WO2019062387A1 - 参数获取方法及装置 - Google Patents

参数获取方法及装置 Download PDF

Info

Publication number
WO2019062387A1
WO2019062387A1 PCT/CN2018/101576 CN2018101576W WO2019062387A1 WO 2019062387 A1 WO2019062387 A1 WO 2019062387A1 CN 2018101576 W CN2018101576 W CN 2018101576W WO 2019062387 A1 WO2019062387 A1 WO 2019062387A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
parameter
power
configuration
identifier
Prior art date
Application number
PCT/CN2018/101576
Other languages
English (en)
French (fr)
Inventor
姚珂
高波
鲁照华
苟伟
郭胜祥
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019062387A1 publication Critical patent/WO2019062387A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a parameter acquisition method and apparatus.
  • NR wireless communication
  • the power control in Long Term Evolution (LTE) is related to many factors, such as path loss, target received power, maximum transmit power, closed loop power adjustment, transmission bandwidth, and transmission rate.
  • the parameters of some power control should be related to the beam or the beam pair link (BPL).
  • BPL beam pair link
  • all beam-related power control parameters are preferably configured and maintained according to BPL, but BPL-related parameters are sensitive to channel changes, and any beam change used for transmission or reception will trigger BPL-related
  • the parameter configuration update causes the air interface signaling overhead to increase. In addition, frequent replacement of parameters is not conducive to the stability of closed-loop power control.
  • the method for acquiring the power control parameters of the multi-beam in the related art is not perfect, and the problem of large air interface signaling overhead and poor stability of the closed loop power control occurs.
  • An embodiment of the present disclosure provides a method and a device for obtaining parameters, so as to at least solve the problem that the method for acquiring the power control parameters of the multiple beams in the related art is not perfect, resulting in large air interface signaling overhead and poor stability of the closed loop power control. The problem.
  • a parameter obtaining method including: receiving an uplink transmission parameter sent by a base station; determining a power control process according to the uplink transmission parameter; and acquiring an uplink transmission according to the power control process Transmit power parameters.
  • the uplink transmission parameter includes a transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, and an association identifier between the power control parameter set and the PL configuration parameter. .
  • receiving the uplink transmission parameter includes: receiving the uplink transmission parameter by using physical layer signaling.
  • the method before receiving the uplink transmission parameter, further includes: receiving at least one power control parameter set and at least one PL configuration parameter, where the power control parameter set is identified by using a power control parameter set identifier
  • the PL configuration parameter is identified by a PL configuration parameter identifier.
  • the method before receiving the uplink transmission parameter, further includes: receiving an association between the power control parameter set and the PL configuration parameter, where the association includes at least one of: in a power control parameter set Included in the PL configuration parameter identifier; the power control parameter set identifier is included in the PL configuration parameter; the association of the power control parameter set and the PL configuration parameter is determined by using the predetermined association set, where the predetermined association set includes at least one association, where the predetermined association set includes The association between each power control parameter set and the PL configuration parameter is identified by an associated identifier.
  • the at least one power control parameter set and the at least one PL configuration parameter, the association between the power control parameter set and the PL configuration parameter, are received by high layer signaling.
  • the uplink transmission parameter includes one of: a power control process identifier, a power control parameter set identifier, and a transmit beam resource
  • determining the power control process according to the uplink transmission parameter includes: determining the And determining, by the power control process identifier or the power control parameter set, the first predetermined association in the association, and determining the power control process according to the first predetermined association; or, according to the relationship between the transmit beam resource and the power control process Determining a second predetermined association and determining the power control process based on the second predetermined association.
  • receiving the uplink transmission parameter includes: receiving, by using physical layer signaling, the power control process identifier or the power control parameter set identifier.
  • the method before receiving the uplink transmission parameter, further includes: receiving at least one power control parameter set and at least one PL configuration parameter, where the power control parameter set is identified by using a power control parameter set identifier
  • the PL configuration parameter is identified by using a PL configuration parameter identifier
  • the transmit beam set is received, where the transmit beam set includes at least one transmit beam resource indication.
  • the method before receiving the uplink transmission parameter, further includes: receiving an association between the power control parameter set, the PL configuration parameter, and the transmit beam set, where The association includes at least one of: including a PL configuration parameter identifier and a transmit beam resource indication in the transmit beam set in the power control parameter set; configuring at least one power control process, wherein each power control process adopts a power control process The identifier is identified, and each of the power control processes includes at least one of the following: a power control parameter set identifier, a PL configuration parameter identifier, and a transmit beam resource indication in the transmit beam set.
  • the receiving by the high layer signaling, the at least one power control parameter set, the at least one PL configuration parameter, the transmit beam set, and the power control parameter set, the PL configuration parameter, and the The association between the three sets of transmit beams.
  • the power control parameter set includes at least one of the following: a target received power, a PL coefficient, and an identifier used to indicate whether the local closed loop power adjustment amount is reset.
  • the method further includes: receiving a closed loop power adjustment amount, and updating the local closed loop power adjustment amount.
  • the method further includes: receiving at least one set of configuration values: a first set of configuration values, a second set of configuration values, wherein a configuration range of the first set of configuration values A configuration range greater than the second set of configuration values.
  • the value of the closed loop power adjustment amount is determined by using a first set of configuration values as a value of the closed loop power adjustment amount when at least one of the following conditions is met: a local closed loop power adjustment amount f (i)
  • a local closed loop power adjustment amount f (i) When set, the transmitted transmit beam or the receive beam changes, the spatial characteristics of the transmitted resource change, the transmitted waveform changes, the transmitted physical frame structure related parameter numerology changes, and the transmitted service type changes.
  • the value of the closed loop power adjustment amount is determined by using a second set of configuration values as the value of the closed loop power adjustment amount when at least one of the following conditions is met: continuous N power control adjustments
  • the magnitude of the quantity is less than or equal to the first threshold, and N is a predetermined integer greater than or equal to 1.
  • the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the value of the closed-loop power adjustment quantity is determined by determining, according to an indication of the base station, the closed-loop power adjustment quantity from the first set of configuration values and the second set of configuration values. value.
  • the method is applied to at least one of the following: a physical uplink shared channel PUSCH, a short short PUCCH, and a long long PUCCH; or the method is applied to at least one of the following signals: an information sounding reference signal SRS.
  • the method when the method is applied to at least one of the following channels: PUCCH, short PUCCH, and long PUCCH, the method further includes: determining that the PUCCH that satisfies at least one of the following conditions shares the closed-loop power adjustment amount: the same time slot
  • the short PUCCH and/or long PUCCH that transmit the beam resource indication are also used in the slot; the short PUCCH and the long PUCCH on different slot slots.
  • the sending power for the SRS is determined by determining that all transmit beams of the user terminal UE adopt the same power, where the power is Pcmax is used to subtract the power backoff amount, which is broadcast by the base station or configured by the base station to the UE; it is determined that all the transmit beams of the user terminal UE adopt the same power of the packet, wherein each group of power adopts Pcmax minus the packet.
  • the packet power back-off amount is configured by the base station to the UE according to the beam group of the SRS for beam management; determining that all beams of the user terminal UE adopt the same power, wherein the target received power P0 and PL are used
  • the value is determined by the UE, and the PL value is determined by the UE or determined according to the measurement result of the measurement pilot configured by the base station, where the P0 is configured by the base station to the UE; and all the beams of the user terminal UE are determined to use the same power of the packet, where
  • Each set of power is determined by the P0 of the packet configured by the base station and the PL value of the packet, and the base station sets P0 for each packet, and the PL of each packet is determined by the UE according to the base. Configuration of measurement pilot frequency measurement result of the determination.
  • the method further includes: acquiring, by using the following manner, a power headroom PH of multiple transmit beams simultaneously sent by the user terminal: an equivalent omnidirectional radiated power EIRP maximum transmit power Pcmax through each of the multiple beams Subtracting the transmit power of the EIRP of each beam to obtain the PH of each of the beams; subtracting the sum of the Pcmax of the TRPs of the Y UEs by the sum of the PHs of each of the plurality of beams, Acquiring a PH of the plurality of beams simultaneously transmitted, wherein the Y is a number of multiple beams that are simultaneously transmitted minus one.
  • a power control process acquisition method comprising: determining an uplink transmission parameter; transmitting the uplink transmission parameter to a user terminal UE, wherein the uplink transmission parameter Used to determine the power control process.
  • the uplink transmission parameter includes at least one transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, a power control parameter set, and a PL configuration parameter. Associated ID.
  • sending the uplink transmission parameter to the user terminal UE includes: sending, by using physical layer signaling, the uplink transmission parameter to the user terminal UE.
  • the method before determining the uplink transmission parameter, further includes: determining at least one power control parameter set and at least one PL configuration parameter, and sending the power control parameter set and the PL configuration parameter to the The UE, wherein the power control parameter set is identified by using a power control parameter set identifier, and the PL configuration parameter is identified by using a PL configuration parameter identifier.
  • the method before determining the uplink transmission parameter, further includes: determining, by at least one of the following, determining an association between the power control parameter set and the PL configuration parameter and transmitting the association to the a UE includes: a PL configuration parameter identifier in the power control parameter set; a power control parameter set identifier included in the PL configuration parameter; and an association of the power control parameter set and the PL configuration parameter in the predetermined association set, where the predetermined association set includes at least An association, wherein the association of each of the power control parameter set and the PL configuration parameter is identified by an association identifier.
  • the transmitting by the high layer signaling, the association between the at least one power control parameter set and the at least one PL configuration parameter, the power control parameter set, and the PL configuration parameter, to the UE.
  • the uplink transmission parameter includes one of the following: a power control process identifier, a power control parameter set identifier, and a transmit beam resource.
  • the sending the uplink transmission parameter to the user terminal UE includes: sending the power control process identifier or the power control parameter set identifier to the user terminal UE by using physical layer signaling.
  • the method before determining the uplink transmission parameter, further includes: determining at least one power control parameter set and at least one PL configuration parameter, and sending the power control parameter set and the PL configuration parameter to The UE, wherein the power control parameter set is identified by using a power control parameter set identifier, and the PL configuration parameter is identified by using a PL configuration parameter identifier; determining a transmit beam set and transmitting the transmit beam set to the UE
  • the transmit beam set includes at least one transmit beam resource indication.
  • the method before determining the uplink transmission parameter, further includes: determining an association between the power control parameter set, the PL configuration parameter, and the transmit beam set and correlating the association Transmitting to the UE, where the association includes at least one of: including a PL configuration parameter identifier and a transmit beam resource indication in the transmit beam set in the power control parameter set; configuring at least one power control process, where Each power control process is identified by using a power control process identifier, where each power control process includes at least one of the following: a power control parameter set identifier, a PL configuration parameter identifier, and a transmit beam resource indication in the transmit beam set.
  • the sending, by the high layer signaling, the at least one power control parameter set, the at least one PL configuration parameter, the transmit beam set, the power control parameter set, and the PL configuration parameter to a user terminal UE An association with the three sets of transmit beams.
  • the power control parameter set includes at least one of the following: a target received power, a PL coefficient, and an identifier used to indicate whether the local closed loop power adjustment amount is reset.
  • the method further includes: determining a closed loop power adjustment amount sent to the UE and transmitting the closed loop power adjustment amount to the UE.
  • the method further includes: determining at least one set of configuration values: a first set of configuration values, a second set of configuration values, wherein the first set The configuration range of the configuration value is greater than the configuration range of the second set of configuration values.
  • the value of the closed loop power adjustment amount is determined by using a first set of configuration values as a value of the closed loop power adjustment amount when at least one of the following conditions is met: a local closed loop power adjustment amount f (i)
  • a local closed loop power adjustment amount f (i) When set, the transmitted transmit beam or the receive beam changes, the spatial characteristics of the transmitted resource change, the transmitted waveform changes, the transmitted physical frame structure related parameter numerology changes, and the transmitted service type changes.
  • the value of the closed loop power adjustment amount is determined by using a second set of configuration values as the value of the closed loop power adjustment amount when at least one of the following conditions is met: continuous N power control adjustments
  • the magnitude of the quantity is less than or equal to the first threshold, and N is a predetermined integer greater than or equal to 1.
  • the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the value of the closed loop power adjustment amount is determined by determining a step value of the closed loop power adjustment amount from the first set of configuration values or the second set of configuration values according to an indication of the base station.
  • the method is applied to at least one of the following: a physical uplink shared channel PUSCH, a short short PUCCH, and a long long PUCCH; or the method is applied to at least one of the following signals: an information sounding reference signal SRS.
  • the PUCCH that satisfies at least one of the following conditions shares the closed-loop power adjustment amount: use in the same slot Short PUCCH and/or long PUCCH that also transmit beam resource indications; short PUCCH and long PUCCH on different time slot slots.
  • the sending power for the SRS is determined by determining that all the transmit beams of the user equipment UE use the same power, where The power is reduced by Pcmax minus the power backoff amount, which is broadcast by the base station or configured by the base station to the UE; it is determined that all the transmit beams of the user terminal UE adopt the same power of the packet, wherein each group of power adopts Pcmax minus The amount of power back-off of the packet, the packet power back-off amount is configured by the base station to the UE according to the beam group of the SRS for beam management; determining that all beams of the user terminal UE adopt the same power, wherein the target received power P0 is adopted.
  • each set of power is determined by a P0 of a packet configured by a base station and a PL value of a packet, the base station setting P0 for each packet, and the PL of each packet is determined by the UE root Measurement pilot base station configured to determine frequency measurements.
  • a parameter obtaining apparatus including: a receiving module configured to receive an uplink transmission parameter sent by a base station; and a determining module configured to determine power control according to the uplink transmission parameter a process, the acquiring module, configured to acquire a transmit power parameter of the uplink transmission according to the power control process.
  • the uplink transmission parameter includes a transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, and an association identifier between the power control parameter set and the PL configuration parameter. .
  • the receiving module is further configured to: before receiving the uplink transmission parameter, receive an association between a power control parameter set and a PL configuration parameter, where the association includes at least one of: at a power
  • the control parameter set includes a PL configuration parameter identifier; the power control parameter set identifier is included in the PL configuration parameter; and the association of the power control parameter set and the PL configuration parameter is determined by using the predetermined association set, where the predetermined association set includes at least one association, where The association between each power control parameter set and the PL configuration parameter is identified by using an association identifier.
  • the uplink transmission parameter includes one of the following: a power control process identifier, a power control parameter set identifier, and a transmit beam resource, where the determining module is further configured to determine the power control process identifier or power control parameter.
  • the receiving module is further configured to receive an association between the power control parameter set, the PL configuration parameter, and the transmit beam set, where the association includes at least one of:
  • the power control parameter set includes a PL configuration parameter identifier and a transmit beam resource indication in the transmit beam set; and at least one power control process is configured, where each power control process uses a power control process identifier to identify, where each The power control process includes at least one of the following: a power control parameter set identifier, a PL configuration parameter identifier, and a transmit beam resource indication in the transmit beam set.
  • the receiving module is further configured to receive a closed loop power adjustment amount, and update the local closed loop power adjustment amount.
  • the receiving module is further configured to: after receiving the closed loop power adjustment amount, receive at least one set of configuration values: a first set of configuration values, a second set of configuration values, wherein the first set of configuration values The configuration range is greater than the configuration range of the second set of configuration values.
  • the value of the closed loop power adjustment amount is determined by using a first set of configuration values as a value of the closed loop power adjustment amount when at least one of the following conditions is met: a local closed loop power adjustment amount f (i)
  • a local closed loop power adjustment amount f (i) When set, the transmitted transmit beam or the receive beam changes, the spatial characteristics of the transmitted resource change, the transmitted waveform changes, the transmitted physical frame structure related parameter numerology changes, and the transmitted service type changes.
  • the value of the closed loop power adjustment amount is determined by using a second set of configuration values as the value of the closed loop power adjustment amount when at least one of the following conditions is met: continuous N power control adjustments
  • the magnitude of the quantity is less than or equal to the first threshold, and N is a predetermined integer greater than or equal to 1.
  • the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the value of the closed-loop power adjustment quantity is determined by determining, according to an indication of the base station, the closed-loop power adjustment quantity from the first set of configuration values and the second set of configuration values. value.
  • a parameter obtaining apparatus comprising: a determining module configured to determine an uplink transmission parameter; and a transmitting module configured to send the uplink transmission parameter to a user terminal UE, where The uplink transmission parameter is used to determine a power control process.
  • the uplink transmission parameter includes at least one transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, a power control parameter set, and a PL configuration parameter. Associated ID.
  • the determining module is further configured to determine an association between the power control parameter set and the PL configuration parameter and send the association by using at least one of the following manners before determining the uplink transmission parameter.
  • At least one association is included, wherein the association of each of the power control parameter set and the PL configuration parameter is identified by an association identifier.
  • the uplink transmission parameter includes one of the following: a power control process identifier, a power control parameter set identifier, and a transmit beam resource.
  • the determining module is further configured to determine an association between the power control parameter set, the PL configuration parameter, and the transmit beam set before determining the uplink transmission parameter and Sending the association to the UE, where the association includes at least one of: including a PL configuration parameter identifier and a transmit beam resource indication in the transmit beam set in the power control parameter set; configuring at least one power control The process, wherein each power control process is identified by using a power control process identifier, where each power control process includes at least one of the following: a power control parameter set identifier, a PL configuration parameter identifier, and a transmit beam in the transmit beam set. Resource indication.
  • the sending module is further configured to determine a closed loop power adjustment amount sent to the UE and send the closed loop power adjustment amount to the UE.
  • the sending module is further configured to: after transmitting the closed-loop power adjustment amount to the UE, determine at least one set of configuration values: a first set of configuration values, and a second set of configuration values, where the The configuration range of the first set of configuration values is greater than the configuration range of the second set of configuration values.
  • the value of the closed loop power adjustment amount is determined by using a first set of configuration values as a value of the closed loop power adjustment amount when at least one of the following conditions is met: a local closed loop power adjustment amount f (i)
  • a local closed loop power adjustment amount f (i) When set, the transmitted transmit beam or the receive beam changes, the spatial characteristics of the transmitted resource change, the transmitted waveform changes, the transmitted physical frame structure related parameter numerology changes, and the transmitted service type changes.
  • the value of the closed loop power adjustment amount is determined by using a second set of configuration values as the value of the closed loop power adjustment amount when at least one of the following conditions is met: continuous N power control adjustments
  • the magnitude of the quantity is less than or equal to the first threshold, and N is a predetermined integer greater than or equal to 1.
  • the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the value of the closed loop power adjustment amount is determined by determining a step value of the closed loop power adjustment amount from the first set of configuration values or the second set of configuration values according to an indication of the base station.
  • a storage medium comprising a stored program, wherein the program runs any one of the methods described above.
  • a processor for running a program wherein the program executes any of the above methods when executed.
  • the uplink transmission parameter sent by the base station is received; the power control process is determined according to the uplink transmission parameter; and the transmission power parameter of the uplink transmission is obtained according to the power control process.
  • the power transmission control process for obtaining the transmission power parameter of the uplink transmission is determined by using the uplink transmission parameter, and the method for acquiring the power control parameter of the multi-beam is improved, so that the correlation can be solved.
  • the method for acquiring the power control parameters of the multi-beam is not perfect, and the air interface signaling overhead and the stability of the closed-loop power control are poor.
  • FIG. 1 is a block diagram showing a hardware structure of a mobile terminal according to a parameter acquisition method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart 1 of a parameter acquisition method according to an embodiment of the present disclosure
  • FIG. 3 is a first schematic diagram of a base station configuring power control related parameters for a UE according to an embodiment of the present disclosure
  • FIG. 4 is a second schematic diagram of a base station configuring power-related parameters for a UE according to an embodiment of the present disclosure
  • FIG. 5 is a second flowchart of a parameter acquisition method according to an embodiment of the present disclosure.
  • FIG. 6 is a structural block diagram 1 of a parameter acquisition apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram 2 of a parameter acquisition apparatus according to an embodiment of the present disclosure.
  • transmission power control is required for the transmission.
  • the size of the communication range, the maximum transmission power and reception sensitivity of the transceiver devices of both parties, the modulation and coding mode and rate of the data, the frequency band of operation, and the bandwidth occupied by the transmission all affect the transmission power. It is generally required to use a lower transmission power as much as possible while satisfying the received signal quality requirements of the receiving end.
  • the communication node 1 transmits a reference signal
  • the communication node 2 measures the path loss (pathloss, PL for short) of the node 1 to the node 2 based on the reference signal.
  • the PL is calculated using the difference between the transmission power of the reference signal of the node 1 and the received power of the reference signal received by the node 2. Assuming that the PL of the transport channel of the node 2 to the node 1 is the same as the PL of the channel of the node 1 to the node 2, the node 2 can calculate the transmission power of the transmission of the node to the node 1 by using the PL described above. Since PL is the result of a unilateral measurement, this factor is an open loop part in the transmission power.
  • the node 1 parses and provides the power adjustment information for the node 2 according to the received quality, and the process belongs to the closed loop power control.
  • the base-to-terminal link is the downlink
  • the terminal-to-base link is the uplink.
  • the power of the downlink is determined by the base station according to channel measurement results of each user equipment (UE) and a scheduling algorithm.
  • the power control of the uplink is an open loop combined with a closed loop.
  • there are specific quantities related to transmission such as transmission rate, Modulation and Coding Scheme (MCS) level, transmission bandwidth, etc., which also affect power.
  • MCS Modulation and Coding Scheme
  • the following is a calculation formula for the transmission power of the Physical Uplink Shared Channel (PUSCH) of the LTE. This example is used to describe various parameters affecting power.
  • the PUCCH also has similar parameters and mechanisms.
  • each component carrier (CC) that supports the carrier aggregation (Carrier Aggregation) function corresponds to one cell.
  • CC component carrier
  • Carrier Aggregation Carrier Aggregation
  • the open loop portion of the power of the uplink transmission PUSCH is determined by the target received power P0_PUSCH, the path loss amount PL, and the path loss factor ⁇ , wherein the target received power is divided into a cell level and a UE level parameter, which are determined by the base station and configured for the UE;
  • the base station determines the closed-loop power control adjustment according to the difference between the measurement result and the target, and transmits a power control command (Transmit Power Control Command, which is referred to as TPC Command, that is, Downlink Control Information (DCI).
  • TPC Command Transmit Power Control Command
  • DCI Downlink Control Information
  • PUSCH and [delta] [delta] PUSCH for the PUSCH physical uplink control channel (physical uplink Control Channel, abbreviated to PUCCH)) is notified UE.
  • the UE maintains a local power adjustment amount f(i), updates according to the transmission power control command, and uses the above formula to achieve the purpose of closed-loop control power.
  • i is the subframe number.
  • ⁇ TF is the MCS related power offset
  • PCMAX is the maximum power limit of the UE, ie the maximum power.
  • the cell-level target received power P0_nominal of LTE is a distinction between PUSCH (semi-static, dynamic, MSG3) and PUCCH, which respectively correspond to different BLER requirements.
  • the UE-level target received power parameter P0_UE_specific is also set to distinguish the above items, and the function is to compensate for systematic deviations, such as PL estimation error and absolute output power setting error.
  • the transmission power control command update f(i) is divided into two modes: the cumulative mode and the absolute value mode, wherein the absolute value mode is to directly update the local power adjustment amount f(i) of the UE by using the transmission power control command sent by the base station, and In the cumulative mode, the transmission power control command sent by the base station and the historical value of the local power adjustment amount of the UE jointly determine the local power adjustment amount f(i) of the UE.
  • f(i) here represents the local closed-loop power adjustment amount of the UE, and the UE local closed-loop power adjustment amount of the PUCCH in LTE is recorded as g(i).
  • f(i) can also be applied to PUCCH, and its role in the power control process is similar to that applied to PUSCH.
  • the base station When the base station schedules the uplink transmission of the UE, it needs to determine many factors, including time-frequency resources, transmission rate, modulation and coding mode, and MIMO mode. According to the received quality, the base station needs to determine which factors need to be adjusted in subsequent scheduling, such as improving. Modulation coding method, increase transmission power, and the like. However, the base station does not know the current transmit power of the UE, and does not know whether the transmit power can be increased. Therefore, there is a mechanism in the LTE. The UE sends a Power Headroom Report (PH) to the base station to clearly inform the current transmission power and the maximum transmission power.
  • PH Power Headroom Report
  • the 5G technology introduces a beam transmission mode, and both the base station and the UE support multiple beams. When working in beam mode, the power calculation needs to consider the characteristics of the beam.
  • the present disclosure proposes a power control method in a multi-beam mode.
  • the parameters mentioned in the present disclosure are applicable to different channels such as PUSCH, long PUSCH, short PUSCH, PUCCH, long PUCCH, short PUCCH, and signal SRS.
  • the same type of parameters may be independently configured or combined when applied to each of the above channels or signals.
  • the meaning of the combined configuration means that different channels and signals can share the same value, and the different values can be shared between different channels and signals by a predefined manner or a configuration of the base station.
  • the base station and the UE (user equipment) are used for description, but the limitation is not to limit the disclosure.
  • the base station and the UE may be used by the NB (NodeB), the gNB, and the TRP (transmitter). Replace the names of various communication nodes such as receiver point), AP (access point), site, user, STA, relay, and terminal.
  • beam in this article is beam or beam group.
  • the sending mode includes at least one of the following: a transmitting beam, a sending port, a sending resource, a reference signal sequence, and a precoding matrix (analog, digital, mixed mode).
  • the receiving mode includes at least one of the following: a receiving beam, a receiving port, a receiving resource, a reference signal sequence, a receiving precoding matrix (analog, digital, hybrid mode), and a receiver algorithm.
  • the beam may be a resource (eg, originating precoding, terminating precoding, antenna port, antenna weight vector, antenna weight matrix, etc.), and the beam sequence number may be replaced by a resource index because the beam may be associated with some time-frequency code resources. Binding on the transport.
  • the beam may also be a transmission (transmit/receive) mode; the transmission mode may include space division multiplexing, frequency domain/time domain diversity, and the like.
  • the beam indication means that the transmitting end can indicate by using the current reference signal and the antenna port, the base station scanning or the reference signal (or reference reference signal) reported by the UE feedback, and the antenna port satisfying the quasi co-location (QCL) assumption.
  • QCL quasi co-location
  • the receiving beam refers to a beam of the receiving end that does not need to be indicated, or the transmitting end can scan the reference signal (or reference reference signal) and the quasi-co-location of the antenna port through the current reference signal and the antenna port, and the base station scans or the UE feedback report.
  • QCL indicates the beam resource at the receiving end
  • the channel characteristics that is, including physical propagation channel characteristics, such as horizontal transmission azimuth, vertical transmission azimuth, horizontal reception azimuth, vertical reception azimuth, etc., also include characteristics of radio frequency and baseband circuits, such as antenna pattern features (element pattern) ), antenna group, sky plane board, antenna subarray, transceiver unit (TXRU), receive beam set, antenna placement, and baseband time offset, frequency offset and phase noise;
  • antenna pattern features element pattern
  • TXRU transceiver unit
  • the parameters involved in the quasi-co-location include at least Doppler spread, Doppler shift, delay spread, average delay and average gain; and may also include, spatial parameter information, such as angle of arrival, receive beam Spatial correlation, average delay, correlation of time-frequency channel response (including phase information).
  • EIRP equivalent radiant power
  • PH power headroom
  • FIG. 1 is a hardware structural block diagram of a mobile terminal of a parameter acquisition method according to an embodiment of the present disclosure.
  • mobile terminal 10 may include one or more (only one shown) processor 102 (processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • a memory 104 for storing data
  • a transmission device 106 for communication functions.
  • the structure shown in FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the parameter acquisition method in the embodiment of the present disclosure, and the processor 102 executes various kinds by executing software programs and modules stored in the memory 104. Functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is for receiving or transmitting data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart 1 of a parameter acquisition method according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 receiving an uplink transmission parameter sent by the base station
  • Step S204 determining a power control process according to an uplink transmission parameter
  • Step S206 acquiring a transmission power parameter of the uplink transmission according to the power control process.
  • the uplink transmission parameter is introduced, and the power control process for acquiring the transmission power parameter of the uplink transmission is determined according to the introduced uplink transmission parameter, so that the method for acquiring the power control parameter of the multi-beam is improved, so The method for obtaining the power control parameters of the multi-beam in the related technology is not perfect, and the problem of large air interface signaling overhead and poor stability of the closed loop power control occurs, and the configuration of the power control parameters of the multi-beam is realized.
  • the foregoing uplink transmission parameter includes a transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, and an association identifier between the power control parameter set and the PL configuration parameter.
  • the foregoing transmit beam resource indication may be a resource indication of one beam, or may be a resource indication of a group of beams.
  • receiving the uplink transmission parameter includes receiving the uplink transmission parameter by using physical layer signaling (eg, downlink control information DCI).
  • physical layer signaling eg, downlink control information DCI
  • the method before receiving the uplink transmission parameter, further includes: receiving at least one power control parameter set and at least one PL configuration parameter, where the power control parameter set is identified by using a power control parameter set identifier, and the PL configuration parameter is configured by using a PL The configuration parameter identifier is used for identification.
  • the method before receiving the uplink transmission parameter, further includes: receiving an association between the power control parameter set and the PL configuration parameter, where the association includes at least one of: including a PL configuration parameter identifier in the power control parameter set. And including, in the PL configuration parameter, a power control parameter set identifier; determining, by using the predetermined association set, a correlation between the power control parameter set and the PL configuration parameter, where the predetermined association set includes at least one association, wherein each power control parameter set and PL configuration parameter The association is identified by an associated identifier.
  • the at least one power control parameter set and the at least one PL configuration parameter, the association between the power control parameter set and the PL configuration parameter are received by the high layer signaling.
  • the following is an example of configuring a power control related parameter for a UE by using a base station as an example.
  • the base station configures at least one power control parameter set PC set for the UE, which is identified by the PC set ID, and each PC set includes at least one of the following: the target received power P0, the PL coefficient alpha, and whether the closed-loop power adjustment amount of the local maintenance is reset. information.
  • the base station configures at least one PL configuration parameter (PL configuration) for the UE, and is identified by a PL configuration ID, and each PL configuration includes a PL calculation related configuration.
  • PL configuration PL configuration parameter
  • the base station configures the relationship between the PC set and the PL configuration for the UE, and may adopt the following manner: the PC set also includes the PL configuration ID, or the PL configuration also includes the PC set ID, or the relationship between the PC set and the PL configuration is configured by the parameter relationship set.
  • the parameter relationship set includes at least one relationship, and each relationship includes at least a PC set ID and a PL configuration ID, and each relationship is identified by a relationship ID.
  • the above information is configured by the base station for the UE through the high layer signaling, and the high layer signaling includes Radio Resource Control (RRC) signaling and/or MAC CE (Control Element).
  • RRC Radio Resource Control
  • MAC CE Control Element
  • the base station carries a transmission beam resource indication (for example, an indication of an uplink transmission beam UL TX beam) in the downlink control information DCI information, and at least one of the following: a PC set ID or a PL configuration ID or a relationship ID.
  • a transmission beam resource indication for example, an indication of an uplink transmission beam UL TX beam
  • the base station and the UE use the UL TX beam and the PC set ID or the PL configuration ID or the relationship ID as a power control process, or a power control loop, to perform closed loop power control independently for each power control process.
  • the UL TX beam and PC set ID are then dynamically indicated in the DCI.
  • the UL TX beam and PL configuration ID are then dynamically indicated in the DCI.
  • the relationship between set and PL configuration, each relationship includes at least PC set ID and PL configuration ID, each relationship is identified by a relationship ID, and then the UL TX beam and the relationship ID are dynamically indicated in the DCI.
  • the foregoing uplink transmission parameter includes one of the following: a power control process identifier, a power control parameter set identifier, and a transmit beam resource, and determining, according to the uplink transmission parameter, the power control process includes: determining a power control process identifier or power control The parameter set identifies a first predetermined association in the indicated association, and determines a power control process according to the first predetermined association; or determines a second predetermined association according to a relationship between the transmit beam resource and the power control process, and according to the second predetermined The association determines the power control process.
  • receiving the uplink transmission parameter includes: receiving, by using physical layer signaling (eg, downlink control information DCI), a power control process identifier or a power control parameter set identifier.
  • physical layer signaling eg, downlink control information DCI
  • the method before receiving the uplink transmission parameter, further includes: receiving at least one power control parameter set and at least one PL configuration parameter, where the power control parameter set is identified by using a power control parameter set identifier, and the PL configuration parameter is configured by using a PL The configuration parameter identifier is identified; the transmit beam set is received, wherein the transmit beam set includes at least one transmit beam resource indication.
  • the method before receiving the uplink transmission parameter, further includes: receiving an association between the power control parameter set, the PL configuration parameter, and the transmit beam set, where the association includes at least one of: in the power control parameter set
  • the PL configuration parameter identifier and the transmit beam resource indication in the transmit beam set are configured.
  • the at least one power control process is configured, where each power control process is identified by using a power control process identifier, and each power control process includes at least one of the following: The power control parameter set identifier, the PL configuration parameter identifier, and the transmit beam resource indication in the transmit beam set.
  • the foregoing transmit beam resource indication may be a resource indication of one beam, or may be a resource indication of a group of beams.
  • the at least one power control parameter set, the at least one PL configuration parameter, the transmit beam set, and the association between the power control parameter set, the PL configuration parameter, and the transmit beam set are received by the high layer signaling.
  • the following is an example of configuring a power control related parameter for a UE by using a base station as an example.
  • the base station configures at least one PC set for the UE, and is identified by the PC set ID.
  • Each PC set includes at least one of the following P0, alpha, and information about whether the closed-loop power adjustment amount of the local maintenance is reset.
  • the base station configures at least one PL configuration for the UE, and is identified by a PL configuration ID, and each PL configuration includes a PL calculation related configuration.
  • the base station configures at least one UL TX beam as a transmit beam set for the UE, and the beam set may also multiplex the UL TX candidate beam set.
  • the configuration of the PC set, the PL configuration, and the transmit beam set of the base station may be as follows: the PC set further includes a PL configuration ID and a UL TX beam indication, or the base station configures at least one power control process (process) for the UE, or The power control loop (loop) is identified by the PC process ID.
  • Each power control process includes: PC set ID, PL configuration, and UL TX beam indication.
  • the above information is configured by the UE for the UE through the high layer signaling, and the high layer signaling includes RRC signaling and/or MAC CE (Control Element).
  • the base station uses the DCI to indicate the PC set ID, or the PC process ID, and the UE determines the uplink transmission resource by using the UL TX beam indication information in the relationship indicated by the PC set ID or the PC process ID.
  • the base station and the UE perform independent closed loop power control for each power control process.
  • the above UL TX beam set may multiplex the UL TX candidate beam set.
  • the path loss configuration PL configuration includes at least one of the following: indication information of a downlink reference signal resource, a processing rule for a plurality of path loss magnitudes, and an uplink loss amount value.
  • the indication information of the downlink reference signal resource includes at least one of the following: a channel state information reference signal resource indication, a synchronization signal block resource indication, and a tracking reference signal resource indication.
  • the foregoing merging rule for multiple DL RSs refers to a merging rule of PL values of multiple DL RSs measured on one downlink receiving beam, including equivalent averaging, non-equal weighted averaging, taking the maximum value of multiple PLs, taking The minimum of multiple PLs.
  • the above-mentioned path loss configuration PL configuration can also be used as a path loss measurement and a path loss measurement configuration.
  • the above path loss configuration may be a predefined value, for example, the UE determines the resources of the PL measurement.
  • the above-mentioned uplink RSRP/PL value the base station feeds back the RSRP/PL value of the corresponding uplink transmission link to the UE, and corrects the error of the PL used by the UE for the downlink transmission link for the uplink transmission link.
  • the parameter configuration method of the first scheme of FIG. 3 and the second scheme of FIG. 4 can be applied to the following signals and channels: PUSCH, SRS, SRS for acquiring CSI, and SRS for beam management (BM for short). , PUCCH, short PUCCH, long PUCCH.
  • the above signals and channels may be channels and signals for the NR system, or corresponding functions of future systems.
  • the parameter configuration method of the first scheme of FIG. 3 and the second scheme of FIG. 4 may be applied to the above signals and/or channels, for example, the base station configures the parameters and relationships involved in the foregoing scheme for the PUSCH and PUCCH of the UE.
  • the parameter configuration method of the foregoing schemes 1 and 2 may further configure parameters and relationships of the foregoing schemes for the combination of the foregoing signals and/or channels, for example, the base station is configured for the PUSCH of the UE and the SRS for acquiring the CSI.
  • the combination of the signals and channels is predefined or configured by a base station. The predefined combinations are exemplified below, but are not limited to the following combinations:
  • the number of P0s per PC set is 1, for all signals and/or channels in the combination
  • the number of P0s of each PC set is M, and each P0 is used for one or more signals or channels in the combination, and the correspondence between the position of P0 and the signal or channel is predefined.
  • M 2
  • the combination of signals and/or channels is PUSCH and SRS.
  • the predefined relationship is that the first P0 is for the PUSCH and the second P0 is for the SRS.
  • the number of P0s of each PC set is one, and also includes N offset values, wherein the sum of P0 and N P0 offsets represents N P0 values.
  • N is an integer greater than or equal to 1.
  • the correspondence between the position of the N+1 P0 values in the PC set and the signal or channel is predefined.
  • the number of P0s per PC set is one, and also includes N offset values, where N offset values represent the power deviation of the corresponding channel or signal from the reference channel or signal.
  • the reference channel or signal is predefined, and the N offset values represent corresponding channels or signals are predefined.
  • N is an integer greater than or equal to 1.
  • the reference channel or signal is PUSCH
  • 1 offset value represents the power offset of the SRS with respect to the PUSCH.
  • the content indicated in the DCI in the above description may be a semi-static indication, that is, one indication, which may be used for multiple transmissions.
  • the content in the DCI in the above description may also be an RRC or MAC signaling indication.
  • the power control parameter set includes at least one of the following: a target received power, a PL coefficient, and an identifier used to indicate whether the local closed loop power adjustment amount is reset.
  • the method further includes: receiving a closed loop power adjustment amount, and updating the local closed loop power adjustment amount.
  • the method further includes: receiving at least one set of configuration values: a first set of configuration values, and a second set of configuration values, wherein a configuration range of the first set of configuration values is greater than the second set The configuration range of the configuration value.
  • the value of the closed loop power adjustment amount is determined by:
  • the first set of configuration values is used as the value of the closed-loop power adjustment amount when at least one of the following conditions is met: the local closed-loop power adjustment amount f(i) is set, and the transmitted transmit beam or the receive beam is changed, and the transmission is performed.
  • the second set of configuration values is used as the value of the closed loop power adjustment amount: the amplitude of the consecutive N power control adjustment amounts is less than or equal to the first threshold, and N is a predetermined integer greater than or equal to 1.
  • the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the value of the closed loop power adjustment amount is determined from the first set of configuration values and the second set of configuration values according to the indication of the base station.
  • the method for determining the step size of the closed loop power control is improved, and the more flexible step quantity determining method is used to quickly achieve the effect of fast convergence of the closed loop power control.
  • a base station configures a power control related parameter for a UE.
  • the base station sends a closed-loop power adjustment amount to the UE, and transmits a predetermined number of bits, and the power adjustment range represented by the bit needs to be predetermined.
  • the 2-bit "00" represents a power boost of 3 dB.
  • the transmission mode of the beam is introduced in the NR, and the power adjustment value represented by the number of bits of the closed-loop power adjustment amount needs to be dynamically adjusted. That is, when the condition of the transmitting beam changes, for example, the closed-loop power adjustment amplitude requirement is relatively large, and after several adjustments, the power tends to be stable, and the closed-loop power control adjustment amplitude requirement is reduced.
  • defining a set of different values of the closed-loop power control adjustment value mapping method at least supports a large rapid adjustment (equivalent to the first set of configuration values above) and a small amplitude accurate adjustment (equivalent to the second set of configuration values above) The function.
  • the base station and the UE determine the value mapping method of the closed loop power control adjustment amount used according to the following method:
  • One of the following first-type conditions or a predefined combination is satisfied, and the first set of closed-loop power control adjustment value mapping methods is enabled, for example, to support a large and rapid adjustment mapping method.
  • the closed loop power control quantity f(i) is set
  • the transmitted waveform changes
  • the transmission of the numerology changes
  • One of the following second type of conditions or a predefined combination is satisfied, and the second set of closed-loop power control adjustment value mapping methods is enabled, for example, to support a small-amplitude precise adjustment mapping method.
  • the magnitude of the consecutive N power adjustment amounts is less than or equal to a predefined threshold 1, and N is a predetermined integer greater than or equal to 1.
  • the power adjustment amount exceeding a predefined ratio among the consecutive M power adjustment amounts is less than or equal to a predefined threshold 2, and M is a predefined integer greater than or equal to 1.
  • the value mapping method of the closed-loop power control adjustment amount used can also be determined according to the following method:
  • the base station instructs the UE to adopt a mapping method of the first set or the second set of closed loop power control adjustment amounts.
  • the base station instructs the UE to temporarily adopt the mapping method of the first set or the second set of closed loop power control adjustment amounts, and indicates the range of action, or the scope of action is predefined, and the scope of action includes at least one of the following: only valid for the A transmission , A is a predefined or indicated integer greater than or equal to 1; valid only for B slots, B is a predefined or indicated integer greater than or equal to 1.
  • the mapping method of the first set or the second set of closed loop power control adjustments can be further extended to support more levels, such as the first set, the second set, and the third set of closed loop power control adjustment mapping methods, respectively Supports functions such as large rapid adjustment, medium amplitude adjustment, and small amplitude precision adjustment.
  • step values can be further extended to different transport channels/signals, such as for the following signals, channels: PUSCH, SRS, SRS for acquiring CSI, SRS for PU, PUCCH, short PUCCH, long PUCCH, respectively Different sets of mapping value methods.
  • mapping method of the above-mentioned multiple sets of closed-loop power control adjustments can be further extended to different application scenarios, such as fast moving scenes, slow moving scenes, etc.
  • the base station explicitly configures or the UE determines the current scene according to predefined conditions. Determine the mapping value of the closed-loop power control adjustment amount.
  • the closed loop adjustment corresponding to the first or second set of closed-loop power control adjustment values may use the same overhead, as shown in Table 1.
  • different overheads may also be used, as shown in Table 2 and Table 3.
  • the closed-loop adjustment of the first set of closed-loop power control adjustment methods in Table 1 is 2bit
  • the closed-loop adjustment of the second set of closed-loop power control adjustment methods is 2bit.
  • the first closed-loop power control in Table 2 The closed-loop adjustment of the mapping method of the adjustment amount is 3 bits
  • the closed-loop adjustment amount of the mapping method of the first closed-loop power control adjustment amount in Table 3 is 1 bit
  • Table 1, Table 2, and Table 3 are as follows:
  • the method is applied to at least one of the following: a physical uplink shared channel PUSCH, a short short PUCCH, a long long PUCCH; or the method is applied to at least one of the following signals: an information sounding reference signal SRS.
  • the method further includes: determining a PUCCH shared closed-loop power adjustment amount that satisfies at least one of the following conditions: use in the same time slot: Short PUCCH and/or long PUCCH that also transmit beam resource indications; short PUCCH and long PUCCH on different time slot slots.
  • the base station instructs the UE to transmit the SRS in the following manner: the same transmission power spectral density and the same transmission power. For example, the base station sends the above information in a broadcast manner; the base station sends the UE-specific information by using the high layer signaling to indicate the SRS transmission mode of the UE; the base station indicates the information in the PC set.
  • NR supports short PUCCH and long PUCCH.
  • short PUCCH and long PUCCH can exist in the same slot or in different slots.
  • the short PUCCH and the long PUCCH can be further divided into different categories according to the length of the uplink control information (UCI), and each category corresponds to a different signal coding manner.
  • UCI uplink control information
  • the transmission power needs to be determined, and the complexity of the open loop power parameter configuration and the closed loop power control for each category is too high.
  • the present disclosure proposes a scheme for sharing a part of parameters of a closed loop power control process using a plurality of PUCCHs of the same transmit beam or a transmit beam having similar spatial channel characteristics, so that the complexity of the NR PUCCH closed loop power control is reduced.
  • the base station For the power control process of the PUCCH of the NR, the base station sends a closed-loop power adjustment amount to the UE, and multiple (that is, more than one) PUCCH that satisfies one or more of the following conditions can share the closed-loop power adjustment amount.
  • the UE maintains a local closed loop power adjustment amount g(i) for each power control process or power loop, and i is the slot number.
  • the closed loop power adjustment amount g(i) may be shared in multiple PUCCHs satisfying one or more of the following conditions, wherein the determination of the condition may be a predefined manner, or a manner in which the base station is configured to the UE.
  • the conditions include:
  • Multiple short PUCCHs that also transmit beam resource indications are used within the same slot.
  • Multiple long PUCCHs that also transmit beam resource indications are used within the same slot.
  • the same short PUCCH of the same UCI length interval in the plurality of short PUCCHs of the same slot is used in the same slot.
  • the UCI length interval refers to a length interval divided by a predefined rule.
  • a short PUCCH has a UCI length of 1 to 2 bits as a first type of short PUCCH, and a UCI length is a second type with a short PUCCH greater than 2 bits. .
  • the same slot uses the same long PUCCH of the same UCI length interval in the plurality of long PUCCHs of the same beam resource indication.
  • the UCI length interval refers to a length interval divided by a predefined rule. For example, a UCI with a length of 1 to 2 bits in a long PUCCH is a first class of a long PUCCH, and a UCI length of more than 2 bits and less than an X bit is a long.
  • the second type of PUCCH, the UCI length is greater than X bits, which is a third class of long PUCCH, where X is a predefined integer greater than two.
  • the plurality of long PUCCHs of the first class, the second class, and the third class may share the closed loop power adjustment amount respectively, or may share the closed loop power adjustment amount of the plurality of long PUCCHs of the first class and the second class, or the second type and Multiple long PUCCHs of the third category share a closed loop power adjustment.
  • a plurality of long PUCCHs having the same time domain repetition number interval in the plurality of long PUCCHs that are also transmitted by the same beam resource are used in the same slot.
  • the UCI length interval refers to a length interval divided by a predefined rule.
  • the time domain repetition number interval means that the number of repetitions satisfies certain condition requirements, for example, the number of repetitions is 1 to 2 times belonging to the same interval.
  • the short PUCCH and long PUCCH that also transmit the beam resource indication are used in the same slot.
  • the short PUCCH of the predefined UCI length interval 1 of the short PUCCH and the long PUCCH of the predefined UCI length interval 2 of the long PUCCH of the same PUCCH are also transmitted in the same slot.
  • the UCI length interval 1 has a UCI length of 1 to 2 bits
  • the UCI length interval 2 bits UCI has a length of 1 to 2 bits.
  • UCI length interval 2 is UCI length 1 to X bits, and X is an integer greater than 1.
  • the UCI length interval 1 has a UCI length of 1 to 2 bits
  • the UCI length interval 2 bits UCI has a length of 1 to 2 bits.
  • UCI length interval 2 is UCI length 1 to X bits, and X is an integer greater than 1.
  • the same power control process or power control loop may be used to use the same transmit beam resource indication.
  • using the same transmit beam resource indication may also be to use a transmit beam resource indication with some or all of the QCL features.
  • multiple PUCCHs can share the closed-loop power control adjustment amount, which means that the base station sends a closed-loop power control adjustment amount to the multiple PUCCHs, and the PUCCH that meets the above conditions uses the closed-loop power control when calculating the respective transmission powers. Adjustment amount.
  • the plurality of long PUCCHs in the same slot may be time division multiplexed TDM, frequency division multiplexed FDM, or code division multiplexed CDM.
  • the plurality of short PUCCHs in the same slot may be time division multiplexed TDM, frequency division multiplexed FDM, or code division multiplexed CDM.
  • the transmit power for the SRS is determined by determining that all transmit beams of the user terminal UE adopt the same power, wherein the power adopts Pcmax minus the power backoff amount.
  • the power backoff amount is broadcast by the base station or configured by the base station to the UE; determining that all the transmit beams of the user terminal UE adopt the same power of the packet, wherein each group of power adopts Pcmax minus the power backoff amount of the packet, and the packet power backoff amount Configuring, by the base station, the beam group according to the SRS for beam management to the UE; determining that all beams of the user terminal UE adopt the same power, wherein the power is determined by using the target received power P0 and the PL value, and the PL value is determined by the UE or according to the base station
  • the measurement result of the configured measurement pilot is determined, and P0 is configured by the base station to the UE; determining that all the beams of the user terminal UE adopt the same power
  • the transmit power of the SRS for BM can be determined by one of the following methods (the packet setup and effective time of the beam managed SRS):
  • All beams use the same power, and the same power uses Pcmax minus the power backoff amount, which is broadcast by the base station or configured by the base station to the UE.
  • All beams adopt the same power of the packet, and each group of power adopts Pcmax minus the power backoff amount of the packet, and the packet power backoff amount is configured by the base station to the UE according to the beam group of the SRS for BM.
  • All beams use the same power, and the same power is determined by the P0 and PL values.
  • the PL value is determined by the UE itself or determined according to the measurement result of the measurement pilot configured by the base station.
  • P0 is a base station configured for the UE.
  • All beams are grouped with the same power, and each group of power is determined by the P0 of the packet configured by the base station and the PL value of the packet.
  • the base station sets P0 for each packet.
  • the PL of each packet is determined by the UE according to the measurement result of the measurement pilot configured by the base station.
  • Calculation time of PL Transmission time of trigger information of SRS for BM + X time units.
  • X is a predefined fixed value, or a value related to the configuration of the transmission. For example, different configurations correspond to values of different Xs.
  • X is an integer greater than or equal to zero.
  • the method further includes: acquiring a power headroom PH of the plurality of transmit beams simultaneously sent by the user terminal by subtracting the equivalent omnidirectional radiated power EIRP maximum transmit power Pcmax of each of the plurality of beams
  • the transmit power of the EIRP of each beam acquires the PH of each beam; the sum of the Pcmax of the TRP of the Y UEs is subtracted from the sum of the PHs of each of the plurality of beams, and the multiple beams simultaneously transmitted are acquired.
  • PH where Y is the number of multiple beams transmitted simultaneously minus one.
  • the reporting of the PHR needs to reflect the change of the beam.
  • only one UE's TX beam (group) may be scheduled, corresponding to one loop, or multiple loop corresponding TX beams (groups) may be scheduled, and different The loop of the moment may also be different.
  • the transmission power of each TX beam can be calculated separately, and the sum of the actual transmission powers is also limited by the maximum transmission power of the UE.
  • the maximum transmission power is insufficient to satisfy the transmission power requirements of all TX beams, power reduction or abandonment of partial TX beam transmission may be performed. Therefore, the reported PHR should reflect the distance between the sum power and the maximum power of multiple TX beams.
  • the transmission power refers to TRP (Total Radiated Power).
  • the transmission power may be EIRP (Effective Isotropic Radiated Power). EIRP refers to the value of the directional gain with the transmit beam, and TRP does not have the gain of the transmit beam direction.
  • the base station transmits downlink signals, such as SSB (synchronization signal block), CSI-RS (resource indication of CSI-RS), TRS (tracking reference signal), etc., in different beams, and explicitly or implicitly indicates the downlink signal. Transmit power.
  • the UE uses different beams to receive and measure the above signals, and estimates PLs of different BPLs (beam pair links) between the base station and the UE.
  • the base station can transmit the same type of signals in different beams with equal TRP power and explicitly or implicitly indicate the TRP power of these transmitted signals. or,
  • the base station can transmit the same type of signals in different beams with equal EIRP power and explicitly or implicitly indicate the EIRP power of these transmitted signals. or,
  • the base station can transmit the same type of signals in different beams with equal TRP power and explicitly or implicitly indicate the EIRP power of these transmitted signals.
  • the different beams described above transmit the same type of the downlink transmission signal by the same transmission power by packet, and indicate the transmission power of each beam packet.
  • multiple transmit beams use the same TRP transmit power.
  • the UE calculates the transmit power of each beam.
  • the transmit power of the EIRP is relatively easy to obtain.
  • the transmit power of each beam calculated by the UE includes the gain of the corresponding beam. According to the information that the UE can learn, the PH of the multi-beam is obtained in the following manner:
  • the UE calculates the EIRP transmission power of each beam and knows the exact beam gain of each transmission beam and the Pcmax of the UE's TRP. Then, the UE obtains the PHs of the multiple beams as follows:
  • the PH of the plurality of simultaneously transmitted beams is obtained by subtracting the sum of the maximum TRP transmission power of the UE and the power of the TRPs of the plurality of simultaneously transmitted beams.
  • the UE supports two beams simultaneously transmitting, which respectively correspond to two power control processes, or a loop of two powers.
  • the transmit power EIRP values of the two beams beam1 and beam2 calculated by the UE are: P_EIRP_beam1 and P_EIRP_beam2, respectively, and the gains of the two beams are recorded as: gain1 and gain2, respectively.
  • PCMAX_TRP-(P_TRP_beam1+P_TRP_beam2) PCMAX_TRP-(P_EIRP_beam1-gain1+P_EIRP_beam2-gain2)
  • the UE can calculate the EIRP transmission power and know the Pcmax of the EIRP of each beam and the Pcmax of the TRP of the UE, but it is possible that the accurate beam gain of each beam cannot be known. Then, the UE obtains the PHs of the multiple beams as follows:
  • the EIRP maximum transmit power Pcmax of each beam is subtracted from the transmit power of the EIRP of the beam to obtain the PH of the beam.
  • the difference between the sum of the PHs of the plurality of beams simultaneously transmitted and the Pcmax of the TRPs of the Y UEs is the PH of the plurality of beams simultaneously transmitted.
  • Y is the number of multiple beams transmitted simultaneously minus one.
  • the UE supports two beams simultaneously transmitting, which respectively correspond to two power control processes, or a loop of two powers.
  • the transmit power EIRP values of the two beams beam1 and beam2 calculated by the UE are: P_EIRP_beam1 and P_EIRP_beam2, respectively.
  • the maximum EIRP transmit power of the two beams is: Pcmax_EIRP_beam1 and Pcmax_EIRP_beam2.
  • PH_beam1 Pcmax_EIRP_beam1-P_EIRP_beam1
  • PH_beam2 Pcmax_EIRP_beam2-P_EIRP_beam2;
  • the UE may calculate the EIRP transmission power and know the Pcmax of the TRP of the UE, but may not know the accurate beam gain of each beam, and the beam gain of the above method uses the average beam. Gain substitution does not distinguish the gain of a specific beam.
  • the UE obtains the PHs of the multiple beams as follows:
  • the PH of the plurality of simultaneously transmitted beams is obtained by subtracting the sum of the maximum TRP transmission power of the UE and the power of the TRPs of the plurality of simultaneously transmitted beams.
  • the receiving beam switching occurs on the base station side. If the beams before and after the switching are beams of different levels having the same QCL configuration, for example, beams of different widths belonging to the same direction. This situation is likely to be used to calculate the downlink pilot configuration of the PL, for example, the downlink pilot of the wide beam is configured for measurement. Then, the base station needs to indicate the gain difference of the wide and narrow beams to the UE.
  • the amount of the received beam gain difference before and after the switching is indicated to the UE by the closed loop power control adjustment command, and the large step amount is only valid for the current time.
  • FIG. 5 is a second flowchart of a parameter acquisition method according to an embodiment of the present disclosure. As shown in FIG. 5, the process includes the following steps:
  • Step S502 determining an uplink transmission parameter
  • Step S504 transmitting an uplink transmission parameter to the user terminal UE, where the uplink transmission parameter is used to determine a power control process.
  • the uplink transmission parameter includes at least one transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, and an association identifier between the power control parameter set and the PL configuration parameter. .
  • sending the uplink transmission parameter to the user terminal UE includes: transmitting, by using physical layer signaling (eg, downlink control information DCI), an uplink transmission parameter to the user terminal UE.
  • physical layer signaling eg, downlink control information DCI
  • the method before determining the uplink transmission parameter, the method further includes: determining at least one power control parameter set and at least one PL configuration parameter, and sending the power control parameter set and the PL configuration parameter to the UE, where the power control parameter set is adopted
  • the power control parameter set identifier is identified, and the PL configuration parameter is identified by the PL configuration parameter identifier.
  • the method before determining the uplink transmission parameter, further includes: determining, by at least one of the following, determining an association between the power control parameter set and the PL configuration parameter and transmitting the association to the UE: including the PL in the power control parameter set Configuring a parameter identifier; including a power control parameter set identifier in the PL configuration parameter; determining, by using the predetermined association set, a correlation between the power control parameter set and the PL configuration parameter, where the predetermined association set includes at least one association, wherein each power control parameter set and The association of PL configuration parameters is identified by an association identifier.
  • the association between the at least one power control parameter set and the at least one PL configuration parameter, the power control parameter set, and the PL configuration parameter is sent to the UE by high layer signaling.
  • the uplink transmission parameter includes one of the following: a power control process identifier, a power control parameter set identifier, and a transmit beam resource.
  • sending the uplink transmission parameter to the user terminal UE includes: sending, by using physical layer signaling (for example, downlink control information DCI), a power control process identifier or a power control parameter set identifier to the user terminal UE.
  • physical layer signaling for example, downlink control information DCI
  • a power control process identifier or a power control parameter set identifier to the user terminal UE.
  • the method before determining the uplink transmission parameter, further includes: determining at least one power control parameter set and at least one PL configuration parameter, and sending the power control parameter set and the PL configuration parameter to the UE, where the power control parameter set
  • the power control parameter set identifier is used for identification, and the PL configuration parameter is identified by using the PL configuration parameter identifier; the transmit beam set is determined and the transmit beam set is sent to the UE, where the transmit beam set includes at least one transmit beam resource indication.
  • the method before determining the uplink transmission parameter, further includes: determining an association between the power control parameter set, the PL configuration parameter, and the transmit beam set, and sending the association to the UE, where the association includes at least one of the following: And including, in the power control parameter set, a PL configuration parameter identifier and a transmit beam resource indication in the transmit beam set; configuring at least one power control process, where each power control process is identified by using a power control process identifier, where each power control process is in progress
  • the method includes at least one of the following: a power control parameter set identifier, a PL configuration parameter identifier, and a transmit beam resource indication in the transmit beam set.
  • the association between the at least one power control parameter set, the at least one PL configuration parameter, the transmit beam set, the power control parameter set, the PL configuration parameter, and the transmit beam set is sent to the user terminal UE by using the high layer signaling.
  • the power control parameter set includes at least one of the following: a target received power, a PL coefficient, and an identifier used to indicate whether the local closed loop power adjustment amount is reset.
  • the method further includes: determining a closed loop power adjustment amount sent to the UE and transmitting the closed loop power adjustment amount to the UE.
  • the method further includes: determining at least one set of configuration values: a first set of configuration values, and a second set of configuration values, wherein a configuration range of the first set of configuration values is greater than The configuration range of the second set of configuration values.
  • the value of the closed loop power adjustment amount is determined by using the first set configuration value as the value of the closed loop power adjustment amount when at least one of the following conditions is met: a local closed loop power adjustment amount f(i When set, the transmitted transmit beam or the receive beam changes, the spatial characteristics of the transmitted resource change, the transmitted waveform changes, the transmitted physical frame structure related parameter numerology changes, and the transmitted service type changes.
  • the value of the closed loop power adjustment amount is determined by using a second set of configuration values as the value of the closed loop power adjustment amount when at least one of the following conditions is met: consecutive N power control adjustment amounts
  • the amplitude is less than or equal to the first threshold, and N is a predetermined integer greater than or equal to 1.
  • the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the value of the closed loop power adjustment amount is determined by determining a step value of the closed loop power adjustment amount from the first set configuration value or the second set configuration value according to the indication of the base station.
  • the method is applied to at least one of the following: a physical uplink shared channel PUSCH, a short short PUCCH, a long long PUCCH; or the method is applied to at least one of the following signals: an information sounding reference signal SRS.
  • the PUCCH sharing closed-loop power adjustment amount that satisfies at least one of the following conditions: using the same transmit beam resource in the same slot Indicated short PUCCH and/or long PUCCH; short PUCCH and long PUCCH on different time slot slots.
  • the transmit power for the SRS is determined by determining that all the transmit beams of the user terminal UE adopt the same power, wherein the power adopts Pcmax minus the power back.
  • the amount of power backoff is broadcast by the base station or configured by the base station to the UE; determining that all the transmit beams of the user terminal UE adopt the same power of the packet, wherein each set of power adopts Pcmax minus the power backoff amount of the packet, and the packet power back Decommissioning is configured by the base station according to the beam group of the SRS for beam management to the UE; determining that all beams of the user terminal UE adopt the same power, wherein the power is determined by using the target received power P0 and the PL value, and the PL value is determined by the UE or Determining according to the measurement result of the measurement pilot configured by the base station, P0 is configured by the base station to the UE; determining that all the beams of the user terminal UE adopt the same power, wherein the power is determined by using the target received
  • a parameter acquisition device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a structural block diagram 1 of a parameter obtaining apparatus according to an embodiment of the present disclosure. As shown in FIG. 6, the apparatus includes:
  • the receiving module 62 is configured to receive an uplink transmission parameter sent by the base station
  • a determining module 64 connected to the receiving module 62, configured to determine a power control process according to an uplink transmission parameter
  • the obtaining module 66 is connected to the determining module 64, and configured to acquire a sending power parameter of the uplink transmission according to the power control process.
  • the uplink transmission parameter includes a transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, and an association identifier between the power control parameter set and the PL configuration parameter.
  • the receiving module 62 is further configured to: before receiving the uplink transmission parameter, receive an association between the power control parameter set and the PL configuration parameter, where the association includes at least one of: including in the power control parameter set a PL configuration parameter identifier; including a power control parameter set identifier in the PL configuration parameter; determining, by using the predetermined association set, a correlation between the power control parameter set and the PL configuration parameter, where the predetermined association set includes at least one association, wherein each power control parameter set The association with the PL configuration parameter is identified by the associated identifier.
  • the uplink transmission parameter includes one of the following: a power control process identifier, a power control parameter set identifier, and a transmit beam resource
  • the determining module 64 is further configured to determine the power control process identifier or the power control parameter set identifier. a first predetermined association in the association, and determining a power control process according to the first predetermined association; or determining a second predetermined association according to a relationship between the transmit beam resource and the power control process, and determining the power control according to the second predetermined association process.
  • the receiving module 62 is further configured to receive an association between the power control parameter set, the PL configuration parameter, and the transmit beam set, where the association includes at least one of: including a PL configuration parameter in the power control parameter set. And indicating at least one power control process, where each power control process is identified by using a power control process identifier, where each power control process includes at least one of the following: a power control parameter set identifier The PL configuration parameter identifier and the transmit beam resource indication in the transmit beam set.
  • the receiving module 62 is further configured to receive a closed loop power adjustment amount, and update the local closed loop power adjustment amount.
  • the receiving module 62 is further configured to: after receiving the closed loop power adjustment amount, receive at least one set of configuration values: a first set of configuration values, a second set of configuration values, where a configuration range of the first set of configuration values A configuration range greater than the second set of configuration values.
  • the value of the closed loop power adjustment amount is determined by using the first set configuration value as the value of the closed loop power adjustment amount when at least one of the following conditions is met: a local closed loop power adjustment amount f(i When set, the transmitted transmit beam or the receive beam changes, the spatial characteristics of the transmitted resource change, the transmitted waveform changes, the transmitted physical frame structure related parameter numerology changes, and the transmitted service type changes.
  • the value of the closed loop power adjustment amount is determined by using a second set of configuration values as the value of the closed loop power adjustment amount when at least one of the following conditions is met: consecutive N power control adjustment amounts
  • the amplitude is less than or equal to the first threshold, and N is a predetermined integer greater than or equal to 1.
  • the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the value of the closed loop power adjustment amount is determined by determining, according to an indication of the base station, a value of the closed loop power adjustment amount from the first set of configuration values and the second set of configuration values.
  • FIG. 7 is a structural block diagram 2 of a parameter obtaining apparatus according to an embodiment of the present disclosure. As shown in FIG. 7, the apparatus includes:
  • a determining module 72 configured to determine an uplink transmission parameter
  • the sending module 74 is connected to the determining module 72, and is configured to send an uplink transmission parameter to the user terminal UE, where the uplink transmission parameter is used to determine a power control process.
  • the uplink transmission parameter includes at least one transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, and an association identifier between the power control parameter set and the PL configuration parameter. .
  • the determining module 72 is further configured to: before determining the uplink transmission parameter, determine an association between the power control parameter set and the PL configuration parameter by using at least one of the following manners, and send the association to the UE: the power control parameter The set includes a PL configuration parameter identifier; the power control parameter set identifier is included in the PL configuration parameter; and the association of the power control parameter set and the PL configuration parameter is determined by using the predetermined association set, where the predetermined association set includes at least one association, where each power The association between the control parameter set and the PL configuration parameter is identified by an associated identifier.
  • the uplink transmission parameter includes one of the following: a power control process identifier, a power control parameter set identifier, and a transmit beam resource.
  • the determining module 72 is further configured to: before determining the uplink transmission parameter, determine an association between the power control parameter set, the PL configuration parameter, and the transmit beam set, and send the association to the UE, where the association includes At least one of: including a PL configuration parameter identifier and a transmit beam resource indication in the transmit beam set in the power control parameter set; configuring at least one power control process, wherein each power control process is identified by using a power control process identifier, each The power control process includes at least one of the following: a power control parameter set identifier, a PL configuration parameter identifier, and a transmit beam resource indication in the transmit beam set.
  • the sending module 74 is further configured to determine a closed loop power adjustment amount sent to the UE and send the closed loop power adjustment amount to the UE.
  • the sending module 74 is further configured to: after transmitting the closed-loop power adjustment quantity to the UE, determine at least one set of configuration values: a first set of configuration values, a second set of configuration values, where the first set of configuration values The configuration range is larger than the configuration range of the second set of configuration values.
  • the value of the closed loop power adjustment amount is determined by using the first set configuration value as the value of the closed loop power adjustment amount when at least one of the following conditions is met: a local closed loop power adjustment amount f(i When set, the transmitted transmit beam or the receive beam changes, the spatial characteristics of the transmitted resource change, the transmitted waveform changes, the transmitted physical frame structure related parameter numerology changes, and the transmitted service type changes.
  • the value of the closed loop power adjustment amount is determined by using a second set of configuration values as the value of the closed loop power adjustment amount when at least one of the following conditions is met: consecutive N power control adjustment amounts
  • the amplitude is less than or equal to the first threshold, and N is a predetermined integer greater than or equal to 1.
  • the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the value of the closed loop power adjustment amount is determined by determining a step value of the closed loop power adjustment amount from the first set configuration value or the second set configuration value according to the indication of the base station.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a storage medium including a stored program, wherein the program runs to perform any of the above methods.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the uplink transmission parameter includes a transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, and an association identifier between the power control parameter set and the PL configuration parameter.
  • the storage medium is further configured to store program code for performing the following steps: receiving uplink transmission parameters includes:
  • the storage medium is further configured to store program code for performing the steps of: before receiving the uplink transmission parameters, further comprising:
  • the storage medium is further configured to store program code for performing the steps of: before receiving the uplink transmission parameters, further comprising:
  • S1 receiving an association between a power control parameter set and a PL configuration parameter, where the association includes at least one of: including a PL configuration parameter identifier in the power control parameter set; and including a power control parameter set identifier in the PL configuration parameter;
  • the predetermined association set determines an association between the power control parameter set and the PL configuration parameter, and the predetermined association set includes at least one association, wherein the association between each power control parameter set and the PL configuration parameter is identified by using an association identifier.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further configured to store program code for performing the following steps:
  • the uplink transmission parameters include one of: a power control process identifier, a power control parameter set identifier, a transmit beam resource, according to an uplink transmission.
  • the parameters determine the power control process including:
  • the storage medium is further configured to store program code for performing the following steps: receiving uplink transmission parameters includes:
  • S1 Receive a power control process identifier or a power control parameter set identifier by using physical layer signaling.
  • the storage medium is further configured to store program code for performing the steps of: before receiving the uplink transmission parameters, further comprising:
  • the storage medium is further configured to store program code for performing the steps of: before receiving the uplink transmission parameters, further comprising:
  • the association between the power control parameter set, the PL configuration parameter, and the transmit beam set where the association includes at least one of: including a PL configuration parameter identifier and a transmit beam resource in the transmit beam set in the power control parameter set.
  • Instructing to configure at least one power control process wherein each power control process is identified by using a power control process identifier, and each power control process includes at least one of the following: a power control parameter set identifier, a PL configuration parameter identifier, and a transmit beam set.
  • the transmit beam resource indication wherein each power control process is identified by using a power control process identifier, and each power control process includes at least one of the following: a power control parameter set identifier, a PL configuration parameter identifier, and a transmit beam set.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the power control parameter set includes at least one of the following: a target received power, a PL coefficient, and an identifier used to indicate whether the local closed loop power adjustment amount is reset.
  • the storage medium is further configured to store program code for performing the following steps: after receiving the at least one power control parameter set, further comprising:
  • the storage medium is further configured to store program code for performing the steps of: after receiving the closed loop power adjustment, further comprising:
  • S1 receiving at least one set of configuration values: a first set of configuration values and a second set of configuration values, wherein a configuration range of the first set of configuration values is greater than a configuration range of the second set of configuration values.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the value of the closed-loop power adjustment amount is determined by using the first set configuration value as the value of the closed-loop power adjustment amount when at least one of the following conditions is satisfied: the local closed-loop power adjustment amount f(i) is When set, the transmitted transmit beam or the receive beam changes, the spatial characteristics of the transmitted resource change, the transmitted waveform changes, the transmitted physical frame structure related parameter numerology changes, and the transmitted service type changes.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the value of the closed-loop power adjustment amount is determined by using the second set of configuration values as the value of the closed-loop power adjustment amount when at least one of the following conditions is satisfied: the amplitude of the continuous N power control adjustment amounts is smaller than Equal to the first threshold, N is a predetermined integer greater than or equal to 1, and the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the value of the closed loop power adjustment amount is determined by determining the value of the closed loop power adjustment amount from the first set configuration value and the second set configuration value according to the indication of the base station.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method is applied to at least one of the following channels: a physical uplink shared channel PUSCH, a short short PUCCH, and a long long PUCCH; or
  • the method is applied to at least one of the following signals: an information sounding reference signal SRS.
  • the storage medium is further configured to store program code for performing the following steps: in the case that the method is applied to at least one of the following channels: PUCCH, short PUCCH, long PUCCH, the method further includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the transmission power for the SRS is determined by one of the following ways:
  • each group of power is determined by using the P0 of the packet configured by the base station and the PL value of the packet, and the base station sets P0 for each packet, and the PL of each packet is determined by the UE according to the UE.
  • the measurement result of the measurement pilot configured by the base station is determined.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Embodiments of the present disclosure also provide a storage medium including a stored program, wherein the program runs to perform any of the above methods.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the uplink transmission parameter includes at least one transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, and an association identifier between the power control parameter set and the PL configuration parameter.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Sending an uplink transmission parameter to the user terminal UE includes: transmitting, by using physical layer signaling, an uplink transmission parameter to the user equipment UE.
  • the foregoing storage medium may be configured to store program code for performing the following steps: before determining the uplink transmission parameter, the method further includes:
  • S1 Determine at least one power control parameter set and at least one PL configuration parameter, and send the power control parameter set and the PL configuration parameter to the UE, where the power control parameter set is identified by using a power control parameter set identifier, and the PL configuration parameter is configured by a PL.
  • the parameter identifier is identified.
  • the foregoing storage medium may be configured to store program code for performing the following steps: before determining the uplink transmission parameter, the method further includes:
  • S1 determining, according to at least one of the following manners, an association between the power control parameter set and the PL configuration parameter, and sending the association to the UE: including a PL configuration parameter identifier in the power control parameter set; and including a power control parameter set in the PL configuration parameter. And determining, by using the predetermined association set, the association between the power control parameter set and the PL configuration parameter, where the predetermined association set includes at least one association, wherein the association between each power control parameter set and the PL configuration parameter is identified by using an association identifier.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the uplink transmission parameter includes one of the following: a power control process identifier, a power control parameter set identifier, and a transmit beam resource.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Sending an uplink transmission parameter to the user terminal UE includes: sending, by using physical layer signaling, a power control process identifier or a power control parameter set identifier to the user terminal UE.
  • the foregoing storage medium may be configured to store program code for performing the following steps: before determining the uplink transmission parameter, the method further includes:
  • S1 Determine at least one power control parameter set and at least one PL configuration parameter, and send the power control parameter set and the PL configuration parameter to the UE, where the power control parameter set is identified by using a power control parameter set identifier, and the PL configuration parameter is used by the PL.
  • the configuration parameter identifier is used for identification;
  • the foregoing storage medium may be configured to store program code for performing the following steps: before determining the uplink transmission parameter, the method further includes:
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the power control parameter set includes at least one of the following: a target received power, a PL coefficient, and an identifier used to indicate whether the local closed loop power adjustment amount is reset.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the method further includes: determining a closed loop power adjustment amount sent to the UE, and transmitting the closed loop power adjustment amount to the UE.
  • the foregoing storage medium may be configured to store program code for performing the following steps: after transmitting the closed-loop power adjustment amount to the UE, the method further includes:
  • S1 Determine at least one set of configuration values: a first set of configuration values and a second set of configuration values, wherein a configuration range of the first set of configuration values is greater than a configuration range of the second set of configuration values.
  • the foregoing storage medium may be configured to store program code for performing the following steps: the value of the closed loop power adjustment amount is determined by:
  • the first set of configuration values is used as the value of the closed loop power adjustment amount when at least one of the following conditions is met:
  • the local closed loop power adjustment amount f(i) is set, and the transmitted transmit beam or the receive beam changes.
  • the foregoing storage medium may be configured to store program code for performing the following steps: the value of the closed loop power adjustment amount is determined by:
  • the second set of configuration values is used as the value of the closed-loop power adjustment amount: the amplitude of the continuous N power control adjustment amounts is less than or equal to the first threshold, and N is a predetermined greater than or equal to 1 The integer, the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the foregoing storage medium may be configured to store program code for performing the following steps: the value of the closed loop power adjustment amount is determined by:
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the method is applied to at least one of the following channels: a physical uplink shared channel PUSCH, a short short PUCCH, and a long long PUCCH; or
  • the method is applied to at least one of the following signals: an information sounding reference signal SRS.
  • the foregoing storage medium may be configured to store program code for performing the following steps: when the method is applied to at least one of the following channels: PUCCH, short PUCCH, long PUCCH, the following is satisfied:
  • PUCCH Physical PUCCH
  • short PUCCH short PUCCH
  • long PUCCH the following is satisfied:
  • the PUCCH sharing at least one of the conditions limits the closed-loop power adjustment:
  • the foregoing storage medium may be configured to store program code for performing the following steps: in a case where the method is applied to the SRS, the transmission power for the SRS is determined by one of the following manners: :
  • each group of power is determined by using the P0 of the packet configured by the base station and the PL value of the packet, and the base station sets P0 for each packet, and the PL of each packet is determined by the UE according to the UE.
  • the measurement result of the measurement pilot configured by the base station is determined.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present disclosure also provide a processor for running a program, wherein the program is executed to perform the steps of any of the above methods.
  • the foregoing program is used to perform the following steps:
  • the foregoing program is used to perform the following steps:
  • the uplink transmission parameter includes a transmit beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, and an association identifier between the power control parameter set and the PL configuration parameter.
  • receiving uplink transmission parameters includes:
  • the foregoing procedure is used to perform the following steps: before receiving the uplink transmission parameter, the method further includes:
  • the foregoing procedure is used to perform the following steps: before receiving the uplink transmission parameter, the method further includes:
  • S1 receiving an association between a power control parameter set and a PL configuration parameter, where the association includes at least one of: including a PL configuration parameter identifier in the power control parameter set; and including a power control parameter set identifier in the PL configuration parameter;
  • the predetermined association set determines an association between the power control parameter set and the PL configuration parameter, and the predetermined association set includes at least one association, wherein the association between each power control parameter set and the PL configuration parameter is identified by using an association identifier.
  • the foregoing program is used to perform the following steps:
  • the uplink transmission parameter includes one of the following: a power control process identifier, a power control parameter set identifier, and a transmit beam resource, which are determined according to an uplink transmission parameter.
  • the power control process includes:
  • receiving uplink transmission parameters includes:
  • S1 Receive a power control process identifier or a power control parameter set identifier by using physical layer signaling.
  • the foregoing procedure is used to perform the following steps: before receiving the uplink transmission parameter, the method further includes:
  • the foregoing procedure is used to perform the following steps: before receiving the uplink transmission parameter, the method further includes:
  • the association between the power control parameter set, the PL configuration parameter, and the transmit beam set where the association includes at least one of: including a PL configuration parameter identifier and a transmit beam resource in the transmit beam set in the power control parameter set.
  • Instructing to configure at least one power control process wherein each power control process is identified by using a power control process identifier, and each power control process includes at least one of the following: a power control parameter set identifier, a PL configuration parameter identifier, and a transmit beam set.
  • the transmit beam resource indication wherein each power control process is identified by using a power control process identifier, and each power control process includes at least one of the following: a power control parameter set identifier, a PL configuration parameter identifier, and a transmit beam set.
  • the foregoing program is used to perform the following steps:
  • the foregoing program is used to perform the following steps:
  • the power control parameter set includes at least one of the following: a target received power, a PL coefficient, and an identifier used to indicate whether the local closed loop power adjustment amount is reset.
  • the foregoing procedure is used to perform the following steps: after receiving the at least one power control parameter set, the method further includes:
  • the foregoing procedure is used to perform the following steps: after receiving the closed loop power adjustment amount, the method further includes:
  • S1 receiving at least one set of configuration values: a first set of configuration values and a second set of configuration values, wherein a configuration range of the first set of configuration values is greater than a configuration range of the second set of configuration values.
  • the foregoing program is used to perform the following steps:
  • the value of the closed-loop power adjustment amount is determined by using the first set configuration value as the value of the closed-loop power adjustment amount when at least one of the following conditions is satisfied: the local closed-loop power adjustment amount f(i) is When set, the transmitted transmit beam or the receive beam changes, the spatial characteristics of the transmitted resource change, the transmitted waveform changes, the transmitted physical frame structure related parameter numerology changes, and the transmitted service type changes.
  • the foregoing program is used to perform the following steps:
  • the value of the closed-loop power adjustment amount is determined by using the second set of configuration values as the value of the closed-loop power adjustment amount when at least one of the following conditions is satisfied: the amplitude of the continuous N power control adjustment amounts is smaller than Equal to the first threshold, N is a predetermined integer greater than or equal to 1, and the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the foregoing program is used to perform the following steps:
  • the value of the closed loop power adjustment amount is determined by determining the value of the closed loop power adjustment amount from the first set configuration value and the second set configuration value according to the indication of the base station.
  • the foregoing program is used to perform the following steps:
  • the method is applied to at least one of the following channels: a physical uplink shared channel PUSCH, a short short PUCCH, and a long long PUCCH; or
  • the method is applied to at least one of the following signals: an information sounding reference signal SRS.
  • the foregoing procedure is used to perform the following steps: when the method is applied to at least one of the following channels: PUCCH, short PUCCH, and long PUCCH, the method further includes:
  • the foregoing procedure is used to perform the following steps:
  • the transmit power for the SRS is determined by one of the following manners:
  • each group of power is determined by using the P0 of the packet configured by the base station and the PL value of the packet, and the base station sets P0 for each packet, and the PL of each packet is determined by the UE according to the UE.
  • the measurement result of the measurement pilot configured by the base station is determined.
  • the foregoing program is used to perform the following steps:
  • the foregoing program is used to perform the following steps:
  • the foregoing program is used to perform the following steps:
  • the uplink transmission parameter includes at least one transmission beam resource indication and at least one of the following predetermined identifiers: a power control parameter set identifier, a path loss PL configuration parameter identifier, and an association identifier between the power control parameter set and the PL configuration parameter.
  • the foregoing program is used to perform the following steps:
  • Sending an uplink transmission parameter to the user terminal UE includes: transmitting, by using physical layer signaling, an uplink transmission parameter to the user equipment UE.
  • the foregoing procedure is used to perform the following steps: before determining the uplink transmission parameter, the method further includes:
  • S1 Determine at least one power control parameter set and at least one PL configuration parameter, and send the power control parameter set and the PL configuration parameter to the UE, where the power control parameter set is identified by using a power control parameter set identifier, and the PL configuration parameter is configured by a PL.
  • the parameter identifier is identified.
  • the foregoing procedure is used to perform the following steps: before determining the uplink transmission parameter, the method further includes:
  • S1 determining, according to at least one of the following manners, an association between the power control parameter set and the PL configuration parameter, and sending the association to the UE: including a PL configuration parameter identifier in the power control parameter set; and including a power control parameter set in the PL configuration parameter. And determining, by using the predetermined association set, the association between the power control parameter set and the PL configuration parameter, where the predetermined association set includes at least one association, wherein the association between each power control parameter set and the PL configuration parameter is identified by using an association identifier.
  • the foregoing program is used to perform the following steps:
  • the foregoing program is used to perform the following steps:
  • the uplink transmission parameter includes one of the following: a power control process identifier, a power control parameter set identifier, and a transmit beam resource.
  • the foregoing program is used to perform the following steps:
  • Sending an uplink transmission parameter to the user terminal UE includes: sending, by using physical layer signaling, a power control process identifier or a power control parameter set identifier to the user terminal UE.
  • the foregoing storage medium may be configured to store program code for performing the following steps: before determining the uplink transmission parameter, the method further includes:
  • S1 Determine at least one power control parameter set and at least one PL configuration parameter, and send the power control parameter set and the PL configuration parameter to the UE, where the power control parameter set is identified by using a power control parameter set identifier, and the PL configuration parameter is used by the PL.
  • the configuration parameter identifier is used for identification;
  • the foregoing procedure is used to perform the following steps: before determining the uplink transmission parameter, the method further includes:
  • the foregoing program is used to perform the following steps:
  • the foregoing program is used to perform the following steps:
  • the power control parameter set includes at least one of the following: a target received power, a PL coefficient, and an identifier used to indicate whether the local closed loop power adjustment amount is reset.
  • the foregoing program is used to perform the following steps:
  • the method further includes: determining a closed loop power adjustment amount sent to the UE, and transmitting the closed loop power adjustment amount to the UE.
  • the foregoing procedure is used to perform the following steps: after transmitting the closed-loop power adjustment amount to the UE, the method further includes:
  • S1 Determine at least one set of configuration values: a first set of configuration values and a second set of configuration values, wherein a configuration range of the first set of configuration values is greater than a configuration range of the second set of configuration values.
  • the value of the closed loop power adjustment amount is determined by:
  • the first set of configuration values is used as the value of the closed-loop power adjustment amount when at least one of the following conditions is met: the local closed-loop power adjustment amount f(i) is set, and the transmitted transmit beam or the receive beam changes.
  • the value of the closed loop power adjustment amount is determined by:
  • the second set of configuration values is used as the value of the closed-loop power adjustment amount: the amplitude of the continuous N power control adjustment amounts is less than or equal to the first threshold, and N is a predetermined greater than or equal to 1 The integer, the power adjustment amount exceeding a predetermined ratio among the consecutive M power adjustment amounts is less than or equal to the second threshold, and M is a predetermined integer greater than or equal to 1.
  • the value of the closed loop power adjustment amount is determined by:
  • the foregoing program is used to perform the following steps:
  • the method is applied to at least one of the following channels: a physical uplink shared channel PUSCH, a short short PUCCH, and a long long PUCCH; or
  • the method is applied to at least one of the following signals: an information sounding reference signal SRS.
  • the foregoing procedure is used to perform the following steps: in a case where the method is applied to at least one of the following channels: PUCCH, short PUCCH, and long PUCCH, the PUCCH sharing closed-loop power that satisfies at least one of the following conditions: Adjustment amount:
  • the foregoing procedure is used to perform the following steps: when the method is applied to the SRS, the transmit power for the SRS is determined by one of the following manners:
  • each group of power is determined by using the P0 of the packet configured by the base station and the PL value of the packet, and the base station sets P0 for each packet, and the PL of each packet is determined by the UE according to the UE.
  • the measurement result of the measurement pilot configured by the base station is determined.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the present disclosure is applicable to the field of communications, and the method for obtaining the power control parameters of multiple beams in the related art is not perfect, and the air interface signaling overhead and the stability of the closed loop power control are poor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参数获取方法及装置,该方法包括:接收基站发送的上行链路传输参数(S202);根据上行链路传输参数确定功率控制进程(S204);根据功率控制进程获取上行传输的发送功率参数(S206)。该方法解决了相关技术中多波束的功控参数的获取方法还不够完善,出现的空口信令开销大、闭环功控的稳定性差的问题。

Description

参数获取方法及装置 技术领域
本公开涉及通信领域,具体而言,涉及一种参数获取方法及装置。
背景技术
目前,新一代无线通信(new radio,简称为NR)技术正在制定中,作为第五代移动通信系统,该技术需要支持空前多的不同类型的应用场景,还需要同时支持传统的频段、高频段以及波束方式,对功控的设计带来很大挑战。
长期演进技术(Long Term Evolution,简称为LTE)中的功控与很多因素有关,如路径损耗、目标接收功率、最大发送功率、闭环功率调整量、传输的带宽、传输的速率等。NR中多波束场景下,部分功控的参数应该是波束或者传输的波束对链路(beam pair link,简称为BPL)相关的。为了追求精确功控,所有与波束相关的功控参数最好都是按BPL配置和维护,但是BPL相关的参数对信道的变化很敏感,任何发送或者接收使用的波束发生变化都会引发BPL相关的参数配置更新,导致空口信令开销增大。另外频繁地更换参数,也不利于闭环功控的稳定性。
因此,相关技术中多波束的功控参数的获取方法还不够完善,出现的空口信令开销大、闭环功控的稳定性差的问题。
发明内容
本公开实施例提供了一种参数获取方法及装置,以至少解决相关技术中相关技术中多波束的功控参数的获取方法还不够完善,导致出现空口信令开销大、闭环功控的稳定性差的问题。
根据本公开的一个实施例,提供了一种参数获取方法,包括:接收基站发送的上行链路传输参数;根据所述上行链路传输参数确定功率控制进程;根据所述功率控制进程获取上行传输的发送功率参数。
可选地,所述上行链路传输参数包括发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
可选地,接收上行链路传输参数包括:通过物理层信令接收所述上行链路传输参数。
可选地,在接收所述上行链路传输参数之前,该方法还包括:接收至少一个功率控制参数集合和至少一个PL配置参数,其中,所述功率控制参数集合采用功率控制参数集合标识进行标识,所述PL配置参数采用PL配置参数标识进行标识。
可选地,在接收所述上行链路传输参数之前,该方法还包括:接收功率控制参数集合和PL配置参数之间的关联,其中,所述关联包括以下至少之一:在功率控制参数集合中包括 PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,所述预定关联集合中包含至少一个关联,其中,所述每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,通过高层信令接收所述至少一个功率控制参数集合和所述至少一个PL配置参数,所述功率控制参数集合和PL配置参数之间的关联。
可选地,所述上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源,根据所述上行链路传输参数确定所述功率控制进程包括:确定所述功率控制进程标识或者功率控制参数集合标识所指示的所述关联中的第一预定关联,并根据所述第一预定关联确定所述功率控制进程;或者,根据发送波束资源与功率控制进程的关系确定第二预定关联,并根据所述第二预定关联确定所述功率控制进程。
可选地,接收上行链路传输参数包括:通过物理层信令接收所述功率控制进程标识或者所述功率控制参数集合标识。
可选地,在接收所述上行链路传输参数之前,该方法还包括:接收至少一个功率控制参数集合和至少一个PL配置参数,其中,所述功率控制参数集合采用功率控制参数集合标识进行标识,所述PL配置参数采用PL配置参数标识进行标识;接收发送波束集合,其中,所述发送波束集合包括至少一个发送波束资源指示。
可选地,在接收所述上行链路传输参数之前,该方法还包括:接收所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联,其中,所述关联包括以下至少之一:在所述功率控制参数集合中包括PL配置参数标识和所述发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,所述每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、所述发送波束集合中发送波束资源指示。
可选地,所述通过高层信令接收所述至少一个功率控制参数集合,所述至少一个PL配置参数、所述发送波束集合,以及所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联。
可选地,所述功率控制参数集合包括以下至少之一:目标接收功率,PL系数,用于指示本地闭环功率调整量是否重置的标识。
可选地,在接收至少一个功率控制参数集合之后,该方法还包括:接收闭环功率调整量,对所述本地闭环功率调整量进行更新。
可选地,在接收闭环功率调整量之后,该方法还包括:接收以下至少之一套配置值:第一套配置值、第二套配置值,其中,所述第一套配置值的配置范围大于所述第二套配置值的配置范围。
可选地,所述闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,所述闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,所述闭环功率调整量的取值通过以下方式确定:根据所述基站的指示从所述第一套配置值和所述第二套配置值中确定所述闭环功率调整量的取值。
可选地,所述方法应用于以下至少之一信道:物理上行共享信道PUSCH,短short PUCCH,长long PUCCH;或者,所述方法应用于以下至少之一信号:信息探测参考信号SRS。
可选地,在所述方法应用于以下至少之一信道:PUCCH,short PUCCH,long PUCCH的情况下,还包括:确定满足以下条件至少之一的PUCCH共享所述闭环功率调整量:同一时隙slot内的使用同样发送波束资源指示的short PUCCH和/或long PUCCH;在不同时隙slot上的short PUCCH和long PUCCH。
可选地,在所述方法应用于所述SRS的情况下,所述用于SRS的发送功率通过以下方式之一确定:确定用户终端UE的所有发送波束采用相同的功率,其中,所述功率采用Pcmax减去功率回退量,所述功率回退量由基站广播或者由基站配置给UE;确定用户终端UE的所有发送波束采用分组相同的功率,其中,每组功率采用Pcmax减去分组的功率回退量,所述分组功率回退量由基站按照用于波束管理的SRS的波束组配置给UE;确定用户终端UE的所有的波束采用相同的功率,其中,采用目标接收功率P0和PL值确定所述功率,所述PL值由UE确定或者根据基站配置的测量导频的测量结果进行确定,所述P0是基站配置给UE;确定用户终端UE的所有波束采用分组相同的功率,其中,每组功率采用基站配置的分组的P0和分组的PL值确定,所述基站为每个分组设置P0,每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
可选地,上述方法还包括:通过如下方式获取用户终端同时发送的多个发送波束的功率余量PH:通过所述多个波束中每个波束的等效全向辐射功率EIRP最大发送功率Pcmax减去所述每个波束的EIRP的发送功率,获取所述每个波束的PH;通过所述多个波束中的每个波束的PH之和,减去Y个UE的TRP的Pcmax之和,获取所述同时发送的多个波束的PH,其中,所述Y是同时发送的多个波束的个数减1。
根据本公开的另一个实施例,提供了一种功率控制进程获取方法,包括:确定上行链路传输参数;向用户终端UE发送所述上行链路传输参数,其中,所述上行链路传输参数用于确定功率控制进程。
可选地,所述上行链路传输参数包括至少一个发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
可选地,向用户终端UE发送所述上行链路传输参数包括:通过物理层信令向所述用户终端UE发送所述上行链路传输参数。
可选地,在确定所述上行链路传输参数之前,该方法还包括:确定至少一个功率控制参 数集合和至少一个PL配置参数并将所述功率控制参数集合和所述PL配置参数发送给所述UE,其中,所述功率控制参数集合采用功率控制参数集合标识进行标识,所述PL配置参数采用PL配置参数标识进行标识。
可选地,在确定所述上行链路传输参数之前,该方法还包括:采用如下方式至少之一确定功率控制参数集合和所述PL配置参数之间的关联并将所述关联发送给所述UE:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,所述预定关联集合中包含至少一个关联,其中,所述每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,所述通过高层信令将所述至少一个功率控制参数集合和所述至少一个PL配置参数,所述功率控制参数集合和PL配置参数之间的关联发送给UE。
可选地,所述上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源。
可选地,向用户终端UE发送所述上行链路传输参数包括:通过物理层信令向所述用户终端UE发送所述功率控制进程标识或者所述功率控制参数集合标识。
可选地,在确定所述上行链路传输参数之前,该方法还包括:确定至少一个功率控制参数集合和至少之一PL配置参数并将所述功率控制参数集合和所述PL配置参数发送给所述UE,其中,所述功率控制参数集合采用功率控制参数集合标识进行标识,所述PL配置参数采用PL配置参数标识进行标识;确定发送波束集合并将所述发送波束集合发送给所述UE,其中,所述发送波束集合包括至少一个发送波束资源指示。
可选地,在确定所述上行链路传输参数之前,该方法还包括:确定所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联并将所述关联发送给所述UE,其中,所述关联包括以下至少之一:在所述功率控制参数集合中包括PL配置参数标识和所述发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,所述每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、所述发送波束集合中发送波束资源指示。
可选地,所述通过高层信令向用户终端UE发送所述至少一个功率控制参数集合、所述至少一个PL配置参数,所述发送波束集合,所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联。
可选地,所述功率控制参数集合包括以下至少之一:目标接收功率,PL系数,用于指示本地闭环功率调整量是否重置的标识。
可选地,在将所述功率控制参数集合发送给所述UE之后,该方法还包括:确定发送给所述UE的闭环功率调整量并将所述闭环功率调整量发送给UE。
可选地,在将所述闭环功率调整量发送给UE之后,该方法还包括:确定以下至少之一套配置值:第一套配置值、第二套配置值,其中,所述第一套配置值的配置范围大于所述第二套配置值的配置范围。
可选地,所述闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情 况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,所述闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,所述闭环功率调整量的取值通过以下方式确定:根据基站的指示从所述第一套配置值或者所述第二套配置值中确定闭环功率调整量的步进值。
可选地,所述方法应用于以下至少之一信道:物理上行共享信道PUSCH,短short PUCCH,长long PUCCH;或者,所述方法应用于以下至少之一信号:信息探测参考信号SRS。
可选地,在所述方法应用于以下至少之一信道:PUCCH,short PUCCH,long PUCCH的情况下,满足以下条件至少之一的PUCCH共享所述闭环功率调整量:同一时隙slot内的使用同样发送波束资源指示的short PUCCH和/或long PUCCH;在不同时隙slot上的short PUCCH和long PUCCH。
可选地,在所述方法应用于所述用于SRS的情况下,所述用于SRS的发送功率通过以下方式之一确定:确定用户终端UE的所有发送波束采用相同的功率,其中,所述功率采用Pcmax减去功率回退量,所述功率回退量由基站广播或者由基站配置给UE;确定用户终端UE的所有发送波束采用分组相同的功率,其中,每组功率采用Pcmax减去分组的功率回退量,所述分组功率回退量由基站按照用于波束管理的SRS的波束组配置给UE;确定用户终端UE的所有的波束采用相同的功率,其中,采用目标接收功率P0和PL值确定所述功率,所述PL值由UE确定或者根据基站配置的测量导频的测量结果进行确定,所述P0是基站配置给UE;确定用户终端UE的所有波束采用分组相同的功率,其中,每组功率采用基站配置的分组的P0和分组的PL值确定,所述基站为每个分组设置P0,每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
根据本公开的又一个实施例,提供了一种参数获取装置,包括:接收模块,设置为接收基站发送的上行链路传输参数;确定模块,设置为根据所述上行链路传输参数确定功率控制进程;获取模块,设置为根据所述功率控制进程获取上行传输的发送功率参数。
可选地,所述上行链路传输参数包括发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
可选地,所述接收模块,还设置为在接收所述上行链路传输参数之前,接收功率控制参数集合和PL配置参数之间的关联,其中,所述关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,所述预定关联集合中包含至少一个关联,其中,所述每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,所述上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源,所述确定模块,还设置为确定所述功率控制进程标识或者功率控制参数集合标识所指示的所述关联中的第一预定关联,并根据所述第一预定关联确定所述功率控制进程;或者,根据发送波束资源与功率控制进程的关系确定第二预定关联,并根据所述第二预定关联确定所述功率控制进程。
可选地,所述接收模块,还设置为接收所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联,其中,所述关联包括以下至少之一:在所述功率控制参数集合中包括PL配置参数标识和所述发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,所述每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、所述发送波束集合中发送波束资源指示。
可选地,所述接收模块,还设置为接收闭环功率调整量,对本地闭环功率调整量进行更新。
可选地,所述接收模块,还设置为在接收闭环功率调整量之后,接收以下至少之一套配置值:第一套配置值、第二套配置值,其中,所述第一套配置值的配置范围大于所述第二套配置值的配置范围。
可选地,所述闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,所述闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,所述闭环功率调整量的取值通过以下方式确定:根据所述基站的指示从所述第一套配置值和所述第二套配置值中确定所述闭环功率调整量的取值。
根据本公开的又一个实施例,提供了一种参数获取装置,包括:确定模块,设置为确定上行链路传输参数;发送模块,设置为向用户终端UE发送所述上行链路传输参数,其中,所述上行链路传输参数用于确定功率控制进程。
可选地,所述上行链路传输参数包括至少一个发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
可选地,所述确定模块,还设置为在确定所述上行链路传输参数之前,采用如下方式至少之一确定功率控制参数集合和所述PL配置参数之间的关联并将所述关联发送给所述UE:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,所述预定关联集合中包 含至少一个关联,其中,所述每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,所述上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源。
可选地,所述确定模块,还设置为在确定所述上行链路传输参数之前,确定所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联并将所述关联发送给所述UE,其中,所述关联包括以下至少之一:在所述功率控制参数集合中包括PL配置参数标识和所述发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,所述每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、所述发送波束集合中发送波束资源指示。
可选地,所述发送模块,还设置为确定发送给所述UE的闭环功率调整量并将所述闭环功率调整量发送给UE。
可选地,所述发送模块,还设置为在将所述闭环功率调整量发送给UE之后,确定以下至少之一套配置值:第一套配置值、第二套配置值,其中,所述第一套配置值的配置范围大于所述第二套配置值的配置范围。
可选地,所述闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,所述闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,所述闭环功率调整量的取值通过以下方式确定:根据基站的指示从所述第一套配置值或者所述第二套配置值中确定闭环功率调整量的步进值。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一方法。
根据本公开的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一方法。
通过本公开,接收基站发送的上行链路传输参数;根据上行链路传输参数确定功率控制进程;根据功率控制进程获取上行传输的发送功率参数。由于引入了上行链路传输参数,结合引入的上行链路传输参数确定用于获取上行传输的发送功率参数的功率控制进程,使得多波束的功控参数的获取方法得以完善,因此,可以解决相关技术中多波束的功控参数的获取方法还不够完善,出现的空口信令开销大、闭环功控的稳定性差的问题。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例的一种参数获取方法的移动终端的硬件结构框图;
图2是根据本公开实施例的参数获取方法的流程图一;
图3是根据本公开实施例的基站为UE配置功控相关的参数的示意图一;
图4是根据本公开实施例的基站为UE配置功控相关的参数的示意图二;
图5是根据本公开实施例的参数获取方法的流程图二;
图6是根据本公开实施例的参数获取装置的结构框图一;
图7是根据本公开实施例的参数获取装置的结构框图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
无线通信系统中,为了降低发送设备功耗并减少不必要的高功率发送对其他传输造成的干扰,需要对传输进行发送功率控制。通信范围的大小、通信双方的收发设备的最大发送供功率和接收灵敏度、数据的调制编码方式及速率、工作的频带、传输占用的带宽等因素都会影响发送功率。一般需要在满足接收端的接收信号质量要求的条件下,尽量使用较低的发送功率。
一般的通信技术中,通信节点1发送参考信号,通信节点2根据该参考信号测量节点1到节点2的路径损失(pathloss,简称为PL)。PL是用节点1的参考信号的发送功率与节点2收到的参考信号的接收功率之差计算。假设节点2到节点1的传输信道的PL与节点1到节点2的信道的PL相同,则节点2可以用上述PL计算节点2作为发送节点到节点1的传输的发送功率。由于PL是单方面测量的结果,因此该因素在发送功率中属于开环部分。节点1接收到传输后进行解析,根据接收的质量为节点2提供功率调整的信息,该过程属于闭环功率控制。
LTE中,基站到终端的链路是下行链路,终端到基站的链路是上行链路。下行链路的功率由基站根据各调度用户终端(User Equipment,UE)的信道测量结果以及调度算法确定。上行链路的功率控制是开环结合闭环的方式。此外,还有与传输相关的特定的量,如发送速率、调制与编码策略(Modulation and Coding scheme,简称为MCS)等级、发送带宽等也会影响功率。
下面是LTE的物理上行共享信道(Physical Uplink Shared Channel,简称为PUSCH)的发送功率计算公式,以此为例对影响功率的各个参数进行说明,PUCCH也有类似的参数和机制。
Figure PCTCN2018101576-appb-000001
上式中下标c是指小区cell,支持载波聚合(Carrier Aggregation,简称为)功能的每个成员载波(Component Carrier,简称为CC)对应1个小区cell。从上式可以看到功率计算公式中每个参数都是区分cell配置的/计算的。本文中所有的描述都是针对1个CC进行描述,因此没有专门提及cell。需要指出的是,本申请的所有参数都可以扩展到多个CC上,只需要将所述的功率相关的配置和计算的参数为每个CC独立配置即可。
上行传输PUSCH的功率PPUSCH的开环部分由目标接收功率P0_PUSCH、路损量PL和路损因子α决定,其中目标接收功率分为cell级和UE级参数,都由基站决定并配置给UE;而闭环部分则是基站根据测量结果与目标的差距确定闭环功控调整量,以传输功控命令(Transmit Power Control Command,简称为TPC Command,即下行链路控制信息(Downlink Control Information,简称为DCI)中针对PUSCH的δ PUSCH和针对物理上行控制信道(Physical Uplink Control Channel,简称为PUCCH)的δ PUSCH)的方式通知UE。UE维护一个本地的功率调整量f(i),根据传输功控命令进行更新,采用上述公式达到闭环控制功率的目的。其中,i是子帧编号。ΔTF是MCS相关的功率偏移,PCMAX是UE的最大功率限制,也即最大功率。
LTE的cell级目标接收功率P0_nominal是区分PUSCH(半静态、动态、MSG3)和PUCCH,分别对应不同的BLER需求。UE级目标接收功率参数P0_UE_specific也是区分以上几项进行设置,功能是为了补偿系统性偏差,如,PL估计误差、绝对输出功率设置的误差。
根据传输功控命令更新f(i)分为两种方式:累积式和绝对值方式,其中绝对值方式是直接用基站发送的传输功控命令更新UE本地的功率调整量f(i),而累积式则由基站发送的传输功控命令与该UE本地的功率调整量的历史值共同确定UE本地的功率调整量f(i)。
需要注意的是,这里的f(i)代表UE本地的闭环功率调整量,在LTE中PUCCH的UE本地的闭环功率调整量记作g(i)。本文中f(i)也可以应用于PUCCH,在功控过程中的作用与应用于PUSCH是类似的。
基站对UE的上行传输进行调度时,需要确定很多因素,包括时频资源、传输的速率、调制编码方式、MIMO方式等,根据接收的质量,基站需要判断后续的调度需要调整哪些因素,如提高调制编码方式、提高发送功率等。但是基站并不清楚UE当前的发送功率,也不知道是否可以提高发送功率。因此LTE中存在一种机制,UE发送功率余量(Power Headroom Report,简称为PH)给基站,明确告知当前的发送功率与最大发送功率的距离。
5G技术引入了波束的传输方式,基站和UE都支持多波束。当工作在波束模式时,功率计算需要考虑波束的特性。本公开提出多波束方式的功控方法。本公开中所提及的各项参数适用于不同的信道,如PUSCH、长PUSCH、短PUSCH、PUCCH、长PUCCH、短PUCCH以及信号SRS。同类型的参数在应用于上述各个信道或者信号时,可以是独立配置的,或者是组合配置的。其中组合配置的含义是指不同的信道、信号之间可共享同样的值,由预定义 的方式或者基站配置的方式确定哪些不同的信道、信号之间可以共享同样的值。
本公开实施例中为描述方便,采用基站和UE(user equipment,用户设备)进行描述,但不作为对本公开的限制,实施过程中,基站和UE可以被NB(NodeB)、gNB、TRP(transmiter receiver point)、AP(access point)、站点、用户、STA、中继(relay)、终端等各种通信节点的名称代替。
本文中的beam(组)的含义是beam或者beam组。
本公开优选实施例的描述中使用了多种波束相关的观念,为方便理解,做如下解释:
所述发送方式,至少包含以下之一:发送波束,发送端口,发送资源,参考信号序列,发送预编码矩阵(模拟,数字,混合方式)。
所述接收方式,至少包含以下之一:接收波束,接收端口,接收资源,参考信号序列,接收预编码矩阵(模拟,数字,混合方式),接收机算法。
所述波束可以为一种资源(例如发端预编码,收端预编码、天线端口,天线权重矢量,天线权重矩阵等),波束序号可以被替换为资源索引,因为波束可以与一些时频码资源进行传输上的绑定。波束也可以为一种传输(发送/接收)方式;所述的传输方式可以包括空分复用、频域/时域分集等。
所述的波束指示是指,发送端可以通过当前参考信号和天线端口,与基站扫描或者UE反馈报告的参考信号(或基准参考信号)和天线端口满足准共址(QCL)假设来进行指示。
所述的接收波束是指,无需指示的接收端的波束,或者发送端可以通过当前参考信号和天线端口,与基站扫描或者UE反馈报告的参考信号(或基准参考信号)和天线端口的准共址(QCL)指示下的接收端的波束资源;
所述信道特征,即包括物理传播信道特征,例如水平发送方位角,垂直发送方位角,水平接收方位角,垂直接收方位角等,也包括射频和基带电路的特征,例如天线阵子特征(element pattern),天线组,天平面板,天线子阵列(antenna subarray),收发单元(TXRU),接收波束集合,天线摆放,以及基带时偏,频偏和相位噪声等;
所述的准共址(QCL)涉及的参数至少包括,多普勒扩展,多普勒平移,时延拓展,平均时延和平均增益;可能也包括,空间参数信息,例如到达角,接收波束的空间相关性,平均时延,时频信道响应的相关性(包括相位信息)。
相关技术中存在如下问题:使用等效全向辐射功率(Total Radiated Power,简称为EIRP)的发送功率时,多波束的功率余量(Power Headroom,简称为PH)的计算与传统的TRP方式下PH的计算有所不同,目前的技术中尚没有解决该问题的方法;传输条件的变化如波束变化、波形变化等会引起闭环功率调整幅度的较大变化,现有的固定功率调整量步进不能满足要求。
下面结合附图对技术方案的实施作进一步的详细描述。
实施例1
本申请实施例1所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的一种参数获取方法的移动终端的 硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本公开实施例中的参数获取方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的参数获取方法,图2是根据本公开实施例的参数获取方法的流程图一,如图2所示,该流程包括如下步骤:
步骤S202,接收基站发送的上行链路传输参数;
步骤S204,根据上行链路传输参数确定功率控制进程;
步骤S206,根据功率控制进程获取上行传输的发送功率参数。
通过上述步骤,由于引入了上行链路传输参数,结合引入的上行链路传输参数确定用于获取上行传输的发送功率参数的功率控制进程,使得多波束的功控参数的获取方法得以完善,因此,可以解决相关技术中多波束的功控参数的获取方法还不够完善,出现的空口信令开销大、闭环功控的稳定性差的问题,实现了多波束的功控参数的配置。
可选地,上述上行链路传输参数包括发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。需要说明的是,上述发送波束资源指示可以是一个波束的资源指示,也可以是一组波束的资源指示。
可选地,接收上行链路传输参数包括:通过物理层信令(例如,下行控制信息DCI)接收上行链路传输参数。
可选地,在接收上行链路传输参数之前,还包括:接收至少一个功率控制参数集合和至少一个PL配置参数,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识。
可选地,在接收上行链路传输参数之前,还包括:接收功率控制参数集合和PL配置参 数之间的关联,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,预定关联集合中包含至少一个关联,其中,每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,通过高层信令接收至少一个功率控制参数集合和至少一个PL配置参数,功率控制参数集合和PL配置参数之间的关联。
为了方便理解上述实施例,下面举例说明,以基站为UE配置功控相关的参数为例进行。
基站为UE配置至少一个功率控制参数集合PC set,用PC set ID标识,每个PC set中至少包括以下之一:目标接收功率P0,PL系数alpha,本地维护的闭环功率调整量是否重置的信息。
基站为UE配置至少一个PL配置参数(PL configuration),用PL configuration ID标识,每个PL configuration中包含PL计算相关的配置。
基站为UE配置PC set与PL configuration的关系,可以采用如下方式:PC set中还包含PL configuration ID,或PL configuration中还包含PC set ID,或用参数关系集合配置PC set和PL configuration的关系,参数关系集合中包含至少一个关系,每个关系至少包括PC set ID与PL configuration ID,每个关系用关系ID标识。
以上信息是基站通过高层信令为UE配置的,高层信令包括无线资源控制(Radio Resource Control,简称为RRC)信令和/或MAC CE(Control Element)。
基站在下行控制信息DCI信息中携带发送波束资源指示(例如,上行链路发送波束UL TX beam的指示),和以下至少之一:PC set ID或者PL configuration ID或者关系ID。
基站和UE将UL TX beam与PC set ID或者PL configuration ID或者关系ID作为一个功控进程(process),或称为功控环(loop),对每个功控进程独立进行闭环功控。
结合附图进行更详细的说明,如图3所示,高层信令首先配置J>=1(用j索引)个PC set,和K>=1(用k索引)个PL configuration,然后配置两者的对应关系,使得每个PC set都有对应的PL configuration。然后在DCI中动态指示UL TX beam和PC set ID。
类似的,高层信令首先配置J>=1(用j索引)个PC set,和K>=1(用k索引)个PL configuration,然后配置两者的对应关系,使得每个PL configuration都有对应的PC set。然后在DCI中动态指示UL TX beam和PL configuration ID。
类似的,高层信令首先配置J>=1(用j索引)个PC set,和K>=1(用k索引)个PL configuration,然后配置两者的对应关系,可以采用参数关系集合配置PC set和PL configuration的关系,每个关系至少包括PC set ID与PL configuration ID,每个关系用关系ID标识,然后在DCI中动态指示UL TX beam和关系ID。
可选地,上述上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源,根据上行链路传输参数确定功率控制进程包括:确定功率控制进程标识或者功率控制参数集合标识所指示的关联中的第一预定关联,并根据第一预定关联确定功率控制进程;或者,根据发送波束资源与功率控制进程的关系确定第二预定关联,并根据所 述第二预定关联确定所述功率控制进程。
可选地,接收上行链路传输参数包括:通过物理层信令(例如,下行控制信息DCI)接收功率控制进程标识或者功率控制参数集合标识。
可选地,在接收上行链路传输参数之前,还包括:接收至少一个功率控制参数集合和至少一个PL配置参数,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识;接收发送波束集合,其中,发送波束集合包括至少一个发送波束资源指示。
可选地,在接收上行链路传输参数之前,还包括:接收功率控制参数集合、PL配置参数和发送波束集合三者之间的关联,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识和发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、发送波束集合中发送波束资源指示。需要说明的是,上述发送波束资源指示可以是一个波束的资源指示,也可以是一组波束的资源指示。
可选地,通过高层信令接收至少一个功率控制参数集合,至少一个PL配置参数、发送波束集合,以及功率控制参数集合、PL配置参数和发送波束集合三者之间的关联。
为了方便理解上述实施例,下面举例说明,以基站为UE配置功控相关的参数为例进行。
基站为UE配置至少一个PC set,用PC set ID标识,每个PC set中至少包括以下之一P0,alpha,本地维护的闭环功率调整量是否重置的信息。
基站为UE配置至少一个PL configuration有多个,用PL configuration ID标识,每个PL configuration中包含PL计算相关的配置。
基站为UE配置至少一个UL TX beam作为发送波束集合,该beam set也可能复用上行发送备选波束集合(UL TX candidate beam set)。
基站配置PC set、PL configuration、发送波束集合的关系,可以采用如下方式:PC set中还包含PL configuration ID、UL TX beam指示,或,基站为UE配置至少一个功控进程(process),或称为功控环(loop),用PC process ID进行标识,每个功控进程中包含:PC set ID、PL configuration、UL TX beam指示。
以上信息是UE通过高层信令为UE配置的,高层信令包括RRC信令和/或MAC CE(Control Element)。
基站用DCI指示PC set ID,或者PC process ID,UE用PC set ID或者PC process ID所指示的关系中的UL TX beam指示信息确定上行发送资源。基站和UE对每个功控进程进行独立的闭环功控。
结合附图进行更详细的说明,如图4所示,高层信令首先配置J>=1(用j索引)个PC set、K>=1(用k索引)个PL configuration,和包含至少一个UL TX beam的UL TX beam set。然后配置以上三者的对应关系,用process ID索引。然后在DCI中动态指示process ID。
上述UL TX beam set可能复用UL TX candidate beam set。
上述路损配置PL configuration包括以下至少之一:下行参考信号资源的指示信息,对多个路损量值的处理规则,上行路损量值。
上述下行参考信号资源的指示信息包括以下至少之一:信道状态信息参考信号资源指示,同步信号块资源指示,跟踪参考信号资源指示。
上述对多个DL RS的合并规则是指一个下行接收beam上测量的多个DL RS的PL值的合并规则,包括等值平均、非等值加权平均、取多个PL中的最大值、取多个PL中的最小值。
上述路损配置PL configuration也可以成为路损测量、路损测量配置。
上述路损配置可能是预定义的值,例如,由UE决定PL测量的资源。
上述上行的RSRP/PL值:基站将对应的上行传输链路的RSRP/PL值反馈给UE,用以纠正UE用下行RS测量值用于上行传输链路的PL的误差
以上图3的方案一和图4的方案二的参数配置方法可以应用于以下的信号、信道:PUSCH,SRS、用于获取CSI的SRS、用于波束管理(beam management,简称为BM)的SRS、PUCCH、short PUCCH、long PUCCH。
上述信号、信道可以是针对NR系统的,或者未来系统的对应功能的信道、信号。
上述图3的方案一和图4的方案二的参数配置方法可以分别应用于以上的信号和/或信道,例如基站为UE的PUSCH、PUCCH分别配置以上方案涉及的参数和关系。
上述方案一和方案二的参数配置方法还可以针对以上的信号和/或信道的组合,例如基站为UE的PUSCH、用于获取CSI的SRS一起配置以上方案设计的参数和关系。所述的信号、信道的组合方式是预定义的,或者由基站配置。预定义的组合方式举例如下,但不限于以下组合:
PUSCH与SRS
PUSCH与用于获取CSI的SRS
用于获取CSI的SRS与用于波束管理的SRS
PUSCH与PUCCH
PUSCH与short PUCCH
PUSCH与long PUCCH
当以上方案一和方案二用于信号和/或信道的组合时,
每个PC set的P0个数为1个,用于该组合中的所有信号和/或信道
每个PC set的P0个数为M个,每个P0用于该组合中的一个或者多个信号或者信道,P0的位置与信号或信道的对应关系是预定义的。例如,M=2,信号和/或信道的组合为PUSCH与SRS,预定义的关系是,第1个P0是用于PUSCH的,第2个P0是用于SRS的。
每个PC set的P0个数为1个,还包括N个偏移值,其中P0与N个P0偏移之和表示了N个P0值。其中,N为大于等于1的整数。该PC set中的N+1个P0值的位置与信号或信道的对应关系是预定义的。
每个PC set的P0个数为1个,还包括N个偏移值,其中N个偏移值代表对应的信道或 者信号与参考的信道或信号的功率偏差。所述参考的信道或信号是预定义的,所述的N个偏移值代表对应的信道或者信号是预定义的。其中,N为大于等于1的整数。例如,N=1,信号和/或信道的组合为PUSCH与SRS,所述的参考的信道或信号是PUSCH,1个偏移值代表SRS相对于PUSCH的功率偏移。
以上描述中DCI中指示的内容可能是半静态的指示,即指示一次,可以用于多个传输。
以上描述中DCI中的内容也可能是RRC或者MAC信令指示。
可选地,功率控制参数集合包括以下至少之一:目标接收功率,PL系数,用于指示本地闭环功率调整量是否重置的标识。
可选地,在接收至少一个功率控制参数集合之后,还包括:接收闭环功率调整量,对本地闭环功率调整量进行更新。
可选地,在接收闭环功率调整量之后,还包括:接收以下至少之一套配置值:第一套配置值、第二套配置值,其中,第一套配置值的配置范围大于第二套配置值的配置范围。
可选地,闭环功率调整量的取值通过以下方式确定:
在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
根据基站的指示从第一套配置值和第二套配置值中确定闭环功率调整量的取值。
通过上述实施例,改进了闭环功控的步进量确定方法,使用更灵活的步进量确定方法快速达到闭环功控快速收敛的效果。
为了方便理解上述实施例,下面举例说明,以基站为UE配置功控相关的参数过程为例进行。
基站发送闭环功率调整量给UE,发送的是预定的比特数的比特,而比特代表的功率调整幅度是需要预先确定的,例如,2比特“00”代表3dB的功率提升。NR中引入了波束的传输方式,闭环功率调整量的比特数代表的功率调整值需要动态调整。也就是在例如发送波束的条件变化时,闭环功率调整幅度需求会比较大,经历若干次调整后,功率趋于稳定,闭环功控调整幅度需求会减小。
因此,定义一套以上不同的闭环功控调整量的取值映射方法,至少支持大幅度快速调整(相当于上述第一套配置值)和小幅度精确调整(相当于上述第二套配置值)的功能。
基站和UE根据以下方法确定使用的闭环功控调整量的取值映射方法:
以下第一类条件之一或者预定义的组合被满足,启用第一套闭环功控调整量的取值映射方法,例如,支持大幅度快速调整映射方法。
闭环功控量f(i)被置位
传输的发送或者接收波束发生变化
传输的资源的空间特性发生变化
传输的波形(waveform)发生变化
传输的numerology发生变化
传输的业务类型发生变化
以下第二类条件之一或者预定义的组合被满足,启用第二套闭环功控调整量的取值映射方法,例如,支持小幅度精确调整映射方法。
连续N个功率调整量的幅度小于等于预定义的门限1,N是预定的大于等于1的整数。
连续M个功率调整量中超过预定义比例的功率调整量小于等于预定义的门限2,M是预定义的大于等于1的整数。
还可以根据以下方法确定使用的闭环功控调整量的取值映射方法:
基站指示UE采用第一套或者第二套闭环功控调整量的映射取值方法。
基站指示UE临时采用第一套或者第二套闭环功控调整量的映射取值方法,并指示作用范围,或者作用范围是预定义的,作用范围包括以下至少一种:仅对A次传输有效,A是预定义的或者指示的大于等于1的整数;仅对B个slot有效,B是预定义的或者指示的大于等于1的整数。
以上第一套或者第二套闭环功控调整量的映射取值方法还可以进一步扩展为支持更多级别,例如第一套、第二套、第三套闭环功控调整量的映射方法,分别支持例如大幅度快速调整、中幅度调整、小幅度精确调整的功能。
以上的步进值可以进一步扩展到不同的传输信道/信号,如对以下的信号、信道:PUSCH,SRS、用于获取CSI的SRS、用于BM的SRS、PUCCH、short PUCCH,long PUCCH分别定义不同的多套映射取值方法。
以上的多套闭环功控调整量的映射取值方法可以进一步扩展到不同的应用场景,如快速移动的场景、慢速移动的场景等,基站显式配置或者UE根据预定义的条件判断当前场景,确定闭环功控调整量的映射取值方法。
以上的描述中大幅度与小幅度是相对而言的,也就是以上的第一套或者第二套闭环功控调整量的映射取值方法对应的闭环调整量可能使用相同的开销,如表1所示,也可能使用不同的开销,如表2和表3所示。其中,表1中第一套闭环功控调整量的映射方法的闭环调整量是2bit,第二套闭环功控调整量的映射方法的闭环调整量是2bit,表2中第一套闭环功控调整量的映射方法的闭环调整量是3bit,表3中第一套闭环功控调整量的映射方法的闭环调整量是1bit,表1、表2、表3如下:
表1 闭环功控调整量的映射关系1
Figure PCTCN2018101576-appb-000002
Figure PCTCN2018101576-appb-000003
表2 闭环功控调整量的映射关系2
比特指示 大幅度步进(dB)
000 12
001 9
010 6
011 3
100 0
101 -3
110 -6
111 -9
表3 闭环功控调整量的映射关系3
比特指示 小幅度步进(dB)
0 1
1 -1
可选地,方法应用于以下至少之一信道:物理上行共享信道PUSCH,短short PUCCH,长long PUCCH;或者,方法应用于以下至少之一信号:信息探测参考信号SRS。
可选地,在方法应用于以下至少之一信道:PUCCH,short PUCCH,long PUCCH的情况下,还包括:确定满足以下条件至少之一的PUCCH共享闭环功率调整量:同一时隙slot内的使用同样发送波束资源指示的short PUCCH和/或long PUCCH;在不同时隙slot上的short PUCCH和long PUCCH。需要说明的是,基站指示UE使用以下之一的方式发送SRS:相同的发送功率谱密度、相同的发送功率。如,基站以广播方式发送以上信息;基站用高层信令发送UE特定的信息指示UE的SRS发送方式;基站在PC set中指示该信息。
为了方便理解上述实施例,下面进行详细的描述。
NR支持short PUCCH和long PUCCH。对于同一个UE,short PUCCH与long PUCCH可以存在与同一个slot中,也可以出现在不同的slot中。对同一个UE,在同一slot中,short PUCCH可以存在多个,long PUCCH也可以存在多个。Short PUCCH和long PUCCH根据传输的上行控制信息(uplink control information,简称为UCI)的长度可以进一步分为不同的类别,每种类别对应不同的信号编码方式。对每个short PUCCH或者long PUCCH都需要确定发送功率,对每种类别分别进行开环功率参数配置和闭环功控的复杂度过高。本公开提出以下的方案,使得使用相同发送波束或者空间信道特性相似的发送波束的多个PUCCH共享闭环功控过程的部分参数,使NR PUCCH闭环功控的复杂度降低。
针对NR的PUCCH的功控过程,基站为UE发送闭环功率调整量,满足以下一个或者 多个条件的多个(是指大于1个的)PUCCH可以共享该闭环功率调整量。
UE为每个功控进程(process)或者功控环(loop)维护本地闭环功率调整量g(i),i为slot编号。满足以下一个或者多个条件的在多个PUCCH可以共享该闭环功控调整量g(i),其中,所述条件的确定可以是预定义的方式,或者基站配置给UE的方式。所述条件包括:
同一slot内的使用同样发送波束资源指示的多个short PUCCH。
同一slot内的使用同样发送波束资源指示的多个long PUCCH。
同一slot内的使用同样发送波束资源指示的多个short PUCCH中同样UCI长度区间的多个short PUCCH。所述的UCI长度区间是指按预定义规则划分的长度区间,例如,short PUCCH中UCI长度为1~2比特为short PUCCH的第一类,UCI长度为大于2比特为short PUCCH的第二类。
同一slot内的使用同样发送波束资源指示的多个long PUCCH中同样UCI长度区间的多个long PUCCH。所述的UCI长度区间是指按预定义规则划分的长度区间,例如,long PUCCH中UCI长度为1~2比特为long PUCCH的第一类,UCI长度为大于2比特并小于X比特的为long PUCCH的第二类,UCI长度为大于X比特的为long PUCCH的第三类,其中X值为预定义的大于2的整数。第一类、第二类和第三类的多个long PUCCH可以分别共享闭环功率调整量,也可以属于第一类与第二类的多个long PUCCH共享闭环功率调整量,或者第二类和第三类的多个long PUCCH共享闭环功率调整量。
同一slot内的使用同样发送波束资源指示的多个long PUCCH中时域重复次数区间相同的多个long PUCCH。所述的UCI长度区间是指按预定义规则划分的长度区间。所述时域重复次数区间是指重复次数满足一定条件要求,例如重复次数为1~2次的属于同一区间。
同一slot内的使用同样发送波束资源指示的short PUCCH和long PUCCH。
同一slot内的使用同样发送波束资源指示的short PUCCH的预定义UCI长度区间1的short PUCCH和long PUCCH的预定义UCI长度区间2的long PUCCH。例如UCI长度区间1为UCI长度为1~2比特,UCI长度区间2位UCI长度为1~2比特。或者UCI长度区间2为UCI长度为1到X比特,X是大于1的整数。
在不同slot上的Short PUCCH和long PUCCH。
在不同slot上的Short PUCCH的预定义UCI长度区间1的short PUCCH和long PUCCH的预定义UCI长度区间2的long PUCCH。例如UCI长度区间1为UCI长度为1~2比特,UCI长度区间2位UCI长度为1~2比特。或者UCI长度区间2为UCI长度为1到X比特,X是大于1的整数。
以上描述中,使用同样发送波束资源指示也可以为使用同样功控进程或者功控环。
以上描述中,使用同样发送波束资源指示也可以为使用具有部分或者全部QCL特征的发送波束资源指示。
以上描述中,多个PUCCH可以共享闭环功控调整量,是指基站为这多个PUCCH下发一个闭环功控调整量,符合上述条件的PUCCH在计算各自的发送功率时都使用该闭环功控调整量。
以上描述中,同一slot中的多个long PUCCH可以是时分复用TDM、频分复用FDM或者码分复用CDM。
以上描述中,同一slot中的多个short PUCCH可以是时分复用TDM、频分复用FDM或者码分复用CDM。
可选地,在方法应用于SRS的情况下,用于SRS的发送功率通过以下方式之一确定:确定用户终端UE的所有发送波束采用相同的功率,其中,功率采用Pcmax减去功率回退量,功率回退量由基站广播或者由基站配置给UE;确定用户终端UE的所有发送波束采用分组相同的功率,其中,每组功率采用Pcmax减去分组的功率回退量,分组功率回退量由基站按照用于波束管理的SRS的波束组配置给UE;确定用户终端UE的所有的波束采用相同的功率,其中,采用目标接收功率P0和PL值确定功率,PL值由UE确定或者根据基站配置的测量导频的测量结果进行确定,P0是基站配置给UE;确定用户终端UE的所有波束采用分组相同的功率,其中,每组功率采用基站配置的分组的P0和分组的PL值确定,基站为每个分组设置P0,每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
为了方便理解上述实施例,下面进行详细的描述。
SRS for BM(用于波束管理的SRS)的发送功率可以用以下方法之一确定(波束管理的SRS的分组设置和生效时间):
所有波束采用相同的功率Pcmax
所有波束采用相同的功率,相同的功率采用Pcmax减去功率回退量,该功率回退量由基站广播,或者由基站配置给UE
所有波束采用分组相同的功率,每组功率采用Pcmax减去分组的功率回退量,分组功率回退量由基站按照SRS for BM的波束组配置给UE
所有的波束采用相同的功率,用P0和PL值确定所述的相同的功率。所述的PL值由UE自己确定,或者根据基站配置的测量导频的测量结果进行确定。P0是基站配置给UE的。
所有波束采用分组相同的功率,每组功率采用基站配置的分组的P0和分组的PL值确定。基站为每个分组设置P0。每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
PL的计算时刻:SRS for BM的触发信息的发送时刻+X个时间单位。X是预定义的固定值,或者与传输的配置有关的值。例如,不同的配置对应不同X的取值。X为大于等于0的整数。
可选地,上述方法还包括:通过如下方式获取用户终端同时发送的多个发送波束的功率余量PH:通过多个波束中每个波束的等效全向辐射功率EIRP最大发送功率Pcmax减去每个波束的EIRP的发送功率,获取每个波束的PH;通过多个波束中的每个波束的PH之和,减去Y个UE的TRP的Pcmax之和,获取同时发送的多个波束的PH,其中,Y是同时发送的多个波束的个数减1。通过上述步骤,改进了PHR的计算方法,使得采用EIRP的功率时PHR能够合理体现多波束发送时不同波束的增益的影响。
为了方便理解上述实施例,下面进行详细的说明。
在NR beam方式下,PHR的上报需要体现beam的变化。基站与UE之间可能存在多个 闭环功率控制的loop,同一时刻可能只调度一个UE的TX beam(组),对应1个loop,也可能调度多个loop对应的TX beam(组),另外不同时刻的loop还可能不同。多个TX beam(组)同时发送时,每个TX beam(组)的发送功率可以分别计算,实际的发送功率之和还要受限于UE的最大发送功率。当最大发送功率不足以满足所有TX beam(组)的发送功率要求时,可能进行功率削减或者放弃部分TX beam(组)的发送。因此,上报的PHR应该反映多个TX beam(组)的和功率与最大功率之间的距离。
传统LTE技术中,发送功率是指TRP(全辐射功率,Total Radiated Power)。在新一代技术中,发送功率可能是EIRP(等效全向辐射功率,Effective Isotropic Radiated Power)。EIRP是指带发送波束方向性增益的值,TRP则没有发送波束方向的增益。
基站在不同的波束发送下行信号,例如SSB(同步信号块)、CSI-RS(CSI-RS的资源指示)、TRS(跟踪参考信号)等,并显式或者隐式地指示所述下行信号的发送功率。UE使用不同的波束接收并测量上述信号,估计基站与UE之间不同BPL(beam pair link,波束对链路)的PL。
基站可以用相等的TRP功率在不同的波束发送同类型的信号,并显式或者隐式地指示这些发送信号的TRP功率。或,
基站可以用相等的EIRP功率在不同的波束发送同类型的信号,并显式或者隐式地指示这些发送信号的EIRP功率。或,
基站可以用相等的TRP功率在不同的波束发送同类型的信号,并显式或者隐式地指示这些发送信号的EIRP功率。
上述不同的波束按分组使用相同的发送功率发送同类型的所述下行发送信号,并指示每个波束分组的发送功率。
在波束扫描过程中,多个发送波束采用相同的TRP发送功率。
在支持多波束同时发送的场景,UE计算每个波束的发送功率。在毫米波频段,EIRP的发送功率比较容易获得,当发送波束的功率值是EIRP时,UE计算的每个波束的发送功率包含对应波束的增益。根据UE可获知的信息的不同,有以下方式得到多波束的PH:
方式一:
在支持多波束同时发送的场景,UE计算每个波束的EIRP发送功率,并且知道每个发送波束的准确的beam gain和UE的TRP的Pcmax。则UE按如下方式得到所述的多个波束的PH:
用每个波束的EIRP发送功率,减去该波束的beam gain得到该波束的TRP功率;
用UE的最大TRP发送功率减去所述的同时发送的多个波束的TRP的功率之和得到所述的同时发送的多个波束的PH。
举例如下:UE支持2个波束同时发送,分别对应两个功控的过程,或者称为两个功率的loop。
UE计算的两个波束beam1和beam2的发送功率EIRP值分别为:P_EIRP_beam1和P_EIRP_beam2,两个波束的增益(beam gain)分别记为:gain1和gain2。则两个波束的TRP 功率分别为:P_TRP_beam1=P_EIRP_beam1-gain1和P_TRP_beam1=P_EIRP_beam1-gain2。
两个波束的PH为:PCMAX_TRP-(P_TRP_beam1+P_TRP_beam2)=PCMAX_TRP-(P_EIRP_beam1-gain1+P_EIRP_beam2-gain2)
方式二(相当于上述实施例):
在支持多波束同时发送的场景,UE可以计算EIRP发送功率,并且知道每个波束的EIRP的Pcmax和UE的TRP的Pcmax,但有可能不能获知每个波束的准确的波束增益。则UE按如下方式得到所述的多个波束的PH:
每个波束的EIRP最大发送功率Pcmax,减去该波束的EIRP的发送功率,得到该波束的PH。
同时发送的多个波束的PH之和与Y个UE的TRP的Pcmax之和的差得到所述的同时发送的多个波束的PH。Y是同时发送的多个波束的个数减1。
用UE的最大TRP发送功率减去所述的同时发送的多个波束的TRP的功率之和
举例如下:UE支持2个波束同时发送,分别对应两个功控的过程,或者称为两个功率的loop。
UE计算的两个波束beam1和beam2的发送功率EIRP值分别为:P_EIRP_beam1和P_EIRP_beam2。两个波束的EIRP最大发送功率分别为:Pcmax_EIRP_beam1和Pcmax_EIRP_beam2。
计算每个波束的PH:PH_beam1=Pcmax_EIRP_beam1-P_EIRP_beam1;PH_beam2=Pcmax_EIRP_beam2-P_EIRP_beam2;
Y=2-1=1;
两个波束的PH为:(PH_beam1+PH_beam2)-Y*Pcmax_TRP=(PH_beam1+PH_beam2)-Pcmax_TRP
方式三:
在支持多波束同时发送的场景,UE可以计算EIRP发送功率,并且知道UE的TRP的Pcmax,但有可能不能获知每个波束的准确的波束增益,则上述方法中的的波束增益用平均的波束增益替代,不区分具体波束的增益。UE按如下方式得到所述的多个波束的PH:
每个波束的EIRP发送功率,减去该类型波束的平均增益得到该波束的TRP功率;
用UE的最大TRP发送功率减去所述的同时发送的多个波束的TRP的功率之和得到所述的同时发送的多个波束的PH。
下面对宽窄beam的切换,QCL不变的情况进行说明。
上行传输过程发生基站侧的接收波束切换,如果切换前后的波束是有相同的QCL配置的不同等级的波束,例如属于同一方向的,不同宽度的波束。这种情况很可能用于计算PL的下行导频配置不变,例如配置的是宽波束的下行导频进行测量。则基站需要将宽窄波束的增益差指示给UE。可以通过如下方式至少之一:更新P0值,其中包括切换前后的接收波束的增益差;通过闭环功控调整指令将切换前后的接收波束增益差指示给UE;指示UE使用 临时的大幅度的步进量,通过闭环功控调整指令将切换前后的接收波束增益差指示给UE,所述的大幅度的步进量只对当前时刻有效。
在本实施例中提供了一种运行于上述移动终端的参数获取方法,图5是根据本公开实施例的参数获取方法的流程图二,如图5所示,该流程包括如下步骤:
步骤S502,确定上行链路传输参数;
步骤S504,向用户终端UE发送上行链路传输参数,其中,上行链路传输参数用于确定功率控制进程。
可选地,上行链路传输参数包括至少一个发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
可选地,向用户终端UE发送上行链路传输参数包括:通过物理层信令(例如,下行控制信息DCI)向用户终端UE发送上行链路传输参数。
可选地,在确定上行链路传输参数之前,还包括:确定至少一个功率控制参数集合和至少一个PL配置参数并将功率控制参数集合和PL配置参数发送给UE,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识。
可选地,在确定上行链路传输参数之前,还包括:采用如下方式至少之一确定功率控制参数集合和PL配置参数之间的关联并将关联发送给UE:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,预定关联集合中包含至少一个关联,其中,每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,通过高层信令将至少一个功率控制参数集合和至少一个PL配置参数,功率控制参数集合和PL配置参数之间的关联发送给UE。
可选地,上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源。
可选地,向用户终端UE发送上行链路传输参数包括:通过物理层信令(例如,下行控制信息DCI)向用户终端UE发送功率控制进程标识或者功率控制参数集合标识。
可选地,在确定上行链路传输参数之前,还包括:确定至少一个功率控制参数集合和至少之一PL配置参数并将功率控制参数集合和PL配置参数发送给UE,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识;确定发送波束集合并将发送波束集合发送给UE,其中,发送波束集合包括至少一个发送波束资源指示。
可选地,在确定上行链路传输参数之前,还包括:确定功率控制参数集合、PL配置参数和发送波束集合三者之间的关联并将关联发送给UE,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识和发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、发送波束集合中 发送波束资源指示。
可选地,通过高层信令向用户终端UE发送至少一个功率控制参数集合、至少一个PL配置参数,发送波束集合,功率控制参数集合、PL配置参数和发送波束集合三者之间的关联。
可选地,功率控制参数集合包括以下至少之一:目标接收功率,PL系数,用于指示本地闭环功率调整量是否重置的标识。
可选地,在将功率控制参数集合发送给UE之后,还包括:确定发送给UE的闭环功率调整量并将闭环功率调整量发送给UE。
可选地,在将闭环功率调整量发送给UE之后,还包括:确定以下至少之一套配置值:第一套配置值、第二套配置值,其中,第一套配置值的配置范围大于第二套配置值的配置范围。
可选地,闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,闭环功率调整量的取值通过以下方式确定:根据基站的指示从第一套配置值或者第二套配置值中确定闭环功率调整量的步进值。
可选地,方法应用于以下至少之一信道:物理上行共享信道PUSCH,短short PUCCH,长long PUCCH;或者,方法应用于以下至少之一信号:信息探测参考信号SRS。
可选地,在方法应用于以下至少之一信道:PUCCH,short PUCCH,long PUCCH的情况下,满足以下条件至少之一的PUCCH共享闭环功率调整量:同一时隙slot内的使用同样发送波束资源指示的short PUCCH和/或long PUCCH;在不同时隙slot上的short PUCCH和long PUCCH。
可选地,在方法应用于用于SRS的情况下,用于SRS的发送功率通过以下方式之一确定:确定用户终端UE的所有发送波束采用相同的功率,其中,功率采用Pcmax减去功率回退量,功率回退量由基站广播或者由基站配置给UE;确定用户终端UE的所有发送波束采用分组相同的功率,其中,每组功率采用Pcmax减去分组的功率回退量,分组功率回退量由基站按照用于波束管理的SRS的波束组配置给UE;确定用户终端UE的所有的波束采用相同的功率,其中,采用目标接收功率P0和PL值确定功率,PL值由UE确定或者根据基站配置的测量导频的测量结果进行确定,P0是基站配置给UE;确定用户终端UE的所有波束采用分组相同的功率,其中,每组功率采用基站配置的分组的P0和分组的PL值确定,基站为每个分组设置P0,每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种参数获取装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本公开实施例的参数获取装置的结构框图一,如图6所示,该装置包括:
接收模块62,用于接收基站发送的上行链路传输参数;
确定模块64,连接至上述接收模块62,用于根据上行链路传输参数确定功率控制进程;
获取模块66,连接至上述确定模块64,用于根据功率控制进程获取上行传输的发送功率参数。
可选地,上行链路传输参数包括发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
可选地,接收模块62,还用于在接收上行链路传输参数之前,接收功率控制参数集合和PL配置参数之间的关联,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,预定关联集合中包含至少一个关联,其中,每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源,确定模块64,还用于确定功率控制进程标识或者功率控制参数集合标识所指示的关联中的第一预定关联,并根据第一预定关联确定功率控制进程;或者,根据发送波束资源与功率控制进程的关系确定第二预定关联,并根据所述第二预定关联确定所述功率控制进程。
可选地,接收模块62,还用于接收功率控制参数集合、PL配置参数和发送波束集合三者之间的关联,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识和发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、发送波束集合中发送波束资源指示。
可选地,接收模块62,还用于接收闭环功率调整量,对本地闭环功率调整量进行更新。
可选地,接收模块62,还用于在接收闭环功率调整量之后,接收以下至少之一套配置值: 第一套配置值、第二套配置值,其中,第一套配置值的配置范围大于第二套配置值的配置范围。
可选地,闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,闭环功率调整量的取值通过以下方式确定:根据基站的指示从第一套配置值和第二套配置值中确定闭环功率调整量的取值。
图7是根据本公开实施例的参数获取装置的结构框图二,如图7所示,该装置包括:
确定模块72,用于确定上行链路传输参数;
发送模块74,连接至上述确定模块72,用于向用户终端UE发送上行链路传输参数,其中,上行链路传输参数用于确定功率控制进程。
可选地,上行链路传输参数包括至少一个发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
可选地,确定模块72,还用于在确定上行链路传输参数之前,采用如下方式至少之一确定功率控制参数集合和PL配置参数之间的关联并将关联发送给UE:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,预定关联集合中包含至少一个关联,其中,每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源。
可选地,确定模块72,还用于在确定上行链路传输参数之前,确定功率控制参数集合、PL配置参数和发送波束集合三者之间的关联并将关联发送给UE,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识和发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、发送波束集合中发送波束资源指示。
可选地,发送模块74,还用于确定发送给UE的闭环功率调整量并将闭环功率调整量发送给UE。
可选地,发送模块74,还用于在将闭环功率调整量发送给UE之后,确定以下至少之一套配置值:第一套配置值、第二套配置值,其中,第一套配置值的配置范围大于第二套配置 值的配置范围。
可选地,闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,闭环功率调整量的取值通过以下方式确定:根据基站的指示从第一套配置值或者第二套配置值中确定闭环功率调整量的步进值。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本公开的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,接收上行链路传输参数;
S2,根据上行链路传输参数确定功率控制进程;
S3,根据功率控制进程获取上行传输的发送功率参数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,上行链路传输参数包括发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:接收上行链路传输参数包括:
S1,通过物理层信令接收上行链路传输参数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在接收上行链路传输参数之前,还包括:
S1,接收至少一个功率控制参数集合和至少一个PL配置参数,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在接收上行链路传输参数之前,还包括:
S1,接收功率控制参数集合和PL配置参数之间的关联,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,预定关联集合中包含至 少一个关联,其中,每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,通过高层信令接收至少一个功率控制参数集合和至少一个PL配置参数,功率控制参数集合和PL配置参数之间的关联。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源,根据上行链路传输参数确定功率控制进程包括:
S1,确定功率控制进程标识或者功率控制参数集合标识所指示的关联中的预定关联,并根据预定关联确定功率控制进程;
S2,根据发送波束资源与功率控制进程的关系确定第二预定关联,并根据所述预定关联确定所述功率控制进程。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:接收上行链路传输参数包括:
S1,通过物理层信令接收功率控制进程标识或者功率控制参数集合标识。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在接收上行链路传输参数之前,还包括:
S1,接收至少一个功率控制参数集合和至少一个PL配置参数,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识;
S2,接收发送波束集合,其中,发送波束集合包括至少一个发送波束资源指示。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在接收上行链路传输参数之前,还包括:
S1,接收功率控制参数集合、PL配置参数和发送波束集合三者之间的关联,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识和发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、发送波束集合中发送波束资源指示。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,通过高层信令接收至少一个功率控制参数集合,至少一个PL配置参数、发送波束集合,以及功率控制参数集合、PL配置参数和发送波束集合三者之间的关联。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,功率控制参数集合包括以下至少之一:目标接收功率,PL系数,用于指示本地闭环功率调整量是否重置的标识。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在接收至少一个功率控制参数集合之后,还包括:
S1,接收闭环功率调整量,对本地闭环功率调整量进行更新。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在接收闭环功率调整 量之后,还包括:
S1,接收以下至少之一套配置值:第一套配置值、第二套配置值,其中,第一套配置值的配置范围大于第二套配置值的配置范围。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,闭环功率调整量的取值通过以下方式确定:根据基站的指示从第一套配置值和第二套配置值中确定闭环功率调整量的取值。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,方法应用于以下至少之一信道:物理上行共享信道PUSCH,短short PUCCH,长long PUCCH;或者,
S1,方法应用于以下至少之一信号:信息探测参考信号SRS。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在方法应用于以下至少之一信道:PUCCH,short PUCCH,long PUCCH的情况下,还包括:
S1,确定满足以下条件至少之一的PUCCH共享闭环功率调整量:
S2,同一时隙slot内的使用同样发送波束资源指示的short PUCCH和/或long PUCCH;
S3,在不同时隙slot上的short PUCCH和long PUCCH。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在方法应用于SRS的情况下,用于SRS的发送功率通过以下方式之一确定:
S1,确定用户终端UE的所有发送波束采用相同的功率,其中,功率采用Pcmax减去功率回退量,功率回退量由基站广播或者由基站配置给UE;
S2,确定用户终端UE的所有发送波束采用分组相同的功率,其中,每组功率采用Pcmax减去分组的功率回退量,分组功率回退量由基站按照用于波束管理的SRS的波束组配置给UE;
S3,确定用户终端UE的所有的波束采用相同的功率,其中,采用目标接收功率P0和PL值确定功率,PL值由UE确定或者根据基站配置的测量导频的测量结果进行确定,P0是基站配置给UE;
S4,确定用户终端UE的所有波束采用分组相同的功率,其中,每组功率采用基站配置 的分组的P0和分组的PL值确定,基站为每个分组设置P0,每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,通过如下方式获取用户终端同时发送的多个发送波束的功率余量PH:
S2,通过多个波束中每个波束的等效全向辐射功率EIRP最大发送功率Pcmax减去每个波束的EIRP的发送功率,获取每个波束的PH;
S3,通过多个波束中的每个波束的PH之和,减去Y个UE的TRP的Pcmax之和,获取同时发送的多个波束的PH,其中,Y是同时发送的多个波束的个数减1。
本公开的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,确定上行链路传输参数;
S2,向用户终端UE发送上行链路传输参数,其中,上行链路传输参数用于确定功率控制进程。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,上行链路传输参数包括至少一个发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,向用户终端UE发送上行链路传输参数包括:通过物理层信令向用户终端UE发送上行链路传输参数。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:在确定上行链路传输参数之前,还包括:
S1,确定至少一个功率控制参数集合和至少一个PL配置参数并将功率控制参数集合和PL配置参数发送给UE,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:在确定上行链路传输参数之前,还包括:
S1,采用如下方式至少之一确定功率控制参数集合和PL配置参数之间的关联并将关联发送给UE:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,预定关联集合中包含至少一个关联,其中,每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,通过高层信令将至少一个功率控制参数集合和至少一个PL配置参数,功率控制参数集合和PL配置参数之间的关联发送给UE。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,向用户终端UE发送上行链路传输参数包括:通过物理层信令向用户终端UE发送功率控制进程标识或者功率控制参数集合标识。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:在确定上行链路传输参数之前,还包括:
S1,确定至少一个功率控制参数集合和至少之一PL配置参数并将功率控制参数集合和PL配置参数发送给UE,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识;
S2,确定发送波束集合并将发送波束集合发送给UE,其中,发送波束集合包括至少一个发送波束资源指示。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:在确定上行链路传输参数之前,还包括:
S1,确定功率控制参数集合、PL配置参数和发送波束集合三者之间的关联并将关联发送给UE,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识和发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、发送波束集合中发送波束资源指示。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,通过高层信令向用户终端UE发送至少一个功率控制参数集合、至少一个PL配置参数,发送波束集合,功率控制参数集合、PL配置参数和发送波束集合三者之间的关联。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,功率控制参数集合包括以下至少之一:目标接收功率,PL系数,用于指示本地闭环功率调整量是否重置的标识。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,在将功率控制参数集合发送给UE之后,还包括:确定发送给UE的闭环功率调整量并将闭环功率调整量发送给UE。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:在将闭环功率调整量发送给UE之后,还包括:
S1,确定以下至少之一套配置值:第一套配置值、第二套配置值,其中,第一套配置值的配置范围大于第二套配置值的配置范围。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:闭环功率调整量的取值通过以下方式确定:
S1,在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值: 本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:闭环功率调整量的取值通过以下方式确定:
S1,在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:闭环功率调整量的取值通过以下方式确定:
S1,根据基站的指示从第一套配置值或者第二套配置值中确定闭环功率调整量的步进值。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,方法应用于以下至少之一信道:物理上行共享信道PUSCH,短short PUCCH,长long PUCCH;或者,
S2,方法应用于以下至少之一信号:信息探测参考信号SRS。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:在方法应用于以下至少之一信道:PUCCH,short PUCCH,long PUCCH的情况下,满足以下条件至少之一的PUCCH共享闭环功率调整量:
S1,同一时隙slot内的使用同样发送波束资源指示的short PUCCH和/或long PUCCH;
S2,在不同时隙slot上的short PUCCH和long PUCCH。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:在方法应用于用于SRS的情况下,用于SRS的发送功率通过以下方式之一确定:
S1,确定用户终端UE的所有发送波束采用相同的功率,其中,功率采用Pcmax减去功率回退量,功率回退量由基站广播或者由基站配置给UE;
S2,确定用户终端UE的所有发送波束采用分组相同的功率,其中,每组功率采用Pcmax减去分组的功率回退量,分组功率回退量由基站按照用于波束管理的SRS的波束组配置给UE;
S3,确定用户终端UE的所有的波束采用相同的功率,其中,采用目标接收功率P0和PL值确定功率,PL值由UE确定或者根据基站配置的测量导频的测量结果进行确定,P0是基站配置给UE;
S4,确定用户终端UE的所有波束采用分组相同的功率,其中,每组功率采用基站配置的分组的P0和分组的PL值确定,基站为每个分组设置P0,每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only  Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本公开的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一方法中的步骤。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,接收上行链路传输参数;
S2,根据上行链路传输参数确定功率控制进程;
S3,根据功率控制进程获取上行传输的发送功率参数。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,上行链路传输参数包括发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
可选地,在本实施例中,上述程序用于执行以下步骤:接收上行链路传输参数包括:
S1,通过物理层信令接收上行链路传输参数。
可选地,在本实施例中,上述程序用于执行以下步骤:在接收上行链路传输参数之前,还包括:
S1,接收至少一个功率控制参数集合和至少一个PL配置参数,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识。
可选地,在本实施例中,上述程序用于执行以下步骤:在接收上行链路传输参数之前,还包括:
S1,接收功率控制参数集合和PL配置参数之间的关联,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,预定关联集合中包含至少一个关联,其中,每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,通过高层信令接收至少一个功率控制参数集合和至少一个PL配置参数,功率控制参数集合和PL配置参数之间的关联。
可选地,在本实施例中,上述程序用于执行以下步骤:上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源,根据上行链路传输参数确定功率控制进程包括:
S1,确定功率控制进程标识或者功率控制参数集合标识所指示的关联中的预定关联,并根据预定关联确定功率控制进程;
S2,根据发送波束资源与功率控制进程的关系确定第二预定关联,并根据所述预定关联确定所述功率控制进程。
可选地,在本实施例中,上述程序用于执行以下步骤:接收上行链路传输参数包括:
S1,通过物理层信令接收功率控制进程标识或者功率控制参数集合标识。
可选地,在本实施例中,上述程序用于执行以下步骤:在接收上行链路传输参数之前, 还包括:
S1,接收至少一个功率控制参数集合和至少一个PL配置参数,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识;
S2,接收发送波束集合,其中,发送波束集合包括至少一个发送波束资源指示。
可选地,在本实施例中,上述程序用于执行以下步骤:在接收上行链路传输参数之前,还包括:
S1,接收功率控制参数集合、PL配置参数和发送波束集合三者之间的关联,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识和发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、发送波束集合中发送波束资源指示。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,通过高层信令接收至少一个功率控制参数集合,至少一个PL配置参数、发送波束集合,以及功率控制参数集合、PL配置参数和发送波束集合三者之间的关联。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,功率控制参数集合包括以下至少之一:目标接收功率,PL系数,用于指示本地闭环功率调整量是否重置的标识。
可选地,在本实施例中,上述程序用于执行以下步骤:在接收至少一个功率控制参数集合之后,还包括:
S1,接收闭环功率调整量,对本地闭环功率调整量进行更新。
可选地,在本实施例中,上述程序用于执行以下步骤:在接收闭环功率调整量之后,还包括:
S1,接收以下至少之一套配置值:第一套配置值、第二套配置值,其中,第一套配置值的配置范围大于第二套配置值的配置范围。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,闭环功率调整量的取值通过以下方式确定:在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,闭环功率调整量的取值通过以下方式确定:根据基站的指示从第一套配置值和第二 套配置值中确定闭环功率调整量的取值。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,方法应用于以下至少之一信道:物理上行共享信道PUSCH,短short PUCCH,长long PUCCH;或者,
S1,方法应用于以下至少之一信号:信息探测参考信号SRS。
可选地,在本实施例中,上述程序用于执行以下步骤:在方法应用于以下至少之一信道:PUCCH,short PUCCH,long PUCCH的情况下,还包括:
S1,确定满足以下条件至少之一的PUCCH共享闭环功率调整量:
S2,同一时隙slot内的使用同样发送波束资源指示的short PUCCH和/或long PUCCH;
S3,在不同时隙slot上的short PUCCH和long PUCCH。
可选地,在本实施例中,上述程序用于执行以下步骤:在方法应用于SRS的情况下,用于SRS的发送功率通过以下方式之一确定:
S1,确定用户终端UE的所有发送波束采用相同的功率,其中,功率采用Pcmax减去功率回退量,功率回退量由基站广播或者由基站配置给UE;
S2,确定用户终端UE的所有发送波束采用分组相同的功率,其中,每组功率采用Pcmax减去分组的功率回退量,分组功率回退量由基站按照用于波束管理的SRS的波束组配置给UE;
S3,确定用户终端UE的所有的波束采用相同的功率,其中,采用目标接收功率P0和PL值确定功率,PL值由UE确定或者根据基站配置的测量导频的测量结果进行确定,P0是基站配置给UE;
S4,确定用户终端UE的所有波束采用分组相同的功率,其中,每组功率采用基站配置的分组的P0和分组的PL值确定,基站为每个分组设置P0,每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,通过如下方式获取用户终端同时发送的多个发送波束的功率余量PH:
S2,通过多个波束中每个波束的等效全向辐射功率EIRP最大发送功率Pcmax减去每个波束的EIRP的发送功率,获取每个波束的PH;
S3,通过多个波束中的每个波束的PH之和,减去Y个UE的TRP的Pcmax之和,获取同时发送的多个波束的PH,其中,Y是同时发送的多个波束的个数减1。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,确定上行链路传输参数;
S2,向用户终端UE发送上行链路传输参数,其中,上行链路传输参数用于确定功率控制进程。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,上行链路传输参数包括至少一个发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的 关联标识。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,向用户终端UE发送上行链路传输参数包括:通过物理层信令向用户终端UE发送上行链路传输参数。
可选地,在本实施例中,上述程序用于执行以下步骤:在确定上行链路传输参数之前,还包括:
S1,确定至少一个功率控制参数集合和至少一个PL配置参数并将功率控制参数集合和PL配置参数发送给UE,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识。
可选地,在本实施例中,上述程序用于执行以下步骤:在确定上行链路传输参数之前,还包括:
S1,采用如下方式至少之一确定功率控制参数集合和PL配置参数之间的关联并将关联发送给UE:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,预定关联集合中包含至少一个关联,其中,每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,通过高层信令将至少一个功率控制参数集合和至少一个PL配置参数,功率控制参数集合和PL配置参数之间的关联发送给UE。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,向用户终端UE发送上行链路传输参数包括:通过物理层信令向用户终端UE发送功率控制进程标识或者功率控制参数集合标识。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:在确定上行链路传输参数之前,还包括:
S1,确定至少一个功率控制参数集合和至少之一PL配置参数并将功率控制参数集合和PL配置参数发送给UE,其中,功率控制参数集合采用功率控制参数集合标识进行标识,PL配置参数采用PL配置参数标识进行标识;
S2,确定发送波束集合并将发送波束集合发送给UE,其中,发送波束集合包括至少一个发送波束资源指示。
可选地,在本实施例中,上述程序用于执行以下步骤:在确定上行链路传输参数之前,还包括:
S1,确定功率控制参数集合、PL配置参数和发送波束集合三者之间的关联并将关联发送给UE,其中,关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识和发 送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、发送波束集合中发送波束资源指示。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,通过高层信令向用户终端UE发送至少一个功率控制参数集合、至少一个PL配置参数,发送波束集合,功率控制参数集合、PL配置参数和发送波束集合三者之间的关联。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,功率控制参数集合包括以下至少之一:目标接收功率,PL系数,用于指示本地闭环功率调整量是否重置的标识。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,在将功率控制参数集合发送给UE之后,还包括:确定发送给UE的闭环功率调整量并将闭环功率调整量发送给UE。
可选地,在本实施例中,上述程序用于执行以下步骤:在将闭环功率调整量发送给UE之后,还包括:
S1,确定以下至少之一套配置值:第一套配置值、第二套配置值,其中,第一套配置值的配置范围大于第二套配置值的配置范围。
可选地,在本实施例中,上述程序用于执行以下步骤:闭环功率调整量的取值通过以下方式确定:
S1,在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
可选地,在本实施例中,上述程序用于执行以下步骤:闭环功率调整量的取值通过以下方式确定:
S1,在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
可选地,在本实施例中,上述程序用于执行以下步骤:闭环功率调整量的取值通过以下方式确定:
S1,根据基站的指示从第一套配置值或者第二套配置值中确定闭环功率调整量的步进值。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,方法应用于以下至少之一信道:物理上行共享信道PUSCH,短short PUCCH,长long PUCCH;或者,
S2,方法应用于以下至少之一信号:信息探测参考信号SRS。
可选地,在本实施例中,上述程序用于执行以下步骤:在方法应用于以下至少之一信道:PUCCH,short PUCCH,long PUCCH的情况下,满足以下条件至少之一的PUCCH共享闭环功率调整量:
S1,同一时隙slot内的使用同样发送波束资源指示的short PUCCH和/或long PUCCH;
S2,在不同时隙slot上的short PUCCH和long PUCCH。
可选地,在本实施例中,上述程序用于执行以下步骤:在方法应用于用于SRS的情况下,用于SRS的发送功率通过以下方式之一确定:
S1,确定用户终端UE的所有发送波束采用相同的功率,其中,功率采用Pcmax减去功率回退量,功率回退量由基站广播或者由基站配置给UE;
S2,确定用户终端UE的所有发送波束采用分组相同的功率,其中,每组功率采用Pcmax减去分组的功率回退量,分组功率回退量由基站按照用于波束管理的SRS的波束组配置给UE;
S3,确定用户终端UE的所有的波束采用相同的功率,其中,采用目标接收功率P0和PL值确定功率,PL值由UE确定或者根据基站配置的测量导频的测量结果进行确定,P0是基站配置给UE;
S4,确定用户终端UE的所有波束采用分组相同的功率,其中,每组功率采用基站配置的分组的P0和分组的PL值确定,基站为每个分组设置P0,每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开适用于通信领域,用以解决相关技术中多波束的功控参数的获取方法还不够完善,出现的空口信令开销大、闭环功控的稳定性差的问题。

Claims (63)

  1. 一种参数获取方法,包括:
    接收上行链路传输参数;
    根据所述上行链路传输参数确定功率控制进程;
    根据所述功率控制进程获取上行传输的发送功率参数。
  2. 根据权利要求1所述的方法,其中,所述上行链路传输参数包括发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
  3. 根据权利要求2所述的方法,其中,接收上行链路传输参数包括:通过物理层信令接收所述上行链路传输参数。
  4. 根据权利要求2所述的方法,其中,在接收所述上行链路传输参数之前,还包括:
    接收至少一个功率控制参数集合和至少一个PL配置参数,其中,所述功率控制参数集合采用功率控制参数集合标识进行标识,所述PL配置参数采用PL配置参数标识进行标识。
  5. 根据权利要求2所述的方法,其中,在接收所述上行链路传输参数之前,还包括:
    接收功率控制参数集合和PL配置参数之间的关联,其中,所述关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,所述预定关联集合中包含至少一个关联,其中,所述每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
  6. 根据权利要求4或5所述的方法,其中,通过高层信令接收所述至少一个功率控制参数集合和所述至少一个PL配置参数,所述功率控制参数集合和PL配置参数之间的关联。
  7. 根据权利要求1所述的方法,其中,所述上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源,根据所述上行链路传输参数确定所述功率控制进程包括:
    确定所述功率控制进程标识或者功率控制参数集合标识所指示的所述关联中的第一预定关联,并根据所述第一预定关联确定所述功率控制进程;或者,
    根据发送波束资源与功率控制进程的关系确定第二预定关联,并根据所述第二预定关联确定所述功率控制进程。
  8. 根据权利要求7所述的方法,其中,接收上行链路传输参数包括:通过物理层信令接收所述功率控制进程标识或者所述功率控制参数集合标识。
  9. 根据权利要求7所述的方法,其中,在接收所述上行链路传输参数之前,还包括:
    接收至少一个功率控制参数集合和至少一个PL配置参数,其中,所述功率控制参数集合采用功率控制参数集合标识进行标识,所述PL配置参数采用PL配置参数标识进行 标识;
    接收发送波束集合,其中,所述发送波束集合包括至少一个发送波束资源指示。
  10. 根据权利要求7所述的方法,其中,在接收所述上行链路传输参数之前,还包括:
    接收所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联,其中,所述关联包括以下至少之一:在所述功率控制参数集合中包括PL配置参数标识和所述发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,所述每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、所述发送波束集合中发送波束资源指示。
  11. 根据权利要求9或10所述的方法,其中,通过高层信令接收所述至少一个功率控制参数集合,所述至少一个PL配置参数、所述发送波束集合,以及所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联。
  12. 根据权利要求4或9所述的方法,其中,所述功率控制参数集合包括以下至少之一:目标接收功率,PL系数,用于指示本地闭环功率调整量是否重置的标识。
  13. 根据权利要求12所述的方法,其中,在接收至少一个功率控制参数集合之后,还包括:接收闭环功率调整量,对所述本地闭环功率调整量进行更新。
  14. 根据权利要求13所述的方法,其中,在接收闭环功率调整量之后,还包括:
    接收以下至少之一套配置值:第一套配置值、第二套配置值,其中,所述第一套配置值的配置范围大于所述第二套配置值的配置范围。
  15. 根据权利要求13所述的方法,其中,所述闭环功率调整量的取值通过以下方式确定:
    在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
  16. 根据权利要求13所述的方法,其中,所述闭环功率调整量的取值通过以下方式确定:
    在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
  17. 根据权利要求13所述的方法,其中,所述闭环功率调整量的取值通过以下方式确定:
    根据所述基站的指示从所述第一套配置值和所述第二套配置值中确定所述闭环功率调整量的取值。
  18. 根据权利要求1至17中任一项所述的方法,其中,
    所述方法应用于以下至少之一信道:物理上行共享信道PUSCH,短short PUCCH,长long PUCCH;或者,
    所述方法应用于以下至少之一信号:信息探测参考信号SRS。
  19. 根据权利要求13所述的方法,其中,在所述方法应用于以下至少之一信道:PUCCH,short PUCCH,long PUCCH的情况下,还包括:
    确定满足以下条件至少之一的PUCCH共享所述闭环功率调整量:
    同一时隙slot内的使用同样发送波束资源指示的short PUCCH和/或long PUCCH;
    在不同时隙slot上的short PUCCH和long PUCCH。
  20. 根据权利要求18所述的方法,其中,在所述方法应用于所述SRS的情况下,所述用于SRS的发送功率通过以下方式之一确定:
    确定用户终端UE的所有发送波束采用相同的功率,其中,所述功率采用Pcmax减去功率回退量,所述功率回退量由基站广播或者由基站配置给UE;
    确定用户终端UE的所有发送波束采用分组相同的功率,其中,每组功率采用Pcmax减去分组的功率回退量,所述分组功率回退量由基站按照用于波束管理的SRS的波束组配置给UE;
    确定用户终端UE的所有的波束采用相同的功率,其中,采用目标接收功率P0和PL值确定所述功率,所述PL值由UE确定或者根据基站配置的测量导频的测量结果进行确定,所述P0是基站配置给UE;
    确定用户终端UE的所有波束采用分组相同的功率,其中,每组功率采用基站配置的分组的P0和分组的PL值确定,所述基站为每个分组设置P0,每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
  21. 根据权利要求1所述的方法,还包括:
    通过如下方式获取用户终端同时发送的多个发送波束的功率余量PH:
    通过所述多个波束中每个波束的等效全向辐射功率EIRP最大发送功率Pcmax减去所述每个波束的EIRP的发送功率,获取所述每个波束的PH;
    通过所述多个波束中的每个波束的PH之和,减去Y个UE的TRP的Pcmax之和,获取所述同时发送的多个波束的PH,其中,所述Y是同时发送的多个波束的个数减1。
  22. 一种功率控制进程获取方法,包括:
    确定上行链路传输参数;
    向用户终端UE发送所述上行链路传输参数,其中,所述上行链路传输参数用于确定功率控制进程。
  23. 根据权利要求22所述的方法,其中,所述上行链路传输参数包括至少一个发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
  24. 根据权利要求22所述的方法,其中,向用户终端UE发送所述上行链路传输参数 包括:通过物理层信令向所述用户终端UE发送所述上行链路传输参数。
  25. 根据权利要求23所述的方法,其中,在确定所述上行链路传输参数之前,还包括:
    确定至少一个功率控制参数集合和至少一个PL配置参数并将所述功率控制参数集合和所述PL配置参数发送给所述UE,其中,所述功率控制参数集合采用功率控制参数集合标识进行标识,所述PL配置参数采用PL配置参数标识进行标识。
  26. 根据权利要求23所述的方法,其中,在确定所述上行链路传输参数之前,还包括:
    采用如下方式至少之一确定功率控制参数集合和所述PL配置参数之间的关联并将所述关联发送给所述UE:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,所述预定关联集合中包含至少一个关联,其中,所述每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
  27. 根据权利要求25或26所述的方法,其中,所述通过高层信令将所述至少一个功率控制参数集合和所述至少一个PL配置参数,所述功率控制参数集合和PL配置参数之间的关联发送给UE。
  28. 根据权利要求22所述的方法,其中,所述上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源。
  29. 根据权利要求28所述的方法,其中,向用户终端UE发送所述上行链路传输参数包括:通过物理层信令向所述用户终端UE发送所述功率控制进程标识或者所述功率控制参数集合标识。
  30. 根据权利要求28所述的方法,其中,在确定所述上行链路传输参数之前,还包括:
    确定至少一个功率控制参数集合和至少之一PL配置参数并将所述功率控制参数集合和所述PL配置参数发送给所述UE,其中,所述功率控制参数集合采用功率控制参数集合标识进行标识,所述PL配置参数采用PL配置参数标识进行标识;
    确定发送波束集合并将所述发送波束集合发送给所述UE,其中,所述发送波束集合包括至少一个发送波束资源指示。
  31. 根据权利要求28所述的方法,其中,在确定所述上行链路传输参数之前,还包括:
    确定所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联并将所述关联发送给所述UE,其中,所述关联包括以下至少之一:在所述功率控制参数集合中包括PL配置参数标识和所述发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,所述每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、所述发送波束集合中发送波束资源指示。
  32. 根据权利要求30或31所述的方法,其中,所述通过高层信令向用户终端UE发送所述至少一个功率控制参数集合、所述至少一个PL配置参数,所述发送波束集合,所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联。
  33. 根据权利要求25或者30所述的方法,其中,所述功率控制参数集合包括以下至少之一:目标接收功率,PL系数,用于指示本地闭环功率调整量是否重置的标识。
  34. 根据权利要求33所述的方法,其中,在将所述功率控制参数集合发送给所述UE之后,还包括:确定发送给所述UE的闭环功率调整量并将所述闭环功率调整量发送给UE。
  35. 根据权利要求34所述的方法,其中,在将所述闭环功率调整量发送给UE之后,还包括:
    确定以下至少之一套配置值:第一套配置值、第二套配置值,其中,所述第一套配置值的配置范围大于所述第二套配置值的配置范围。
  36. 根据权利要求35所述的方法,其中,所述闭环功率调整量的取值通过以下方式确定:
    在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
  37. 根据权利要求35所述的方法,其中,所述闭环功率调整量的取值通过以下方式确定:
    在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
  38. 根据权利要求35所述的方法,其中,所述闭环功率调整量的取值通过以下方式确定:
    根据基站的指示从所述第一套配置值或者所述第二套配置值中确定闭环功率调整量的步进值。
  39. 根据权利要求21至38中任一项所述的方法,其中,
    所述方法应用于以下至少之一信道:物理上行共享信道PUSCH,短short PUCCH,长long PUCCH;或者,
    所述方法应用于以下至少之一信号:信息探测参考信号SRS。
  40. 根据权利要求34所述的方法,其中,在所述方法应用于以下至少之一信道:PUCCH,short PUCCH,long PUCCH的情况下,满足以下条件至少之一的PUCCH共享所述闭环功率调整量:
    同一时隙slot内的使用同样发送波束资源指示的short PUCCH和/或long PUCCH;
    在不同时隙slot上的short PUCCH和long PUCCH。
  41. 根据权利要求39所述的方法,其中,在所述方法应用于所述用于SRS的情况下, 所述用于SRS的发送功率通过以下方式之一确定:
    确定用户终端UE的所有发送波束采用相同的功率,其中,所述功率采用Pcmax减去功率回退量,所述功率回退量由基站广播或者由基站配置给UE;
    确定用户终端UE的所有发送波束采用分组相同的功率,其中,每组功率采用Pcmax减去分组的功率回退量,所述分组功率回退量由基站按照用于波束管理的SRS的波束组配置给UE;
    确定用户终端UE的所有的波束采用相同的功率,其中,采用目标接收功率P0和PL值确定所述功率,所述PL值由UE确定或者根据基站配置的测量导频的测量结果进行确定,所述P0是基站配置给UE;
    确定用户终端UE的所有波束采用分组相同的功率,其中,每组功率采用基站配置的分组的P0和分组的PL值确定,所述基站为每个分组设置P0,每个分组的PL由UE根据基站配置的测量导频的测量结果确定。
  42. 一种参数获取装置,包括:
    接收模块,设置为接收基站发送的上行链路传输参数;
    确定模块,设置为根据所述上行链路传输参数确定功率控制进程;
    获取模块,设置为根据所述功率控制进程获取上行传输的发送功率参数。
  43. 根据权利要求42所述的装置,其中,所述上行链路传输参数包括发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
  44. 根据权利要求43所述的装置,其中,所述接收模块,还设置为在接收所述上行链路传输参数之前,接收功率控制参数集合和PL配置参数之间的关联,其中,所述关联包括以下至少之一:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,所述预定关联集合中包含至少一个关联,其中,所述每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
  45. 根据权利要求42所述的装置,其中,所述上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源,所述确定模块,还设置为确定所述功率控制进程标识或者功率控制参数集合标识所指示的所述关联中的第一预定关联,并根据所述第一预定关联确定所述功率控制进程,或者,根据发送波束资源与功率控制进程的关系确定第二预定关联,并根据所述第二预定关联确定所述功率控制进程。
  46. 根据权利要求45所述的装置,其中,所述接收模块,还设置为接收所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联,其中,所述关联包括以下至少之一:在所述功率控制参数集合中包括PL配置参数标识和所述发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,所述每个功率控制进程中包含以下至少之一:功率控制参数集合标识、 PL配置参数标识、所述发送波束集合中发送波束资源指示。
  47. 根据权利要求44或46所述的装置,其中,所述接收模块,还设置为接收闭环功率调整量,对本地闭环功率调整量进行更新。
  48. 根据权利要求47所述的装置,其中,所述接收模块,还设置为在接收闭环功率调整量之后,接收以下至少之一套配置值:第一套配置值、第二套配置值,其中,所述第一套配置值的配置范围大于所述第二套配置值的配置范围。
  49. 根据权利要求47所述的装置,其中,所述闭环功率调整量的取值通过以下方式确定:
    在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
  50. 根据权利要求47所述的装置,其中,所述闭环功率调整量的取值通过以下方式确定:
    在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
  51. 根据权利要求47所述的装置,其中,所述闭环功率调整量的取值通过以下方式确定:
    根据所述基站的指示从所述第一套配置值和所述第二套配置值中确定所述闭环功率调整量的取值。
  52. 一种功率控制进程获取装置,包括:
    确定模块,设置为确定上行链路传输参数;
    发送模块,设置为向用户终端UE发送所述上行链路传输参数,其中,所述上行链路传输参数用于确定功率控制进程。
  53. 根据权利要求52所述的装置,其中,所述上行链路传输参数包括至少一个发送波束资源指示和以下至少之一预定标识:功率控制参数集合标识,路径损失PL配置参数标识,功率控制参数集合和PL配置参数之间的关联标识。
  54. 根据权利要求53所述的装置,其中,所述确定模块,还设置为在确定所述上行链路传输参数之前,采用如下方式至少之一确定功率控制参数集合和所述PL配置参数之间的关联并将所述关联发送给所述UE:在功率控制参数集合中包括PL配置参数标识;在PL配置参数中包括功率控制参数集合标识;用预定关联集合确定功率控制参数集合和PL配置参数的关联,所述预定关联集合中包含至少一个关联,其中,所述每个功率控制参数集合和PL配置参数的关联采用关联标识进行标识。
  55. 根据权利要求52所述的装置,其中,所述上行链路传输参数包括以下之一:功率控制进程标识、功率控制参数集合标识、发送波束资源。
  56. 根据权利要求55所述的装置,其中,所述确定模块,还设置为在确定所述上行链路传输参数之前,确定所述功率控制参数集合、所述PL配置参数和所述发送波束集合三者之间的关联并将所述关联发送给所述UE,其中,所述关联包括以下至少之一:在所述功率控制参数集合中包括PL配置参数标识和所述发送波束集合中发送波束资源指示;配置至少一个功率控制进程,其中,每个功率控制进程采用功率控制进程标识进行标识,所述每个功率控制进程中包含以下至少之一:功率控制参数集合标识、PL配置参数标识、所述发送波束集合中发送波束资源指示。
  57. 根据权利要求54或56所述的装置,其中,所述发送模块,还设置为确定发送给所述UE的闭环功率调整量并将所述闭环功率调整量发送给UE。
  58. 根据权利要求57所述的装置,其中,所述发送模块,还设置为在将所述闭环功率调整量发送给UE之后,确定以下至少之一套配置值:第一套配置值、第二套配置值,其中,所述第一套配置值的配置范围大于所述第二套配置值的配置范围。
  59. 根据权利要求58所述的装置,其中,所述闭环功率调整量的取值通过以下方式确定:
    在满足以下条件至少之一的情况下,采用第一套配置值作为闭环功率调整量的取值:本地闭环功率调整量f(i)被置位,传输的发送波束或者接收波束发生变化,传输的资源的空间特性发生变化,传输的波形发生变化,传输的物理帧结构相关参数numerology发生变化,传输的业务类型发生变化。
  60. 根据权利要求58所述的装置,其中,所述闭环功率调整量的取值通过以下方式确定:
    在满足以下条件至少之一的情况下,采用第二套配置值作为闭环功率调整量的取值:连续N个功率控制调整量的幅度小于等于第一门限,N是预定的大于等于1的整数,连续M个功率调整量中超过预定比例的功率调整量小于等于第二门限,M是预定的大于等于1的整数。
  61. 根据权利要求58所述的装置,其中,所述闭环功率调整量的取值通过以下方式确定:
    根据基站的指示从所述第一套配置值或者所述第二套配置值中确定闭环功率调整量的步进值。
  62. 一种存储介质,其中,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至41中任一项所述的方法。
  63. 一种处理器,其中,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至41中任一项所述的方法。
PCT/CN2018/101576 2017-09-30 2018-08-21 参数获取方法及装置 WO2019062387A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710923288.3 2017-09-30
CN201710923288.3A CN109600154B (zh) 2017-09-30 2017-09-30 参数获取方法及装置

Publications (1)

Publication Number Publication Date
WO2019062387A1 true WO2019062387A1 (zh) 2019-04-04

Family

ID=65900676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101576 WO2019062387A1 (zh) 2017-09-30 2018-08-21 参数获取方法及装置

Country Status (2)

Country Link
CN (1) CN109600154B (zh)
WO (1) WO2019062387A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718796B (zh) * 2019-12-04 2021-02-11 國立交通大學 通訊網路資源分配方法及系統
EP3998804A4 (en) * 2019-07-12 2022-08-24 Vivo Mobile Communication Co., Ltd. POWER CONTROL METHOD AND DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678514B (zh) * 2019-09-30 2023-11-07 Oppo广东移动通信有限公司 上行功率控制方法、装置及存储介质
CN114071534A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 波束测量的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404527A (zh) * 2008-11-11 2009-04-08 中兴通讯股份有限公司 一种功控参数的获取方法以及功率控制的方法
CN101998596A (zh) * 2009-08-17 2011-03-30 夏普株式会社 上行多输入多输出信道的功率控制方法
US20110207415A1 (en) * 2009-08-04 2011-08-25 Qualcomm Incorporated Control for uplink in mimo communication system
CN102958045A (zh) * 2011-08-30 2013-03-06 华为技术有限公司 一种功率控制方法、激活管理方法、用户终端及基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455030B (zh) * 2011-10-28 2020-03-31 华为技术有限公司 上行功率控制的方法、用户设备和接入点
EP3383101B1 (en) * 2013-04-19 2019-10-30 LG Electronics Inc. Power control method and apparatus in wireless access system
US10172121B2 (en) * 2013-07-12 2019-01-01 Sharp Kabushiki Kaisha Terminal device, method, and integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404527A (zh) * 2008-11-11 2009-04-08 中兴通讯股份有限公司 一种功控参数的获取方法以及功率控制的方法
US20110207415A1 (en) * 2009-08-04 2011-08-25 Qualcomm Incorporated Control for uplink in mimo communication system
CN101998596A (zh) * 2009-08-17 2011-03-30 夏普株式会社 上行多输入多输出信道的功率控制方法
CN102958045A (zh) * 2011-08-30 2013-03-06 华为技术有限公司 一种功率控制方法、激活管理方法、用户终端及基站

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3998804A4 (en) * 2019-07-12 2022-08-24 Vivo Mobile Communication Co., Ltd. POWER CONTROL METHOD AND DEVICE
JP2022539478A (ja) * 2019-07-12 2022-09-09 維沃移動通信有限公司 パワー制御方法及び機器
JP7305866B2 (ja) 2019-07-12 2023-07-10 維沃移動通信有限公司 パワー制御方法及び機器
TWI718796B (zh) * 2019-12-04 2021-02-11 國立交通大學 通訊網路資源分配方法及系統

Also Published As

Publication number Publication date
CN109600154B (zh) 2021-09-03
CN109600154A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
JP7336555B2 (ja) パラメータ構成および電力決定方法、デバイス、および通信ノード
US11924772B2 (en) System and method for wireless power control
US11540231B2 (en) Method and device for determining transmission power, and terminal and storage medium
US20230309025A1 (en) Method and device for controlling transmission power of terminal in wireless communication system
US11895601B2 (en) Multi-beam power control methods and systems
WO2019096317A1 (zh) 功率控制方法、ue、基站、参数配置方法和控制方法
WO2018202083A1 (zh) 功率余量的上报方法和装置
WO2018127022A1 (zh) 发送功率的确定方法、装置及系统
CN103037489B (zh) 上行信号功率控制方法及装置
WO2020030038A1 (zh) 功率控制方法和装置、确定目标接收功率的方法和装置
WO2019062387A1 (zh) 参数获取方法及装置
WO2018059248A1 (zh) 上行信号发送功率的处理方法及装置、基站、终端
WO2020030117A1 (zh) 功率控制参数的确定方法及装置、存储介质、电子设备
WO2023139519A1 (en) Medium access control (mac) control element (ce) design for multiple power management maximum power reduction (p-mpr) reporting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.09.2020)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18861003

Country of ref document: EP

Kind code of ref document: A1