WO2023029238A1 - 转发器、网络设备及其通信方法 - Google Patents

转发器、网络设备及其通信方法 Download PDF

Info

Publication number
WO2023029238A1
WO2023029238A1 PCT/CN2021/133288 CN2021133288W WO2023029238A1 WO 2023029238 A1 WO2023029238 A1 WO 2023029238A1 CN 2021133288 W CN2021133288 W CN 2021133288W WO 2023029238 A1 WO2023029238 A1 WO 2023029238A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
network device
repeater
transponder
frequency resource
Prior art date
Application number
PCT/CN2021/133288
Other languages
English (en)
French (fr)
Inventor
张磊
下村刚史
蒋琴艳
陈哲
Original Assignee
富士通株式会社
张磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张磊 filed Critical 富士通株式会社
Priority to CN202180101706.5A priority Critical patent/CN117941282A/zh
Publication of WO2023029238A1 publication Critical patent/WO2023029238A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point

Definitions

  • This application relates to the field of communication.
  • 5G farth generation mobile communication technology
  • 3G and 4G fourth generation mobile communication technology
  • 5G systems can provide greater bandwidth and higher data rates, and It can support more types of terminals and vertical services. For this reason, 5G systems are typically deployed at significantly higher frequencies than 3G and 4G systems. For example, 5G systems can be deployed in millimeter wave bands.
  • Radio frequency transponders are widely used in the actual deployment of 3G systems and 4G systems.
  • a radio frequency repeater is a device that amplifies and forwards signals between network devices and terminal devices in the radio frequency domain.
  • Traditional radio frequency repeaters do not demodulate/decode the forwarded signal during the forwarding process.
  • the antenna orientation of traditional RF transponders is fixed.
  • the antenna direction of a traditional RF transponder is usually manually set and adjusted during the initial installation, so that the antenna on the base station side points to the incoming wave direction of the base station, and the antenna on the terminal side points to the place where enhanced deployment is required.
  • the antenna direction does not change.
  • the traditional radio frequency transponder does not have a communication function and cannot perform information exchange with the base station, so it does not support adaptive and/or relatively dynamic configuration by the base station.
  • 5G systems deployed in higher frequency bands and millimeter wave frequency bands use more advanced and complex MIMO (Multiple Input Multiple Output) technology.
  • MIMO Multiple Input Multiple Output
  • directional antennas become the basic components of base stations and terminal equipment, and sending and receiving signals based on beam forming technology is the basic signal transmission method in 5G systems.
  • the high frequency and small wavelength of the millimeter wave band are more conducive to the installation of antenna panels containing more antennas in base stations and terminal equipment.
  • the increase in the number of antenna elements contributes to more accurate beamforming, that is, it is easier to form narrow beams. Focusing energy on a narrow beam helps boost the signal while reducing interference to other devices.
  • the requirements for channel measurement and beam management are very high. Therefore, the 5G system supports more complex but accurate channel measurement, antenna calibration and beam management solutions. Control the receiving beam and sending beam of the terminal equipment to achieve better communication effect.
  • radio frequency transponders for coverage enhancement is one of the feasible solutions.
  • the antenna of a traditional radio frequency transponder cannot dynamically adjust its direction and has a wide beam.
  • a radio frequency transponder is configured in a 5G system, although it can help enhance the signal strength, it will also cause obvious interference to other surrounding base stations or terminal equipment due to the wide transmission beam, and then reduce the entire system due to the increase of new interference.
  • the throughput of the network is configured in a 5G system, although it can help enhance the signal strength, it will also cause obvious interference to other surrounding base stations or terminal equipment due to the wide transmission beam, and then reduce the entire system due to the increase of new interference.
  • embodiments of the present application provide a repeater, a network device, and a communication method thereof.
  • the repeater can receive an instruction or configuration for forwarding made by the network device according to the real-time network conditions (for example, beam instruction or configuration, forwarding bandwidth, etc.), and forward the signal according to the instruction or configuration.
  • the transponder in the embodiment of the present application can better enhance signal coverage and reduce interference to other surrounding devices, thereby improving the transmission efficiency of the entire network.
  • a communication method of a transponder including:
  • the repeater uses a predefined beam or a beam indicated or configured by a network device to forward a signal from the network device, and/or, the repeater uses a predefined beam or a beam indicated or configured by the network device to transmit a signal to the The network device forwards the signal.
  • a transponder including:
  • a forwarding module which uses a predefined beam or a beam indicated or configured by a network device to forward a signal from the network device, and/or, uses a predefined beam or a beam indicated or configured by the network device to transmit a signal to the network device Forward the signal.
  • a communication method for a network device including:
  • the network device sends to the transponder configuration information for indicating or configuring beams of the transponder
  • the network device sends the signal forwarded by the repeater, and/or receives the signal forwarded by the repeater.
  • a network device including:
  • a configuration module that sends configuration information to a transponder for indicating or configuring beams of the transponder
  • a communication module which transmits the signal forwarded by the repeater, and/or receives the signal forwarded by the repeater.
  • a communication method for a third device including:
  • the third device uses a predefined beam or a beam indicated or configured by the network device to send the signal forwarded by the repeater to the network device, and/or receive the signal from the network device forwarded by the repeater.
  • a third device including:
  • a communication module which uses a predefined beam or a beam indicated or configured by the network device to send a signal forwarded by the repeater to the network device, and/or receive a signal from the network device forwarded by the repeater.
  • a communication system including a network device, and the communication system further includes:
  • a transponder which uses a predefined beam or a beam indicated or configured by the network device to forward a signal from the network device, and/or uses a predefined beam or a beam indicated or configured by the network device to transmit a signal to the The network device forwards the signal.
  • the transponder forwards signals through a predefined beam or a beam indicated or configured by a network device, so as to achieve better signal coverage and reduce interference to other surrounding devices, thereby The transmission efficiency of the entire network can be improved.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic diagram of a communication method of a transponder according to an embodiment of the present application
  • FIG. 3 is an example diagram of forwarding a downlink signal by a transponder according to an embodiment of the present application
  • FIG. 4 is an example diagram of forwarding an uplink signal by a transponder according to an embodiment of the present application
  • FIG. 5 is an example diagram of a transponder receiving a downlink signal according to an embodiment of the present application
  • FIG. 6 is an example diagram of a transponder sending an uplink signal according to an embodiment of the present application
  • FIG. 7 is an example diagram of a transponder sending a downlink signal according to an embodiment of the present application.
  • FIG. 8 is an example diagram of a transponder receiving an uplink signal according to an embodiment of the present application.
  • FIG. 9 is an example diagram of the multiplexing of forwarding signal resources and communication signal resources according to the embodiment of the present application.
  • FIG. 10 is another example diagram of the multiplexing of forwarding signal resources and communication signal resources according to the embodiment of the present application.
  • FIG. 11 is another example diagram of the multiplexing of forwarding signal resources and communication signal resources according to the embodiment of the present application.
  • FIG. 12 is an example diagram of a transponder according to an embodiment of the present application.
  • Fig. 13 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 14 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 15 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 16 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 17 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 18 is another example diagram of the transponder of the embodiment of the present application.
  • FIG. 19 is another example diagram of a transponder according to an embodiment of the present application.
  • FIG. 20 is another example diagram of a transponder according to an embodiment of the present application.
  • FIG. 21 is another example diagram of a transponder according to an embodiment of the present application.
  • Fig. 22 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 23 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 24 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 25 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 26 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 27 is another example diagram of the transponder of the embodiment of the present application.
  • FIG. 28 is another example diagram of a transponder according to an embodiment of the present application.
  • Fig. 29 is another example diagram of a transponder according to an embodiment of the present application.
  • FIG. 30 is another example diagram of a transponder according to an embodiment of the present application.
  • FIG. 31 is another example diagram of a transponder according to an embodiment of the present application.
  • Fig. 32 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 33 is another example diagram of the transponder of the embodiment of the present application.
  • Fig. 34 is another example diagram of the transponder of the embodiment of the present application.
  • FIG. 35 is a schematic diagram of a transponder according to an embodiment of the present application.
  • FIG. 36 is a schematic diagram of a communication method of a network device according to an embodiment of the present application.
  • FIG. 37 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 38 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network conforming to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE- Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other communication protocols that are currently known or will be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transceiver node (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head), remote End radio unit (RRU, Remote Radio Unit), relay (relay) or low power node (such as femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node such as femto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area depending on the context in which the term is used.
  • the term "User Equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be called “Terminal Equipment” (TE, Terminal Equipment).
  • a terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. wait.
  • Terminal equipment may include but not limited to the following equipment: cellular phone (Cellular Phone), personal digital assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine type communication device, laptop computer, cordless phone , smartphones, smart watches, digital cameras, and more.
  • cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine type communication device
  • laptop computer machine type communication device
  • cordless phone smartphones
  • smartphones smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measurement, such as but not limited to: a machine type communication (MTC, Machine Type Communication) terminal, Vehicle communication terminal, device to device (D2D, Device to Device) terminal, machine to machine (M2M, Machine to Machine) terminal, etc.
  • MTC Machine Type Communication
  • Vehicle communication terminal device to device (D2D, Device to Device) terminal
  • M2M Machine to Machine
  • Smart Repeater is able to communicate with network equipment (gNB).
  • gNB network equipment
  • Network devices can configure the Smart Repeater to a certain extent, and through these configurations, optimize the forwarding performance of the Smart Repeater and reduce interference with other surrounding devices.
  • FIG 1 is a schematic diagram of the application scenario of the embodiment of the present application, as shown in Figure 1, for the convenience of description, a 5G base station (gNB) 101, a repeater (Repeater) 102 and a terminal equipment (UE) 103 are taken as examples Note that this application is not limited thereto.
  • gNB 101 can communicate with transponder 102 through a narrow beam (beam); in addition, transponder 102 can forward signals between gNB 101 and UE 103 through narrow beam (beam).
  • eMBB enhanced mobile broadband
  • mMTC massive machine-type communication
  • URLLC highly reliable low-latency communication
  • V2X vehicle-to-everything
  • the repeater can forward the signal between the network device and the terminal device as an example for illustration, but the present application is not limited thereto.
  • the transponder can be used as the second device to transmit signals between the first device and the third device, and can directly communicate with the first device and/or the third device; the first device to the third device can be the aforementioned any device on the network.
  • the first device is a network device and the third device is a terminal device as an example for description.
  • An embodiment of the present application provides a communication method for a repeater, which is described from the side of the repeater.
  • Fig. 2 is a schematic diagram of the communication method of the transponder according to the embodiment of the present application. As shown in Fig. 2, the method includes:
  • the forwarder forwards the signal from the network device by using a beam that is predefined or indicated or configured by the network device, and/or the forwarder forwards the signal to the network device by using a beam that is predefined or indicated or configured by the network device.
  • the method may also include:
  • the transponder receives configuration information sent by a network device for instructing or configuring beams of the transponder.
  • a beam may also be expressed as a lobe, a reference signal (RS), a transmission configuration indication (TCI, transmission configuration indication), a spatial domain filter (spatial domain filter), and the like.
  • RS reference signal
  • TCI transmission configuration indication
  • a spatial domain filter spatial domain filter
  • a beam index a lobe index
  • a reference signal index a transmission configuration indication index
  • a spatial domain filter index a spatial domain filter index
  • the aforementioned reference signal is, for example, a channel state information reference signal (CSI-RS), a sounding reference signal (SRS), an RS used by a repeater, an RS sent by a repeater, and the like.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • TCI can also be expressed as a TCI state (state).
  • a repeater may also be expressed as a repeater, a radio frequency repeater, a repeater, or a radio frequency repeater; or may also be expressed as a repeater node, a repeater node, or a repeater node; or It can also be expressed as an intelligent repeater, an intelligent repeater, an intelligent repeater, an intelligent repeater node, an intelligent repeater node, an intelligent repeater node, etc., and the present application is not limited thereto.
  • the network device may be a device in the serving cell of the terminal device, or a device in the cell where the repeater is located, or a device in the serving cell of the repeater, or a parent node of the repeater ( Parent node), this application does not limit the name of the transponder, as long as the device that can realize the above functions is included in the scope of the transponder of the present application.
  • the predefined beam or the beam indicated or configured by the network device for the transponder may be the receiving beam of the transponder, such as the receiving beam receiving the signal from the network device, or the receiving beam receiving the signal from the terminal device.
  • Beam: a predefined beam or a beam indicated or configured by a network device for a transponder may also be a transmitting beam of the transponder, for example, a transmitting beam of a signal transmitted to a network device, or a transmitting beam of a signal transmitted to a terminal device.
  • the network device can indicate or configure the beam of the transponder, for example, it can be configured dynamically or semi-statically; the beam of the transponder can also be predefined. Therefore, compared to the current solution in which the antenna of the repeater cannot dynamically adjust the direction, the repeater in the embodiment of the present application forwards signals through a predefined beam or a beam indicated or configured by a network device, thereby achieving better signal coverage And reduce interference to other surrounding devices, thereby improving the transmission efficiency of the entire network.
  • the configuration information may be sent by the network device to the repeater, for example, it may be MAC (Media Access Control) layer signaling, or RRC (Radio Resource Control) signaling, and the present application is not limited thereto.
  • the transponder After receiving the configuration information, the transponder can perform corresponding processing, such as performing signal measurement and reporting, performing beam selection, and so on.
  • the information exchanged between the network device and the repeater is not limited to configuration information, and may also include other various control information and/or data information.
  • the signal for communication between the network device and the transponder or between the third device (such as a terminal device) and the transponder is referred to as a communication signal (such as the following fifth signal, sixth signal, seventh signal and eighth signal).
  • the downlink communication signal is, for example, the fifth signal, which is used for network device configuration, scheduling, and instructing the transponder, etc., and the transponder needs to decode and/or demodulate the downlink communication signal; or the downlink communication signal is, for example, the seventh signal,
  • the transponder For the third device to perform channel measurement or estimation (for example, reference signal), the transponder generates the downlink communication signal, or for the transponder to send information or data to the third device, the transponder encodes the downlink communication signal and/or modulation.
  • the uplink communication signal is, for example, the sixth signal, which is used for the transponder to report and feed back to the network device, and the transponder needs to encode and/or modulate the uplink communication signal; or the uplink communication signal is, for example, the eighth signal, used for the transponder For channel measurement or estimation (such as a reference signal), the transponder needs to receive the uplink communication signal, or for the third device to send information or data to the transponder, and the transponder needs to decode the uplink communication signal and / or demodulation.
  • the signal between the network device and the third device that is forwarded by the repeater is called a forwarding signal (such as the following first signal, second signal, third signal, and fourth signal), and the repeater can perform Signal processing such as filtering, amplification, but no decoding and/or demodulation.
  • a forwarding signal such as the following first signal, second signal, third signal, and fourth signal
  • the repeater can perform Signal processing such as filtering, amplification, but no decoding and/or demodulation.
  • the transponder receives a first signal from the network device using a predefined first beam or a first beam indicated or configured by the network device; the transponder performs signal processing on the first signal to generate a second signal; and The transponder sends the second signal to the third device by using the predefined second beam or the second beam instructed or configured by the network device.
  • Fig. 3 is an example diagram of forwarding downlink signals by a transponder according to an embodiment of the present application.
  • the network device may use a sending beam to send a first signal to the transponder, where the first signal is used, for example, to schedule terminal devices.
  • the transponder uses the first beam (such as the receiving beam indicated or configured by the network device, such as a predefined receiving beam) to receive the first signal, and performs signal processing (such as amplification, etc.) on the first signal to generate the second signal.
  • Signal the transponder may use a second beam (for example, a transmission beam indicated or configured by the network device, or a predefined transmission beam) to transmit the second signal to the terminal device.
  • the terminal device receives the second signal using a receiving beam (eg also indicated or configured by the network device, eg predefined).
  • the repeater uses a predefined third beam or a third beam indicated or configured by the network device to receive a third signal from the third device; the repeater performs signal processing on the third signal to generate a fourth signal; And the transponder sends a fourth signal to the network device by using a predefined fourth beam or a fourth beam instructed or configured by the network device.
  • Fig. 4 is an example diagram of forwarding uplink signals by a transponder according to an embodiment of the present application.
  • the terminal device sends a third signal using a sending beam (for example, indicated or configured by the network device, and for example, predefined), and the third signal is for example used by the terminal device to report to the network device.
  • the transponder uses the third beam (the receiving beam indicated or configured by the network device, such as a predefined end beam) to receive the third signal, and performs signal processing (such as amplification, etc.) on the third signal to generate a fourth signal
  • the transponder may use a fourth beam (a transmission beam indicated or configured by the network device, such as a predefined transmission beam) to send the fourth signal to the network device.
  • the network device may use the receiving beam to receive the fourth signal sent by the transponder.
  • the foregoing has exemplified the forwarding of signals (including uplink forwarding signals and downlink forwarding signals) between the transponder and the third device (such as a terminal device), and the communication signal between the transponder and the network device ( Including uplink communication signal and downlink communication signal) for description.
  • the repeater uses a predefined fifth beam or a fifth beam indicated or configured by the network device to receive the fifth signal from the network device; and the repeater demodulates and/or decodes the fifth signal.
  • FIG. 5 is an example diagram of a transponder receiving a downlink signal according to an embodiment of the present application.
  • the network device may use the sending beam to send a fifth signal to the transponder, for example, the fifth signal is used for scheduling or configuring the transponder.
  • the transponder receives the fifth signal using a fifth beam (such as a receiving beam indicated or configured by the network device, such as a predefined receiving beam), and demodulates/decodes the fifth signal, so that the fifth signal can be transmitted according to the fifth beam.
  • Corresponding processing is performed on the content carried by the signal, for example, acquiring information carried by the fifth signal and/or performing channel estimation or channel measurement by using a reference signal carried by the fifth signal.
  • the repeater generates a sixth signal; and the repeater sends the sixth signal to the network device by using a predefined sixth beam or a sixth beam instructed or configured by the network device.
  • FIG. 6 is an example diagram of a transponder sending an uplink signal according to an embodiment of the present application.
  • the repeater generates (for example, includes modulation/coding) a sixth signal, and the sixth signal is used, for example, for the repeater to report a measurement result or feedback information to the network device.
  • the transponder may send the sixth signal to the network device by using a sixth beam (for example, a transmission beam indicated or configured by the network device, or a predefined transmission beam).
  • the network device may use the receiving beam to receive the sixth signal sent by the transponder, so as to perform corresponding processing according to the content carried by the sixth signal.
  • the communication signals (including uplink communication signals and downlink communication signals) between the transponder and the third device (such as a terminal device) will be described below.
  • the repeater generates the seventh signal; and the repeater sends the seventh signal to the third device by using a predefined seventh beam or a seventh beam indicated or configured by the network device.
  • FIG. 7 is an example diagram of a transponder sending a downlink signal according to an embodiment of the present application.
  • the transponder generates (for example, including modulation/coding, or reference signal sequence generation and modulation) a seventh signal, and the seventh signal is used, for example, by a terminal device for channel measurement or estimation (for example, a reference signal) , or for the transponder to send information or data to the terminal device.
  • the transponder may send the seventh signal to the terminal device by using a seventh beam (for example, a transmission beam indicated or configured by the network device, or a predefined transmission beam).
  • the terminal device may use the receiving beam to receive the seventh signal sent by the transponder, so as to perform corresponding processing according to the content carried by the seventh signal.
  • the transponder receives the eighth signal from the third device by using a predefined eighth beam or an eighth beam indicated or configured by the network device; and the transponder demodulates and/or decodes the eighth signal .
  • FIG. 8 is an example diagram of a transponder receiving an uplink signal according to an embodiment of the present application.
  • the terminal device can use the transmission beam to send an eighth signal to the repeater.
  • the eighth signal is used, for example, by the repeater to perform channel measurement or estimation (such as a reference signal), or for the terminal device to send information to the repeater. or data etc.
  • the transponder receives the eighth signal by using the eighth beam (such as a receiving beam indicated or configured by the network device, such as a predefined receiving beam), and demodulates/decodes the eighth signal, so that the eighth signal can be transmitted according to the eighth signal.
  • the content carried by the signal is processed accordingly.
  • FIG. 3 to FIG. 8 illustrate the forwarding signal and the communication signal respectively, but the present application is not limited thereto.
  • the forwarding signal and the communication signal can be transmitted independently, or combined into one signal for transmission. For example, combination based on one or any combination of time division (TD), frequency division (FD), code division (CD), and space division may be used, and the present application is not limited thereto.
  • TD time division
  • FD frequency division
  • CD code division
  • space division space division
  • the fifth signal sent by the network device to the repeater is included in the same signal from the network device as the first signal sent by the network device to the third device via the repeater.
  • the time domain resource of the fifth signal is at least partly the same as the time domain resource of the first signal; the frequency domain resource of the fifth signal is different from the frequency domain resource of the first signal and/or the code domain resource of the fifth signal is different from that of the first signal.
  • the code domain resources of the signal are different.
  • FIG. 9 is an exemplary diagram of multiplexing of forwarding signal resources and communication signal resources according to an embodiment of the present application.
  • the resource for sending the fifth signal is resource 1
  • the resource for sending the first signal is resource 2
  • resource 1 and resource 2 are the same in the time domain (for example, they are located on the same symbol in the same time slot), but different in the frequency domain.
  • FIG. 10 is another example diagram of multiplexing of forwarding signal resources and communication signal resources according to the embodiment of the present application.
  • the resource for transmitting the fifth signal is resource 1
  • the resource for transmitting the first signal is resource 2; resource 1 and resource 2 are partly the same in the time domain (for example, some symbols overlap), but in the frequency domain different.
  • the frequency domain resource of the fifth signal is at least partly the same as the frequency domain resource of the first signal; the time domain resource of the fifth signal is different from the time domain resource of the first signal and/or the code domain resource of the fifth signal is different from that of the first signal
  • the code domain resources of a signal are different.
  • FIG. 11 is another example diagram of multiplexing of forwarding signal resources and communication signal resources according to the embodiment of the present application.
  • the resource for transmitting the fifth signal is resource 1
  • the resource for transmitting the first signal is resource 2; resource 1 and resource 2 are partly the same in the frequency domain (for example, some subcarriers overlap), but in the time domain different.
  • the fifth signal in one time unit is orthogonal to the first signal
  • the transponder and/or terminal equipment may utilize the orthogonality between the fifth signal and the first signal after receiving the above-mentioned same signal
  • the fifth signal and/or the first signal are derived from this same signal.
  • the time-frequency resource of the fifth signal and the time-frequency resource of the first signal are in a time unit, and the time unit may be one of the following: symbol (symbol), time slot (slot), sub-frame (sub-frame) , mini-slot, the smallest scheduling unit not based on slot scheduling;
  • the time-frequency resource of the fifth signal is orthogonal to the time-frequency resource of the first signal, and/or, the code domain resource of the fifth signal is orthogonal to the code domain resource of the first signal, and/or, the fifth signal is orthogonal to the first signal
  • the signals are orthogonal in the spatial domain, etc.
  • the downlink communication signal sent by the network device to the repeater and the downlink forwarded signal sent by the network device to the third device via the repeater may be included in the same signal.
  • Fig. 12 is an example diagram of a transponder according to an embodiment of the present application.
  • the transponder after the transponder receives the ninth signal (including the first signal and the fifth signal) sent by the network device, it can obtain the fifth signal sent to itself according to the instruction (such as PDCCH, etc.), and can at least send the The first signal for forwarding is subjected to signal processing (for example, the ninth signal may be processed as a whole) and then forwarded to the terminal device. After receiving the forwarded signal, the terminal device may obtain the second signal sent to itself according to the indication (for example, PDCCH, etc.).
  • the indication for example, PDCCH, etc.
  • Fig. 13 is another example diagram of a transponder according to the embodiment of the present application.
  • the transponder performs signal processing after receiving the ninth signal (including the first signal and the fifth signal) sent by the network device, and then obtains the fifth signal sent to itself according to the instruction (such as PDCCH, etc.), And at least the first signal for forwarding may be forwarded to the terminal device. After receiving the forwarded signal, the terminal device may obtain the second signal sent to itself according to the indication (for example, PDCCH, etc.).
  • the sixth signal sent by the repeater to the network device and the fourth signal forwarded by the repeater to the network device are included in the same signal sent to the network device.
  • the time domain resource of the sixth signal is at least partially the same as the time domain resource of the fourth signal; the frequency domain resource of the sixth signal is different from the frequency domain resource of the fourth signal and/or the code domain resource of the sixth signal is different from that of the fourth signal.
  • the code domain resources of the signal are different.
  • time domain resources are at least partially identical, reference may be made to FIG. 9 or 10 .
  • the frequency domain resource of the sixth signal is at least partially the same as the frequency domain resource of the fourth signal; the time domain resource of the sixth signal is different from the time domain resource of the fourth signal and/or the code domain resource of the sixth signal is different from that of the fourth signal.
  • the code domain resources of the four signals are different. For an example in which frequency domain resources are at least partially identical, reference may be made to FIG. 11 .
  • the sixth signal and the fourth signal in one time unit are orthogonal to each other, and after receiving the above-mentioned same signal, the network device can use the orthogonality between the sixth signal and the fourth signal to obtain from the same signal Obtain the sixth signal and/or the fourth signal.
  • the time-frequency resource of the sixth signal and the time-frequency resource of the fourth signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, minimum scheduling not based on time slot scheduling unit;
  • the time-frequency resource of the sixth signal is orthogonal to the time-frequency resource of the fourth signal, and/or, the code domain resource of the sixth signal is orthogonal to the code domain resource of the fourth signal, and/or, the sixth signal is orthogonal to the fourth signal
  • the signals are orthogonal in the spatial domain.
  • the uplink communication signal sent by the transponder to the network device and the uplink forwarded signal sent from the third device to the network device via the transponder may be included in the same signal.
  • Fig. 14 is an example diagram of a transponder according to an embodiment of the present application. As shown in Figure 14, after the transponder receives the third signal sent by the terminal device, it can perform signal processing to generate the fourth signal; the transponder can generate the sixth signal by itself, and can combine the fourth signal and the sixth signal into the same After the signal is sent to the network device.
  • Fig. 15 is another example diagram of a transponder according to the embodiment of the present application. As shown in Figure 15, after the transponder receives the third signal sent by the terminal device, it can perform signal processing to generate a fourth signal; the transponder can perform signal processing by itself to generate a sixth signal, and can combine the fourth signal and the sixth signal. The signals are combined into one signal and sent to network devices.
  • Figures 12 and 14 exemplarily show an implementation solution of signal combination of a transponder, wherein Figure 12 shows a downlink situation, and Figure 14 shows an uplink situation.
  • FIGS. 13 and 15 exemplarily show another implementation solution of signal combination of the transponder, wherein FIG. 13 shows a downlink situation, and FIG. 15 shows an uplink situation. 12 to 15 only schematically illustrate the transponder of the embodiment of the present application, but are not limited thereto.
  • the third signal may be a radio frequency signal; the sixth signal may be a baseband signal, an intermediate frequency signal, or a radio frequency signal.
  • the transponder may combine the third signal and the sixth signal through signal processing at baseband, radio frequency or intermediate frequency.
  • the sixth signal output by the communication module may be a baseband signal; if combined at intermediate frequency, the sixth signal may be baseband or intermediate frequency signal; if combined at radio frequency, the sixth signal may be baseband, intermediate frequency or radio frequency signal .
  • the seventh signal sent by the repeater to the third device is included in the same signal from the repeater as the second signal sent by the network device to the third device via the repeater.
  • the time domain resource of the seventh signal is at least partially the same as the time domain resource of the second signal; the frequency domain resource of the seventh signal is different from the frequency domain resource of the second signal and/or the code domain resource of the seventh signal is different from that of the second signal.
  • the code domain resources of the signal are different.
  • time domain resources are at least partially identical, reference may be made to FIG. 9 or 10 .
  • the frequency domain resource of the seventh signal is at least partially the same as the frequency domain resource of the second signal; the time domain resource of the seventh signal is different from the time domain resource of the second signal and/or the code domain resource of the seventh signal is different from that of the second signal
  • the code domain resources of the two signals are different.
  • frequency domain resources are at least partially identical, reference may be made to FIG. 11 .
  • the time-frequency resource of the seventh signal and the time-frequency resource of the second signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, not based on time slot The smallest scheduling unit for scheduling;
  • the time-frequency resource of the seventh signal is orthogonal to the time-frequency resource of the second signal, and/or, the code domain resource of the seventh signal is orthogonal to the code domain resource of the second signal, and/or, the seventh signal is orthogonal to the second signal
  • the signals are orthogonal in the spatial domain.
  • the eighth signal sent by the third device to the repeater and the third signal forwarded to the network device via the repeater are included in the same signal sent to the repeater.
  • the time domain resource of the eighth signal is at least partially the same as the time domain resource of the third signal; the frequency domain resource of the eighth signal is different from the frequency domain resource of the third signal and/or the code domain resource of the eighth signal is different from that of the third signal.
  • the code domain resources of the signal are different.
  • time domain resources are at least partially identical, reference may be made to FIG. 9 or 10 .
  • the frequency domain resources of the eighth signal and the frequency domain resources of the third signal are at least partially the same; the time domain resources of the eighth signal and the time domain resources of the third signal are different and/or the code domain resources of the eighth signal and the first The code domain resources of the three signals are different.
  • frequency domain resources are at least partially identical, reference may be made to FIG. 11 .
  • the time-frequency resource of the eighth signal and the time-frequency resource of the third signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, not based on time slot The smallest scheduling unit for scheduling;
  • the time-frequency resource of the eighth signal is orthogonal to the time-frequency resource of the third signal, and/or, the code domain resource of the eighth signal is orthogonal to the code domain resource of the third signal, and/or, the eighth signal is orthogonal to the third signal
  • the signals are orthogonal in the spatial domain.
  • Fig. 16 is an example diagram of a transponder according to an embodiment of the present application.
  • the transponder receives the ninth signal (including the first signal and the fifth signal) sent by the network device, can obtain the fifth signal sent to itself according to the indication (such as PDCCH, etc.), and can at least The first signal for forwarding is subjected to signal processing (for example, the ninth signal may be processed as a whole) and then forwarded to the terminal device. After receiving the forwarded signal, the terminal device may obtain the second signal sent to itself according to the indication (for example, PDCCH, etc.).
  • the ninth signal including the first signal and the fifth signal sent by the network device
  • the indication such as PDCCH, etc.
  • the terminal device may obtain the second signal sent to itself according to the indication (for example, PDCCH, etc.).
  • FIG. 16 illustrates a case of downlink transmission as an example, and other cases can be handled similarly.
  • the transponder after the transponder receives the third signal sent by the terminal device, it can perform signal processing to generate the fourth signal; the transponder can generate the sixth signal by itself, and can combine the fourth signal and the sixth signal into one signal and send it to Internet equipment.
  • the transponder after the transponder receives the first signal sent by the network device, it can perform signal processing to generate the second signal; the transponder can generate the seventh signal by itself, and can combine the second signal and the seventh signal into the same signal before sending to the terminal device.
  • the transponder after receiving the tenth signal (including the third signal and the eighth signal) sent by the terminal device, the transponder performs signal processing, can obtain the eighth signal sent to itself according to the instruction, and can use the third signal for forwarding The signal is forwarded to the network device after signal processing.
  • Fig. 17 is another example diagram of a transponder according to the embodiment of the present application.
  • the transponder after receiving the ninth signal (including the first signal and the fifth signal) sent by the network device, the transponder performs signal processing, and can obtain the fifth signal sent to itself according to the instruction (such as PDCCH, etc.) , and at least perform signal processing on the first signal for forwarding and then forward it to the terminal device.
  • the terminal device After receiving the forwarded signal, the terminal device may obtain the second signal sent to itself according to the indication (for example, PDCCH, etc.).
  • FIG. 17 exemplifies a case of downlink transmission, and other cases can be handled similarly.
  • the transponder after the transponder receives the third signal sent by the terminal device, it can perform signal processing to generate the fourth signal; the transponder can generate the sixth signal by itself, and can combine the fourth signal and the sixth signal into one signal and send it to Internet equipment.
  • the transponder after the transponder receives the first signal sent by the network device, it can perform signal processing to generate the second signal; the transponder can generate the seventh signal by itself, and can combine the second signal and the seventh signal into the same signal before sending to the terminal device.
  • the transponder after receiving the tenth signal (including the third signal and the eighth signal) sent by the terminal device, the transponder performs signal processing, can obtain the eighth signal sent to itself according to the instruction, and can use the third signal for forwarding The signal is forwarded to the network device after signal processing.
  • the signal combining scheme is schematically described above, but the present application is not limited thereto, and the time division scheme is schematically described below.
  • the communication signal and the forwarded signal may be time division multiplexed (TDM), to which the present application is not limited.
  • the fifth signal sent by the network device to the repeater is located in a different time unit from the first signal sent by the network device to the third device via the repeater;
  • the fourth signals forwarded by the network device are located in different time units.
  • the sending of the downlink communication signal by the network device to the transponder and the forwarding of the downlink forwarding signal between the network device and the terminal device by the transponder are time-division, that is, performed at different times.
  • the sending of the uplink communication signal to the network device by the transponder and the forwarding of the uplink forwarding signal between the network device and the terminal device by the transponder are performed in time division, that is, at different times.
  • the second signal forwarded by the repeater to the third device and the third signal forwarded by the repeater to the network device are located in different time units; the fifth signal sent by the network device to the repeater is the same as the fifth signal sent by the repeater to the network device The sixth signal of is located in a different time unit.
  • the transponder forwards the downlink forwarding signal between the network device and the terminal device and the transponder forwards the uplink forwarding signal between the network device and the terminal device in time division, that is, at different times.
  • the sending of the downlink communication signal by the network device to the transponder and the sending of the uplink communication signal by the transponder to the network device are performed in time division, that is, at different times.
  • the network device sends a downlink communication signal to the transponder, the transponder forwards the downlink forwarding signal between the network device and the terminal device, the transponder sends an uplink communication signal to the network device, and the transponder forwards the uplink communication signal between the network device and the terminal device.
  • the forwarding signals are all time-division, that is, they are performed at different times.
  • Fig. 18 is an example diagram of a transponder according to an embodiment of the present application.
  • the repeater forwards the signal from the network device to the terminal device. That is, the transponder receives the first signal from the network device, performs signal processing on the first signal to generate a second signal, and sends the second signal to the terminal device. At this time, the repeater performs signal forwarding without communicating with the network device, and does not demodulate/decode the first signal.
  • Fig. 19 is another example diagram of a transponder according to the embodiment of the present application.
  • the repeater forwards the signal from the terminal device to the network device. That is, the transponder receives the third signal from the terminal device, performs signal processing on the third signal to generate a fourth signal, and sends the fourth signal to the network device. At this time, the repeater performs signal forwarding without communicating with the network device, and does not demodulate/decode the third signal.
  • Fig. 20 is an example diagram of a transponder according to an embodiment of the present application. As shown in Figure 20, repeaters do not repeat signals, but communicate with network devices. That is, the transponder receives the fifth signal from the network device, and demodulates/decodes the fifth signal.
  • Fig. 21 is an example diagram of a transponder according to an embodiment of the present application. As shown in Figure 21, repeaters do not repeat signals, but communicate with network devices. That is, the transponder generates a sixth signal and sends the sixth signal to the network device.
  • 18 to 21 exemplarily show an implementation solution of time division of the transponder, respectively showing the time division of the downlink forwarding signal, the uplink forwarding signal, the downlink communication signal and the uplink communication signal.
  • 18 to 21 only schematically illustrate the transponder of the embodiment of the present application, but are not limited thereto.
  • the communication between the transponder and the terminal equipment may be time-division with the forwarding between the transponder and the terminal equipment, or it may be the same as the communication or forwarding between the transponder and the network equipment. Timely.
  • the seventh signal sent by the repeater to the third device is located in a different time unit from the second signal sent by the network device to the third device via the repeater; the eighth signal sent by the third device to the repeater is the same as the second signal sent by the network device to the third device via The third signal forwarded by the repeater to the network device is located in different time units.
  • the second signal forwarded by the repeater to the terminal device and the third signal forwarded by the repeater to the network device are located in different time units, and/or, the seventh signal sent by the repeater to the terminal device is the same as the seventh signal sent to the network device via the repeater
  • the eighth signal of is located in a different time unit.
  • the fifth signal sent by the network device to the repeater and the first signal sent by the network device to the third device via the repeater are included in the ninth signal; the ninth signal, the signal sent by the repeater to the network device
  • the sixth signal and the fourth signal forwarded by the repeater to the network device are located in different time units.
  • the downlink communication signal sent by the network device to the transponder and the downlink forwarded signal between the network device and the terminal device are included in the same signal; the network device sends the same signal to the transponder, and the transponder sends the uplink signal to the network device
  • the communication signal and the uplink forwarding signal between the network equipment and the terminal equipment forwarded by the transponder are time-division, that is, performed at different times.
  • the forwarding of the downlink forwarding signal between the network device and the terminal device by the transponder and the forwarding of the uplink forwarding signal between the network device and the terminal device by the transponder are performed in time division, that is, at different times.
  • Fig. 22 is an example diagram of a transponder according to an embodiment of the present application.
  • the transponder receives a ninth signal (including the first signal and the fifth signal) from the network device.
  • the transponder processes the ninth signal to obtain the fifth signal.
  • the transponder may also at least perform signal processing on the first signal in the ninth signal (or process the entire ninth signal) to generate a second signal, and send the second signal to the terminal device.
  • Fig. 22 exemplarily shows another implementation of time division of the transponder, showing the case where the downlink forwarding signal and the downlink communication signal are included in the same signal, and the case of the uplink forwarding signal and the uplink communication signal is omitted here
  • FIG. 22 only schematically illustrates the transponder in the embodiment of the present application, but is not limited thereto.
  • the eighth signal sent by the third device to the repeater and the third signal sent by the third device to the network device via the repeater are included in the tenth signal; the tenth signal, the third signal sent by the repeater to the third device The sent seventh signal and the second signal forwarded to the third device via the repeater are located in different time units.
  • Fig. 23 is an example diagram of a transponder according to an embodiment of the present application.
  • the transponder receives the tenth signal (including the third signal and the eighth signal) from the terminal device.
  • the transponder processes the tenth signal to obtain an eighth signal.
  • the transponder may also at least perform signal processing on the third signal in the tenth signal (or process the entire tenth signal) to generate a fourth signal, and send the fourth signal to the network device.
  • Fig. 24 is another example diagram of a transponder according to the embodiment of the present application.
  • the transponder receives a ninth signal (including the first signal and the fifth signal) from the network device.
  • the transponder processes the ninth signal to obtain the fifth signal.
  • the transponder at least performs signal processing on the first signal in the ninth signal to generate a second signal, and sends the second signal to the terminal device.
  • Fig. 25 is another example diagram of a transponder according to the embodiment of the present application. As shown in Figure 25, repeaters do not repeat signals, but communicate with network devices. That is, the transponder generates a sixth signal and sends the sixth signal to the network device.
  • FIG. 26 is another example diagram of a transponder sending a downlink signal according to an embodiment of the present application.
  • the repeater does not repeat the signal, but communicates with the end device. That is, the transponder generates a seventh signal and sends the seventh signal to the network device.
  • Fig. 27 is another example diagram of a transponder according to the embodiment of the present application.
  • the repeater does not repeat signals, but communicates with end devices and network devices. That is, the transponder generates the sixth signal and sends the sixth signal to the network device; the transponder generates the seventh signal and sends the seventh signal to the network device.
  • Fig. 28 is another example diagram of a transponder according to the embodiment of the present application.
  • the transponder receives the tenth signal (including the third signal and the eighth signal) from the terminal device.
  • the transponder processes the tenth signal to obtain an eighth signal.
  • the transponder at least performs signal processing on the third signal in the tenth signal to generate a fourth signal, and sends the fourth signal to the network device.
  • Fig. 29 is another example diagram of a transponder according to the embodiment of the present application.
  • the repeater receives the third signal from the terminal device.
  • the transponder performs signal processing on the third signal to generate a fourth signal, and sends the fourth signal to the network device.
  • inter-frequency refers to, for example, using different frequency resources, such as using different frequency bands (Frequency Band/Frequency Range) or frequency points, or using different carriers (Carrier) or partial bandwidths (BWP).
  • different frequency resources such as using different frequency bands (Frequency Band/Frequency Range) or frequency points, or using different carriers (Carrier) or partial bandwidths (BWP).
  • the repeater communicates with the network device on the first frequency resource, and forwards the forwarded signal via the repeater on the second frequency resource, and the first frequency resource and the second frequency resource do not overlap in frequency domain.
  • the transponder receives the fifth signal sent by the network device on the first frequency resource, and sends the sixth signal to the network device on the first frequency resource. That is, the communication between the network device and the transponder uses a certain frequency point or frequency band, such as FR1.
  • the transponder receives the first signal for forwarding on the second frequency resource, and forwards the second signal to the terminal device on the second frequency resource; the transponder receives the third signal for forwarding on the second frequency resource, and transmits the second signal on the second frequency resource
  • the second frequency resource forwards the fourth signal to the network device. That is, forwarding between the network device and the terminal device uses another frequency point or frequency band, such as FR2.
  • Fig. 30 is another example diagram of a transponder according to an embodiment of the present application, which exemplarily shows an implementation solution of different frequencies of the transponder.
  • the frequency resource used by the communication module of the repeater communicates with the network device
  • the forwarding module of the repeater forwarding the signal between the network device and the terminal device.
  • the transponder receives the fifth signal sent by the network device at the third frequency resource, and sends the sixth signal to the network device at the fourth frequency resource, and the third frequency resource and the fourth frequency resource are located in the first frequency resource Inside;
  • the transponder receives the first signal for forwarding at the second frequency resource, and forwards the second signal to the third device at the second frequency resource; the transponder receives the third signal for forwarding at the second frequency resource, and transmits the second signal at the second frequency resource for forwarding.
  • the second frequency resource forwards the fourth signal to the network device.
  • communication between repeaters and network equipment may also be Frequency Division Duplex (FDD).
  • FDD Frequency Division Duplex
  • Fig. 31 is another example diagram of a transponder according to an embodiment of the present application, which exemplarily shows another implementation solution of different frequencies of the transponder.
  • the frequency resource (first frequency resource) used by the communication module of the repeater (communicating with the network device) is different from the frequency resource used by the forwarding module of the repeater (forwarding the signal between the network device and the terminal device) (second frequency resource).
  • the frequency resource (third frequency resource) used for downlink communication of the communication module of the repeater is different from the frequency resource (fourth frequency resource) used for uplink communication of the communication module of the repeater.
  • the repeater sends the sixth signal to the network device on the first frequency resource, receives the fifth signal sent by the network device on the second frequency resource, and forwards the forwarded signal via the repeater on the second frequency resource; the first The frequency resource does not overlap with the second frequency resource in the frequency domain.
  • the transponder receives the first signal for forwarding at the second frequency resource, and forwards the second signal to the third device at the second frequency resource; the transponder receives the third signal for forwarding at the second frequency resource, and transmits the second signal at the second frequency resource for forwarding.
  • the second frequency resource forwards the fourth signal to the network device.
  • the uplink communication between the network device and the transponder uses a certain frequency point or frequency band, such as FR1.
  • the forwarding between the network device and the terminal device, and the downlink communication between the network device and the transponder use another frequency point or frequency band, such as FR2.
  • Fig. 32 is another example diagram of a transponder according to an embodiment of the present application, which exemplarily shows another solution for realizing different frequencies of the transponder.
  • the frequency resource used by the communication module of the transponder (communicating with the network device) for uplink transmission is different from that used by the forwarding module of the transponder (forwarding the signal between the network device and the terminal device) and the downlink transmission of the communication module. frequency resources.
  • Fig. 33 is another example diagram of a transponder according to an embodiment of the present application, which exemplarily shows another solution for realizing different frequencies of the transponder.
  • the frequency resource used by the communication module of the repeater communicates with the network device and/or the terminal device
  • the forwarding module of the repeater forwarding the signal between the network device and the terminal device.
  • the signal sent by the terminal device to the transponder and the signal sent to the network device via the transponder can be combined; the uplink transmission, downlink communication transmission, and downlink forwarding transmission between the transponder and the terminal device can be time-division of.
  • Fig. 34 is another example diagram of a transponder according to an embodiment of the present application, which exemplarily shows another solution for realizing different frequencies of the transponder.
  • the frequency resource used by the communication module of the repeater communicates with the network device and/or the terminal device
  • the forwarding module of the repeater forwarding the signal between the network device and the terminal device.
  • the signal sent by the repeater to the terminal device and the signal sent to the terminal device via the repeater can be combined, and the signal sent by the terminal device to the repeater and the signal sent to the network device via the repeater can be combined;
  • the downlink transmission and uplink communication transmission between the transponder and the terminal equipment may be time-division.
  • the frequency division scheme is schematically described above, but the present application is not limited thereto.
  • the transponder forwards the signal through the predefined beam or the beam indicated or configured by the network device, so as to achieve better signal coverage and reduce interference to other surrounding devices, thereby improving the security of the entire network. transmission efficiency.
  • transponder may be a network device or a terminal device, or may be one or some components or components configured on the network device or the terminal device.
  • Figure 35 is a schematic diagram of the transponder of the embodiment of the present application. Since the principle of the transponder to solve the problem is the same as the method of the embodiment of the first aspect, its specific implementation can refer to the embodiment of the first aspect, and the content is the same The description will not be repeated.
  • the repeater 3500 in the embodiment of the present application includes: a forwarding module 3501 configured to perform forwarding in the RF domain. As shown in FIG. 35 , the repeater 3500 may further include: a communication module 3502 configured to communicate with network devices.
  • the forwarding module 3501 uses a predefined beam or a beam indicated or configured by the network device to forward a signal from the network device, and/or uses a predefined beam or a beam indicated or configured by the network device The signal is forwarded to the network device.
  • the forwarding module 3501 is configured to: use a predefined first beam or a first beam indicated or configured by the network device to receive the first signal from the network device; signal the first signal processing to generate a second signal; and sending the second signal to a third device using a predefined second beam or a second beam indicated or configured by the network device.
  • the forwarding module 3501 is configured to: use a predefined third beam or a third beam indicated or configured by the network device to receive a third signal from the third device; signal processing to generate a fourth signal; and sending the fourth signal to the network device by using a predefined fourth beam or a fourth beam instructed or configured by the network device.
  • the communication module 3502 receives configuration information sent by the network device for instructing or configuring the beam of the transponder.
  • the communication module 3502 is configured to: use a predefined fifth beam or a fifth beam indicated or configured by the network device to receive a fifth signal from the network device; demodulation and/or decoding.
  • the communication module 3502 is configured to: generate a sixth signal; and send the sixth signal to the network device by using a predefined sixth beam or a sixth beam instructed or configured by the network device.
  • the communication module 3502 is configured to: generate a seventh signal; and send the seventh signal to the third device by using a predefined seventh beam or a seventh beam instructed or configured by the network device .
  • the communication module 3502 is configured to: use a predefined eighth beam or an eighth beam indicated or configured by the network device to receive an eighth signal from the third device; The signal is demodulated and/or decoded.
  • the fifth signal sent by the network device to the repeater and the first signal sent by the network device to the third device via the repeater are included in the signal from the network device in the same signal.
  • the time domain resource of the fifth signal is at least partly the same as the time domain resource of the first signal; the frequency domain resource of the fifth signal is different from the frequency domain resource of the first signal and /or the code domain resource of the fifth signal is different from the code domain resource of the first signal.
  • the frequency domain resource of the fifth signal is at least partly the same as the frequency domain resource of the first signal; the time domain resource of the fifth signal is different from the time domain resource of the first signal and /or the code domain resource of the fifth signal is different from the code domain resource of the first signal.
  • the time-frequency resource of the fifth signal and the time-frequency resource of the first signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, The smallest scheduling unit that is not based on slot scheduling;
  • the time-frequency resource of the fifth signal is orthogonal to the time-frequency resource of the first signal, and/or, the code domain resource of the fifth signal is orthogonal to the code domain resource of the first signal, and/or Or, the fifth signal is orthogonal to the first signal in the space domain.
  • the sixth signal sent by the repeater to the network device and the fourth signal forwarded by the repeater to the network device are included in the same signal sent to the network device.
  • the time domain resources of the sixth signal and the time domain resources of the fourth signal are at least partly the same; the frequency domain resources of the sixth signal and the frequency domain resources of the fourth signal are different and /or the code domain resource of the sixth signal is different from the code domain resource of the fourth signal.
  • the frequency domain resources of the sixth signal and the frequency domain resources of the fourth signal are at least partly the same; the time domain resources of the sixth signal and the time domain resources of the fourth signal are different and /or the code domain resource of the sixth signal is different from the code domain resource of the fourth signal.
  • the time-frequency resource of the sixth signal and the time-frequency resource of the fourth signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, The smallest scheduling unit that is not based on slot scheduling;
  • the time-frequency resource of the sixth signal is orthogonal to the time-frequency resource of the fourth signal, and/or, the code domain resource of the sixth signal is orthogonal to the code domain resource of the fourth signal, and/or Or, the sixth signal is orthogonal to the fourth signal in the space domain.
  • the fifth signal sent by the network device to the repeater is located in a different time unit from the first signal sent by the network device to the third device via the repeater; the repeater The sixth signal sent to the network device is located in a different time unit from the fourth signal forwarded by the repeater to the network device.
  • the second signal forwarded by the repeater to the third device is located in a different time unit from the third signal forwarded by the repeater to the network device; the network device transmits to the repeater
  • the fifth signal sent is located in a different time unit from the sixth signal sent by the repeater to the network device.
  • the fifth signal sent by the network device to the repeater and the first signal sent by the network device to the third device via the repeater are included in the ninth signal;
  • the ninth signal, the sixth signal sent by the repeater to the network device, and the fourth signal forwarded by the repeater to the network device are located in different time units.
  • the repeater communicates with the network device on a first frequency resource, and forwards a forwarded signal via the repeater on a second frequency resource, and the first frequency resource and the second frequency resource There is no overlap in the frequency domain.
  • the transponder receives the fifth signal sent by the network device on the first frequency resource, and sends a sixth signal to the network device on the first frequency resource; or, the The transponder receives the fifth signal sent by the network device at the third frequency resource, and sends the sixth signal to the network device at the fourth frequency resource, where the third frequency resource and the fourth frequency resource are located in the within the first frequency resource.
  • the repeater receives the first signal for forwarding on the second frequency resource, and forwards the second signal to the third device on the second frequency resource;
  • the second frequency resource receives the third signal for forwarding, and forwards the fourth signal to the network device on the second frequency resource.
  • the transponder sends the sixth signal to the network device on the first frequency resource, receives the fifth signal sent by the network device on the second frequency resource, and forwards the fifth signal via the second frequency resource on the second frequency resource.
  • the forwarding signal of the repeater; the first frequency resource and the second frequency resource do not overlap in frequency domain.
  • the repeater receives the first signal for forwarding on the second frequency resource, and forwards the second signal to the third device on the second frequency resource;
  • the second frequency resource receives the third signal for forwarding, and forwards the fourth signal to the network device on the second frequency resource.
  • the seventh signal sent by the repeater to the third device and the second signal sent by the network device to the third device via the repeater are included in the signal from the repeater. in the same signal.
  • the time domain resources of the seventh signal and the time domain resources of the second signal are at least partly the same; the frequency domain resources of the seventh signal and the frequency domain resources of the second signal are different and /or the code domain resource of the seventh signal is different from the code domain resource of the second signal.
  • the frequency domain resources of the seventh signal and the frequency domain resources of the second signal are at least partly the same; the time domain resources of the seventh signal and the time domain resources of the second signal are different and /or the code domain resource of the seventh signal is different from the code domain resource of the second signal.
  • the time-frequency resource of the seventh signal and the time-frequency resource of the second signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, The smallest scheduling unit that is not based on slot scheduling;
  • the time-frequency resource of the seventh signal is orthogonal to the time-frequency resource of the second signal, and/or, the code domain resource of the seventh signal is orthogonal to the code domain resource of the second signal, and/or Or, the seventh signal is orthogonal to the second signal in a spatial domain.
  • the eighth signal sent by the third device to the repeater and the third signal forwarded to the network device via the repeater are included in the same signal sent to the repeater .
  • the time domain resources of the eighth signal and the time domain resources of the third signal are at least partly the same; the frequency domain resources of the eighth signal and the frequency domain resources of the third signal are different and /or the code domain resource of the eighth signal is different from the code domain resource of the third signal.
  • the frequency domain resources of the eighth signal and the frequency domain resources of the third signal are at least partly the same; the time domain resources of the eighth signal and the time domain resources of the third signal are different and /or the code domain resource of the eighth signal is different from the code domain resource of the third signal.
  • the time-frequency resource of the eighth signal and the time-frequency resource of the third signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, The smallest scheduling unit that is not based on slot scheduling;
  • the time-frequency resource of the eighth signal is orthogonal to the time-frequency resource of the third signal, and/or, the code domain resource of the eighth signal is orthogonal to the code domain resource of the third signal, and/or Or, the eighth signal is orthogonal to the third signal in a spatial domain.
  • the seventh signal sent by the repeater to the third device is located in a different time unit from the second signal sent by the network device to the third device via the repeater;
  • the eighth signal sent by the third device to the repeater is located in a different time unit from the third signal forwarded to the network device via the repeater.
  • the second signal forwarded by the repeater to the third device is located in a different time unit from the third signal forwarded by the repeater to the network device;
  • the seventh signal sent by the repeater to the third device is located in a different time unit from the eighth signal sent to the network device via the repeater.
  • the eighth signal sent by the third device to the repeater and the third signal sent by the third device to the network device via the repeater are included in the tenth signal;
  • the tenth signal, the seventh signal sent by the repeater to the third device, and the second signal forwarded to the third device via the repeater are located in different time units.
  • transponder 3500 in the embodiment of the present application may also include other components or modules, and for specific content of these components or modules, reference may be made to related technologies.
  • Fig. 35 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of the present application is not limited thereto.
  • the transponder forwards the signal through the predefined beam or the beam indicated or configured by the network device, so as to achieve better signal coverage and reduce interference to other surrounding devices, thereby improving the security of the entire network. transmission efficiency.
  • the embodiment of the present application provides a communication method of a network device, which is described from the side of the network device, and the same content as the embodiment of the first aspect will not be repeated.
  • Fig. 36 is a schematic diagram of a communication method of a network device according to an embodiment of the present application. As shown in Fig. 36, the method includes:
  • the network device sends configuration information for instructing or configuring beams of the repeater to the repeater;
  • the network device sends a signal through the repeater, and/or receives a signal forwarded through the repeater.
  • the network device sending the signal forwarded to the third device through the repeater includes: the network device sends the first signal to the repeater; wherein the repeater uses a predefined first beam or the network device receiving a first signal from the network device with the indicated or configured first beam; performing signal processing on the first signal to generate a second signal; and using a predefined second beam or a signal indicated or configured by the network device The second beam sends the second signal to the third device.
  • the network device receiving the signal from the third device forwarded by the transponder includes: the network device receiving the fourth signal sent by the transponder; wherein the transponder uses a predefined third beam or the The third beam indicated or configured by the network device receives a third signal from the third device; performs signal processing on the third signal to generate a fourth signal; and uses a predefined fourth beam or the network device indicates Or the configured fourth beam sends the fourth signal to the network device.
  • the network device sends a fifth signal to the transponder; wherein, the transponder uses a predefined fifth beam or a fifth beam instructed or configured by the network device to receive the fifth signal from the network device signal; and demodulating and/or decoding the fifth signal.
  • the network device receives the sixth signal sent by the transponder; wherein the transponder generates the sixth signal; and uses a predefined sixth beam or a sixth beam indicated or configured by the network device to transmit The network device sends the sixth signal.
  • the fifth signal sent by the network device to the repeater and the first signal sent by the network device to the third device via the repeater are included in the signal from the network device in the same signal.
  • the time domain resource of the fifth signal is at least partly the same as the time domain resource of the first signal; the frequency domain resource of the fifth signal is different from the frequency domain resource of the first signal and /or the code domain resource of the fifth signal is different from the code domain resource of the first signal.
  • the frequency domain resource of the fifth signal is at least partly the same as the frequency domain resource of the first signal; the time domain resource of the fifth signal is different from the time domain resource of the first signal and /or the code domain resource of the fifth signal is different from the code domain resource of the first signal.
  • the time-frequency resource of the fifth signal and the time-frequency resource of the first signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, The smallest scheduling unit that is not based on slot scheduling;
  • the time-frequency resource of the fifth signal is orthogonal to the time-frequency resource of the first signal, and/or, the code domain resource of the fifth signal is orthogonal to the code domain resource of the first signal, and/or Or, the fifth signal is orthogonal to the first signal in a spatial domain.
  • the sixth signal sent by the repeater to the network device and the fourth signal forwarded by the repeater to the network device are included in the same signal sent to the network device.
  • the time domain resources of the sixth signal and the time domain resources of the fourth signal are at least partly the same; the frequency domain resources of the sixth signal and the frequency domain resources of the fourth signal are different and /or the code domain resource of the sixth signal is different from the code domain resource of the fourth signal.
  • the frequency domain resources of the sixth signal and the frequency domain resources of the fourth signal are at least partly the same; the time domain resources of the sixth signal and the time domain resources of the fourth signal are different and /or the code domain resource of the sixth signal is different from the code domain resource of the fourth signal.
  • the time-frequency resource of the sixth signal and the time-frequency resource of the fourth signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, The smallest scheduling unit that is not based on slot scheduling;
  • the time-frequency resource of the sixth signal is orthogonal to the time-frequency resource of the fourth signal, and/or, the code domain resource of the sixth signal is orthogonal to the code domain resource of the fourth signal, and/or Or, the sixth signal is orthogonal to the fourth signal in a spatial domain.
  • the fifth signal sent by the network device to the repeater is located in a different time unit from the first signal sent by the network device to the third device via the repeater; the repeater The sixth signal sent to the network device is located in a different time unit from the fourth signal forwarded by the repeater to the network device.
  • the second signal forwarded by the repeater to the third device is located in a different time unit from the third signal forwarded by the repeater to the network device;
  • the fifth signal sent by the network device to the repeater is located in a different time unit from the sixth signal sent by the repeater to the network device.
  • the fifth signal sent by the network device to the repeater and the first signal sent by the network device to the third device via the repeater are included in the ninth signal;
  • the ninth signal, the sixth signal sent by the repeater to the network device, and the fourth signal forwarded by the repeater to the network device are located in different time units.
  • the repeater communicates with the network device on a first frequency resource, and forwards a forwarded signal via the repeater on a second frequency resource, and the first frequency resource and the second frequency resource There is no overlap in the frequency domain.
  • the transponder receives a fifth signal sent by the network device at the first frequency resource, and sends a sixth signal to the network device at the first frequency resource;
  • the repeater receives the first signal for forwarding on the second frequency resource, and forwards the second signal to the third device on the second frequency resource; the repeater receives the first signal for forwarding on the second frequency resource; receiving the third signal for forwarding, and forwarding a fourth signal to the network device on the second frequency resource.
  • the transponder receives the fifth signal sent by the network device at the third frequency resource, and sends the sixth signal to the network device at the fourth frequency resource, and the third frequency resource is the same as the network device.
  • the fourth frequency resource is located in the first frequency resource;
  • the repeater receives the first signal for forwarding on the second frequency resource, and forwards the second signal to the third device on the second frequency resource; the repeater receives the first signal for forwarding on the second frequency resource; receiving the third signal for forwarding, and forwarding a fourth signal to the network device on the second frequency resource.
  • the transponder sends the sixth signal to the network device on the first frequency resource, receives the fifth signal sent by the network device on the second frequency resource, and forwards the fifth signal via the second frequency resource on the second frequency resource.
  • the forwarding signal of the repeater; the first frequency resource and the second frequency resource do not overlap in frequency domain.
  • the repeater receives the first signal for forwarding on the second frequency resource, and forwards the second signal to the third device on the second frequency resource;
  • the second frequency resource receives the third signal for forwarding, and forwards the fourth signal to the network device on the second frequency resource.
  • the network device indicates or configures beams to the transponder, so that the transponder forwards signals through a predefined beam or a beam indicated or configured by the network device, so as to achieve better signal coverage and reduce the impact on other surrounding Device interference, thus improving the transmission efficiency of the entire network.
  • An embodiment of the present application provides a network device.
  • Fig. 37 is a schematic diagram of the network equipment of the embodiment of the present application. Since the principle of solving the problem of the network equipment is the same as the method of the embodiment of the third aspect, its specific implementation can refer to the embodiments of the first and third aspects, and the content is the same The description will not be repeated here.
  • the network device 3700 in the embodiment of the present application includes:
  • a configuration module 3701 which sends configuration information for indicating or configuring beams of the transponder to the transponder;
  • a communication module 3702 which sends the signal forwarded by the transponder, and/or receives the signal forwarded by the transponder.
  • the network device 3700 in the embodiment of the present application may further include other components or modules, and for specific content of these components or modules, reference may be made to related technologies.
  • FIG. 37 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of this application is not limited thereto.
  • the network device indicates or configures beams to the transponder, so that the transponder forwards signals through a predefined beam or a beam indicated or configured by the network device, so as to achieve better signal coverage and reduce the impact on other surrounding Device interference, thus improving the transmission efficiency of the entire network.
  • the embodiment of the present application provides a communication method of the third device, which is described from the side of the third device, and the same content as the embodiment of the first aspect will not be repeated.
  • the third device uses a predefined beam or a beam indicated or configured by the network device to send the signal forwarded by the transponder to the network device, and/or receive a signal transmitted by the transponder from the network device signal.
  • the third device receives the seventh signal generated and sent by the transponder; wherein, the transponder uses a predefined seventh beam or a seventh beam instructed or configured by the network device to direct The third device sends the seventh signal.
  • the third device generates and sends an eighth signal; wherein, the transponder uses a predefined eighth beam or an eighth beam instructed or configured by the network device to receive signals from the third device and demodulates and/or decodes the eighth signal.
  • the seventh signal sent by the repeater to the third device and the second signal sent by the network device to the third device via the repeater are included in the signal from the repeater. in the same signal.
  • the time domain resources of the seventh signal and the time domain resources of the second signal are at least partly the same; the frequency domain resources of the seventh signal and the frequency domain resources of the second signal are different and /or the code domain resource of the seventh signal is different from the code domain resource of the second signal.
  • the frequency domain resources of the seventh signal and the frequency domain resources of the second signal are at least partly the same; the time domain resources of the seventh signal and the time domain resources of the second signal are different and /or the code domain resource of the seventh signal is different from the code domain resource of the second signal.
  • the time-frequency resource of the seventh signal and the time-frequency resource of the second signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, The smallest scheduling unit that is not based on slot scheduling;
  • the time-frequency resource of the seventh signal is orthogonal to the time-frequency resource of the second signal, and/or, the code domain resource of the seventh signal is orthogonal to the code domain resource of the second signal, and/or Or, the seventh signal is orthogonal to the second signal in a spatial domain.
  • the eighth signal sent by the third device to the repeater and the third signal forwarded to the network device via the repeater are included in the same signal sent to the repeater .
  • the time domain resources of the eighth signal and the time domain resources of the third signal are at least partly the same; the frequency domain resources of the eighth signal and the frequency domain resources of the third signal are different and /or the code domain resource of the eighth signal is different from the code domain resource of the third signal.
  • the frequency domain resources of the eighth signal and the frequency domain resources of the third signal are at least partly the same; the time domain resources of the eighth signal and the time domain resources of the third signal are different and /or the code domain resource of the eighth signal is different from the code domain resource of the third signal.
  • the time-frequency resource of the eighth signal and the time-frequency resource of the third signal are in a time unit, and the time unit is one of the following: symbol, time slot, subframe, small slot, The smallest scheduling unit that is not based on slot scheduling;
  • the time-frequency resource of the eighth signal is orthogonal to the time-frequency resource of the third signal, and/or, the code domain resource of the eighth signal is orthogonal to the code domain resource of the third signal, and/or Or, the eighth signal is orthogonal to the third signal in a spatial domain.
  • the seventh signal sent by the repeater to the third device is located in a different time unit from the second signal sent by the network device to the third device via the repeater;
  • the eighth signal sent by the third device to the repeater is located in a different time unit from the third signal forwarded to the network device via the repeater.
  • the second signal forwarded by the repeater to the third device is located in a different time unit from the third signal forwarded by the repeater to the network device;
  • the seventh signal sent by the repeater to the third device is located in a different time unit from the eighth signal sent to the network device via the repeater.
  • the eighth signal sent by the third device to the repeater and the third signal sent by the third device to the network device via the repeater are included in the tenth signal;
  • the tenth signal, the seventh signal sent by the repeater to the third device, and the second signal forwarded to the third device via the repeater are located in different time units.
  • the network device indicates or configures beams to the transponder, so that the transponder forwards signals through a predefined beam or a beam indicated or configured by the network device, so as to achieve better signal coverage and reduce the impact on other surrounding Device interference, thus improving the transmission efficiency of the entire network.
  • FIG. 1 is a schematic diagram of the communication system of the embodiment of the present application.
  • the communication system 100 includes a network device 101, a transponder 102, and a terminal device 103, for simplicity , FIG. 1 only uses one network device, one transponder, and one terminal device as an example for illustration, but this embodiment of the present application is not limited thereto.
  • eMBB enhanced mobile broadband
  • mMTC massive machine-type communication
  • URLLC highly reliable low-latency communication
  • V2X vehicle-to-everything
  • the transponder 102 is configured to execute the communication method described in the embodiment of the first aspect
  • the network device 101 is configured to execute the communication method described in the embodiment of the third aspect
  • the terminal device 102 is configured to execute the implementation of the fifth aspect
  • the content of the communication method described in the example is incorporated here, and will not be repeated here.
  • the embodiment of the present application also provides an electronic device.
  • the electronic device may be a repeater, may also be a network device, or may be a third device (such as a terminal device).
  • FIG. 38 is a schematic diagram of the structure of an electronic device according to an embodiment of the present application.
  • an electronic device 3800 may include: a processor 3810 (such as a central processing unit CPU) and a memory 3820 ; the memory 3820 is coupled to the processor 3810 .
  • the memory 3820 can store various data; in addition, it also stores a program 3830 for information processing, and executes the program 3830 under the control of the processor 3810 .
  • the processor 3810 may be configured to execute a program to implement the communication method described in the embodiment of the first aspect.
  • the processor 3810 may be configured to perform the following control: use a predefined beam or a beam indicated or configured by the network device to forward a signal from the network device, and/or use a predefined beam or the network device The indicated or configured beams forward signals to said network devices.
  • the processor 3810 may be configured to execute a program to implement the communication method described in the embodiment of the third aspect.
  • the processor 3810 may be configured to perform the following control: send to the transponder configuration information for instructing or configuring the beam of the transponder; The repeater repeats the signal.
  • the processor 3810 may be configured to execute a program to implement the communication method in the embodiment of the fifth aspect.
  • the processor 3810 may be configured to perform the following control: use a predefined beam or a beam indicated or configured by the network device, send to the network device a signal forwarded by the transponder, and/or receive a signal forwarded by the transponder of the signal from the network device.
  • the electronic device 3800 may further include: a transceiver 3840 and an antenna 3850 ; wherein, the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the electronic device 3800 does not necessarily include all the components shown in FIG. 38 ; in addition, the electronic device 3800 may also include components not shown in FIG. 38 , and reference may be made to the prior art.
  • An embodiment of the present application further provides a computer-readable program, wherein when the program is executed in the repeater, the program causes the computer to execute the communication method described in the embodiment of the first aspect in the repeater.
  • An embodiment of the present application further provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the communication method described in the embodiment of the first aspect in the transponder.
  • An embodiment of the present application further provides a computer-readable program, wherein when the program is executed in a network device, the program causes a computer to execute the communication method described in the embodiment of the third aspect in the network device.
  • An embodiment of the present application further provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the communication method described in the embodiment of the third aspect in a network device.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in the third device, the program causes the computer to execute the communication method described in the embodiment of the fifth aspect in the third device .
  • An embodiment of the present application further provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the communication method described in the embodiment of the fifth aspect in a third device.
  • the above devices and methods in this application can be implemented by hardware, or by combining hardware and software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to realize the above-mentioned device or constituent component, or enables the logic component to realize the above-mentioned various methods or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present application also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to each software module or each hardware module of the computer program flow.
  • These software modules may respectively correspond to the steps shown in the figure.
  • These hardware modules for example, can be realized by solidifying these software modules by using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium, or it can be an integral part of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or large-capacity flash memory device.
  • One or more of the functional blocks described in the accompanying drawings and/or one or more combinations of the functional blocks can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors processor, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a communication method for a transponder comprising:
  • the repeater uses a predefined beam or a beam indicated or configured by a network device to forward a signal from the network device, and/or, the repeater uses a predefined beam or a beam indicated or configured by the network device to transmit a signal to the The network device forwards the signal.
  • the transponder uses a predefined first beam or a first beam indicated or configured by the network device to receive a first signal from the network device;
  • the repeater performs signal processing on the first signal to generate a second signal
  • the transponder sends the second signal to the third device by using a predefined second beam or a second beam instructed or configured by the network device.
  • the transponder receives a third signal from a third device by using a predefined third beam or a third beam instructed or configured by the network device;
  • the transponder sends the fourth signal to the network device by using a predefined fourth beam or a fourth beam instructed or configured by the network device.
  • the transponder receives configuration information sent by the network device for instructing or configuring beams of the transponder.
  • the transponder receives a fifth signal from the network device using a predefined fifth beam or a fifth beam indicated or configured by the network device;
  • the transponder demodulates and/or decodes the fifth signal.
  • the transponder generates a sixth signal
  • the transponder sends the sixth signal to the network device by using a predefined sixth beam or a sixth beam instructed or configured by the network device.
  • the transponder generates a seventh signal
  • the transponder sends the seventh signal to the third device by using a predefined seventh beam or a seventh beam indicated or configured by the network device.
  • the transponder receives an eighth signal from a third device using a predefined eighth beam or an eighth beam indicated or configured by the network device;
  • the transponder demodulates and/or decodes the eighth signal.
  • the time domain resource of the fifth signal is at least partly the same as the time domain resource of the first signal; the frequency domain resource of the fifth signal is the same as that of the first signal.
  • the frequency domain resources of the signals are different and/or the code domain resources of the fifth signal are different from the code domain resources of the first signal.
  • the frequency domain resource of the fifth signal is at least partly the same as the frequency domain resource of the first signal; the time domain resource of the fifth signal is the same as the first signal.
  • the time domain resources of the signals are different and/or the code domain resources of the fifth signal are different from the code domain resources of the first signal.
  • time-frequency resource of the fifth signal and the time-frequency resource of the first signal are in one time unit, and the time unit is one of the following: symbol, time slot , subframe, small slot, the smallest scheduling unit not based on slot scheduling;
  • the time-frequency resource of the fifth signal is orthogonal to the time-frequency resource of the first signal, and/or, the code domain resource of the fifth signal is orthogonal to the code domain resource of the first signal, and/or Or, the fifth signal is orthogonal to the first signal in a spatial domain.
  • time-frequency resource of the sixth signal and the time-frequency resource of the fourth signal are in one time unit, and the time unit is one of the following: symbol, time slot , subframe, small slot, the smallest scheduling unit not based on slot scheduling;
  • the time-frequency resource of the sixth signal is orthogonal to the time-frequency resource of the fourth signal, and/or, the code domain resource of the sixth signal is orthogonal to the code domain resource of the fourth signal, and/or Or, the sixth signal is orthogonal to the fourth signal in a spatial domain.
  • the fifth signal sent by the network device to the repeater is located in a different time unit from the first signal sent by the network device to a third device via the repeater; the fifth signal sent by the repeater to the network device The sixth signal is located in a different time unit from the fourth signal forwarded by the repeater to the network device.
  • the fifth signal sent by the network device to the repeater is located in a different time unit from the sixth signal sent by the repeater to the network device.
  • the ninth signal, the sixth signal sent by the repeater to the network device, and the fourth signal forwarded by the repeater to the network device are located in different time units.
  • the transponder receives the first signal for forwarding on the second frequency resource, and forwards the second signal to a third device on the second frequency resource; the transponder receives the first signal on the second frequency resource based on the forwarded third signal, and forward a fourth signal to the network device on the second frequency resource.
  • the transponder receives the fifth signal sent by the network device at the third frequency resource, and sends the sixth signal to the network device at the fourth frequency resource, so The third frequency resource and the fourth frequency resource are located in the first frequency resource;
  • the repeater receives the first signal for forwarding on the second frequency resource, and forwards the second signal to the third device on the second frequency resource; the repeater receives the first signal for forwarding on the second frequency resource; receiving the third signal for forwarding, and forwarding a fourth signal to the network device on the second frequency resource.
  • the first frequency resource and the second frequency resource do not overlap in frequency domain.
  • the repeater receives the first signal for forwarding on the second frequency resource, and forwards the second signal to the third device on the second frequency resource. signal; the transponder receives the third signal for forwarding on the second frequency resource, and forwards a fourth signal to the network device on the second frequency resource.
  • time-frequency resource of the seventh signal and the time-frequency resource of the second signal are in one time unit, and the time unit is one of the following: symbol, time slot , subframe, small slot, the smallest scheduling unit not based on slot scheduling;
  • the time-frequency resource of the seventh signal is orthogonal to the time-frequency resource of the second signal, and/or, the code domain resource of the seventh signal is orthogonal to the code domain resource of the second signal, and/or Or, the seventh signal is orthogonal to the second signal in a spatial domain.
  • the time domain resources of the eighth signal and the time domain resources of the third signal are at least partly the same; the frequency domain resources of the eighth signal and the third signal
  • the frequency domain resources of the signals are different and/or the code domain resources of the eighth signal and the code domain resources of the third signal are different.
  • time-frequency resource of the eighth signal and the time-frequency resource of the third signal are in one time unit, and the time unit is one of the following: symbol, time slot , subframe, small slot, the smallest scheduling unit not based on slot scheduling;
  • the time-frequency resource of the eighth signal is orthogonal to the time-frequency resource of the third signal, and/or, the code domain resource of the eighth signal is orthogonal to the code domain resource of the third signal, and/or Or, the eighth signal is orthogonal to the third signal in a spatial domain.
  • the seventh signal sent by the repeater to the third device is located in a different time unit from the second signal sent by the network device to the third device via the repeater; the third device sends to the repeater
  • the eighth signal and the third signal forwarded to the network device via the repeater are located in different time units.
  • the seventh signal sent by the repeater to the third device is located in a different time unit from the eighth signal sent to the network device via the repeater.
  • the tenth signal, the seventh signal sent by the repeater to the third device, and the second signal forwarded to the third device via the repeater are located in different time units.
  • a communication method for a network device comprising:
  • the network device sends to the transponder configuration information for indicating or configuring beams of the transponder
  • the network device sends the signal forwarded by the repeater, and/or receives the signal forwarded by the repeater.
  • the network device sends a first signal to the repeater
  • the transponder uses a predefined first beam or a first beam indicated or configured by the network device to receive a first signal from the network device; and performs signal processing on the first signal to generate a second signal ; and sending the second signal to a third device by using a predefined second beam or a second beam instructed or configured by the network device.
  • the network device receives a fourth signal sent by the transponder
  • the transponder receives a third signal from a third device by using a predefined third beam or a third beam instructed or configured by the network device; and performs signal processing on the third signal to generate a fourth signal; and sending the fourth signal to the network device by using a predefined fourth beam or a fourth beam instructed or configured by the network device.
  • the network device sends a fifth signal to the repeater
  • the transponder uses a predefined fifth beam or a fifth beam indicated or configured by the network device to receive a fifth signal from the network device; and demodulates and/or decodes the fifth signal .
  • the network device receives the sixth signal sent by the transponder
  • the transponder generates a sixth signal; and sends the sixth signal to the network device by using a predefined sixth beam or a sixth beam instructed or configured by the network device.
  • time domain resource of the fifth signal is at least partly the same as the time domain resource of the first signal; the frequency domain resource of the fifth signal is the same as the first signal.
  • the frequency domain resources of the signals are different and/or the code domain resources of the fifth signal are different from the code domain resources of the first signal.
  • time-frequency resource of the fifth signal and the time-frequency resource of the first signal are in one time unit, and the time unit is one of the following: symbol, time slot , subframe, small slot, the smallest scheduling unit not based on slot scheduling;
  • the time-frequency resource of the fifth signal is orthogonal to the time-frequency resource of the first signal, and/or, the code domain resource of the fifth signal is orthogonal to the code domain resource of the first signal, and/or Or, the fifth signal is orthogonal to the first signal in a spatial domain.
  • time-frequency resource of the sixth signal and the time-frequency resource of the fourth signal are in one time unit, and the time unit is one of the following: symbol, time slot , subframe, small slot, the smallest scheduling unit not based on slot scheduling;
  • the time-frequency resource of the sixth signal is orthogonal to the time-frequency resource of the fourth signal, and/or, the code domain resource of the sixth signal is orthogonal to the code domain resource of the fourth signal, and/or Or, the sixth signal is orthogonal to the fourth signal in a spatial domain.
  • the fifth signal sent by the network device to the repeater is located in a different time unit from the sixth signal sent by the repeater to the network device.
  • the ninth signal, the sixth signal sent by the repeater to the network device, and the fourth signal forwarded by the repeater to the network device are located in different time units.
  • transponder receives the fifth signal sent by the network device on the first frequency resource, and sends the fifth signal to the network device on the first frequency resource six signals;
  • the transponder receives the first signal for forwarding on the second frequency resource, and forwards the second signal to a third device on the second frequency resource; the transponder receives the first signal on the second frequency resource based on the forwarded third signal, and forward a fourth signal to the network device on the second frequency resource.
  • the transponder receives the fifth signal sent by the network device at the third frequency resource, and sends the sixth signal to the network device at the fourth frequency resource, the The third frequency resource and the fourth frequency resource are located in the first frequency resource;
  • the transponder receives the first signal for forwarding on the second frequency resource, and forwards the second signal to a third device on the second frequency resource; the transponder receives the first signal on the second frequency resource based on the forwarded third signal, and forward a fourth signal to the network device on the second frequency resource.
  • the repeater receives the first signal for forwarding on the second frequency resource, and forwards the second signal to a third device on the second frequency resource;
  • the repeater receives the third signal for forwarding on the second frequency resource, and forwards the fourth signal to the network device on the second frequency resource.
  • a communication method for a third device comprising:
  • the third device uses a predefined beam or a beam indicated or configured by the network device to send the signal forwarded by the repeater to the network device, and/or receive the signal from the network device forwarded by the repeater.
  • the transponder sends the seventh signal to the third device by using a predefined seventh beam or a seventh beam instructed or configured by the network device.
  • the third device generates and sends an eighth signal
  • the transponder uses a predefined eighth beam or an eighth beam indicated or configured by the network device to receive the eighth signal from the third device, and demodulates and/or decoding.
  • the time domain resources of the seventh signal and the time domain resources of the second signal are at least partly the same; the frequency domain resources of the seventh signal and the second The frequency domain resources of the signals are different and/or the code domain resources of the seventh signal and the code domain resources of the second signal are different.
  • time-frequency resource of the seventh signal and the time-frequency resource of the second signal are in one time unit, and the time unit is one of the following: symbol, time slot , subframe, small slot, the smallest scheduling unit not based on slot scheduling;
  • the time-frequency resource of the seventh signal is orthogonal to the time-frequency resource of the second signal, and/or, the code domain resource of the seventh signal is orthogonal to the code domain resource of the second signal, and/or Or, the seventh signal is orthogonal to the second signal in a spatial domain.
  • time-frequency resource of the eighth signal and the time-frequency resource of the third signal are in one time unit, and the time unit is one of the following: symbol, time slot , subframe, small slot, the smallest scheduling unit not based on slot scheduling;
  • the time-frequency resource of the eighth signal is orthogonal to the time-frequency resource of the third signal, and/or, the code domain resource of the eighth signal is orthogonal to the code domain resource of the third signal, and/or Or, the eighth signal is orthogonal to the third signal in a spatial domain.
  • the seventh signal sent by the repeater to the third device is located in a different time unit from the second signal sent by the network device to the third device via the repeater;
  • the eighth signal sent by the repeater and the third signal forwarded to the network device via the repeater are located in different time units.
  • the seventh signal sent by the repeater to the third device is located in a different time unit from the eighth signal sent to the network device via the repeater.
  • the tenth signal, the seventh signal sent by the repeater to the third device, and the second signal forwarded to the third device via the repeater are located in different time units.
  • a transponder comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the communication method described in any one of Supplements 1 to 35.
  • a network device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the communication method described in any one of Supplements 36 to 56.
  • a third device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the communication method as described in any one of Supplements 57 to 70 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种转发器、网络设备及其通信方法。所述通信方法包括:转发器使用预定义的波束或者网络设备指示或配置的波束转发来自所述网络设备的信号,和/或,所述转发器使用预定义的波束或者所述网络设备指示或配置的波束向所述网络设备转发信号。

Description

转发器、网络设备及其通信方法 技术领域
本申请涉及通信领域。
背景技术
与传统的3G(第三代移动通信技术)、4G(第四代移动通信技术)系统相比,5G(第五代移动通信技术)系统能够提供更大的带宽以及更高的数据率,并且能够支持更多类型的终端和垂直业务。为此,5G系统的部署频率通常明显高于3G和4G系统。例如,5G系统可以部署在毫米波波段。
然而,承载频率越高,信号在传输过程中遇到的衰落越严重。因此,在5G系统的实际部署中,特别是在毫米波段,如何更好的增强小区覆盖,成为亟待解决的问题。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
为了更好的解决蜂窝移动通信系统在实际部署中的覆盖问题,采用射频转发器(RF Relay/Repeater)放大和转发终端设备与网络设备之间的通信信号,是比较常用的部署手段。射频转发器在3G系统和4G系统的实际部署中具有较为广泛的应用。通常来说,射频转发器是一种在射频域放大和转发网络设备与终端设备往来信号的设备。
传统射频转发器在转发过程中,不对转发信号进行解调/解码。传统射频转发器的天线方向是固定的。传统射频转发器的天线方向通常在初始安装的时候人工进行设置和调整,以使得基站侧的天线指向基站来波方向,终端侧的天线指向需要增强部署的地方。在传统射频转发器工作的过程中,天线方向不发生改变。此外,传统射频转发器不具备通信功能,不能够和基站进行信息交互,因此也不支持基站对其进行自适应和/或较为动态的配置。
相比于3G和4G系统,部署在较高频段和毫米波频段的5G系统采用了更为高级和复杂的MIMO(多进多出)技术。在5G系统中,有向天线成为基站与终端设备的基本部件,基于波束赋形(Beam forming)技术发送和接收信号是5G系统中基本的信号传 输方式。
特别是毫米波波段频率高、小波长的特点更利于在基站和终端设备中设置包含较多阵子的天线面板。天线阵子个数的增加有助于更为精准的波束赋形,即更容易形成窄波束。窄波束汇聚能量有助于增强信号,并同时减小对其它设备的干扰。另一方面,由于窄波束的指向精准,对信道测量和波束管理的要求非常高,因此5G系统支持较为复杂但精准的信道测量、天线校准和波束管理方案,基站可以通过这些方案有效而精准地控制终端设备的接收波束和发送波束,以达到更好的通信效果。
发明人发现,针对5G系统在部署中遇到的覆盖问题,采用射频转发器进行覆盖增强是可行的解决方案之一。但是,传统射频转发器的天线不可动态地调整方向、波束较宽。这样的射频转发器配置在5G系统中,虽然能够帮助增强信号强度,但也会由于发送波束较宽而对周围的其它基站或者终端设备造成比较明显的干扰,进而因为新干扰的增加而降低整个网络的吞吐量。
针对上述问题的至少之一,本申请实施例提供了一种转发器、网络设备及其通信方法。转发器通过与网络设备通信,可以接收网络设备根据网络实时情况做出的针对转发的指示或配置(例如,波束指示或配置,转发带宽等),并根据该指示或配置来转发信号。采用本申请的实施方案中的转发器能够更好地加强信号覆盖并减小对周围其它设备的干扰,由此能够提高整个网络的传输效率。
根据本申请实施例的一方面,提供一种转发器的通信方法,包括:
转发器使用预定义的波束或者网络设备指示或配置的波束转发来自所述网络设备的信号,和/或,所述转发器使用预定义的波束或者所述网络设备指示或配置的波束向所述网络设备转发信号。
根据本申请实施例的另一方面,提供一种转发器,包括:
转发模块,其使用预定义的波束或者网络设备指示或配置的波束转发来自所述网络设备的信号,和/或,使用预定义的波束或者所述网络设备指示或配置的波束向所述网络设备转发信号。
根据本申请实施例的另一方面,提供一种网络设备的通信方法,包括:
网络设备向转发器发送用于指示或配置所述转发器的波束的配置信息;以及
所述网络设备发送经由所述转发器转发的信号,和/或,接收经由所述转发器转发的信号。
根据本申请实施例的另一方面,提供一种网络设备,包括:
配置模块,其向转发器发送用于指示或配置所述转发器的波束的配置信息;以及
通信模块,其发送经由所述转发器转发的信号,和/或,接收经由所述转发器转发的信号。
根据本申请实施例的另一方面,提供一种第三设备的通信方法,包括:
第三设备使用预定义的波束或者网络设备指示或配置的波束,向网络设备发送经由转发器转发的信号,和/或,接收经由所述转发器转发的来自所述网络设备的信号。
根据本申请实施例的另一方面,提供一种第三设备,包括:
通信模块,其使用预定义的波束或者网络设备指示或配置的波束,向网络设备发送经由转发器转发的信号,和/或,接收经由所述转发器转发的来自所述网络设备的信号。
根据本申请实施例的另一方面,提供一种通信系统,包括网络设备,所述通信系统还包括:
转发器,其使用预定义的波束或者所述网络设备指示或配置的波束转发来自所述网络设备的信号,和/或,使用预定义的波束或者所述网络设备指示或配置的波束向所述网络设备转发信号。
本申请实施例的有益效果之一在于:转发器通过预定义的波束或者网络设备指示或配置的波束来转发信号,从而能够实现更好的信号覆盖以及减小对周围其它设备的干扰,由此能够提高整个网络的传输效率。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分, 用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本申请实施例的应用场景的一个示意图;
图2是本申请实施例的转发器的通信方法的一示意图;
图3是本申请实施例的转发器转发下行信号的一示例图;
图4是本申请实施例的转发器转发上行信号的一示例图;
图5是本申请实施例的转发器接收下行信号的一示例图;
图6是本申请实施例的转发器发送上行信号的一示例图;
图7是本申请实施例的转发器发送下行信号的一示例图;
图8是本申请实施例的转发器接收上行信号的一示例图;
图9是本申请实施例的转发信号资源和通信信号资源复用的一示例图;
图10是本申请实施例的转发信号资源和通信信号资源复用的另一示例图;
图11是本申请实施例的转发信号资源和通信信号资源复用的另一示例图;
图12是本申请实施例的转发器的一示例图;
图13是本申请实施例的转发器的另一示例图;
图14是本申请实施例的转发器的另一示例图;
图15是本申请实施例的转发器的另一示例图;
图16是本申请实施例的转发器的另一示例图;
图17是本申请实施例的转发器的另一示例图;
图18是本申请实施例的转发器的另一示例图;
图19是本申请实施例的转发器的另一示例图;
图20是本申请实施例的转发器的另一示例图;
图21是本申请实施例的转发器的另一示例图;
图22是本申请实施例的转发器的另一示例图;
图23是本申请实施例的转发器的另一示例图;
图24是本申请实施例的转发器的另一示例图;
图25是本申请实施例的转发器的另一示例图;
图26是本申请实施例的转发器的另一示例图;
图27是本申请实施例的转发器的另一示例图;
图28是本申请实施例的转发器的另一示例图;
图29是本申请实施例的转发器的另一示例图;
图30是本申请实施例的转发器的另一示例图;
图31是本申请实施例的转发器的另一示例图;
图32是本申请实施例的转发器的另一示例图;
图33是本申请实施例的转发器的另一示例图;
图34是本申请实施例的转发器的另一示例图;
图35是本申请实施例的转发器的一示意图;
图36是本申请实施例的网络设备的通信方法的一示意图;
图37是本申请实施例的网络设备的一示意图;
图38是本申请实施例的电子设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、 高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、收发节点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
在3GPP(第三代合作伙伴计划)Release 18(版本18)的讨论中,一种被称为Smart  Repeater的设备构想被提出。在该设备构想中,Smart Repeater能够与网络设备(gNB)进行通信。网络设备能够对Smart Repeater进行一定程度的配置,并通过这些配置优化Smart Repeater的转发性能以及减小对周围其它设备的干扰等。
图1是本申请实施例的应用场景的示意图,如图1所示,为了方便说明,以一个5G基站(gNB)101、一个转发器(Repeater)102和一个终端设备(UE)103为例进行说明,本申请不限于此。如图1所示,gNB 101可以通过一个窄的波束(beam)与转发器102进行通信;此外转发器102可以通过窄的波束(beam)转发gNB 101和UE 103之间的信号。
在本申请实施例中,网络设备和终端设备之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
图1中以转发器可以转发网络设备和终端设备之间的信号为例进行说明,但本申请不限于此。例如,转发器可以作为第二设备,在第一设备和第三设备之间进行信号转发,并能够与第一设备和/或第三设备直接进行通信;第一设备至第三设备可以是前述的网络中的任意设备。以下的实施例中,以第一设备为网络设备,第三设备为终端设备为例进行说明。
下面结合附图对本申请实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
第一方面的实施例
本申请实施例提供一种转发器的通信方法,从转发器一侧进行说明。
图2是本申请实施例的转发器的通信方法的一示意图,如图2所示,该方法包括:
202,转发器使用预定义的或者网络设备指示或配置的波束转发来自网络设备的信号,和/或,转发器使用预定义的或者网络设备指示或配置的波束向网络设备转发信号。
在一些实施例中,可选地,如图2所示,该方法还可以包括:
201,转发器接收网络设备发送的用于指示或配置所述转发器的波束的配置信息。
值得注意的是,以上附图2仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图2的记载。
在本申请实施例中,波束(beam)也可以表述为波瓣、参考信号(RS)、传输配置指示(TCI,transmission configuration indication)、空域滤波器(spatial domain filter)等。或者,也可以表述为波束索引、波瓣索引、参考信号索引、传输配置指示索引、空域滤波器索引等。上述参考信号例如为信道状态信息参考信号(CSI-RS)、探测参考信号(SRS)、供转发器使用的RS、由转发器发送的RS等。上述TCI也可以表述为TCI状态(state)。
在本申请实施例中,转发器还可以表述为直放站、射频转发器、中继器、射频中继器;或者也可以表述为直放站节点、转发器节点、中继器节点;或者还可以表述为智能直放站、智能转发器、智能中继器、智能直放站节点、智能转发器节点、智能中继器节点,等等,本申请不限于此。
在本申请实施例中,网络设备可以是终端设备的服务小区的设备,也可以是转发器所在的小区的设备,还可以是转发器的服务小区的设备,也可以是转发器的父节点(Parent node),本申请对该转发器的名称不做限制,只要能实现上述功能的设备,都包含于本申请的转发器的范围内。
在本申请实施例中,预定义的波束或者网络设备为转发器指示或配置的波束可以是转发器的接收波束,例如接收来自网络设备的信号的接收波束,或者接收来自终端设备的信号的接收波束;预定义的波束或者网络设备为转发器指示或配置的波束也可以是转发器的发送波束,例如向网络设备发送的信号的发送波束,或者向终端设备发送的信号的发送波束。
网络设备可以指示或配置转发器的波束,例如可以动态地或者半静态地配置;转发器的波束也可以是预定义的。因此,相比于转发器的天线不可动态地调整方向的目前方案,本申请实施例的转发器通过预定义的波束或者网络设备指示或配置的波束来转发信号,从而能够实现更好的信号覆盖以及减小对周围其它设备的干扰,由此能够提高整个网络的传输效率。
在图2的201中,配置信息可以由网络设备向转发器发送,例如可以是MAC(媒体接入控制)层信令,也可以是RRC(无线资源控制)信令,本申请不限于此。转发器接收到该配置信息后可以进行相应地处理,例如进行信号测量和上报、进行波束选择等等。网络设备和转发器之间交互的信息不限于配置信息,还可以包括其他各种控制信息和/或数据信息。
以下为方便起见,将网络设备和转发器之间或者第三设备(例如终端设备)和转发 器之间进行通信的信号称为通信信号(例如以下的第五信号和第六信号、第七信号和第八信号)。其中下行通信信号例如为第五信号,用于网络设备配置、调度、指示该转发器等,转发器需要对该下行通信信号进行解码和/或解调;或者下行通信信号例如为第七信号,用于第三设备进行信道测量或者估计(例如参考信号),转发器生成该下行通信信号,或者,用于转发器向该第三设备发送信息或者数据等,转发器对该下行通信信号进行编码和/或调制。
上行通信信号例如为第六信号,用于转发器向网络设备上报、反馈等,转发器需要对该上行通信信号进行编码和/或调制;或者上行通信信号例如为第八信号,用于转发器进行信道测量或者估计(例如参考信号),转发器需要对该上行通信信号进行接收等,或者,用于第三设备向转发器发送信息或者数据等,转发器需要对该上行通信信号进行解码和/或解调。
此外,将经由转发器转发的网络设备与第三设备之间的信号称为转发信号(例如以下的第一信号、第二信号、第三信号和第四信号),转发器对转发信号可以进行滤波、放大等信号处理,但不会进行解码和/或解调。
在一些实施例中,转发器使用预定义的第一波束或者网络设备指示或配置的第一波束接收来自网络设备的第一信号;转发器对第一信号进行信号处理以生成第二信号;以及转发器使用预定义的第二波束或者网络设备指示或配置的第二波束向第三设备发送第二信号。
图3是本申请实施例的转发器转发下行信号的一示例图。如图3所示,网络设备可以使用发送波束向转发器发送第一信号,该第一信号例如是用于调度终端设备的。转发器使用第一波束(例如被网络设备指示或配置的接收波束,再例如预定义的接收波束)接收该第一信号,并对该第一信号进行信号处理(例如放大等)后生成第二信号;转发器可以使用第二波束(例如被网络设备指示或配置的发送波束,再例如预定义的发送波束)向终端设备发送该第二信号。终端设备使用接收波束(例如也被网络设备指示或配置,再例如被预定义)接收该第二信号。
在一些实施例中,转发器使用预定义的第三波束或者网络设备指示或配置的第三波束接收来自第三设备的第三信号;转发器对第三信号进行信号处理以生成第四信号;以及转发器使用预定义的第四波束或者网络设备指示或配置的第四波束向网络设备发送第四信号。
图4是本申请实施例的转发器转发上行信号的一示例图。如图4所示,终端设备使 用发送波束(例如被网络设备指示或配置,再例如被预定义)发送第三信号,该第三信号例如是用于终端设备向网络设备上报的。转发器使用第三波束(被网络设备指示或配置的接收波束,再例如预定义的结束波束)接收该第三信号,并对该第三信号进行信号处理(例如放大等)后生成第四信号;转发器可以使用第四波束(被网络设备指示或配置的发送波束,再例如预定义的发送波束)向网络设备发送该第四信号。网络设备可以使用接收波束接收转发器发送的第四信号。
以上对于转发器转发网络设备和第三设备(例如终端设备)之间的信号(包括上行转发信号和下行转发信号)进行了示例性说明,以下再对转发器和网络设备之间的通信信号(包括上行通信信号和下行通信信号)进行说明。
在一些实施例中,转发器使用预定义的第五波束或者网络设备指示或配置的第五波束接收来自网络设备的第五信号;以及转发器对第五信号进行解调和/或解码。
图5是本申请实施例的转发器接收下行信号的一示例图。如图5所示,网络设备可以使用发送波束向转发器发送第五信号,该第五信号例如是用于调度或配置该转发器的。转发器使用第五波束(例如被网络设备指示或配置的接收波束,再例如预定义的接收波束)接收该第五信号,并对该第五信号进行解调/解码,从而可以根据该第五信号承载的内容进行相应的处理,例如获取第五信号承载的信息和/或使用第五信号承载的参考信号进行信道估计或者信道测量等等。
在一些实施例中,转发器生成第六信号;以及转发器使用预定义的第六波束或者网络设备指示或配置的第六波束向网络设备发送第六信号。
图6是本申请实施例的转发器发送上行信号的一示例图。如图6所示,转发器生成(例如包括调制/编码)第六信号,该第六信号例如是用于转发器向网络设备上报测量结果或者反馈信息等的。转发器可以使用第六波束(例如被网络设备指示或配置的发送波束,再例如预定义的发送波束)向网络设备发送该第六信号。网络设备可以使用接收波束接收转发器发送的第六信号,从而可以根据该第六信号承载的内容进行相应的处理。
以下再对转发器和第三设备(例如终端设备)之间的通信信号(包括上行通信信号和下行通信信号)进行说明。
在一些实施例中,转发器生成第七信号;以及转发器使用预定义的第七波束或者网络设备指示或配置的第七波束,向第三设备发送第七信号。
图7是本申请实施例的转发器发送下行信号的一示例图。如图7所示,转发器生成(例如包括调制/编码,或者,参考信号的序列生成与调制)第七信号,该第七信号例如 被终端设备用于进行信道测量或者估计(例如参考信号),或者用于转发器向该终端设备发送信息或者数据等。转发器可以使用第七波束(例如被网络设备指示或配置的发送波束,再例如预定义的发送波束)向终端设备发送该第七信号。终端设备可以使用接收波束接收转发器发送的第七信号,从而可以根据该第七信号承载的内容进行相应的处理。
在一些实施例中,转发器使用预定义的第八波束或者网络设备指示或配置的第八波束,接收来自第三设备的第八信号;以及转发器对第八信号进行解调和/或解码。
图8是本申请实施例的转发器接收上行信号的一示例图。如图8所示,终端设备可以使用发送波束向转发器发送第八信号,该第八信号例如被转发器用于进行信道测量或者估计(例如参考信号),或者用于终端设备向转发器发送信息或者数据等。转发器使用第八波束(例如被网络设备指示或配置的接收波束,再例如预定义的接收波束)接收该第八信号,并对该第八信号进行解调/解码,从而可以根据该第八信号承载的内容进行相应的处理。
图3至图8分别对转发信号和通信信号进行了示例性说明,但本申请不限于此。转发信号和通信信号可以分别独立地被传输,也可以被合并在一个信号里传输。例如可以使用基于时分(TD)、频分(FD)、码分(CD)、空分等方式的其中之一或任意组合的合并,本申请不限于此。
在一些实施例中,网络设备向转发器发送的第五信号与网络设备经由转发器向第三设备发送的第一信号被包含在来自网络设备的同一信号中。
例如,第五信号的时域资源和第一信号的时域资源至少部分相同;第五信号的频域资源和第一信号的频域资源不同和/或第五信号的码域资源和第一信号的码域资源不同。
图9是本申请实施例的转发信号资源和通信信号资源复用的一示例图。如图9所示,例如发送第五信号的资源为资源1,发送第一信号的资源为资源2;资源1和资源2在时域上相同(例如位于同一时隙的相同符号上),但在频域上不同。
图10是本申请实施例的转发信号资源和通信信号资源复用的另一示例图。如图10所示,例如发送第五信号的资源为资源1,发送第一信号的资源为资源2;资源1和资源2在时域上部分相同(例如部分符号重叠),但在频域上不同。
再例如,第五信号的频域资源和第一信号的频域资源至少部分相同;第五信号的时域资源和第一信号的时域资源不同和/或第五信号的码域资源和第一信号的码域资源不同。
图11是本申请实施例的转发信号资源和通信信号资源复用的另一示例图。如图11 所示,例如发送第五信号的资源为资源1,发送第一信号的资源为资源2;资源1和资源2在频域上部分相同(例如部分子载波重叠),但在时域上不同。
在一些实施例中,在一个时间单位的第五信号与第一信号正交,转发器和/或终端设备在接收到上述同一信号后,可以利用第五信号与第一信号间的正交性从该同一信号中获取第五信号和/或第一信号。
例如,第五信号的时频资源和第一信号的时频资源在一个时间单位,所述时间单位可以是如下之一:符号(symbol)、时隙(slot)、子帧(sub-frame)、小时隙(mini-slot)、不基于时隙调度的最小调度单位;
第五信号的时频资源与第一信号的时频资源正交,和/或,第五信号的码域资源与第一信号的码域资源正交,和/或,第五信号与第一信号在空域(spatial domain)正交等。
由此,网络设备发送给转发器的下行通信信号和网络设备经由转发器发送给第三设备的下行转发信号可以包含在同一信号中。
图12是本申请实施例的转发器的一示例图。如图12所示,转发器接收到网络设备发送的第九信号(包括第一信号和第五信号)后,可以根据指示(例如PDCCH等)获得发送给自己的第五信号,并可以至少将用于转发的第一信号进行信号处理(例如可以对第九信号整体处理)后转发给终端设备。终端设备接收到转发信号后,可以根据指示(例如PDCCH等)获得发送给自己的第二信号。
图13是本申请实施例的转发器的另一示例图。如图13所示,转发器接收到网络设备发送的第九信号(包括第一信号和第五信号)后进行信号处理,然后可以根据指示(例如PDCCH等)获得发送给自己的第五信号,并可以至少将用于转发的第一信号转发给终端设备。终端设备接收到转发信号后,可以根据指示(例如PDCCH等)获得发送给自己的第二信号。
在一些实施例中,转发器向网络设备发送的第六信号与转发器向网络设备转发的第四信号被包含在向网络设备发送的同一信号中。
例如,第六信号的时域资源和第四信号的时域资源至少部分相同;第六信号的频域资源和第四信号的频域资源不同和/或第六信号的码域资源和第四信号的码域资源不同。关于时域资源至少部分相同的例子,可以参考附图9或10。
再例如,第六信号的频域资源和第四信号的频域资源至少部分相同;第六信号的时域资源和第四信号的时域资源不同和/或第六信号的码域资源和第四信号的码域资源不同。关于频域资源至少部分相同的例子,可以参考附图11。
在一些实施例中,在一个时间单位的第六信号与第四信号正交,网络设备在接收到上述同一信号后可以利用第六信号与第四信号间的正交性,从该同一信号中获取第六信号和/或第四信号。
例如,第六信号的时频资源和第四信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
第六信号的时频资源与第四信号的时频资源正交,和/或,第六信号的码域资源与第四信号的码域资源正交,和/或,第六信号与第四信号在空域(spatial domain)正交。
由此,转发器发送给网络设备的上行通信信号和来自第三设备、经由转发器发送给网络设备的上行转发信号可以包含在同一信号中。
图14是本申请实施例的转发器的一示例图。如图14所示,转发器接收到终端设备发送的第三信号后,可以进行信号处理生成第四信号;转发器可以自己生成第六信号,并可以将第四信号和第六信号合并到同一信号后发送给网络设备。
图15是本申请实施例的转发器的另一示例图。如图15所示,转发器接收到终端设备发送的第三信号后,可以进行信号处理生成第四信号;转发器可以自己进行信号处理并生成第六信号,并可以将第四信号和第六信号合并到同一信号后发送给网络设备。
图12和14示例性示出了转发器的信号合并的一种实现方案,其中图12示出了下行的情况,图14示出了上行的情况。图13和15示例性示出了转发器的信号合并的另一种实现方案,其中图13示出了下行的情况,图15示出了上行的情况。图12至15仅对本申请实施例的转发器进行了示意性说明,但不限于此。
此外,以图14和15为例,第三信号可以是射频信号;第六信号可以是基带信号,也可以中频信号,还可以是射频信号。转发器可以在基带、射频或者中频通过信号处理对第三信号和第六信号进行合并。例如,如果在基带合并,通信模块输出的第六信号可以是基带信号;如果在中频合并,第六信号可以是基带或者中频信号;如果在射频合并,第六信号可以是基带、中频或者射频信号。
在一些实施例中,转发器向第三设备发送的第七信号与网络设备经由转发器向第三设备发送的第二信号被包含在来自转发器的同一信号中。
例如,第七信号的时域资源和第二信号的时域资源至少部分相同;第七信号的频域资源和第二信号的频域资源不同和/或第七信号的码域资源和第二信号的码域资源不同。关于时域资源至少部分相同的例子,可以参考附图9或10。
再例如,第七信号的频域资源和第二信号的频域资源至少部分相同;第七信号的时 域资源和第二信号的时域资源不同和/或第七信号的码域资源和第二信号的码域资源不同。关于频域资源至少部分相同的例子,可以参考附图11。
在一些实施例中,第七信号的时频资源和第二信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
第七信号的时频资源与第二信号的时频资源正交,和/或,第七信号的码域资源与第二信号的码域资源正交,和/或,第七信号与第二信号在空域(spatial domain)正交。
在一些实施例中,第三设备向转发器发送的第八信号与经由转发器向网络设备转发的第三信号被包含在向转发器发送的同一信号中。
例如,第八信号的时域资源和第三信号的时域资源至少部分相同;第八信号的频域资源和第三信号的频域资源不同和/或第八信号的码域资源和第三信号的码域资源不同。关于时域资源至少部分相同的例子,可以参考附图9或10。
再例如,第八信号的频域资源和第三信号的频域资源至少部分相同;第八信号的时域资源和第三信号的时域资源不同和/或第八信号的码域资源和第三信号的码域资源不同。关于频域资源至少部分相同的例子,可以参考附图11。
在一些实施例中,第八信号的时频资源和第三信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
第八信号的时频资源与第三信号的时频资源正交,和/或,第八信号的码域资源与第三信号的码域资源正交,和/或,第八信号与第三信号在空域(spatial domain)正交。
图16是本申请实施例的转发器的一示例图。如图16所示,例如,转发器接收到网络设备发送的第九信号(包括第一信号和第五信号),可以根据指示(例如PDCCH等)获得发送给自己的第五信号,并可以至少将用于转发的第一信号进行信号处理(例如可以将第九信号整体处理)后转发给终端设备。终端设备接收到转发信号后,可以根据指示(例如PDCCH等)获得发送给自己的第二信号。
图16以下行传输的一种情况为例进行了示例性说明,其他情况可以类似地处理。
例如,转发器接收到终端设备发送的第三信号后,可以进行信号处理生成第四信号;转发器可以自己生成第六信号,并可以将第四信号和第六信号合并到同一信号后发送给网络设备。
再例如,转发器接收到网络设备发送的第一信号后,可以进行信号处理生成第二信号;转发器可以自己生成第七信号,并可以将第二信号和第七信号合并到同一信号后发送给终端设备。
再例如,转发器接收到终端设备发送的第十信号(包括第三信号和第八信号)后进行信号处理,可以根据指示获得发送给自己的第八信号,并可以将用于转发的第三信号进行信号处理后转发给网络设备。
图17是本申请实施例的转发器的另一示例图。如图17所示,例如,转发器接收到网络设备发送的第九信号(包括第一信号和第五信号)后进行信号处理,可以根据指示(例如PDCCH等)获得发送给自己的第五信号,并可以至少将用于转发的第一信号进行信号处理后转发给终端设备。终端设备接收到转发信号后,可以根据指示(例如PDCCH等)获得发送给自己的第二信号。
图17以下行传输的一种情况为例进行了示例性说明,其他情况可以类似地处理。
例如,转发器接收到终端设备发送的第三信号后,可以进行信号处理生成第四信号;转发器可以自己生成第六信号,并可以将第四信号和第六信号合并到同一信号后发送给网络设备。
再例如,转发器接收到网络设备发送的第一信号后,可以进行信号处理生成第二信号;转发器可以自己生成第七信号,并可以将第二信号和第七信号合并到同一信号后发送给终端设备。
再例如,转发器接收到终端设备发送的第十信号(包括第三信号和第八信号)后进行信号处理,可以根据指示获得发送给自己的第八信号,并可以将用于转发的第三信号进行信号处理后转发给网络设备。
以上对于信号合并的方案进行了示意性说明,但本申请不限于此,以下再对时分方案进行示意性说明。在时分方案中,通信信号和转发信号可以是时分复用(TDM)的,本申请不限于此。
在一些实施例中,网络设备向转发器发送的第五信号与网络设备经由转发器向第三设备发送的第一信号位于不同时间单位;转发器向网络设备发送的第六信号与转发器向网络设备转发的第四信号位于不同时间单位。
例如,网络设备向转发器发送下行通信信号与转发器转发网络设备和终端设备之间的下行转发信号是时分的,即在不同时间进行。再例如,转发器向网络设备发送上行通信信号与转发器转发网络设备和终端设备之间的上行转发信号是时分的,即在不同时间进行。
在一些实施例中,转发器向第三设备转发的第二信号与转发器向网络设备转发的第三信号位于不同时间单位;网络设备向转发器发送的第五信号与转发器向网络设备发送 的第六信号位于不同时间单位。
例如,转发器转发网络设备和终端设备之间的下行转发信号和转发器转发网络设备和终端设备之间的上行转发信号是时分的,即在不同时间进行。再例如,网络设备向转发器发送下行通信信号与转发器向网络设备发送上行通信信号是时分的,即在不同时间进行。
再例如,网络设备向转发器发送下行通信信号、转发器转发网络设备和终端设备之间的下行转发信号、转发器向网络设备发送上行通信信号、转发器转发网络设备和终端设备之间的上行转发信号均是时分的,即在不同时间进行。
图18是本申请实施例的转发器的一示例图。如图18所示,转发器转发来自网络设备的信号给终端设备。即,转发器接收来自网络设备的第一信号,对第一信号进行信号处理生成第二信号,并将第二信号发送给终端设备。此时,转发器进行信号的转发而不与网络设备通信,也不对第一信号进行解调/解码。
图19是本申请实施例的转发器的另一示例图。如图19所示,转发器转发来自终端设备的信号给网络设备。即,转发器接收来自终端设备的第三信号,对第三信号进行信号处理生成第四信号,并将第四信号发送给网络设备。此时,转发器进行信号的转发而不与网络设备通信,也不对第三信号进行解调/解码。
图20是本申请实施例的转发器的一示例图。如图20所示,转发器不转发信号,而是与网络设备通信。即,转发器接收来自网络设备的第五信号,并对第五信号进行解调/解码。
图21是本申请实施例的转发器的一示例图。如图21所示,转发器不转发信号,而是与网络设备通信。即,转发器生成第六信号,并向网络设备发送该第六信号。
图18至21示例性示出了转发器的时分的一种实现方案,分别示出了针对下行转发信号、上行转发信号、下行通信信号、上行通信信号进行时分的情况。图18至21仅对本申请实施例的转发器进行了示意性说明,但不限于此。
例如,在图18至21的基础上,转发器和终端设备之间的通信可以与转发器和终端设备之间的转发是时分的,也可以与转发器和网络设备之间的通信或转发是时分的。
在一些实施例中,转发器向第三设备发送的第七信号与网络设备经由转发器向第三设备发送的第二信号位于不同时间单位;第三设备向转发器发送的第八信号与经由转发器向网络设备转发的第三信号位于不同时间单位。
例如,转发器向终端设备转发的第二信号与转发器向网络设备转发的第三信号位于 不同时间单位,和/或,转发器向终端设备发送的第七信号与经由转发器向网络设备发送的第八信号位于不同时间单位。
在一些实施例中,网络设备向转发器发送的第五信号和网络设备经由转发器向第三设备发送的第一信号被包含在第九信号中;第九信号、转发器向网络设备发送的第六信号、转发器向网络设备转发的第四信号位于不同时间单位。
例如,网络设备向转发器发送下行通信信号与转发器转发网络设备和终端设备之间的下行转发信号被包含在同一信号中;网络设备向转发器发送该同一信号、转发器向网络设备发送上行通信信号与转发器转发网络设备和终端设备之间的上行转发信号是时分的,即在不同时间进行。再例如,转发器转发网络设备和终端设备之间的下行转发信号和转发器转发网络设备和终端设备之间的上行转发信号是时分的,即在不同时间进行。
图22是本申请实施例的转发器的一示例图。如图22所示,转发器接收来自网络设备的第九信号(包括第一信号和第五信号)。转发器对第九信号进行处理,以获取第五信号。转发器还可以至少对第九信号中的第一信号进行信号处理(也可以对第九信号整体处理)生成第二信号,并将第二信号发送给终端设备。
图22示例性示出了转发器的时分的另一种实现方案,示出了针对下行转发信号和下行通信信号被包含在同一信号的情况,对于上行转发信号和上行通信信号的情况此处省略说明,类似地可以参考图19和图21。图22仅对本申请实施例的转发器进行了示意性说明,但不限于此。
在一些实施例中,第三设备向转发器发送的第八信号和第三设备经由转发器向网络设备发送的第三信号被包含在第十信号中;第十信号、转发器向第三设备发送的第七信号、经由转发器向第三设备转发的第二信号位于不同时间单位。
图23是本申请实施例的转发器的一示例图。如图23所示,转发器接收来自终端设备的第十信号(包括第三信号和第八信号)。转发器对第十信号进行处理,以获取第八信号。转发器还可以至少对第十信号中的第三信号进行信号处理(也可以对第十信号整体处理)生成第四信号,并将第四信号发送给网络设备。
图24是本申请实施例的转发器的另一示例图。如图24所示,转发器接收来自网络设备的第九信号(包括第一信号和第五信号)。转发器对第九信号进行处理,以获取第五信号。转发器至少对第九信号中的第一信号进行信号处理生成第二信号,并将第二信号发送给终端设备。
图25是本申请实施例的转发器的另一示例图。如图25所示,转发器不转发信号, 而是与网络设备通信。即,转发器生成第六信号,并向网络设备发送该第六信号。
图26是本申请实施例的转发器发送下行信号的另一示例图。如图26所示,转发器不转发信号,而是与终端设备通信。即,转发器生成第七信号,并向网络设备发送该第七信号。
图27是本申请实施例的转发器的另一示例图。如图27所示,转发器不转发信号,而是与终端设备和网络设备通信。即,转发器生成第六信号,并向网络设备发送该第六信号;转发器生成第七信号,并向网络设备发送该第七信号。
图28是本申请实施例的转发器的另一示例图。如图28所示,转发器接收来自终端设备的第十信号(包括第三信号和第八信号)。转发器对第十信号进行处理,以获取第八信号。转发器至少对第十信号中的第三信号进行信号处理生成第四信号,并将第四信号发送给网络设备。
图29是本申请实施例的转发器的另一示例图。如图29所示,转发器接收来自终端设备的第三信号。转发器对第三信号进行信号处理生成第四信号,并将第四信号发送给网络设备。
以上对于时分方案进行了示意性说明,但本申请不限于此,以下再对频分方案(或称为异频方案)进行示意性说明。其中,异频例如是指使用不同的频率资源,例如使用不同的频带(Frequency Band/Frequency Range)或频点,或者使用不同的载波(Carrier)或部分带宽(BWP)。
在一些实施例中,转发器在第一频率资源与网络设备通信,在第二频率资源转发经由转发器的转发信号,第一频率资源与所述第二频率资源在频域不重叠。
例如,转发器在第一频率资源接收网络设备发送的第五信号,并在第一频率资源向网络设备发送第六信号。即,网络设备和转发器之间的通信使用某一频点或频带等,例如FR1。
例如,转发器在第二频率资源接收用于转发的第一信号,并在第二频率资源向终端设备转发第二信号;转发器在第二频率资源接收用于转发的第三信号,并在第二频率资源向网络设备转发第四信号。即,网络设备和终端设备之间的转发使用另一频点或频带等,例如FR2。
图30是本申请实施例的转发器的另一示例图,示例性示出了转发器的异频的一种实现方案。如图30所示,转发器的通信模块(与网络设备通信)使用的频率资源不同于转发器的转发模块(转发网络设备与终端设备之间的信号)使用的频率资源。
在一些实施例中,转发器在第三频率资源接收网络设备发送的第五信号,并在第四频率资源向网络设备发送第六信号,第三频率资源与第四频率资源位于第一频率资源内;
转发器在第二频率资源接收用于转发的第一信号,并在第二频率资源向第三设备转发第二信号;转发器在第二频率资源接收用于转发的第三信号,并在第二频率资源向网络设备转发第四信号。
例如,转发器和网络设备之间的通信也可以是频分双工(FDD)。
图31是本申请实施例的转发器的另一示例图,示例性示出了转发器的异频的另一种实现方案。如图31所示,转发器的通信模块(与网络设备通信)使用的频率资源(第一频率资源)不同于转发器的转发模块(转发网络设备与终端设备之间的信号)使用的频率资源(第二频率资源)。此外,如图31所示,转发器的通信模块的下行通信使用的频率资源(第三频率资源)不同于转发器的通信模块的上行通信使用的频率资源(第四频率资源)。
在一些实施例中,转发器在第一频率资源向网络设备发送第六信号,在第二频率资源接收网络设备发送的第五信号并在第二频率资源转发经由转发器的转发信号;第一频率资源与第二频率资源在频域不重叠。
转发器在第二频率资源接收用于转发的第一信号,并在第二频率资源向第三设备转发第二信号;转发器在第二频率资源接收用于转发的第三信号,并在第二频率资源向网络设备转发第四信号。
例如,网络设备和转发器之间的上行通信使用某一频点或频带,例如FR1。网络设备和终端设备之间的转发、网络设备和转发器之间的下行通信使用另一频点或频带,例如FR2。
图32是本申请实施例的转发器的另一示例图,示例性示出了转发器的异频的又一种实现方案。如图32所示,转发器的通信模块(与网络设备通信)的上行传输使用的频率资源不同于转发器的转发模块(转发网络设备与终端设备之间的信号)以及通信模块的下行传输使用的频率资源。
图33是本申请实施例的转发器的另一示例图,示例性示出了转发器的异频的又一种实现方案。如图33所示,转发器的通信模块(与网络设备和/或终端设备通信)使用的频率资源不同于转发器的转发模块(转发网络设备与终端设备之间的信号)使用的频率资源。
此外,如图33所示,终端设备发送给转发器的信号和经由转发器发送给网络设备的 信号可以合并;转发器和终端设备之间的上行传输、下行通信传输、下行转发传输可以是时分的。
图34是本申请实施例的转发器的另一示例图,示例性示出了转发器的异频的又一种实现方案。如图34所示,转发器的通信模块(与网络设备和/或终端设备通信)使用的频率资源不同于转发器的转发模块(转发网络设备与终端设备之间的信号)使用的频率资源。
此外,如图34所示,转发器发送给终端设备的信号和经由转发器发送给终端设备的信号可以合并,终端设备发送给转发器的信号和经由转发器发送给网络设备的信号可以合并;转发器和终端设备之间的下行传输和上行通信传输可以是时分的。
以上对于频分方案进行了示意性说明,但本申请不限于此。
以上仅对与本申请相关的各步骤或过程进行了说明,但本申请不限于此。本申请实施例的方法还可以包括其他步骤或者过程,关于这些步骤或者过程的具体内容,可以参考相关技术。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器通过预定义的波束或者网络设备指示或配置的波束来转发信号,从而能够实现更好的信号覆盖以及减小对周围其它设备的干扰,由此能够提高整个网络的传输效率。
第二方面的实施例
本申请实施例提供一种转发器,该转发器例如可以是网络设备或终端设备,也可以是配置于网络设备或终端设备的某个或某些部件或者组件。
图35是本申请实施例的转发器的一示意图,由于该转发器解决问题的原理与第一方面的实施例的方法相同,因此其具体实施可以参照第一方面的实施例,内容相同之处不再重复说明。
如图35所示,本申请实施例的转发器3500包括:转发模块3501,用于在RF域进行转发。如图35所示,转发器3500还可以包括:通信模块3502,用于与网络设备进行通信。
在一些实施例中,转发模块3501使用预定义的波束或者网络设备指示或配置的波 束转发来自所述网络设备的信号,和/或,使用预定义的波束或者所述网络设备指示或配置的波束向所述网络设备转发信号。
在一些实施例中,转发模块3501用于:使用预定义的第一波束或者所述网络设备指示或配置的第一波束接收来自所述网络设备的第一信号;对所述第一信号进行信号处理以生成第二信号;以及使用预定义的第二波束或者所述网络设备指示或配置的第二波束向第三设备发送所述第二信号。
在一些实施例中,转发模块3501用于:使用预定义的第三波束或者所述网络设备指示或配置的第三波束接收来自所述第三设备的第三信号;对所述第三信号进行信号处理以生成第四信号;以及使用预定义的第四波束或者所述网络设备指示或配置的第四波束向所述网络设备发送所述第四信号。
在一些实施例中,通信模块3502接收所述网络设备发送的用于指示或配置所述转发器的波束的配置信息。
在一些实施例中,通信模块3502用于:使用预定义的第五波束或者所述网络设备指示或配置的第五波束接收来自所述网络设备的第五信号;以及对所述第五信号进行解调和/或解码。
在一些实施例中,通信模块3502用于:生成第六信号;以及使用预定义的第六波束或者所述网络设备指示或配置的第六波束向所述网络设备发送所述第六信号。
在一些实施例中,通信模块3502用于:生成第七信号;以及使用预定义的第七波束或者所述网络设备指示或配置的第七波束,向所述第三设备发送所述第七信号。
在一些实施例中,通信模块3502用于:使用预定义的第八波束或者所述网络设备指示或配置的第八波束,接收来自所述第三设备的第八信号;以及对所述第八信号进行解调和/或解码。
在一些实施例中,所述网络设备向所述转发器发送的第五信号与所述网络设备经由所述转发器向所述第三设备发送的第一信号被包含在来自所述网络设备的同一信号中。
在一些实施例中,所述第五信号的时域资源和所述第一信号的时域资源至少部分相同;所述第五信号的频域资源和所述第一信号的频域资源不同和/或所述第五信号的码域资源和所述第一信号的码域资源不同。
在一些实施例中,所述第五信号的频域资源和所述第一信号的频域资源至少部分相同;所述第五信号的时域资源和所述第一信号的时域资源不同和/或所述第五信号的码域资源和所述第一信号的码域资源不同。
在一些实施例中,所述第五信号的时频资源和所述第一信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第五信号的时频资源与所述第一信号的时频资源正交,和/或,所述第五信号的码域资源与所述第一信号的码域资源正交,和/或,所述第五信号与所述第一信号在空域正交。
在一些实施例中,所述转发器向所述网络设备发送的第六信号与所述转发器向所述网络设备转发的第四信号被包含在向所述网络设备发送的同一信号中。
在一些实施例中,所述第六信号的时域资源和所述第四信号的时域资源至少部分相同;所述第六信号的频域资源和所述第四信号的频域资源不同和/或所述第六信号的码域资源和所述第四信号的码域资源不同。
在一些实施例中,所述第六信号的频域资源和所述第四信号的频域资源至少部分相同;所述第六信号的时域资源和所述第四信号的时域资源不同和/或所述第六信号的码域资源和所述第四信号的码域资源不同。
在一些实施例中,所述第六信号的时频资源和所述第四信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第六信号的时频资源与所述第四信号的时频资源正交,和/或,所述第六信号的码域资源与所述第四信号的码域资源正交,和/或,所述第六信号与所述第四信号在空域正交。
在一些实施例中,所述网络设备向所述转发器发送的第五信号与所述网络设备经由所述转发器向所述第三设备发送的第一信号位于不同时间单位;所述转发器向所述网络设备发送的第六信号与所述转发器向所述网络设备转发的第四信号位于不同时间单位。
在一些实施例中,所述转发器向所述第三设备转发的第二信号与所述转发器向所述网络设备转发的第三信号位于不同时间单位;所述网络设备向所述转发器发送的第五信号与所述转发器向所述网络设备发送的第六信号位于不同时间单位。
在一些实施例中,所述网络设备向所述转发器发送的第五信号和所述网络设备经由所述转发器向所述第三设备发送的第一信号被包含在第九信号中;
所述第九信号、所述转发器向所述网络设备发送的第六信号、所述转发器向所述网络设备转发的第四信号位于不同时间单位。
在一些实施例中,所述转发器在第一频率资源与所述网络设备通信,在第二频率资源转发经由所述转发器的转发信号,所述第一频率资源与所述第二频率资源在频域不重叠。
在一些实施例中,所述转发器在所述第一频率资源接收所述网络设备发送的第五信号,并在所述第一频率资源向所述网络设备发送第六信号;或者,所述转发器在第三频率资源接收所述网络设备发送的第五信号,并在第四频率资源向所述网络设备发送第六信号,所述第三频率资源与所述第四频率资源位于所述第一频率资源内。
在一些实施例中,所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向所述第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
在一些实施例中,所述转发器在第一频率资源向所述网络设备发送第六信号,在第二频率资源接收所述网络设备发送的第五信号并在所述第二频率资源转发经由所述转发器的转发信号;所述第一频率资源与所述第二频率资源在频域不重叠。
在一些实施例中,所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向所述第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
在一些实施例中,所述转发器向所述第三设备发送的第七信号与所述网络设备经由所述转发器向所述第三设备发送的第二信号被包含在来自所述转发器的同一信号中。
在一些实施例中,所述第七信号的时域资源和所述第二信号的时域资源至少部分相同;所述第七信号的频域资源和所述第二信号的频域资源不同和/或所述第七信号的码域资源和所述第二信号的码域资源不同。
在一些实施例中,所述第七信号的频域资源和所述第二信号的频域资源至少部分相同;所述第七信号的时域资源和所述第二信号的时域资源不同和/或所述第七信号的码域资源和所述第二信号的码域资源不同。
在一些实施例中,所述第七信号的时频资源和所述第二信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第七信号的时频资源与所述第二信号的时频资源正交,和/或,所述第七信号的码域资源与所述第二信号的码域资源正交,和/或,所述第七信号与所述第二信号在空域(spatial domain)正交。
在一些实施例中,所述第三设备向所述转发器发送的第八信号与经由所述转发器向所述网络设备转发的第三信号被包含在向所述转发器发送的同一信号中。
在一些实施例中,所述第八信号的时域资源和所述第三信号的时域资源至少部分相同;所述第八信号的频域资源和所述第三信号的频域资源不同和/或所述第八信号的码域资源和所述第三信号的码域资源不同。
在一些实施例中,所述第八信号的频域资源和所述第三信号的频域资源至少部分相同;所述第八信号的时域资源和所述第三信号的时域资源不同和/或所述第八信号的码域资源和所述第三信号的码域资源不同。
在一些实施例中,所述第八信号的时频资源和所述第三信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第八信号的时频资源与所述第三信号的时频资源正交,和/或,所述第八信号的码域资源与所述第三信号的码域资源正交,和/或,所述第八信号与所述第三信号在空域(spatial domain)正交。
在一些实施例中,所述转发器向所述第三设备发送的第七信号与所述网络设备经由所述转发器向所述第三设备发送的第二信号位于不同时间单位;所述第三设备向所述转发器发送的第八信号与经由所述转发器向所述网络设备转发的第三信号位于不同时间单位。
在一些实施例中,所述转发器向所述第三设备转发的第二信号与所述转发器向所述网络设备转发的第三信号位于不同时间单位;
所述转发器向所述第三设备发送的第七信号与经由所述转发器向所述网络设备发送的第八信号位于不同时间单位。
在一些实施例中,所述第三设备向所述转发器发送的第八信号和所述第三设备经由所述转发器向所述网络设备发送的第三信号被包含在第十信号中;
所述第十信号、所述转发器向所述第三设备发送的第七信号、经由所述转发器向所述第三设备转发的第二信号位于不同时间单位。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的转发器3500还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图35中仅示例性示出了各个部件或模块之间的连接关系或 信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器通过预定义的波束或者网络设备指示或配置的波束来转发信号,从而能够实现更好的信号覆盖以及减小对周围其它设备的干扰,由此能够提高整个网络的传输效率。
第三方面的实施例
本申请实施例提供一种网络设备的通信方法,从网络设备一侧进行说明,与第一方面的实施例相同的内容不再赘述。
图36是本申请实施例的网络设备的通信方法的一示意图,如图36所示,该方法包括:
3601,网络设备向转发器发送用于指示或配置所述转发器的波束的配置信息;
3602,网络设备发送经由所述转发器信号,和/或,接收经由所述转发器转发的信号。
值得注意的是,以上附图36仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图36的记载。
在一些实施例中,网络设备发送经由转发器向第三设备转发的信号,包括:网络设备向转发器发送第一信号;其中,所述转发器使用预定义的第一波束或者所述网络设备指示或配置的第一波束接收来自所述网络设备的第一信号;对所述第一信号进行信号处理以生成第二信号;以及使用预定义的第二波束或者所述网络设备指示或配置的第二波束向所述第三设备发送所述第二信号。
在一些实施例中,网络设备接收经由转发器转发的来自第三设备的信号,包括:网络设备接收转发器发送的第四信号;其中,所述转发器使用预定义的第三波束或者所述网络设备指示或配置的第三波束接收来自所述第三设备的第三信号;对所述第三信号进行信号处理以生成第四信号;以及使用预定义的第四波束或者所述网络设备指示或配置 的第四波束向所述网络设备发送所述第四信号。
在一些实施例中,网络设备向转发器发送第五信号;其中,所述转发器使用预定义的第五波束或者所述网络设备指示或配置的第五波束接收来自所述网络设备的第五信号;以及对所述第五信号进行解调和/或解码。
在一些实施例中,网络设备接收转发器发送的第六信号;其中,所述转发器生成第六信号;以及使用预定义的第六波束或者所述网络设备指示或配置的第六波束向所述网络设备发送所述第六信号。
在一些实施例中,所述网络设备向所述转发器发送的第五信号与所述网络设备经由所述转发器向所述第三设备发送的第一信号被包含在来自所述网络设备的同一信号中。
在一些实施例中,所述第五信号的时域资源和所述第一信号的时域资源至少部分相同;所述第五信号的频域资源和所述第一信号的频域资源不同和/或所述第五信号的码域资源和所述第一信号的码域资源不同。
在一些实施例中,所述第五信号的频域资源和所述第一信号的频域资源至少部分相同;所述第五信号的时域资源和所述第一信号的时域资源不同和/或所述第五信号的码域资源和所述第一信号的码域资源不同。
在一些实施例中,所述第五信号的时频资源和所述第一信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第五信号的时频资源与所述第一信号的时频资源正交,和/或,所述第五信号的码域资源与所述第一信号的码域资源正交,和/或,所述第五信号与所述第一信号在空域(spatial domain)正交。
在一些实施例中,所述转发器向所述网络设备发送的第六信号与所述转发器向所述网络设备转发的第四信号被包含在向所述网络设备发送的同一信号中。
在一些实施例中,所述第六信号的时域资源和所述第四信号的时域资源至少部分相同;所述第六信号的频域资源和所述第四信号的频域资源不同和/或所述第六信号的码域资源和所述第四信号的码域资源不同。
在一些实施例中,所述第六信号的频域资源和所述第四信号的频域资源至少部分相同;所述第六信号的时域资源和所述第四信号的时域资源不同和/或所述第六信号的码域资源和所述第四信号的码域资源不同。
在一些实施例中,所述第六信号的时频资源和所述第四信号的时频资源在一个时间 单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第六信号的时频资源与所述第四信号的时频资源正交,和/或,所述第六信号的码域资源与所述第四信号的码域资源正交,和/或,所述第六信号与所述第四信号在空域(spatial domain)正交。
在一些实施例中,所述网络设备向所述转发器发送的第五信号与所述网络设备经由所述转发器向所述第三设备发送的第一信号位于不同时间单位;所述转发器向所述网络设备发送的第六信号与所述转发器向所述网络设备转发的第四信号位于不同时间单位。
在一些实施例中,所述转发器向所述第三设备转发的第二信号与所述转发器向所述网络设备转发的第三信号位于不同时间单位;
所述网络设备向所述转发器发送的第五信号与所述转发器向所述网络设备发送的第六信号位于不同时间单位。
在一些实施例中,所述网络设备向所述转发器发送的第五信号和所述网络设备经由所述转发器向所述第三设备发送的第一信号被包含在第九信号中;
所述第九信号、所述转发器向所述网络设备发送的第六信号、所述转发器向所述网络设备转发的第四信号位于不同时间单位。
在一些实施例中,所述转发器在第一频率资源与所述网络设备通信,在第二频率资源转发经由所述转发器的转发信号,所述第一频率资源与所述第二频率资源在频域不重叠。
在一些实施例中,所述转发器在所述第一频率资源接收所述网络设备发送的第五信号,并在所述第一频率资源向所述网络设备发送第六信号;
所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向所述第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
在一些实施例中,所述转发器在第三频率资源接收所述网络设备发送的第五信号,并在第四频率资源向所述网络设备发送第六信号,所述第三频率资源与所述第四频率资源位于所述第一频率资源内;
所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向所述第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
在一些实施例中,所述转发器在第一频率资源向所述网络设备发送第六信号,在第二频率资源接收所述网络设备发送的第五信号并在所述第二频率资源转发经由所述转发器的转发信号;所述第一频率资源与所述第二频率资源在频域不重叠。
在一些实施例中,所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向所述第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
以上仅对与本申请相关的各步骤或过程进行了说明,但本申请不限于此。本申请实施例的方法还可以包括其他步骤或者过程,关于这些步骤或者过程的具体内容,可以参考相关技术。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,网络设备向转发器指示或配置波束,使得转发器通过预定义的波束或者网络设备指示或配置的波束来转发信号,从而能够实现更好的信号覆盖以及减小对周围其它设备的干扰,由此能够提高整个网络的传输效率。
第四方面的实施例
本申请实施例提供一种网络设备。
图37是本申请实施例的网络设备的一示意图,由于该网络设备解决问题的原理与第三方面的实施例的方法相同,因此其具体实施可以参照第一、三方面的实施例,内容相同之处不再重复说明。
如图37所示,本申请实施例的网络设备3700包括:
配置模块3701,其向转发器发送用于指示或配置所述转发器的波束的配置信息;
通信模块3702,其发送经由所述转发器转发的信号,和/或,接收经由所述转发器转发的信号。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的网络设备3700还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图37中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上 述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,网络设备向转发器指示或配置波束,使得转发器通过预定义的波束或者网络设备指示或配置的波束来转发信号,从而能够实现更好的信号覆盖以及减小对周围其它设备的干扰,由此能够提高整个网络的传输效率。
第五方面的实施例
本申请实施例提供一种第三设备的通信方法,从第三设备一侧进行说明,与第一方面的实施例相同的内容不再赘述。
在一些实施例中,第三设备使用预定义的波束或者网络设备指示或配置的波束,向网络设备发送经由转发器转发的信号,和/或,接收经由所述转发器转发的来自所述网络设备的信号。
在一些实施例中,所述第三设备接收所述转发器生成并发送的第七信号;其中,所述转发器使用预定义的第七波束或者所述网络设备指示或配置的第七波束向所述第三设备发送所述第七信号。
在一些实施例中,所述第三设备生成并发送第八信号;其中,所述转发器使用预定义的第八波束或者所述网络设备指示或配置的第八波束接收来自所述第三设备的第八信号,并对所述第八信号进行解调和/或解码。
在一些实施例中,所述转发器向所述第三设备发送的第七信号与所述网络设备经由所述转发器向所述第三设备发送的第二信号被包含在来自所述转发器的同一信号中。
在一些实施例中,所述第七信号的时域资源和所述第二信号的时域资源至少部分相同;所述第七信号的频域资源和所述第二信号的频域资源不同和/或所述第七信号的码域资源和所述第二信号的码域资源不同。
在一些实施例中,所述第七信号的频域资源和所述第二信号的频域资源至少部分相同;所述第七信号的时域资源和所述第二信号的时域资源不同和/或所述第七信号的码域资源和所述第二信号的码域资源不同。
在一些实施例中,所述第七信号的时频资源和所述第二信号的时频资源在一个时间 单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第七信号的时频资源与所述第二信号的时频资源正交,和/或,所述第七信号的码域资源与所述第二信号的码域资源正交,和/或,所述第七信号与所述第二信号在空域(spatial domain)正交。
在一些实施例中,所述第三设备向所述转发器发送的第八信号与经由所述转发器向所述网络设备转发的第三信号被包含在向所述转发器发送的同一信号中。
在一些实施例中,所述第八信号的时域资源和所述第三信号的时域资源至少部分相同;所述第八信号的频域资源和所述第三信号的频域资源不同和/或所述第八信号的码域资源和所述第三信号的码域资源不同。
在一些实施例中,所述第八信号的频域资源和所述第三信号的频域资源至少部分相同;所述第八信号的时域资源和所述第三信号的时域资源不同和/或所述第八信号的码域资源和所述第三信号的码域资源不同。
在一些实施例中,所述第八信号的时频资源和所述第三信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第八信号的时频资源与所述第三信号的时频资源正交,和/或,所述第八信号的码域资源与所述第三信号的码域资源正交,和/或,所述第八信号与所述第三信号在空域(spatial domain)正交。
在一些实施例中,所述转发器向所述第三设备发送的第七信号与所述网络设备经由所述转发器向所述第三设备发送的第二信号位于不同时间单位;所述第三设备向所述转发器发送的第八信号与经由所述转发器向所述网络设备转发的第三信号位于不同时间单位。
在一些实施例中,所述转发器向所述第三设备转发的第二信号与所述转发器向所述网络设备转发的第三信号位于不同时间单位;
所述转发器向所述第三设备发送的第七信号与经由所述转发器向所述网络设备发送的第八信号位于不同时间单位。
在一些实施例中,所述第三设备向所述转发器发送的第八信号和所述第三设备经由所述转发器向所述网络设备发送的第三信号被包含在第十信号中;
所述第十信号、所述转发器向所述第三设备发送的第七信号、经由所述转发器向所 述第三设备转发的第二信号位于不同时间单位。
以上仅对与本申请相关的各步骤或过程进行了说明,但本申请不限于此。本申请实施例的方法还可以包括其他步骤或者过程,关于这些步骤或者过程的具体内容,可以参考相关技术。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,网络设备向转发器指示或配置波束,使得转发器通过预定义的波束或者网络设备指示或配置的波束来转发信号,从而能够实现更好的信号覆盖以及减小对周围其它设备的干扰,由此能够提高整个网络的传输效率。
第六方面的实施例
本申请实施例提供了一种通信系统,图1是本申请实施例的通信系统的示意图,如图1所示,该通信系统100包括网络设备101、转发器102以及终端设备103,为简单起见,图1仅以一个网络设备、一个转发器以及一个终端设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。转发器102被配置为执行第一方面的实施例所述的通信方法,网络设备101被配置为执行第三方面的实施例所述的通信方法,终端设备102被配置为执行第五方面的实施例所述的通信方法,其内容被合并于此,此处不再赘述。
本申请实施例还提供一种电子设备。该电子设备可以是转发器,也可以是网络设备,还可以第三设备(例如终端设备)。
图38是本申请实施例的电子设备的构成示意图。如图38所示,电子设备3800可以包括:处理器3810(例如中央处理器CPU)和存储器3820;存储器3820耦合到处理器3810。其中该存储器3820可存储各种数据;此外还存储信息处理的程序3830,并且在处理器3810的控制下执行该程序3830。
例如,处理器3810可以被配置为执行程序而实现如第一方面的实施例所述的通信方法。例如,处理器3810可以被配置为进行如下的控制:使用预定义的波束或者网络 设备指示或配置的波束转发来自所述网络设备的信号,和/或,使用预定义的波束或者所述网络设备指示或配置的波束向所述网络设备转发信号。
再例如,处理器3810可以被配置为执行程序而实现如第三方面的实施例所述的通信方法。例如,处理器3810可以被配置为进行如下的控制:向转发器发送用于指示或配置所述转发器的波束的配置信息;以及发送经由所述转发器转发的信号,和/或,接收经由所述转发器转发的信号。
再例如,处理器3810可以被配置为执行程序而实现如第五方面的实施例所述的通信方法。例如,处理器3810可以被配置为进行如下的控制:使用预定义的波束或者网络设备指示或配置的波束,向网络设备发送经由转发器转发的信号,和/或,接收经由所述转发器转发的来自所述网络设备的信号。
此外,如图38所示,电子设备3800还可以包括:收发机3840和天线3850等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,电子设备3800也并不是必须要包括图38中所示的所有部件;此外,电子设备3800还可以包括图38中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在转发器中执行所述程序时,所述程序使得计算机在所述转发器中执行第一方面的实施例所述的通信方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在转发器中执行第一方面的实施例所述的通信方法。
本申请实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行第三方面的实施例所述的通信方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行第三方面的实施例所述的通信方法。
本申请实施例还提供一种计算机可读程序,其中当在第三设备中执行所述程序时,所述程序使得计算机在所述第三设备中执行第五方面的实施例所述的通信方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在第三设备中执行第五方面的实施例所述的通信方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储 以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种转发器的通信方法,包括:
转发器使用预定义的波束或者网络设备指示或配置的波束转发来自所述网络设备的信号,和/或,所述转发器使用预定义的波束或者所述网络设备指示或配置的波束向所述网络设备转发信号。
2.根据附记1所述的方法,其中,所述转发器使用预定义的波束或者网络设备指 示或配置的波束转发来自所述网络设备的信号,包括:
所述转发器使用预定义的第一波束或者所述网络设备指示或配置的第一波束接收来自所述网络设备的第一信号;
所述转发器对所述第一信号进行信号处理以生成第二信号;以及
所述转发器使用预定义的第二波束或者所述网络设备指示或配置的第二波束向第三设备发送所述第二信号。
3.根据附记1所述的方法,其中,所述转发器使用预定义的波束或者所述网络设备指示或配置的波束向所述网络设备转发信号,包括:
所述转发器使用预定义的第三波束或者所述网络设备指示或配置的第三波束接收来自第三设备的第三信号;
所述转发器对所述第三信号进行信号处理以生成第四信号;以及
所述转发器使用预定义的第四波束或者所述网络设备指示或配置的第四波束向所述网络设备发送所述第四信号。
4.根据附记1至3任一项所述的方法,其中,所述方法还包括:
所述转发器接收所述网络设备发送的用于指示或配置所述转发器的波束的配置信息。
5.根据附记1至4任一项所述的方法,其中,所述方法还包括:
所述转发器使用预定义的第五波束或者所述网络设备指示或配置的第五波束接收来自所述网络设备的第五信号;以及
所述转发器对所述第五信号进行解调和/或解码。
6.根据附记1至4任一项所述的方法,其中,所述方法还包括:
所述转发器生成第六信号;以及
所述转发器使用预定义的第六波束或者所述网络设备指示或配置的第六波束向所述网络设备发送所述第六信号。
7.根据附记1至6任一项所述的方法,其中,所述方法还包括:
所述转发器生成第七信号;以及
所述转发器使用预定义的第七波束或者所述网络设备指示或配置的第七波束,向第三设备发送所述第七信号。
8.根据附记1至6任一项所述的方法,其中,所述方法还包括:
所述转发器使用预定义的第八波束或者所述网络设备指示或配置的第八波束,接收 来自第三设备的第八信号;以及
所述转发器对所述第八信号进行解调和/或解码。
9.根据附记1至8任一项所述的方法,其中,所述网络设备向所述转发器发送的第五信号与所述网络设备经由所述转发器向第三设备发送的第一信号被包含在来自所述网络设备的同一信号中。
10.根据附记9所述的方法,其中,所述第五信号的时域资源和所述第一信号的时域资源至少部分相同;所述第五信号的频域资源和所述第一信号的频域资源不同和/或所述第五信号的码域资源和所述第一信号的码域资源不同。
11.根据附记9所述的方法,其中,所述第五信号的频域资源和所述第一信号的频域资源至少部分相同;所述第五信号的时域资源和所述第一信号的时域资源不同和/或所述第五信号的码域资源和所述第一信号的码域资源不同。
12.根据附记9所述的方法,其中,所述第五信号的时频资源和所述第一信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第五信号的时频资源与所述第一信号的时频资源正交,和/或,所述第五信号的码域资源与所述第一信号的码域资源正交,和/或,所述第五信号与所述第一信号在空域(spatial domain)正交。
13.根据附记1至8任一项所述的方法,其中,所述转发器向所述网络设备发送的第六信号与所述转发器向所述网络设备转发的第四信号被包含在向所述网络设备发送的同一信号中。
14.根据附记13所述的方法,其中,所述第六信号的时域资源和所述第四信号的时域资源至少部分相同;所述第六信号的频域资源和所述第四信号的频域资源不同和/或所述第六信号的码域资源和所述第四信号的码域资源不同。
15.根据附记13所述的方法,其中,所述第六信号的频域资源和所述第四信号的频域资源至少部分相同;所述第六信号的时域资源和所述第四信号的时域资源不同和/或所述第六信号的码域资源和所述第四信号的码域资源不同。
16.根据附记13所述的方法,其中,所述第六信号的时频资源和所述第四信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第六信号的时频资源与所述第四信号的时频资源正交,和/或,所述第六信号的 码域资源与所述第四信号的码域资源正交,和/或,所述第六信号与所述第四信号在空域(spatial domain)正交。
17.根据附记1至8任一项所述的方法,其中,
所述网络设备向所述转发器发送的第五信号与所述网络设备经由所述转发器向第三设备发送的第一信号位于不同时间单位;所述转发器向所述网络设备发送的第六信号与所述转发器向所述网络设备转发的第四信号位于不同时间单位。
18.根据附记17所述的方法,其中,所述转发器向所述第三设备转发的第二信号与所述转发器向所述网络设备转发的第三信号位于不同时间单位;
所述网络设备向所述转发器发送的第五信号与所述转发器向所述网络设备发送的第六信号位于不同时间单位。
19.根据附记1至8任一项所述的方法,其中,所述网络设备向所述转发器发送的第五信号和所述网络设备经由所述转发器向第三设备发送的第一信号被包含在第九信号中;
所述第九信号、所述转发器向所述网络设备发送的第六信号、所述转发器向所述网络设备转发的第四信号位于不同时间单位。
20.根据附记1至8任一项所述的方法,其中,所述转发器在第一频率资源与所述网络设备通信,在第二频率资源转发经由所述转发器的转发信号,所述第一频率资源与所述第二频率资源在频域不重叠。
21.根据附记20所述的方法,其中,所述转发器在所述第一频率资源接收所述网络设备发送的第五信号,并在所述第一频率资源向所述网络设备发送第六信号;
所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
22.根据附记20所述的方法,其中,所述转发器在第三频率资源接收所述网络设备发送的第五信号,并在第四频率资源向所述网络设备发送第六信号,所述第三频率资源与所述第四频率资源位于所述第一频率资源内;
所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向所述第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
23.根据附记1至8任一项所述的方法,其中,所述转发器在第一频率资源向所述 网络设备发送第六信号,在第二频率资源接收所述网络设备发送的第五信号并在所述第二频率资源转发经由所述转发器的转发信号;
所述第一频率资源与所述第二频率资源在频域不重叠。
24.根据附记23所述的方法,其中,所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向所述第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
25.根据附记1至8任一项所述的方法,其中,所述转发器向所述第三设备发送的第七信号与所述网络设备经由所述转发器向所述第三设备发送的第二信号被包含在来自所述转发器的同一信号中。
26.根据附记25所述的方法,其中,所述第七信号的时域资源和所述第二信号的时域资源至少部分相同;所述第七信号的频域资源和所述第二信号的频域资源不同和/或所述第七信号的码域资源和所述第二信号的码域资源不同。
27.根据附记25所述的方法,其中,所述第七信号的频域资源和所述第二信号的频域资源至少部分相同;所述第七信号的时域资源和所述第二信号的时域资源不同和/或所述第七信号的码域资源和所述第二信号的码域资源不同。
28.根据附记25所述的方法,其中,所述第七信号的时频资源和所述第二信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第七信号的时频资源与所述第二信号的时频资源正交,和/或,所述第七信号的码域资源与所述第二信号的码域资源正交,和/或,所述第七信号与所述第二信号在空域(spatial domain)正交。
29.根据附记1至8任一项所述的方法,其中,第三设备向所述转发器发送的第八信号与经由所述转发器向所述网络设备转发的第三信号被包含在向所述转发器发送的同一信号中。
30.根据附记29所述的方法,其中,所述第八信号的时域资源和所述第三信号的时域资源至少部分相同;所述第八信号的频域资源和所述第三信号的频域资源不同和/或所述第八信号的码域资源和所述第三信号的码域资源不同。
31.根据附记29所述的方法,其中,所述第八信号的频域资源和所述第三信号的频域资源至少部分相同;所述第八信号的时域资源和所述第三信号的时域资源不同和/ 或所述第八信号的码域资源和所述第三信号的码域资源不同。
32.根据附记29所述的方法,其中,所述第八信号的时频资源和所述第三信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第八信号的时频资源与所述第三信号的时频资源正交,和/或,所述第八信号的码域资源与所述第三信号的码域资源正交,和/或,所述第八信号与所述第三信号在空域(spatial domain)正交。
33.根据附记1至8任一项所述的方法,其中,
所述转发器向第三设备发送的第七信号与所述网络设备经由所述转发器向所述第三设备发送的第二信号位于不同时间单位;所述第三设备向所述转发器发送的第八信号与经由所述转发器向所述网络设备转发的第三信号位于不同时间单位。
34.根据附记33所述的方法,其中,所述转发器向所述第三设备转发的第二信号与所述转发器向所述网络设备转发的第三信号位于不同时间单位;
所述转发器向所述第三设备发送的第七信号与经由所述转发器向所述网络设备发送的第八信号位于不同时间单位。
35.根据附记1至8任一项所述的方法,其中,第三设备向所述转发器发送的第八信号和所述第三设备经由所述转发器向所述网络设备发送的第三信号被包含在第十信号中;
所述第十信号、所述转发器向所述第三设备发送的第七信号、经由所述转发器向所述第三设备转发的第二信号位于不同时间单位。
36.一种网络设备的通信方法,包括:
网络设备向转发器发送用于指示或配置所述转发器的波束的配置信息;以及
所述网络设备发送经由所述转发器转发的信号,和/或,接收经由所述转发器转发的信号。
37.根据附记36所述的方法,其中,所述网络设备发送经由所述转发器转发的信号,包括:
所述网络设备向所述转发器发送第一信号;
其中,所述转发器使用预定义的第一波束或者所述网络设备指示或配置的第一波束接收来自所述网络设备的第一信号;对所述第一信号进行信号处理以生成第二信号;以及使用预定义的第二波束或者所述网络设备指示或配置的第二波束向第三设备发送所 述第二信号。
38.根据附记36所述的方法,其中,所述网络设备接收经由所述转发器转发的信号,包括:
所述网络设备接收所述转发器发送的第四信号;
其中,所述转发器使用预定义的第三波束或者所述网络设备指示或配置的第三波束接收来自第三设备的第三信号;对所述第三信号进行信号处理以生成第四信号;以及使用预定义的第四波束或者所述网络设备指示或配置的第四波束向所述网络设备发送所述第四信号。
39.根据附记36至38任一项所述的方法,其中,所述方法还包括:
所述网络设备向所述转发器发送第五信号;
其中,所述转发器使用预定义的第五波束或者所述网络设备指示或配置的第五波束接收来自所述网络设备的第五信号;以及对所述第五信号进行解调和/或解码。
40.根据附记36至38任一项所述的方法,其中,所述方法还包括:
所述网络设备接收所述转发器发送的第六信号;
其中,所述转发器生成第六信号;以及使用预定义的第六波束或者所述网络设备指示或配置的第六波束向所述网络设备发送所述第六信号。
41.根据附记36至40任一项所述的方法,其中,所述网络设备向所述转发器发送的第五信号与所述网络设备经由所述转发器向第三设备发送的第一信号被包含在来自所述网络设备的同一信号中。
42.根据附记41所述的方法,其中,所述第五信号的时域资源和所述第一信号的时域资源至少部分相同;所述第五信号的频域资源和所述第一信号的频域资源不同和/或所述第五信号的码域资源和所述第一信号的码域资源不同。
43.根据附记41所述的方法,其中,所述第五信号的频域资源和所述第一信号的频域资源至少部分相同;所述第五信号的时域资源和所述第一信号的时域资源不同和/或所述第五信号的码域资源和所述第一信号的码域资源不同。
44.根据附记41所述的方法,其中,所述第五信号的时频资源和所述第一信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第五信号的时频资源与所述第一信号的时频资源正交,和/或,所述第五信号的码域资源与所述第一信号的码域资源正交,和/或,所述第五信号与所述第一信号在空域 (spatial domain)正交。
45.根据附记36至40任一项所述的方法,其中,所述转发器向所述网络设备发送的第六信号与所述转发器向所述网络设备转发的第四信号被包含在向所述网络设备发送的同一信号中。
46.根据附记45所述的方法,其中,所述第六信号的时域资源和所述第四信号的时域资源至少部分相同;所述第六信号的频域资源和所述第四信号的频域资源不同和/或所述第六信号的码域资源和所述第四信号的码域资源不同。
47.根据附记45所述的方法,其中,所述第六信号的频域资源和所述第四信号的频域资源至少部分相同;所述第六信号的时域资源和所述第四信号的时域资源不同和/或所述第六信号的码域资源和所述第四信号的码域资源不同。
48.根据附记45所述的方法,其中,所述第六信号的时频资源和所述第四信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第六信号的时频资源与所述第四信号的时频资源正交,和/或,所述第六信号的码域资源与所述第四信号的码域资源正交,和/或,所述第六信号与所述第四信号在空域(spatial domain)正交。
49.根据附记36至40任一项所述的方法,其中,所述网络设备向所述转发器发送的第五信号与所述网络设备经由所述转发器向第三设备发送的第一信号位于不同时间单位;所述转发器向所述网络设备发送的第六信号与所述转发器向所述网络设备转发的第四信号位于不同时间单位。
50.根据附记49所述的方法,其中,所述转发器向所述第三设备转发的第二信号与所述转发器向所述网络设备转发的第三信号位于不同时间单位;
所述网络设备向所述转发器发送的第五信号与所述转发器向所述网络设备发送的第六信号位于不同时间单位。
51.根据附记36至40任一项所述的方法,其中,所述网络设备向所述转发器发送的第五信号和所述网络设备经由所述转发器向第三设备发送的第一信号被包含在第九信号中;
所述第九信号、所述转发器向所述网络设备发送的第六信号、所述转发器向所述网络设备转发的第四信号位于不同时间单位。
52.根据附记36至40任一项所述的方法,其中,所述转发器在第一频率资源与所 述网络设备通信,在第二频率资源转发经由所述转发器的转发信号,所述第一频率资源与所述第二频率资源在频域不重叠。
53.根据附记52所述的方法,其中,所述转发器在所述第一频率资源接收所述网络设备发送的第五信号,并在所述第一频率资源向所述网络设备发送第六信号;
所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
54.根据附记52所述的方法,其中,所述转发器在第三频率资源接收所述网络设备发送的第五信号,并在第四频率资源向所述网络设备发送第六信号,所述第三频率资源与所述第四频率资源位于所述第一频率资源内;
所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
55.根据附记36至40任一项所述的方法,其中,所述转发器在第一频率资源向所述网络设备发送第六信号,在第二频率资源接收所述网络设备发送的第五信号并在所述第二频率资源转发经由所述转发器的转发信号;所述第一频率资源与所述第二频率资源在频域不重叠。
56.根据附记55所述的方法,其中,所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
57.一种第三设备的通信方法,包括:
第三设备使用预定义的波束或者网络设备指示或配置的波束,向网络设备发送经由转发器转发的信号,和/或,接收经由所述转发器转发的来自所述网络设备的信号。
58.根据附记57所述的方法,其中,所述方法还包括:
所述第三设备接收所述转发器生成并发送的第七信号;
其中,所述转发器使用预定义的第七波束或者所述网络设备指示或配置的第七波束向所述第三设备发送所述第七信号。
59.根据附记57所述的方法,其中,所述方法还包括:
所述第三设备生成并发送第八信号;
其中,所述转发器使用预定义的第八波束或者所述网络设备指示或配置的第八波束接收来自所述第三设备的第八信号,并对所述第八信号进行解调和/或解码。
60.根据附记57至59任一项所述的方法,其中,所述转发器向所述第三设备发送的第七信号与所述网络设备经由所述转发器向所述第三设备发送的第二信号被包含在来自所述转发器的同一信号中。
61.根据附记60所述的方法,其中,所述第七信号的时域资源和所述第二信号的时域资源至少部分相同;所述第七信号的频域资源和所述第二信号的频域资源不同和/或所述第七信号的码域资源和所述第二信号的码域资源不同。
62.根据附记60所述的方法,其中,所述第七信号的频域资源和所述第二信号的频域资源至少部分相同;所述第七信号的时域资源和所述第二信号的时域资源不同和/或所述第七信号的码域资源和所述第二信号的码域资源不同。
63.根据附记60所述的方法,其中,所述第七信号的时频资源和所述第二信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第七信号的时频资源与所述第二信号的时频资源正交,和/或,所述第七信号的码域资源与所述第二信号的码域资源正交,和/或,所述第七信号与所述第二信号在空域(spatial domain)正交。
64.根据附记57至59任一项所述的方法,其中,所述第三设备向所述转发器发送的第八信号与经由所述转发器向所述网络设备转发的第三信号被包含在向所述转发器发送的同一信号中。
65.根据附记64所述的方法,其中,所述第八信号的时域资源和所述第三信号的时域资源至少部分相同;所述第八信号的频域资源和所述第三信号的频域资源不同和/或所述第八信号的码域资源和所述第三信号的码域资源不同。
66.根据附记64所述的方法,其中,所述第八信号的频域资源和所述第三信号的频域资源至少部分相同;所述第八信号的时域资源和所述第三信号的时域资源不同和/或所述第八信号的码域资源和所述第三信号的码域资源不同。
67.根据附记64所述的方法,其中,所述第八信号的时频资源和所述第三信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
所述第八信号的时频资源与所述第三信号的时频资源正交,和/或,所述第八信号的 码域资源与所述第三信号的码域资源正交,和/或,所述第八信号与所述第三信号在空域(spatial domain)正交。
68.根据附记57至59任一项所述的方法,其中,
所述转发器向所述第三设备发送的第七信号与所述网络设备经由所述转发器向所述第三设备发送的第二信号位于不同时间单位;所述第三设备向所述转发器发送的第八信号与经由所述转发器向所述网络设备转发的第三信号位于不同时间单位。
69.根据附记68所述的方法,其中,所述转发器向所述第三设备转发的第二信号与所述转发器向所述网络设备转发的第三信号位于不同时间单位;
所述转发器向所述第三设备发送的第七信号与经由所述转发器向所述网络设备发送的第八信号位于不同时间单位。
70.根据附记57至59任一项所述的方法,其中,所述第三设备向所述转发器发送的第八信号和所述第三设备经由所述转发器向所述网络设备发送的第三信号被包含在第十信号中;
所述第十信号、所述转发器向所述第三设备发送的第七信号、经由所述转发器向所述第三设备转发的第二信号位于不同时间单位。
71.一种转发器,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至35任一项所述的通信方法。
72.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记36至56任一项所述的通信方法。
73.一种第三设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记57至70任一项所述的通信方法。

Claims (20)

  1. 一种转发器的通信方法,包括:
    转发器使用预定义的波束或者网络设备指示或配置的波束转发来自所述网络设备的信号,和/或,使用预定义的波束或者所述网络设备指示或配置的波束向所述网络设备转发信号。
  2. 根据权利要求1所述的方法,其中,所述使用预定义的波束或者网络设备指示或配置的波束转发来自所述网络设备的信号,包括:
    使用预定义的第一波束或者所述网络设备指示或配置的第一波束接收来自所述网络设备的第一信号;
    对所述第一信号进行信号处理以生成第二信号;以及
    使用预定义的第二波束或者所述网络设备指示或配置的第二波束向第三设备发送所述第二信号。
  3. 根据权利要求1所述的方法,其中,所述使用预定义的波束或者所述网络设备指示或配置的波束向所述网络设备转发信号,包括:
    使用预定义的第三波束或者所述网络设备指示或配置的第三波束接收来自第三设备的第三信号;
    对所述第三信号进行信号处理以生成第四信号;以及
    使用预定义的第四波束或者所述网络设备指示或配置的第四波束向所述网络设备发送所述第四信号。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述转发器接收所述网络设备发送的用于指示或配置所述转发器的波束的配置信息。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述转发器使用预定义的第五波束或者所述网络设备指示或配置的第五波束接收来自所述网络设备的第五信号;以及
    对所述第五信号进行解调和/或解码。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述转发器生成第六信号;以及
    使用预定义的第六波束或者所述网络设备指示或配置的第六波束向所述网络设备发送所述第六信号。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述转发器生成第七信号;以及
    所述转发器使用预定义的第七波束或者所述网络设备指示或配置的第七波束向第三设备发送所述第七信号。
  8. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述转发器使用预定义的第八波束或者所述网络设备指示或配置的第八波束接收来自第三设备的第八信号;以及
    所述转发器对所述第八信号进行解调和/或解码。
  9. 根据权利要求1所述的方法,其中,所述网络设备向所述转发器发送的第五信号与所述网络设备经由所述转发器向第三设备发送的第一信号被包含在来自所述网络设备的同一信号中。
  10. 根据权利要求9所述的方法,其中,所述第五信号的时域资源和所述第一信号的时域资源至少部分相同;所述第五信号的频域资源和所述第一信号的频域资源不同和/或所述第五信号的码域资源和所述第一信号的码域资源不同;
    或者,
    所述第五信号的频域资源和所述第一信号的频域资源至少部分相同;所述第五信号的时域资源和所述第一信号的时域资源不同和/或所述第五信号的码域资源和所述第一信号的码域资源不同。
  11. 根据权利要求9所述的方法,其中,所述第五信号的时频资源和所述第一信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
    所述第五信号的时频资源与所述第一信号的时频资源正交,和/或,所述第五信号的码域资源与所述第一信号的码域资源正交,和/或,所述第五信号与所述第一信号在空域正交。
  12. 根据权利要求1所述的方法,其中,所述转发器向所述网络设备发送的第六信号与所述转发器向所述网络设备转发的第四信号被包含在向所述网络设备发送的同一信号中。
  13. 根据权利要求12所述的方法,其中,所述第六信号的时域资源和所述第四信号的时域资源至少部分相同;所述第六信号的频域资源和所述第四信号的频域资源不同和/或所述第六信号的码域资源和所述第四信号的码域资源不同;
    或者,
    所述第六信号的频域资源和所述第四信号的频域资源至少部分相同;所述第六信号的时域资源和所述第四信号的时域资源不同和/或所述第六信号的码域资源和所述第四信号的码域资源不同。
  14. 根据权利要求12所述的方法,其中,所述第六信号的时频资源和所述第四信号的时频资源在一个时间单位,所述时间单位是如下之一:符号、时隙、子帧、小时隙、不基于时隙调度的最小调度单位;
    所述第六信号的时频资源与所述第四信号的时频资源正交,和/或,所述第六信号的码域资源与所述第四信号的码域资源正交,和/或,所述第六信号与所述第四信号在空域正交。
  15. 根据权利要求1所述的方法,其中,所述网络设备向所述转发器发送的第五信号与所述网络设备经由所述转发器向第三设备发送的第一信号位于不同时间单位;所述转发器向所述网络设备发送的第六信号与所述转发器向所述网络设备转发的第四信号位于不同时间单位;
    所述转发器向所述第三设备转发的第二信号与所述转发器向所述网络设备转发的第三信号位于不同时间单位;所述网络设备向所述转发器发送的第五信号与所述转发器向所述网络设备发送的第六信号位于不同时间单位。
  16. 根据权利要求1所述的方法,其中,所述网络设备向所述转发器发送的第五信号和所述网络设备经由所述转发器向第三设备发送的第一信号被包含在第九信号中;
    所述第九信号、所述转发器向所述网络设备发送的第六信号、所述转发器向所述网络设备转发的第四信号位于不同时间单位。
  17. 根据权利要求1所述的方法,其中,所述转发器在第一频率资源与所述网络设备通信,在第二频率资源转发经由所述转发器的转发信号,所述第一频率资源与所述第二频率资源在频域不重叠;
    其中,所述转发器在所述第一频率资源接收所述网络设备发送的第五信号,并在所述第一频率资源向所述网络设备发送第六信号;或者,所述转发器在第三频率资源接收所述网络设备发送的第五信号,并在第四频率资源向所述网络设备发送第六信号,所述第三频率资源与所述第四频率资源位于所述第一频率资源内;
    所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号, 并在所述第二频率资源向所述网络设备转发第四信号。
  18. 根据权利要求1所述的方法,其中,所述转发器在第一频率资源向所述网络设备发送第六信号,在第二频率资源接收所述网络设备发送的第五信号并在所述第二频率资源转发经由所述转发器的转发信号;所述第一频率资源与所述第二频率资源在频域不重叠;
    其中,所述转发器在所述第二频率资源接收用于转发的第一信号,并在所述第二频率资源向第三设备转发第二信号;所述转发器在所述第二频率资源接收用于转发的第三信号,并在所述第二频率资源向所述网络设备转发第四信号。
  19. 一种网络设备的通信方法,包括:
    网络设备向转发器发送用于指示或配置所述转发器的波束的配置信息;以及
    所述网络设备发送经由所述转发器转发的信号,和/或,接收经由所述转发器转发的信号。
  20. 一种第三设备的通信方法,包括:
    第三设备使用预定义的波束或者网络设备指示或配置的波束,向网络设备发送经由转发器转发的信号,和/或,接收经由所述转发器转发的来自所述网络设备的信号。
PCT/CN2021/133288 2021-08-29 2021-11-25 转发器、网络设备及其通信方法 WO2023029238A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180101706.5A CN117941282A (zh) 2021-08-29 2021-11-25 转发器、网络设备及其通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021011518 2021-08-29
CNPCT/CN2021/11518.9 2021-08-29

Publications (1)

Publication Number Publication Date
WO2023029238A1 true WO2023029238A1 (zh) 2023-03-09

Family

ID=85413152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133288 WO2023029238A1 (zh) 2021-08-29 2021-11-25 转发器、网络设备及其通信方法

Country Status (1)

Country Link
WO (1) WO2023029238A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428538B (en) * 2005-06-24 2007-10-03 Toshiba Res Europ Ltd Directional distributed relay system
CN105636149A (zh) * 2016-01-25 2016-06-01 北京小米移动软件有限公司 用于中继的方法、装置及系统
CN110602801A (zh) * 2019-08-09 2019-12-20 北京展讯高科通信技术有限公司 链路配置方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428538B (en) * 2005-06-24 2007-10-03 Toshiba Res Europ Ltd Directional distributed relay system
CN105636149A (zh) * 2016-01-25 2016-06-01 北京小米移动软件有限公司 用于中继的方法、装置及系统
CN110602801A (zh) * 2019-08-09 2019-12-20 北京展讯高科通信技术有限公司 链路配置方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM EUROPE: "Operation of relays in LTE-A", 3GPP DRAFT; R1-083191 RELAY OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Jeju; 20080812, 12 August 2008 (2008-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050316621 *

Similar Documents

Publication Publication Date Title
US11316639B2 (en) Systems and methods for mapping DMRS configuration to phase noise tracking pilot for improved receiver performance
CN112640543B (zh) 新无线电中的定时提前
CN107005980B (zh) 用于传输和接收时频资源的方法和设备
JP2017531352A (ja) Mm波アクセスシステムにおけるコンテンションをベースにしたランダムアクセスのために非対称的能力を利用する方法
US11950264B2 (en) Joint sounding and measurement for access link and sidelink
US20220078738A1 (en) Full duplex timing advance enhancements
US11102823B2 (en) Beam configuration of a smart MMW repeater for forwarding RACH message 1
US11923918B2 (en) System and method for multi-antenna communications
CN114982153B (zh) 用于转发rach消息2的智能mmw转发器的波束配置
JP2024037987A (ja) サブテラヘルツサブバンド平坦化フィードバック
CN114208072A (zh) 用于侧行链路中继的操作模式
US20220385394A1 (en) Cell-specific reference signal (crs) rate matching in multi-radio access technology (rat) networks
WO2023029238A1 (zh) 转发器、网络设备及其通信方法
WO2023028724A1 (zh) 转发器、网络设备及其通信方法
US11962543B2 (en) Wireless device full duplex cooperative schemes
WO2023092841A1 (zh) 转发器、网络设备及其通信方法
JP2023538824A (ja) 複数のアンテナのためのビームフォーミング回路
TW202130147A (zh) 用於非同步分時雙工的干擾減輕方案
WO2023092427A1 (zh) 转发器、网络设备及其通信方法
WO2023028725A1 (zh) 一种用于转发器的波束指示方法、装置和系统
WO2023092429A1 (zh) 一种通信方法、装置和系统
WO2024065541A1 (zh) 信息指示方法、转发器和网络设备
WO2023206303A1 (zh) 转发器及其传输方法、网络设备和通信系统
WO2023092513A1 (zh) 信号发送方法、信息发送方法以及装置
WO2024065417A1 (zh) 转发器的指示方法、转发器和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101706.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE