. 根据权利要求28至32中任一项所述的终端设备,其特征在于,所述确定单元还用于:
    根据所述多个参考信号资源集合与多个物理上行共享信道PUSCH功率控制参数组的对应关系,确定所述第一参考信号资源集合对应的第一PUSCH功率控制参数组。
  34. 根据权利要求33所述的终端设备,其特征在于,所述确定单元还用于:
    根据所述第一参考信号资源指示信息,在所述第一PUSCH功率控制参数组中确定所述第一DCI指示的PUSCH传输使用的功率控制参数。
  35. 根据权利要求27至34中任一项所述的终端设备,其特征在于,所述第一上行数据传输使用的所述传输参数包括:预编码矩阵、传输层数、天线端口数、发送波束、功率控制参数和天线阵列块中的至少一个。
  36. 根据权利要求35所述的终端设备,其特征在于,所述至少一个第一参考信号资源为探测参考信号SRS资源,
    所述确定单元具体用于:
    确定所述SRS资源的天线端口数以及第一预编码矩阵指示PMI信息;
    根据天线端口数、PMI信息以及预编码矩阵之间的对应关系,确定与所述SRS资源的天线端口数以及所述第一PMI信息对应的预编码矩阵为所述第一上行数据传输使用的预编码矩阵。
  37. 根据权利要求36所述的终端设备,其特征在于,所述第一DCI包括所述第一PMI信息。
  38. 根据权利要求35所述的终端设备,其特征在于,所述至少一个第一参考信号资源为至少一个SRS资源,
    所述确定单元具体用于:
    将所述至少一个SRS资源的总天线端口数和/或所述至少一个SRS资源的个数,确定为所述第一上行数据传输的传输层数。
  39. 根据权利要求35所述的终端设备,其特征在于,所述至少一个第一参考信号资源为SRS资源,
    所述确定单元具体用于:
    将传输所述SRS资源中的SRS使用的预编码矩阵,确定为所述第一上行数据传输使用的预编码矩阵。
  40. 根据权利要求39所述的终端设备,其特征在于,所述至少一个第一参考信号资源为K个SRS资源,K等于所述第一上行数据传输对应的数据传输层的层数;
    所述确定单元具体用于:
    确定所述K个SRS资源使用的K个预编码矩阵;
    将所述K个预编码矩阵确定为K个所述数据传输层的预编码矩阵,所述K个预编码矩阵与K个所述数据传输层一一对应。
  41. 根据权利要求35所述的终端设备,其特征在于,所述至少一个第一参考信号资源为至少一个SRS资源,
    所述确定单元具体用于:
    将所述至少一个SRS资源的总天线端口数和/或所述至少一个SRS资源的个数确定为所述第一上行数据传输使用的天线端口数。
  42. 根据权利要求35所述的终端设备,其特征在于,所述至少一个第一参考信号资源为信道状态信息参考信号CSI-RS资源,
    所述确定单元具体用于:
    根据所述CSI-RS资源上的CSI-RS,确定对应的下行信道信息;
    将所述下行信道信息确定为上行信道信息;
    根据所述上行信道信息,确定所述第一上行数据传输使用的发送波束和/或预编码矩阵。
  43. 根据权利要求35所述的终端设备,其特征在于,所述确定单元具体用于:
    将接收或发送所述至少一个第一参考信号资源中的参考信号的波束,确定为所述第一上行数据传输使用的波束。
  44. 根据权利要求43所述的终端设备,其特征在于,所述至少一个第一参考信号资源为K个SRS资源,K等于所述第一上行数据传输对应的数据传输层的层数;
    所述确定单元具体用于:
    确定发送所述K个SRS资源中的SRS资源使用的K个发送波束;
    将所述K个发送波束作为K个所述数据传输层的发送波束,所述K个发送波束与K个数据传输层一一对应。
  45. 根据权利要求35所述的终端设备,其特征在于,所述确定单元具体用于:
    根据参考信号资源与功率控制参数之间的对应关系,将所述至少一个第一参考信号资源对应的功率控制参数确定为所述第一上行数据传输使用的发送功率。
  46. 根据权利要求35所述的终端设备,其特征在于,所述确定单元具体用于:
    根据参考信号资源指示信息与功率控制参数之间的对应关系,将所述第一参考信号资源指示信息对应的功率控制参数确定为所述第一上行数据传输使用的发送功率。
  47. 根据权利要求45或46所述的终端设备,其特征在于,所述功率控制参数至少包括:开环功率控制参数、闭环功率控制参数和路损估计值中的一个。
  48. 根据权利要求35所述的终端设备,其特征在于,所述确定单元具体用于:
    将接收或发送所述至少一个第一参考信号资源中的参考信号的天线阵列块,确定为所述第一上行数据传输使用的天线阵列块。
  49. 根据权利要求43、45、46或48所述的终端设备,其特征在于,所述至少一个第一参考信号资源为SRS资源或CSI-RS资源。
  50. 根据权利要求27至49中任一项所述的终端设备,其特征在于,所述接收单元还用于:
    在接收所述第一DCI的同时,接收所述网络设备发送的第二DCI。
  51. 根据权利要求50所述的终端设备,其特征在于,所述第二DCI包括第二参考信号资源集合指示信息;
    所述确定单元具体用于:
    根据所述第二参考信号资源集合指示信息,确定第二参考信号资源集合,所述第二参考信号资源集合与所述第一参考信号资源集合不同。
  52. 根据权利要求50所述的终端设备,其特征在于,所述第一DCI调度的所述第一上行数据传输与所述第二DCI调度的第二上行数据传输使用不同的解调参考信号DMRS端口。
PCT/CN2017/119323 2017-12-28 2017-12-28 用于上行数据传输的方法和终端设备 WO2019127199A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2017445393A AU2017445393A1 (en) 2017-12-28 2017-12-28 Method for transmitting uplink data and terminal device
KR1020207021866A KR20200104378A (ko) 2017-12-28 2017-12-28 업링크 데이터 전송을 위한 방법 및 단말 기기
PCT/CN2017/119323 WO2019127199A1 (zh) 2017-12-28 2017-12-28 用于上行数据传输的方法和终端设备
CN201780097891.9A CN111512582A (zh) 2017-12-28 2017-12-28 用于上行数据传输的方法和终端设备
JP2020535164A JP2021513757A (ja) 2017-12-28 2017-12-28 アップリンクデータの伝送のための方法および端末機器
EP17936657.0A EP3731446B1 (en) 2017-12-28 2017-12-28 Method for transmitting uplink data and terminal device
US16/911,372 US11412531B2 (en) 2017-12-28 2020-06-24 Method for transmitting uplink data and terminal device
US17/813,491 US11849446B2 (en) 2017-12-28 2022-07-19 Method for transmitting uplink data and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119323 WO2019127199A1 (zh) 2017-12-28 2017-12-28 用于上行数据传输的方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/911,372 Continuation US11412531B2 (en) 2017-12-28 2020-06-24 Method for transmitting uplink data and terminal device

Publications (1)

Publication Number Publication Date
WO2019127199A1 true WO2019127199A1 (zh) 2019-07-04

Family

ID=67062819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119323 WO2019127199A1 (zh) 2017-12-28 2017-12-28 用于上行数据传输的方法和终端设备

Country Status (7)

Country Link
US (2) US11412531B2 (zh)
EP (1) EP3731446B1 (zh)
JP (1) JP2021513757A (zh)
KR (1) KR20200104378A (zh)
CN (1) CN111512582A (zh)
AU (1) AU2017445393A1 (zh)
WO (1) WO2019127199A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934732A (zh) * 2020-08-07 2020-11-13 中兴通讯股份有限公司 一种上行数据信道的发送方法、终端、基站及储存介质
EP3771259A1 (en) * 2019-07-22 2021-01-27 Comcast Cable Communications, LLC Power control for wireless communications
CN113133121A (zh) * 2020-01-13 2021-07-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113141242A (zh) * 2020-01-19 2021-07-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022025590A1 (ko) * 2020-07-29 2022-02-03 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
EP4057555A4 (en) * 2019-11-04 2024-04-10 ZTE Corporation INDICATION METHOD AND DEVICE, INDICATION INFORMATION RECEIVING METHOD AND DEVICE, COMMUNICATION NODE AND MEDIUM

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871420B2 (en) * 2018-05-11 2024-01-09 Lg Electronics Inc. Method for transmitting and receiving uplink channel in wireless communication system, and device for same
JP2019201403A (ja) * 2019-04-17 2019-11-21 三菱電機株式会社 無線通信装置
US20230370227A1 (en) * 2020-10-19 2023-11-16 Beijing Xiaomi Mobile Software Co., Ltd. Pusch indication method and apparatus, and pusch sending method and apparatus
WO2022183378A1 (zh) * 2021-03-02 2022-09-09 Oppo广东移动通信有限公司 码本上报的方法、终端设备和网络设备
US20240235773A1 (en) * 2021-11-08 2024-07-11 Intel Corporation Techniques for enhanced phase tracking reference signal operation
WO2024151082A1 (ko) * 2023-01-13 2024-07-18 엘지전자 주식회사 무선 통신 시스템에서 pusch 송수신 방법 및 장치
CN116326131A (zh) * 2023-01-28 2023-06-23 北京小米移动软件有限公司 上行传输控制方法及装置
CN118509869A (zh) * 2023-02-16 2024-08-16 华为技术有限公司 配置参考信号资源的方法以及通信装置
CN117693019B (zh) * 2024-02-01 2024-06-25 荣耀终端有限公司 一种上行数据传输方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104468030A (zh) * 2014-08-26 2015-03-25 上海华为技术有限公司 一种数据传输方法、用户设备及基站
CN107276734A (zh) * 2016-04-08 2017-10-20 华为技术有限公司 参考信号的传输方法、设备和系统
CN107371241A (zh) * 2016-05-12 2017-11-21 华为技术有限公司 参考信号传输方法、网络设备、用户设备和通信系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7021264B2 (ja) * 2017-06-16 2022-02-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) マルチリソースアップリンクサウンディングおよびアンテナサブセット送信
US10813118B2 (en) * 2017-07-10 2020-10-20 Lg Electronics Inc. Method for transmitting and receiving uplink control information and devices supporting the same
CA3074301C (en) * 2017-09-07 2021-05-04 Ofinno, Llc Uplink beam management
JP7001831B2 (ja) * 2017-10-02 2022-01-20 テレフオンアクチーボラゲット エルエム エリクソン(パブル) サウンディング参照送信
US10945172B2 (en) * 2017-11-16 2021-03-09 Comcast Cable Communications, Llc Power control for bandwidth part switching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104468030A (zh) * 2014-08-26 2015-03-25 上海华为技术有限公司 一种数据传输方法、用户设备及基站
CN107276734A (zh) * 2016-04-08 2017-10-20 华为技术有限公司 参考信号的传输方法、设备和系统
CN107371241A (zh) * 2016-05-12 2017-11-21 华为技术有限公司 参考信号传输方法、网络设备、用户设备和通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3731446A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11337163B2 (en) 2019-07-22 2022-05-17 Comcast Cable Communications, Llc Power control for wireless communications
EP3771259A1 (en) * 2019-07-22 2021-01-27 Comcast Cable Communications, LLC Power control for wireless communications
EP3771258A1 (en) * 2019-07-22 2021-01-27 Comcast Cable Communications, LLC Power control for wireless communications
US12041557B2 (en) 2019-07-22 2024-07-16 Comcast Cable Communications, Llc Power control for wireless communications
US12041558B2 (en) 2019-07-22 2024-07-16 Comcast Cable Communications, Llc Power control for wireless communications
US11224021B2 (en) 2019-07-22 2022-01-11 Comcast Cable Communications, Llc Power control for wireless communications
EP4057555A4 (en) * 2019-11-04 2024-04-10 ZTE Corporation INDICATION METHOD AND DEVICE, INDICATION INFORMATION RECEIVING METHOD AND DEVICE, COMMUNICATION NODE AND MEDIUM
CN113133121A (zh) * 2020-01-13 2021-07-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113133121B (zh) * 2020-01-13 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113141242A (zh) * 2020-01-19 2021-07-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113141242B (zh) * 2020-01-19 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115065451A (zh) * 2020-01-19 2022-09-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11864174B2 (en) 2020-01-19 2024-01-02 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
US20240098732A1 (en) * 2020-01-19 2024-03-21 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
US20210329670A1 (en) * 2020-01-19 2021-10-21 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
WO2022025590A1 (ko) * 2020-07-29 2022-02-03 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
WO2022028617A1 (zh) * 2020-08-07 2022-02-10 中兴通讯股份有限公司 上行数据信道的发送方法、终端、基站及储存介质
CN111934732A (zh) * 2020-08-07 2020-11-13 中兴通讯股份有限公司 一种上行数据信道的发送方法、终端、基站及储存介质

Also Published As

Publication number Publication date
KR20200104378A (ko) 2020-09-03
EP3731446A1 (en) 2020-10-28
US11412531B2 (en) 2022-08-09
US11849446B2 (en) 2023-12-19
AU2017445393A1 (en) 2020-08-13
EP3731446B1 (en) 2023-08-09
US20200329487A1 (en) 2020-10-15
CN111512582A (zh) 2020-08-07
JP2021513757A (ja) 2021-05-27
EP3731446A4 (en) 2020-12-23
US20220353886A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
WO2020155179A1 (zh) 传输信号的方法、终端设备和网络设备
US11575543B2 (en) Method for uplink data transmission, terminal device and network device
WO2019223729A1 (zh) 通信方法、终端设备和网络设备
CN107347005B (zh) 配置探测参考信号的方法和装置
CN108811075B (zh) 通信方法、网络设备和终端设备
WO2019140666A1 (zh) 探测参考信号传输方法、网络设备和终端设备
WO2020037447A1 (zh) 一种功率控制方法及装置、终端
WO2018107363A1 (zh) 传输信号的方法、终端设备和网络设备
WO2019080107A1 (zh) 传输物理上行控制信道pucch的方法、终端设备和网络设备
WO2018053814A1 (zh) 传输srs的方法、网络设备和终端设备
US11309949B2 (en) Signal processing method and apparatus
WO2019075701A1 (zh) 无线通信方法和设备
KR20200044963A (ko) 업링크 제어 채널을 전송하기 위한 방법 및 장치
WO2019023876A1 (zh) 数据传输的方法和终端设备
WO2019006702A1 (zh) 无线通信方法和设备
WO2019061494A1 (zh) 计算信道质量指示cqi的方法、终端设备和网络设备
CN118283829A (zh) 波束指示方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017936657

Country of ref document: EP

Effective date: 20200720

ENP Entry into the national phase

Ref document number: 20207021866

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017445393

Country of ref document: AU

Date of ref document: 20171228

Kind code of ref document: A