CN113678514B - 上行功率控制方法、装置及存储介质 - Google Patents

上行功率控制方法、装置及存储介质 Download PDF

Info

Publication number
CN113678514B
CN113678514B CN201980095318.3A CN201980095318A CN113678514B CN 113678514 B CN113678514 B CN 113678514B CN 201980095318 A CN201980095318 A CN 201980095318A CN 113678514 B CN113678514 B CN 113678514B
Authority
CN
China
Prior art keywords
power control
parameter
uplink
indication information
closed loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980095318.3A
Other languages
English (en)
Other versions
CN113678514A (zh
Inventor
徐婧
林亚男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Publication of CN113678514A publication Critical patent/CN113678514A/zh
Application granted granted Critical
Publication of CN113678514B publication Critical patent/CN113678514B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种上行功率控制方法、装置及存储介质,其方法包括:获取上行信道的功率控制信息,并从功率控制信息中解析出功率控制指示信息;通过功率控制指示信息调整上行信道的发送功率。本发明方案通过在上行信道的功率控制信息中设置功率控制指示信息,可有效地调节上行信道的发送功率,解决了无法指示功率参数的调节的技术问题。

Description

上行功率控制方法、装置及存储介质
技术领域
本发明涉及无线通信技术领域,尤其涉及一种上行功率控制方法、装置及存储介质。
背景技术
随着无线通信技术的不断发展,不同业务资源之间往往存在着一定的传输冲突问题。
若以第5代移动通信(5G)技术为例,5G系统内引入了超高可靠超低时延通信(Ultra Reliable&Low Latency Communication,URLLC)与增强移动宽带eMBB(EnhancedMobile Broadband,eMBB)两种业务,对于URLLC和eMBB共存的场景,为了实现URLLC的即时传输,URLLC和eMBB会发生传输冲突,即,URLLC可能会占用已经分配给eMBB的资源。而且,URLLC和eMBB会相互干扰对方,从而影响了URLLC和eMBB的解调性能。
为了应对该传输冲突问题,可通过调节发送功率的方式来缓解该传输冲突。
但是,为了调节发送功率,基站需要通过传递一类指示信息给用户终端(UserEquipment,UE)以达到调节发送功率的目的。但是,目前的解决方案均没有给出这样一类指示信息。
比如,若基于开环功率控制参数来调节发送功率,目前的解决方案会通过高层信令直接配置一组开环功率控制参数,不会涉及到传递给UE的指示信息。
所以,可认为,目前存在着无法指示功率参数的调节的技术问题。
发明内容
本发明的主要目的在于提供一种上行功率控制方法、装置及存储介质,旨在解决无法指示功率参数的调节的技术问题。
为实现上述目的,本发明提供一种上行功率控制方法,包括:
获取上行信道的功率控制信息,从所述功率控制信息中解析出功率控制指示信息;
通过所述功率控制指示信息调整所述上行信道的发送功率。
在一种实施方式中,所述功率控制指示信息包括参数类型指示信息与第一参数内容指示信息;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
通过所述参数类型指示信息与所述第一参数内容指示信息调整所述上行信道的发送功率。
在一种实施方式中,所述通过所述参数类型指示信息与所述第一参数内容指示信息调整所述上行信道的发送功率的步骤包括:
若所述参数类型指示信息对应的参数类型为闭环功率控制参数类型,则根据与所述第一参数内容指示信息对应的闭环功率控制参数调整所述上行信道的发送功率。
在一种实施方式中,所述通过所述参数类型指示信息与所述第一参数内容指示信息调整所述上行信道的发送功率的步骤包括:
若所述参数类型指示信息对应的参数类型为开环功率控制参数类型,则根据与所述第一参数内容指示信息对应的开环功率控制参数调整所述上行信道的发送功率。
在一种实施方式中,所述若所述参数类型指示信息对应的参数类型为开环功率控制参数类型,则根据与所述第一参数内容指示信息对应的开环功率控制参数调整所述上行信道的发送功率的步骤包括:
若所述参数类型指示信息对应的参数类型为所述开环功率控制参数类型,则确定与所述第一参数内容指示信息对应的所述开环功率控制参数;
获取第一预设闭环参数默认值;
根据所述第一预设闭环参数默认值以及与所述第一参数内容指示信息对应的开环功率控制参数调整所述上行信道的发送功率。
在一种实施方式中,所述若所述参数类型指示信息对应的参数类型为开环功率控制参数类型,则根据与所述第一参数内容指示信息对应的开环功率控制参数调整所述上行信道的发送功率的步骤包括:
若所述参数类型指示信息对应的参数类型为所述开环功率控制参数类型,则确定与所述第一参数内容指示信息对应的所述开环功率控制参数;
获取第一历史闭环累计参数;
根据所述第一历史闭环累计参数以及与所述第一参数内容指示信息对应的所述开环功率控制参数调整所述上行信道的发送功率。
在一种实施方式中,所述功率控制指示信息包括开环功率控制指示信息与闭环功率控制指示信息;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
根据所述开环功率控制指示信息确定开环功率控制参数;
根据所述闭环功率控制指示信息确定闭环功率控制参数;
根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率。
在一种实施方式中,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
获取第二历史闭环累计参数;
对所述第二历史闭环累计参数与所述闭环功率控制参数进行累计,以获得第一当前闭环累计参数;
根据所述开环功率控制参数与所述第一当前闭环累计参数调整所述上行信道的发送功率。
在一种实施方式中,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
从第一历史闭环累计参数集合中选取与所述开环功率控制指示信息对应的第三历史闭环累计参数;
对所述第三历史闭环累计参数与所述闭环功率控制参数进行累计,以获得第二当前闭环累计参数;
根据所述开环功率控制参数与所述第二当前闭环累计参数调整所述上行信道的发送功率。
在一种实施方式中,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
将所述闭环功率控制参数作为第三当前闭环累计参数,并根据所述开环功率控制参数与所述第三当前闭环累计参数调整所述上行信道的发送功率。
在一种实施方式中,所述功率控制指示信息包括第二参数内容指示信息;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
根据所述第二参数内容指示信息确定对应的开环功率控制参数与闭环功率控制参数;
根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率。
在一种实施方式中,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
获取第四历史闭环累计参数;
对所述第四历史闭环累计参数与所述闭环功率控制参数进行累计,以获得第四当前闭环累计参数;
根据所述开环功率控制参数与所述第四当前闭环累计参数调整所述上行信道的发送功率。
在一种实施方式中,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
从第二历史闭环累计参数集合中选取与开环功率控制指示信息对应的第五历史闭环累计参数;
对所述第五历史闭环累计参数与所述闭环功率控制参数进行累计,以获得第五当前闭环累计参数;
根据所述开环功率控制参数与所述第五当前闭环累计参数调整所述上行信道的发送功率。
在一种实施方式中,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
将所述闭环功率控制参数作为第六当前闭环累计参数,并根据所述开环功率控制参数与所述第六当前闭环累计参数调整所述上行信道的发送功率。
在一种实施方式中,所述上行信道为上行数据信道;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
通过所述功率控制指示信息调整所述上行数据信道的超高可靠超低时延通信URLLC发送功率,以处理所述URLLC和增强移动宽带eMMB之间的传输冲突。
在一种实施方式中,所述上行信道为上行控制信道;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
通过所述功率控制指示信息调整所述上行控制信道的发送功率。
此外,本发明实施例还提出一种上行功率控制装置,所述上行功率控制装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的上行功率控制程序,所述上行功率控制程序被所述处理器执行时实现如上所述的上行功率控制方法的步骤。
此外,本发明实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有上行功率控制程序,所述上行功率控制程序被处理器执行时实现如上所述的上行功率控制方法的步骤。
本发明实施例提出的上行功率控制方法、装置及存储介质,获取上行信道的功率控制信息,并从功率控制信息中解析出功率控制指示信息;通过功率控制指示信息调整上行信道的发送功率。本发明方案通过在上行信道的功率控制信息中设置功率控制指示信息,可有效地调节上行信道的发送功率,解决了无法指示功率参数的调节的技术问题。
附图说明
图1为本发明上行功率控制装置的功能模块示意图;
图2为本发明上行功率控制方法一示例性实施例的流程示意图;
图3为本发明上行功率控制方法一示例性实施例的上行传输冲突示意图;
图4为本发明上行功率控制方法另一示例性实施例的流程示意图;
图5为本发明上行功率控制方法再一示例性实施例的流程示意图;
图6为本发明上行功率控制方法又一示例性实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的主要解决方案是:获取上行信道的功率控制信息,从所述功率控制信息中解析出功率控制指示信息;通过所述功率控制指示信息调整所述上行信道的发送功率。本发明方案通过在上行信道的功率控制信息中设置功率控制指示信息,可有效地调节上行信道的发送功率,解决了无法指示功率参数的调节的技术问题。
本申请实施例涉及的主要技术术语包括:
URLLC:超高可靠低延迟通信的缩写,其特点是高可靠、低时延以及极高的可用性,可在极短的时延内(例如,1ms)实现超高可靠性(例如,99.999%)的传输。它包括以下各类场景及应用:工业应用和控制、交通安全和控制、远程制造、远程培训、远程手术等。
eMBB:增强移动宽带的缩写,是指在现有移动宽带业务场景的基础上,对于用户体验等性能的进一步提升,主要还是追求人与人之间极致的通信体验,顾名思义,eMMB是专门为手机等移动设备服务的技术。其特性为,对时延不敏感,但是,传输数量可以很大。
SINR(Signal to Interference plus Noise Ratio):信号与干扰加噪声比的缩写,也可记为信噪比,是指接收到的有用信号的强度与接收到的干扰信号(包括噪声及干扰)的强度的比值。
PUSCH(Physical Uplink Shared Channel):物理上行共享信道的缩写,其除了传送控制信息外,还要传送上行数据,通常处于频带的中间位置,占据绝大部分资源。
UE:用户终端的缩写,可为移动手机等具备通信功能的其他电子设备。
TPC(Transmit Power Control):发送功率控制的缩写。
DCI(Downlink Control Information):下行控制信息的缩写。
具体地,参照图1,图1为本发明上行功率控制装置的功能模块示意图。该上行功率控制装置可以为独立于用户终端的、能够进行数据处理的装置,其可以通过硬件或软件的形式承载于用户终端上。
在本实施例中,该上行功率控制装置至少包括输出模块110、第一处理器120、第一存储器130以及第一通信模块140。
第一存储器130中存储有第一操作系统以及上行功率控制程序;输出模块110可为显示屏、扬声器等,显示屏可以显示用户终端的相关界面信息。第一通信模块140可以包括移动通信模块。
其中,第一存储器130中的上行功率控制程序被处理器执行时实现以下步骤:
获取上行信道的功率控制信息,从所述功率控制信息中解析出功率控制指示信息;
通过所述功率控制指示信息调整所述上行信道的发送功率。
本实施例中获取上行信道的功率控制信息,并从功率控制信息中解析出功率控制指示信息;通过功率控制指示信息调整上行信道的发送功率。明显地,本实施例中通过在上行信道的功率控制信息中设置功率控制指示信息,可有效地调节上行信道的发送功率,解决了无法指示功率参数的调节的技术问题。
基于上述装置架构,提出本发明方法实施例。
参照图2,图2为本发明上行功率控制方法一示例性实施例的流程示意图。该实施例中,上行功率控制方法包括以下步骤:
步骤S10,获取上行信道的功率控制信息,从所述功率控制信息中解析出功率控制指示信息。
可以理解的是,本实施例的执行主体可为上行功率控制装置,上行功率控制装置可为用户终端,具体地,用户终端可为移动手机等具备通信功能的其他电子设备。
在具体实现中,为了调节功率参数,比如,为了调节上行信道的发送功率,基站可先向用户终端下发上行信道的功率控制信息,上行信道的功率控制信息用于调节上行信道的发送功率。在该功率控制信息中写入有预先定义格式的功率控制指示信息。
此外,该功率控制指示信息可以复用TPC信令。
步骤S20,通过所述功率控制指示信息调整所述上行信道的发送功率。
应当理解的是,通过解析出的功率控制指示信息来指示发送功率的调节操作。
在具体实现中,可在调度DCI中通过解析出的功率控制指示信息来指示发送功率的调节操作。功率控制指示信息为由0与1组成的字符串。功率控制指示信息的指示格式也较为多样化,比如,可为一个字符,包括0或1,也可为两个字符,包括00、01、10以及11。每个字符串均对应一个发送功率的数值。
本实施例可适用的一类场景如下,即上行URLLC与eMBB共存的场景而言,所述上行信道为上行数据信道,具体地,上行数据信道是指PUSCH,所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
通过所述功率控制指示信息调整所述上行数据信道的URLLC发送功率,以处理URLLC和eMMB之间的传输冲突。
在具体实现中,当URLLC和eMMB传输发生冲突时,URLLC和eMMB会相互干扰对方。若进行重传,会导致URLLC的传输时延增大;若采用停止eMMB传输的方式来降低对URLLC的干扰,虽然,干扰消除较为彻底,但需要增加eMBB的终端复杂度;若提高URLLC发送功率,即使eMBB干扰存在,也能保证URLLC的接收SINR满足解调需求。第三类处理方式通过提高有用信号的信号功率,保障了接收SINR,且仅需要增强URLLC。
故而,本实施例将采用第三类处理方式,至于具体的指示方式而言,通过设置功率控制指示信息来提高上行数据信道的URLLC发送功率,保证了URLLC的接收SINR满足解调需求,可有效缓解该传输冲突。
本实施例可适用的另一类场景如下,除了针对上行数据信道外,还可推广至上行控制信道。具体地,所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
通过所述功率控制指示信息调整所述上行控制信道的发送功率。
本实施例中获取上行信道的功率控制信息,并从功率控制信息中解析出功率控制指示信息;通过功率控制指示信息调整上行信道的发送功率。明显地,本实施例中通过在上行信道的功率控制信息中设置功率控制指示信息,可有效地调节上行信道的发送功率,解决了无法指示功率参数的调节的技术问题。
至于本实施例可适用的一类场景,即上述的上行URLLC与eMBB共存的场景而言,可参见图3所示的上行传输冲突示意图,其中,涉及到频率(Freq),物理资源块i、j可记为PRBi、j,时隙k可记为slot k,UE1与UE2为用户终端。在上行传输时,UE1与UE2二者于基站处发生传输冲突。
该上行URLLC与eMBB共存的场景可发生于NR Rel 15系统中。其中,NR Rel 15为5G内的一版标准。
就上行功率控制而言,通过上行功控,可使得小区中的UE既保证上行所发送数据的质量,又尽可能减少对系统中其他用户的干扰,延长UE电池的使用时间。
而在NR Rel 15系统中,同小区内不同用户之间的上行数据是正交的,因此,NRRel 15系统采用的上行功率控制将主要考虑如何通过功率控制来使得上行传输适应不同的无线传输环境,包括路损、阴影衰落等。NR Rel 15会采用到一种开环和闭环控制结合的方式。典型的操作方式为:
(1)设置一个目标接收功率,基于路径损耗、调度资源以及调制编码方式等信息粗略确定上行发送功率,即开环功率控制。
(2)基于更快速的自适应流程可将功率调整信息及时发送给用户终端,从而可以控制干扰并调整功率设置以适应信道条件,即闭环功率控制。
至于本实施例涉及的上行信道的发送功率,可具体为,NR Rel 15系统中的PUSCH的发送功率,目前,PUSCH的发送功率的计算公式如下:
其中,PPUSCH,b,f,c(i,j,qd,l)是PUSCH的发送功率,i是一次PUSCH传输的索引,j是开环功率控制参数索引(包括目标功率PO_PUSCH,b,f,c(j)和路损因子αb,f,c(j));qd是用于进行路损测量的参考信号的索引,用于得到路损值PLb,f,c(qd),也是一个开环功率控制参数;fb,f,c(i,l)是闭环功率控制调整因子,其中l是闭环功率控制进程。
其中,用户终端根据网络侧发送的TPC命令域来确定闭环功率控制调整因子,所述TPC命令域可以通过UE搜索空间中用于调度所述PUSCH的DCI来承载,也可以通过公共搜索空间中用于携带组TPC命令域的DCI format 2_2来承载。
就NR Rel 15系统中的闭环功控而言,NR Rel 15会采用Group common DCI(e.g.DCI format 2_2)和UE specific DCI(e.g DCI format 0_0/0_1)指示闭环调整功率。
其一,Group common DCI的指示方式如下所述,其特性是,(1)DCI包含多个用户的功率指示信息;(2)DCI中的多个域值是针对多个用户的。其中,用户所在域索引及目标基站等信息通过高层信令配置。具体方式,可参见DCI format 2_2(物理层指示)和
PDCCH-Config/PUSCH-TPC-Command Config(高层配置)。更完整的协议描述可参考5G标准中的38.212v15.4.0和38.331v 15.4.0,此处不作赘述。
其二,UE specific DCI的方式,其特性是,在一个用户专属的调度信令中指示针对所述用户的功率调整信息。其中,UE specific DCI包括DCI format 0_0及DCI format0_1。DCI format 0_0/DCI format 0_1以及更完整的协议描述可参考5G标准中的38.212v15.4.0,此处不作赘述。
总之,通过上述对NR Rel 15系统的讨论,涉及上行功率控制以及闭环功控等,可见,对于PUSCH,并未存在一类通过物理层信令指示开环功率参数的实施方案。
即使是在3GPP Ran1#98会议中,涉及到了修改开环功率参数的方法来处理资源冲突问题,也未存在这样一类通过物理层信令指示开环功率参数的实施方案。
故而,本实施例给出了一类指示开环功率参数的实施方案,具体地,将在上行信道的功率控制信息中设置功率控制指示信息,从而可有效地调节上行信道的发送功率,解决了并未存在一类指示功率参数的缺陷。
参照图4,图4为本发明上行功率控制方法另一示例性实施例的流程示意图。如图4所示,本实施例基于上述图2所示的实施例。
就指示发送功率调节的指示方式而言,所述功率控制指示信息为开环功率控制参数和/或闭环功率控制参数对应的指示。
可以理解的是,本实施例将具体地给出一种指示发送功率调节的指示方式,可记为指示方式1,该指示方式1将涉及到两类指示信息,所述功率控制指示信息包括参数类型指示信息与第一参数内容指示信息。可将,参数类型指示信息记为指示A,第一参数内容指示信息记为指示B。
所述步骤S20的步骤包括:
步骤S201,通过所述参数类型指示信息与所述第一参数内容指示信息调整所述上行信道的发送功率。
具体而言,指示A用于确定当前控制参数为开环功率控制参数或为闭环功率控制参数,指示B用于确定开环功率控制参数或闭环功率控制参数的参数内容,可参考下面的表1,将通过指示A与指示B来调节上行信道的发送功率。上行信道可为上行控制信道或者上行数据信道。
表1-指示方式1
指示A 指示B 开环功率控制参数 闭环功率控制参数
0 00 -- step0
0 01 -- step1
0 10 -- step2
0 11 -- step3
1 00 (P00,a0) --
1 01 (P01,a1) --
1 10 (P02,a2) --
1 11 (P03,a3) --
其中,指示A可为一个字符,1个bit,即为0或1;指示B可为两个字符,2个bit,包括00、01、10以及11;开环功率控制参数的参数集合为{(P00,a0),(P01,a1),(P02,a2),(P03,a3)};闭环功率控制参数的参数集合为(step0,step1,step2,step3)。并且,开环功率控制参数的参数集合以及闭环功率控制参数的参数集合由高层配置或协议约定,开环功率控制参数的参数集合内至少包含至少一组开环功率控制参数,闭环功率控制参数的参数集合内至少包含至少一组闭环功率控制参数。
在具体实现中,gNB(即5G基站)在调度DCI中可使用到3bit指示功率控制,其中,1bit指示功率控制参数类型,0对应于闭环功率控制方法,1对应于开环功率控制方法;另外2bit指示功率控制参数,00、01、10以及11分别对应于功率控制参数的参数集合中的1个。
此外,还可参见上述PUSCH的发送功率的计算公式,闭环功率控制参数对应于该计算公式中的fb,f,c(i,l),开环功率控制参数中的第一位(比如,P00)对应于PO_PUSCH,b,f,c(j),开环功率控制参数中的第二位(比如,a0)对应于αb,f,c(j)。
至于表征闭环功率控制参数的step0至step3,其对应的数值可预先定义,比如,可根据协议标准来定义,若协议标准涉及到0、1、-1及3,可将这4个数与step0至step3一一对应。比如,可step0对应0,step1对应1,step2对应-1,step3对应3。
当然,并不限制step0至step3对应的数值,此处仅作解释,可依据协议标准来定义。
进一步地,所述通过所述参数类型指示信息与所述第一参数内容指示信息调整所述上行信道的发送功率的步骤包括:
若所述参数类型指示信息对应的参数类型为闭环功率控制参数类型,则根据与所述第一参数内容指示信息对应的闭环功率控制参数调整所述上行信道的发送功率。
具体而言,若参数类型指示信息为0,则将采用闭环功率控制参数而非采用开环功率控制参数,故而,表1中的开环功率控制参数记为“--”以表示不采用。在指示A为0的前提下,将从闭环功率控制参数的参数集合中选取与指示B对应的闭环功率控制参数来调整上行信道的发送功率。
比如,如果网络侧设备(可为基站)发送的功率控制信息中的指示A=0,指示B=00,指示A=0指示闭环功率控制参数,指示B=00指示闭环功率控制参数(step0);
如果网络侧设备发送的功率控制信息中的指示A=0,指示B=01,指示A=0指示闭环功率控制参数,指示B=01指示闭环功率控制参数(step1);
如果网络侧设备发送的功率控制信息中的指示A=0,指示B=10,指示A=0指示闭环功率控制参数,指示B=10指示闭环功率控制参数(step2);
如果网络侧设备发送的功率控制信息中的指示A=0,指示B=11,指示A=0指示闭环功率控制参数,指示B=11指示闭环功率控制参数(step3)。
进一步地,所述通过所述参数类型指示信息与所述第一参数内容指示信息调整所述上行信道的发送功率的步骤包括:
若所述参数类型指示信息对应的参数类型为开环功率控制参数类型,则根据与所述第一参数内容指示信息对应的开环功率控制参数调整所述上行信道的发送功率。
具体而言,若参数类型指示信息为1,则将采用开环功率控制参数而非采用闭环功率控制参数,故而,表1中的闭环功率控制参数记为“--”以表示不采用。在指示A为1的前提下,将从开环功率控制参数的参数集合中选取与指示B对应的开环功率控制参数来调整上行信道的发送功率。
比如,如果网络侧设备(可为基站)发送的功率控制信息中的指示A=1,指示B=00,指示A=1指示开环功率控制参数,指示B=00指示开环功率控制参数(P00,a0);
如果网络侧设备(可为基站)发送的功率控制信息中的指示A=1,指示B=01,指示A=1指示开环功率控制参数,指示B=01指示开环功率控制参数(P01,a1);
如果网络侧设备(可为基站)发送的功率控制信息中的指示A=1,指示B=10,指示A=1指示开环功率控制参数,指示B=10指示开环功率控制参数(P02,a2);
如果网络侧设备(可为基站)发送的功率控制信息中的指示A=1,指示B=11,指示A=1指示开环功率控制参数,指示B=11指示开环功率控制参数(P03,a3)。
可见,本实施例将结合参数类型指示信息与第一参数内容指示信息来指示上行信道的发送功率,前者指示选用闭环功率控制参数还是选用开环功率控制参数,后者指示选用参数的具体参数内容。
进一步地,所述若所述参数类型指示信息对应的参数类型为开环功率控制参数类型,则根据与所述第一参数内容指示信息对应的开环功率控制参数调整所述上行信道的发送功率的步骤包括:
若所述参数类型指示信息对应的参数类型为所述开环功率控制参数类型,则确定与所述第一参数内容指示信息对应的所述开环功率控制参数;
获取第一预设闭环参数默认值;
根据所述第一预设闭环参数默认值以及与所述第一参数内容指示信息对应的开环功率控制参数调整所述上行信道的发送功率。
可以理解的是,虽然,本实施例介绍的指示方式1在指示发送功率的调节操作时,将指示开环功率控制参数或者闭环功率控制参数中的一种,但是,在计算发送功率时,这两类功率控制参数均会涉及到。
在具体实现中,为了面对该类状况,若高层配置或者协议约定不同的开环功率控制参数配置使用默认的闭环参数,则在指示A=1指示开环功率控制参数时,显而此时功率控制信息中不涉及闭环功率控制参数,则可获取发送功率使用的闭环参数默认值,该闭环参数默认值可记为第一预设闭环参数默认值,该闭环参数默认值可为0可由高层配置或者协议约定。接着,将根据该闭环参数默认值与当前确定的开环功率控制参数来调整上行信道的发送功率。
进一步地,所述若所述参数类型指示信息对应的参数类型为开环功率控制参数类型,则根据与所述第一参数内容指示信息对应的开环功率控制参数调整所述上行信道的发送功率的步骤包括:
若所述参数类型指示信息对应的参数类型为所述开环功率控制参数类型,则确定与所述第一参数内容指示信息对应的所述开环功率控制参数;
获取第一历史闭环累计参数;
根据所述第一历史闭环累计参数以及与所述第一参数内容指示信息对应的所述开环功率控制参数调整所述上行信道的发送功率。
在具体实现中,为了面对该类状况,若高层配置或者协议也可约定不同的开环功率控制参数配置使用同一个闭环累计参数,即如遇到闭环功率控制参数,累计每一次遇到的闭环功率控制参数,累计值记为闭环累计参数。故而,在又一次地进行发送功率的调整时,若遇到开环功率控制参数,先获取之前计算出的闭环累计参数,并记为第一历史闭环累计参数。
此外,为了面对该类状况,若高层配置或者协议也可约定不同的开环功率控制参数配置使用一个绝对闭环参数,即在指示A指示开环功率控制参数时,计算发送功率使用的闭环功率控制参数为该绝对闭环参数,该绝对闭环参数可为默认值0也可由高层配置;在指示A指示闭环功率控制参数时,计算发送功率使用的闭环功率控制参数为当前指示对应的闭环功率控制参数。
本实施例将结合参数类型指示信息与第一参数内容指示信息来指示上行信道的发送功率,参数类型指示信息表征参数类型,第一参数内容指示信息表征参数内容,提高了指示效率。
参照图5,图5为本发明上行功率控制方法再一示例性实施例的流程示意图。如图5所示,本实施例基于上述图2所示的实施例,所述功率控制指示信息包括开环功率控制指示信息与闭环功率控制指示信息。
可以理解的是,本实施例将给出另一种指示发送功率调节的指示方式,可记为指示方式2,该指示方式2将涉及到两类指示信息,包括开环功率控制指示信息与闭环功率控制指示信息。可将,开环功率控制指示信息记为指示C,闭环功率控制指示信息记为指示D。
所述步骤S20的步骤包括:
步骤S202,根据所述开环功率控制指示信息确定开环功率控制参数。
具体而言,指示C用于确定开环功率控制参数的参数内容。
步骤S203,根据所述闭环功率控制指示信息确定闭环功率控制参数。
具体而言,指示D用于确定闭环功率控制参数的参数内容。
步骤S204,根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率。
应当理解的是,可参考下面的表2,将通过指示C与指示D来调节上行信道的发送功率。
表2-指示方式2
指示C 指示D 开环功率控制参数 闭环功率控制参数
00 00 (P00,a0) step0
00 01 (P00,a0) step1
00 10 (P00,a0) step2
00 11 (P00,a0) step3
01 00 (P01,a1) step0
01 01 (P01,a1) step1
01 10 (P01,a1) step2
01 11 (P01,a1) step3
10 00 (P02,a2) step0
10 01 (P02,a2) step1
10 10 (P02,a2) step2
10 11 (P02,a2) step3
11 00 (P03,a3) step0
11 01 (P03,a3) step1
11 10 (P03,a3) step2
11 11 (P03,a3) step3
其中,指示C可为两个字符,2个bit,包括00、01、10以及11;指示B可为两个字符,2个bit,包括00、01、10以及11;开环功率控制参数的参数集合为{(P00,a0),(P01,a1),(P02,a2),(P03,a3)};闭环功率控制参数的参数集合为(step0,step1,step2,step3)。并且,开环功率控制参数的参数集合以及闭环功率控制参数的参数集合由高层配置或协议约定,开环功率控制参数的参数集合内至少包含至少一组开环功率控制参数,闭环功率控制参数的参数集合内至少包含至少一组闭环功率控制参数。
所以,gNB在调度DCI中可使用到4bit指示功率控制,其中,2bit指示开环功率控制参数,00、01、10以及11分别对应开环功率控制参数的参数集合中的1个;另外2bit指示闭环功率控制参数,00、01、10以及11分别对应闭环功率控制参数的参数集合中的1个。
具体而言,若开环功率控制指示信息为00,则对应于开环功率控制参数(P00,a0);若同时,闭环功率控制指示信息为00,则对应于闭环功率控制参数(step0)。
比如,如果网络侧设备发送的功率控制信息的指示C=00,指示D=00,指示C=00指示开环功率控制参数(P00,a0),指示D=00指示闭环功率控制参数step0;
如果网络侧设备发送的功率控制信息的指示C=01,指示D=00,指示C=01指示开环功率控制参数(P01,a0),指示D=00指示闭环功率控制参数step0;
如果网络侧设备发送的功率控制信息的指示C=10,指示D=00,指示C=10指示开环功率控制参数(P02,a0),指示D=10指示闭环功率控制参数step0;
如果网络侧设备发送的功率控制信息的指示C=11,指示D=00,指示C=11指示开环功率控制参数(P03,a0),指示D=00指示闭环功率控制参数step0;
依次类推,指示C指示开环功率控制参数,指示D指示闭环功率控制参数,可见,本实施例的指示将同时指示两种功率控制参数。
进一步地,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
获取第二历史闭环累计参数;
对所述第二历史闭环累计参数与所述闭环功率控制参数进行累计,以获得第一当前闭环累计参数;
根据所述开环功率控制参数与所述第一当前闭环累计参数调整所述上行信道的发送功率。
可以理解的是,在计算发送功率时,这两类功率控制参数均会涉及到。对于调节上行信道的发送功率的调节方式,还可进一步细化。
第一类调节方式为,若高层配置或者协议约定不同的开环功率控制参数使用同一个闭环累计参数,则在应用本实施例的过程中,累计每一次遇到的闭环功率控制参数,比如,第一次确定的闭环功率控制参数为1,第二次确定的闭环功率控制参数仍为1,则累加第一次与第二次确定的闭环功率控制参数,获得的闭环累计参数为2;同理,第三次确定的闭环功率控制参数仍为1,则获得的闭环累计参数为3。
故而,在又一次地进行发送功率的调整时,先获取之前计算出的闭环累计参数即第二历史闭环累计参数,若第二历史闭环累计参数为2,此次确定的闭环功率控制参数为1,则累计这二者,获得的第一当前闭环累计参数为3。接着,根据开环功率控制参数与闭环功率控制参数来调整所述上行信道的发送功率,其中,此处的闭环功率控制参数的数值为第一当前闭环累计参数的数值,故而,实质上,是根据开环功率控制参数与第一当前闭环累计参数来调整所述上行信道的发送功率。
可见,此类调节方式的特性为,不同的开环功率控制参数均使用同一个闭环累计参数,在这个闭环累计参数上不断累计。
进一步地,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
从第一历史闭环累计参数集合中选取与所述开环功率控制指示信息对应的第三历史闭环累计参数;
对所述第三历史闭环累计参数与所述闭环功率控制参数进行累计,以获得第二当前闭环累计参数;
根据所述开环功率控制参数与所述第二当前闭环累计参数调整所述上行信道的发送功率。
在具体实现中,对于调节上行信道的发送功率的调节方式,还存在着一类调节方式。
第二类调节方式为,若高层配置或者协议约定不同的开环功率控制参数分别使用不同的闭环累计参数,则在应用本实施例的过程中,将为每一个指示C单独地进行参数累计。比如,若第一次的指示C为00,确定的闭环功率控制参数为1;若第二次的指示C仍为00,确定的闭环功率控制参数仍为1,累加第一次与第二次确定的闭环功率控制参数,获得的闭环累计参数为2;但是,若第二次的指示C不为00,则不可累计至00对应的闭环累计参数上,若第二次的指示C为01,则需累计至01对应的闭环累计参数上。
可见,每个开环功率控制参数均存在着自己对应的闭环累计参数,比如,若有4类开环功率控制参数,则将存在着4个对应的闭环累计参数,可将4个对应的闭环累计参数组成第一历史闭环累计参数集合。
故而,在又一次地进行发送功率的调整时,若开环功率控制指示信息为01,则先从第一历史闭环累计参数集合中选出01自身对应的闭环累计参数,可记为第三历史闭环累计参数。若第三历史闭环累计参数为2,此次确定的闭环功率控制参数为1,则累计这二者,获得的第二当前闭环累计参数为3。接着,根据开环功率控制参数与数值为3的闭环功率控制参数来调整所述上行信道的发送功率。
可见,此类调节方式的特性为,不同的开环功率控制参数使用不同的闭环累计参数,在自身闭环累计参数上不断累计。
进一步地,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
将所述闭环功率控制参数作为第三当前闭环累计参数,并根据所述开环功率控制参数与所述第三当前闭环累计参数调整所述上行信道的发送功率。
第三类调节方式为,若高层配置或者协议也可约定计算发送功率使用的闭环功率控制参数为当前指示对应的闭环功率控制参数。
本实施例将结合开环功率控制指示信息与闭环功率控制指示信息来指示上行信道的发送功率,提高了指示效率。同时,还列出了多种调节方式,可多样化地进行闭环累计。
参照图6,图6为本发明上行功率控制方法又一示例性实施例的流程示意图。如图6所示,本实施例基于上述图2所示的实施例,所述功率控制指示信息包括第二参数内容指示信息。
可以理解的是,本实施例将给出另一种指示发送功率调节的指示方式,可记为指示方式3,该指示方式3仅涉及到一类指示信息,可将第二参数内容指示信息记为指示E。
所述步骤S20的步骤包括:
步骤S205,根据所述第二参数内容指示信息确定对应的开环功率控制参数与闭环功率控制参数。
具体而言,指示E用于同时确定开环功率控制参数和闭环功率控制参数的参数内容,可参考下面的表3,将通过指示E来调节上行信道的发送功率。
表3-指示方式3
指示E 功率参数组合
000 (P00,a0,step0)
001 (P00,a0,step1)
010 (P00,a0,step2)
011 (P00,a0,step3)
100 (P01,a1,step0)
101 (P01,a1,step1)
110 (P02,a2,step0)
111 (P02,a2,step1)
其中,指示E可为三个字符组成的字符串,3个bit,包括000、001、010、011、100、101、110以及111;指示E对应的功率参数组合的集为{(P00,a0,step0),(P00,a0,step1),(P00,a0,step2),(P00,a0,step3),(P01,a1,step0),(P01,a1,step1),(P02,a2,step0),(P02,a2,step1)},该功率参数组合的集中的每一个功率参数组合均同时包括开环功率控制参数与闭环功率控制参数。并且,功率参数组合的集由高层配置或协议约定。
步骤S206,根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率。
具体而言,若参数类型指示信息E为000,则确定与000对应的开环功率控制参数与闭环功率控制参数,再根据与000对应的开环功率控制参数与闭环功率控制参数来调整上行信道的发送功率。至于此处确定方式,可引入功率参数组合,即根据所述第二参数内容指示信息确定对应的功率参数组合,再根据所述功率参数组合确定对应的开环功率控制参数与闭环功率控制参数。
可见,gNB在调度DCI中可使用到3bit指示功率控制,其中,000、001、010、011、100、101、110以及111分别对应功率参数组合集中的1个。
比如,如果网络侧设备发送的功率控制信息中的指示E=000,则指示功率参数组合为(P00,a0,step0),即开环功率控制参数(P00,a0),闭环功率控制参数step0;
如果网络侧设备发送的功率控制信息中的指示E=001,则指示功率参数组合为(P00,a0,step1),即开环功率控制参数(P00,a0),闭环功率控制参数step1;
如果网络侧设备发送的功率控制信息中的指示E=010,则指示功率参数组合为(P00,a0,step2),即开环功率控制参数(P00,a0),闭环功率控制参数step2;
如果网络侧设备发送的功率控制信息中的指示E=011,则指示功率参数组合为(P00,a0,step3),即开环功率控制参数(P00,a0),闭环功率控制参数step3;
如果网络侧设备发送的功率控制信息中的指示E=100,则指示功率参数组合为(P01,a1,step0),即开环功率控制参数(P01,a1),闭环功率控制参数step0;
如果网络侧设备发送的功率控制信息中的指示E=101,则指示功率参数组合为(P01,a1,step1),即开环功率控制参数(P01,a1),闭环功率控制参数step1;
如果网络侧设备发送的功率控制信息中的指示E=110,则指示功率参数组合为(P02,a2,step0),即开环功率控制参数(P02,a2),闭环功率控制参数step0;
如果网络侧设备发送的功率控制信息中的指示E=111,则指示功率参数组合为(P02,a2,step1),即开环功率控制参数(P02,a2),闭环功率控制参数step1。
进一步地,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
获取第四历史闭环累计参数;
对所述第四历史闭环累计参数与所述闭环功率控制参数进行累计,以获得第四当前闭环累计参数;
根据所述开环功率控制参数与所述第四当前闭环累计参数调整所述上行信道的发送功率。
此外,除了此类调节方式,若高层配置或者协议约定不同的开环功率控制参数使用同一个闭环累计参数,则在应用本实施例的过程中,累计每一次遇到的闭环功率控制参数,其原理可参见图5所示实施例的第一类调节方式。
进一步地,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
从第二历史闭环累计参数集合中选取与开环功率控制指示信息对应的第五历史闭环累计参数;
对所述第五历史闭环累计参数与所述闭环功率控制参数进行累计,以获得第五当前闭环累计参数;
根据所述开环功率控制参数与所述第五当前闭环累计参数调整所述上行信道的发送功率。
在具体实现中,对于调节上行信道的发送功率的调节方式,具体为,若高层配置或者协议约定不同的开环功率控制参数分别使用不同的闭环累计参数,则在应用本实施例的过程中,将为每一个指示E单独地进行参数累计。比如,若第一次的指示E的前两位为00,则开环功率控制参数为(P00,a0),确定的闭环功率控制参数为1;若第二次的指示E前两位仍为00,确定的闭环功率控制参数仍为1,累加第一次与第二次确定的闭环功率控制参数,获得的闭环累计参数为2;但是,若第二次的指示E前两位不为00也不为01,则不可累计至(P00,a0)对应的闭环累计参数上。
可见,每个开环功率控制参数均存在着自己对应的闭环累计参数,比如,若有3类开环功率控制参数,则将存在着3个对应的闭环累计参数,可将3个对应的闭环累计参数组成第二历史闭环累计参数集合。后续原理可参见上述图5所示的实施例。
可见,此类调节方式的特性为,不同的开环功率控制参数使用不同的闭环累计参数,在自身闭环累计参数上不断累计。
进一步地,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
将所述闭环功率控制参数作为第六当前闭环累计参数,并根据所述开环功率控制参数与所述第六当前闭环累计参数调整所述上行信道的发送功率。
此外,除了此类调节方式,若高层配置或者协议也可约定不进行闭环累计操作,即计算发送功率使用的闭环功率控制参数直接为当前指示对应的闭环功率控制参数。
应当理解的是,本实施例中由于对开环功率参数使用了不同的闭环参数集合,可以尽可能地减少信令开销。
本实施例将通过一类指示即第二参数内容指示信息来同时确定两类控制参数,进而指示上行信道的发送功率,大大提高了指示效率。
此外,本发明实施例还提出一种上行功率控制装置,所述上行功率控制装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的上行功率控制程序,所述上行功率控制程序被所述处理器执行时实现如上文所述的上行功率控制方法实施例。
由于本上行功率控制装置存储的上行功率控制程序,被处理器执行时,采用了前述所有实施例的全部技术方案,因此至少具有前述所有实施例的全部技术方案所带来的所有有益效果,在此不再一一赘述。
此外,本发明实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有上行功率控制程序,所述上行功率控制程序被处理器执行时实现如上文所述的上行功率控制方法实施例。
由于本计算机可读存储介质存储的上行功率控制程序,被处理器执行时,采用了前述所有实施例的全部技术方案,因此至少具有前述所有实施例的全部技术方案所带来的所有有益效果,在此不再一一赘述。
此外,本发明实施例还提出一种用户终端,包括如上所述的上行功率控制装置。
此外,本发明实施例还提出一种系统,所述系统包括:基站以及如上所述的用户终端;
所述基站,用于向所述用户终端发送上行信道的功率控制信息。
此外,本发明实施例还提出一种系统,所述系统包括:第一用户终端以及如上所述的第二用户终端;
所述第一用户终端,用于向所述第二用户终端发送上行信道的功率控制信息。
具体地,区别于由基站与用户终端构成的系统场景,也可提出由多个用户终端构成的系统场景,其中,本发明方法实施例描述的执行主体为该第二用户终端,由第一用户终端向第二用户终端发送该上行信道的功率控制信息。
本实施例提出的上行功率控制方法、装置、存储介质、用户终端及系统,获取上行信道的功率控制信息,并从功率控制信息中解析出功率控制指示信息;通过功率控制指示信息调整上行信道的发送功率。本实施例通过在上行信道的功率控制信息中设置功率控制指示信息,可有效地调节上行信道的发送功率,解决了无法指示功率参数的调节的技术问题。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,被控终端,或者网络设备等)执行本发明每个实施例的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.一种上行功率控制方法,其特征在于,包括:
获取上行信道的功率控制信息,从所述功率控制信息中解析出功率控制指示信息;
通过所述功率控制指示信息调整所述上行信道的发送功率;
其中,所述功率控制指示信息包括开环功率控制指示信息与闭环功率控制指示信息;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
根据所述开环功率控制指示信息确定开环功率控制参数;
根据所述闭环功率控制指示信息确定闭环功率控制参数;
根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率;
其中,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
从第一历史闭环累计参数集合中选取与所述开环功率控制指示信息对应的第三历史闭环累计参数;
对所述第三历史闭环累计参数与所述闭环功率控制参数进行累计,以获得第二当前闭环累计参数;
根据所述开环功率控制参数与所述第二当前闭环累计参数调整所述上行信道的发送功率。
2.根据权利要求1所述的上行功率控制方法,其特征在于,所述上行信道为上行数据信道;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
通过所述功率控制指示信息调整所述上行数据信道的超高可靠超低时延通信URLLC发送功率,以处理所述URLLC和增强移动宽带eMMB之间的传输冲突。
3.根据权利要求1所述的上行功率控制方法,其特征在于,所述上行信道为上行控制信道;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
通过所述功率控制指示信息调整所述上行控制信道的发送功率。
4.一种上行功率控制方法,其特征在于,包括:
获取上行信道的功率控制信息,从所述功率控制信息中解析出功率控制指示信息;
通过所述功率控制指示信息调整所述上行信道的发送功率;
其中,所述功率控制指示信息包括第二参数内容指示信息;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
根据所述第二参数内容指示信息确定对应的开环功率控制参数与闭环功率控制参数;
根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率;
其中,所述根据所述开环功率控制参数与所述闭环功率控制参数调整所述上行信道的发送功率的步骤包括:
从第二历史闭环累计参数集合中选取与开环功率控制指示信息对应的第五历史闭环累计参数;
对所述第五历史闭环累计参数与所述闭环功率控制参数进行累计,以获得第五当前闭环累计参数;
根据所述开环功率控制参数与所述第五当前闭环累计参数调整所述上行信道的发送功率。
5.根据权利要求4所述的上行功率控制方法,其特征在于,所述上行信道为上行数据信道;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
通过所述功率控制指示信息调整所述上行数据信道的超高可靠超低时延通信URLLC发送功率,以处理所述URLLC和增强移动宽带eMMB之间的传输冲突。
6.根据权利要求4所述的上行功率控制方法,其特征在于,所述上行信道为上行控制信道;
所述通过所述功率控制指示信息调整所述上行信道的发送功率的步骤包括:
通过所述功率控制指示信息调整所述上行控制信道的发送功率。
7.一种上行功率控制装置,其特征在于,所述上行功率控制装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的上行功率控制程序,所述上行功率控制程序被所述处理器执行时实现如权利要求1-6中任一项所述的上行功率控制方法的步骤。
8.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有上行功率控制程序,所述上行功率控制程序被处理器执行时实现如权利要求1-6中任一项所述的上行功率控制方法的步骤。
CN201980095318.3A 2019-09-30 2019-09-30 上行功率控制方法、装置及存储介质 Active CN113678514B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109781 WO2021062852A1 (zh) 2019-09-30 2019-09-30 上行功率控制方法、装置及存储介质

Publications (2)

Publication Number Publication Date
CN113678514A CN113678514A (zh) 2021-11-19
CN113678514B true CN113678514B (zh) 2023-11-07

Family

ID=75337711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980095318.3A Active CN113678514B (zh) 2019-09-30 2019-09-30 上行功率控制方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN113678514B (zh)
WO (1) WO2021062852A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600154A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 参数获取方法及装置
WO2019073359A1 (en) * 2017-10-09 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) CONTROL SYSTEMS AND METHODS FOR FAST UPLINK POWER CONTROL
CN109803362A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
CN110035485A (zh) * 2018-01-11 2019-07-19 华为技术有限公司 上行信息的传输方法和装置
CN110049539A (zh) * 2018-01-16 2019-07-23 维沃移动通信有限公司 上行功率控制参数配置方法、终端及网络设备
CN110248402A (zh) * 2018-03-09 2019-09-17 华为技术有限公司 一种功率控制方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177875B2 (en) * 2016-02-01 2019-01-08 Ofinno Technologies, Llc Downlink control signaling for uplink transmission in a wireless network
CN108811059B (zh) * 2017-05-05 2021-08-31 华为技术有限公司 配置参数的方法及装置
CN110035484A (zh) * 2018-01-12 2019-07-19 中兴通讯股份有限公司 一种功率控制方法、第一通信节点和第二通信节点

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600154A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 参数获取方法及装置
WO2019073359A1 (en) * 2017-10-09 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) CONTROL SYSTEMS AND METHODS FOR FAST UPLINK POWER CONTROL
CN109803362A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
CN110035485A (zh) * 2018-01-11 2019-07-19 华为技术有限公司 上行信息的传输方法和装置
CN110049539A (zh) * 2018-01-16 2019-07-23 维沃移动通信有限公司 上行功率控制参数配置方法、终端及网络设备
CN110248402A (zh) * 2018-03-09 2019-09-17 华为技术有限公司 一种功率控制方法及设备

Also Published As

Publication number Publication date
CN113678514A (zh) 2021-11-19
WO2021062852A1 (zh) 2021-04-08

Similar Documents

Publication Publication Date Title
US11553435B2 (en) Uplink information transmission method and apparatus
TWI594649B (zh) 用於上行鏈路功率控制之方法及配置
US11082975B2 (en) Uplink transmit power control information determination for performing uplink sending
CN105027638A (zh) 管理用于设备到设备通信的发射功率的方法和装置
CN108964851B (zh) 一种发送和接收指示信息的方法、设备和系统
CN106793047B (zh) 一种上行功率控制方法及基站
CN113068259B (zh) 无线通信方法和设备
KR20190103165A (ko) 전력 헤드룸 보고를 보고하는 방법 및 디바이스
CN107613557B (zh) 一种发射功率确定方法、终端、网络设备和系统
CN111629429B (zh) 一种上行功率的调整方法和相关设备
WO2020143514A1 (zh) 一种功率控制的方法以及功率控制的装置
CN113678514B (zh) 上行功率控制方法、装置及存储介质
CN114828182B (zh) 上行功率调整方法及相关设备
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2021159385A1 (zh) 上行传输功率的确定方法、装置、设备及存储介质
WO2021147214A1 (zh) 通信方法和通信装置
US20160302221A1 (en) Schedule weight adjustment method
EP2557862B1 (en) Joint power control method in multi-user multiplexing technique and apparatus thereof
CN108271240B (zh) 一种用于功率调整的ue、基站中的方法和装置
CN113692018B (zh) 一种数据处理方法、装置及终端设备
WO2022206652A1 (zh) 信息指示的方法与装置
CN111511025A (zh) 功率控制方法及终端设备
CN110474719B (zh) 一种重复传输的方法和装置
CN105284164B (zh) 一种通信方法及设备
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant