WO2022088188A1 - 通信的方法、装置 - Google Patents

通信的方法、装置 Download PDF

Info

Publication number
WO2022088188A1
WO2022088188A1 PCT/CN2020/125958 CN2020125958W WO2022088188A1 WO 2022088188 A1 WO2022088188 A1 WO 2022088188A1 CN 2020125958 W CN2020125958 W CN 2020125958W WO 2022088188 A1 WO2022088188 A1 WO 2022088188A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
mcs
frequency domain
domain resource
time period
Prior art date
Application number
PCT/CN2020/125958
Other languages
English (en)
French (fr)
Inventor
宣一荻
谢信乾
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/125958 priority Critical patent/WO2022088188A1/zh
Priority to CN202080106288.4A priority patent/CN116326072A/zh
Publication of WO2022088188A1 publication Critical patent/WO2022088188A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and, more particularly, to methods and apparatuses for communications.
  • the signal transmitted by the transmitting end propagates through multiple paths such as reflection, refraction, and scattering, and the time for the signal propagated by different paths to reach the receiving end Therefore, the signal received by the receiving end is distorted compared with the signal sent by the transmitting end, that is, the multipath effect.
  • the reason for the distortion is that the channel coefficient of the wireless channel through which the signal passes during the propagation process will fluctuate in the frequency domain, that is, the wireless channel has frequency selective fading characteristics.
  • the frequency selective fading characteristic of a wireless channel depends on the environment. Generally, the frequency selective fading characteristic of a wireless channel is smaller in an environment with less obstructions or potential reflectors.
  • FWA fixed wireless access
  • LTE long term evolution
  • NR technologies especially in indoor fixed wireless access scenarios, have many indoor obstacles and serious multipath effects. Therefore, the wireless channel has strong frequency selective fading.
  • the wireless communication system adopts the frequency selective scheduling method to overcome the frequency selective fading characteristics of the wireless channel, that is, the resource block (RB) with better channel quality is scheduled for the communication between the network device and the terminal device, so as to obtain the frequency of the channel. Selective channel gain.
  • a single transport block corresponding to a resource block scheduled by a network device only corresponds to one modulation and coding scheme (Modulation and Coding Scheme, MCS), which cannot match the frequency selective fading characteristics of the wireless channel, resulting in reduced transmission performance.
  • MCS Modulation and Coding Scheme
  • the present application provides a communication method and apparatus, which realizes the multi-MCS configuration for a single transport block through at least one signaling.
  • a first aspect provides a communication method, the method includes: receiving first signaling, the first signaling including first indication information for indicating a first frequency domain resource and a first modulation and coding strategy MCS; two signaling, the second signaling includes second indication information for indicating the second frequency domain resource and the second MCS, the first frequency domain resource includes the second frequency domain resource; according to the first signaling and the The second signaling determines that the first downlink signal is received on the first frequency domain resource within the first time period, wherein the MCS corresponding to the part of the first downlink signal carried on the second frequency domain resource is: The second MCS, the MCS corresponding to the part of the first downlink signal carried on the third frequency domain resource is the first MCS or the third MCS, and the third frequency domain resource is not in the first frequency domain resource.
  • a frequency domain resource including the second frequency domain resource, and the third MCS is determined based on the first MCS.
  • three frequency domain resources and at least two MCSs are indicated through two-level signaling, and multi-MCS configuration for a single transport block is realized, and since the second frequency domain resource is one of the first frequency domain resources In part, the size of the field indicating the second frequency domain resource in the second signaling is reduced, and the saved field can be used to indicate the third MCS.
  • the third MCS is determined based on the first MCS and a first MCS offset value, and the first MCS offset value is carried in the second signaling.
  • three frequency domain resources and three MCSs are indicated through two-stage signaling, which saves signaling overhead and reduces the complexity and power consumption of terminal equipment for detecting frequency domain resources and MCS indication information.
  • the first MCS offset value is directly indicated through the second signaling, and the third MCS is directly determined according to the relationship between the first MCS offset value and the first MCS, thereby realizing multi-MCS configuration for a single transport block.
  • the first signaling is used to indicate that the second downlink signal is received within the second time period, and the second signaling further includes a signal used to indicate the first time period The third indication information; wherein, the second time period includes the first time period, and the signal carried by the second downlink signal in the first time period is the first downlink signal.
  • the second signaling is used to indicate that the first downlink signal is received within the first time period.
  • the first signaling further includes fourth indication information for indicating a second time period, where the second time period includes the first time period.
  • the first signaling is carried in a physical downlink shared channel PDSCH
  • the second signaling is carried in a physical downlink control channel PDCCH.
  • both the first signaling and the second signaling are carried in the PDCCH.
  • the first signaling and the second signaling are the same signaling.
  • a second aspect provides a communication method, the method includes: sending first signaling, where the first signaling includes first indication information for indicating a first frequency domain resource and a first MCS; sending second signaling, The second signaling includes second indication information for indicating the second frequency domain resource and the second MCS, wherein the first frequency domain resource includes a second frequency domain resource, and the second MCS is a first downlink signal
  • the MCS corresponding to the part carried on the second frequency domain resource, the MCS corresponding to the part carried on the third frequency domain resource in the first downlink signal is the first MCS or the third MCS, the third frequency
  • the domain resource is a frequency domain resource that does not include the second frequency domain resource in the first frequency domain resource, and the third MCS is determined based on the first MCS.
  • three frequency domain resources and at least two MCSs are indicated through two-level signaling, and multi-MCS configuration for a single transport block is realized, and since the second frequency domain resource is one of the first frequency domain resources In part, the size of the field indicating the second frequency domain resource in the second signaling is reduced, and the saved field can be used for the third MCS indication.
  • the third MCS is determined based on the first MCS and a first MCS offset value, and the first MCS offset value is carried in the second signaling.
  • three frequency domain resources and three MCSs are indicated through two-stage signaling, which saves signaling overhead and reduces the complexity and power consumption of terminal equipment for detecting frequency domain resources and MCS indication information.
  • the first MCS offset value is directly indicated through the second signaling, and the third MCS is directly determined according to the relationship between the first MCS offset value and the first MCS, thereby realizing multi-MCS configuration for a single transport block.
  • the first signaling is used to indicate that the second downlink signal is received within the second time period
  • the second signaling further includes a signal used to indicate the first time period
  • the third indication information wherein, the second time period includes the first time period, and the signal carried by the second downlink signal in the first time period is the first downlink signal.
  • the second signaling is used to indicate that the first downlink signal is received within the first time period.
  • the first signaling further includes fourth indication information for indicating a second time period, where the second time period includes the first time period.
  • the first signaling is carried in the PDSCH, and the second signaling is carried in the PDCCH.
  • the first signaling and the second signaling are carried in a PDCCH.
  • the first signaling and the second signaling are the same signaling.
  • a third aspect provides a communication device, the communication device is a terminal device or a module configured (or used for) the terminal device, comprising: a transceiver unit and a processing unit, the transceiver unit is configured to receive the first signaling and the second signaling, the first signaling includes first indication information for indicating a first frequency domain resource and a first modulation and coding strategy MCS, the first frequency domain resource includes a second frequency domain resource; the second signaling includes second indication information used to indicate the second frequency domain resource and the second MCS; the processing unit is used to determine the first frequency domain resource within the first time period according to the first signaling and the second signaling receiving a first downlink signal, wherein the MCS corresponding to the part of the first downlink signal carried on the second frequency domain resource is the second MCS, and the first downlink signal is carried in the third frequency domain
  • the MCS corresponding to the part on the resource is the first MCS or the third MCS
  • the third frequency domain resource is the frequency domain resource that does not include the second frequency domain resource
  • the terminal device determines three frequency domain resources and at least two MCSs by receiving two-level signaling, thereby realizing multi-MCS configuration for a single transport block.
  • a fourth aspect provides a communication device, where the communication device is a network device or a module configured (or used for) the network device, comprising: a transceiver unit, the transceiver unit is configured to send the first signaling and the second signaling,
  • the first signaling includes first indication information for indicating a first frequency domain resource and a first MCS, where the first frequency domain resource includes a second frequency domain resource;
  • the second signaling includes first indication information for indicating the second frequency domain resource domain resources and the second indication information of the second MCS, wherein the second MCS is the MCS corresponding to the part of the first downlink signal that is carried on the second frequency domain resource, and the first downlink signal is carried in the first downlink signal.
  • the MCS corresponding to the part of the three frequency domain resources is the first MCS or the third MCS
  • the third frequency domain resource is the frequency domain resource that does not include the second frequency domain resource in the first frequency domain resource
  • the third frequency domain resource is the frequency domain resource that does not include the second frequency domain resource.
  • the MCS is determined based on the first MCS.
  • the network device indicates three frequency domain resources and at least two MCSs by sending two-level signaling, so as to realize the multi-MCS configuration for a single transport block, and since the second frequency domain resource is the first frequency domain resource For a part of the resources, the size of the field indicating the second frequency domain resource in the second signaling is reduced, and the saved field can be used for the third MCS indication.
  • a communication apparatus is provided, and the communication apparatus may be the terminal device in the above-mentioned first aspect, or an electronic device configured in the terminal device, or a larger device including the terminal device.
  • the apparatus is configured to execute the communication method provided in the first aspect.
  • the communication device includes a transceiver and a processor, the transceiver is configured to receive first signaling and second signaling, and the first signaling includes a first signal for indicating a first frequency domain resource and a first modulation and coding strategy MCS indication information, the first frequency domain resources include second frequency domain resources; the second signaling includes second indication information used to indicate the second frequency domain resources and the second MCS; the processor is used for according to the first information
  • the second signaling determines that the first downlink signal is received on the first frequency domain resource within the first time period, wherein the part of the first downlink signal carried on the second frequency domain resource corresponds to
  • the MCS is the second MCS, the MCS corresponding to the part carried on the third frequency domain resource in the first downlink signal is the first MCS or the third MCS, and the third frequency domain resource is the first frequency domain.
  • the resources do not include frequency domain resources of the second frequency domain resource, and the third MCS is determined based on the first MCS.
  • the processor is coupled to the memory and can be used to execute instructions in the memory, so as to implement the first aspect and the communication method in any possible implementation manner of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in the terminal device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • a communication apparatus is provided, and the communication apparatus may be the network device in the above-mentioned second aspect, or an electronic device configured in the network device, or a larger device including the network device.
  • the apparatus is configured to execute the communication method provided in the second aspect.
  • the communication device includes a transceiver configured to send first signaling and second signaling, the first signaling including first indication information for indicating a first frequency domain resource and a first MCS, the first frequency
  • the domain resources include second frequency domain resources; the second signaling includes second indication information for indicating the second frequency domain resources and the second MCS, wherein the second MCS is carried in the first downlink signal and carried in the The MCS corresponding to the part on the second frequency domain resource, the MCS corresponding to the part carried on the third frequency domain resource in the first downlink signal is the first MCS or the third MCS, and the third frequency domain resource is the MCS
  • the first frequency domain resource does not include frequency domain resources of the second frequency domain resource, and the third MCS is determined based on the first MCS.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the second aspect and the communication method in any possible implementation manner of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the above-mentioned processor may be one or more chips
  • the input circuit may be input pins
  • the output circuit may be output pins
  • the processing circuit may be transistors, gate circuits, flip-flops and various logic circuits, etc. .
  • the input signal received by the input circuit may be, but not limited to, received and input by the receiver
  • the signal output by the output circuit may be, but not limited to, output to and transmitted by the transmitter
  • the input circuit and the output circuit may be The same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a seventh aspect provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a terminal device, enables the terminal device to implement the first aspect and any possible implementation manner of the first aspect communication method.
  • a computer-readable storage medium on which a computer program is stored.
  • the network device can realize the second aspect and any possible implementation manner of the second aspect. communication method.
  • a ninth aspect provides a computer program product containing instructions, which when executed by a computer cause a terminal device to implement the first aspect and the communication method in any possible implementation manner of the first aspect.
  • a tenth aspect provides a computer program product containing instructions, which, when executed by a computer, cause a network device to implement the communication method in the second aspect and any possible implementation manner of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method applicable to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a frequency domain resource relationship applicable to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a received signal applicable to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device apparatus suitable for use in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network device applicable to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device applicable to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network device applicable to the embodiment of the present application.
  • GSM Global System Formobile Communications
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Dual Industrial
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • satellite communication system 5th generation (5th generation, 5G) system or New Radio (NR), and future communication systems.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 suitable for an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, for example, the network device 110 shown in FIG. 1 .
  • the wireless communication system 100 may further include at least one terminal device, for example, the terminal device 120 shown in FIG. 1 .
  • a wireless connection can be established between a terminal device and a network device and between a terminal device and a terminal device for wireless communication, and the sending device can indicate data scheduling information through control information, so that the receiving device can correctly receive data according to the control information.
  • the terminal equipment in the embodiments of the present application may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent or user device.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, an indoor or outdoor Customer Premises Equipment (CPE), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grid, wireless terminals in transportation safety, smart Wireless terminals in cities, wireless terminals in smart homes, cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistants (Personal Digital Assistants) Assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or future evolution of public land mobile communication networks (Public Land Mobile Network, PLMN) terminal equipment, etc.
  • CPE Customer Premises Equipment
  • PLMN
  • the network device in this embodiment of the present application may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), Radio Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC) , base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), base band unit (Base Band Unit, BBU), Wireless Fidelity (Wireless Fidelity, WIFI) system
  • the access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (Transmission and Reception Point, TRP), etc. can also be 5G, such as, The gNB in the NR system, or the transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the
  • a gNB may include a Centralized Unit (CU) and a DU.
  • the gNB may also include an Active Antenna Unit (Active Antenna Unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of the Radio Resource Control (RRC) and Packet Data Convergence Protocol (PDCP) layers.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the Radio Link Control (RLC) layer, the Media Access Control (MAC) layer, and the physical layer.
  • RLC Radio Link Control
  • MAC Media Access Control
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, therefore, in this architecture, the higher-layer signaling, such as the RRC layer signaling, can also be considered to be sent by the DU. , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU may be divided into network devices in an access network (Radio Access Network, RAN), or the CU may be divided into network devices in a core network (Core Network, CN), which is not limited in this application.
  • Subcarrier In an Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) system, a frequency domain resource is divided into several subresources, and each subresource in the frequency domain may be called a subcarrier. Subcarriers can also be understood as the minimum granularity of frequency domain resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Subcarrier spacing In an OFDM system, the spacing value between the center positions or peak positions of two adjacent subcarriers in the frequency domain.
  • the subcarrier spacing in the LTE system is 15KHz
  • the subcarrier spacing in the 5G NR system can be 15KHz, or 30KHz, or 60KHz, or 120KHz, etc.
  • OFDM symbol the smallest time unit in the time domain in an OFDM system, which is a communication system using OFDM transmission, such as an LTE or NR system.
  • DMRS Demodulation Reference Signal
  • the demodulation reference signal is a reference signal used to recover the received signal.
  • DMRS is a signal known to the receiving end. The receiving end can determine the fading characteristics of the wireless channel according to the received signal and the known DMRS signal, that is, the wireless channel. The channel coefficients are used to recover the received signal.
  • the channel coefficients from different antenna ports to the terminal are not the same, in order for the receiver to obtain the information transmitted on multiple spatial layers, it is necessary to estimate the channel coefficient between each antenna port and the terminal. Therefore, it is necessary to configure different DMRSs for each antenna port, and the DMRSs corresponding to different antenna ports can be multiplexed by means of time division, frequency division, and/or code division.
  • 5G NR systems can support up to 12 MDRS ports.
  • a resource block, N consecutive subcarriers in the frequency domain may be referred to as a resource block.
  • one resource block in the LTE system includes 12 subcarriers
  • one resource block in the 5G NR system also includes 12 subcarriers.
  • the number of subcarriers included in one resource block may also be other values.
  • Several resource blocks can form a resource block group (Resource Block Group, RBG), and the number of RBs included in each RBG can be determined by the resource block bundling "PRB Bundling" field in the DCI.
  • RBG Resource Block Group
  • the frequency domain resource is a part of the frequency band (band) configured by the network device to the terminal device for data transmission.
  • the frequency domain resource can be a component carrier (Component Carrier, CC) or a bandwidth part (Bandwidth Part, BWP). ), can also be a carrier frequency band, etc.
  • Component Carrier CC
  • BWP Bandwidth Part
  • This embodiment of the present application does not limit this, where the BWP may be a continuous frequency domain resource or a discontinuous frequency domain resource.
  • a time slot is a unit of data transmission resources in the time domain.
  • a time slot usually contains multiple symbols/chips, and each symbol/chip may have the same or different transmission directions.
  • a time slot of the 5G NR system includes 14 OFDM symbols, the time slot length corresponding to the 15kHz subcarrier spacing is 1ms, and the time slot length corresponding to the 30kHz subcarrier spacing is 0.5ms.
  • An OFDM symbol is the smallest time unit in the time domain in an OFDM system.
  • Data is transmitted in units of transport blocks on the uplink data channel (for example, the physical uplink shared channel) and downlink data channel (for example, the physical downlink shared channel). for bits.
  • uplink data channel for example, the physical uplink shared channel
  • downlink data channel for example, the physical downlink shared channel
  • Modulation and Coding Scheme (MCS)
  • the MCS is the modulation and coding strategy corresponding to the modulation order and code rate adopted by the transport block included in the downlink signal sent by the network device to the terminal device.
  • the network device carries the MCS index value in the DCI, and indicates the MCS table used by the terminal device through high-level signaling.
  • the terminal device determines the modulation to use according to the MCS index value received in the DCI and the MCS table indicated by the high-level signaling. and coding strategy, and according to the determined modulation and precoding strategy, determine the adopted modulation order and code rate to process the downlink signal.
  • the network device when the network device transmits data packets to the terminal device, the network device sends the Downlink Control Information (DCI) to the terminal user in the Physical Downlink Control Channel (PDCCH) to instruct the terminal device. Receive downstream data.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the DCI indicates the resource block used by the terminal equipment to receive downlink signals through the "frequency domain resource assignment (Frequency domain resource assignment) indication" field.
  • the MCS index value indicated by the "modulation and coding scheme (Modulation and Code Scheme, MCS) indication" field and the MCS index table indicated by the high-level signaling indicate the corresponding MCS included in the signal received by the terminal device from the resource block.
  • MCS Modulation and Code Scheme
  • each transport block corresponds to only one MCS, that is to say, a single transport block corresponding to the resource block scheduled by the network device corresponds to only one MCS.
  • the frequency selective fading characteristics of the wireless channel cannot be matched.
  • the network device needs to configure multiple MCSs corresponding to a single transport block carried on the scheduled resource block, and indicate to the terminal device the frequency domain resources corresponding to each MCS that bear part of the transport block.
  • the network device configures multiple MCSs for a single transport block by sending one or more signalings, thereby reducing the frequency selective fading characteristic of the wireless channel.
  • FIG. 2 is a schematic flowchart of a communication method 200 provided by an embodiment of the present application, and the method includes:
  • the network device sends the first signaling to the terminal device.
  • the terminal device receives the first signaling.
  • the first signaling includes first indication information for indicating the first frequency domain resource and the first MCS.
  • the first signaling The frequency domain resources include second frequency domain resources.
  • the network device before the network device sends the first signaling, it can estimate the channel state according to uplink reference signals such as channel sounding reference signals and/or demodulation reference signals sent by the terminal device, and determine the scheduled frequency domain resources and the frequency domain resources according to the channel state.
  • the first MCS corresponding to the signal carried on the frequency domain resource is then indicated to the terminal device through the first signaling.
  • the first frequency domain resource may be a resource block that bears the downlink signal to be sent by the network device to the terminal device.
  • the first indication information includes two fields, the first field is used to indicate the first frequency domain resource, and the second field is used to indicate the index value of the first MCS, that is, at this time, it is used to indicate the first frequency domain resource.
  • the field of a frequency domain resource and the field of the index value of the first MCS are two different fields.
  • the first field and/or the second field in the first indication information may be an indication field in an existing protocol, a reserved field in an existing protocol, or a newly added field not defined in the existing protocol .
  • the first field may be the field of "Frequency domain resource assignment" in the frequency domain resource assignment in the DCI format defined in the protocol 3GPP (3rd Generation Partnership Project) TS 38.212.
  • the second field can be the field of the modulation and coding strategy "Modulation and coding scheme" in the DCI format defined in the protocol 3GPP TS 38.212, or if the first signaling is RRC signaling, it can be added to the RRC signaling to indicate A field of the first frequency domain resource and a field used to indicate the first MCS.
  • the first signaling may further include fourth indication information for indicating the second time period.
  • the fourth indication information may indicate a time slot offset and a start and length indicator value (Start and length Indicator Value, SLIV) of the second time period.
  • the SLIV is used to determine the first OFDM symbol and the last OFDM symbol in the second time period.
  • the fourth indication information may be an indication field in an existing protocol, a reserved field in an existing protocol, or a newly added field not defined in the existing protocol.
  • the fourth indication information may be a field in the existing DCI for indicating the time domain resource allocation "Time Domain Resource Assignment".
  • the first signaling is RRC signaling, it may be A field for indicating the second time period is added to the RRC signaling. .
  • the first signaling may be carried in a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the first signaling is RRC signaling.
  • the first signaling may also be other high-layer signaling other than RRC, which is not limited herein.
  • the first signaling may also be carried in the physical downlink control channel PDCCH.
  • the first signaling is DCI.
  • the first signaling may also be other signaling except DCI, which is not limited here.
  • the network device sends the second signaling, and correspondingly, the terminal device receives the second signaling, where the second signaling includes second indication information for indicating the second frequency domain resource and the second MCS, the first frequency domain resource Including second frequency domain resources.
  • the second indication information includes 2 fields used to indicate the second frequency domain resource and the second MCS, the first field is used to indicate the second frequency domain resource, and the second field is used to indicate the index of the second MCS value.
  • the first field and/or the second field in the second indication information may be an indication field in an existing protocol, a reserved field in an existing protocol, or a newly added field not defined in the existing protocol .
  • the first field may be the field of "Frequency domain resource assignment" in the frequency domain resource assignment in the DCI format defined in the protocol 3GPP (3rd Generation Partnership Project) TS 38.212.
  • the second field may be the field of the modulation and coding strategy "Modulation and coding scheme" in the DCI format defined in the protocol 3GPP TS 38.212. .
  • the first field may indicate the second frequency domain resource by means of a bitmap.
  • the bit length of the bitmap may be the number of RBs included in the first frequency domain resource.
  • the bit length of the bitmap may be the number of RBGs included in the first frequency domain resource, wherein each bit corresponds to one RB or one RBG, and different values of each bit represent different states of the corresponding RB or RBG.
  • the value of the bit is set to 1, indicating that the resource block corresponding to this bit is included in the second frequency domain resource, and the value of the bit is set to 0, indicating that the resource block corresponding to this bit is not included in the second frequency domain.
  • the first frequency domain resource includes 8 RBs, numbered RB0-RB7, and if the bitmap is [11110000], it indicates that RB0, RB1, RB2, and RB3 are included in the second frequency domain In the resource; if the bitmap is [11101000], it indicates that RB0, RB1, RB2, and RB4 are included in the second frequency domain resource; if the bitmap is [11100100], it indicates that RB0, RB1, RB2, and RB5 are included in the second frequency domain.
  • bitmap is [11111000], indicating that RB0, RB1, RB2, RB3, and RB4 are included in the second frequency domain resource;
  • bitmap is [11110100], indicating that RB0, RB1, RB2, RB3, and RB5 are included in in the second frequency domain resource.
  • bitmap RB number included in the second frequency domain resource [11110000] 0,1,2,3 [11101000] 0,1,2,4 [11100100] 0,1,2,5 ... ... [11111000] 0,1,2,3,4 [11110100] 0,1,2,3,5 ... ...
  • the first field may further indicate the second frequency domain resource through a resource indication value
  • the resource indication value indicates the position of the starting RB of the second frequency domain resource in the first frequency domain resource and the number of consecutive RBs.
  • the number for example, the resource indication information indicates that L consecutive RBs from the S-th RB in the first frequency domain resource belong to the second frequency domain resource.
  • the calculation method of the resource indication value can adopt the calculation method of the resource indication value of Type 1 frequency domain resource allocation in the protocol 3GPP TS 38.214 standard.
  • the second field indicates the index value of the second MCS, and indicates the MCS index table used by the terminal device through high-level signaling, and the terminal device can use the index value of the second MCS in the network device
  • the second MCS is determined in the indicated MCS index table.
  • the second field may indicate a deviation value.
  • the deviation value is the difference between the index value of the first MCS and the index value of the second MCS.
  • the terminal device may determine the second MCS according to the deviation value and the first MCS.
  • the second signaling may further include third indication information for indicating the first time period.
  • the first time period is included in the second time period. That is, the number of time slots contained in the first time period is one, more or all of the time slots contained in the second time period, or the OFDM symbols contained in the first time period are OFDM symbols contained in the second time period. one, more or all.
  • the second signaling further includes indication information for indicating the first MCS offset value.
  • the second signaling further includes indication information for indicating the third MCS.
  • the first MCS offset value is used to determine the index value of the third MCS.
  • the first MCS deviation value is the difference between the index value of the third MCS and the index value of the first MCS.
  • the third MCS is the MCS corresponding to the third frequency domain resource, that is, the MCS corresponding to the frequency domain resources other than the second frequency domain resource in the first frequency domain resource.
  • the third frequency domain resource is a complement of the second frequency domain resource in the first frequency domain resource.
  • the terminal device can determine the third frequency domain at this time.
  • the MCS adopted by the signal carried on the resource is the first MCS indicated by the first signaling. Whether the specific network device needs to indicate the offset of the third MCS or the first MCS through the second signaling is not limited here.
  • the field used to indicate the first MCS offset value in the second signaling may be located after the field used to indicate the second frequency domain resource in the second signaling.
  • the field used to indicate the third MCS in the second signaling may be located after the field used to indicate the second frequency domain resource in the second signaling.
  • the second signaling indicates the second frequency domain resource by means of a bitmap
  • the number of bits contained in the bitmap is the same as the number of RBs or RBGs contained in the first frequency domain resource block, because the first The number of RBs in the frequency domain resource is less than the number of RBs included in the bandwidth configured by the network device for the terminal device, or the number of RBGs in the first frequency domain resource is less than the number of RBGs included in the bandwidth configured by the network device for the terminal device , so the signaling overhead of the second signaling indicating the second frequency domain resource is reduced, and the network device can indicate the third MCS or the first MCS offset value by one or more bits in the saved bits in this way.
  • the second signaling may be carried in the PDCCH.
  • the second signaling may be DCI, but is not limited thereto.
  • the terminal device determines, according to the first signaling and the second signaling, to receive the first downlink signal on the first frequency domain resource within the first time period, wherein the first downlink signal is carried in the second downlink signal.
  • the MCS corresponding to the part on the frequency domain resource is the second MCS
  • the MCS corresponding to the part carried on the third frequency domain resource in the first downlink signal is the first MCS or the third MCS
  • the third frequency domain resource is
  • the first frequency domain resource does not include frequency domain resources of the second frequency domain resource
  • the third MCS is determined based on the first MCS.
  • the first downlink signal is a downlink signal sent by the network device carried on the first frequency domain resource to the terminal device within the first time period.
  • the terminal device determines, according to the first signaling and the second signaling, to receive the first downlink signal on the first frequency domain resource within the first time period.
  • the terminal device may determine according to the first signaling and the second signaling, including:
  • the terminal device may determine the first frequency domain resource and the first MCS according to the first signaling. That is, the terminal device can determine the first frequency domain resource and the index value of the first MCS according to the first signaling.
  • the terminal device may determine the second time period according to the first signaling. Specifically, the terminal device may determine the first OFDM symbol and the last OFDM symbol in the second time period according to the time slot offset and the SLIV in the first signaling.
  • the second time period includes the first time period.
  • the terminal device may determine the first time period according to the second signaling.
  • the terminal device may determine the first OFDM symbol and the last OFDM symbol in the first time period according to the time slot offset and the SLIV in the second signaling.
  • the terminal device may determine the second MCS according to the second signaling. Specifically, the terminal device may determine the index value of the second MCS according to the second signaling, and determine the second MCS according to the MCS index table indicated by the high-level signaling.
  • the modulation and coding strategy indicated by the second MCS is the modulation and coding strategy adopted by the first downlink signal carried on the second frequency domain resource within the first time period.
  • the terminal device may determine the second frequency domain resource and the third frequency domain resource according to the first signaling and the second signaling.
  • the second frequency domain resource is included in the first frequency domain resource.
  • the third frequency domain resource is a frequency domain resource that does not include the second frequency domain resource in the first frequency domain resource. That is to say, the terminal device can determine the second frequency domain resource according to the second signaling. Because the third frequency domain resource is the complement of the second frequency domain resource in the first frequency domain resource, the terminal device can also determine the first frequency domain resource.
  • Three frequency domain resources As shown in FIG. 3 , the first frequency domain resource includes 20 RBs numbered RB0 to RB19, the second frequency domain resource includes RB0 to RB3 and RB14 to RB19, and the third frequency domain resource includes RB4 to RB13.
  • the number of resource blocks of the second frequency domain resource and the third frequency domain resource may be determined by the network device according to the parameters reported by the terminal device or according to the uplink reference signal sent by the terminal device.
  • the number of resource blocks of the third frequency domain resource is only an example, and is not limited herein.
  • the terminal device may determine the third MCS according to the first MCS. It can also be said that the terminal device can determine the third MCS according to the first signaling and/or the second signaling. Specifically, the terminal device may determine the first MCS deviation value according to the second signaling, and the terminal device may determine the index value of the third MCS according to the index value of the first MCS and the first MCS deviation value, and indicate through high-level signaling
  • the MCS index table determines the third MCS.
  • the terminal device may determine the first MCS offset value by using the received indication information in the second signaling for indicating the first MCS offset value, thereby determining the third MCS. For example, when the MCS index value corresponding to the first MCS is 1, when the first deviation value MCS is 0, the third MCS index value is 1; when the first MCS deviation value is 1, the third MCS index value is 1 I+1; when the first MCS deviation value is -1, the third MCS index value is I-1; when the first MCS deviation value is 2, the third MCS index value is I+2; when the first MCS deviation value is When it is -2, the third MCS index value is 1-2.
  • the terminal device may determine, according to the first signaling and the second signaling, that the MCS corresponding to the third frequency domain resource in the first time period is the first MCS or the third MCS.
  • the terminal device may determine, according to the second signaling, that the MCS corresponding to the second frequency domain resource in the first time period is the second MCS.
  • the manner in which the network device schedules the terminal device to receive the downlink signal may include the following two:
  • the first signaling schedules the terminal device to receive the downlink signal. Both the first signaling and the second signaling received by the terminal device may be carried in the PDCCH.
  • the first signaling includes fourth indication information, which instructs the terminal device to receive the downlink signal within the second time period, that is, the first signaling can schedule the terminal device to receive the downlink signal sent by the network device, and the downlink signal is the first signal.
  • the second downlink signal is a downlink signal carried on the first frequency domain resource in the second time period.
  • the part of the second downlink signal carried in the first time period is the first downlink signal, wherein the second time period includes the first time period.
  • the terminal receives the downlink signal according to the first signaling and the second signaling, and the specific steps include:
  • the terminal device determines the first frequency domain resource and the first MCS according to the first signaling, and the terminal device may also determine the second time period according to the first signaling.
  • the terminal device receives the second downlink signal carried on the first frequency domain resource within the second time period according to the first signaling.
  • the terminal device determines, according to the first signaling and the second signaling, to receive the first downlink signal on the first frequency domain resource within the first time period.
  • the terminal device receives the first downlink signal on the second frequency domain resource and the third frequency domain resource, and transmits the first downlink signal through the second frequency domain resource and the third frequency domain resource.
  • the modulation and coding strategy indicated by the second MCS processes the part of the first downlink signal carried on the second frequency domain resource, and is processed by the modulation and coding strategy indicated by the third MCS or the modulation and coding strategy indicated by the first MCS The part of the first downlink signal carried on the third frequency domain resource.
  • the terminal device processes the part of the first downlink signal carried in the third frequency domain resource through the modulation and coding strategy indicated by the third MCS.
  • the order in which the terminal equipment receives part of the signal on the second frequency domain resource and the part of the signal on the third frequency domain resource may be that the part of the signal received on the third frequency domain resource is first, or the second frequency domain resource. Some signals are received first on the frequency domain resources, and may also be received at the same time, which is not limited here.
  • the terminal device receives the first signaling and the second signaling in the time slot i, and the first signaling indicates that the second time period includes 20 time slots, that is, the time slot i to the time slot i+ 19.
  • the second signaling indicates that the first time period includes 5 time slots, that is, time slot i to time slot i+4, and the terminal device receives the first time slot from time slot i to time slot i+4 on the second frequency domain resource.
  • the terminal device receives the signal on the first frequency domain resource, and demodulates the signal according to the first MCS.
  • the terminal device receives a certain time slot after the first signaling and the second signaling, the first time period has ended and the second time period has not ended, the terminal device receives the second signaling again. command, repeat the above steps after the terminal device receives the second signaling. If the terminal device receives a certain time slot after the first signaling and the second signaling, the first time period has ended and the second time period has not ended, and the terminal device does not receive the second signaling, Then, the terminal device receives the second downlink signal from the first frequency domain resource within the second time period divided by the first time period, and demodulates the second downlink signal according to the first MCS.
  • the terminal device determines the first frequency domain resource and the first MCS according to the first signaling, and then at the second time The second downlink signal is received from the first frequency domain resource within the segment, and the second downlink signal is processed according to the first MCS.
  • the first signaling and the second signaling may be the same information or different information. Taking DCI as an example, the first signaling and the second signaling may be the same DCI or different DCIs. Here Not limited.
  • the second signaling schedules the terminal device to receive the downlink signal.
  • the first signaling received by the terminal device may be carried in the PDSCH, and the second signaling may be carried in the PDCCH.
  • the second signaling schedules the terminal device to receive a downlink signal sent by the network device, where the downlink signal is the first downlink signal.
  • the first downlink signal is a downlink signal carried on the first frequency domain resource within the first time period. That is, the second signaling instructs the terminal device to receive the first downlink signal.
  • the first signaling further includes fourth indication information for indicating a second time period, where the second time period includes the first time period.
  • the first signaling may not include the fourth indication information indicating the second time period, that is, when the first signaling includes the fourth indication information, the terminal device may determine, according to the first signaling in the second time period, The first frequency domain resource and the first MCS; when the first signaling does not include the fourth indication information, before receiving the next first signaling, the terminal device can determine the first frequency domain resource according to the first signaling and the first MCS.
  • the terminal device receives the downlink signal according to the first signaling and the second signaling, and the specific steps are as follows:
  • the terminal device determines the first frequency domain resource and the first MCS according to the first signaling.
  • the terminal device may further determine the second time period according to the first signaling. It should be understood that when the first signaling sent by the network device does not include fourth indication information for indicating the second time period, the terminal device may not perform this operation.
  • the terminal device determines to receive the first downlink signal on the first frequency domain resource within the first time period according to the first signaling and the second signaling. Specifically, the step of receiving the first downlink signal is the same as that of S2313, I won't go into details here.
  • the terminal device determines whether the first signaling received by the terminal device is not only used to indicate the first frequency domain resource and the first MCS, but also used to indicate the second time period. After it is determined that the first downlink signal is received on the first frequency domain resource in the first time period, no downlink signal is received in the second time period except the first time period. That is to say, when the terminal device only receives the first signaling, it does not receive the first downlink signal, and only needs to determine the first frequency domain resource and the first MCS.
  • the terminal device performs the operation of step S2322 only after receiving the second signaling.
  • the first signaling may be RRC
  • the second signaling may be on DCI, which is only an example and not limited herein.
  • the first signaling is RRC
  • the existing RRC signaling does not have fields indicating frequency domain resources and MCS index values
  • the fields indicating frequency domain resources and MCS index values can be added by adding fields in RRC. accomplish.
  • the network device indicates the index value of the first MCS according to the MCS indication field in the RRC, and indicates the MCS index table used by the terminal device through high-level signaling.
  • the terminal device can use the index value of the first MCS in the network device.
  • the first MCS is determined in the indicated MCS index table, and the second time period is determined through a field newly added in the RRC signaling for indicating the second time period.
  • the solution of the above embodiment by configuring the first signaling and the second signaling, realizes the multi-MCS configuration of a single transport block corresponding to a frequency domain resource scheduled by the network device, thereby reducing the frequency selective fading characteristic of the wireless channel.
  • each network element such as a terminal device or a network device
  • each network element includes corresponding hardware structures and/or software modules for performing each function in order to implement the above-mentioned functions.
  • Those skilled in the art should realize that the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of software function modules.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by using the division of each function module corresponding to each function as an example.
  • FIG. 5 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 500 may correspond to the terminal device in the method 200 of the embodiment of the present application, and the terminal device 500 may include a unit for executing the method performed by the terminal device in the method 200 of FIG. 2 . Moreover, each unit in the terminal device 500 and the above-mentioned other operations and/or functions are respectively for realizing the corresponding flow of the method 200 in FIG. 2 .
  • the terminal device 500 may include a transceiver unit 510 and a processing unit 520 .
  • the transceiver unit 510 is configured to receive first signaling and second signaling, where the first signaling includes first indication information for indicating a first frequency domain resource and a first MCS, and the first frequency domain resource includes the second frequency domain resource; the second signaling includes second indication information for indicating the second frequency domain resource and the second MCS;
  • the processing unit 520 is configured to determine according to the first signaling and the second signaling receiving a first downlink signal on the first frequency domain resource within the first time period, wherein the MCS corresponding to the part of the first downlink signal carried on the second frequency domain resource is the second MCS,
  • the MCS corresponding to the part of the first downlink signal carried on the third frequency domain resource is the first MCS or the third MCS, and the third frequency domain resource is the first frequency domain resource that does not include the second frequency domain.
  • the frequency domain resource of the domain resource, the third MCS is determined according to the first MCS
  • the third MCS is determined according to a deviation value between the first MCS and the first MCS, and the first MCS deviation value is carried in the second signaling.
  • the first signaling is further used to indicate that the second downlink signal is received within the second time period, and the second signaling further includes third indication information used to indicate the first time period; wherein the second The time period includes the first time period, and the signal carried by the second downlink signal in the first time period is the first downlink signal.
  • the first signaling further includes fourth indication information used to indicate a second time period, where the second time period includes the first time period; the second signaling is also used to indicate that the first time period to receive the first downlink signal.
  • the first signaling is carried in PDSCH
  • the second signaling is carried in PDCCH.
  • both the first signaling and the second signaling are carried in the PDCCH.
  • transceiver unit 510 in the terminal device 500 may correspond to the transceiver 730 in the terminal device 700 shown in FIG. 7
  • processing unit 520 in the terminal device 500 may correspond to the terminal shown in FIG. 7 .
  • Processor 710 in device 700 may correspond to the terminal shown in FIG. 7 .
  • the transceiver unit 510 in the terminal device 500 may be implemented through a communication interface (such as a transceiver or an input/output interface), for example, may correspond to the transceiver 730 in the terminal device 700 shown in FIG. 7 , the terminal
  • the processing unit 520 in the device 500 may be implemented by at least one processor, for example, may correspond to the processor 710 in the terminal device 700 shown in FIG. 7 , and the processing unit 520 in the terminal device 500 may also be implemented by at least one logic circuit accomplish.
  • the terminal device 500 may further include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • FIG. 6 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • the network device 600 may correspond to the network device in the method 200 in this embodiment of the present application, and the network device 600 may include a unit for executing the method performed by the network device in the method 200 in FIG. 2 .
  • each unit in the network device 600 and the above-mentioned other operations and/or functions are respectively to implement the corresponding flow of the method 200 in FIG. 2 .
  • the network device 600 may include a transceiver unit 610 and a processing unit 620 .
  • the transceiver unit 610 is configured to send first signaling and second signaling, where the first signaling includes first indication information for indicating a first frequency domain resource and a first MCS, and the first frequency domain resource includes the second frequency domain resource; the second signaling includes second indication information for indicating the second frequency domain resource and the second MCS;
  • the processing unit 620 is configured to determine according to the first signaling and the second signaling receiving a first downlink signal on the first frequency domain resource within the first time period, wherein the MCS corresponding to the part of the first downlink signal carried on the second frequency domain resource is the second MCS,
  • the MCS corresponding to the part of the first downlink signal carried on the third frequency domain resource is the first MCS or the third MCS, and the third frequency domain resource is the first frequency domain resource that does not include the second frequency domain.
  • the frequency domain resource of the domain resource, the third MCS is determined according to the first MCS
  • the third MCS is determined according to a deviation value between the first MCS and the first MCS, and the first MCS deviation value is carried in the second signaling.
  • the first signaling is further used to indicate that the second downlink signal is received within the second time period, and the second signaling further includes third indication information used to indicate the first time period; wherein the second The time period includes the first time period, and the signal carried by the second downlink signal in the first time period is the first downlink signal.
  • the first signaling further includes fourth indication information used to indicate a second time period, where the second time period includes the first time period; the second signaling is also used to indicate that the first time period to receive the first downlink signal.
  • the first signaling is carried in PDSCH
  • the second signaling is carried in PDCCH.
  • the first signaling and the second signaling are carried in the PDCCH.
  • transceiver unit 610 in the network device 600 may correspond to the transceiver 830 in the network device 800 shown in FIG. 8
  • processing unit 620 in the network device 600 may correspond to the transceiver 830 shown in FIG. Processor 810 in network device 800 .
  • the network device 600 may further include a storage unit, where the storage unit may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the storage unit may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the transceiver unit 610 in the network device 600 may be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it may correspond to the transceiver 830 in the network device 800 shown in FIG.
  • the processing unit 620 in the network device 600 may be implemented by at least one processor, for example, may correspond to the processor 810 in the network device 800 shown in FIG. 8 , and the processing unit 620 in the network device 600 may be implemented by at least one logic circuit accomplish.
  • FIG. 7 is a schematic structural diagram of a terminal device 700 provided by an embodiment of the present application.
  • the terminal device 700 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 700 includes a processor 710 and a transceiver 730 .
  • the terminal device 700 further includes a memory 720 .
  • the processor 710 , the transceiver 730 and the memory 720 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 720 is used to store computer programs, and the processor 710 is used to retrieve data from the memory 720
  • the computer program is invoked and executed to control the transceiver 730 to send and receive signals.
  • the terminal device 700 may further include an antenna for transmitting the uplink data or the uplink control signaling output by the transceiver 730 through wireless signals.
  • the above-mentioned processor 710 and the memory 720 can be combined into a processing device, and the processor 710 is configured to execute the program codes stored in the memory 720 to realize the above-mentioned functions.
  • the memory 720 may also be integrated in the processor 710 or independent of the processor 710 .
  • the processor 710 may correspond to the processing unit in FIG. 5 .
  • the transceiver 730 described above may correspond to the transceiver unit in FIG. 5 .
  • the transceiver 730 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the terminal device 700 shown in FIG. 7 can implement various processes involving the terminal device in the method embodiment shown in FIG. 2 .
  • the operations and/or functions of each module in the terminal device 700 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 710 may be used to perform the actions described in the foregoing method embodiments that are implemented internally by the terminal device, and the transceiver 730 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 730 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the above-mentioned terminal device 700 may further include a power supply for providing power to various devices or circuits in the terminal device.
  • FIG. 8 is a schematic structural diagram of a network device 800 provided by an embodiment of the present application.
  • the network device 800 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the network device 800 includes a processor 810 and a transceiver 830 .
  • the network device 800 further includes a memory 820 .
  • the processor 810 , the transceiver 830 and the memory 820 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 820 is used to store computer programs, and the processor 810 is used to retrieve data from the memory 820
  • the computer program is called and executed to control the transceiver 830 to send and receive signals.
  • the network device 800 may further include an antenna for sending the downlink data or downlink control signaling output by the transceiver 830 through wireless signals.
  • the above-mentioned processor 810 and the memory 820 can be combined into a processing device, and the processor 810 is configured to execute the program codes stored in the memory 820 to realize the above-mentioned functions.
  • the memory 820 may also be integrated in the processor 810 or independent of the processor 810 .
  • the processor 810 may correspond to the processing unit in FIG. 6 .
  • the transceiver 830 described above may correspond to the transceiver unit in FIG. 6 .
  • the transceiver 830 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the network device 800 shown in FIG. 8 can implement various processes involving the network device in the method embodiment shown in FIG. 2 .
  • the operations and/or functions of each module in the network device 800 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 810 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the network device, and the transceiver 830 may be used to execute the network equipment described in the foregoing method embodiments. action.
  • the transceiver 830 may be used to execute the network equipment described in the foregoing method embodiments. action.
  • the above-mentioned network device 800 may further include a power supply for providing power to various devices or circuits in the network device.
  • network device 800 shown in FIG. 8 is only a possible architecture of the network device, and should not constitute any limitation to the present application.
  • the methods provided in this application may be applicable to network devices of other architectures.
  • network equipment including CU, DU, and AAU, etc. This application does not limit the specific architecture of the network device.
  • An embodiment of the present application further provides a processing apparatus, including a processor and an interface, where the processor is configured to execute the method in any of the foregoing method embodiments.
  • the above-mentioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute the embodiment shown in FIG. 2 . method in .
  • the present application further provides a computer-readable medium, where the computer-readable medium stores program codes, when the program codes are executed on a computer, the computer is made to execute the embodiment shown in FIG. 2 . method in .
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in each of the above apparatus embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing unit processor
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the unit is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions (programs). When the computer program instructions (programs) are loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信的方法和装置,该方法包括:网络设备发送第一信令和第二信令,该第一信令包括用于指示第一频域资源和第一MCS的第一指示信息,该第一频域资源包括第二频域资源;该第二信令包括用于指示该第二频域资源和第二MCS的第二指示信息;终端设备根据该第一信令和第二信令确定在第一时间段内的该第一频域资源上接收第一下行信号,其中,该第一下行信号中承载于该第二频域资源上的部分对应的MCS为该第二MCS,该第一下行信号中承载于第三频域资源上的部分对应的MCS为该第一MCS或第三MCS,该第三MCS基于该第一MCS确定。通过至少一个信令,实现了对单一传输块的多MCS配置。

Description

通信的方法、装置 技术领域
本申请涉及通信领域,并且,更具体地,涉及通信的方法、装置。
背景技术
在当前新接入技术(New Radio Access Technology,NR)系统中,无线信号在传播过程中,发射端发射的信号通过反射、折射、散射等多条路径传播,不同路径传播的信号到达接收端的时间不同,因此接收端接收的信号与发送端发送的信号相比产生了畸变,即多径效应。产生畸变的原因是信号在传播过程中通过的无线信道的信道系数在频域上会有起伏变化,即无线信道具有频率选择衰落特性。无线信道的频率选择衰落特性取决于环境,通常在阻挡物或潜在反射物较少的环境下,无线信道的频率选择衰落特性较小。而依托于长期演进(Long term evolution,LTE)和NR技术的固定无线接入(Fixed Wireless Access,FWA)网络,特别是室内固定无线接入场景,由于室内障碍物较多,多径效应严重,因此无线信道具有较强的频率选择性衰落。
无线通信系统采用频选调度的方式克服无线信道的频率选择衰落特性,即调度信道质量较优的资源块(Resource Block,RB)用于网络设备和终端设备之间的通信,从而获得信道的频率选择性信道增益。
现有技术中,网络设备调度的资源块对应的单个传输块只对应一个调制与编码策略(Modulation and Coding Scheme,MCS),此时不能匹配无线信道的频率选择衰落特性,造成传输性能降低。
发明内容
本申请提供一种通信的方法和装置,通过至少一个信令,实现了对单一传输块的多MCS配置。
第一方面提供了一种通信方法,该方法包括:接收第一信令,该第一信令包括用于指示第一频域资源和第一调制与编码策略MCS的第一指示信息;接收第二信令,该第二信令包括用于指示该第二频域资源和第二MCS的第二指示信息,该第一频域资源包括第二频域资源;根据该第一信令和该第二信令确定在第一时间段内的该第一频域资源上接收第一下行信号,其中,该第一下行信号中承载于该第二频域资源上的部分对应的MCS为该第二MCS,该第一下行信号中承载于第三频域资源上的部分对应的MCS为该第一MCS或第三MCS,该第三频域资源为该第一频域资源中不包括该第二频域资源的频域资源,该第三MCS基于该第一MCS确定。
基于上述技术方案,通过两级信令,指示了三个频域资源和至少两个MCS,实现了对单一传输块的多MCS配置,并且由于第二频域资源是第一频域资源中的一部分,减少了第二信令中指示第二频域资源的字段尺寸,被节省的字段可以用于指示第三MCS。
结合第一方面,在第一方面的某些实现方式中,该第三MCS基于该第一MCS和第一MCS偏差值确定,该第一MCS偏差值承载于所述第二信令中。
基于上述技术方案,通过两级信令,指示了三个频域资源和三个MCS,节约了信令开销,降低了终端设备检测频域资源和MCS指示信息的复杂度和功率消耗。
基于上述技术方案,通过第二信令直接指示第一MCS偏差值,并根据第一MCS偏差值和第一MCS的关系,直接确定第三MCS,实现了对单一传输块的多MCS配置。
结合第一方面,在第一方面的某些实现方式中,该第一信令用于指示在第二时间段内接收第二下行信号,该第二信令还包括用于指示第一时间段的第三指示信息;其中,该第二时间段包括该第一时间段,该第二下行信号承载于该第一时间段内的信号为该第一下行信号。
结合第一方面,在第一方面的某些实现方式中,该第二信令用于指示在第一时间段内接收该第一下行信号。
结合第一方面,在第一方面的某些实现方式中,该第一信令还包括用于指示第二时间段的第四指示信息,该第二时间段包括所述第一时间段。
结合第一方面,在第一方面的某些实现方式中,该第一信令承载于物理下行共享信道PDSCH中,该第二信令承载于物理下行控制信道PDCCH中。
结合第一方面,在第一方面的某些实现方式中,该第一信令和该第二信令都承载于PDCCH中。
结合第一方面,在第一方面的某些实现方式中,该第一信令和该第二信令为同一信令。
第二方面提供了一种通信方法,该方法包括:发送第一信令,该第一信令包括用于指示第一频域资源和第一MCS的第一指示信息;发送第二信令,该第二信令包括用于指示该第二频域资源和第二MCS的第二指示信息,其中,该第一频域资源包括第二频域资源,该第二MCS为第一下行信号中承载于该第二频域资源上的部分对应的MCS,该第一下行信号中承载于第三频域资源上的部分对应的MCS为该第一MCS或第三MCS,该第三频域资源为该第一频域资源中不包括该第二频域资源的频域资源,该第三MCS基于该第一MCS确定。
基于上述技术方案,通过两级信令,指示了三个频域资源和至少两个MCS,实现了对单一传输块的多MCS配置,并且由于第二频域资源是第一频域资源中的一部分,减少了第二信令中指示第二频域资源的字段尺寸,被节省的字段可以用于第三MCS指示。
结合第二方面,在第二方面的某些实现方式中,该第三MCS基于该第一MCS和第一MCS偏差值确定,该第一MCS偏差值承载于该第二信令中。
基于上述技术方案,通过两级信令,指示了三个频域资源和三个MCS,节约了信令开销,降低了终端设备检测频域资源和MCS指示信息的复杂度和功率消耗。
基于上述技术方案,通过第二信令直接指示第一MCS偏差值,并根据第一MCS偏差值和第一MCS的关系,直接确定第三MCS,实现了对单一传输块的多MCS配置。
结合第二方面,在第二方面的某些实现方式中,该第一信令用于指示在第二时间段内接收第二下行信号,该第二信令还包括用于指示第一时间段的第三指示信息;其中,该第二时间段包括该第一时间段,该第二下行信号承载于该第一时间段内的信号为该第一下行信号。
结合第二方面,在第二方面的某些实现方式中,该第二信令用于指示在第一时间段内接收该第一下行信号。
结合第二方面,在第二方面的某些实现方式中,该第一信令还包括用于指示第二时间段的第四指示信息,所述第二时间段包含所述第一时间段。
结合第二方面,在第二方面的某些实现方式中,该第一信令承载于PDSCH中,该第二信令承载于PDCCH中。
结合第二方面,在第二方面的某些实现方式中,该第一信令和该第二信令承载于PDCCH中。
结合第二方面,在第二方面的某些实现方式中,该第一信令和该第二信令为同一信令。
第三方面提供了一种通信装置,该通信装置是终端设备或配置于(或用于)终端设备的模块,包括:收发单元和处理单元,该收发单元用于接收第一信令和第二信令,该第一信令包括用于指示第一频域资源和第一调制与编码策略MCS的第一指示信息,该第一频域资源包括第二频域资源;该第二信令包括用于指示该第二频域资源和第二MCS的第二指示信息;该处理单元用于根据该第一信令和该第二信令确定在第一时间段内的该第一频域资源上接收第一下行信号,其中,该第一下行信号中承载于该第二频域资源上的部分对应的MCS为该第二MCS,该第一下行信号中承载于第三频域资源上的部分对应的MCS为该第一MCS或第三MCS,该第三频域资源为该第一频域资源中不包括该第二频域资源的频域资源,该第三MCS基于该第一MCS确定。
基于上述技术方案,终端设备通过接收两级信令,确定了三个频域资源和至少两个MCS,实现了对单一传输块的多MCS配置。
第四方面提供了一种通信装置,该通信装置是网络设备或配置于(或用于)网络设备的模块,包括:收发单元,该收发单元用于发送第一信令和第二信令,该第一信令包括用于指示第一频域资源和第一MCS的第一指示信息,该第一频域资源包括第二频域资源;该第二信令包括用于指示该第二频域资源和第二MCS的第二指示信息,其中,该第二MCS为第一下行信号中承载于该第二频域资源上的部分对应的MCS,该第一下行信号中承载于第三频域资源上的部分对应的MCS为该第一MCS或第三MCS,该第三频域资源为该第一频域资源中不包括该第二频域资源的频域资源,该第三MCS基于该第一MCS确定。
基于上述技术方案,网络设备通过发送两级信令,指示了三个频域资源和至少两个MCS,实现了对单一传输块的多MCS配置,并且由于第二频域资源是第一频域资源中的一部分,减少了第二信令中指示第二频域资源的字段尺寸,被节省的字段可以用于第三MCS指示。
第五方面,提供一种通信装置,该通信装置可以为上述第一方面中的终端设备,或者为配置在终端设备中的电子设备,或者为包括终端设备的较大设备。该装置用于执行上述第一方面提供的通信方法。该通信装置包括收发器和处理器,该收发器用于接收第一信令和第二信令,该第一信令包括用于指示第一频域资源和第一调制与编码策略MCS的第一指示信息,该第一频域资源包括第二频域资源;该第二信令包括用于指示该第二频域资源和第二MCS的第二指示信息;该处理器用于根据该第一信令和该第二信令确定在第一时间段内的该第一频域资源上接收第一下行信号,其中,该第一下行信号中承载于该第二频 域资源上的部分对应的MCS为该第二MCS,该第一下行信号中承载于第三频域资源上的部分对应的MCS为该第一MCS或第三MCS,该第三频域资源为该第一频域资源中不包括该第二频域资源的频域资源,该第三MCS基于该第一MCS确定。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以及第一方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第六方面,提供一种通信装置,该通信装置可以为上述第二方面中的网络设备,或者为配置在网络设备中的电子设备,或者为包括网络设备的较大设备。该装置用于执行上述第二方面提供的通信方法。该通信装置包括收发器,该收发器用于发送第一信令和第二信令,该第一信令包括用于指示第一频域资源和第一MCS的第一指示信息,该第一频域资源包括第二频域资源;该第二信令包括用于指示该第二频域资源和第二MCS的第二指示信息,其中,该第二MCS为第一下行信号中承载于该第二频域资源上的部分对应的MCS,该第一下行信号中承载于第三频域资源上的部分对应的MCS为该第一MCS或第三MCS,该第三频域资源为该第一频域资源中不包括该第二频域资源的频域资源,该第三MCS基于该第一MCS确定。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是但不限于接收器接收并输入的,输出电路所输出的信号可以是但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被终端设备执行时,使得该终端设备实现第一方面以及第一方面中的任一可能的实现方式中的通信方法。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被 网络设备执行时,使得该网络设备实现第二方面以及第二方面中的任一可能的实现方式中的通信方法。
第九方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得终端设备实现第一方面以及第一方面中的任一可能的实现方式中的通信方法。
第十方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得网络设备实现第二方面以及第二方面中的任一可能的实现方式中的通信方法。
附图说明
图1为一种适用于本申请实施例的通信系统的示意图。
图2为一种适用于本申请实施例提供的通信方法的示意性流程图。
图3为一种适用于本申请实施例提供的频域资源关系的示意图。
图4为一种适用于本申请实施例提供的接收信号的示意图。
图5为一种适用于本申请实施例提供的终端设备装置的示意性框图。
图6为一种适用于本申请实施例提供的网络设备的示意性结构图。
图7为一种适用于本申请实施例提供的终端设备的示意性架构图。
图8为一种适用于本申请实施例提供的网络设备的示意性架构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(GlobalSystem Formobile Communications,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、卫星通信系统、第五代(5th generation,5G)系统或新无线(New Radio,NR),以及未来的通信系统。
图1是适用于本申请实施例的无线通信系统100的示意图。
如图1所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110。该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。终端设备与网络设备之间、终端设备与终端设备之间可以建立无线连接,进行无线通信,发送设备可以通过控制信息指示数据的调度信息,以便接收设备根据控制信息正确地接收数据。
本申请实施例中的终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机、平板电脑、室内或室外用户驻地设备(Customer Premises Equipment,CPE)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR) 终端设备、工业控制(Industrial Control)中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等。
应理解,本申请对于终端设备的具体形式不作限定。
本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(Base Band Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(Transmission and Reception Point,TRP)等,还可以为5G,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(Distributed Unit,DU),还可以为未来移动通信系统中的基站或Wi-Fi系统中的接入节点等。
在一些部署中,gNB可以包括集中式单元(Centralized Unit,CU)和DU。gNB还可以包括有源天线单元(Active Antenna Unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(Radio Resource Control,RRC),分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(Radio Link Control,RLC)层、媒体接入控制(Media Access Control,MAC)层和物理层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(Radio Access Network,RAN)中的网络设备,也可以将CU划分为核心网(Core Network,CN)中的网络设备,本申请对此不做限定。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、子载波
子载波:正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中将频域资源划分为若干个子资源,每个频域上的子资源可称为一个子载波。子载波也可以理解为频域资源的最小粒度。
2、子载波间隔
子载波间隔:OFDM系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如,LTE系统中的子载波间隔为15KHz,5G NR系统的子载波间隔可以是 15KHz,或30KHz,或60KHz,或120KHz等。
3、OFDM符号
OFDM符号:OFDM系统中时域上最小的时间单元,该OFDM系统为采用OFDM传输的通信系统,例如,LTE或者NR系统。
4、解调参考信号(Demodulation Reference Signal,DMRS)
DMRS:解调参考信号是用于对接收信号进行恢复的参考信号,DMRS为接收端已知的信号,接收端根据接收信号和已知的DMRS信号,可以确定无线信道的衰落特性,即无线信道的信道系数,用于对接收信号进行恢复。5G NR系统中,考虑到不同天线端口到终端的信道系数不尽相同,为了接收端能够获取多个空间层上传输的信息,需要对每个天线端口与终端之间的信道系数都进行估计,所以需要为每个天线端口配置不同的DMRS,不同天线端口对应的DMRS可采用时分、频分和/或码分等方式进行复用。目前,5G NR系统最大可支持12个MDRS端口。
5、资源块(Resource Block,RB)
资源块,频域上连续的N个子载波可称为一个资源块。例如,LTE系统中的一个资源块包括12个子载波,5G NR系统中的一个资源块也包括12子载波。随着通信系统的演进,一个资源块包括的子载波个数也可以是其他值。若干个资源块可以组成一个资源块组(Resource Block Group,RBG),每个RBG包含的RB的数量可以通过DCI中的资源块捆绑“PRB Bundling”字段确定。
6、频域资源
频域资源为网络设备配置给终端设备的一部分频带(band),用于进行数据传输,具体的,频域资源可以为分量载波(Component Carrier,CC),也可以为带宽部分(Bandwidth Part,BWP),还可以为载波频带等。本申请实施例对此不进行限定,其中,BWP可以为连续的频域资源,也可以为不连续的频域资源。
7、时隙(slot)
时隙为传输数据的资源在时域上的一种单位,一个时隙通常包含多个符号/码片,每个符号/码片可能有相同或不同的传输方向。5G NR系统的一个时隙包括14个OFDM符号,15kHz子载波间隔对应的时隙长度为1ms,30kHz子载波间隔对应的时隙长度为0.5ms。OFDM符号为OFDM系统中时域上最小的时间单元。
8、传输块(Transmit Block,TB)
上行数据信道(例如,物理上行共享信道)和下行数据信道(例如,物理下行共享信道)上以传输块为单位传输数据,TB的大小可以用传输块大小(Transmit Block Size,TBS)表示,单位为比特。目前,在5G NR系统中,终端设备最多可以同时接收或发送2个传输块。
9、调制与编码策略(Modulation and Coding Scheme,MCS)
MCS为网络设备向终端设备发送的下行信号中包含的传输块所采用的调制阶数和码率对应的调制与编码策略。网络设备通过在DCI中承载MCS的索引值,并通过高层信令指示终端设备所采用的MCS表格,终端设备根据在DCI中接收到的MCS索引值和高层信令指示的MCS表格确定采用的调制与编码策略,并根据所确定的调制预编码策略,确定采用的调制阶数和码率,以对下行信号进行处理。
5G NR系统中,网络设备向终端设备传输数据包时,网络设备通过在物理下行控制信道(Physical Downlink Control Channel,PDCCH)中向终端用户发送下行控制信息(Downlink Control Information,DCI),指示终端设备接收下行数据。
该DCI通过“频域资源分配(Frequency domain resource assignment)指示”字段指示终端设备用于接收下行信号的资源块。
通过“调制编码方案(Modulation and Code Scheme,MCS)指示”字段指示的MCS索引值和高层信令指示的MCS索引表指示终端设备从上述资源块上接收的信号包含的所对应的MCS。
在上述DCI中,每一个传输块只对应一个MCS,也就是说网络设备调度的资源块对应的单个传输块只对应一个MCS。此时不能匹配无线信道的频率选择衰落特性。若要克服这个问题,则需要网络设备配置多个MCS对应所调度的资源块上承载的单个传输块,并指示终端设备其中每个MCS所对应的承载部分传输块的频域资源。
本申请实施例中,为解决上述问题,网络设备通过发送一个或多个信令,为单个传输块配置多个MCS,从而减缓无线信道的频率选择衰落特性。
图2为适用本申请实施例提供的通信方法200的示意性流程图,该方法包括:
S210网络设备发送第一信令给终端设备,对应地,终端设备接收第一信令,该第一信令包括用于指示第一频域资源和第一MCS的第一指示信息,该第一频域资源包括第二频域资源。
应理解,网络设备发送第一信令前,可以根据终端设备发送的信道探测参考信号和/或解调参考信号等上行参考信号估计信道的状态,并根据信道状态确定调度的频域资源以及该频域资源上承载的信号对应的第一MCS,然后通过第一信令指示终端设备。该第一频域资源可以为承载网络设备向终端设备待发送下行信号的资源块。
一种实施方式中,该第一指示信息包括2个字段,第一字段用于指示第一频域资源,第二字段用于指示第一MCS的索引值,也即此时,用于指示第一频域资源的字段和第一MCS的索引值的字段为两个不同的字段。该第一指示信息中的第一字段和/或第二字段可以为现有协议中的指示字段,可以为现有协议中的预留字段,也可以为现有协议中未定义的新增字段。举例说明,若第一信令为DCI,则第一字段可以为协议3GPP(3rd Generation Partnership Project)TS 38.212中定义的DCI格式中的频域资源分配“Frequency domain resource assignment”的字段。第二字段可以为协议3GPP TS 38.212中定义的DCI格式中的调制与编码策略“Modulation and coding scheme”的字段,或者若第一信令为RRC信令,可以在RRC信令中增加用于指示第一频域资源的字段和用于指示第一MCS的字段。
可选的,该第一信令还可以包括用于指示第二时间段的第四指示信息。该第四指示信息可以指示第二时间段的时隙偏移量与起始和长度指示值(Start and length Indicator Value,SLIV)。该SLIV用于确定第二时间段内的首个OFDM符号和最后一个OFDM符号。该第四指示信息可以为现有协议中的指示字段,可以为现有协议中的预留字段,也可以为现有协议中未定义的新增字段。举例说明,若第一信令为DCI,则该第四指示信息可以为现有DCI中用于指示时域资源分配“Time Domain Resource Assignment”的字段,若第一信令为RRC信令,可以在RRC信令中增加用于指示第二时间段的字段。。
一种实施方式中,该第一信令可以承载于物理下行共享信道(Physical Downlink Shared  Channel,PDSCH)中。举例说明,该第一信令为RRC信令,当然,该第一信令也可以是除RRC外的其它高层信令,在此不做限定。
另一种实施方式中,第一信令也可以承载于物理下行控制信道PDCCH中。举例说明,该第一信令为DCI,当然,该第一信令也可以是除DCI外的其他信令,在此不做限定。
S220网络设备发送第二信令,对应地,终端设备接收第二信令,该第二信令包括用于指示第二频域资源和第二MCS的第二指示信息,该第一频域资源包括第二频域资源。
具体地,该第二指示信息包括用于指示该第二频域资源和第二MCS的2个字段,第一字段用于指示第二频域资源,第二字段用于指示第二MCS的索引值。该第二指示信息中的第一字段和/或第二字段可以为现有协议中的指示字段,可以为现有协议中的预留字段,也可以为现有协议中未定义的新增字段。举例说明,若第二信令为DCI,则第一字段可以为协议3GPP(3rd Generation Partnership Project)TS 38.212中定义的DCI格式中的频域资源分配“Frequency domain resource assignment”的字段。第二字段可以为协议3GPP TS 38.212中定义的DCI格式中的调制与编码策略“Modulation and coding scheme”的字段。。
一种实施方式中,该第一字段可通过比特位图的方式指示第二频域资源。该比特位图的比特长度可以为第一频域资源所包括的RB的数量。或该位图的比特长度可以为第一频域资源所包括的RBG的数量,其中,每一个比特对应一个RB或者一个RBG,每一个比特的不同值表征其对应的RB或者RBG的不同状态。例如,比特位的值设置为1,指示此比特位对应的资源块包含于第二频域资源中,比特位的值设置为0,指示此比特位对应的资源块不包含于第二频域资源中,同样地,也可以是若该比特位的值设置为0,指示此比特位对应的资源块包含于第二频域资源中,若该比特位的值设置为1,指示此比特位对应的资源块不包含于第二频域资源中,在此不做限定。
示例的,如表1所示,若第一频域资源中包含8个RB,编号为RB0-RB7,若位图为[11110000],则指示RB0、RB1、RB2、RB3包含于第二频域资源中;位图为[11101000],则指示RB0、RB1、RB2、RB4包含于第二频域资源中;位图为[11100100],则指示RB0、RB1、RB2、RB5包含于第二频域资源中;位图为[11111000],则指示RB0、RB1、RB2、RB3、RB4包含于第二频域资源中;位图为[11110100],则指示RB0、RB1、RB2、RB3、RB5包含于第二频域资源中。
表1
位图 第二频域资源中包含的RB编号
[11110000] 0,1,2,3
[11101000] 0,1,2,4
[11100100] 0,1,2,5
[11111000] 0,1,2,3,4
[11110100] 0,1,2,3,5
另一种实施方式中,该第一字段还可通过资源指示值指示第二频域资源,该资源指示值指示第一频域资源中第二频域资源的起始RB的位置和连续RB的数目,例如,该资源指示信息指示第一频域资源中从第S个RB开始连续的L个RB属于第二频域资源。该资 源指示值的计算方式可采用协议3GPP TS 38.214标准中Type 1频域资源分配的资源指示值的计算方式。
具体地,一种实施方式中,第二字段指示该第二MCS的索引值,并通过高层信令指示终端设备所采用的MCS索引表,终端设备可根据该第二MCS的索引值在网络设备指示的MCS索引表中确定该第二MCS。
另一种实施方式中,第二字段可以指示一个偏差值。该偏差值为第一MCS的索引值与第二MCS的索引值的差值。终端设备可根据该偏差值和该第一MCS确定该第二MCS。
可选地,第二信令还可以包括用于指示第一时间段的第三指示信息。第一时间段包含于第二时间段。即所述第一时间段包含的时隙数量为第二时间段包含的时隙中的一个、多个或者全部,或第一时间段包含的OFDM符号为第二时间段包含的OFDM符号中的一个、多个或者全部。
可选的,第二信令还包括用于指示第一MCS偏差值的指示信息。或第二信令还包括用于指示第三MCS的指示信息。该第一MCS偏差值用于确定第三MCS的索引值。该第一MCS偏差值为第三MCS的索引值与第一MCS的索引值的差值。该第三MCS为第三频域资源对应的MCS,即第一频域资源中除第二频域资源外的频域资源对应的MCS。该第三频域资源为第二频域资源在第一频域资源中的补集。
应理解,当网络设备发送的第二信令指示的第一MCS偏差值为零,或者该第二信令没有指示第三MCS或第一MCS偏差值,此时终端设备可以确定第三频域资源上承载的信号采用的MCS为第一信令所指示的第一MCS。具体网络设备是否需要通过第二信令指示第三MCS或第一MCS偏差量,在此不做限定。
一种实施方式中,第二信令中用于指示第一MCS偏差值的字段可以位于第二信令中用于指示第二频域资源的字段之后。或第二信令中用于指示第三MCS的字段可以位于第二信令中用于指示第二频域资源的字段之后。
应理解,若第二信令通过比特位图的方式指示第二频域资源,则该比特位图包含的比特数目和第一频域资源块中包含的RB或者RBG的数目相同,因为第一频域资源中的RB数量小于网络设备为终端设备配置的带宽中所包含的RB的数量,或第一频域资源中的RBG数量小于网络设备为终端设备配置的带宽中所包含的RBG的数量,所以降低了第二信令指示第二频域资源的信令开销,网络设备可以通过这种方式下节省的比特中的一个或多个比特指示第三MCS或第一MCS偏差值。
一种实施方式中,第二信令可以承载于PDCCH中,举例说明,第二信令可以为DCI,但不限于此。
S230终端设备根据该第一信令和第二信令确定在第一时间段内的该第一频域资源上接收第一下行信号,其中,该第一下行信号中承载于该第二频域资源上的部分对应的MCS为第二MCS,该第一下行信号中承载于第三频域资源上的部分对应的MCS为第一MCS或第三MCS,该第三频域资源为该第一频域资源中不包括该第二频域资源的频域资源,该第三MCS基于该第一MCS确定。
该第一下行信号为第一时间段内承载于第一频域资源上的网络设备向终端设备发送的下行信号。
具体地,终端设备根据该第一信令和第二信令确定在第一时间段内的该第一频域资源 上接收第一下行信号。其中,终端设备可以根据该第一信令和第二信令确定,包括:
终端设备可以根据第一信令确定第一频域资源和第一MCS。即终端设备可以根据第一信令确定第一频域资源和第一MCS的索引值。
可选地,终端设备可以根据第一信令确定第二时间段。具体来说终端设备可以根据第一信令中的时隙偏移量与SLIV,确定第二时间段内的首个OFDM符号和最后一个OFDM符号。该第二时间段包括该第一时间段。
可选的,终端设备可以根据第二信令确定第一时间段。终端设备可以根据第二信令中的时隙偏移量与SLIV,确定第一时间段内的首个OFDM符号和最后一个OFDM符号。
终端设备可以根据第二信令确定第二MCS,具体地,终端设备可以根据第二信令确定第二MCS的索引值,并根据高层信令指示的MCS索引表确定第二MCS。第二MCS指示的调制与编码策略为第一时间段内承载于第二频域资源上的第一下行信号采用的调制与编码策略。
终端设备可以根据该第一信令和第二信令确定该第二频域资源和第三频域资源。该第二频域资源包含于第一频域资源。该第三频域资源为该第一频域资源中不包括该第二频域资源的频域资源。也就是说,终端设备可以根据第二信令确定第二频域资源,因为第三频域资源为该第一频域资源中该第二频域资源的补集,所以终端设备同样可以确定第三频域资源。如图3所示,第一频域资源中包含20个RB,编号为RB0到RB19,第二频域资源中包含RB0~RB3和RB14~RB19,则第三频域资源中包含RB4~RB13。
应理解,第二频域资源和第三频域资源的资源块数量可以是网络设备根据终端设备上报的参数或根据终端设备发送的上行参考信号等确定的,图3中第二频域资源和第三频域资源的资源块数量仅为示例,在此不做任何限定。
可选地,终端设备可以根据第一MCS确定第三MCS。也可以说,终端设备可以根据第一信令和/或第二信令确定第三MCS。具体地,终端设备可以根据第二信令确定第一MCS偏差值,终端设备可以根据该第一MCS的索引值和该第一MCS偏差值确定第三MCS的索引值,并通过高层信令指示的MCS索引表确定该第三MCS。
一种实施方式中,终端设备可通过接收的第二信令中用于指示第一MCS偏差值的指示信息确定第一MCS偏差值,从而确定第三MCS。举例说明,当第一MCS所对应的MCS索引值为I,当第一偏差值MCS为0时,第三MCS索引值为I;当第一MCS偏差值为1时,第三MCS索引值为I+1;当第一MCS偏差值为-1时,第三MCS索引值为I-1;当第一偏差值为2时,第三MCS索引值为I+2;当第一MCS偏差值为-2时,第三MCS索引值为I-2。
终端设备可以根据第一信令和第二信令确定第一时间段内第三频域资源对应的MCS为第一MCS或第三MCS。
终端设备可以根据第二信令确定第一时间段内第二频域资源对应的MCS为第二MCS。
可选的,网络设备调度终端设备接收下行信号的方式可以包括以下两种:
第一种可能的方式:
第一信令调度终端设备接收下行信号。终端设备接收的第一信令和第二信令都可以承载于PDCCH中。
一种实施方式中,第一信令包括第四指示信息,指示终端设备在第二时间段内接收下行信号即第一信令可以调度终端设备接收网络设备发送的下行信号,该下行信号为第二下行信号。该第二下行信号为第二时间段内承载于第一频域资源的下行信号。该第二下行信号承载于所述第一时间段内的部分为该第一下行信号,其中,该第二时间段包括该第一时间段。终端根据第一信令和第二信令接收下行信号,具体步骤包括:
S2311终端设备根据第一信令确定第一频域资源和第一MCS,终端设备也可以根据第一信令确定第二时间段。
S2312终端设备根据第一信令,在第二时间段内接收承载于第一频域资源上的第二下行信号。
S2313终端设备根据该第一信令和第二信令确定在第一时间段内的该第一频域资源上接收第一下行信号。
具体地,终端设备接收到该第一信令和第二信令后的第一时间段内,在该第二频域资源和第三频域资源上接收第一下行信号,并通过该第二MCS指示的调制与编码策略处理该第一下行信号中承载于该第二频域资源上的部分,通过该第三MCS指示的调制与编码策略或第一MCS指示的调制与编码策略处理该第一下行信号中承载于第三频域资源上的部分。应理解,当第二信令指示的第一MCS偏差值为0或第二信令不包括第一MCS偏差值的指示信息或第二信令不包括指示第三MCS的指示信息时,依然通过第一MCS指示的调制与编码策略处理该第一下行信号中承载于第三频域资源上的部分;当第二信令指示的第一MCS偏差值不为0或第二信令包括用于指示第三MCS的指示信息时,终端设备通过第三MCS指示的调制与编码策略处理该第一下行信号承载于第三频域资源的部分。
应理解,上述终端设备在第二频域资源上接收部分信号和在第三频域资源上接收部分信号的顺序可以是在第三频域资源上接收部分信号在前,也可以是在第二频域资源上接收部分信号在前,还可以是同时进行接收,在此不做限定。
示例地,如图4所示,终端设备在时隙i接收到第一信令和第二信令,第一信令指示第二时间段包括20个时隙,即时隙i到时隙i+19,第二信令指示第一时间段包含5个时隙,即时隙i到时隙i+4,终端设备在时隙i到时隙i+4,在第二频域资源上接收第一下行信号中的部分信号,并根据第二MCS对其部分信号进行解调,在第三频域资源上接收第一下行信号中的部分信号,并根据第一MCS或第三MCS对其部分信号进行解调;在时隙i+5到时隙i+19,终端设备在第一频域资源上接收信号,并根据第一MCS对该信号进行解调。
应理解,如果终端设备接收到第一信令和第二信令后的某个时隙,此时第一时间段已经结束,第二时间段还没有结束时,终端设备再次接收到第二信令,则重复上述终端设备接收到第二信令后的步骤。如果终端设备接收到第一信令和第二信令后的某个时隙,此时第一时间段已经结束,第二时间段还没有结束时,终端设备没有再接收到第二信令,则终端设备在第二时间段除第一时间段的时间段内从第一频域资源上接收第二下行信号,并根据第一MCS对第二下行信号进行解调。
还应理解,如果终端设备只接收到该第一信令,没有接收到该第二信令,则终端设备根据该第一信令确定第一频域资源和第一MCS,然后在第二时间段内从第一频域资源上接收第二下行信号,并根据该第一MCS对该第二下行信号进行处理。
该第一信令和第二信令可以为同一信息,也可以为不同的信息,以DCI举例说明,第一信令和第二信令可以为同一DCI,也可以为不同的DCI,在这里不做限定。
第二种可能的方式:
第二信令调度终端设备接收下行信号。终端设备接收的第一信令可以承载于PDSCH,第二信令可以承载于PDCCH中。
具体地,第二信令调度终端设备接收网络设备发送的下行信号,该下行信号为第一下行信号。该第一下行信号为第一时间段内承载于第一频域资源的下行信号。即第二信令指示终端设备接收第一下行信号。
可选地,第一信令还包括用于指示第二时间段的第四指示信息,该第二时间段包括第一时间段。应理解,第一信令可以不包括指示第二时间段的第四指示信息,即当第一信令包括第四指示信息时,终端设备可以在第二时间段内根据第一信令,确定第一频域资源和第一MCS;当第一信令不包括第四指示信息时,在接收到下一个第一信令前,终端设备都可以根据第一信令,确定第一频域资源和第一MCS。
终端设备根据该第一信令和第二信令接收下行信号,具体步骤如下:
S2321终端设备根据第一信令确定该第一频域资源和第一MCS。
可选的,终端设备还可以根据第一信令确定第二时间段。应理解,当网络设备发送的第一信令不包括用于指示第二时间段的第四指示信息时,终端设备可以不执行此操作。
S2322终端设备根据该第一信令和第二信令确定在第一时间段内的该第一频域资源上接收第一下行信号,具体地,接收第一下行信号的步骤同S2313,在此不做赘述。
应理解,如果终端设备接收的第一信令除了用于指示第一频域资源和第一MCS外,还用于指示第二时间段,终端设备在根据该第一信令息和第二信令确定在第一时间段内的该第一频域资源上接收第一下行信号后,在第二时间段内除了第一时间段的时间内不接收下行信号。也就是说终端设备在只接收到第一信令时,并不进行第一下行信号的接收,只需确定该第一频域资源和第一MCS。
终端设备接收到该第二信令后,才进行S2322步骤的操作。
可选地,该第一信令可以为RRC,该第二信令可以为DCI上,在此仅做举例,不做限定。
应理解,若第一信令为RRC时,由于现有的RRC信令没有指示频域资源和MCS索引值的字段,因此指示频域资源和MCS索引值的字段可通过在RRC中新增加字段实现。
具体地,网络设备根据RRC中的MCS指示字段指示该第一MCS的索引值,并通过高层信令指示终端设备所采用的MCS索引表,终端设备可根据该第一MCS的索引值在网络设备指示的MCS索引表中确定该第一MCS,通过RRC信令中新增的用于指示第二时间段的字段确定该第二时间段。
上述实施例的方案,通过配置第一信令和第二信令,实现了网络设备调度的频域资源上对应的单一传输块的多MCS配置,从而减缓无线信道的频率选择衰落特性。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上述通信的方法主要是从交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端设备或者网络设备,为了实现上述功能,其包含了执行各个 功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
以上,结合图1至图4以及表1,详细说明了本申请实施例提供的方法。以下,结合图5至图7详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应。
图5是本申请实施例提供的终端设备的示意性框图。
终端设备500可对应于本申请实施例的方法200中的终端设备,该终端设备500可以包括用于执行图2的方法200中终端设备执行的方法的单元。并且,该终端设备500中的各单元和上述其他操作和/或功能分别为了实现图2的方法200的相应流程。
如图5所示,该终端装置500可以包括收发单元510和处理单元520。其中,该收发单元510用于接收第一信令和第二信令,该第一信令包括用于指示第一频域资源和第一MCS的第一指示信息,该第一频域资源包括第二频域资源;该第二信令包括用于指示该第二频域资源和第二MCS的第二指示信息;该处理单元520用于根据该第一信令和该第二信令确定在第一时间段内的该第一频域资源上接收第一下行信号,其中,该第一下行信号中承载于该第二频域资源上的部分对应的MCS为该第二MCS,该第一下行信号中承载于第三频域资源上的部分对应的MCS为该第一MCS或第三MCS,该第三频域资源为该第一频域资源中不包括该第二频域资源的频域资源,该第三MCS根据该第一MCS确定。
可选地,该第三MCS根据该第一MCS和第一MCS偏差值确定,该第一MCS偏差值承载于该第二信令中。
可选地,该第一信令还用于指示在第二时间段内接收第二下行信号,该第二信令还包括用于指示第一时间段的第三指示信息;其中,该第二时间段包括该第一时间段,该第二下行信号承载于该第一时间段内的信号为该第一下行信号。
可选地,该第一信令还包括用于指示第二时间段的第四指示信息,该第二时间段包含该第一时间段;该第二信令还用于指示在第一时间段内接收该第一下行信号。
可选地,该第一信令承载于PDSCH中,该第二信令承载于PDCCH中。
可选地,该第一信令和第二信令都承载于PDCCH中。
还应理解,该终端设备500中的收发单元510可对应于图7中示出的终端设备700中的收发器730,该终端设备500中的处理单元520可对应于图7中示出的终端设备700中的处理器710。
还应理解,该终端设备500中的收发单元510可通过通信接口(如收发器或输入/输 出接口)实现,例如可对应于图7中示出的终端设备700中的收发器730,该终端设备500中的处理单元520可通过至少一个处理器实现,例如可对应于图7中示出的终端设备700中的处理器710,该终端设备500中的处理单元520还可以通过至少一个逻辑电路实现。
可选地,终端设备500还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,上述装置的有益效果可参见在上述方法实施例中的说明,为了简洁,在此不再赘述。
图6是本申请实施例提供的网络设备的示意性框图。
应理解,该网络设备600可对应于本申请实施例的方法200中的网络设备,该网络设备600可以包括用于执行图2中的方法200中网络设备执行的方法的单元。并且,该网络设备600中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
如图6所示,该网络装置600可以包括收发单元610和处理单元620。其中,该收发单元610用于发送第一信令和第二信令,该第一信令包括用于指示第一频域资源和第一MCS的第一指示信息,该第一频域资源包括第二频域资源;该第二信令包括用于指示该第二频域资源和第二MCS的第二指示信息;该处理单元620用于根据该第一信令和该第二信令确定在第一时间段内的该第一频域资源上接收第一下行信号,其中,该第一下行信号中承载于该第二频域资源上的部分对应的MCS为该第二MCS,该第一下行信号中承载于第三频域资源上的部分对应的MCS为该第一MCS或第三MCS,该第三频域资源为该第一频域资源中不包括该第二频域资源的频域资源,该第三MCS根据该第一MCS确定。
可选地,该第三MCS根据该第一MCS和第一MCS偏差值确定,该第一MCS偏差值承载于该第二信令中。
可选地,该第一信令还用于指示在第二时间段内接收第二下行信号,该第二信令还包括用于指示第一时间段的第三指示信息;其中,该第二时间段包括该第一时间段,该第二下行信号承载于该第一时间段内的信号为该第一下行信号。
可选地,该第一信令还包括用于指示第二时间段的第四指示信息,该第二时间段包含该第一时间段;该第二信令还用于指示在第一时间段内接收该第一下行信号。
可选地,该第一信令承载于PDSCH中,该第二信令承载于PDCCH中。
可选地,该第一信令和第二信令承载于PDCCH中。
还应理解,该网络设备600中的收发单元610为可对应于图8中示出的网络设备800中的收发器830,该网络设备600中的处理单元620可对应于图8中示出的网络设备800中的处理器810。
可选地,网络设备600还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
还应理解,该网络设备600中的收发单元610为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图8中示出的网络设备800中的收发器830,该网络设备600中的处理单元620可通过至少一个处理器实现,例如可对应于图8中示出的网络设备800中的处理器810,该网络设备600中的处理单元620可通过至少一个逻辑电路实现。
图7是本申请实施例提供的终端设备700的结构示意图。该终端设备700可应用于如 图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备700包括处理器710和收发器730。可选地,该终端设备700还包括存储器720。其中,处理器710、收发器730和存储器720之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器720用于存储计算机程序,该处理器710用于从该存储器720中调用并运行该计算机程序,以控制该收发器730收发信号。可选地,终端设备700还可以包括天线,用于将收发器730输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器710可以和存储器720可以合成一个处理装置,处理器710用于执行存储器720中存储的程序代码来实现上述功能。具体实现时,该存储器720也可以集成在处理器710中,或者独立于处理器710。该处理器710可以与图5中的处理单元对应。
上述收发器730可以与图5中的收发单元对应。收发器730可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图7所示的终端设备700能够实现图2所示方法实施例中涉及终端设备的各个过程。终端设备700中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器710可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器730可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备700还可以包括电源,用于给终端设备中的各种器件或电路提供电源。
图8是本申请实施例提供的网络设备800的结构示意图。该网络设备800可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该网络设备800包括处理器810和收发器830。可选地,该网络设备800还包括存储器820。其中,处理器810、收发器830和存储器820之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器820用于存储计算机程序,该处理器810用于从该存储器820中调用并运行该计算机程序,以控制该收发器830收发信号。可选地,网络设备800还可以包括天线,用于将收发器830输出的下行数据或下行控制信令通过无线信号发送出去。
上述处理器810可以和存储器820可以合成一个处理装置,处理器810用于执行存储器820中存储的程序代码来实现上述功能。具体实现时,该存储器820也可以集成在处理器810中,或者独立于处理器810。该处理器810可以与图6中的处理单元对应。
上述收发器830可以与图6中的收发单元对应。收发器830可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图8所示的网络设备800能够实现图2所示方法实施例中涉及网络设备的各个过程。网络设备800中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器810可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而收发器830可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述网络设备800还可以包括电源,用于给网络设备中的各种器件或电路提供电源。
应理解,图8所示出的网络设备800仅为网络设备的一种可能的架构,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他架构的网络设备。例如,包含CU、DU和AAU的网络设备等。本申请对于网络设备的具体架构不作限定。
本申请实施例还提供了一种处理装置,包括处理器和接口;该处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机 存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行该计算机程序指令(程序)时,全部或部分地产生按照本申请实施例该有的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求和说明书的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    接收第一信令,所述第一信令包括用于指示第一频域资源和第一调制与编码策略MCS的第一指示信息;
    接收第二信令,所述第二信令包括用于指示第二频域资源和第二MCS的第二指示信息,所述第一频域资源包括所述第二频域资源;
    根据所述第一信令和所述第二信令确定在第一时间段内的所述第一频域资源上接收第一下行信号,其中,所述第一下行信号中承载于所述第二频域资源上的部分对应的MCS为所述第二MCS,所述第一下行信号中承载于第三频域资源上的部分对应的MCS为所述第一MCS或第三MCS,所述第三频域资源为所述第一频域资源中不包括所述第二频域资源的频域资源,所述第三MCS基于所述第一MCS确定。
  2. 根据权利要求1所述的方法,其特征在于,所述第三MCS基于所述第一MCS和第一MCS偏差值确定,所述第一MCS偏差值承载于所述第二信令中。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信令用于指示在第二时间段内接收第二下行信号,所述第二信令还包括用于指示所述第一时间段的第三指示信息;
    其中,所述第二时间段包括所述第一时间段,所述第二下行信号承载于所述第一时间段内的信号为所述第一下行信号。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第二信令用于指示在所述第一时间段内接收所述第一下行信号。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信令还包括用于指示第二时间段的第四指示信息,所述第二时间段包括所述第一时间段。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一信令承载于物理下行共享信道PDSCH中,所述第二信令承载于物理下行控制信道PDCCH中。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一信令和所述第二信令都承载于PDCCH中。
  8. 一种通信方法,其特征在于,包括:
    发送第一信令,所述第一信令包括用于指示第一频域资源和第一MCS的第一指示信息;
    发送第二信令,所述第二信令包括用于指示第二频域资源和第二MCS的第二指示信息,其中,所述第一频域资源包括所述第二频域资源,所述第二MCS为第一下行信号中承载于所述第二频域资源上的部分对应的MCS,所述第一下行信号中承载于第三频域资源上的部分对应的MCS为所述第一MCS或第三MCS,所述第三频域资源为所述第一频域资源中不包括所述第二频域资源的频域资源,所述第三MCS基于所述第一MCS确定。
  9. 根据权利要求8所述的方法,其特征在于,所述第三MCS基于所述第一MCS和第一MCS偏差值确定,所述第一MCS偏差值承载于所述第二信令中。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一信令用于指示在第二时 间段内接收第二下行信号,所述第二信令还包括用于指示所述第一时间段的第三指示信息;
    其中,所述第二时间段包括所述第一时间段,所述第二下行信号承载于所述第一时间段内的信号为所述第一下行信号。
  11. 根据权利要求8或9所述的方法,其特征在于,所述第二信令用于指示在所述第一时间段内接收所述第一下行信号。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信令还包括用于指示第二时间段的第四指示信息,所述第二时间段包括所述第一时间段。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,所述第一信令承载于PDSCH中,所述第二信令承载于PDCCH中。
  14. 根据权利要求8至12中任一项所述的方法,其特征在于,所述第一信令和所述第二信令都承载于PDCCH中。
  15. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一信令,所述第一信令包括用于指示第一频域资源和第一MCS的第一指示信息;
    所述收发单元还用于接收第二信令,所述第二信令包括用于指示第二频域资源和第二MCS的第二指示信息,所述第一频域资源包括所述第二频域资源;
    处理单元,用于根据所述第一信令和所述第二信令确定在第一时间段内的所述第一频域资源上接收第一下行信号,其中,所述第一下行信号中承载于所述第二频域资源上的部分对应的MCS为所述第二MCS,所述第一下行信号中承载于第三频域资源上的部分对应的MCS为所述第一MCS或第三MCS,所述第三频域资源为所述第一频域资源中不包括所述第二频域资源的频域资源,所述第三MCS基于所述第一MCS确定。
  16. 根据权利要求15所述的装置,其特征在于,所述第三MCS基于所述第一MCS和第一MCS偏差值确定,所述第一MCS偏差值承载于所述第二信令中。
  17. 根据权利要求15或16所述的装置,其特征在于,所述第一信令用于指示在第二时间段内接收第二下行信号,所述第二信令还包括用于指示所述第一时间段的第三指示信息;
    其中,所述第二时间段包括所述第一时间段,所述第二下行信号承载于所述第一时间段内的信号为所述第一下行信号。
  18. 根据权利要求15或16所述的装置,其特征在于,所述第二信令用于指示在所述第一时间段内接收所述第一下行信号。
  19. 根据权利要求18所述的装置,其特征在于,所述第一信令还包括用于指示第二时间段的第四指示信息,所述第二时间段包括所述第一时间段。
  20. 根据权利要求15至19中任一项所述的装置,其特征在于,所述第一信令承载于PDSCH中,所述第二信令承载于PDCCH中。
  21. 根据权利要求15至19中任一项所述的装置,其特征在于,所述第一信令和第二信令都承载于PDCCH中。
  22. 一种通信装置,其特征在于,包括:
    收发单元,用于发送第一信令,所述第一信令包括用于指示第一频域资源和第一MCS 的第一指示信息;
    所述收发单元还用于发送第二信令,所述第二信令包括用于指示第二频域资源和第二MCS的第二指示信息,其中,所述第一频域资源包括所述第二频域资源,所述第二MCS为第一下行信号中承载于所述第二频域资源上的部分对应的MCS,所述第一下行信号中承载于第三频域资源上的部分对应的MCS为所述第一MCS或第三MCS,所述第三频域资源为所述第一频域资源中不包括所述第二频域资源的频域资源,所述第三MCS基于所述第一MCS确定。
  23. 根据权利要求22所述的装置,其特征在于,所述第三MCS基于所述第一MCS和第一MCS偏差值确定,所述第一MCS偏差值承载于所述第二信令中。
  24. 根据权利要求22或23所述的装置,其特征在于,所述第一信令用于指示在第二时间段内接收第二下行信号,所述第二信令还包括用于指示所述第一时间段的第三指示信息;
    其中,所述第二时间段包括所述第一时间段,所述第二下行信号承载于所述第一时间段内的信号为所述第一下行信号。
  25. 根据权利要求22或23所述的装置,其特征在于,所述第二信令用于指示在所述第一时间段内接收所述第一下行信号。
  26. 根据权利要求25所述的装置,其特征在于,所述第一信令还包括用于指示第二时间段的第四指示信息,所述第二时间段包括所述第一时间段。
  27. 根据权利要求22至26中任一项所述的装置,其特征在于,所述第一信令承载于PDSCH中,所述第二信令承载于PDCCH中。
  28. 根据权利要求22至26中任一项所述的装置,其特征在于,所述第一信令和第二信令都承载于PDCCH中。
  29. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至7中任一项所述的方法或执行如权利要求8至14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至7中任一项所述的方法或执行如权利要求8至14中任一项所述的方法。
PCT/CN2020/125958 2020-11-02 2020-11-02 通信的方法、装置 WO2022088188A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/125958 WO2022088188A1 (zh) 2020-11-02 2020-11-02 通信的方法、装置
CN202080106288.4A CN116326072A (zh) 2020-11-02 2020-11-02 通信的方法、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125958 WO2022088188A1 (zh) 2020-11-02 2020-11-02 通信的方法、装置

Publications (1)

Publication Number Publication Date
WO2022088188A1 true WO2022088188A1 (zh) 2022-05-05

Family

ID=81381673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125958 WO2022088188A1 (zh) 2020-11-02 2020-11-02 通信的方法、装置

Country Status (2)

Country Link
CN (1) CN116326072A (zh)
WO (1) WO2022088188A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371481A (zh) * 2006-01-11 2009-02-18 美商内数位科技公司 利用不对等调制和编码方案实现空时处理的方法和设备
WO2009145585A2 (en) * 2008-05-30 2009-12-03 Lg Electronics Inc. Method and apparatus of transmitting ppdu in wireless communication system
CN106233649A (zh) * 2014-04-25 2016-12-14 高通股份有限公司 Lte上行链路中的调制编码方案(mcs)表指示
CN108282258A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种调制编码方式的处理方法、基站及终端设备
CN111385888A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 确定通信资源的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371481A (zh) * 2006-01-11 2009-02-18 美商内数位科技公司 利用不对等调制和编码方案实现空时处理的方法和设备
WO2009145585A2 (en) * 2008-05-30 2009-12-03 Lg Electronics Inc. Method and apparatus of transmitting ppdu in wireless communication system
CN106233649A (zh) * 2014-04-25 2016-12-14 高通股份有限公司 Lte上行链路中的调制编码方案(mcs)表指示
CN108282258A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种调制编码方式的处理方法、基站及终端设备
CN111385888A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 确定通信资源的方法和装置

Also Published As

Publication number Publication date
CN116326072A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2020220228A1 (zh) 下行数据传输方法、装置及存储介质
WO2020029996A1 (zh) 检测dci的方法、配置pdcch的方法和通信装置
WO2022033274A1 (zh) 通信方法、用户设备、网络设备及计算机可读存储介质
WO2018137664A1 (zh) 传输方法、网络设备和终端设备
WO2020216130A1 (zh) 一种通信方法及装置
WO2019214660A1 (zh) 通信方法和通信装置
WO2019191912A1 (zh) 数据传输的方法、终端设备和网络设备
WO2020062068A1 (zh) 无线通信方法、终端设备和网络设备
US11678239B2 (en) Communication method, base station, and terminal
WO2022148385A1 (zh) 模式指示方法、终端设备及网络设备
WO2019072170A1 (zh) 通信方法和通信装置
US20240236973A1 (en) Wireless communication methods
WO2020088417A1 (zh) 一种旁链路资源的配置方法及装置
WO2021030996A1 (zh) 一种信道处理方法、终端设备及存储介质
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2020113424A1 (zh) 确定传输块大小tbs的方法和设备
WO2020087541A1 (zh) 下行控制信息的传输方法和设备
WO2022088188A1 (zh) 通信的方法、装置
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2018082173A1 (zh) 传输上行控制信号的方法和装置
WO2020118520A1 (zh) 数据传输的方法和设备
WO2020206622A1 (zh) 无线通信的方法和设备
WO2020087311A1 (zh) 一种数据传输方法及装置、网络设备、终端
WO2020143051A1 (zh) Bwp切换的方法和设备
WO2019191911A1 (zh) 数据传输的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959348

Country of ref document: EP

Kind code of ref document: A1