WO2019174055A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2019174055A1
WO2019174055A1 PCT/CN2018/079357 CN2018079357W WO2019174055A1 WO 2019174055 A1 WO2019174055 A1 WO 2019174055A1 CN 2018079357 W CN2018079357 W CN 2018079357W WO 2019174055 A1 WO2019174055 A1 WO 2019174055A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
terminal device
frequency band
base station
carriers
Prior art date
Application number
PCT/CN2018/079357
Other languages
English (en)
French (fr)
Inventor
朱小松
吴毅凌
李铮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880090645.5A priority Critical patent/CN111801956A/zh
Priority to EP18909405.5A priority patent/EP3742780A4/en
Priority to PCT/CN2018/079357 priority patent/WO2019174055A1/zh
Publication of WO2019174055A1 publication Critical patent/WO2019174055A1/zh
Priority to US17/009,143 priority patent/US20200396728A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/12Fixed resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/75Information technology; Communication
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/30Information sensed or collected by the things relating to resources, e.g. consumed power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications and, more particularly, to communication methods and communication devices.
  • the 230MHz Internet of Things is mainly based on the R14 Narrow Band Internet of Things (NB-IoT) technology, each channel has a bandwidth of 25KHz and a total of 12MHz frequency band.
  • NB-IoT Narrow Band Internet of Things
  • the spectrum of the 230 MHz IoT is discrete, unlike the spectrum partitioning in traditional LTE systems. Therefore, it is necessary to consider how to allocate resources to the terminal device in the discrete spectrum, so that the terminal device communicates on the effective carrier.
  • the present application provides a communication method and communication device that enable a terminal device to communicate on an active carrier.
  • a communication method includes: a base station transmitting resource information of a first frequency band to a terminal device, where the first frequency band includes a first carrier set and a second carrier set, and resources of the first frequency band
  • the information includes a carrier identifier in the first set of carriers and/or a carrier identifier in a second set of carriers, wherein the first carrier can be used by the terminal device to communicate with the base station, and the second carrier cannot Used by the terminal device to communicate with the base station; the base station communicates with the terminal device based on resource information of the first frequency band.
  • the network device determines an effective carrier (ie, an example of the first carrier) and an invalid carrier (ie, an example of the second carrier) on the first frequency band, And transmitting the information of the effective carrier and/or the information of the invalid carrier to the terminal device, so that the terminal device determines the effective carrier from the discrete carriers, and further communicates with the network device on the effective carrier, thereby enabling the terminal device and the network device Communicate effectively.
  • an effective carrier ie, an example of the first carrier
  • an invalid carrier ie, an example of the second carrier
  • the resource information of the first frequency band includes information about a starting position of the first frequency band; and the base station is based on a carrier in the first carrier set Identifying and/or a carrier identifier in the second carrier set, and communicating with the terminal device on a third carrier according to information about a starting location of the first frequency band, where the third carrier is the first carrier Carrier in the set.
  • the terminal device may be configured to determine an effective carrier that communicates with the network device, and a frequency band resource.
  • the terminal device may determine the invalid carrier according to the starting position of the first frequency band and the information of the second carrier, and further determine an effective carrier that communicates with the network device.
  • the resource information of the first frequency band includes a number of carriers N, where the number of carriers N is a number of carriers allocated by the base station to the terminal device, where N is an integer not less than 1; and the base station communicates with the terminal device based on the resource information of the first frequency band, including: the base station is based on the number of carriers N and a carrier in the first carrier set And identifying, communicating with the terminal device on N carriers, where the N carriers are carriers in the first carrier set.
  • the identification information of the first carrier may enable the terminal device to determine an effective carrier capable of communicating with the network device, and according to the number of carriers, the terminal device may determine the required N carriers and the frequency band from the plurality of effective carriers. Resources, which can save money.
  • the resource information of the first frequency band further includes time domain resource information occupied by the base station and the terminal device.
  • the resource information of the first frequency band is carried in a radio resource control RRC connection reconfiguration signaling.
  • Signaling can be saved by causing resource information of the first frequency band to be carried in the RRC connection reconfiguration signaling.
  • a communication method includes: receiving, by a terminal device, resource information of a first frequency band that is sent by a base station, where the first frequency band includes a first carrier set and a second carrier set, where the first frequency band is
  • the resource information includes a carrier identifier in the first carrier set and/or a carrier identifier in a second carrier set, where a carrier in the first carrier set can be used by the terminal device to communicate with the base station, The carrier in the second carrier set cannot be used by the terminal device to communicate with the base station; the terminal device determines, according to the resource information of the first frequency band, the base station from the first carrier set. Carrier of communication.
  • the terminal device can determine the effective carrier from the discrete carriers by receiving the information of the effective carrier and/or the information of the invalid carrier transmitted by the network device, and further validating the network with the network device. Communication is carried out on the carrier to enable the terminal device to communicate effectively with the network device.
  • the resource information of the first frequency band further includes information about a starting position of the first frequency band
  • the resource information according to the first frequency band is Determining, by the terminal device, the carrier that communicates with the base station from the first carrier set according to the resource information of the first frequency band, that: the terminal device according to the carrier identifier in the first carrier set and/ Or the carrier identifier in the second carrier set, and determining, according to information about a starting location of the first frequency band, a carrier that communicates with the base station from the first carrier set.
  • the terminal device may determine an effective carrier that communicates with the network device, and a frequency band resource.
  • the terminal device determines an invalid carrier in the first frequency band according to the start position of the first frequency band and the information of the second carrier, and further determines an effective carrier that communicates with the network device.
  • the resource information of the first frequency band includes a carrier number N, where the number of carriers N is a number of carriers allocated by the base station to the terminal device, where And N is an integer that is not less than 1; and the terminal device determines, according to the resource information of the first frequency band, a carrier that communicates with the base station from the first carrier set, where: the terminal device according to the Determining a carrier number N and a carrier identifier in the first carrier set, and determining, from the first carrier set, N carriers that are in communication with the base station, where the N carriers are carriers in the first carrier set .
  • the terminal device can determine the effective carrier that can communicate with the network device by using the identifier information of the first carrier, and can determine the required N carriers and the frequency band resources from the plurality of effective carriers according to the number of carriers, so that Save money.
  • a communication apparatus comprising means for performing the steps of the first aspect and the communication method of the implementations of the first aspect.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a network device
  • the communication chip may include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a communication apparatus comprising means for performing the steps of the communication method of the second aspect and the implementations of the second aspect.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a terminal device
  • the communication chip may include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a communication device comprising: a processor, a memory for storing a computer program, the processor for calling and running the computer program from a memory, such that the communication device performs the first or second A communication method in any of the possible implementations.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor or the memory may be separate from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • a network device in one possible design, includes a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network device performs the first aspect or any of the possible implementations of the first aspect The method in .
  • a terminal device including a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program, the processor for calling and running the computer program from the memory, such that the terminal device performs any of the second aspect or the second aspect The method in .
  • a system comprising the above terminal device and a network device.
  • a computer program product comprising: a computer program (which may also be referred to as a code, or an instruction) that, when executed, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
  • a computer program (which may also be referred to as a code, or an instruction) that, when executed, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
  • a computer readable medium storing a computer program (which may also be referred to as code, or instructions), when executed on a computer, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
  • a ninth aspect provides a chip system including a memory and a processor for storing a computer program for calling and running the computer program from the memory, such that the communication device mounted with the chip system performs the above The method of any of the possible implementations of the first aspect or the second aspect.
  • the network device determines the effective carrier and the invalid carrier on the first frequency band, and transmits the information of the effective carrier and/or the information of the invalid carrier to the terminal device, so that the terminal device A valid carrier is determined among the discrete carriers, and further communicates with the network device on the effective carrier, thereby enabling the terminal device to effectively communicate with the network device.
  • FIG. 1 is a schematic diagram of a system to which a communication method and a communication device of an embodiment of the present application are applied.
  • Figure 2 is a schematic diagram of the spectral characteristics of a 230 MHz IoT system.
  • Figure 3 is a schematic diagram of the available frequency points for a 230 MHz IoT system.
  • FIG. 4 is a schematic diagram of a communication method suitable for use in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an allocated carrier suitable for the communication method of the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a single burst occupancy frame suitable for the communication method of the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a transmission time point applicable to the communication method of the embodiment of the present application.
  • FIG. 8 is a flow chart of accessing a terminal device to the NB-IoT.
  • FIG. 9 is another schematic diagram of a communication method applicable to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a communication method suitable for another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a MAC Control element applicable to a communication method of another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a processing delay applicable to a communication method according to another embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 15 is another schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 16 is another schematic structural diagram of a terminal device according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • 5NR New Radio
  • IoT Internet of Things
  • the base station in the embodiment of the present application may be a network device, where the network device may be a device for communicating with the terminal device, where the network device may be a Global System of Mobile communication (GSM) system or code division multiple access ( Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), which may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an LTE system.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB, NB base station
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolutional NodeB, eNB or eNodeB
  • the evolved base station may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, or a vehicle.
  • CRAN Cloud Radio Access Network
  • the network device provides a service for the cell, and the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) allocated by the cell, where the cell may be a network device.
  • a transmission resource for example, a frequency domain resource, or a spectrum resource allocated by the cell
  • the cell may be a network device.
  • a cell corresponding to a cell may belong to a macro base station, or may belong to a base station corresponding to a small cell, where the small cell may include: a metro cell, a micro cell, and a pico cell. (Pico cell), femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • multiple carriers can work at the same frequency on the carrier in the LTE system or the 5G system.
  • the concept of the carrier and the cell can be considered to be equivalent.
  • CA carrier aggregation
  • the concept of the carrier and the cell can be considered to be equivalent, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system, and the IoT is an important component of future information technology development, and its main technical feature is to pass the article through the communication technology. Connected to the network to realize an intelligent network of human-machine interconnection and physical interconnection.
  • IoT Internet of Things
  • the IoT technology can achieve massive connection, deep coverage, and terminal power saving through, for example, Narrow Band (NB) technology.
  • the network device allocates resources for the terminal device to perform data transmission on the terminal device.
  • the terminal device and the network device perform data transmission on the effective carrier in the discrete narrowband spectrum.
  • FIG. 1 is a schematic diagram of a system 100 in which a communication method and communication device of an embodiment of the present application can be applied.
  • the system 100 includes a network device 101, which may be an eNodeB or the like.
  • Network device 101 may include one antenna or multiple antennas, and network device 101 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components associated with signal transmission and reception. (eg processor, modulator, multiplexer, demodulator, demultiplexer or antenna, etc.).
  • Network device 101 can communicate with a plurality of terminal devices, such as terminal device 102. However, it will be appreciated that network device 101 can communicate with any number of terminal devices similar to terminal device 102.
  • the terminal device 102 can be, for example, a cellular telephone, a smart phone, a portable computer, a handheld communication device, a handheld computing device, a satellite radio, a global positioning system, a PDA, and/or any other suitable device for communicating over the wireless communication system 100.
  • EPC Evolved Packet Core
  • EPC can support multiple access modes such as 3GPP and non-3GPP, and is a converged architecture supporting heterogeneous networks.
  • EPC is the core network of 4G mobile communication networks. It belongs to the core network category and has the traditional ability of user-signed data storage, mobility management and data exchange and other mobile networks, and can provide users with ultra-high-speed Internet experience.
  • the network device 101 can communicate with the terminal device 102 through a UU interface, and the functions of the UU interface include broadcast paging, radio resource control (RRC) connection processing, handover, and power control decision execution. Handle management and control information for wireless resources, process baseband and RF processing information, and more. Additionally, network device 102 can communicate with core network 103 over an S1 interface. The terminal device 102 accesses through a network device, such as a base station, or through a routing node, and the network device 101 connects to the core network 103 to complete data backhaul and forward transmission.
  • Network device 101 may refer to an entity on the network side that is used to transmit or receive signals, for example, may be a base station.
  • the UE may be any terminal, for example, the UE may be a user equipment for machine type communication.
  • Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • enhanced mobile broadband services in 5G systems for example, enhanced mobile broadband services in 5G systems, ultra-reliable and low-latency machine communication services, and oversized connected machine communication services.
  • the communication system 100 can be a PLMN network, a D2D network, an M2M network, an IoT network, or other networks.
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG.
  • a network device can allocate resources to a terminal device for data transmission between the terminal device and the network device.
  • One solution is by activating Semi-Persistent Scheduling (SPS).
  • SPS Semi-Persistent Scheduling
  • a terminal device needs to use a certain resource or send data, it needs to apply for resources to the base station first. Only when the application has received time-frequency resources, can the corresponding data be sent.
  • some services have a fixed format, such as voice, usually a data message of 20ms. This can be sent once every 20ms. In this way, the signaling interaction of the Physical Downlink Control Channel (PDCCH) is not performed every time.
  • PDCH Physical Downlink Control Channel
  • the voice service allocates the resources to the terminal device, the corresponding resource information is no longer needed to be notified to the terminal device, so that the information of the underlying signaling interaction can be saved.
  • SPS is such an idea. After the base station first configures the scheduling of resources of the SPS, the scheduling is valid for the entire SPS period until the SPS is released, so that the base station or the terminal device only needs to continue the data transmission, and does not need to be performed again. Resource allocation, so SPS can save PDCCH resources.
  • the SPS-Config mainly includes three parts, wherein the semi-Persist Scheduling C-RNTI field indicates that if the UE receives the C-RNTI scrambled scheduling, it indicates that the SPS is activated; the sps-ConfigDL field is used to indicate the downlink. SPS configuration; the sps-ConfigUL field is used to indicate the uplink SPS configuration.
  • the protocol does not specify when the downlink SPS needs to be activated and deactivated, but the protocol specifies the activation mode, that is, when the terminal device receives the DL Grant scrambled by the semi-Persist Scheduling C-RNTI, it needs to activate or deactivate the SPS. .
  • the protocol does not specify when it is necessary to activate the uplink SPS, but the activation mode and the deactivation mode are specified. That is, when the terminal device receives the UL Grant scrambled by the semi-Persist Scheduling C-RNTI, it needs to be activated or deactivated. Activate SPS.
  • the SPS mechanism may not be very suitable for discrete spectrum.
  • the discrete spectrum may include multiple carriers in one frequency band, and the multiple carriers have valid carriers and invalid carriers.
  • the valid carrier refers to a carrier that can be used for communication between the terminal device and the base station
  • the invalid carrier refers to a carrier that cannot be used by the terminal device to communicate with the base station.
  • the dedicated spectrum of 12MHz bandwidth is stored in 223MHz ⁇ 235MHz.
  • the upper layer protocol of the 230MHz IoT scheme is mainly based on the NB-IoT technology of R14, and the physical layer is based on the special limitation of the spectrum (for example, each channel) Optimized design by bandwidth 25KHz, discrete narrowband spectrum, etc.
  • Figure 2 shows the spectral characteristics of the 230 MHz IoT system
  • Figure 3 shows the available frequency points of 230 MHz.
  • each 25 kHz narrow band constitutes a single carrier, and a plurality of continuously distributed 25 kHz carriers can be used in Carrier Aggregation (CA) mode, and are not allowed to be used as a wideband carrier.
  • CA Carrier Aggregation
  • the spectrum division method is very different from the LTE system. It is unclear which carrier is a valid carrier and which carrier is an invalid carrier in the discrete spectrum. Therefore, for discrete spectrum, the SPS mechanism of the LTE system cannot be directly used.
  • the main consideration in this embodiment of the present application is how to allocate resources in such a discrete spectrum, for example, performing uplink resource configuration or downlink resource configuration.
  • FIG. 4 is a schematic interaction diagram of a communication method according to an embodiment of the present application.
  • the method 100 of Figure 4 includes:
  • the base station sends the resource information of the first frequency band to the terminal device.
  • the first frequency band includes a first carrier set and a second carrier set, where the resource information of the first frequency band includes a carrier identifier in the first carrier set and/or a carrier identifier in a second carrier set, where The carrier in the first carrier set can be used by the terminal device to communicate with the base station, and the carrier in the second carrier set cannot be used by the terminal device to communicate with the base station;
  • the base station communicates with the terminal device based on resource information of the first frequency band.
  • the terminal device in the discrete spectrum system, can be made to determine an invalid carrier and communicate on the effective carrier.
  • the first frequency band includes multiple carriers, the multiple carriers include active carriers, the effective carriers represent carriers in the first carrier set, the multiple carriers further include invalid carriers, and the invalid carriers represent carriers in the second carrier set.
  • the carrier in the first carrier set (ie, the effective carrier) can be used by the terminal device to communicate with the base station. It can be understood that the carrier in the first carrier set is a candidate carrier that can be used for communication between the terminal device and the base station. A collection may include one or more carriers.
  • the carrier in the second set of carriers (ie, the invalid carrier) cannot be used by the terminal device to communicate with the base station. It can be understood that the carrier in the second set of carriers is unavailable or is forbidden to be used.
  • the set of carriers that the terminal device and the base station communicate with may include one or more carriers. Moreover, both the first carrier set and the second carrier set may be pre-configured, such as a base station configuration or the like.
  • the base station can determine a frequency band for the terminal device based on the service of the terminal device, which is recorded as the frequency band #A, that is, it can be understood as dynamically allocating a frequency band #A.
  • the first frequency band may be frequency band #A; or the first frequency band includes frequency band #A, that is, frequency band #A is a segment of the first frequency band.
  • the first frequency band includes a plurality of carriers, and FIG. 5 shows a schematic diagram of the allocated carriers. As shown in FIG. 5, the base station allocates a frequency band #A from the first frequency band, and the frequency band #A includes four carriers, including two effective carriers and two invalid carriers. How many effective carriers are allocated to the terminal device or how many frequency bands are allocated, which can be determined based on the service of the terminal device, which is not limited herein.
  • the above-mentioned frequency band #A is merely an example for the sake of generality and ease of understanding.
  • the first frequency band may be semi-statically scheduled or dynamically scheduled, which is not limited in this embodiment of the present application.
  • the carrier in the first carrier set here is a valid carrier, and the carrier in the second carrier set is an invalid carrier.
  • a plurality of effective carriers may be included in the first carrier set, and a plurality of invalid carriers may be included in the second carrier set.
  • the resource information of the first frequency band includes a carrier identifier in the first carrier set and/or a carrier identifier in a second carrier set.
  • the base station sends the resource information of the first frequency band to the terminal device, where the resource information of the first frequency band includes the identification information of the effective carrier and/or the identification information of the invalid carrier.
  • the identification information of the invalid carrier is used by the terminal device to determine which carriers are invalid carriers.
  • the network device can identify the invalid carrier, and the terminal device can determine the invalid carrier in the frequency band according to the identifier.
  • the frequency band information of the effective carrier is used by the terminal device to determine frequency domain information for communication.
  • the terminal device may communicate with the base station on the effective carrier according to the identification information of the effective carrier.
  • the terminal device may determine the invalid carrier according to the identification information of the invalid carrier.
  • the terminal device can not only determine which carriers are invalid carriers, but also can communicate with the base station on the effective carrier.
  • the resource information of the first frequency band further includes information about a starting location of the first frequency band; and the base station communicates with the terminal device according to resource information of the first frequency band, where: the base station And communicating with the terminal device on the third carrier according to the carrier identifier in the first carrier set and/or the carrier identifier in the second carrier set, and according to the information about the starting position of the first frequency band,
  • the third carrier is a carrier in the first set of carriers.
  • the terminal device may determine frequency domain resource information for communicating with the base station according to the identification information of the effective carrier and/or the identification information of the invalid carrier and the information of the starting position of the frequency band. Signaling can be saved by the starting location and the identification information to determine the third carrier to communicate with.
  • the resource information of the first frequency band includes a number of carriers N, where the number of carriers N is a number of carriers allocated by the base station to the terminal device, where N is an integer greater than or equal to 1;
  • the base station communicates with the terminal device based on the resource information of the first frequency band, including: the base station is based on the number of carriers N and a carrier identifier in the first carrier set, and the terminal device is in N Communicating on a carrier, the N carriers being carriers in the first set of carriers.
  • the base station allocates N effective carriers for the terminal device.
  • the terminal device determines N valid carriers from the effective carrier, so as to facilitate communication with the base station.
  • the frequency domain resources for communication between the base station and the terminal device can be determined according to the identifier of the effective carrier and the number of carrier bindings, thereby further saving signaling.
  • the third carrier may be any one of N effective carriers, or may be any one of the first carrier sets.
  • the number of carriers which may also be referred to as the number of carrier bindings, or the number of active carriers, refers to the number of active carriers allocated by the network device for the terminal device. According to the carrier binding number and the identification information of the effective carrier, N carriers can be determined, so that the terminal device communicates with the base station. This way of determining the frequency band can save overhead.
  • the carrier frequency resource that the terminal device communicates with the base station may also be determined according to the starting position of the first frequency band and the number of carrier bindings.
  • the effective carrier number refers to the number of carriers occupied by a single burst transmission.
  • the resource information of the first frequency band further includes time domain resource information occupied by the base station and the terminal device.
  • the time domain resource information may include a frame binding number
  • the frame binding number refers to the number of frames occupied by a single burst transmission
  • FIG. 6 is a schematic diagram of the number of frames occupied by a single burst. As shown in FIG. 6, it is assumed that the number of frame bundlings is two, and the number of repetition numbers (repetition numbers) is two. Then the length of the burst is the product of the number of frame bindings and the number of repetitions, that is, 4 frames.
  • the time domain resource information may also include a period, an initial offset, a duration, and the like.
  • Fig. 7 shows a configuration of a transmission time point including the duration and start offset of data transmission in one cycle.
  • the resource information of the first frequency band is carried in a radio resource control RRC connection reconfiguration signaling.
  • the terminal device sends a preamble to the base station, to notify the base station that there is a random access request.
  • the base station sends feedback information (response) to the terminal device.
  • the terminal device may determine, according to the received feedback information, whether the feedback information that is desired is successfully received, and then perform subsequent processing.
  • the terminal device connects to the base station RRC to request information.
  • the information carried by the RRC connection request information is as follows:
  • the RRC connection request information is RRC connection request information transmitted on a common control channel (CCCH), and at least needs to carry NAS terminal device flag information.
  • CCCH common control channel
  • the RRC connection request information is the RRC connection reestablishment request information transmitted on the CCCH, and does not carry any NAS message.
  • the RRC connection request information is an RRC Handover Confirm that is encrypted and integrity protected transmitted on a Dedicated Control Channel (DCCH), and must include the cell radio network temporary identifier of the terminal device. (Cell Radio Network Temporary Identifier, C-RNTI), and if possible, need to carry a BSR.
  • DCCH Dedicated Control Channel
  • C-RNTI Cell Radio Network Temporary Identifier
  • the base station sends RRC connection configuration information to the terminal device.
  • the terminal device sends an RRC connection configuration completion information to the base station.
  • the base station sends an RRC Security Mode Command to the terminal device.
  • the terminal device sends an RRC Security Mode Complete message to the base station.
  • the base station sends an RRC connection reconfiguration information (RRC Connection Reconfiguration) to the terminal device.
  • RRC Connection Reconfiguration RRC Connection Reconfiguration
  • the terminal device sends an RRC Connection Reconfiguration Complete message to the base station.
  • the signaling overhead can be saved by carrying the information of the first carrier in the RRC connection reconfiguration signaling.
  • the base station sends the RRC connection reconfiguration information to the terminal device, where the information of the parameters of the downlink resource configuration is included, and the information may be carried on a physical downlink shared channel (PDSCH).
  • the parameters of the downlink resource configuration include: the number of carrier bindings, the starting carrier position, the number of frame bindings, the modulation and coding scheme index (mcs-Index), the number of repetitions, the period, the initial offset, and the duration. Time, etc., where the number of carrier bindings and the number of repetitions refer to occupied frequency domain resources.
  • the terminal device sends an RRC connection reconfiguration complete message to the base station.
  • the embodiment of the present application may also be applied to perform downlink or uplink resource configuration corresponding to the unscheduled transmission of the terminal device.
  • the unscheduled transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources; when the terminal device has an uplink data transmission requirement, select at least one transmission resource from multiple transmission resources pre-allocated by the network device, and use the selected one.
  • the transmission resource sends the uplink data; the network device detects the uplink data sent by the terminal device on one or more of the pre-assigned multiple transmission resources.
  • the unscheduled transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources, so that when the terminal device has an uplink data transmission requirement, at least one transmission resource is selected from multiple transmission resources pre-allocated by the network device, and used.
  • the selected transmission resource sends uplink data.
  • the unscheduled transmission may be: acquiring information of a plurality of pre-assigned transmission resources, selecting at least one transmission resource from the plurality of transmission resources when the uplink data transmission request is required, and transmitting the uplink data by using the selected transmission resource.
  • the method of obtaining can be obtained from a network device.
  • the unscheduled transmission may be: a method for implementing uplink data transmission of the terminal device without dynamic scheduling of the network device, where the dynamic scheduling may refer to that the network device indicates the transmission by using signaling for each uplink data transmission of the terminal device.
  • a way of scheduling resources may be: a method for implementing uplink data transmission of the terminal device without dynamic scheduling of the network device, where the dynamic scheduling may refer to that the network device indicates the transmission by using signaling for each uplink data transmission of the terminal device.
  • the unscheduled transmission may refer to: the terminal device performs uplink data transmission without requiring network device scheduling.
  • the scheduling may be performed by the terminal device sending an uplink scheduling request to the network device, and after receiving the scheduling request, the network device sends an uplink grant to the terminal device, where the uplink grant indicates an uplink transmission resource allocated to the terminal device.
  • the unscheduled transmission may be a competitive transmission mode, and specifically may refer to that multiple terminals simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance, without the base station performing scheduling.
  • FIG. 10 is a schematic diagram of a communication method according to another embodiment of the present application.
  • Method 200 includes:
  • the terminal device receives resource information of the first frequency band sent by the base station.
  • the first frequency band includes a first carrier set and a second carrier set, where the resource information of the first frequency band includes a carrier identifier in the first carrier set and/or a carrier identifier in a second carrier set, where The carrier in the first carrier set can be used by the terminal device to communicate with the base station, and the carrier in the second carrier set cannot be used by the terminal device to communicate with the base station;
  • the terminal device determines, according to the resource information of the first frequency band, a carrier that communicates with the base station from the first carrier set.
  • the terminal device can determine the effective carrier from the discrete carriers by receiving the information of the effective carrier and/or the information of the invalid carrier transmitted by the network device, and further validating the network with the network device. Communication is carried out on the carrier to enable the terminal device to communicate effectively with the network device.
  • the third carrier is any one of the first set of carriers.
  • the resource information of the first frequency band further includes information about a starting position of the first frequency band, and the resource information of the first frequency band according to the resource information of the first frequency band. Determining, by the first carrier set, a carrier that communicates with the base station, where the terminal device is configured according to a carrier identifier in the first carrier set and/or a carrier identifier in the second carrier set, And determining, according to the information about the starting position of the first frequency band, a carrier that communicates with the base station from the first carrier set.
  • the resource information of the first frequency band includes a carrier number N, where the number of carriers N is a number of carriers allocated by the base station to the terminal device, where N is an integer not less than 1; Determining, by the terminal device, the carrier that communicates with the base station from the first carrier set according to the resource information of the first frequency band, where the terminal device is configured according to the number of carriers N and the first carrier set And determining, by the first carrier set, N carriers that are in communication with the base station, where the N carriers are carriers in the first carrier set.
  • the terminal device sends feedback information to the base station, where the feedback information includes carrier location information, repetition number information, and processing delay information.
  • the communication method of the embodiment of the present application can solve the problem of mixing Hybrid Automatic Repeat ReQuest (HARQ) feedback resources in the discrete spectrum.
  • HARQ Hybrid Automatic Repeat ReQuest
  • HARQ technology is a technology that combines Forward Error Correction (FEC) and Automatic Repeat Request (ARQ).
  • FEC Forward Error Correction
  • ARQ Automatic Repeat Request
  • the receiving end after receiving data from the transmitting end, the receiving end can determine whether the data is accurately decoded. If the decoding is not possible, the receiving end may feed back the negative-acknowledge (NACK) information to the transmitting end, so that the transmitting end may determine that the receiving end does not accurately receive the data based on the NACK information, so that the retransmission process may be performed; If the decoding can be accurately performed, the receiving end can feed back Acknowledge (ACK) information to the transmitting end, so that the transmitting end can determine that the receiving end accurately receives the data based on the ACK information, so that the data transmission can be determined to be completed.
  • NACK negative-acknowledge
  • ACK Acknowledge
  • the ACK information when the terminal device successfully decodes, the ACK information may be sent to the network device, and when the decoding fails, the NACK information may be fed back to the network device.
  • the feedback information may include ACK information or NACK information in the HARQ technology.
  • the feedback information is carried in a Physical Uplink Control Channel (PUCCH).
  • PUCCH Physical Uplink Control Channel
  • a new MAC control element is carried in the Media Access Control (MAC) PDSCH data packet, and the format definition is as shown in FIG. 11.
  • the data packet includes a carrier identifier, that is, a carrier location at which the terminal device performs data transmission.
  • the data message also includes the number of repetitions and the processing delay. The number of repetitions represents the number of repeated transmissions, and the processing delay represents the processing delay of the PDSCH transmission to the PUCCH feedback.
  • Figure 12 shows a schematic diagram of the processing delay.
  • the network device determines the effective carrier and the invalid carrier on the first frequency band, and transmits the information of the effective carrier and/or the information of the invalid carrier to the terminal device, so that the terminal device removes the discrete carrier.
  • the effective carrier is determined to further communicate with the network device on the effective carrier, thereby enabling the terminal device to effectively communicate with the network device.
  • the communication method applicable to the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 12.
  • the communication device applicable to the embodiment of the present application will be described in detail below with reference to FIG. 13 to FIG.
  • FIG. 13 is a schematic diagram of a communication device according to an embodiment of the present application.
  • the device 10 may be a network device, or may be a chip or a circuit, such as a chip or a circuit that can be disposed on a network device.
  • the network device may correspond to the network device in the foregoing method.
  • the apparatus 10 can include a processor 11 (i.e., an example of a processing unit) and a memory 12.
  • the memory 12 is for storing instructions for executing the instructions stored by the memory 12 to cause the apparatus 20 to implement the steps performed by the network device in the corresponding method of FIG. 2.
  • the device 10 may further include an input port 13 (ie, an example of a receiving unit) and an output port 14 (ie, another example of a transmitting unit).
  • the processor 11, memory 12, input port 13 and output port 14 can communicate with one another via internal connection paths to communicate control and/or data signals.
  • the memory 12 is used to store a computer program, and the processor 11 can be used to call and run the computer program from the memory 12 to control the input port 13 to receive signals, and control the output port 14 to send signals to complete the network device in the above method.
  • the memory 12 can be integrated in the processor 11 or can be provided separately from the processor 11.
  • the input port 13 is a receiver
  • the output port 14 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 13 is an input interface
  • the output port 14 is an output interface
  • the functions of the input port 13 and the output port 14 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 11 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a network device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 11, the input port 13, and the output port 14 is stored in the memory 12, and the general purpose processor implements the functions of the processor 11, the input port 13, and the output port 14 by executing the code in the memory 12.
  • the output port 14 is configured to: send resource information of the first frequency band to the terminal device, where the first frequency band includes a first carrier set and a second carrier set, where the first frequency band is
  • the resource information includes a carrier identifier in the first carrier set and/or a carrier identifier in a second carrier set, where a carrier in the first carrier set can be used by the terminal device to communicate with the base station, The carrier in the second carrier set cannot be used by the terminal device to communicate with the base station;
  • the processor 11 is configured to: communicate with the terminal device based on resource information of the first frequency band.
  • the resource information of the first frequency band includes information about a starting location of the first frequency band
  • the processor 11 is specifically configured to: based on the carrier identifier and/or the second carrier set in the first carrier set The carrier identifier in the medium, and according to the information about the starting position of the first frequency band, communicates with the terminal device on a third carrier, where the third carrier is a carrier in the first carrier set.
  • the resource information of the first frequency band includes a number of carriers N, where the number of carriers N is a number of carriers allocated by the base station to the terminal device, where N is an integer greater than or equal to 1;
  • the processor 11 specifically: communicating with the terminal device on N carriers based on the number of carriers N and a carrier identifier in the first carrier set, where the N carriers are carriers in the first carrier set .
  • the resource information of the first frequency band further includes time domain resource information occupied by the terminal device.
  • the resource information of the first frequency band is carried in a radio resource control RRC connection reconfiguration signaling.
  • modules or units in the communication device 10 listed above are merely exemplary.
  • the modules or units in the communication device 10 may be used to perform various actions performed by the network device in the foregoing method 100 and method 200 or In the process, detailed descriptions are omitted here to avoid redundancy.
  • FIG. 14 is a schematic structural diagram of a network device according to an embodiment of the present disclosure, which may be used to implement the functions of the network device in the foregoing method.
  • the base station can be a schematic diagram of a base station.
  • the base station can be applied to the system as shown in FIG. 1.
  • the base station 20 includes one or more radio frequency units, such as a remote radio unit (RRU) 201 and one or more baseband units (BBUs) (also referred to as digital units, DUs) 202. .
  • RRU remote radio unit
  • BBUs baseband units
  • DUs digital units
  • the RRU 201 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 2011 and a radio frequency unit 2012.
  • the RRU 201 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
  • the BBU 202 portion is mainly used for baseband processing, base station control, and the like.
  • the RRU 201 and the BBU 202 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 202 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU (processing unit) 202 can be used to control the base station 20 to perform an operation procedure about the network device in the foregoing method embodiment.
  • the BBU 202 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE system or a 5G system), or may support different ones. Access to the standard wireless access network.
  • the BBU 202 also includes a memory 2021 and a processor 2022.
  • the memory 2021 is used to store necessary instructions and data.
  • the memory 2021 stores the codebook or the like in the above embodiment.
  • the processor 2022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the memory 2021 and the processor 2022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • SoC System-on-chip
  • all or part of the functions of the 202 part and the 201 part may be implemented by the SoC technology, for example, by a base station function chip.
  • the base station function chip integrates a processor, a memory, an antenna interface and the like.
  • the program of the base station related function is stored in the memory, and the processor executes the program to implement the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to implement related functions of the base station.
  • the device 30 may be a terminal device, or may be a chip or a circuit, such as a chip or a circuit that can be disposed in a terminal device.
  • the terminal device may correspond to the terminal device in the foregoing method.
  • the apparatus 30 can include a processor 31 (ie, an example of a processing unit) and a memory 32.
  • the memory 32 is for storing instructions for executing the instructions stored by the memory 32 to cause the apparatus 30 to implement the steps performed by the terminal device in the aforementioned method 100 and method 200.
  • the device 30 may further include an input port 33 and an output port 33.
  • the processor 31, memory 32, input port 33, and output port 34 can communicate with one another via internal connection paths to communicate control and/or data signals.
  • the memory 32 is used to store a computer program.
  • the processor 31 can be used to call and run the computer program from the memory 32 to control the input port 33 to receive signals, and control the output port 34 to send signals to complete the terminal in the method 200.
  • the memory 32 can be integrated in the processor 31 or can be provided separately from the processor 31.
  • the control input port 33 receives the signal, and the control output port 34 transmits a signal to complete the steps of the terminal device in the above method.
  • the memory 32 can be integrated in the processor 31 or can be provided separately from the processor 31.
  • the input port 33 is a receiver
  • the output port 34 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 33 is an input interface
  • the output port 34 is an output interface
  • the device 30 may not include the memory 32, and the processor 31 may read an instruction (program or code) in the memory external to the chip to implement the foregoing method.
  • the function of the terminal device may not include the memory 32, and the processor 31 may read an instruction (program or code) in the memory external to the chip to implement the foregoing method.
  • the function of the terminal device may not include the memory 32, and the processor 31 may read an instruction (program or code) in the memory external to the chip to implement the foregoing method.
  • the functions of the input port 33 and the output port 34 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 31 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the terminal device provided by the embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 31, the input port 33, and the output port 34 is stored in a memory, and the general purpose processor implements the functions of the processor 31, the input port 33, and the output port 34 by executing code in the memory.
  • the input port 33 is configured to receive the resource information of the first frequency band that is sent by the base station, where the first frequency band includes a first carrier set and a second carrier set, and the resource information of the first frequency band includes the a carrier identifier in the first set of carriers and/or a carrier identifier in the second set of carriers, wherein the carrier in the first set of carriers can be used by the terminal device to communicate with the base station, the second carrier The carrier in the set cannot be used by the terminal device to communicate with the base station; the processor 31 determines, according to the resource information of the first frequency band, a carrier that communicates with the base station from the first set of carriers.
  • the resource information of the first frequency band includes information about a starting location of the first frequency band
  • the processor 31 is configured to: base, according to a carrier identifier in the first carrier set, and/or a carrier identifier in the second carrier set, and determining, according to information about a starting location of the first frequency band, a carrier that communicates with the base station from the first carrier set.
  • the resource information of the first frequency band includes a number of carriers N, where the number of carriers N is a number of carriers allocated by the base station to the terminal device, where N is an integer greater than or equal to 1;
  • the processor 31 is specifically configured to: determine, according to the number of carriers N and the carrier identifier in the first carrier set, N carriers that are in communication with the base station from the first carrier set, the N The carrier is a carrier in the first set of carriers.
  • modules or units in the communication device 30 listed above are merely exemplary. Each module or unit in the communication device 30 can be used to perform various actions or processes performed by the terminal device in the above methods 100 and 200. In the process, detailed descriptions are omitted here to avoid redundancy.
  • FIG. 16 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure, which may be used to implement the functions of the terminal device in the foregoing method. For the convenience of explanation, FIG. 16 shows only the main components of the terminal device. As shown in FIG. 16, the terminal device 40 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, in the embodiment of the indication method for supporting the terminal device to perform the foregoing transmission precoding matrix.
  • the memory is primarily used to store software programs and data, such as the codebooks described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be transmitted, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 16 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 16 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 401 of the terminal device 40, and the processor having the processing function is regarded as the processing unit 402 of the terminal device 40.
  • the terminal device 40 includes a transceiver unit 401 and a processing unit 402.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 401 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 401 is regarded as a sending unit, that is, the transceiver unit 401 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置。该方法包括:基站向终端设备发送第一频段的资源信息,第一频段包括第一载波集合和第二载波集合,第一频段的资源信息包括第一载波集合中的载波标识和/或第二载波集合中的载波标识,其中,第一载波集合中的载波能用于终端设备与基站进行通信,第二载波集合中的载波不能用于终端设备与基站进行通信;基站基于第一频段的资源信息与终端设备通信。根据本申请,可以使得终端设备从包括有效载波和无效载波的离散载波中,确定有效载波,进而能够与网络设备在有效载波上进行通信,使得终端设备与网络设备有效地通信。

Description

通信方法和通信装置 技术领域
本申请涉及通信领域,并且更具体地,涉及通信方法和通信装置。
背景技术
随着移动互联网和物联网产业的发展,越来越多的移动终端相互连接并分享更加丰富的数据,在电力系统中,同样也存在越来越多的终端需要无线通信。
电力系统中,230MHz物联网主要基于R14的窄带物联网(Narrow Band Internet of Things,NB-IoT)技术,每个信道带宽25KHz,共12MHz频段。230MHz物联网的频谱是离散的,与传统的LTE系统中的频谱划分不同。因此,需要考虑在离散频谱下,如何为终端设备分配资源,使终端设备在有效载波上进行通信。
发明内容
本申请提供一种通信方法和通信装置,使得终端设备能够在有效载波上进行通信。
第一方面,提供了一种通信方法,该方法包括:基站向终端设备发送第一频段的资源信息,所述第一频段包括第一载波集合和第二载波集合,所述第一频段的资源信息包括所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,其中,所述第一载波能用于所述终端设备与所述基站通信,所述第二载波不能用于所述终端设备与所述基站通信;所述基站基于所述第一频段的资源信息与所述终端设备通信。
根据本申请实施例的通信方法,通过使网络设备(即,基站的一例)确定第一频段上的有效载波(即,第一载波的一例)和无效载波(即,第二载波的一例),并把有效载波的信息和/或无效载波的信息发送给终端设备,使得终端设备从离散的载波中确定出有效载波,进一步与网络设备在有效载波上进行通信,从而能够使得终端设备与网络设备有效地通信。
结合第一方面,在第一方面的某些实现方式中,所述第一频段的资源信息包括所述第一频段的起始位置的信息;所述基站基于所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,并根据所述第一频段的起始位置的信息,与所述终端设备在第三载波上通信,所述第三载波是所述第一载波集合中的载波。
根据第一频段的起始位置的信息和第一载波的标识信息,可以使得终端设备确定与网络设备进行通信的有效载波,以及频段资源。根据第一频段的起始位置和第二载波的信息,可以使得终端设备确定出无效载波,进一步确定出与网络设备进行通信的有效载波。
结合第一方面,在第一方面的某些实现方式中,所述第一频段的资源信息包括载波数N,所述载波数N为所述基站分配给所述终端设备的载波数,其中,N为不小于1的整数;以及,所述基站基于所述第一频段的资源信息与所述终端设备通信,包括:所述基站基于所述载波数N和所述第一载波集合中的载波标识,与所述终端设备在N个载波上通信, 所述N个载波是所述第一载波集合中的载波。
通过第一载波的标识信息,可以使得终端设备确定出能够与网络设备进行通信的有效载波,再根据载波数,可以使得终端设备从多个有效载波中确定出所需的N个载波,以及频段资源,从而可以节省开销。
结合第一方面,在第一方面的某些实现方式中,所述第一频段的资源信息还包括所述基站与所述终端设备通信所占的时域资源信息。
结合第一方面,在第一方面的某些实现方式中,所述第一频段的资源信息承载于无线资源控制RRC连接重配置信令中。
通过使得第一频段的资源信息承载于RRC连接重配置信令中,可以节省信令。
第二方面,提供了一种通信方法,该方法包括:终端设备接收基站发送的第一频段的资源信息,所述第一频段包括第一载波集合和第二载波集合,所述第一频段的资源信息包括所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,其中,所述第一载波集合中的载波能用于所述终端设备与所述基站进行通信,所述第二载波集合中的载波不能用于所述终端设备与所述基站进行通信;所述终端设备根据所述第一频段的资源信息,从所述第一载波集合中确定与所述基站通信的载波。
根据本申请实施例的通信方法,终端设备通过接收网络设备发送的有效载波的信息和/或无效载波的信息,可以使得终端设备从离散的载波中确定出有效载波,进一步与网络设备在有效的载波上进行通信,从而能够使得终端设备与网络设备有效地通信。
结合第二方面,在第二方面的某些实现方式中,所述第一频段的资源信息还包括所述第一频段的起始位置的信息;所述根据所述第一频段的资源信息,所述终端设备根据所述第一频段的资源信息,从所述第一载波集合中确定与所述基站通信的载波,包括:所述终端设备根据所述第一载波集合中的载波标识和/或所述第二载波集合中的载波标识,并根据所述第一频段的起始位置的信息,从所述第一载波集合中确定与所述基站通信的载波。
根据第一频段的起始位置的信息和第一载波的标识信息,终端设备可以确定与网络设备进行通信的有效载波,以及频段资源。根据第一频段的起始位置和第二载波的信息,终端设备确定出第一频段中的无效载波,进一步确定出与网络设备进行通信的有效载波。
结合第二方面,在第二方面的某些实现方式中,所述第一频段的资源信息包括载波数N,所述载波数N为所述基站分配给所述终端设备的载波的数量,其中,N为不小于1的整数;以及,所述终端设备根据所述第一频段的资源信息,从所述第一载波集合中确定与所述基站通信的载波,包括:所述终端设备根据所述载波数N和所述第一载波集合中的载波标识,从所述第一载波集合中确定与所述基站通信的N个载波,所述N个载波是所述第一载波集合中的载波。
通过第一载波的标识信息,终端设备可以确定出能够与网络设备进行通信的有效载波,再根据载波数,可以从多个有效载波中确定出所需的N个载波,以及频段资源,从而可以节省开销。
第三方面,提供了一种通信装置,包括用于执行上述第一方面以及第一方面的各实现方式中的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为网络设备,通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第四方面,提供了一种通信装置,包括用于执行上述第二方面以及第二方面的各实现方式中的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为终端设备,通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第五方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行第一或第二方面中任一种可能实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该通信设备还包括,发射机(发射器)和接收机(接收器)。
一个可能的设计中,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第一方面或第一方面任一种可能实现方式中的方法。
另一个可能的设计中,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行第二方面或第二方面任一种可能实现方式中的方法。
第六方面,提供了一种系统,所述系统包括上述终端设备和网络设备。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面或第二方面中任一种可能实现方式中的方法。
根据本申请实施例的通信方法和通信装置,通过使网络设备确定第一频段上的有效载波和无效载波,并把有效载波的信息和/或无效载波的信息发送给终端设备,使得终端设备从离散的载波中确定出有效载波,进一步与网络设备在有效载波上进行通信,从而能够使得终端设备与网络设备有效地通信。
附图说明
图1是适用本申请实施例通信方法和通信装置的系统的示意图。
图2是230MHz IoT系统的频谱特点的示意图。
图3是230MHz IoT系统可用频点的示意图。
图4是适用于本申请实施例的通信方法的一示意图。
图5是适用于本申请实施例的通信方法的分配载波的示意图。
图6是适用于本申请实施例的通信方法的单个突发脉冲占用帧的示意图。
图7是适用于本申请实施例的通信方法的传输时间点的示意图。
图8是终端设备接入NB-IoT的接入流程图。
图9是适用于本申请实施例的通信方法的另一示意图。
图10是适用于本申请另一实施例的通信方法的示意图。
图11是适用于本申请另一实施例的通信方法的MAC控制元素的示意图。
图12是适用于本申请另一实施例的通信方法的处理时延的示意图。
图13是本申请实施例的通信装置的一示意性框图。
图14是本申请实施例的网络设备的一示意性结构图。
图15是本申请实施例的通信装置的另一示意性框图。
图16是本申请实施例的终端设备的另一示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)、物联网(Internet of Things,IoT)系统等。
本申请实施例中的基站,可以是网络设备,网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区分配的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络 设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(Carrier Aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
此外,在本申请实施例中,终端设备还可以是物联网(Internet of Things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
在本申请实施例中,IoT技术可以通过例如窄带(Narrow Band,NB)技术,做到海量连接,深度覆盖,终端省电。网络设备为终端设备分配资源供终端设备进行数据传输,根据本申请实施例的通信方法,能够使得在离散窄带频谱中,终端设备与网络设备在有效载波上进行数据传输。
图1是能够适用本申请实施例通信方法和通信装置的系统100的示意图。如图1所示,该系统100包括网络设备101,网络设备101可以是eNodeB等。网络设备101可包括1个天线或多个天线,网络设备101可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备101可以与多个终端设备通信,例如终端设备102。然而,可以理解,网络设备101可以与类似于终端设备102的任意数目的终端设备通信。终端设备102可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
系统100还可以包括核心网103,如,分组核心网络(Evolved Packet Core,EPC)。EPC可以支持3GPP和非3GPP等多种接入方式,是支持异构网络的融合架构。EPC是4G移动通信网络的核心网。它属于核心网范畴,具备用户签约数据存储,移动性管理和数据交换等移动网络的传统能力,并能够给用户提供超高速的上网体验。
如图1所示,网络设备101可以通过UU接口与终端设备102通信,UU接口的功能包括广播寻呼以及无线资源控制(Radio Resource Control,RRC)连接的处理、切换和功 率控制的判决执行、处理无线资源的管理和控制信息、处理基带和射频处理信息等。此外,网络设备102可以通过S1接口与核心网103进行通信。终端设备102通过网络设备,如基站,接入,或者通过路由节点接入,网络设备101连接核心网103完成数据的回传和前向传递。网络设备101可以指网络侧的一种用来发送或接收信号的实体,例如,可以是基站。UE可以是任意的终端,例如,UE可以是机器类通信的用户设备。终端设备110和网络设备120之间支持多业务传输。例如,5G系统中的增强移动宽带业务、超可靠和低时延的机器通信业务以及超大连接的机器通信业务。
此外,该通信系统100可以是PLMN网络、D2D网络、M2M网络、IoT网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
对于终端设备与网络设备进行数据传输,网络设备给终端设备分配资源的方式有很多。一种方案是,通过激活半静态调度(Semi-Persistent Scheduling,SPS)。在LTE系统中,终端设备需要使用某个资源或者发送数据时,需要先向基站进行资源申请。只有申请到了时频空资源,才能够发送相应的数据。在通信业务中,有一些业务是有固定的格式,比如语音,通常是20ms一个数据报文。这样可以空口每20ms发送一次。这样就不要每次都进行物理下行控制信道(Physical Downlink Control Channel,PDCCH)的信令交互。如果语音业务将资源给固定分配下来,则业务过程中不再需要将相应的资源信息通知给终端设备,这样就可以节省底层的信令交互的信息。SPS就是这样一种思路,基站首次配置了SPS的资源的调度之后,此调度在整个SPS时间内周期有效,直到SPS的释放,从而基站或者终端设备只需要持续数传即可,不需要再次进行资源分配,于是SPS能够节省PDCCH的资源。
具体地,是否能够进行SPS是由L3来进行控制的,即,L3通过发送携带SPS配置(SPS,Configuration,SPS-Config)的无线资源控制连接重配置(Radio Resource Control Connection Reconfiguration)信令来配置SPS。SPS-Config主要包含三个部分,其中,semi-Persist Scheduling C-RNTI字段表示如果UE收到该C-RNTI加扰的调度,则预示着SPS被激活了;sps-ConfigDL字段是用于指示下行的SPS配置;sps-ConfigUL字段是用于指示上行的SPS配置。
协议并没有规定什么时候需要激活和去激活下行的SPS,但是协议上规定了激活方式,即当终端设备收到使用semi-Persist Scheduling C-RNTI加扰的DL Grant后,需要激活或去激活SPS。同样,协议中并没有规定什么时候需要激活上行的SPS,但是规定了激活方式和去激活方式,即当终端设备收到使用semi-Persist Scheduling C-RNTI加扰的UL Grant后,需要激活或去激活SPS。
SPS机制对于离散频谱来说,可能不是很合适。其中,离散频谱可以是指在一个频段中包括多个载波,该多个载波中有有效载波,也有无效载波。其中,有效载波指的是指能供终端设备与基站进行通信的载波,无效载波是指不能供终端设备与基站进行通信的载波。
以IoT系统为例,在电力系统中,223MHz~235MHz总共存12MHz带宽的专用频谱,230MHz IoT方案上高层协议主要基于R14的NB-IoT技术,物理层基于频谱的特殊限制(例如,每个信道带宽25KHz、离散窄带频谱等特点)进行优化设计。图2示出了230MHz  IoT系统的频谱特点,且图3示出了230MHz的可用频点。
223MHz~235MHz的IoT系统,共12MHz频段,原用于无线电台,对双工方式定义模糊。如图2所示,每25kHz窄带构成一个独立载波,多个连续分布的25kHz载波可以按载波聚合(Carrier Aggregation,CA)方式使用,不允许作为一个宽带载波使用。此外,对于离散频谱来说,例如,230MHz IoT系统,频谱划分方式与LTE系统存在很大的差别。在离散频谱中具体哪个载波是有效载波、哪个载波是无效载波是不清楚的。因此对于离散频谱来说,不能直接沿用LTE系统的SPS机制。本申请实施例主要考虑的是在这种离散频谱下,如何分配资源,如,进行上行资源配置或下行资源配置。
下面,结合图4,对本申请实施例的通信方法100进行详细说明。图4是本申请实施例的通信方法的示意性交互图。图4的方法100包括:
110,基站向终端设备发送第一频段的资源信息。所述第一频段包括第一载波集合和第二载波集合,所述第一频段的资源信息包括所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,其中,所述第一载波集合中的载波能用于所述终端设备与所述基站通信,所述第二载波集合中的载波不能用于所述终端设备与所述基站通信;
120,所述基站基于所述第一频段的资源信息与所述终端设备通信。
通过本申请实施例,可以在离散频谱系统中,使得终端设备确定无效载波,并且在有效载波上进行通信。
第一频段包括多个载波,该多个载波包括有效载波,有效载波代表第一载波集合中的载波;多个载波还包括无效载波,无效载波代表第二载波集合中的载波。
其中,第一载波集合中的载波(即有效载波)能用于所述终端设备与所述基站通信,可以理解为,第一载波集合中的载波是可用于终端设备和基站通信的候选载波的集合,可包括一个或多个载波。所述第二载波集合中的载波(即无效载波)不能用于所述终端设备与所述基站通信,可以理解为,第二载波集合中的载波是不可用于,或者说,被禁止用于,终端设备和基站通信的载波的集合,可包括一个或多个载波。并且,第一载波集合和第二载波集合都可以是预先配置的,例如基站配置等。
基站可以基于终端设备的业务为终端设备确定一个频段,记为频段#A,即可以理解为动态地分配一个频段#A。第一频段可以是频段#A;或者,第一频段包括频段#A,即频段#A为第一频段中的一段。第一频段包括多个载波,图5示出了分配载波的示意图。如图5所示,基站为终端设备从第一频段中分配频段#A,该频段#A包括4个载波,其中包括两个有效载波和两个无效载波。为终端设备分配多少个有效载波或者分配多大的频段,可以基于终端设备的业务确定,此处不作限定。
应理解,上述频段#A仅是为了不失一般性,且便于理解,而进行的一个举例说明。或者,第一频段可以是半静态调度的,也可以是动态调度的,本申请实施例对此不作限定。
应理解,此处的第一载波集合中的载波是有效载波,第二载波集合中的载波是无效载波。第一载波集合中可以包括多个有效载波,第二载波集合中可以包括多个无效载波。
所述第一频段的资源信息包括所述第一载波集合中的载波标识和/或第二载波集合中的载波标识。换句话说,基站向终端设备发送第一频段的资源信息,第一频段的资源信息包括有效载波的标识信息和/或无效载波的标识信息。
无效载波的标识信息用于终端设备确定哪些载波是无效载波,例如,网络设备可以对 无效载波作标识,终端设备根据该标识可确定频段中的无效载波。
有效载波的频段信息用于终端设备确定进行通信的频域信息。
当频段的信息包括有效载波的标识信息时,终端设备可以根据该有效载波的标识信息在有效载波上与基站进行通信。或者,当频段的信息包括无效载波的标识信息时,终端设备可以根据该无效载波的标识信息确定无效载波。或者,当频段的信息包括无效载波的标识信息和有效载波的标识信息时,终端设备不仅可以确定哪些载波是无效载波,而且可以在有效载波上与基站进行通信。
可选地,所述第一频段的资源信息还包括所述第一频段的起始位置的信息;所述基站基于所述第一频段的资源信息与所述终端设备通信,包括:所述基站基于所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,并根据所述第一频段的起始位置的信息,与所述终端设备在第三载波上通信,所述第三载波是所述第一载波集合中的载波。
根据有效载波的标识信息和/或无效载波的标识信息,以及频段的起始位置的信息,终端设备可以确定与基站进行通信的频域资源信息。通过起始位置以及标识信息以确定进行通信的第三载波,可以节省信令。
可选地,所述第一频段的资源信息包括载波数N,所述载波数N为所述基站分配给所述终端设备的载波的数量,其中,N为大于或等于1的整数;以及,所述基站基于所述第一频段的资源信息与所述终端设备通信,包括:所述基站基于所述载波数N和所述第一载波集合中的载波标识,与所述终端设备在N个载波上通信,所述N个载波是所述第一载波集合中的载波。
基站为终端设备分配N个有效载波,根据有效载波的标识,终端设备从有效载波中确定N个有效载波,便于与基站进行通信。根据有效载波的标识和载波绑定数可以确定基站与终端设备进行通信的频域资源,进一步节省信令。应理解,第三载波可以是N个有效载波中的任意一个,也可以是第一载波集合中的任意一个。
载波数,也可称为载波绑定数,或者,称为有效载波数,指的是网络设备为终端设备分配的有效载波的数目。根据载波绑定数和有效载波的标识信息,可以确定N个载波,以便终端设备与基站进行通信。这种确定频段的方式,可以节省开销。
或者,根据第一频段起始位置和载波绑定数也可以确定终端设备与基站进行通信的载频资源。
应理解,该有效载波数指的单个突发脉冲(burst)传输占用的载波的数。
可选地,所述第一频段的资源信息还包括所述基站与所述终端设备通信所占的时域资源信息。
该时域资源信息可以包括帧(frame)绑定数,帧绑定数指的是单个burst传输占用的帧的数目,图6是单个突发脉冲占用帧数的示意图。如图6所示,假设帧绑定数为2、重复传输(repetition Number)的次数为2。那么burst的长度是帧绑定数与重复次数的乘积,即为4个帧。
该时域资源信息还可以包括周期(period)、起始偏置(offset)、持续时间(duration)等。图7示出了传输时间点的配置,其中包括在一个周期内进行数据传输的持续时间和起始偏置。
可选地,所述第一频段的资源信息承载于无线资源控制RRC连接重配置信令中。
为便于理解,首先通过图8介绍一下NB-IoT的接入流程。
810,终端设备向基站发送前导码(preamble),用于通知基站有一个随机接入请求。
820,基站向终端设备发送反馈信息(response)。具体地,终端设备可以根据接收到的反馈信息确定是否成功接收到自己想要的反馈信息,然后进行后续处理。
830,终端设备向基站RRC连接请求信息。具体地,该RRC连接请求信息携带的信息如下:
(1)如果是初次接入(initial access),RRC连接请求信息为在公共控制信道(common control channel,CCCH)上传输的RRC连接请求信息,且至少需要携带NAS终端设备标志信息。
(2)如果是RRC连接重建,RRC连接请求信息为CCCH上传输的RRC连接重建请求信息,且不携带任何NAS消息。
(3)如果是切换(handover),RRC连接请求信息为在专用控制信道(Dedicated Control Channel,DCCH)上传输的经过加密和完整性保护的RRC Handover Confirm,必须包含终端设备的小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI),且如果可能的话,需要携带BSR。
(4)对于其它触发事件,则至少需要携带C-RNTI。
840,基站向终端设备发送RRC连接配置信息。
850,终端设备向基站发送RRC连接配置完成信息。
860,基站向终端设备发送RRC安全模式要求信息(RRC Security Mode Command)。
870,终端设备向基站发送RRC安全模式完成信息(RRC Security Mode Complete)。
880,基站向终端设备发送RRC连接重配置信息(RRC Connection Reconfiguration)
890,终端设备向基站发送RRC连接重配置完成信息(RRC Connection Reconfiguration Complete)。
通过将第一载波的信息承载RRC连接重配置信令中,可以节省信令开销。
接下来,通过图9,以为终端设备进行下行资源配置为例说明上述过程。
首先,基站向终端设备发送RRC连接重配置信息,其中包括下行资源配置的参数的信息,该信息可以承载于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。下行资源配置的参数包括:载波绑定数、起始载波位置、帧绑定数、调制与编码方式索引(modulation and coding scheme Index,mcs-Index)、重复次数、周期、起始偏置、持续时间等,其中,载波绑定数和重复次数指的是占用的频域资源。各个参数具体的含义如前所述,此处不再赘述。
其次,终端设备向基站发送RRC连接重配置完成信息。
需要说明的是,为终端设备进行上行资源配置的过程同上述过程相似,此处不再赘述。
需要说明的是,本申请实施例还可以应用于为终端设备进行免调度传输对应的下行或上行资源配置。
其中,免调度传输可以指:网络设备预先分配并告知终端设备多个传输资源;终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的一个或多个传输资源上检测终端设备发送的上行数据。
或,免调度传输可以指:网络设备预先分配并告知终端设备多个传输资源,以使终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。
或,免调度传输可以指:获取预先分配的多个传输资源的信息,在有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。获取的方式可以从网络设备获取。
或,免调度传输可以指:不需要网络设备动态调度即可实现终端设备的上行数据传输的方法,所述动态调度可以是指网络设备为终端设备的每次上行数据传输通过信令来指示传输资源的一种调度方式。
或,免调度传输可以指:终端设备在不需要网络设备调度的情况下进行上行数据传输。所述调度可以指终端设备发送上行调度请求给网络设备,网络设备接收调度请求后,向终端设备发送上行许可,其中所述上行许可指示分配给终端设备的上行传输资源。
或,免调度传输可以指:一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行调度。
图10是本申请另一实施例的通信方法的示意图。方法200包括:
210,终端设备接收基站发送的第一频段的资源信息。所述第一频段包括第一载波集合和第二载波集合,所述第一频段的资源信息包括所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,其中,所述第一载波集合中的载波能用于所述终端设备与所述基站进行通信,所述第二载波集合中的载波不能用于所述终端设备与所述基站进行通信;
220,在第三载波上进行通信。也就是说,所述终端设备根据所述第一频段的资源信息,从所述第一载波集合中确定与所述基站通信的载波。
根据本申请实施例的通信方法,终端设备通过接收网络设备发送的有效载波的信息和/或无效载波的信息,可以使得终端设备从离散的载波中确定出有效载波,进一步与网络设备在有效的载波上进行通信,从而能够使得终端设备与网络设备有效地通信。
应理解,所述第三载波是所述第一载波集合中的任一载波。
可选地,所述第一频段的资源信息还包括所述第一频段的起始位置的信息;所述根据所述第一频段的资源信息,所述终端设备根据所述第一频段的资源信息,从所述第一载波集合中确定与所述基站通信的载波,包括:所述终端设备根据所述第一载波集合中的载波标识和/或所述第二载波集合中的载波标识,并根据所述第一频段的起始位置的信息,从所述第一载波集合中确定与所述基站通信的载波。
可选地,所述第一频段的资源信息包括载波数N,所述载波数N为所述基站分配给所述终端设备的载波的数量,其中,N为不小于1的整数;以及,所述终端设备根据所述第一频段的资源信息,从所述第一载波集合中确定与所述基站通信的载波,包括:所述终端设备根据所述载波数N和所述第一载波集合中的载波标识,从所述第一载波集合中确定与所述基站通信的N个载波,所述N个载波是所述第一载波集合中的载波。
可选地,终端设备向基站发送反馈信息,所述反馈信息包括载波位置信息、重复次数信息、处理时延信息。
通过本申请实施例的通信方法,可以解决在离散频谱中,混合自动重传请求(Hybrid  Automatic Repeat reQuest,HARQ)反馈资源的问题。
应理解,对于PDSCH传输,需要进行HARQ反馈解调结果。HARQ技术是一种将前向纠错编码(Forward Error Correction,FEC)和自动重传请求(Automatic Repeat Request,ARQ)相结合而形成的技术。
例如,在HARQ技术中,接收端在从发送端接收到数据后,可以确定该数据是否准确译码。如果不能准确译码,则接收端可以向发送端反馈非确认(Negative-acknowledge,NACK)信息,从而,发送端可以基于NACK信息,确定接收端没有准确接收到数据,从而可以进行重传处理;如果能够准确译码,则接收端可以向发送端反馈确认(Acknowledge,ACK)信息,从而,发送端可以基于ACK信息,确定接收端准确接收到数据,从而可以确定完成了数据传输。
即,在本申请实施例中,当终端设备解码成功时可以向网络设备发送ACK信息,在解码失败时可以向网络设备反馈NACK信息。
作为示例而非限定,在本申请实施例中,反馈信息可以包括HARQ技术中的ACK信息或NACK信息。
可选地,该反馈信息承载于物理上行控制信道(Physical Uplink Control Channel,PUCCH)中。
具体地,在媒体介入控制层(Media Access Control,MAC)PDSCH数据报文中携带一种新的MAC控制元素(MAC control element),格式定义如图11所示。该数据报文中包括载波标识,即终端设备进行数据传输的载波位置。该数据报文还包括重复次数和处理时延。重复次数代表重复传输的次数,处理时延代表PDSCH传输到PUCCH反馈的处理时延。图12示出了处理时延的示意图。
根据本申请实施例的通信方法,通过使网络设备确定第一频段上的有效载波和无效载波,并把有效载波的信息和/或无效载波的信息发送给终端设备,使得终端设备从离散的载波中确定出有效载波,进一步与网络设备在有效载波上进行通信,从而能够使得终端设备与网络设备有效地通信。
上文结合图1至图12,详细描述了适用于本申请实施例的通信方法,下面将结合图13至图16,详细描述适用于本申请实施例的通信装置。
图13为本申请实施例的通信装置的示意图,如图13所示,该装置10可以为网络设备,也可以为芯片或电路,比如可设置于网络设备的芯片或电路。其中,该网络设备可以对应上述方法中的网络设备。
该装置10可以包括处理器11(即,处理单元的一例)和存储器12。该存储器12用于存储指令,该处理器11用于执行该存储器12存储的指令,以使该装置20实现如图2中对应的方法中网络设备执行的步骤。
进一步的,该装置10还可以包括输入口13(即,接收单元的一例)和输出口14(即,发送单元的另一例)。进一步的,该处理器11、存储器12、输入口13和输出口14可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器12用于存储计算机程序,该处理器11可以用于从该存储器12中调用并运行该计算计程序,以控制输入口13接收信号,控制输出口14发送信号,完成上述方法中网络设备的步骤。该存储器12可以集成在处理器11中,也可以与处理器11分开设置。
可选地,若该装置10为网络设备,该输入口13为接收器,该输出口14为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置10为芯片或电路,该输入口13为输入接口,该输出口14为输出接口。
作为一种实现方式,输入口13和输出口14的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器11可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网络设备。即将实现处理器11、输入口13和输出口14功能的程序代码存储在存储器12中,通用处理器通过执行存储器12中的代码来实现处理器11、输入口13和输出口14的功能。
在本申请实施例中,可选地,输出口14用于:向终端设备发送第一频段的资源信息,所述第一频段包括第一载波集合和第二载波集合,所述第一频段的资源信息包括所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,其中,所述第一载波集合中的载波能用于所述终端设备与所述基站进行通信,所述第二载波集合中的载波不能用于所述终端设备与所述基站进行通信;处理器11用于:基于所述第一频段的资源信息与所述终端设备通信。
可选地,所述第一频段的资源信息包括所述第一频段的起始位置的信息;处理器11具体用于:基于所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,并根据所述第一频段的起始位置的信息,与所述终端设备在第三载波上通信,所述第三载波是所述第一载波集合中的载波。
可选地,所述第一频段的资源信息包括载波数N,所述载波数N为所述基站分配给所述终端设备的载波的数量,其中,N为大于或等于1的整数;以及,处理器11具体:基于所述载波数N和所述第一载波集合中的载波标识,与所述终端设备在N个载波上通信,所述N个载波是所述第一载波集合中的载波。
可选地,所述第一频段的资源信息还包括与所述终端设备通信所占的时域资源信息。
可选地,所述第一频段的资源信息承载于无线资源控制RRC连接重配置信令中。
其中,以上列举的通信装置10中各模块或单元的功能和动作仅为示例性说明,通信装置10中各模块或单元可以用于执行上述方法100和方法200中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置10所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不作赘述。
图14为本申请实施例提供的一种网络设备的结构示意图,可以用于实现上述方法中的网络设备的功能。如可以为基站的结构示意图。如图14所示,该基站可应用于如图1所示的系统中。基站20包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)202。所述RRU 201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。所述RRU 201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所 述BBU 202部分主要用于进行基带处理,对基站进行控制等。所述RRU 201与BBU 202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)202可以用于控制基站20执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU 202还包括存储器2021和处理器2022。所述存储器2021用以存储必要的指令和数据。例如存储器2021存储上述实施例中的码本等。所述处理器2022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(System-on-chip,SoC)技术的发展,可以将202部分和201部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
图15为本申请实施例的通信装置的示意图,如图15所示,该装置30可以为终端设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。其中,该终端设备可以对应上述方法中的终端设备。
该装置30可以包括处理器31(即,处理单元的一例)和存储器32。该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以使该装置30实现前述方法100和方法200中终端设备执行的步骤。
进一步的,该装置30还可以包括输入口33和输出口33。再进一步的,该处理器31、存储器32、输入口33和输出口34可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器32用于存储计算机程序,该处理器31可以用于从该存储器32中调用并运行该计算计程序,以控制输入口33接收信号,控制输出口34发送信号,完成上述方法200中终端设备的步骤。该存储器32可以集成在处理器31中,也可以与处理器31分开设置。
以控制输入口33接收信号,控制输出口34发送信号,完成上述方法中终端设备的步骤。该存储器32可以集成在处理器31中,也可以与处理器31分开设置。
可选地,若该装置30为终端设备,该输入口33为接收器,该输出口34为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置30为芯片或电路,该输入口33为输入接口,该输出口34为输出接口。
可选的,若该装置30为芯片或电路,所述装置30也可以不包括存储器32,所述处理器31可以读取该芯片外部的存储器中的指令(程序或代码)以实现前述方法中终端设 备的功能。
作为一种实现方式,输入口33和输出口34的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器31可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端设备。即将实现处理器31、输入口33和输出口34功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器31、输入口33和输出口34的功能。
在本申请实施例中,输入口33用于接收基站发送的第一频段的资源信息,所述第一频段包括第一载波集合和第二载波集合,所述第一频段的资源信息包括所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,其中,所述第一载波集合中的载波能用于所述终端设备与所述基站进行通信,所述第二载波集合中的载波不能用于所述终端设备与所述基站进行通信;处理器31根据所述第一频段的资源信息,从所述第一载波集合中确定与所述基站通信的载波。
可选地,所述第一频段的资源信息包括所述第一频段的起始位置的信息;所述处理器31用于:基根据所述第一载波集合中的载波标识和/或所述第二载波集合中的载波标识,并根据所述第一频段的起始位置的信息,从所述第一载波集合中确定与所述基站通信的载波。
可选地,所述第一频段的资源信息包括载波数N,所述载波数N为所述基站分配给所述终端设备的载波的数量,其中,N为大于或等于1的整数;以及,所述处理器31具体用于:根据所述载波数N和所述第一载波集合中的载波标识,从所述第一载波集合中确定与所述基站通信的N个载波,所述N个载波是所述第一载波集合中的载波。
其中,以上列举的通信装置30中各模块或单元的功能和动作仅为示例性说明,通信装置30中各模块或单元可以用于执行上述方法100、200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图16为本申请实施例提供的一种终端设备的结构示意图,可以用于实现上述方法中的终端设备的功能。为了便于说明,图16仅示出了终端设备的主要部件。如图16所示,终端设备40包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通 过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图16仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图16中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备40的收发单元401,将具有处理功能的处理器视为终端设备40的处理单元402。如图15所示,终端设备40包括收发单元401和处理单元402。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元401中用于实现接收功能的器件视为接收单元,将收发单元401中用于实现发送功能的器件视为发送单元,即收发单元401包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种通信方法,其特征在于,包括:
    基站向终端设备发送第一频段的资源信息,所述第一频段包括第一载波集合和第二载波集合,所述第一频段的资源信息包括所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,其中,所述第一载波集合中的载波能用于所述终端设备与所述基站通信,所述第二载波集合中的载波不能用于所述终端设备与所述基站通信;
    所述基站基于所述第一频段的资源信息与所述终端设备通信。
  2. 根据权利要求1所述的通信方法,其特征在于,所述第一频段的资源信息还包括所述第一频段的起始位置的信息;
    所述基站基于所述第一频段的资源信息与所述终端设备通信,包括:
    所述基站基于所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,并根据所述第一频段的起始位置的信息,与所述终端设备在第三载波上通信,所述第三载波是所述第一载波集合中的载波。
  3. 根据权利要求1或2所述的通信方法,其特征在于,
    所述第一频段的资源信息包括载波数N,所述载波数N为所述基站分配给所述终端设备的载波的数量,其中,N为大于或等于1的整数;以及
    所述基站基于所述第一频段的资源信息与所述终端设备通信,包括:
    所述基站基于所述载波数N和所述第一载波集合中的载波标识,与所述终端设备在N个载波上通信,所述N个载波是所述第一载波集合中的载波。
  4. 根据权利要求1至3中任一项所述的通信方法,其特征在于,所述第一频段的资源信息还包括所述基站与所述终端设备通信所占的时域资源信息。
  5. 根据权利要求1至4中任一项所述的通信方法,其特征在于,所述第一频段的资源信息承载于无线资源控制RRC连接重配置信令中。
  6. 一种通信方法,其特征在于,包括:
    终端设备接收基站发送的第一频段的资源信息,所述第一频段包括第一载波集合和第二载波集合,所述第一频段的资源信息包括所述第一载波集合中的载波标识和/或第二载波集合中的载波标识,其中,所述第一载波集合中的载波能用于所述终端设备与所述基站通信,所述第二载波集合中的载波不能用于所述终端设备与所述基站通信;
    所述终端设备根据所述第一频段的资源信息,从所述第一载波集合中确定与所述基站通信的载波。
  7. 根据权利要求6所述的通信方法,其特征在于,
    所述第一频段的资源信息还包括所述第一频段的起始位置的信息;
    所述根据所述第一频段的资源信息,所述终端设备根据所述第一频段的资源信息,从所述第一载波集合中确定与所述基站通信的载波,包括:
    所述终端设备根据所述第一载波集合中的载波标识和/或所述第二载波集合中的载波标识,并根据所述第一频段的起始位置的信息,从所述第一载波集合中确定与所述基站通信的载波。
  8. 根据权利要求6或7所述的通信方法,其特征在于,
    所述第一频段的资源信息包括载波数N,所述载波数N为所述基站分配给所述终端设备的载波的数量,其中,N为大于或等于1的整数;以及
    所述终端设备根据所述第一频段的资源信息,从所述第一载波集合中确定与所述基站通信的载波,包括:
    所述终端设备根据所述载波数N和所述第一载波集合中的载波标识,从所述第一载波集合中确定与所述基站通信的N个载波,所述N个载波是所述第一载波集合中的载波。
  9. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行权利要求1至8中任一项所述的通信方法。
  10. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至8中任意一项所述的通信方法。
PCT/CN2018/079357 2018-03-16 2018-03-16 通信方法和通信装置 WO2019174055A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880090645.5A CN111801956A (zh) 2018-03-16 2018-03-16 通信方法和通信装置
EP18909405.5A EP3742780A4 (en) 2018-03-16 2018-03-16 COMMUNICATION PROCESS AND COMMUNICATION DEVICE
PCT/CN2018/079357 WO2019174055A1 (zh) 2018-03-16 2018-03-16 通信方法和通信装置
US17/009,143 US20200396728A1 (en) 2018-03-16 2020-09-01 Communication Method And Communications Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/079357 WO2019174055A1 (zh) 2018-03-16 2018-03-16 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/009,143 Continuation US20200396728A1 (en) 2018-03-16 2020-09-01 Communication Method And Communications Apparatus

Publications (1)

Publication Number Publication Date
WO2019174055A1 true WO2019174055A1 (zh) 2019-09-19

Family

ID=67907442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079357 WO2019174055A1 (zh) 2018-03-16 2018-03-16 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20200396728A1 (zh)
EP (1) EP3742780A4 (zh)
CN (1) CN111801956A (zh)
WO (1) WO2019174055A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477774B2 (en) * 2017-10-27 2022-10-18 Kyocera Corporation Control information for data transmissions to narrowband (NB) device and co-located mobile broadband (MBB) device using common communication resources
CN114765877A (zh) * 2021-01-15 2022-07-19 展讯通信(上海)有限公司 Pucch重传确定、配置方法及装置、存储介质、用户设备、网络侧设备
CN114513794A (zh) * 2021-12-30 2022-05-17 华为技术有限公司 无线设备、资源管理方法以及通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107920A2 (en) * 2009-03-17 2010-09-23 Qualcomm Incorporated System and method for effectuating a signal carrier configuration
CN103052076A (zh) * 2012-08-28 2013-04-17 深圳市国电科技通信有限公司 一种离散窄带实现宽带数据传输的方法
CN103647742A (zh) * 2013-12-25 2014-03-19 上海贝岭股份有限公司 电力线载波ofdm系统的通信方法和设备
CN104954311A (zh) * 2015-05-25 2015-09-30 深圳市力合微电子股份有限公司 基于ofdm调制的电力线载波通信系统前导信号生成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246582B (zh) * 2009-08-17 2014-08-06 华为技术有限公司 一种小区接入控制的方法和设备
US8792328B2 (en) * 2009-11-06 2014-07-29 Intel Corporation Radio-link reliability using multi-carrier capability in wireless broadband systems
EP2360864A1 (en) * 2010-02-12 2011-08-24 Panasonic Corporation Component carrier (de)activation in communication systems using carrier aggregation
GB2510141A (en) * 2013-01-24 2014-07-30 Sony Corp Mobile communications network including reduced capability devices
US20160242186A1 (en) * 2015-02-12 2016-08-18 Nokia Technologies Oy Dynamic Carrier Selection Via Auxiliary Carriers In Unlicensed Band

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107920A2 (en) * 2009-03-17 2010-09-23 Qualcomm Incorporated System and method for effectuating a signal carrier configuration
CN103052076A (zh) * 2012-08-28 2013-04-17 深圳市国电科技通信有限公司 一种离散窄带实现宽带数据传输的方法
CN103647742A (zh) * 2013-12-25 2014-03-19 上海贝岭股份有限公司 电力线载波ofdm系统的通信方法和设备
CN104954311A (zh) * 2015-05-25 2015-09-30 深圳市力合微电子股份有限公司 基于ofdm调制的电力线载波通信系统前导信号生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3742780A4 *

Also Published As

Publication number Publication date
CN111801956A (zh) 2020-10-20
US20200396728A1 (en) 2020-12-17
EP3742780A4 (en) 2021-01-06
EP3742780A1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
US20200296687A1 (en) Communication method and communications device
US11317295B2 (en) Communications method and apparatus
KR102247385B1 (ko) 전송 방법, 네트워크 장비, 및 단말 장비
US20200396728A1 (en) Communication Method And Communications Apparatus
US20230209599A1 (en) Wireless communication method, terminal device and network device
WO2014005284A1 (en) Methods and apparatus for contention based transmission
EP4044707A1 (en) Dynamic resource indication method and apparatus
WO2019214660A1 (zh) 通信方法和通信装置
KR20200061407A (ko) 미디어 액세스 제어 프로토콜 데이터 유닛 처리 방법 및 장치
AU2018417481A1 (en) Data transmission method, terminal device and network device
WO2019096232A1 (zh) 通信方法和通信装置
EP3579482B1 (en) Methods and corresponding devices for improved dci detection
KR102304385B1 (ko) 신호 송신 방법, 관련 장치 및 시스템
US11546116B2 (en) Data transmission method and communications apparatus
US20200374887A1 (en) Channel transmission method and apparatus, and computer storage medium
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2020221011A1 (zh) 数据传输的方法和装置
CN117242851A (zh) 无线通信方法、第一设备和第二设备
EP3751930B1 (en) Method and apparatus for transmitting harq information, and computer storage medium
CN115023914A (zh) 信息处理方法及设备
US12028833B2 (en) Communications method and apparatus
US20240237057A1 (en) Wireless communication method, terminal device, and network device
WO2022068416A1 (zh) 一种反馈信息的传输方法和通信设备
WO2024131148A1 (zh) 预调度方法、电子设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018909405

Country of ref document: EP

Effective date: 20200819

NENP Non-entry into the national phase

Ref country code: DE