WO2021159385A1 - 上行传输功率的确定方法、装置、设备及存储介质 - Google Patents

上行传输功率的确定方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021159385A1
WO2021159385A1 PCT/CN2020/075078 CN2020075078W WO2021159385A1 WO 2021159385 A1 WO2021159385 A1 WO 2021159385A1 CN 2020075078 W CN2020075078 W CN 2020075078W WO 2021159385 A1 WO2021159385 A1 WO 2021159385A1
Authority
WO
WIPO (PCT)
Prior art keywords
open
loop power
rnti
indication information
power parameter
Prior art date
Application number
PCT/CN2020/075078
Other languages
English (en)
French (fr)
Inventor
梁彬
徐婧
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080077083.8A priority Critical patent/CN114642041B/zh
Priority to PCT/CN2020/075078 priority patent/WO2021159385A1/zh
Publication of WO2021159385A1 publication Critical patent/WO2021159385A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, device, device, and storage medium for determining uplink transmission power.
  • Uplink power control in wireless communication systems is very important, in eMBB (enhanced Mobile Broadband) and URLLC (Ultra Reliable Low Latency Communications, ultra-high reliability and low latency communications) )
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communications, ultra-high reliability and low latency communications
  • the terminal equipment in the cell that transmits the URLLC service can not only ensure the quality of the data sent in the uplink, ensure the high reliability and short delay requirements of the URLLC service, but also reduce the impact to the greatest extent possible. Interference from other terminal equipment in the system (such as terminal equipment for eMBB service transmission).
  • the uplink power control scheme in the 5G NR (New Radio) system is not perfect.
  • the embodiments of the present application provide a method, device, device, and storage medium for determining uplink transmission power.
  • the technical solution is as follows:
  • an embodiment of the present application provides a method for determining uplink transmission power, which is applied to a terminal device, and the method includes:
  • a first DCI Downlink Control Information
  • the first DCI includes open-loop power parameter indication information
  • the open-loop power parameter indication information is used by the terminal device to determine Open-loop power parameters used to calculate the uplink transmission power
  • the ring power parameter determines the uplink transmission power.
  • an embodiment of the present application provides a method for indicating uplink transmission power, which is applied to a network device, and the method includes:
  • the RNTI that scrambles the first DCI is used for the terminal device to determine whether to use the open loop power parameter indication information to determine the uplink transmission power.
  • an embodiment of the present application provides a device for determining uplink transmission power, which is applied to terminal equipment, and the device includes:
  • the information receiving module is configured to receive a first DCI for scheduling uplink data transmission, where the first DCI includes open-loop power parameter indication information, and the open-loop power parameter indication information is used by the terminal device to determine that it is used for calculation Open-loop power parameter of uplink transmission power;
  • the power determining module is configured to determine the open loop power parameter indication information according to the first open loop power parameter indicated by the open loop power parameter indication information in the case of determining to use the open loop power parameter indication information according to the RNTI scrambling the first DCI The uplink transmission power.
  • an embodiment of the present application provides a device for indicating uplink transmission power, which is applied to network equipment, and the device includes:
  • An information sending module configured to send a first DCI for scheduling uplink data transmission to a terminal device, where the first DCI includes open-loop power parameter indication information, and the open-loop power parameter indication information is used by the terminal device to determine Open-loop power parameters used to calculate the uplink transmission power;
  • the RNTI that scrambles the first DCI is used for the terminal device to determine whether to use the open loop power parameter indication information to determine the uplink transmission power.
  • an embodiment of the present application provides a terminal device, the terminal device includes a processor and a transceiver connected to the processor; wherein:
  • the transceiver is configured to receive a first DCI for scheduling uplink data transmission, where the first DCI includes open-loop power parameter indication information, and the open-loop power parameter indication information is used by the terminal device to determine Calculate the open-loop power parameters of the uplink transmission power;
  • the processor is configured to determine to use the open loop power parameter indication information according to the first open loop power parameter indicated by the open loop power parameter indication information in the case of determining to use the open loop power parameter indication information according to the RNTI scrambling the first DCI, Determine the uplink transmission power.
  • an embodiment of the present application provides a network device, the network device includes a processor and a transceiver connected to the processor; wherein:
  • the transceiver is configured to send a first DCI for scheduling uplink data transmission to a terminal device, where the first DCI includes open-loop power parameter indication information, and the open-loop power parameter indication information is used for the terminal device Determine the open-loop power parameters used to calculate the uplink transmission power;
  • the RNTI that scrambles the first DCI is used for the terminal device to determine whether to use the open loop power parameter indication information to determine the uplink transmission power.
  • an embodiment of the present application provides a computer-readable storage medium in which a computer program is stored, and the computer program is used to be executed by a processor of a terminal device to realize the above-mentioned determination of the uplink transmission power. method.
  • an embodiment of the present application provides a computer-readable storage medium in which a computer program is stored, and the computer program is used to be executed by a processor of a network device to implement the above-mentioned uplink transmission power indication method.
  • an embodiment of the present application provides a chip including a programmable logic circuit and/or program instructions, and when the chip runs on a terminal device, it is used to implement the above-mentioned method for determining the uplink transmission power.
  • an embodiment of the present application provides a chip including a programmable logic circuit and/or program instructions, and when the chip is running on a network device, it is used to implement the above-mentioned uplink transmission power indication method.
  • embodiments of the present application provide a computer program product, which when the computer program product runs on a processor of a terminal device, causes the terminal device to execute the above method for determining the uplink transmission power.
  • embodiments of the present application provide a computer program product, which when the computer program product runs on a processor of a network device, causes the network device to execute the above-mentioned uplink transmission power instruction method.
  • the DCI includes an open-loop power parameter indication field
  • flexible control of uplink transmission power using uplink scheduling signaling is realized, thereby solving the problem of uplink transmission conflict.
  • the open loop power parameter indication information is carried in the uplink scheduling signaling, and the terminal device is instructed to use the open loop power parameter indication information.
  • the indicated open-loop power parameter determines the uplink transmission power.
  • Fig. 1 exemplarily shows a schematic diagram of transmission conflict between uplink URLLC and eMBB;
  • Figure 2 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for determining uplink transmission power provided by an embodiment of the present application
  • FIG. 4 is a flowchart of a method for indicating uplink transmission power provided by an embodiment of the present application
  • FIG. 5 is a block diagram of a device for determining uplink transmission power provided by an embodiment of the present application
  • Fig. 6 is a block diagram of a device for indicating uplink transmission power provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the 5G NR system introduces two services: URLLC and eMBB.
  • the feature of URLLC is to achieve ultra-high reliability (for example, 99.999%) transmission within extreme delays (for example, 1ms), and the characteristic of eMBB is that it is insensitive to delays. , But the number of transfers can be large.
  • URLLC and eMBB coexist, in order to realize URLLC instant transmission, URLLC and eMBB will conflict, that is, URLLC occupies resources that have been allocated to eMBB.
  • URLLC and eMBB transmission conflict URLLC and eMBB will interfere with each other, thereby affecting the demodulation performance of URLLC and eMBB. Retransmission can solve this effect, but it will cause the transmission delay of URLLC to increase.
  • FIG. 1 it exemplarily shows the problem of transmission conflict between uplink URLLC and eMBB.
  • the terminal 11 performs uplink URLLC transmission to the network device 20, and the terminal 12 performs uplink eMBB transmission to the network device 20. Because the uplink URLLC and eMBB occupy all Or some of the same time-frequency resources may cause transmission conflicts.
  • the network device sends the DCI for scheduling uplink data transmission to the terminal device, and the DCI includes an open-loop power parameter indicator field, which realizes the use of uplink scheduling signaling to control the uplink transmission power.
  • Flexible control which can solve the problem of uplink transmission conflict. For example, when the uplink URLLC and eMBB transmission conflict, when the network device is scheduling the terminal device for uplink URLLC transmission, the open loop power parameter indication information is carried in the uplink scheduling signaling, and the terminal device is instructed to use the open loop power parameter indication information. The indicated open-loop power parameter determines the uplink transmission power. In this way, by indicating the appropriate open-loop power parameter to the terminal equipment in the uplink scheduling signaling to increase the transmission power of the uplink URLLC transmission, the above transmission conflict can be well resolved. Problem, to ensure the transmission quality of URLLC services.
  • the uplink power control solution provided by this application is not limited to solving the problem of uplink transmission conflicts between URLLC and eMBB services, and the problem of uplink transmission conflicts between any two services of different levels.
  • the power control scheme can also be solved.
  • the problem of uplink transmission conflicts between URLLC and eMBB is mainly taken as an example to introduce and explain the uplink power control solution provided in the present application, but this does not constitute a limitation.
  • the uplink power control method adopted by the related technology mainly considers the use of power control to adapt the uplink transmission to different wireless transmission environments, including routing. Loss, shadow fading, etc.
  • the related technology uses a combination of open-loop and closed-loop control. The typical operation is as follows:
  • Faster adaptation can send power adjustment information to terminal equipment in time, can control interference and adjust power settings to adapt to channel conditions, that is, closed-loop power control.
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • i is the index of one PUSCH transmission
  • j is the open-loop power control parameter index (including target power PO_PUSCH, b, f, c (j) and path loss factor ⁇ b, f, c (j));
  • q d Is the index of the reference signal used for path loss measurement, used to obtain the path loss value PL b,f,c (q d ), which is also an open-loop power control parameter;
  • f b,f,c (i,l) is Closed-loop power control adjustment factor, where l is the closed-loop power control process.
  • the terminal device determines the closed-loop power control adjustment factor according to the TPC (Transmit Power Control) command field sent by the network side.
  • TPC Transmit Power Control
  • the TPC command field can be used for scheduling in the UE-Specific Search Space (UE-Specific Search Space).
  • the DCI of the PUSCH can also be carried by the DCI format 2_2 used to carry the group TPC command field in the Common Search Space (Common Search Space).
  • CG-PUSCH Configured grant PUSCH, physical uplink shared channel for configuration grant
  • PO_PUSCH, b, f, c (j) can be configured separately. If P O_PUSCH, b, f, c (j) alone configuration, is used in the CG-PUSCH calculate the initial transmission or retransmission of the transmission power P O_PUSCH, b, f, c (j) , and DG-PUSCH (Dynamic grant PUSCH, P O_PUSCH, b, f, c (j) used by the dynamic scheduling grant physical uplink shared channel) may be different.
  • Group common DCI e.g. DCI format 2_2
  • UE specific DCI e.g. DCI format 0_0/0_1
  • One DCI contains power indication information of multiple users
  • Multiple domain values in DCI are for multiple users.
  • the user's domain index, target base station and other information are configured through high-level signaling.
  • UE-specific DCI The way of UE-specific DCI is as follows: the power adjustment information for the user is indicated in a user-specific scheduling signaling.
  • UE specific DCI includes DCI format 0_0 and DCI format 0_1.
  • the initial transmission of CG-PUSCH does not require scheduling of DCI.
  • the retransmission of CG-PUSCH requires scheduling of DCI. If there is open loop power in the scheduling of DCI Parameter indication information, whether the open-loop power parameter indication information is effective, and whether power adjustment is performed for CG-PUSCH retransmission, is not clearly specified.
  • FIG. 2 shows a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture may include: a terminal device 10 and a network device 20.
  • the number of terminal devices 10 is usually multiple, and one or more terminal devices 10 may be distributed in a cell managed by each network device 20.
  • the terminal device 10 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment (UE), and mobile stations. (Mobile Station, MS), terminal device (terminal device), etc.
  • UE user equipment
  • MS mobile Station, MS
  • terminal device terminal device
  • the network device 20 is a device deployed in an access network to provide a wireless communication function for the terminal device 10.
  • the network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • they are called gNodeB or gNB.
  • the name "base station” may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal device 10 are collectively referred to as network devices.
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system.
  • FIG. 3 shows a flowchart of a method for determining uplink transmission power provided by an embodiment of the present application.
  • This method can be applied to the terminal equipment introduced above.
  • the method can include the following steps (310-320):
  • Step 310 Receive a first DCI for scheduling uplink data transmission.
  • the first DCI includes open-loop power parameter indication information.
  • the open-loop power parameter indication information is used by the terminal device to determine an open-loop power parameter for calculating uplink transmission power.
  • the first DCI is used to schedule uplink data transmission, for example, to allocate time-frequency resources for uplink data transmission.
  • the first DCI includes open-loop power parameter indication information, and the terminal device can determine the open-loop power parameter used to calculate the uplink transmission power according to the open-loop power parameter indication information.
  • the base station may configure one or more open-loop power parameters for the terminal device, and deliver the configuration to the terminal device in advance.
  • the open-loop power parameter indication information may be used to indicate which of the one or more open-loop power parameters is used.
  • the base station may configure two open-loop power parameters for the terminal device, denoted as parameter A and parameter B, and issue the two open-loop power parameters to the terminal device in advance.
  • the open-loop power parameter indication information is 0, it is instructed to use the parameter A to calculate the uplink transmission power; when the open-loop power parameter indication information is 1, it is instructed to use the parameter B to calculate the uplink transmission power.
  • Step 320 In a case where the open-loop power parameter indication information is determined to be used according to the RNTI that scrambles the first DCI, determine the uplink transmission power according to the first open-loop power parameter indicated by the open-loop power parameter indication information.
  • the terminal device After receiving the first DCI, the terminal device determines which RNTI is used for scrambling the first DCI.
  • the RNTI serves as the identification of the terminal device in the signal information between the terminal device and the network side.
  • RNTI includes multiple types, such as CS-RNTI (Configured Scheduling RNTI), C-RNTI (Cell RNTI), MCS-C-RNTI (Cell Modulation and Coding Strategy RNTI), etc. Different RNTIs have Different functions.
  • CS-RNTI is used in SPS (Semi-Persistent Scheduling, semi-persistent scheduling) or uplink authorization configuration (configured grant, CG), carried to terminal equipment through RRC (Radio Resource Control, radio resource control) signaling, and descrambling
  • RRC Radio Resource Control, radio resource control
  • PDCCH Physical Downlink Control Channel
  • C-RNTI is obtained by TC-RNTI (Temporary C-RNTI) when competing for access.
  • Handover scenarios are carried to terminal equipment in handover signaling for PDSCH (Physical Downlink Shared Channel, physical downlink sharing) Channel) and PUSCH transmission.
  • MCS-C-RNTI is used to indicate the MCS (Modulation and Coding Scheme) table used by PUSCH/PDSCH. It is configured by PhysicalCellGroupConfig and uses MCS-C-RNTI to descramble the PDCCH. According to the CRC (Cyclic Redundancy Check, cycle The result of redundancy check determines the MCS table to be used.
  • CRC Cyclic Redundancy Check
  • the terminal device After acquiring the RNTI that scrambles the first DCI, the terminal device determines whether to use the open loop power parameter indication information included in the first DCI according to the RNTI. In the case of determining to use the open loop power parameter indication information included in the first DCI, the terminal device determines the uplink transmission power according to the first open loop power parameter indicated by the first DCI.
  • the first open-loop power parameter indicated by the first DCI is the open-loop power parameter determined according to the open-loop power parameter indication information included in the first DCI.
  • the terminal device determines the first open loop power parameter according to the open loop power parameter indication information included in the first DCI, and then determines the uplink transmission power based on the first open loop power parameter.
  • the terminal device may determine the uplink transmission power according to the second open loop power parameter configured to the CG-PUSCH by higher layer signaling .
  • the terminal device determines the first open-loop power parameter according to the open-loop power parameter indication information included in the first DCI, and the following manners may be adopted:
  • the first open-loop power parameter is determined from the second configuration parameter according to the open-loop power parameter indication information
  • the terminal device determines the uplink transmission according to the second open loop power parameter configured to the CG-PUSCH by higher layer signaling power.
  • the terminal device scrambles the first DCI according to the RNTI, Determine whether to use the first open-loop power parameter indicated by the open-loop power parameter indication information included in the first DCI to determine the uplink transmission power, or determine the uplink transmission according to the second open-loop power parameter configured to the CG-PUSCH by higher layer signaling power. Since CG-PUSCH transmission is usually configured to be performed periodically, during the second, third, fourth and other subsequent periodic transmissions after this initial transmission, two methods are provided above , To determine the open-loop power parameter used in the subsequent periodic transmission.
  • the terminal device determines to use the open loop power parameter indication included in the first DCI information. In the case of determining to use the open loop power parameter indication information included in the first DCI, the terminal device determines the uplink transmission power according to the first open loop power parameter indicated by the open loop power parameter indication information.
  • the terminal device determines the uplink transmission power according to the first open-loop power parameter indicated by the first DCI.
  • a value of 1 in the NDI field indicates retransmission.
  • the terminal device determines the first open-loop power parameter from the P0-PUSCH-set configured by higher layer signaling according to the open-loop power parameter indication information included in the first DCI, and then based on The first open-loop power parameter determines the uplink transmission power.
  • P0-PUSCH-set can be configured for DG-PUSCH by high-level signaling, or configured for CG-PUSCH. If there is a P0-PUSCH-set configured for CG-PUSCH, use the P0-PUSCH-set configured for CG-PUSCH to determine the first open-loop power parameter; if there is no P0-PUSCH-set configured for CG-PUSCH, then The P0-PUSCH-set configured for the DG-PUSCH is used to determine the first open-loop power parameter.
  • the terminal device determines not to use the open loop power parameter indication information included in the first DCI.
  • the terminal device determines the uplink transmission according to the second open loop power parameter configured to the CG-PUSCH by higher layer signaling power.
  • the transmission power can be increased through the DCI indication to ensure the signal-to-noise ratio and decoding performance of the CG-PUSCH retransmission.
  • FIG. 4 shows a flowchart of a method for indicating uplink transmission power provided by an embodiment of the present application.
  • This method can be applied to the network equipment introduced above.
  • the method may include the following steps:
  • Step 410 Send a first DCI for scheduling uplink data transmission to the terminal device, where the first DCI includes open-loop power parameter indication information, and the open-loop power parameter indication information is used by the terminal device to determine the open loop power parameter used to calculate the uplink transmission power. Ring power parameters;
  • the RNTI that scrambles the first DCI is used for the terminal device to determine whether to use the open loop power parameter indication information to determine the uplink transmission power.
  • the RNTI that scrambles the first DCI is the first RNTI, which means that the open loop power parameter indication information included in the first DCI is not used.
  • the RNTI that scrambles the first DCI is not the first RNTI, which means that the open loop power parameter indication information included in the first DCI is used.
  • the RNTI that scrambles the first DCI is the second RNTI, which indicates that the open loop power parameter indication information included in the first DCI is used.
  • the RNTI that scrambles the first DCI is the first RNTI, which indicates that the open loop power parameter indication information included in the first DCI is used.
  • the RNTI that scrambles the first DCI is not the first RNTI, which means that the open loop power parameter indication information included in the first DCI is not used.
  • the RNTI that scrambles the first DCI is the second RNTI, which indicates that the open loop power parameter indication information included in the first DCI is not used.
  • the RNTI that scrambles the first DCI is the first RNTI and the NDI in the first DCI indicates initial transmission, it means that the open loop power parameter indication information included in the first DCI is used.
  • the RNTI that scrambles the first DCI is the first RNTI and the NDI in the first DCI indicates retransmission, it means that the open loop power parameter indication information included in the first DCI is used.
  • the first RNTI includes CS-RNTI
  • the second RNTI includes but is not limited to at least one of the following: C-RNTI, MCS-C-RNTI, TC-RNTI, SP-CSI-RNTI, P-RNTI , SI-RNTI, RA-RNTI.
  • the technical solution provided by the embodiments of the present application sends DCI for scheduling uplink data transmission to the terminal device, and the DCI includes an open-loop power parameter indicator field, which realizes the use of uplink scheduling signaling for uplink transmission.
  • Flexible control of power can solve the problem of uplink transmission conflicts. For example, when the uplink URLLC and eMBB transmission conflict, when the network device is scheduling the terminal device for uplink URLLC transmission, the open loop power parameter indication information is carried in the uplink scheduling signaling, and the terminal device is instructed to use the open loop power parameter indication information.
  • the indicated open-loop power parameter determines the uplink transmission power. In this way, by indicating the appropriate open-loop power parameter to the terminal equipment in the uplink scheduling signaling to increase the transmission power of the uplink URLLC transmission, the above transmission conflict can be well resolved. Problem, to ensure the transmission quality of URLLC services.
  • FIG. 5 shows a block diagram of an apparatus for determining uplink transmission power provided by an embodiment of the present application.
  • the device has the function of realizing the above example of the method for determining the uplink transmission power, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the terminal device described above, or it can be set in the terminal device.
  • the device 500 may include: an information receiving module 510 and a power determining module 520.
  • the information receiving module 510 is configured to receive a first DCI for scheduling uplink data transmission, where the first DCI includes open-loop power parameter indication information, and the open-loop power parameter indication information is used by the terminal device to determine Calculate the open-loop power parameter of the uplink transmission power.
  • the power determining module 520 is configured to determine to use the open loop power parameter indication information according to the RNTI scrambling the first DCI, according to the first open loop power parameter indicated by the open loop power parameter indication information, Determine the uplink transmission power.
  • the power determining module 520 is configured to determine to use the open-loop power parameter indication information when the RNTI is the first RNTI.
  • the power determining module 520 is further configured to:
  • the first open-loop power parameter of determines the uplink transmission power
  • the second open loop power parameter determines the uplink transmission power.
  • the power determination module 520 is configured to determine to use the open loop power parameter indicator when the RNTI is the first RNTI and the NDI in the first DCI indicates retransmission information.
  • the first RNTI includes a CS-RNTI.
  • the first open-loop power parameter is determined from the first configuration parameter according to the open-loop power parameter indication information
  • the first open-loop power parameter is determined from the second configuration parameter according to the open-loop power parameter indication information
  • the first configuration parameter is a configuration parameter configured for CG-PUSCH
  • the second configuration parameter is a configuration parameter configured for DG-PUSCH.
  • FIG. 6 shows a block diagram of a device for indicating uplink transmission power provided by an embodiment of the present application.
  • the device has the function of realizing the above example of the uplink transmission power indication method, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the network device described above, or it can be set in the network device.
  • the device 600 may include: an information sending module 610.
  • the information sending module 610 is configured to send a first DCI for scheduling uplink data transmission to a terminal device, where the first DCI includes open-loop power parameter indication information, and the open-loop power parameter indication information is used for the terminal device Determine the open-loop power parameter used to calculate the uplink transmission power.
  • the RNTI is the first RNTI, which indicates that the open loop power parameter indication information is used.
  • the RNTI when the RNTI is the first RNTI and the NDI in the first DCI indicates initial transmission, it indicates that the open loop power parameter indication information is used.
  • the technical solution provided by the embodiments of the present application sends DCI for scheduling uplink data transmission to the terminal device, and the DCI includes an open-loop power parameter indicator field, which realizes the use of uplink scheduling signaling for uplink transmission.
  • Flexible control of power can solve the problem of uplink transmission conflicts. For example, when the uplink URLLC and eMBB transmission conflict, when the network device is scheduling the terminal device for uplink URLLC transmission, the open loop power parameter indication information is carried in the uplink scheduling signaling, and the terminal device is instructed to use the open loop power parameter indication information.
  • the indicated open-loop power parameter determines the uplink transmission power. In this way, by indicating the appropriate open-loop power parameter to the terminal equipment in the uplink scheduling signaling to increase the transmission power of the uplink URLLC transmission, the above transmission conflict can be well resolved. Problem, to ensure the transmission quality of URLLC services.
  • the device provided in the above embodiment realizes its functions, only the division of the above-mentioned functional modules is used as an example for illustration. In actual applications, the above-mentioned functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the receiver 72 and the transmitter 73 may be implemented as a transceiver 76, and the transceiver 76 may be a communication chip.
  • the memory 74 is connected to the processor 71 through the bus 75.
  • the memory 74 may be used to store a computer program, and the processor 71 is used to execute the computer program to implement each step executed by the terminal device in the foregoing method embodiment.
  • the memory 74 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes but is not limited to: RAM (Random-Access Memory, random access memory) And ROM (Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory) Memory), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cartridges, magnetic tapes, disks Storage or other magnetic storage devices. in:
  • the transceiver 76 is configured to receive a first DCI for scheduling uplink data transmission, the first DCI includes open-loop power parameter indication information, and the open-loop power parameter indication information is used for the terminal device to determine Open-loop power parameters for calculating uplink transmission power;
  • the processor 71 is configured to, in a case where the open-loop power parameter indication information is determined to be used according to the RNTI that scrambles the first DCI, according to the first open-loop power parameter indicated by the open-loop power parameter indication information , Determine the uplink transmission power.
  • the processor 71 is further configured to determine not to use the open loop power parameter indication information when the RNTI is the first RNTI.
  • the processor 71 is configured to determine to use the open loop power parameter indication information when the RNTI is not the first RNTI.
  • the processor 71 is further configured to, in a case where the open-loop power parameter indication information is determined not to be used, determine the second open-loop power parameter configured to the CG-PUSCH by higher layer signaling Uplink transmission power.
  • the processor 71 is configured to determine to use the open loop power parameter indication information when the RNTI is the first RNTI.
  • the processor 71 is configured to determine to use the open loop power parameter indication information when the RNTI is the first RNTI and the NDI in the first DCI indicates initial transmission .
  • the processor 71 is further configured to:
  • the first open-loop power parameter of determines the uplink transmission power
  • the second open loop power parameter determines the uplink transmission power.
  • the processor 71 is configured to determine to use the open loop power parameter indication information when the RNTI is the first RNTI and the NDI in the first DCI indicates retransmission .
  • the first RNTI includes a CS-RNTI.
  • the first open-loop power parameter is determined from the second configuration parameter according to the open-loop power parameter indication information
  • the first configuration parameter is a configuration parameter configured for CG-PUSCH
  • the second configuration parameter is a configuration parameter configured for DG-PUSCH.
  • FIG. 8 shows a schematic structural diagram of a network device 80 provided by an embodiment of the present application.
  • the network device 80 may include: a processor 81, a receiver 82, a transmitter 83, a memory 84, and a bus 85.
  • the processor 81 includes one or more processing cores, and the processor 81 executes various functional applications and information processing by running software programs and modules.
  • the RNTI is the first RNTI, which means that the open-loop power parameter indication information is not used; or, the RNTI is not the first RNTI, which means that the open-loop power parameter indication information is used.
  • the RNTI is the first RNTI, which indicates that the open loop power parameter indication information is used.
  • the RNTI when the RNTI is the first RNTI and the NDI in the first DCI indicates retransmission, it means that the open loop power parameter indication information is used.
  • the embodiment of the present application provides a computer-readable storage medium in which a computer program is stored, and the computer program is used to be executed by a processor of a terminal device to implement the above-mentioned uplink transmission power determination method.
  • This application also provides a computer program product, which when the computer program product runs on the processor of the network device, causes the network device to execute the above-mentioned uplink transmission power indication method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行传输功率的确定方法、装置、设备及存储介质,属于通信技术领域。所述方法包括:终端设备接收用于调度上行数据传输的第一DCI,第一DCI中包括开环功率参数指示信息,开环功率参数指示信息用于该终端设备确定用于计算上行传输功率的开环功率参数;在根据加扰第一DCI的RNTI确定使用该开环功率参数指示信息的情况下,根据该开环功率参数指示信息指示的第一开环功率参数,确定上行传输功率。本申请技术方案,实现了利用上行调度信令对上行传输功率的灵活控制,从而能够解决上行传输冲突的问题。

Description

上行传输功率的确定方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,特别涉及一种上行传输功率的确定方法、装置、设备及存储介质。
背景技术
无线通信系统中的上行功率控制(简称为“上行功控”)是非常重要的,在eMBB(enhanced Mobile Broadband,增强型移动带宽)和URLLC(Ultra Reliable Low Latency Communications,超高可靠低时延通信)传输资源存在冲突时,通过上行功控,可以使得小区中进行URLLC业务传输的终端设备既保证上行所发送数据的质量,保证URLLC业务的高可靠和短时延的要求,又尽可能减少对系统中其他终端设备(如进行eMBB业务传输的终端设备)的干扰。
目前,5G NR(New Radio,新空口)系统中的上行功控方案还不够完善。
发明内容
本申请实施例提供了一种上行传输功率的确定方法、装置、设备及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种上行传输功率的确定方法,应用于终端设备,所述方法包括:
接收用于调度上行数据传输的第一DCI(Downlink Control Information,下行控制信息),所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
在根据加扰所述第一DCI的RNTI(Radio Network Temporary Identifier,无线网络临时标识)确定使用所述开环功率参数指示信息的情况下,根据所述开环功率参数指示信息指示的第一开环功率参数,确定所述上行传输功率。
另一方面,本申请实施例提供了一种上行传输功率的指示方法,应用于网络设备,所述方法包括:
向终端设备发送用于调度上行数据传输的第一DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
其中,加扰所述第一DCI的RNTI,用于所述终端设备确定是否使用所述开环功率参数指示信息来确定所述上行传输功率。
另一方面,本申请实施例提供了一种上行传输功率的确定装置,应用于终端设备,所述装置包括:
信息接收模块,用于接收用于调度上行数据传输的第一DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
功率确定模块,用于在根据加扰所述第一DCI的RNTI确定使用所述开环功率参数指示信息的情况下,根据所述开环功率参数指示信息指示的第一开环功率参数,确定所述上行传输功率。
另一方面,本申请实施例提供了一种上行传输功率的指示装置,应用于网络设备,所述 装置包括:
信息发送模块,用于向终端设备发送用于调度上行数据传输的第一DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
其中,加扰所述第一DCI的RNTI,用于所述终端设备确定是否使用所述开环功率参数指示信息来确定所述上行传输功率。
另一方面,本申请实施例提供了一种终端设备,所述终端设备包括处理器和与所述处理器相连的收发器;其中:
所述收发器,用于接收用于调度上行数据传输的第一DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
所述处理器,用于在根据加扰所述第一DCI的RNTI确定使用所述开环功率参数指示信息的情况下,根据所述开环功率参数指示信息指示的第一开环功率参数,确定所述上行传输功率。
另一方面,本申请实施例提供了一种网络设备,所述网络设备包括处理器和与所述处理器相连的收发器;其中:
所述收发器,用于向终端设备发送用于调度上行数据传输的第一DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
其中,加扰所述第一DCI的RNTI,用于所述终端设备确定是否使用所述开环功率参数指示信息来确定所述上行传输功率。
另一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现上述上行传输功率的确定方法。
另一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现上述上行传输功率的指示方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现上述上行传输功率的确定方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现上述上行传输功率的指示方法。
还一方面,本申请实施例提供了一种计算机程序产品,当所述计算机程序产品在终端设备的处理器上运行时,使得终端设备执行上述上行传输功率的确定方法。
还一方面,本申请实施例提供了一种计算机程序产品,当所述计算机程序产品在网络设备的处理器上运行时,使得网络设备执行上述上行传输功率的指示方法。
本申请实施例提供的技术方案可以包括如下有益效果:
通过向终端设备发送用于调度上行数据传输的DCI,并且该DCI中包含开环功率参数指示域,实现了利用上行调度信令对上行传输功率的灵活控制,从而能够解决上行传输冲突的问题。例如,当上行URLLC和eMBB传输冲突时,网络设备在调度终端设备进行上行URLLC传输时,在上行调度信令中携带开环功率参数指示信息,并指示终端设备使用该开环功率参数指示信息所指示的开环功率参数来确定上行传输功率,这样,通过在上行调度信令中向终端设备指示合适的开环功率参数,来提升上行URLLC传输的传输功率,就可以很好地解决上述传输冲突问题,保证URLLC业务的传输质量。
附图说明
图1示例性示出了上行URLLC和eMBB传输冲突的示意图;
图2是本申请一个实施例提供的网络架构的示意图;
图3是本申请一个实施例提供的上行传输功率的确定方法的流程图;
图4是本申请一个实施例提供的上行传输功率的指示方法的流程图;
图5是本申请一个实施例提供的上行传输功率的确定装置的框图;
图6是本申请一个实施例提供的上行传输功率的指示装置的框图;
图7是本申请一个实施例提供的终端设备的结构示意图;
图8是本申请一个实施例提供的网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
5G NR系统引入了URLLC和eMBB两种业务,URLLC的特征是在极端的时延内(例如,1ms)实现超高可靠性(例如,99.999%)的传输,eMBB的特征是对时延不敏感,但传输数量可以很大。对于URLLC和eMBB共存的场景,为了实现URLLC即时传输,URLLC和eMBB会发生冲突,即URLLC占用已经分配给eMBB的资源。URLLC和eMBB传输发生冲突时,URLLC和eMBB会相互干扰对方,从而影响URLLC和eMBB的解调性能,重传可以解决这一影响,但是会导致URLLC的传输时延增大。
如图1所示,其示例性示出了上行URLLC和eMBB传输冲突的问题,终端11向网络设备20进行上行URLLC传输,终端12向网络设备20进行上行eMBB传输,由于上行URLLC和eMBB占用全部或部分相同的时频资源,导致传输发生冲突。
对于上行URLLC和eMBB传输冲突的问题,有如下两种解决方式:1)停止eMBB传输,降低对URLLC的干扰;2)提高URLLC发送功率,即使eMBB干扰存在,也能保证URLLC的接收SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)满足解调需求。方式1)干扰消除彻底,但需要增加eMBB终端的复杂度。方式2)通过提高有用信号功率,保持接收SINR,且仅需要URLLC做增强。
本申请实施例提供的上行功控方案,网络设备通过向终端设备发送用于调度上行数据传输的DCI,并且该DCI中包含开环功率参数指示域,实现了利用上行调度信令对上行传输功率的灵活控制,从而能够解决上行传输冲突的问题。例如,当上行URLLC和eMBB传输冲突时,网络设备在调度终端设备进行上行URLLC传输时,在上行调度信令中携带开环功率参数指示信息,并指示终端设备使用该开环功率参数指示信息所指示的开环功率参数来确定上行传输功率,这样,通过在上行调度信令中向终端设备指示合适的开环功率参数,来提升上行URLLC传输的传输功率,就可以很好地解决上述传输冲突问题,保证URLLC业务的传输质量。
当然,本申请提供的上行功控方案,并不限于解决URLLC和eMBB这两种业务之间的上行传输冲突问题,任何两种不同等级的业务之间的上行传输冲突问题,本申请提供的上行功控方案同样可以解决。在本申请实施例中,主要以解决URLLC和eMBB之间的上行传输冲突问题为例,对本申请提供的上行功控方案进行介绍说明,但对此不构成限定。
在对本申请技术方案进行介绍说明之前,先对相关技术提供的上行功控方案进行简单介绍。
在相关技术中,由于同小区内不同终端设备之间的上行数据是正交的,因此相关技术采用的上行功率控制方法,主要考虑通过功率控制来使得上行传输适应不同的无线传输环境, 包括路损、阴影衰落等。相关技术采用一种开环和闭环控制结合的方式,典型的操作方式如下:
1)设置一个目标接收功率,基于路径损耗、调度资源、调制编码方式等粗略确定上行发送功率,即开环功率控制;
2)更快的自适应可将功率调整信息及时发送给终端设备,可以控制干扰并调整功率设置以适应信道条件,即闭环功率控制。
对于PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的功率控制,其上行发送功率可以通过下式确定:
Figure PCTCN2020075078-appb-000001
其中,i是一次PUSCH传输的索引;j是开环功率控制参数索引(包括目标功率P O_PUSCH,b,f,c(j)和路损因子α b,f,c(j));q d是用于进行路损测量的参考信号的索引,用于得到路损值PL b,f,c(q d),也是一个开环功率控制参数;f b,f,c(i,l)是闭环功率控制调整因子,其中l是闭环功率控制进程。其中,终端设备根据网络侧发送的TPC(Transmit Power Control,传输功率控制)命令域来确定闭环功率控制调整因子,该TPC命令域可以通过UE特定搜索空间(UE-Specific Search Space)中用于调度该PUSCH的DCI来承载,也可以通过公关搜索空间(Common Search Space)中用于携带组TPC命令域的DCI format 2_2来承载。
对于CG-PUSCH(Configured grant PUSCH,配置授权的物理上行共享信道)来说,P O_PUSCH,b,f,c(j)可以单独配置。如果P O_PUSCH,b,f,c(j)单独配置,则在计算CG-PUSCH初传或重传发送功率时使用的P O_PUSCH,b,f,c(j),与DG-PUSCH(Dynamic grant PUSCH,动态调度授权的物理上行共享信道)使用的P O_PUSCH,b,f,c(j)可以是不同的。
另外,在相关技术中,采用Group common DCI(e.g.DCI format 2_2)和UE specific DCI(e.g DCI format 0_0/0_1)指示闭环调整功率。
Group common DCI的方式如下:1)一条DCI包含多个用户的功率指示信息,2)DCI中的多个域值是针对多个用户的。其中,用户所在域索引、目标基站等信息通过高层信令配置。
UE specific DCI的方式如下:在一个用户专属的调度信令中指示针对该用户的功率调整信息。UE specific DCI包括DCI format 0_0和DCI format 0_1。
3GPP会议讨论确定,对于DG-PUSCH,在URLLC和eMBB发生冲突时,URLLC的调度DCI中,有1bit指示当前URLLC传输时需要使用的开环功率参数,高层信令配置至少2个开环功率参数P0。对于CG-PUSCH,在URLLC和eMBB发生冲突时,不使用功率调整方法。
同时,3GPP会议讨论确定,功率增强对于CG-PUSCH传输不适用,CG-PUSCH的初传不需要调度DCI,但是,CG-PUSCH的重传是需要调度DCI的,如果调度DCI中存在开环功率参数指示信息,该开环功率参数指示信息是否生效,CG-PUSCH的重传是否进行功率调整,没有给出明确规定。
因此,目前对于动态调度的CG-PUSCH重传,当URLLC和eMBB发生冲突时,并没有针对URLLC的功率调整方法。本申请技术方案正是在这样的背景下提出的,当URLLC和eMBB发生冲突时,可以很好地解决上述传输冲突问题,保证URLLC业务的传输质量。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术 方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图2,其示出了本申请一个实施例提供的网络架构的示意图。该网络架构可以包括:终端设备10和网络设备20。
终端设备10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端设备10。终端设备10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端设备。
网络设备20是一种部署在接入网中用以为终端设备10提供无线通信功能的装置。网络设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为网络设备。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5GNR系统后续的演进系统。
请参考图3,其示出了本申请一个实施例提供的上行传输功率的确定方法的流程图。该方法可应用于上文介绍的终端设备中。该方法可以包括如下几个步骤(310~320):
步骤310,接收用于调度上行数据传输的第一DCI,第一DCI中包括开环功率参数指示信息,开环功率参数指示信息用于终端设备确定用于计算上行传输功率的开环功率参数。
第一DCI用于调度上行数据传输,例如为上行数据传输分配时频资源。在本申请实施例中,第一DCI中包括开环功率参数指示信息,终端设备能够根据该开环功率参数指示信息,确定计算上行传输功率所使用的开环功率参数。
例如,基站可以为终端设备配置一个或多个开环功率参数,并将该配置提前下发给终端设备。开环功率参数指示信息可用于指示使用该一个或多个开环功率参数中的哪一个开环功率参数。例如,基站可以为终端设备配置2个开环功率参数,记为参数A和参数B,并将这2个开环功率参数提前下发给终端设备。当开环功率参数指示信息为0时,指示使用参数A计算上行传输功率;当开环功率参数指示信息为1时,指示使用参数B计算上行传输功率。
步骤320,在根据加扰第一DCI的RNTI确定使用该开环功率参数指示信息的情况下,根据该开环功率参数指示信息指示的第一开环功率参数,确定上行传输功率。
终端设备在接收到第一DCI之后,确定该第一DCI是采用哪个RNTI加扰的。RNTI在终端设备和网络侧之间的信号信息内部作为终端设备的标识。RNTI包括多种,如CS-RNTI(Configured Scheduling RNTI,配置调度RNTI)、C-RNTI(Cell RNTI,小区RNTI)、MCS-C-RNTI(小区调制与编码策略RNTI)等等,不同的RNTI具有不同的功能。例如,CS-RNTI用于SPS(Semi-Persistent Scheduling,半静态调度)或上行授权配置(configured grant,CG),通过RRC(Radio Resource Control,无线资源控制)信令携带给终端设备,通过解扰PDCCH(Physical Downlink Control Channel,物理下行控制信道)的结果决定SPS或上行授权配置的启动和释放。C-RNTI在竞争接入时由TC-RNTI(Temporary C-RNTI,临时的C-RNTI)得到,切换场景在切换信令中携带给终端设备,用于PDSCH(Physical Downlink Shared  Channel,物理下行共享信道)和PUSCH的传输。MCS-C-RNTI用于指示PUSCH/PDSCH使用的MCS(Modulation and Coding Scheme,调制与编码策略)表格,由PhysicalCellGroupConfig配置下来,使用MCS-C-RNTI解扰PDCCH,根据CRC(Cyclic Redundancy Check,循环冗余校验)结果决定使用的MCS表格。
终端设备在获取到加扰第一DCI的RNTI之后,根据该RNTI确定是否使用该第一DCI中包括的开环功率参数指示信息。在确定使用该第一DCI中包括的开环功率参数指示信息的情况下,终端设备根据该第一DCI指示的第一开环功率参数确定上行传输功率。其中,该第一DCI指示的第一开环功率参数,即为根据该第一DCI中包括的开环功率参数指示信息,确定的开环功率参数。终端设备根据该第一DCI中包括的开环功率参数指示信息,确定第一开环功率参数,然后基于该第一开环功率参数确定上行传输功率。
可选地,在确定不使用该第一DCI中包括的开环功率参数指示信息的情况下,终端设备可以根据由高层信令配置给CG-PUSCH的第二开环功率参数,确定上行传输功率。
可选地,终端设备根据该第一DCI中包括的开环功率参数指示信息,确定第一开环功率参数,可以采用如下方式:
1、在终端设备配置有第一配置参数的情况下,第一开环功率参数是根据开环功率参数指示信息从该第一配置参数中确定的;
2、在终端设备未被配置第一配置参数的情况下,第一开环功率参数是根据开环功率参数指示信息从第二配置参数中确定的;
其中,第一配置参数是配置给CG-PUSCH的配置参数,第二配置参数是配置给DG-PUSCH的配置参数。也即,如果终端设备具有配置给CG-PUSCH的配置参数,那么终端设备优先从该配置给CG-PUSCH的配置参数中确定第一开环功率参数;如果终端设备不具有配置给CG-PUSCH的配置参数,那么终端设备从配置给DG-PUSCH的配置参数中确定第一开环功率参数。上述第一配置参数和第二配置参数,可以由网络设备通过高层信令配置给终端设备。
例如,在确定使用第一DCI中包括的开环功率参数指示信息的情况下,终端设备在确定上行传输功率时,按照该第一DCI中包括的开环功率参数指示信息,从高层信令配置的P0-PUSCH-set中确定第一开环功率参数,再基于该第一开环功率参数确定上行传输功率。P0-PUSCH-set可以是高层信令配置给DG-PUSCH的,可也以是配置给CG-PUSCH的。如果有配置给CG-PUSCH的P0-PUSCH-set,则使用配置给CG-PUSCH的P0-PUSCH-set确定第一开环功率参数;如果没有配置给CG-PUSCH的P0-PUSCH-set,则使用配置给DG-PUSCH的P0-PUSCH-set确定第一开环功率参数。
综上所述,本申请实施例提供的技术方案,通过向终端设备发送用于调度上行数据传输的DCI,并且该DCI中包含开环功率参数指示域,实现了利用上行调度信令对上行传输功率的灵活控制,从而能够解决上行传输冲突的问题。例如,当上行URLLC和eMBB传输冲突时,网络设备在调度终端设备进行上行URLLC传输时,在上行调度信令中携带开环功率参数指示信息,并指示终端设备使用该开环功率参数指示信息所指示的开环功率参数来确定上行传输功率,这样,通过在上行调度信令中向终端设备指示合适的开环功率参数,来提升上行URLLC传输的传输功率,就可以很好地解决上述传输冲突问题,保证URLLC业务的传输质量。
在示例性实施例中,在加扰第一DCI的RNTI是第一RNTI的情况下,终端设备确定不 使用该第一DCI中包括的开环功率参数指示信息。可选地,在加扰第一DCI的RNTI不是第一RNTI的情况下,终端设备确定使用该第一DCI中包括的开环功率参数指示信息。例如,在加扰第一DCI的RNTI是第二RNTI的情况下,终端设备确定使用该第一DCI中包括的开环功率参数指示信息,然后根据该开环功率参数指示信息指示的第一开环功率参数确定上行传输功率。
可选地,第一RNTI包括CS-RNTI。例如,在加扰第一DCI的RNTI是CS-RNTI的情况下,终端设备确定不使用开环功率参数指示信息;在加扰第一DCI的RNTI不是CS-RNTI的情况下,终端设备根据该第一DCI指示的第一开环功率参数确定上行传输功率。
示例性地,上述第二RNTI包括但不限于以下至少一种:C-RNTI、MCS-C-RNTI、TC-RNTI、SP-CSI-RNTI(Semi-Persistent Channel State Information RNTI,半静态的信道状态信息RNTI)、P-RNTI(Paging RNTI,寻呼RNTI)、SI-RNTI(System Information RNTI,系统消息RNTI)、RA-RNTI(Random Access RNTI,随机接入RNTI)。当然,上述对于第一RNTI和第二RNTI的介绍说明进行示例性和解释性的,本申请实施例对此不作限定。
可选地,在终端设备确定不使用该第一DCI中包括的开环功率参数指示信息的情况下,终端设备根据由高层信令配置给CG-PUSCH的第二开环功率参数,确定上行传输功率。
在示例性实施例中,在加扰第一DCI的RNTI是第一RNTI的情况下,终端设备确定使用该第一DCI中包括的开环功率参数指示信息。可选地,在加扰第一DCI的RNTI不是第一RNTI的情况下,终端设备确定不使用该第一DCI中包括的开环功率参数指示信息。例如,在加扰第一DCI的RNTI是第二RNTI的情况下,终端设备确定不使用该第一DCI中包括的开环功率参数指示信息。
可选地,第一RNTI包括CS-RNTI。例如,在加扰第一DCI的RNTI是CS-RNTI的情况下,终端设备根据该第一DCI指示的第一开环功率参数确定上行传输功率;在加扰第一DCI的RNTI不是CS-RNTI的情况下,终端设备确定不使用该第一DCI中包括的开环功率参数指示信息。
示例性地,上述第二RNTI包括但不限于以下至少一种:C-RNTI、MCS-C-RNTI、TC-RNTI、SP-CSI-RNTI、P-RNTI、SI-RNTI、RA-RNTI。当然,上述对于第一RNTI和第二RNTI的介绍说明进行示例性和解释性的,本申请实施例对此不作限定。
可选地,在终端设备确定不使用该第一DCI中包括的开环功率参数指示信息的情况下,终端设备根据由高层信令配置给CG-PUSCH的第二开环功率参数,确定上行传输功率。
在上述两个示例性实施例中,通过判断加扰第一DCI的RNTI是否为第一RNTI(如CS-RNTI),来确定是否使用该第一DCI指示的第一开环功率参数确定上行传输功率,实现了通过加扰调度DCI的RNTI来向终端设备指示计算上行传输功率所使用的开环功率参数,实现了利用调度DCI对上行传输功率的灵活控制。
在示例性实施例中,在加扰第一DCI的RNTI是第一RNTI,且第一DCI中的NDI(New Data Indicator,新数据指示符)指示初传的情况下,终端设备确定使用该第一DCI中包括的开环功率参数指示信息。在确定使用该第一DCI中包括的开环功率参数指示信息的情况下,终端设备根据该开环功率参数指示信息指示的第一开环功率参数确定上行传输功率。
例如,在加扰第一DCI的RNTI是CS-RNTI,且第一DCI中的NDI域的值为0的情况下,表明终端设备接收到的该第一DCI是用来激活CG-PUSCH资源的,终端设备根据第一DCI指示的第一开环功率参数确定上行传输功率。NDI域的值为0指示初传(initial transmission)。可选地,终端设备在确定上行传输功率时,按照该第一DCI中包括的开环功率参数指示信息,从高层信令配置的P0-PUSCH-set中确定第一开环功率参数,再基于该第一开环功率参数确定上行传输功率。P0-PUSCH-set可以是高层信令配置给DG-PUSCH的,可也以是配置给CG-PUSCH的。如果有配置给CG-PUSCH的P0-PUSCH-set,则使用配置给 CG-PUSCH的P0-PUSCH-set确定第一开环功率参数;如果没有配置给CG-PUSCH的P0-PUSCH-set,则使用配置给DG-PUSCH的P0-PUSCH-set确定第一开环功率参数。
可选地,在加扰第一DCI的RNTI不是第一RNTI的情况下,或者在加扰第一DCI的RNTI是第一RNTI,但第一DCI中的NDI指示重传的情况下,终端设备确定不使用该第一DCI中包括的开环功率参数指示信息。可选地,在终端设备确定不使用该第一DCI中包括的开环功率参数指示信息的情况下,终端设备根据由高层信令配置给CG-PUSCH的第二开环功率参数,确定上行传输功率。
可选地,在第一DCI指示的CG-PUSCH资源上进行初传之后,再次在该第一DCI指示的CG-PUSCH资源上进行上行数据传输时,终端设备根据该第一DCI指示的第一开环功率参数确定上行传输功率。在这种方式下,对所有的CG-PUSCH资源上的传输都进行功率调整,提高CG-PUSCH的信噪比,即使发生资源冲突,也可以保证CG-PUSCH传输的性能。
可选地,在第一DCI指示的CG-PUSCH资源上进行初传之后,再次在该第一DCI指示的CG-PUSCH资源上进行上行数据传输时,终端设备根据高层信令配置给CG-PUSCH的第二开环功率参数确定上行传输功率。在这种方式下,一方面将CG-PUSCH资源上的第一次传输作为动态传输,后续其他传输为普通的CG-PUSCH传输,另一方面调度第一次CG-PUSCH传输时,考虑了资源冲突时的功率调整,保证了第一次CG-PUSCH传输的性能。
在此示例性实施例中,由于第一DCI中的NDI域指示初传,对于此次在第一DCI指示的CG-PUSCH资源上进行的初传,终端设备根据加扰第一DCI的RNTI,确定是使用该第一DCI中包括的开环功率参数指示信息指示的第一开环功率参数确定上行传输功率,还是根据由高层信令配置给CG-PUSCH的第二开环功率参数确定上行传输功率。由于CG-PUSCH传输通常是被配置为周期性执行的,在此次初传之后的第2次、第3次、第4次等后续次的周期性传输过程中,上文提供了两种方式,以确定该后续次的周期性传输时使用的开环功率参数。
在此示例性实施例中,针对CG-PUSCH的初传,如果发生资源冲突,可以通过DCI指示来提高传输功率,保证CG-PUSCH初传的信噪比和译码性能。
在示例性实施例中,在加扰第一DCI的RNTI是第一RNTI,且第一DCI中的NDI指示重传的情况下,终端设备确定使用该第一DCI中包括的开环功率参数指示信息。在确定使用该第一DCI中包括的开环功率参数指示信息的情况下,终端设备根据该开环功率参数指示信息指示的第一开环功率参数确定上行传输功率。
例如,在加扰第一DCI的RNTI是CS-RNTI,且第一DCI中的NDI域的值为1的情况下,表明终端设备接收到的该第一DCI是用来调度CG-PUSCH重传的,终端设备根据第一DCI指示的第一开环功率参数确定上行传输功率。NDI域的值为1指示重传(retransmission)。可选地,终端设备在确定上行传输功率时,按照该第一DCI中包括的开环功率参数指示信息,从高层信令配置的P0-PUSCH-set中确定第一开环功率参数,再基于该第一开环功率参数确定上行传输功率。P0-PUSCH-set可以是高层信令配置给DG-PUSCH的,可也以是配置给CG-PUSCH的。如果有配置给CG-PUSCH的P0-PUSCH-set,则使用配置给CG-PUSCH的P0-PUSCH-set确定第一开环功率参数;如果没有配置给CG-PUSCH的P0-PUSCH-set,则使用配置给DG-PUSCH的P0-PUSCH-set确定第一开环功率参数。
可选地,在加扰第一DCI的RNTI不是第一RNTI的情况下,或者在加扰第一DCI的RNTI是第一RNTI,但第一DCI中的NDI指示初传的情况下,终端设备确定不使用该第一DCI中包括的开环功率参数指示信息。可选地,在终端设备确定不使用该第一DCI中包括的开环功率参数指示信息的情况下,终端设备根据由高层信令配置给CG-PUSCH的第二开环功率参数,确定上行传输功率。
在此示例性实施例中,针对CG-PUSCH的重传,如果发生资源冲突,可以通过DCI指示来提高传输功率,保证CG-PUSCH重传的信噪比和译码性能。
请参考图4,其示出了本申请一个实施例提供的上行传输功率的指示方法的流程图。该方法可应用于上文介绍的网络设备中。该方法可以包括如下步骤:
步骤410,向终端设备发送用于调度上行数据传输的第一DCI,第一DCI中包括开环功率参数指示信息,该开环功率参数指示信息用于终端设备确定用于计算上行传输功率的开环功率参数;
其中,加扰第一DCI的RNTI,用于该终端设备确定是否使用该开环功率参数指示信息来确定上行传输功率。
在示例性实施例中,加扰第一DCI的RNTI是第一RNTI,表示不使用第一DCI中包括的开环功率参数指示信息。可选地,加扰第一DCI的RNTI不是第一RNTI,表示使用第一DCI中包括的开环功率参数指示信息。例如,加扰第一DCI的RNTI是第二RNTI,表示使用第一DCI中包括的开环功率参数指示信息。
在示例性实施例中,加扰第一DCI的RNTI是第一RNTI,表示使用第一DCI中包括的开环功率参数指示信息。可选地,加扰第一DCI的RNTI不是第一RNTI,表示不使用第一DCI中包括的开环功率参数指示信息。例如,加扰第一DCI的RNTI是第二RNTI,表示不使用第一DCI中包括的开环功率参数指示信息。
在示例性实施例中,加扰第一DCI的RNTI是第一RNTI且第一DCI中的NDI指示初传的情况下,表示使用第一DCI中包括的开环功率参数指示信息。
在示例性实施例中,加扰第一DCI的RNTI是第一RNTI且第一DCI中的NDI指示重传的情况下,表示使用第一DCI中包括的开环功率参数指示信息。
在示例性实施例中,第一RNTI包括CS-RNTI,第二RNTI包括但不限于以下至少一种:C-RNTI、MCS-C-RNTI、TC-RNTI、SP-CSI-RNTI、P-RNTI、SI-RNTI、RA-RNTI。
对于本实施例中未详细说明的细节,可参见上文实施例,此处不再赘述。
综上所述,本申请实施例提供的技术方案,通过向终端设备发送用于调度上行数据传输的DCI,并且该DCI中包含开环功率参数指示域,实现了利用上行调度信令对上行传输功率的灵活控制,从而能够解决上行传输冲突的问题。例如,当上行URLLC和eMBB传输冲突时,网络设备在调度终端设备进行上行URLLC传输时,在上行调度信令中携带开环功率参数指示信息,并指示终端设备使用该开环功率参数指示信息所指示的开环功率参数来确定上行传输功率,这样,通过在上行调度信令中向终端设备指示合适的开环功率参数,来提升上行URLLC传输的传输功率,就可以很好地解决上述传输冲突问题,保证URLLC业务的传输质量。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图5,其示出了本申请一个实施例提供的上行传输功率的确定装置的框图。该装置具有实现上述上行传输功率的确定方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端设备,也可以设置在终端设备中。如图5所示,该装置500可以包括:信息接收模块510和功率确定模块520。
信息接收模块510,用于接收用于调度上行数据传输的第一DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数。
功率确定模块520,用于在根据加扰所述第一DCI的RNTI确定使用所述开环功率参数指示信息的情况下,根据所述开环功率参数指示信息指示的第一开环功率参数,确定所述上行传输功率。
在示例性实施例中,所述功率确定模块520,还用于在所述RNTI是第一RNTI的情况下,确定不使用所述开环功率参数指示信息。
可选地,所述功率确定模块520,用于在所述RNTI不是所述第一RNTI的情况下,确定使用所述开环功率参数指示信息。
可选地,所述功率确定模块520,还用于在确定不使用所述开环功率参数指示信息的情况下,根据由高层信令配置给CG-PUSCH的第二开环功率参数,确定所述上行传输功率。
在示例性实施例中,所述功率确定模块520,用于在所述RNTI是第一RNTI的情况下,确定使用所述开环功率参数指示信息。
在示例性实施例中,所述功率确定模块520,用于在所述RNTI是第一RNTI,且所述第一DCI中的NDI指示初传的情况下,确定使用所述开环功率参数指示信息。
可选地,所述功率确定模块520,还用于:
在所述第一DCI指示的CG-PUSCH资源上进行所述初传之后,再次在所述第一DCI指示的CG-PUSCH资源上进行上行数据传输时,根据所述开环功率参数指示信息指示的第一开环功率参数确定上行传输功率;
或者,
在所述第一DCI指示的CG-PUSCH资源上进行所述初传之后,再次在所述第一DCI指示的CG-PUSCH资源上进行上行数据传输时,根据高层信令配置给CG-PUSCH的第二开环功率参数确定上行传输功率。
在示例性实施例中,所述功率确定模块520,用于在所述RNTI是第一RNTI,且所述第一DCI中的NDI指示重传的情况下,确定使用所述开环功率参数指示信息。
在示例性实施例中,所述第一RNTI包括CS-RNTI。
在示例性实施例中,
在所述终端设备配置有第一配置参数的情况下,所述第一开环功率参数是根据所述开环功率参数指示信息从所述第一配置参数中确定的;
在所述终端设备未被配置所述第一配置参数的情况下,所述第一开环功率参数是根据所述开环功率参数指示信息从第二配置参数中确定的;
其中,所述第一配置参数是配置给CG-PUSCH的配置参数,所述第二配置参数是配置给DG-PUSCH的配置参数。
综上所述,本申请实施例提供的技术方案,通过向终端设备发送用于调度上行数据传输的DCI,并且该DCI中包含开环功率参数指示域,实现了利用上行调度信令对上行传输功率的灵活控制,从而能够解决上行传输冲突的问题。例如,当上行URLLC和eMBB传输冲突时,网络设备在调度终端设备进行上行URLLC传输时,在上行调度信令中携带开环功率参数指示信息,并指示终端设备使用该开环功率参数指示信息所指示的开环功率参数来确定上行传输功率,这样,通过在上行调度信令中向终端设备指示合适的开环功率参数,来提升上行URLLC传输的传输功率,就可以很好地解决上述传输冲突问题,保证URLLC业务的传输质量。
请参考图6,其示出了本申请一个实施例提供的上行传输功率的指示装置的框图。该装置具有实现上述上行传输功率的指示方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的网络设备,也可以设置在网络设备中。如图6所示,该装置600可以包括:信息发送模块610。
信息发送模块610,用于向终端设备发送用于调度上行数据传输的第一DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数。
其中,加扰所述第一DCI的RNTI,用于所述终端设备确定是否使用所述开环功率参数指示信息来确定所述上行传输功率。
在示例性实施例中,所述RNTI是第一RNTI,表示不使用所述开环功率参数指示信息;或者,所述RNTI不是第一RNTI,表示使用所述开环功率参数指示信息。
在示例性实施例中,所述RNTI是第一RNTI,表示使用所述开环功率参数指示信息。
在示例性实施例中,所述RNTI是第一RNTI且所述第一DCI中的NDI指示初传的情况下,表示使用所述开环功率参数指示信息。
在示例性实施例中,所述RNTI是第一RNTI且所述第一DCI中的NDI指示重传的情况下,表示使用所述开环功率参数指示信息。
在示例性实施例中,所述第一RNTI包括CS-RNTI。
综上所述,本申请实施例提供的技术方案,通过向终端设备发送用于调度上行数据传输的DCI,并且该DCI中包含开环功率参数指示域,实现了利用上行调度信令对上行传输功率的灵活控制,从而能够解决上行传输冲突的问题。例如,当上行URLLC和eMBB传输冲突时,网络设备在调度终端设备进行上行URLLC传输时,在上行调度信令中携带开环功率参数指示信息,并指示终端设备使用该开环功率参数指示信息所指示的开环功率参数来确定上行传输功率,这样,通过在上行调度信令中向终端设备指示合适的开环功率参数,来提升上行URLLC传输的传输功率,就可以很好地解决上述传输冲突问题,保证URLLC业务的传输质量。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图7,其示出了本申请一个实施例提供的终端设备70的结构示意图。该终端设备70可以包括:处理器71、接收器72、发射器73、存储器74和总线75。
处理器71包括一个或者一个以上处理核心,处理器71通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器72和发射器73可以实现为一个收发器76,该收发器76可以是一块通信芯片。
存储器74通过总线75与处理器71相连。
存储器74可用于存储计算机程序,处理器71用于执行该计算机程序,以实现上述方法实施例中终端设备执行的各个步骤。
此外,存储器74可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术,CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。其中:
所述收发器76,用于接收用于调度上行数据传输的第一DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
所述处理器71,用于在根据加扰所述第一DCI的RNTI确定使用所述开环功率参数指示信息的情况下,根据所述开环功率参数指示信息指示的第一开环功率参数,确定所述上行传输功率。
在示例性实施例中,所述处理器71,还用于在所述RNTI是第一RNTI的情况下,确定 不使用所述开环功率参数指示信息。
可选地,所述处理器71,用于在所述RNTI不是所述第一RNTI的情况下,确定使用所述开环功率参数指示信息。
可选地,所述处理器71,还用于在确定不使用所述开环功率参数指示信息的情况下,根据由高层信令配置给CG-PUSCH的第二开环功率参数,确定所述上行传输功率。
在示例性实施例中,所述处理器71,用于在所述RNTI是第一RNTI的情况下,确定使用所述开环功率参数指示信息。
在示例性实施例中,所述处理器71,用于在所述RNTI是第一RNTI,且所述第一DCI中的NDI指示初传的情况下,确定使用所述开环功率参数指示信息。
可选地,所述处理器71,还用于:
在所述第一DCI指示的CG-PUSCH资源上进行所述初传之后,再次在所述第一DCI指示的CG-PUSCH资源上进行上行数据传输时,根据所述开环功率参数指示信息指示的第一开环功率参数确定上行传输功率;
或者,
在所述第一DCI指示的CG-PUSCH资源上进行所述初传之后,再次在所述第一DCI指示的CG-PUSCH资源上进行上行数据传输时,根据高层信令配置给CG-PUSCH的第二开环功率参数确定上行传输功率。
在示例性实施例中,所述处理器71,用于在所述RNTI是第一RNTI,且所述第一DCI中的NDI指示重传的情况下,确定使用所述开环功率参数指示信息。
在示例性实施例中,所述第一RNTI包括CS-RNTI。
在示例性实施例中,
在所述终端设备配置有第一配置参数的情况下,所述第一开环功率参数是根据所述开环功率参数指示信息从所述第一配置参数中确定的;
在所述终端设备未被配置所述第一配置参数的情况下,所述第一开环功率参数是根据所述开环功率参数指示信息从第二配置参数中确定的;
其中,所述第一配置参数是配置给CG-PUSCH的配置参数,所述第二配置参数是配置给DG-PUSCH的配置参数。
请参考图8,其示出了本申请一个实施例提供的网络设备80的结构示意图。该网络设备80可以包括:处理器81、接收器82、发射器83、存储器84和总线85。
处理器81包括一个或者一个以上处理核心,处理器81通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器82和发射器83可以实现为一个收发器86,该收发器86可以是一块通信芯片。
存储器84通过总线85与处理器81相连。
存储器84可用于存储计算机程序,处理器81用于执行该计算机程序,以实现上述方法实施例中网络设备执行的各个步骤。
此外,存储器84可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术,CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。其中:
所述收发器86,用于向终端设备发送用于调度上行数据传输的第一DCI,所述第一DCI 中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
其中,加扰所述第一DCI的RNTI,用于所述终端设备确定是否使用所述开环功率参数指示信息来确定所述上行传输功率。
在示例性实施例中,所述RNTI是第一RNTI,表示不使用所述开环功率参数指示信息;或者,所述RNTI不是第一RNTI,表示使用所述开环功率参数指示信息。
在示例性实施例中,所述RNTI是第一RNTI,表示使用所述开环功率参数指示信息。
在示例性实施例中,所述RNTI是第一RNTI且所述第一DCI中的NDI指示初传的情况下,表示使用所述开环功率参数指示信息。
在示例性实施例中,所述RNTI是第一RNTI且所述第一DCI中的NDI指示重传的情况下,表示使用所述开环功率参数指示信息。
在示例性实施例中,所述第一RNTI包括CS-RNTI。
本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现上述上行传输功率的确定方法。
本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现上述上行传输功率的指示方法。
本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现上述上行传输功率的确定方法。
本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现上述上行传输功率的指示方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在终端设备的处理器上运行时,使得终端设备执行上述上行传输功率的确定方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在网络设备的处理器上运行时,使得网络设备执行上述上行传输功率的指示方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (36)

  1. 一种上行传输功率的确定方法,其特征在于,应用于终端设备,所述方法包括:
    接收用于调度上行数据传输的第一下行控制信息DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
    在根据加扰所述第一DCI的无线网络临时标识RNTI确定使用所述开环功率参数指示信息的情况下,根据所述开环功率参数指示信息指示的第一开环功率参数,确定所述上行传输功率。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述RNTI是第一RNTI的情况下,确定不使用所述开环功率参数指示信息。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述RNTI不是所述第一RNTI的情况下,确定使用所述开环功率参数指示信息。
  4. 根据权利要求2所述的方法,其特征在于,所述确定不使用所述开环功率参数指示信息之后,还包括:
    根据由高层信令配置给配置授权的物理上行共享信道CG-PUSCH的第二开环功率参数,确定所述上行传输功率。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述RNTI是第一RNTI的情况下,确定使用所述开环功率参数指示信息。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述RNTI是第一RNTI,且所述第一DCI中的新数据指示符NDI指示初传的情况下,确定使用所述开环功率参数指示信息。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    在所述第一DCI指示的CG-PUSCH资源上进行所述初传之后,再次在所述第一DCI指示的CG-PUSCH资源上进行上行数据传输时,根据所述开环功率参数指示信息指示的第一开环功率参数确定上行传输功率;
    或者,
    在所述第一DCI指示的CG-PUSCH资源上进行所述初传之后,再次在所述第一DCI指示的CG-PUSCH资源上进行上行数据传输时,根据高层信令配置给CG-PUSCH的第二开环功率参数确定上行传输功率。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述RNTI是第一RNTI,且所述第一DCI中的NDI指示重传的情况下,确定使用所述开环功率参数指示信息。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一RNTI包括配置调度的无线网络临时标识CS-RNTI。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,
    在所述终端设备配置有第一配置参数的情况下,所述第一开环功率参数是根据所述开环 功率参数指示信息从所述第一配置参数中确定的;
    在所述终端设备未被配置所述第一配置参数的情况下,所述第一开环功率参数是根据所述开环功率参数指示信息从第二配置参数中确定的;
    其中,所述第一配置参数是配置给CG-PUSCH的配置参数,所述第二配置参数是配置给动态调度授权的物理上行共享信道DG-PUSCH的配置参数。
  11. 一种上行传输功率的指示方法,其特征在于,应用于网络设备,所述方法包括:
    向终端设备发送用于调度上行数据传输的第一下行控制信息DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
    其中,加扰所述第一DCI的无线网络临时标识RNTI,用于所述终端设备确定是否使用所述开环功率参数指示信息来确定所述上行传输功率。
  12. 根据权利要求11所述的方法,其特征在于,
    所述RNTI是第一RNTI,表示不使用所述开环功率参数指示信息;
    或者,
    所述RNTI不是第一RNTI,表示使用所述开环功率参数指示信息。
  13. 根据权利要求11所述的方法,其特征在于,
    所述RNTI是第一RNTI,表示使用所述开环功率参数指示信息。
  14. 根据权利要求11所述的方法,其特征在于,
    所述RNTI是第一RNTI且所述第一DCI中的新数据指示符NDI指示初传的情况下,表示使用所述开环功率参数指示信息。
  15. 根据权利要求11所述的方法,其特征在于,
    所述RNTI是第一RNTI且所述第一DCI中的NDI指示重传的情况下,表示使用所述开环功率参数指示信息。
  16. 根据权利要求11至15任一项所述的方法,其特征在于,所述第一RNTI包括配置调度的无线网络临时标识CS-RNTI。
  17. 一种上行传输功率的确定装置,其特征在于,应用于终端设备,所述装置包括:
    信息接收模块,用于接收用于调度上行数据传输的第一下行控制信息DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
    功率确定模块,用于在根据加扰所述第一DCI的无线网络临时标识RNTI确定使用所述开环功率参数指示信息的情况下,根据所述开环功率参数指示信息指示的第一开环功率参数,确定所述上行传输功率。
  18. 根据权利要求17所述的装置,其特征在于,
    所述功率确定模块,还用于在所述RNTI是第一RNTI的情况下,确定不使用所述开环功率参数指示信息。
  19. 根据权利要求18所述的装置,其特征在于,
    所述功率确定模块,用于在所述RNTI不是所述第一RNTI的情况下,确定使用所述开 环功率参数指示信息。
  20. 根据权利要求18所述的装置,其特征在于,
    所述功率确定模块,还用于在确定不使用所述开环功率参数指示信息的情况下,根据由高层信令配置给配置授权的物理上行共享信道CG-PUSCH的第二开环功率参数,确定所述上行传输功率。
  21. 根据权利要求17所述的装置,其特征在于,
    所述功率确定模块,用于在所述RNTI是第一RNTI的情况下,确定使用所述开环功率参数指示信息。
  22. 根据权利要求17所述的装置,其特征在于,
    所述功率确定模块,用于在所述RNTI是第一RNTI,且所述第一DCI中的新数据指示符NDI指示初传的情况下,确定使用所述开环功率参数指示信息。
  23. 根据权利要求22所述的装置,其特征在于,所述功率确定模块,还用于:
    在所述第一DCI指示的CG-PUSCH资源上进行所述初传之后,再次在所述第一DCI指示的CG-PUSCH资源上进行上行数据传输时,根据所述开环功率参数指示信息指示的第一开环功率参数确定上行传输功率;
    或者,
    在所述第一DCI指示的CG-PUSCH资源上进行所述初传之后,再次在所述第一DCI指示的CG-PUSCH资源上进行上行数据传输时,根据高层信令配置给CG-PUSCH的第二开环功率参数确定上行传输功率。
  24. 根据权利要求17所述的装置,其特征在于,
    所述功率确定模块,用于在所述RNTI是第一RNTI,且所述第一DCI中的NDI指示重传的情况下,确定使用所述开环功率参数指示信息。
  25. 根据权利要求17至24任一项所述的装置,其特征在于,所述第一RNTI包括配置调度的无线网络临时标识CS-RNTI。
  26. 根据权利要求17至25任一项所述的装置,其特征在于,
    在所述终端设备配置有第一配置参数的情况下,所述第一开环功率参数是根据所述开环功率参数指示信息从所述第一配置参数中确定的;
    在所述终端设备未被配置所述第一配置参数的情况下,所述第一开环功率参数是根据所述开环功率参数指示信息从第二配置参数中确定的;
    其中,所述第一配置参数是配置给CG-PUSCH的配置参数,所述第二配置参数是配置给动态调度授权的物理上行共享信道DG-PUSCH的配置参数。
  27. 一种上行传输功率的指示装置,其特征在于,应用于网络设备,所述装置包括:
    信息发送模块,用于向终端设备发送用于调度上行数据传输的第一下行控制信息DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
    其中,加扰所述第一DCI的无线网络临时标识RNTI,用于所述终端设备确定是否使用所述开环功率参数指示信息来确定所述上行传输功率。
  28. 根据权利要求27所述的装置,其特征在于,
    所述RNTI是第一RNTI,表示不使用所述开环功率参数指示信息;
    或者,
    所述RNTI不是第一RNTI,表示使用所述开环功率参数指示信息。
  29. 根据权利要求27所述的装置,其特征在于,
    所述RNTI是第一RNTI,表示使用所述开环功率参数指示信息。
  30. 根据权利要求27所述的装置,其特征在于,
    所述RNTI是第一RNTI且所述第一DCI中的新数据指示符NDI指示初传的情况下,表示使用所述开环功率参数指示信息。
  31. 根据权利要求27所述的装置,其特征在于,
    所述RNTI是第一RNTI且所述第一DCI中的NDI指示重传的情况下,表示使用所述开环功率参数指示信息。
  32. 根据权利要求27至31任一项所述的装置,其特征在于,所述第一RNTI包括配置调度的无线网络临时标识CS-RNTI。
  33. 一种终端设备,其特征在于,所述终端设备包括处理器和与所述处理器相连的收发器;其中:
    所述收发器,用于接收用于调度上行数据传输的第一下行控制信息DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
    所述处理器,用于在根据加扰所述第一DCI的无线网络临时标识RNTI确定使用所述开环功率参数指示信息的情况下,根据所述开环功率参数指示信息指示的第一开环功率参数,确定所述上行传输功率。
  34. 一种网络设备,其特征在于,所述网络设备包括处理器和与所述处理器相连的收发器;其中:
    所述收发器,用于向终端设备发送用于调度上行数据传输的第一下行控制信息DCI,所述第一DCI中包括开环功率参数指示信息,所述开环功率参数指示信息用于所述终端设备确定用于计算上行传输功率的开环功率参数;
    其中,加扰所述第一DCI的无线网络临时标识RNTI,用于所述终端设备确定是否使用所述开环功率参数指示信息来确定所述上行传输功率。
  35. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现如权利要求1至10任一项所述的上行传输功率的确定方法。
  36. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现如权利要求11至16任一项所述的上行传输功率的指示方法。
PCT/CN2020/075078 2020-02-13 2020-02-13 上行传输功率的确定方法、装置、设备及存储介质 WO2021159385A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080077083.8A CN114642041B (zh) 2020-02-13 2020-02-13 上行传输功率的确定方法、装置、设备及存储介质
PCT/CN2020/075078 WO2021159385A1 (zh) 2020-02-13 2020-02-13 上行传输功率的确定方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075078 WO2021159385A1 (zh) 2020-02-13 2020-02-13 上行传输功率的确定方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021159385A1 true WO2021159385A1 (zh) 2021-08-19

Family

ID=77292085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075078 WO2021159385A1 (zh) 2020-02-13 2020-02-13 上行传输功率的确定方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114642041B (zh)
WO (1) WO2021159385A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016325A1 (en) * 2022-07-22 2024-01-25 Lenovo (Beijing) Limited Methods and apparatuses for uplink transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107926037A (zh) * 2015-07-14 2018-04-17 摩托罗拉移动有限责任公司 用于降低 lte 上行链路传输的时延的方法和设备
US20190191328A1 (en) * 2015-03-24 2019-06-20 Ofinno Technologies, Llc Uplink Transmission Power Control of a Wireless Device in a Wireless Network
CN110049539A (zh) * 2018-01-16 2019-07-23 维沃移动通信有限公司 上行功率控制参数配置方法、终端及网络设备
CN110741707A (zh) * 2018-04-17 2020-01-31 华为技术有限公司 通信方法及其装置
CN110784917A (zh) * 2018-07-30 2020-02-11 中国移动通信有限公司研究院 一种功率控制方法及装置、终端、存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150358914A1 (en) * 2013-08-08 2015-12-10 Telefonaktiebolaget L M Ericsson (Publ) Bs and ue, and power control methods used in the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190191328A1 (en) * 2015-03-24 2019-06-20 Ofinno Technologies, Llc Uplink Transmission Power Control of a Wireless Device in a Wireless Network
CN107926037A (zh) * 2015-07-14 2018-04-17 摩托罗拉移动有限责任公司 用于降低 lte 上行链路传输的时延的方法和设备
CN110049539A (zh) * 2018-01-16 2019-07-23 维沃移动通信有限公司 上行功率控制参数配置方法、终端及网络设备
CN110741707A (zh) * 2018-04-17 2020-01-31 华为技术有限公司 通信方法及其装置
CN110784917A (zh) * 2018-07-30 2020-02-11 中国移动通信有限公司研究院 一种功率控制方法及装置、终端、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WI RAPPORTEUR (HUAWEI): "RAN1 agreements for Rel-16 eURLLC", 3GPP DRAFT; R1-1913603, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 28 November 2019 (2019-11-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051831732 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016325A1 (en) * 2022-07-22 2024-01-25 Lenovo (Beijing) Limited Methods and apparatuses for uplink transmission

Also Published As

Publication number Publication date
CN114642041B (zh) 2024-05-07
CN114642041A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
JP6494639B2 (ja) デュアル接続のためのアップリンク送信
US9913264B2 (en) Compact downlink control information for machine type communications
WO2019137344A1 (zh) 上行信息的传输方法和装置
CN110999365B (zh) 传输数据的方法和终端设备
WO2020143057A1 (zh) 信道接入方案的确定方法及装置、终端设备、网络设备
US11356959B2 (en) Methods and apparatuses for power control in a wireless communication system
JP2019512898A (ja) データ伝送方法、端末デバイス、及びネットワークデバイス
CN111418248B (zh) 增强移动通信中用于urllc的新无线电pusch
JP2019536351A (ja) 電力割振り方法、電力調整方法、端末、およびアクセスネットワークデバイス
EP3970400A1 (en) Uplink transmission pre-emption
JP7072650B2 (ja) 通信システムにおいてサブスロットをスケジューリングするための方法
CN111757433A (zh) 功率控制的方法、终端设备和网络设备
JP7347668B2 (ja) 無線通信方法、装置及びシステム
WO2020201388A1 (en) Methods and apparatuses for uplink transmission preemption
CN114157400B (zh) 一种码本的处理方法及装置
US20230388076A1 (en) User equipments, base stations and methods for multi-panel pusch transmission
CN113796143A (zh) 用于微时隙pusch的传输块确定的用户设备、基站和方法
WO2021159385A1 (zh) 上行传输功率的确定方法、装置、设备及存储介质
CN111629429B (zh) 一种上行功率的调整方法和相关设备
CN114828182B (zh) 上行功率调整方法及相关设备
CN115552858A (zh) 用于信道状态信息报告的优先级规则的用户装备、基站和方法
WO2021056034A2 (en) Method and apparatus for grant-free uplink communication
US20220256578A1 (en) Method and Apparatus for Overhead Reduction for Configured Grant Based Uplink Transmission
CN111432461A (zh) 通信方法、装置和存储介质
CN116782354A (zh) 功率控制参数指示

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918427

Country of ref document: EP

Kind code of ref document: A1