WO2024092836A1 - 信息指示方法、转发器和网络设备 - Google Patents

信息指示方法、转发器和网络设备 Download PDF

Info

Publication number
WO2024092836A1
WO2024092836A1 PCT/CN2022/130145 CN2022130145W WO2024092836A1 WO 2024092836 A1 WO2024092836 A1 WO 2024092836A1 CN 2022130145 W CN2022130145 W CN 2022130145W WO 2024092836 A1 WO2024092836 A1 WO 2024092836A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
information
time domain
domain resource
forwarding unit
Prior art date
Application number
PCT/CN2022/130145
Other languages
English (en)
French (fr)
Inventor
蒋琴艳
张磊
田妍
Original Assignee
富士通株式会社
蒋琴艳
张磊
田妍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 蒋琴艳, 张磊, 田妍 filed Critical 富士通株式会社
Priority to PCT/CN2022/130145 priority Critical patent/WO2024092836A1/zh
Publication of WO2024092836A1 publication Critical patent/WO2024092836A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present application relates to the field of communication technology.
  • 5G (fifth generation mobile communication technology) systems can provide larger bandwidth and higher data rates, and can support more types of terminals and vertical services.
  • 5G systems are also deployed on new spectrum, which has significantly higher frequencies than the traditional telecommunication spectrum used by 3G and 4G systems.
  • 5G systems can be deployed in the millimeter wave band (28GHz, 38GHz, 60GHz and above, etc.).
  • 5G systems need cell coverage enhancement methods more than previous 3G and 4G systems, especially 5G systems deployed in the millimeter wave frequency band. How to better enhance the cell coverage of 5G systems has become an urgent problem to be solved.
  • RF repeaters are widely used in the actual deployment of 3G systems and 4G systems.
  • an RF repeater is a device that amplifies and forwards the signals between devices in the RF domain.
  • RF repeaters are a type of non-regenerative relay node that simply amplifies and forwards all received signals.
  • conventional RF repeaters are unable to exchange information with other devices (e.g. network devices/terminal devices, etc.). Specifically, in terms of reception, conventional RF repeaters do not support measurement/demodulation/decoding of forwarded signals, nor do they receive signals other than forwarded signals. In terms of transmission, conventional RF repeaters only amplify and forward signals, and do not support generating signals and sending signals generated by themselves. Therefore, the forwarding behavior of conventional RF repeaters is not controlled by the network (e.g., through network devices, etc.). For example, the switch state of the repeater is usually set manually.
  • the switch of a conventional repeater is usually manually set, and it cannot dynamically match the data transmission between the network device and the UE. Generally, data transmission is not performed between the network device and the terminal device all the time. If the repeater is turned on when there is no network device and the terminal device is not transmitting data, on the one hand, it will increase unnecessary power consumption, and on the other hand, it may also cause interference to other devices and reduce network throughput. Therefore, compared with the conventional repeater, it is necessary to add the function of turning on/off the repeater. However, there is currently no specific control method for the on/off state.
  • an embodiment of the present application provides an information indication method, a repeater and a network device.
  • a repeater including:
  • a receiving unit which receives first control information at a mobile terminal of the repeater, wherein the first control information at least includes first information for indicating a time domain resource;
  • the forwarding unit of the forwarder is in the first state, the second state, or the third state in the time domain resource indicated by the first information.
  • a network device including:
  • a sending unit sends first control information to a forwarder, wherein the first control information at least includes first information for indicating time domain resources; and/or sends or does not send second control information, wherein the second control information is used to instruct the forwarding unit to forward a signal within the time domain resources.
  • a communication system comprising: the repeater of the aforementioned aspect and/or the network device of the aforementioned aspect.
  • the switch of the repeater can be controlled by the first control information so that the time domain resources corresponding to the on state of the repeater match the time domain resources of the data transmission between the network device and the terminal device, thereby saving the power consumption of the repeater and reducing the interference to other devices in the network, thereby improving the network throughput.
  • FIG1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG2 is a schematic diagram of an information indication method according to an embodiment of the present application.
  • FIG3 is a schematic diagram of various states of an embodiment of the present application.
  • FIGS. 4A to 4C are schematic diagrams of access link beams in an embodiment of the present application.
  • FIG5 is a schematic diagram of a repeater according to an embodiment of the present application.
  • FIG6 is a schematic diagram of an information indication method according to an embodiment of the present application.
  • FIG7 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, etc., and these elements should not be limited by these terms.
  • the term “and/or” includes any one and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having”, etc. refer to the existence of the stated features, elements, components or components, but do not exclude the existence or addition of one or more other features, elements, components or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE), enhanced Long Term Evolution (LTE-A), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and the like.
  • LTE Long Term Evolution
  • LTE-A enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • communication between devices in the communication system may be carried out according to communication protocols of any stage, such as but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G and future 5G
  • NR New Radio
  • the term "network device” refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • the network device may include, but is not limited to, the following devices: base station (BS), access point (AP), transmission reception point (TRP), broadcast transmitter, mobile management entity (MME), gateway, server, radio network controller (RNC), base station controller (BSC), etc.
  • Base stations may include but are not limited to: NodeB (NodeB or NB), evolved NodeB (eNodeB or eNB) and 5G base station (gNB), IAB host, etc., and may also include remote radio heads (RRH, Remote Radio Head), remote radio units (RRU, Remote Radio Unit), relays or low-power nodes (such as femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relays or low-power nodes such as femto, pico, etc.
  • base station may include some or all of their functions, and each base station may provide communication coverage for a specific geographical area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be referred to as "terminal equipment” (TE).
  • the terminal equipment may be fixed or mobile, and may also be referred to as a mobile station (MS), a terminal, a user, a subscriber station (SS), an access terminal (AT), a station, and the like.
  • Terminal devices may include but are not limited to the following devices: cellular phones, personal digital assistants (PDA, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, cordless phones, smart phones, smart watches, digital cameras, etc.
  • PDA personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers cordless phones
  • smart phones smart watches, digital cameras, etc.
  • the terminal device can also be a machine or device for monitoring or measuring, such as but not limited to: machine type communication (MTC) terminal, vehicle-mounted communication terminal, device to device (D2D) terminal, machine to machine (M2M) terminal, and so on.
  • MTC machine type communication
  • D2D device to device
  • M2M machine to machine
  • existing services or future services can be transmitted between the network device and the terminal device.
  • these services may include but are not limited to: enhanced mobile broadband (eMBB), massive machine type communication (mMTC), highly reliable and low latency communication (URLLC) and vehicle-to-everything (V2X) communication, etc.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC highly reliable and low latency communication
  • V2X vehicle-to-everything
  • Traditional repeaters do not have the ability to communicate with network devices. Therefore, although traditional repeaters can help enhance signal strength, they are not flexible enough to cope with complex environmental changes. Deploying traditional repeaters in 5G networks (especially in high-frequency 5G networks) may cause unnecessary interference to other network devices and/or terminal devices, thereby reducing the transmission efficiency of the entire network (for example, throughput). In order to make the forwarding of repeaters more flexible to adapt to the characteristics of 5G networks, network devices need to assist repeaters and be able to configure the forwarding of repeaters according to network conditions.
  • NCR network-controlled repeater
  • FIG1 is a schematic diagram of an NCR of an embodiment of the present application.
  • NCR 102 is configured between a network device 101 and a terminal device 103.
  • NCR 102 may include the following two modules/components: a mobile terminal (NCR-MT) of the repeater and a forwarding unit (NCR-Fwd) of the repeater; NCR-Fwd may also be referred to as a routing unit (NCR-RU) of the NCR.
  • NCR-MT is used to communicate with the network device (interact information), and NCR-Fwd is used to forward signals between the network device and the terminal device.
  • NCR-MT and NCR-Fwd are functional entities, and their functions may be implemented by the same or different hardware modules.
  • the NCR of the embodiment of the present application may have three links: a control link (control link, C-link), a backhaul link (or backhaul link, BH link) for forwarding, and an access link (access link, AC link).
  • C-link is used for communication between NCR and network equipment.
  • BH link is used for the forwarder to receive a signal to be forwarded from the network equipment, or to forward a signal from the terminal equipment to the network equipment.
  • AC link is used for the forwarder to forward a signal from the network equipment to the terminal equipment, or to receive a signal to be forwarded from the terminal equipment.
  • NCR-MT communicates with the network equipment through C-link; NCR-Fwd forwards signals through BH link and AC link.
  • a repeater can communicate with a network device, and the repeater can receive a communication channel/signal sent by the network device, and demodulate/decode the channel/signal, thereby obtaining information sent by the network device to the repeater.
  • the signal processing process is hereinafter referred to as "communication”.
  • the repeater can also forward a channel/signal transmitted between a network device and a terminal device.
  • the repeater does not demodulate/decode the channel/signal, but can perform amplification and other processing.
  • the signal processing process is hereinafter referred to as "forwarding".
  • "Communication” and “forwarding” are collectively referred to as "transmission”.
  • sending or receiving on an AC (or BH) link can be equivalent to “forwarding on an AC (or BH) link
  • sending or receiving on a control link can be equivalent to "communicating on a control link”.
  • the above terms are for convenience of explanation only and do not constitute a limitation on the present application.
  • sending unit can be interchangeable with “forwarding behavior”.
  • the repeater can also be expressed as a network controlled repeater (NCR), a repeater, a RF repeater, a repeater, a RF repeater; or it can also be expressed as a repeater node, a repeater node, a repeater node; or it can also be expressed as an intelligent repeater, an intelligent repeater, an intelligent repeater, an intelligent repeater node, an intelligent repeater node, an intelligent repeater node, etc., but the present application is not limited to this.
  • NCR network controlled repeater
  • the network device may be a device of the service cell of the terminal device, or a device of the cell where the repeater is located, or a device of the service cell of the repeater, or a parent node (Parent node) of the repeater.
  • the present application does not impose any restriction on the name of the repeater. As long as the device can realize the above functions, it is included in the scope of the repeater of the present application.
  • An embodiment of the present application provides an information indication method, which is described from the perspective of a repeater.
  • FIG. 2 is a schematic diagram of an information indication method according to an embodiment of the present application. As shown in FIG. 2 , the method includes:
  • a mobile terminal of the forwarder receives first control information, where the first control information at least includes first information for indicating a time domain resource;
  • the forwarding unit of the forwarder is in the first state, the second state, or the third state in the time domain resource indicated by the first information.
  • FIG2 is only a schematic illustration of the embodiment of the present application, but the present application is not limited thereto.
  • the execution order between the various operations can be appropriately adjusted, and other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of the above FIG2.
  • the first state may also be referred to as an on state or a first on state
  • the second state may also be referred to as a standby state or a switching state or a second on state or a second off state
  • the third state may also be referred to as an off state or a shutdown state or a first off state.
  • the first state, the second state and the third state refer to the state of the forwarding unit (NCR-Fwd) of the repeater.
  • NCR-Fwd is used to forward signals between the network device and the terminal device.
  • the above first state, second state or third state is used to characterize the working state or switch state of the NCR-Fwd.
  • the first state characterizes that NCR-Fwd is forwarding signals.
  • the forwarding unit is in the first state in a time period (or time domain resource) A, which means that the forwarding unit forwards signals in the time period, including forwarding downlink signals sent by the network device to the terminal device and/or forwarding uplink signals sent by the terminal device to the network device.
  • the time period includes the time when the forwarding unit performs uplink and downlink conversion and/or beam switching.
  • the second state indicates that the NCR-Fwd is allowed or capable of or is ready to forward signals.
  • the forwarding unit is in the second state in a time period (or time domain resource) B, the forwarding unit is in a standby state in the time period, or the forwarding unit stops forwarding signals in the time period; or the forwarding unit does not forward signals in the time period; or the forwarding unit is capable (or is allowed to, or is able to, or is capable of, or is ready to) forward signals in the time period.
  • the third state indicates that the NCR-Fwd is not allowed or has no capability or is not ready to forward signals.
  • the forwarding unit is in the third state in a time period (or time domain resource) C, the forwarding unit is in a shutdown state in the time period, or the forwarding unit stops forwarding signals in the time period; or the forwarding unit does not forward signals in the time period; or the forwarding unit has the capability (or is allowed to, or is able to, or is capable of, or is ready to) to forward signals in the time period; or the forwarding unit has no capability (or is not allowed to, or is not able to, or is not capable of, or is not ready to) to forward signals in the time period.
  • the NCR supports a first state, wherein an output power requirement may also be defined for the first state, for example, the output power of the NCR in the first state is not less than or greater than a first power (or power level), and/or, the output power of the NCR in the first state is not greater than or less than a fourth power (or power level).
  • NCR (or NCR-Fwd) supports only one of the second state and the third state.
  • NCR supports the first state and the second state, or the first state and the third state.
  • NCR (or NCR-Fwd) supports the second state and the third state.
  • NCR supports the first state, the second state and the third state.
  • the NCR (or NCR-MT) may report to the network device whether it supports the second state and/or the third state.
  • the output power requirement is defined only for the second state or only for the third state.
  • the output power of the NCR in the second state or the third state is not greater than or less than the second power (or power level) described below.
  • output power requirements are defined for both the second state and the third state.
  • the output power requirements for the second state and the third state are the same, for example, the output power of the NCR in the second state and the third state is not greater than or less than the second power (or power level) described below.
  • the output power requirements for NCR-Fwd in the second state and the third state are different. For example, if NCR-Fwd is in the second state, the output power of NCR-Fwd is not greater than or less than the second power, and if NCR-Fwd is in the third state, the output power of NCR-Fwd is not greater than or less than the third power.
  • the second power and the third power have different values, for example, the second power is greater than the third power.
  • the second power/third power refers to power spectral density (dBm/MHz), which can be respectively referred to as the second power spectral density and the third power spectral density.
  • the second power is equal to -85dBm/MHz
  • the third power is less than -85dBm/MHz, or the second power is greater than -85dBm/MHz, and the third power is equal to -85dBm/MHz.
  • the second power is equal to -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz
  • the third power is less than -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz; or the second power is greater than -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz
  • the third power is equal to -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz
  • the subcarrier spacing SCS is, for example, the SCS of the forwarded signal (not being forwarded), but is not limited thereto.
  • the second power is equal to -36dBm/MHz and the third power is less than -36dBm/MHz, or the second power is greater than -36dBm/MHz and the third power is equal to -36dBm/MHz.
  • the output power requirements for NCR-Fwd may be defined for uplink and downlink, respectively. That is, the second power and/or third power may be defined for the output power of the BH link and the AC link, respectively.
  • the second power is equal to -85dBm/MHz
  • the third power is less than -85dBm/MHz
  • the second power is greater than -85dBm/MHz and the third power is equal to -85dBm/MHz.
  • the second power is equal to -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz, and the third power is less than -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz; or the second power is greater than -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz, and the third power is equal to -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz.
  • the subcarrier spacing SCS is, for example, the SCS of the forwarded signal (not being forwarded), but is not limited thereto.
  • output power requirements may be defined separately for different operating frequency bands or frequency ranges (eg FR1, FR2, FR2-1, FR2-2), that is, the second power and/or third power may be defined separately for the output power of NCR-Fwd operating in different frequency bands or frequency ranges.
  • the second power is equal to -85dBm/MHz
  • the third power is less than -85dBm/MHz
  • the second power is greater than -85dBm/MHz
  • the third power is equal to -85dBm/MHz.
  • the second power is equal to -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz, and the third power is less than -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz; or the second power is greater than -50dBm/(SCS*(12*N RB +1)/1000)MHz, and the third power is equal to -50dBm/(SCS ⁇ (12 ⁇ N RB +1)/1000)MHz.
  • the subcarrier spacing SCS is, for example, the SCS of the forwarded signal (not being forwarded), but is not limited thereto.
  • the second power is equal to -36dBm/MHz and the third power is less than -36dBm/MHz, or the second power is greater than -36dBm/MHz and the third power is equal to -36dBm/MHz.
  • the output power of NCR-Fwd in the second state or the third state is defined as: during the time period when it is in the second state or the third state, it exceeds/is greater than/is not less than the average power measured in a certain time length.
  • a filter e.g. a square filter
  • the SCS is, for example, the SCS of the forwarded signal (not forwarded), but is not limited to this.
  • the forwarding unit is supported to directly transition (or switch) from the third state to the first state.
  • the forwarding unit is not supported to directly transition from the third state to the first state and/or from the first state to the third state, that is, if NCR-Fwd is in the third state, it must first transition to the second state before it can transition from the second state to the first state.
  • the forwarding unit is supported or not supported to directly transition from the first state to the third state.
  • only the transition time (or switching time) between the first state and the second state is defined, or only the transition time between the first state and the third state is defined, for example, the first transition time described below. That is, the first transition time is included only when the first state and the second state are switched, and the first transition time is not included when the first state and the third state are switched, or the first transition time is included only when the first state and the third state are switched, and the first transition time is not included when the first state and the second state are switched.
  • the transition time between the first state and the second state and the transition time between the first state and the third state are defined, that is, the transition time is included when the first state and the second state are switched, and the transition time is also included when the first state and the third state are switched.
  • the transition time between the second state and the third state may be defined or not defined.
  • the transition time between the first state and the second state is the same length as the transition time between the first state and the third state, for example, the first transition time.
  • the transition period between the first state and the second state is different from the transition period between the first state and the third state.
  • the transition period between the first state and the second state is the first transition period
  • the transition period between the first state and the third state is the second transition period.
  • the first transition period is less than the second transition period.
  • the first transition period is equal to 10us
  • the second transition period is greater than 10us
  • the first transition period is less than 10us
  • the second transition period is equal to 10us.
  • the first transition period is equal to 3us
  • the second transition period is greater than 3us, or the first transition period is less than 3us, and the second transition period is equal to 3us.
  • the transition time may be defined for different operating frequency bands or frequency ranges (e.g. FR1, FR2, FR2-1, FR2-2), that is, the first transition time and/or the second transition time may be defined for NCR-Fwd operating in different frequency bands or frequency ranges.
  • the first transition time is equal to 10us
  • the second transition time is greater than 10us
  • the first transition time is less than 10us
  • the second transition time is equal to 10us.
  • the first transition time is equal to 3us
  • the second transition time is greater than 3us, or the first transition time is less than 3us, and the second transition time is equal to 3us.
  • FIG3 is a schematic diagram of the transition time and output power of each state in the embodiment of the present application (assuming that the transition time and output power requirements are different).
  • switching from the second state to the first state includes a first transition time
  • switching from the first state to the third state includes a second transition time.
  • the output power of NCR-Fwd is greater than the first power
  • the output power of NCR-Fwd is less than the second power
  • the output power of NCR-Fwd is less than the third power.
  • the values of first power>second power>third power are different.
  • FIG3 is only an example.
  • the second power and the third power can be the same, the first transition time and the second transition time can be the same, or the state conversion can not include the first transition time and the second transition time, which will not be repeated here.
  • the above describes the behavior of the forwarding unit in different states.
  • the following describes the behavior of the mobile terminal when the forwarding unit is in different states.
  • the forwarding unit is in the third state in time period D, and the mobile terminal (NCR-MT) does not receive part or all of the downlink signal and/or does not send part or all of the uplink signal in time period D.
  • the downlink signal includes second control information for instructing the forwarding unit to forward the signal, and the second control information includes RRC or MAC CE or DCI.
  • the forwarding unit is in the third state in time period D, and the mobile terminal does not listen to the DCI format used to instruct the forwarding unit to forward the signal in the time period D, or the mobile terminal does not expect to receive the second control information (such as DCI) indicating that the forwarding unit forwards the signal in the time period, or the mobile terminal does not expect to receive the second control information (such as RRC or MAC CE or DCI) indicating that the forwarding unit forwards the signal within the time period.
  • the second control information such as DCI
  • the second control information such as RRC or MAC CE or DCI
  • the forwarding unit is in the second state or the third state in the time period D
  • the mobile terminal listens to the DCI format for instructing the forwarding unit to forward the signal in the time period, or the mobile terminal receives the second control information instructing the forwarding unit to forward the signal within the time period, or the mobile terminal receives the second control information instructing the forwarding unit to forward the signal within the time period after receiving the first control information.
  • the first state, the second state and the third state refer to the state of the mobile terminal (NCR-MT) of the repeater, and the first state, the second state or the third state is used to characterize the working state or the switch state of the NCR-MT.
  • the third state indicates that the NCR-MT does not send or receive signals on the C-link.
  • the mobile terminal NCR-MT
  • the downlink signal includes second control information for indicating that the forwarding unit forwards the signal
  • the second control information includes RRC or MAC CE or DCI.
  • the third state characterizes that the NCR-MT does not listen to the signal sent or received on the C-link or does not expect to send or receive the signal on the C-link.
  • the mobile terminal does not listen to the DCI format used to instruct the forwarding unit to forward the signal in the time period D, or the mobile terminal does not expect to receive the second control information (such as DCI) indicating that the forwarding unit forwards the signal in the time period, or the mobile terminal does not expect to receive the second control information (such as RRC or MAC CE or DCI) indicating that the forwarding unit forwards the signal within the time period.
  • the second control information such as DCI
  • the second state or the third state characterizes that the NCR-MT monitors a signal sent or received on the C-link or sends or receives a signal on the C-link.
  • the mobile terminal monitors a DCI format for instructing the forwarding unit to forward a signal in the time period, or the mobile terminal receives second control information instructing the forwarding unit to forward a signal within the time period in the time period, or the mobile terminal receives second control information instructing the forwarding unit to forward a signal within the time period after receiving the first control information.
  • the time period corresponding to the above first state, second state or third state is represented by the time domain resources configured by the network device, that is, the mobile terminal of the forwarder receives the first control information sent by the network device, and the first control information may include DCI and/or RRC signaling and/or MAC CE, and the first control information at least includes first information for indicating the time domain resources (time period); the first information may explicitly or implicitly indicate that the forwarding unit is in the first state, the second state or the third state in the time domain resources, thereby, the forwarding unit of the forwarder is in the first state, the second state or the third state in the time domain resources indicated by the first information.
  • the following describes how to indicate the time domain resources through the first information.
  • the first information may be carried by one or more first information fields, and the one or more first information fields indicate the starting position (offset) and/or duration and/or interval and/or period of the time domain resource.
  • the time domain resource is periodic or semi-continuous or non-periodic.
  • the aforementioned starting position (offset) and/or duration and/or interval and/or period may be indicated with the following time units as granularity.
  • the time unit is, for example, a subframe, a time slot, a symbol, a mini-slot, a millisecond, etc.
  • the first information field may include the number of time units included in the starting position (offset) and/or duration and/or interval and/or period of the time domain resource (for example, field_1 and/or field_2 in Element_2 in the example described later), and the starting position (offset) and/or duration and/or interval and/or period of the time domain resource is indicated by the number of time units, or the first information field includes an index of the time unit (for example, field_3 in Element_2 in the example described later), or the first information field (for example, the time domain resource allocation information field described later) may also include a row index value, and the starting position (offset) and/or duration and/or interval and/or period is indicated by the index value in combination with the time domain resource allocation table.
  • different first information domains when carried by multiple (X) first information domains, different first information domains indicate different information related to time domain resources.
  • different first information domains can respectively indicate different information such as offset, duration, period, etc. (for example, field_1, field_2 and field_3 in Element_2 in the example described later), or different first information domains indicate different time units, for example, different first information domains respectively indicate time slots and symbols, etc.; or the time domain resources indicated by different first information domains do not overlap or do not completely overlap, and the embodiments of the present application are not limited to this.
  • the X first information fields when carried by multiple (X) first information fields, can be divided into multiple (Y) groups of first information fields, each group of first information fields includes one or more (Z) first information fields, a group of first information fields indicates a part of the time domain resources, and the time domain resources indicated by different groups of information fields do not overlap or do not completely overlap.
  • Element_2 includes a group of first information fields, including three first information fields field_1, field_2, and field_3.
  • the first control information may also include or not include second information for indicating one or more access link beams. Whether the first control information includes the second information is related to the working frequency band (or frequency range) and/or capability and/or high-level parameter configuration of the forwarding unit.
  • the first control information when the working frequency band of the forwarding unit is FR1, the first control information does not include the second information, and when the working frequency band of the forwarding unit is FR2, the first control information includes the second information;
  • the first control information when the access link beam of the repeater is fixed (or only one access link beam (analog beam) is supported), the first control information includes the second information.
  • the access link beam of the repeater can be adjusted or switched (or the repeater supports more than one access link beam)
  • the first control information includes the second information; in this example, the repeater may send or not send capability-related information to the network device.
  • the capability-related information includes, for example, the number of access link beams supported by the repeater, and/or a beam index, and/or spatial characteristic-related information. The beam index will be described later.
  • the operating frequency band of the repeater is FR1
  • the default access link beam is fixed (or only supports one access link beam (analog beam)), and the repeater does not need to send the capability-related information to the network device; or, if the access link beam of the repeater can be adjusted/converted (or the repeater supports more than one access link beam), the capability-related information is sent to the network device, otherwise, there is no need to send the capability-related information to the network device.
  • the operating frequency band of the repeater is FR2
  • the default access link beam can be adjusted/converted (or the repeater supports more than one access link beam), and the repeater does not need to send the capability-related information to the network device.
  • the access link beam of the repeater is fixed (or only supports one access link beam (analog beam))
  • the capability-related information is sent to the network device. Otherwise, there is no need to send the capability-related information to the base station.
  • the operating frequency band of the repeater is FR1 or FR2.
  • the repeater sends the capability-related information to the network device. For example, when the access link beam is fixed, the reported number of access link beams is 1, or the access link beam can be adjusted/convertible (or the repeater supports more than one (N) access link beams), the reported number of access link beams is N.
  • the high-level parameter is an information field of RRC signaling, and the information field is used (directly or indirectly) to configure whether DCI format X_Y includes the second information.
  • the high-level parameter can be 1 bit, and when the high-level parameter configuration includes the second information (for example, the bit value is 1), DCI format X_Y includes the second information, and when the high-level parameter configuration does not include the second information (for example, the bit value is 0), DCI format X_Y does not include the second information.
  • DCI format X_Y when a certain information element IE or another information field includes the information field, DCI format X_Y includes the second information, otherwise, the second information is not included.
  • the high-level parameter is used to configure the beam that can be indicated by the access link beam that DCI format X_Y can indicate (for example, called a candidate beam), and one of the access link beams of the forwarder is configured as a candidate beam, then DCI format X_Y does not include the second information. If more than one access link beam is configured as a candidate beam, DCI format X_Y includes second information.
  • exampleField_4 and exampleField_5 can be expressed using the abstract syntax notation ASN.1 data format as follows:
  • exampleField_4 is used to configure the information field for indicating the access link beam in DCI format X_Y, INTEGER (0..3) can be the number of bits of the information field, and optionally, it can also include Element_3, which is used to configure the list of beam patterns corresponding to the information field (assuming that the information field indicates the index of a beam pattern).
  • the exampleField_4 may exist or not exist, that is, exampleField_4 exists conditionally, and the condition XYZ1 includes optional presence (optional present) for FR2 (or FR2-1); absence (absent) for FR1; or mandatory presence (mandatory present) for FR2 (or FR2-1); absence (absent) for FR1; or mandatory presence (mandatory present) for FR2 (or FR2-1); optional presence (optional present) for FR1.
  • exampleField_5 is used to configure the information field used to indicate time domain resources in DCI format X_Y, and Element_4 configures the time domain resource list corresponding to the information field, such as PDSCH-TimeDomainResourceAllocationList.
  • ExampleIE_6 or exampleField_6 can be expressed as follows using the abstract syntax notation ASN.1 data format:
  • ExampleIE_6 or exampleField_6 is used to configure DCI format X_Y
  • aField is used to configure the information field for indicating the access link beam in DCI format X_Y
  • INTEGER (0..3) can be the number of bits of the information field, and optionally, it can also include Element_3, which is used to configure the list of beam patterns corresponding to the information field (assuming that the information field indicates the index of a beam pattern).
  • the embodiment of the present application is not limited to this.
  • the aField may exist or not, that is, aField exists conditionally.
  • the condition XYZ1 is as described above and will not be repeated here.
  • anotherField is used to configure the information field for indicating time domain resources in DCI format X_Y
  • Element_4 configures the time domain resource list corresponding to the information field, such as PDSCH-TimeDomainResourceAllocationList.
  • the second information may be relevant information of one or more access link beams, and the relevant information includes beam type and/or beam index, etc.
  • the beam type and index will be described later.
  • the first control information further includes or does not include third information for indicating the first state, the second state, or the third state.
  • the third information may be 1-bit information or 2-bit information, and 1-bit or 2-bit information is used to indicate whether the state of the forwarding unit is the first state, the second state, or the third state. For example, when the bit value is 0, it indicates the first state, and when the bit value is 1, it indicates the third state. Examples are not given one by one here.
  • the first control information is DCI (DCI format X_Y), and the second information and the third information include the same information field, that is, the same information field in DCI format X_Y provides the second information or the third information in different situations.
  • the information field is used to provide the third information
  • the information field is used to provide the second information.
  • the information field is used to provide the third information
  • the information field is used to provide the second information.
  • the following example illustrates an implementation of the first control information.
  • the first information explicitly indicates that the forwarding unit is in the first state, the second state, or the third state in the time domain resource, that is, the first information is only used to indicate that the forwarding unit is in the first state, the second state, or the third state in the time domain resource, and will not indicate other content.
  • the first control information includes or does not include the second information for indicating one or more access link beams.
  • the network device will not send the second information for indicating one or more access link beams to the terminal device, or in other words, the second information for indicating one or more access link beams will not be sent in the first control information.
  • the second information indicating one or more access link beams is taken as an example, but the embodiments of the present application are not limited to this.
  • the second information can also indicate one or more return link beams, and the implementation methods are similar, and the embodiments of the present application will not be repeated one by one.
  • the first control information may further include third information for indicating the first state, the second state, or the third state.
  • the first control information includes the first information but does not include the second information.
  • it may also include the third information.
  • the access link beam may be default or fixed or default, and the first information only indicates that the forwarding unit is in the first state, the second state or the third state in the time domain resources.
  • the first information implicitly indicates that the forwarding unit is in the first state, the second state, or the third state in the time domain resource, and the first information is also used to indicate the time domain resources corresponding to one or more access link beams and/or one or more return link beams.
  • the one or more access link beams and/or one or more return link beams are indicated by the second information included in the second control information.
  • the operating frequency band of the repeater is in FR2, and/or supports beam adjustment or indication or conversion (or the repeater supports more than one (N) access link beams), so the network device sends the second information indicating one or more access link beams to the terminal device.
  • the first control information includes first information and second information
  • the second information indicates one or more access link beams and/or one or more return link beams
  • the first information indicates time domain resources corresponding to one or more access link beams and/or one or more return link beams
  • the first information can also implicitly indicate that the state of the forwarding unit in the time domain resources is the first state, the second state, or the third state.
  • the AC link beam can also be called the terminal device side beam, which refers to the receiving beam/transmitting beam adopted (used) by the repeater in the AC link.
  • the transmitting beam forwards the signal from the network device to the terminal device, and the receiving beam forwards the signal from the terminal device to the network device.
  • the backhaul link beam can also be called the network device side beam, which refers to the receiving beam/transmitting beam adopted (used) by the repeater in the BH link.
  • the receiving beam forwards the signal from the terminal device to the network device, and the transmitting beam forwards the signal from the network device to the terminal device.
  • the beam (of the antenna) refers to, for example, the main lobe of the radiation pattern of the antenna array.
  • the repeater may support multiple beams (or antenna beams) of different directions and/or widths, and there may be an association relationship between the beams.
  • the association relationship between the first beam and the second beam includes: the beam center direction of the first beam and the second beam is the same, and/or the beam peak direction of the first beam and the second beam is the same, and/or the first beam and the second beam are quasi-co-addressed (e.g., QCL type D), and/or the first beam is within the range of the second beam, or the second beam is within the range of the first beam, and/or the beam width of the first beam is within the beam width range of the second beam, and/or the beam width of the second beam is within the beam width range of the first beam.
  • the beam center direction for example, refers to the geometric center of the half power contour of the beam
  • the beam peak direction for example, refers to the direction of the maximum EIRP of the beam.
  • the beams supported by NCR are numbered in sequence, and the numbering can be performed according to the spatial relationship.
  • beams with adjacent numbers are spatially adjacent.
  • NCR supports 4 beams, numbered from 0 or 1, and their respective indexes are 0 to 3 or 1 to 4.
  • NCR supports both the first beam (wide beam) and the second beam (narrow beam), and the beams are numbered in sequence, and the numbering can be performed according to the spatial relationship.
  • the wide beams are numbered first, and then the narrow beams are numbered.
  • Adjacently numbered wide beams are spatially adjacent, and adjacently numbered narrow beams are spatially adjacent.
  • first number a wide beam and a narrow beam associated with the wide beam and then number other wide beams and narrow beams in the same way.
  • Figure 4A is a schematic diagram of beam indexing in an embodiment of the present application.
  • NCR supports 2 wide beams (first beams), 8 narrow beams (second beams), the first 4 narrow beams are associated with the first wide beam, and the last 4 narrow beams are associated with the second wide beam. All beams are numbered starting from 0 or 1, for example 0 to 9 (or 1 to 10 not shown). When numbering, the first two can be wide beams and the rest can be narrow beams, or the 1st and 6th can be numbered as wide beams, and the others can be narrow beams.
  • NCR supports both the first beam (wide beam) and the second beam (narrow beam), and the first beam and the second beam are numbered in sequence, respectively. The numbering can be performed according to the spatial relationship. Adjacently numbered wide beams are spatially adjacent, and adjacently numbered narrow beams are spatially adjacent.
  • Figure 4B is a schematic diagram of beam indexing in an embodiment of the present application. As shown in Figure 4B, NCR supports 2 wide beams (first beams) and 8 narrow beams (second beams). The wide beams and narrow beams are numbered starting from 0 or 1, respectively, such as wide beams 0 to 1 (or 1 to 2 not shown in the figure), and narrow beams 0 to 7 (or 1 to 8 not shown in the figure). For example. The first 4 narrow beams are associated with the first wide beam, and the last 4 narrow beams are associated with the second wide beam.
  • NCR supports both the first beam (wide beam) and the second beam (narrow beam).
  • the first beam and the second beam are numbered hierarchically, starting from 0 or 1, respectively, and the numbering can be performed according to the spatial relationship.
  • Wide beams with adjacent numbers are spatially adjacent
  • narrow beams with adjacent numbers are spatially adjacent.
  • the narrow beam with a larger number associated with the narrow beam with a smaller number is spatially adjacent to the narrow beam with a smaller number associated with the wide beam with a larger number.
  • Figure 4C is a schematic diagram of beam indexing in an embodiment of the present application.
  • NCR supports 2 wide beams (first beams) and 8 narrow beams (second beams).
  • the wide beams are numbered 0 to 1 (or 1 to 2 not shown), and the 4 narrow beams associated with the first wide beam and the 4 narrow beams associated with the second wide beam are numbered 0 to 3 or (or 1 to 4 not shown), respectively.
  • indexes are all based on one dimension as an example, but the embodiments of the present application are not limited thereto, and the indexes may also be two-dimensional or three-dimensional.
  • the beams may be arranged in a two-dimensional array, and the horizontal beams and the vertical beams may be numbered horizontally, respectively.
  • the index is a two-dimensional index, and examples are not given one by one here.
  • the range of beams corresponding to the numberable beams may be all beams that the NCR can use for forwarding or all beams that can be indicated by the first control information (candidate beams configured by high-level parameters of the network device) and/or all beams supported by the NCR, or in other words, a beam may correspond to one or more beam indexes (multiple beam indexes are respectively predefined and/or reported by the NCR to the network device and/or configured by the network device).
  • a beam corresponds to a first index and a second index, wherein the first index is an index that uniquely identifies the beam among all beams supported by the NCR, and the second index is an index that uniquely identifies the beam among all beams that the NCR can use for forwarding or all beams that can be indicated by the first control information (candidate beams configured by high-level parameters of the network device).
  • the first control information includes first information and second information
  • the one or more access link beams indicated by the second information correspond to the time domain resources indicated by the first information.
  • the second information indicates multiple access link beams
  • the multiple access link beams are time-divided or frequency-divided.
  • the first information is carried by a first information field, and the time domain resource indicated by the first information field corresponds to an access link beam;
  • the second information is carried by one or more second information fields, and the one or more second information fields indicate an access link beam corresponding to the time domain resource indicated by the first information field;
  • different second information fields indicate different beam-related information.
  • one is used to indicate the beam type (wide beam/narrow beam), and the other is used to indicate the beam index (of the beam of the beam type), or one is used to indicate the beam group identifier, and the other is used to indicate the beam index (of the beam of the beam group), or one is used to indicate the index of the wide beam, and the other is used to indicate the index of the narrow beam
  • specific values can be reserved to indicate that a wide beam or a narrow beam is not indicated; for example, based on the above example 4 on indexing, a second information field used only to indicate the index of a narrow beam reserves a specific value to indicate that a narrow beam is not indicated (or, that the DCI indicates a wide beam)).
  • the second information field when one second information field is included, directly or indirectly indicates the beam index (first index or second index) of the access link beam.
  • the decimal value of the second information field is equal to the index value of the beam, thereby indicating the corresponding beam.
  • the decimal value/binary value of the second information field is mapped to the index value of the beam from small to large in order from small to large, thereby indicating the corresponding beam.
  • the bits in the second information field are mapped to the index value of the beam from small to large in order from MSB to LSB (or vice versa). If a bit value is 0, the corresponding beam is not indicated. If a bit value is 1, the corresponding beam is indicated (only one bit is 1, and the others are 0).
  • the second information field can be 0001, indicating the last numbered beam.
  • the first information is carried by a first information field, and the time domain resources indicated by the first information field correspond to one or more access link beams.
  • the second information is carried by one or more second information fields, and the one or more second information fields indicate one or more access link beams corresponding to the time domain resources indicated by the first information field.
  • each second information field indicates an access link beam
  • the access link beams indicated by the multiple second information fields correspond to different parts (time division) of the time domain resources indicated by the first information field according to a predefined rule
  • the access link beams indicated by the multiple second information fields all correspond to all (frequency division) of the time domain resources indicated by the first information field, or a mixture of time domain resources.
  • the K second information domains can be divided into multiple (N) groups of second information domains, each group of second information domains includes one or more (M) second information domains, each group of second information domains indicates an access link beam, and the access link beams indicated by the multiple groups of second information domains correspond to different parts of the time domain resources indicated by the first information domain according to a predefined rule (time division), or the access link beams indicated by the multiple groups of second information domains all correspond to all of the time domain resources indicated by the first information domain (frequency division), or a mixture of time domain resources.
  • time division time division
  • the access link beams indicated by the multiple groups of second information domains all correspond to all of the time domain resources indicated by the first information domain (frequency division), or a mixture of time domain resources.
  • different second information domains indicate different information related to the beam.
  • the specific indication method is as described in (one) and will not be repeated here.
  • the first information is carried by multiple first information fields, and the time domain resources indicated by the multiple first information fields correspond to one or more access link beams.
  • different first information fields indicate different information related to time domain resources.
  • the first information is carried by two first information fields, and the time units of different first information fields are different, one is used to indicate the time slot, and the other is used to indicate the symbol; or the information indicated by different first information fields is different, one is used to indicate the starting position, and the other is used to indicate the duration.
  • the first information is carried by three first information fields, which are used to indicate the time slot offset, symbol offset and duration, respectively.
  • the time domain resources indicated by different first information fields do not overlap or do not completely overlap.
  • the time domain resources indicated by the multiple first information fields are the union of the time domain resources indicated by the multiple first information fields.
  • the first information is carried by multiple first information fields
  • the second information is carried by one or more second information fields.
  • the one or more second information fields indicate an access link beam, corresponding to the time domain resources indicated by the multiple first information fields.
  • the second information field directly or indirectly indicates the access link beam.
  • the specific indication method is shown in (II), which will not be repeated here.
  • different second information fields indicate different beam-related information.
  • the specific indication method is shown in (I), which will not be repeated here.
  • the first information is carried by multiple first information fields
  • the second information is carried by one or more second information fields
  • the one or more second information fields indicate one or more access link beams, corresponding to the time domain resources indicated by the multiple first information fields.
  • Example 1 When the second information is carried by multiple (K) second information fields, each second information field indicates an access link beam, and each first information field corresponds to each second information field, that is, the access link beam indicated by a second information field is applied to the time domain resource indicated by its corresponding first information field.
  • Example 2 When the second information is carried by multiple (K) second information fields, the K second information fields can be divided into multiple (N) groups of second information fields, each group of second information fields includes one or more (M) second information fields, each group of second information fields indicates an access link beam, and each first information field corresponds to each group of second information fields; the access link beam indicated by a group of second information fields is applied to the time domain resource indicated by its corresponding first information field.
  • a group of second information fields includes M second information fields, different second information fields indicate different information related to the beam.
  • the specific instruction method is as described in (I) and will not be repeated here.
  • the first control information may be RRC signaling.
  • the same information element (ExampleIE_1 in the example) or the same field (exampleField_1 in the example) in the RRC signaling is used to configure the access link beam in different situations, or to configure the forwarding unit to the first state, the second state, or the third state.
  • Example 1 ExampleIE_1 or exampleField_1 can be expressed as follows using the abstract syntax notation ASN.1 data format:
  • aField is used to configure the access link beam
  • INTEGER (0..9) can be the index of the beam (corresponding to the second information), or the number of beams, etc.
  • it can also include Element_X, which is used to configure the beam pattern.
  • Element_X which is used to configure the beam pattern.
  • the aField may exist or not exist (the first control information includes or does not include the second information), that is, aField exists conditionally, and the condition XYZ1 includes that for FR2 (or FR2-1), aField is optional (optional present); for FR1, aField is absent (absent); or for FR2 (or FR2-1), aField must exist (mandatory present); for FR1, aField is absent (absent); or for FR2 (or FR2-1), aField must exist (mandatory present); for FR1, aField is optional (optional present).
  • Element_2 includes the first information for indicating the time domain resources, and the Element_2 includes one or more first information fields.
  • ExampleIE_1 or exampleField_1 can be expressed using the abstract syntax notation ASN.1 data format as follows: ExampleIE_1 or exampleField_1 is used to configure an access link beam, or to configure a forwarding unit to be in a first state, a second state, or a third state.
  • Element_1 is used to configure one or more access link beams and the time domain resources corresponding to these beams, or to configure the forwarding unit to be in the first state, the second state, or the third state of time domain resources.
  • aField is used to configure the access link beam
  • INTEGER (0..9) can be the index of the beam (corresponding to the second information), or the number of beams, etc.
  • it can also include Element_X, which is used to configure the beam pattern.
  • Element_X which is used to configure the beam pattern.
  • the aField may exist or not exist (the first control information includes or does not include the second information), that is, aField exists conditionally, and the condition XYZ1 includes that for FR2 (or FR2-1), aField is optional (optional present); for FR1, aField is absent (absent); or for FR2 (or FR2-1), aField must exist (mandatory present); for FR1, aField is absent (absent); or for FR2 (or FR2-1), aField must exist (mandatory present); for FR1, aField is optional (optional present).
  • Element_2 includes the first information for indicating the time domain resources, and the Element_2 includes one or more first information fields.
  • ExampleIE_1 or exampleField_1 can be expressed using the abstract syntax notation ASN.1 data format as follows: ExampleIE_1 or exampleField_1 is used to configure an access link beam, or to configure a forwarding unit to be in a first state, a second state, or a third state.
  • Element_1 is used to configure one or more access link beams and the time domain resources corresponding to these beams, or to configure the forwarding unit to be in the first state, the second state, or the third state of time domain resources.
  • aField is used to configure the access link beam
  • INTEGER (0..9) can be the index of the beam (corresponding to the second information), or the number of beams, etc.
  • it can also include Element_X, which is used to configure the beam pattern.
  • Element_X which is used to configure the beam pattern.
  • the aField may exist or not exist (the first control information includes or does not include the second information), that is, aField exists conditionally, and the condition XYZ1 includes that for FR2 (or FR2-1), aField is optional (optional present); for FR1, aField is absent (absent); or for FR2 (or FR2-1), aField must exist (mandatory present); for FR1, aField is absent (absent); or for FR2 (or FR2-1), aField must exist (mandatory present); for FR1, aField is optional (optional present).
  • Element_2 includes the first information for indicating the time domain resources, and the Element_2 includes one or more first information fields.
  • the first control information is RRC signaling
  • different information elements or different fields in the RRC signaling are respectively used to configure the access link beam, or to configure the forwarding unit to be in the first state, the second state, or the third state
  • different information elements ExampleIE_2 and ExampleIE_3 in the example
  • different fields ExampleField_2 and exampleField_3 in the example
  • share the same information element Element_1 or Element_2 in the example
  • Example 4 ExampleIE_2 or exampleField_2 and ExampleIE_3 or exampleField_3 can be expressed using the abstract syntax notation ASN.1 data format as follows:
  • ExampleIE_2 or exampleField_2 is used to configure the access link beam
  • ExampleIE_3 or exampleField_3 is used to configure the forwarding unit to be in the first state, the second state, or the third state.
  • the ExampleIE_2 or exampleField_2 may exist or not exist (the first control information includes or does not include the second information), that is, it exists conditionally, and the condition XYZ1 includes optional presence for FR2 (or FR2-1); absence for FR1; or mandatory presence for FR2 (or FR2-1); absence for FR1; or mandatory presence for FR2 (or FR2-1); optional presence for FR1.
  • Example 5 ExampleIE_2 or exampleField_2 and ExampleIE_3 or exampleField_3 can be expressed using the abstract syntax notation ASN.1 data format as follows:
  • ExampleIE_2 or exampleField_2 is used to configure the access link beam
  • ExampleIE_3 or exampleField_3 is used to configure the forwarding unit to the first state, the second state, or the third state.
  • the ExampleIE_2 or exampleField_2 (corresponding to the second information) may exist or not exist (the first control information includes or does not include the second information), that is, it exists conditionally, and the condition XYZ1 includes optional existence (optional present) for FR2 (or FR2-1); absence (absent) for FR1; or mandatory existence (mandatory present) for FR2 (or FR2-1); absence (absent) for FR1; or mandatory existence (mandatory present) for FR2 (or FR2-1); optional existence (optional present) for FR1.
  • Element_1 please refer to Example 6, which will not be repeated here.
  • Example 6 ExampleIE_2 or exampleField_2 and ExampleIE_3 or exampleField_3 can be expressed using the abstract syntax notation ASN.1 data format as follows:
  • ExampleIE_2 or exampleField_2 is used to configure the access link beam (corresponding to the second information), and ExampleIE_3 or exampleField_3 is used to configure the forwarding unit to be in the first state, the second state, or the third state.
  • the ExampleIE_2 or exampleField_2 may exist or not exist (the first control information includes or does not include the second information), that is, it exists conditionally, and the condition XYZ1 includes optional presence for FR2 (or FR2-1); absence for FR1; or mandatory presence for FR2 (or FR2-1); absence for FR1; or mandatory presence for FR2 (or FR2-1); optional presence for FR1.
  • Element_1 is used to configure one or more access link beams and the time domain resources corresponding to these beams, or to configure the forwarding unit to be in the first state, the second state, or the third state of time domain resources.
  • aField is used to configure the access link beam, INTEGER (0..9) can be the index of the beam, or the number of beams, etc.
  • it can also include Element_X, and the Element_X is used to configure the beam pattern.
  • the embodiments of the present application are not limited to this.
  • the aField may exist or not, that is, aField exists conditionally.
  • the condition XYZ2 includes that for ExampleIE_2 or exampleField_2, it must exist (mandatory present); for ExampleIE_3 or exampleField_3, it does not exist (absent).
  • Element_2 includes the first information for indicating the time domain resources, and the Element_2 includes one or more first information fields.
  • Element_2 uses the abstract syntax notation ASN.1 data format and can be expressed as:
  • field_1 is used to configure the period and/or offset (periodicityAndOffset) of the time domain resources
  • field_2 is used to configure the duration (duration) within the period
  • field_3 is used to configure the time slots and/or symbols within the duration, such as indicating the time slot index slot index, the starting time slot index slot index, the starting symbol index, the number of time slots, and the number of symbols.
  • the time slot index is an index within 10ms (a frame) or 1ms (a subframe)
  • the symbol index is an index within 10ms (a frame) or 1ms (a subframe) or a time slot.
  • the number of time slots is the number of time slots within the duration.
  • the number of symbols is the number of symbols within the duration or time slot.
  • the first control information may be DCI
  • the DCI may be DCI format X_Y.
  • the DCI format X_Y may be an existing DCI format (for example, DCI format 1_0/1_1/1_2/0_0/0_1/0_2/2_2, etc.), or a newly introduced DCI format for NCR.
  • the DCI can be unicast/dedicated or group common.
  • the CRC of the DCI is scrambled by a first radio network temporary identifier (RNTI) or a second RNTI
  • the first RNTI includes, for example, RNTI types that non-NCRs can also adopt/be configured, such as a first C-RNTI, a first MCS-C-RNTI, or an SFI-RNTI
  • the second RNTI includes, for example, an NCR-specific RNTI (e.g., an NCR-RNTI or a second C-RNTI, or a second MCS-C-RNTI), that is, non-NCRs cannot adopt/be configured with the second RNTI.
  • the NCR may be configured to monitor DCI format X_Y in a dedicated search space USS and/or a common search space CSS.
  • the USS may be configured to monitor the DCI format
  • the corresponding RNTI used for scrambling the CRC may be, for example, the first C-RNTI, or the NCR-RNTI or the second C-RNTI, or the second MCS-C-RNTI.
  • the CSS may be configured to monitor the DCI format, and the CSS may be, for example, Type3-PDCCH CSS set, and the corresponding RNTI used for scrambling the CRC may be, for example, the SFI-RNTI, or the NCR-RNTI or the second C-RNTI, or the second MCS-C-RNTI.
  • the DCI includes one or more first information fields, and the first information field includes a time domain resource allocation information field.
  • a TDRA information field indicates a row of TDRA configurations through a row index.
  • the time domain resource allocation (TDRA) table (or simply referred to as the TDRA table) includes at least one row.
  • a row is referred to as a TDRA configuration, that is, the TDRA table includes at least one TDRA configuration.
  • a TDRA configuration includes at least one time domain resource configuration, and the time domain resource configuration includes at least a symbol position (starting position symbol + length) configuration in a time slot; in addition, it is optional.
  • a TDRA configuration may also include at least one time slot offset K0 configuration; the one TDRA configuration may also include or not include other information (for example, mapping type, mapping type).
  • the embodiments of the present application are not limited to this.
  • the symbol position configuration in the time slot it includes, for example, a start and length indicator SLIV, and the SLIV corresponds to a valid combination of a starting symbol (S) and a length (L), or, for example, it corresponds to a starting symbol starting symbol configuration and a length length configuration, and the starting symbol configuration and the length configuration are a valid combination.
  • the first time position related to the first control information may be the time slot or the last time slot or the last symbol where the time domain resource or physical channel (PDCCH/PDSCH) carrying the first control information is located, or the first time position may also be the subframe or time slot or the last time slot or the last symbol where the HARQ-ACK information corresponding to the first control information or the physical channel (PDCCH/PDSCH) carrying the first control information is located.
  • the first time position may also be the subframe or time slot or the last time slot or the last symbol where the HARQ-ACK information corresponding to the first control information or the physical channel (PDCCH/PDSCH) carrying the first control information is located.
  • the first control information is DCI
  • the DCI is carried by PDCCH
  • the first time position may be the subframe or time slot or the last time slot or the last symbol where the PDCCH carrying the DCI is located
  • the first time position may be the subframe or time slot or the last time slot or the last symbol where the HARQ-ACK feedback (PUCCH/PUSCH) corresponding to the DCI or the PDCCH carrying the DCI is located.
  • the first control information is MAC CE, which can be carried by PDSCH
  • the first time position is the subframe or time slot or the last time slot or the last symbol where the HARQ-ACK feedback (PUCCH/PUSCH) corresponding to the PDSCH carrying the MAC CE is located.
  • the second time position of the time domain resource indicated by the first information is the subframe or time slot or the first time slot or the first symbol where the time domain resource indicated by the first information is located.
  • the state switching also requires a certain transition time.
  • it may also include the time of some other repeater processing behaviors (such as beam switching) and/or the time required to receive the first control information (decoding), etc. Therefore, the first interval between the first time position and the second time position of the time domain resource indicated by the first information is greater than or not less than the first predetermined value or the second predetermined value.
  • the first predetermined value is greater than the second predetermined value. The following is an example of transitioning from the third state or the second state to the first state.
  • the forwarding unit is in the third state when the mobile terminal receives the first control information, or the forwarding unit is in the third state before the time domain resources indicated by the first information, and is in the first state when the time domain resources indicated by the first information are in the first state, and the first interval is greater than or not less than the first predetermined value.
  • the first predetermined value includes the time required for the forwarding unit to switch from the third state to the first state, wherein the time required to switch from the third state to the first state includes or excludes the time required for beam switching.
  • the first control information includes the second information
  • the time required to switch from the third state to the first state includes the time required for beam switching.
  • the first control information does not include the second information
  • the time required to switch from the third state to the first state does not include the time required for beam switching.
  • the first predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the first predetermined value includes the time required for the forwarding unit to switch from the third state to the second state.
  • the first predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the first predetermined value includes the time required for the forwarding unit to switch from the third state to the second state and the time required to switch from the second state to the first state.
  • the time required to switch from the second state to the first state includes or does not include the time required for beam switching.
  • the first control information includes the second information
  • the time required to switch from the second state to the first state includes the time required for beam switching.
  • the first control information does not include the second information
  • the time required to switch from the second state to the first state does not include the time required for beam switching.
  • the first predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the first predetermined value includes the time required for the forwarding unit to switch from the third state to the second state and the time required for beam switching.
  • the first predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the forwarding unit is in the second state when receiving the first control information or the forwarding unit is in the second state before the time domain resources indicated by the first information, and is in the first state at the indicated time domain resources, and the first interval is greater than or not less than a second predetermined value.
  • the second predetermined value includes the time required for the forwarding unit to switch from the second state to the first state, wherein the time required for switching from the second state to the first state includes or does not include the time required for beam switching, for example, when the first control information includes the second information, the time required for switching from the second state to the first state includes the time required for beam switching, and when the first control information does not include the second information, the time required for switching from the second state to the first state does not include the time required for beam switching.
  • the second predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the second predetermined value includes the time required for beam switching.
  • the second predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the transition from the third state or the second state to the first state is made by taking the transition from the third state or the second state to the first state as an example.
  • the implementation methods of the transition from the first state to the third state and the transition from the first state to the second state are similar.
  • the forwarding unit is in the third state when receiving the first control information or the forwarding unit is in the third state before the time domain resource indicated by the first information, and is in the second state at the indicated time domain resource
  • the first interval is greater than or not less than the fifth predetermined value.
  • the fifth predetermined value includes the time required to switch from the third state to the second state.
  • the fifth predetermined value may also include or not include the time required for the mobile terminal to receive the first control information.
  • the implementation of the first interval is described above by taking state switching as an example.
  • the implementation of the first interval (hereinafter referred to as the second interval) is described below by taking whether the first control information includes the second information as an example.
  • the second interval between the third time position related to the first control information and the fourth time position of the time domain resource indicated by the first information is greater than or not less than a third predetermined value or a fourth predetermined value.
  • the third predetermined value is greater than the fourth predetermined value.
  • the third time position can refer to the first time position, and the fourth time position can refer to the second time position, which will not be repeated here.
  • the first control information includes second information for indicating one or more access link beams, and the second interval is greater than or not less than the third predetermined value.
  • the third predetermined value includes the time required for the forwarding unit to switch from the third state to the first state, wherein the time required to switch from the third state to the first state includes the time required for beam switching.
  • the third predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the third predetermined value includes the time required for the forwarding unit to switch from the third state to the second state and the time required for the forwarding unit to switch from the second state to the first state.
  • the time required for the switch from the second state to the first state includes the time required for beam switching.
  • the third predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the third predetermined value includes the time required for the forwarding unit to switch from the third state to the second state and the time required for beam switching.
  • the third predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the third predetermined value includes the time required for the forwarding unit to switch from the second state to the first state, wherein the time required for switching from the second state to the first state includes the time required for beam switching, and optionally, the third predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the third predetermined value includes the time required for beam switching.
  • the third predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the first control information does not include second information for indicating one or more access link beams, and the second interval is greater than or not less than the fourth predetermined value.
  • the fourth predetermined value includes the time required for the forwarding unit to switch from the third state to the first state, wherein the time required to switch from the third state to the first state does not include the time required for beam switching.
  • the fourth predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the fourth predetermined value includes the time required for the forwarding unit to switch from the third state to the second state.
  • the fourth predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the fourth predetermined value includes the time required for the forwarding unit to switch from the third state to the second state and the time required for the forwarding unit to switch from the second state to the first state.
  • the time required for switching from the second state to the first state does not include the time required for beam switching.
  • the fourth predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the fourth predetermined value includes the time required for the forwarding unit to switch from the second state to the first state, wherein the time required for switching from the second state to the first state does not include the time required for beam switching.
  • the fourth predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • the fourth predetermined value includes the time required for beam switching.
  • the fourth predetermined value may also include or exclude the time required for the mobile terminal to receive the first control information.
  • whether each predetermined value includes the time required for the mobile terminal to receive the first control information can be determined according to whether a HARQ-ACK for the first control information is fed back.
  • each predetermined value when providing feedback, if the first (third) time position is based on the position of HARQ-ACK (for example, the time slot where the HARQ-ACK information corresponding to the DCI or MAC CE is located or the last time slot or the last symbol), then each predetermined value does not need to include the time required for the mobile terminal to receive the first control information; if the first (third) time position is based on the first control information (the time slot where the PDCCH carrying the DCI is located or the last time slot or the last symbol), then each predetermined value needs to include the time required for the mobile terminal to receive the first control information.
  • the first (third) time position is based on the first control information (the time slot where the PDCCH carrying DCI is located or the last time slot or the last symbol), then each predetermined value needs to include the time required for the mobile terminal to receive the first control information.
  • the mobile terminal of the forwarder sends or does not send HARQ-ACK information corresponding to the first control information.
  • whether the mobile terminal sends HARQ-ACK information corresponding to the first control information is related to the capability and/or high-level parameter configuration of the forwarder.
  • whether HARQ-ACK feedback for the first control information is supported is related to the capability and/or high-level parameter configuration of the forwarder.
  • the first control information may be DCI.
  • the NCR reports to the base station whether it supports or does not support HARQ-ACK feedback for DCI format X_Y. If support is reported, the NCR sends the corresponding HARQ-ACK information (ACK) to the base station after receiving DCI format X_Y. Otherwise, the NCR does not send the corresponding HARQ-ACK information (ACK) to the base station after receiving DCI format X_Y. In some cases, the NCR does not support it by default. Therefore, the NCR reports to the base station that it supports HARQ-ACK feedback for DCI format X_Y only when it is supported, otherwise it does not need to be reported. .
  • DCI DCI format X_Y
  • the high-level parameter is an information field of RRC signaling, and the information field is used (directly or indirectly) to configure whether the NCR performs HARQ-ACK feedback on the DCI format X_Y. If it is configured to perform HARQ-ACK feedback on the DCI format X_Y, the NCR sends the corresponding HARQ-ACK information (ACK) to the base station after receiving the DCI format X_Y. Otherwise, the NCR does not send the corresponding HARQ-ACK information (ACK) to the base station after receiving the DCI format X_Y.
  • the high-level parameter can be a 1-bit information element.
  • the high-level parameter e.g., carried by RRC
  • HARQ-ACK feedback is provided for the first control information.
  • the high-level parameter e.g., carried by RRC
  • HARQ-ACK feedback is not provided for the first control information.
  • the higher-level parameters should not be configured for HARQ-ACK feedback for DCI format X_Y.
  • the mobile terminal of the forwarder sends HARQ-ACK information corresponding to the first control information, and the starting position of the time domain resource indicated by the first information is after (to ensure reliability) or before (to reduce latency) or the same as the ending position of the time domain resource used to send the HARQ-ACK information.
  • the time domain position for sending the HARQ-ACK information may be predefined or indicated by a network device, and the network device may configure the starting position of the time domain resource indicated by the first information considering latency and reliability factors.
  • the mobile terminal of the forwarder sends HARQ-ACK information corresponding to the first control information
  • the position of the time domain resource indicated by the first information is not related to the position of the time domain resource used to send the HARQ-ACK information.
  • the position of the time domain resource indicated by the first information is not limited to the position of the time domain resource used to send the HARQ-ACK information, or, when the network device configures the position of the time domain resource indicated by the first information, it is not necessary to consider the position of the time domain resource for sending the HARQ-ACK information.
  • the NCR after receiving the above-mentioned first control information or the DCI/PDCCH/PDSCH used to carry the first control information, the NCR sends the corresponding HARQ-ACK information, and the first (third) time position related to the first control information is the time domain resource carrying the first control information or the time slot or the last time slot or the last symbol of the physical channel (PDCCH/PDSCH).
  • the first control information is DCI
  • the DCI is carried by PDCCH
  • the first (third) time position can be the subframe or time slot or the last time slot or the last symbol of the PDCCH carrying the DCI.
  • the position of the time domain resource for sending the HARQ-ACK information is not limited to the position of the time domain resource used to send the HARQ-ACK information, and vice versa.
  • the switch of the repeater can be controlled by the first control information so that the time domain resources corresponding to the on state of the repeater match the time domain resources of the data transmission between the network device and the terminal device, thereby saving the power consumption of the repeater and reducing interference to other devices in the network, thereby improving network throughput.
  • An embodiment of the present application provides a repeater, which may be, for example, the aforementioned NCR, or a network device or terminal device with a forwarding function, or one or more parts or components configured in the NCR, network device or terminal device.
  • Figure 5 is a schematic diagram of a repeater according to an embodiment of the present application. Since the principle of solving the problem by the repeater is the same as the method of the embodiment of the first aspect, its specific implementation can refer to the embodiment of the first aspect, and the same contents will not be repeated.
  • the forwarder 500 further includes:
  • a receiving unit 501 which receives first control information at a mobile terminal of the repeater, where the first control information at least includes first information for indicating a time domain resource;
  • the forwarding unit of the forwarder is in the first state, the second state, or the third state in the time domain resource indicated by the first information.
  • FIG. 5 only exemplifies the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned various components or modules can be implemented by hardware facilities such as processors, memories, transmitters, and receivers; the implementation of this application is not limited to this.
  • the switch of the repeater can be controlled by the first control information so that the time domain resources corresponding to the on state of the repeater match the time domain resources of the data transmission between the network device and the terminal device, thereby saving the power consumption of the repeater and reducing interference to other devices in the network, thereby improving network throughput.
  • the embodiment of the present application provides an information indication method, which is explained from the perspective of a network device, and the contents that are the same as those in the embodiment of the first aspect are not repeated.
  • FIG6 is a schematic diagram of an information indication method according to an embodiment of the present application. As shown in FIG6 , the method includes:
  • the network device sends first control information to the forwarder, the first control information at least including first information for indicating a time domain resource; and/or sends or does not send second control information, the second control information is used to instruct the forwarding unit to forward a signal within the time domain resource.
  • first control information and the second control information reference may be made to the embodiment of the first aspect, which will not be described in detail herein.
  • FIG. 6 is only a schematic illustration of the embodiment of the present application, but the present application is not limited thereto.
  • the execution order between the various operations can be appropriately adjusted, and other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of the above FIG. 6.
  • the switch of the repeater can be controlled by the first control information so that the time domain resources corresponding to the on state of the repeater match the time domain resources of the data transmission between the network device and the terminal device, thereby saving the power consumption of the repeater and reducing interference to other devices in the network, thereby improving network throughput.
  • An embodiment of the present application provides a network device.
  • Figure 7 is a schematic diagram of a network device according to an embodiment of the present application. Since the principle of solving the problem by the network device is the same as the method of the embodiment of the third aspect, its specific implementation can refer to the embodiment of the third aspect, and the same contents will not be repeated.
  • the network device 700 of the embodiment of the present application includes:
  • a sending unit 701 sends first control information to a forwarder, wherein the first control information includes at least first information for indicating a time domain resource; and/or sends or does not send second control information, wherein the second control information is used to instruct the forwarding unit to forward a signal within the time domain resource.
  • the implementation methods of the first control information and the second control information may refer to the embodiment of the first aspect, and will not be described in detail herein.
  • the network device 700 of the embodiment of the present application may also include other components or modules, and the specific contents of these components or modules may refer to the relevant technology.
  • FIG. 7 only exemplifies the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned various components or modules can be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of this application is not limited to this.
  • the switch of the repeater can be controlled by the first control information so that the time domain resources corresponding to the on state of the repeater match the time domain resources of the data transmission between the network device and the terminal device, thereby saving the power consumption of the repeater and reducing interference to other devices in the network, thereby improving network throughput.
  • FIG1 is a schematic diagram of the communication system of the embodiment of the present application.
  • the communication system includes a network device 101, a repeater 102, and a terminal device 103.
  • FIG1 only illustrates one network device, one repeater, and two terminal devices as an example, but the embodiment of the present application is not limited thereto.
  • existing services or future implementable services can be transmitted between the network device 101 and the terminal device 103.
  • these services may include, but are not limited to: enhanced mobile broadband (eMBB), massive machine type communication (mMTC), highly reliable and low latency communication (URLLC) and vehicle-to-everything (V2X) communication, etc.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC highly reliable and low latency communication
  • V2X vehicle-to-everything
  • An embodiment of the present application also provides an electronic device, which is, for example, a repeater or a network device.
  • FIG8 is a schematic diagram of the composition of an electronic device according to an embodiment of the present application.
  • the electronic device 800 may include: a processor 810 (e.g., a central processing unit CPU) and a memory 820; the memory 820 is coupled to the processor 810.
  • the memory 820 may store various data; in addition, it may store a program 830 for information processing, and the program 830 may be executed under the control of the processor 810.
  • the processor 810 may be configured to execute a program to implement the information indication method as described in the embodiment of the first aspect.
  • the processor 810 may be configured to execute a program to implement the information indication method as described in the embodiment of the third aspect.
  • the electronic device 800 may further include: a transceiver 840 and an antenna 850, etc.; wherein the functions of the above components are similar to those in the prior art and are not described in detail here. It is worth noting that the electronic device 800 does not necessarily include all the components shown in FIG8 ; in addition, the electronic device 800 may also include components not shown in FIG8 , which may refer to the prior art.
  • An embodiment of the present application further provides a computer-readable program, wherein when the program is executed in a repeater, the program enables a computer to execute the information indication method described in the embodiment of the first aspect in the repeater.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the information indication method described in the embodiment of the first aspect in a repeater.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in a network device, the program enables a computer to execute the information indication method described in the embodiment of the third aspect in the network device.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the information indication method described in the embodiment of the third aspect in a network device.
  • the above devices and methods of the present application can be implemented by hardware, or by hardware combined with software.
  • the present application relates to such a computer-readable program, which, when executed by a logic component, enables the logic component to implement the above-mentioned devices or components, or enables the logic component to implement the various methods or steps described above.
  • the logic component is, for example, a field programmable logic component, a microprocessor, a processor used in a computer, etc.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to various software modules of the computer program flow or to various hardware modules.
  • These software modules may correspond to the various steps shown in the figure, respectively.
  • These hardware modules may be implemented by solidifying these software modules, for example, using a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the software module may be located in a RAM memory, a flash memory, a ROM memory, an EPROM memory, an EEPROM memory, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to a processor so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and the storage medium may be located in an ASIC.
  • the software module may be stored in a memory of a mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module may be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks may be implemented as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or any appropriate combination thereof for performing the functions described in the present application.
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks may also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in communication with a DSP, or any other such configuration.
  • An information indication method applied to a repeater, characterized in that the method comprises:
  • the mobile terminal of the repeater receives first control information, where the first control information at least includes first information for indicating time domain resources;
  • the forwarding unit of the forwarder is in the first state, the second state, or the third state in the time domain resource indicated by the first information.
  • the forwarding unit is in the first state when the time domain resource indicated by the first information comprises: the forwarding unit forwards the signal in the time domain resource;
  • the forwarding unit being in the second state in the time domain resource indicated by the first information includes: the forwarding unit is in a standby state in the time domain resource, or the forwarding unit stops forwarding signals in the time domain resource; or the forwarding unit does not forward signals in the time domain resource; or the forwarding unit is capable of forwarding signals in the time domain resource;
  • the forwarding unit being in the third state when the time domain resource indicated by the first information includes: the forwarding unit is in a shutdown state at the time domain resource, or the forwarding unit stops forwarding signals at the time domain resource; or the forwarding unit does not forward signals at the time domain resource; or the forwarding unit is capable of forwarding signals at the time domain resource, or the forwarding unit is not capable of forwarding signals at the time domain resource.
  • a method according to any one of Notes 1 to 3, wherein the first information indicates that the forwarding unit is in the second state or the third state in the time domain resource, and the mobile terminal listens in the time domain resource to the DCI format used to instruct the forwarding unit to forward the signal, or the mobile terminal receives in the time domain resource the second control information instructing the forwarding unit to forward the signal within the time domain resource, or the mobile terminal receives the second control information instructing the forwarding unit to forward the signal within the time domain resource after receiving the first control information.
  • the first information explicitly indicates that the forwarding unit is in the first state, the second state or the third state in the time domain resource, indicating that the first information is only used to indicate that the forwarding unit is in the first state, the second state or the third state in the time domain resource.
  • the first control information also includes third information for indicating the first state or the second state or the third state.
  • the operating frequency band of the repeater is FR1.
  • the first control information also includes second information for indicating one or more access link beams.
  • the first control information includes DCI and/or RRC signaling and/or MAC CE.
  • the first predetermined value includes the time required for the forwarding unit to switch from the third state to the second state or the first state, or the first predetermined value includes the time required for the forwarding unit to switch from the third state to the second state and the time required to switch from the second state to the first state, or the first predetermined value includes the time required for the forwarding unit to switch from the third state to the second state and the time required for beam switching.
  • the forwarding unit is in the second state when receiving the first control information or the forwarding unit is in the second state before the time domain resources indicated by the first information, and is in the first state when the indicated time domain resources are in the first state, and the first interval is greater than or not less than a second predetermined value.
  • the first control information includes second information for indicating one or more access link beams, and the second interval is greater than or not less than the third predetermined value.
  • the mobile terminal of the forwarder sends HARQ-ACK information corresponding to the first control information, and the starting position of the time domain resource indicated by the first information is after or before or the same as the ending position of the time domain resource used to send the HARQ-ACK information.
  • An information indication method applied to a network device, characterized in that the method comprises:
  • the network device sends first control information to the forwarder, wherein the first control information at least includes first information for indicating time domain resources; and/or sends or does not send second control information, wherein the second control information is used to instruct the forwarding unit to forward signals within the time domain resources.
  • a repeater comprising a memory and a processor, wherein the memory stores a computer program, and the processor is configured to execute the computer program to implement the information indication method as described in any one of Notes 1 to 34.
  • a network device comprising a memory and a processor, wherein the memory stores a computer program, and the processor is configured to execute the computer program to implement the information indication method as described in Note 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信息指示方法、转发器和网络设备。所述方法包括:所述转发器的移动终端接收第一控制信息,所述第一控制信息至少包括用于指示时域资源的第一信息;所述转发器的转发单元在所述第一信息指示的时域资源为第一状态或第二状态或第三状态。

Description

信息指示方法、转发器和网络设备 技术领域
本申请涉及通信技术领域。
背景技术
与传统的3G(第三代移动通信技术)、4G(第四代移动通信技术)系统相比,5G(第五代移动通信技术)系统能够提供更大的带宽以及更高的数据率,并且能够支持更多类型的终端和垂直业务。
为此,除了传统电信频谱以外,5G系统也被部署在新频谱上,新频谱的频率明显高于3G和4G系统使用的传统电信频谱。例如,5G系统可以部署在毫米波波段(28GHz,38GHz,60GHz以及以上等等)。
根据无线信号的传播规律,其所在载波的频率越高、信号在传播过程中遇到的衰落越严重。因此,实际部署中,5G系统比以往的3G、4G系统更需要小区覆盖增强方法,特别是部署在毫米波频段的5G系统。如何更好地增强5G系统小区覆盖,成为亟待解决的问题。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
为了更好的解决蜂窝移动通信系统在实际部署中的覆盖问题,采用射频转发器(RF Relay/Repeater)放大和转发终端设备与网络设备之间的通信信号,是比较常用的部署手段。射频转发器在3G系统和4G系统的实际部署中具有较为广泛的应用。通常来说,射频转发器是一种在射频域放大(amplify)和转发(forward)设备往来信号的设备。也就是说,射频转发器是一种非再生类型的中继节点,它们只是将接收到的所有信号直接放大并转发。
发明人发现,传统射频转发器不能够和其他设备(e.g.网络设备/终端设备等)进行信息交互。具体地,在接收方面,传统射频转发器不支持对转发信号进行测量/ 解调/解码,也不接收转发信号之外的信号。在发送方面,传统射频转发器仅放大并转发信号,不支持生成信号和发送自身生成的信号。因此,传统射频转发器的转发行为不受网络(例如通过网络设备等)控制。例如,转发器的开关状态通常是人工进行设置的。
发明人认识到,传统转发器的开关通常是人工设置的,其不能动态匹配网络设备和UE之间的数据传输。一般地,网络设备和终端设备之间不会时时刻刻进行数据传输,如果转发器在没有网络设备和终端设备没有数据传输时也处于开启状态,一方面会增加不必要的功耗,另一方面也可能对其他设备造成干扰,降低网络吞吐量。因此,与传统转发器相比,需要新增转发器的开启/关闭的功能。但是,目前还没有开启/关闭状态的具体控制方法。
针对上述问题的至少之一,本申请实施例提供了一种信息指示方法、转发器和网络设备。
根据本申请实施例的一方面,提供一种转发器,包括:
接收单元,其在所述转发器的移动终端接收第一控制信息,所述第一控制信息至少包括用于指示时域资源的第一信息;
所述转发器的转发单元在所述第一信息指示的时域资源为第一状态或第二状态或第三状态。
根据本申请实施例的另一方面,提供一种网络设备,包括:
发送单元,其向转发器发送第一控制信息,所述第一控制信息至少包括用于指示时域资源的第一信息;和/或发送或不发送第二控制信息,所述第二控制信息用于指示所述转发单元在所述时域资源内转发信号。
根据本申请实施例的另一方面,提供一种通信系统,包括:前述一方面的转发器和/或前述一方面的网络设备。
本申请实施例的有益效果之一在于:可以通过第一控制信息对转发器的开关进行控制,使得转发器开启状态对应的时域资源与网络设备和终端设备之间的数据传输的时域资源匹配,节省转发器功耗,同时减小对网络中其他设备的干扰,提升网络吞吐量。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本申请实施例的通信系统的一示意图;
图2是本申请实施例的信息指示方法的一示意图;
图3是本申请实施例的各种状态的一示意图;
图4A至图4C是本申请实施例中接入链路波束示意图;
图5是本申请实施例的转发器的一示意图;
图6是本申请实施例的信息指示方法的一示意图;
图7是本申请实施例的网络设备的一示意图;
图8是本申请实施例的电子设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、收发节点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),IAB宿主等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区 域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
在本申请实施例中,网络设备和终端设备之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
传统转发器不具备与网络设备通信的能力,因此,传统转发器虽然能够帮助增强信号强度,但是不够灵活而无法应对复杂的环境变化,将传统转发器部署在5G网络(特别是部署在高频的5G网络)中可能引起对其它网络设备和/或终端设备的不必要的干扰,进而降低整个网络的传输效率(例如,吞吐量)。为了使得转发器的转发能够更为灵活以适应5G网络的特点,网络设备需要对转发器进行协助,并能够根据网络情况对转发器的转发进行配置。
3GPP Rel-18为了增强NR的覆盖,提出网络控制转发器(NCR,Network-controlled repeater)的方案,为网络设备与终端设备之间的信号进行转发。NCR通过控制链路可以与网络设备进行直接通信以辅助NCR的转发操作。
图1是本申请实施例的NCR的一示意图。如图1所示,NCR 102被配置在网络设备101和终端设备103之间。NCR 102可以包括如下两个模块/部件:转发器的移动终端(NCR-MT)和转发器的转发单元(NCR-Fwd);NCR-Fwd也可称为NCR的 路由单元(NCR-RU)。NCR-MT用于与网络设备通信(交互信息),NCR-Fwd用于转发往来于网络设备和终端设备之间的信号,NCR-MT和NCR-Fwd为功能实体,其功能可以由相同或不同硬件模块实现。
如图1所示,本申请实施例的NCR可以具有3个链路:控制链路(control link,C-link),用于转发的回传(或者回程)链路(backhaul link,BH link))和接入链路(access link,AC link)。其中,C-link用于NCR与网络设备之间的通信。BH link用于转发器从网络设备接收待转发信号,或者,向网络设备转发来自终端设备的信号。AC link用于转发器向终端设备转发来自网络设备的信号,或者,接收来自终端设备的待转发信号。具体地,NCR-MT通过C-link与网络设备通信;NCR-Fwd通过BH link和AC link转发信号。
在本申请实施例中,转发器可以与网络设备通信,转发器可以接收网络设备发送的通信信道/信号,并进行信道/信号的解调/解码,由此获得网络设备发给该转发器的信息,以下将该信号处理过程称为“通信”。转发器还可以转发网络设备和终端设备之间传输的信道/信号,转发器不对该信道/信号进行解调/解码,可以进行放大等处理,以下将该信号处理过程称为“转发”。将“通信”和“转发”合称为“传输”。此外,“在AC(或者BH)链路上进行发送或进行接收”可以等价于“在AC(或者BH)链路上进行转发”,“在控制链路上进行发送或进行接收”可以等价于“在控制链路上进行通信”。以上术语仅为了方便说明,并不构成对本申请的限制。在某些情况下,“转发单元”可以与“转发行为”互换。
在本申请实施例中,转发器还可以表述为网络控制转发器(NCR)、直放站、射频转发器、中继器、射频中继器;或者也可以表述为直放站节点、转发器节点、中继器节点;或者还可以表述为智能直放站、智能转发器、智能中继器、智能直放站节点、智能转发器节点、智能中继器节点,等等,本申请不限于此。
在本申请实施例中,网络设备可以是终端设备的服务小区的设备,也可以是转发器所在小区的设备,还可以是转发器的服务小区的设备,也可以是转发器的父节点(Parent node),本申请对该转发器的名称不做限制,只要能实现上述功能的设备,都包含于本申请的转发器的范围内。
下面结合附图对本申请实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
第一方面的实施例
本申请实施例提供一种信息指示方法,从转发器一侧进行说明。
图2是本申请实施例的信息指示方法的一示意图,如图2所示,该方法包括:
201,所述转发器的移动终端接收第一控制信息,所述第一控制信息至少包括用于指示时域资源的第一信息;
所述转发器的转发单元在所述第一信息指示的时域资源为第一状态或第二状态或第三状态。
值得注意的是,以上附图2仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图2的记载。
在一些实施例中,第一状态也可以称为开启(ON)状态或第一开启状态,第二状态也可以称为待机状态或切换状态或第二开启状态或第二关闭状态,第三状态也可以称为关闭(OFF)状态或关机状态或第一关闭状态。
在一些实施例中,第一状态、第二状态和第三状态是指转发器的转发单元(NCR-Fwd)的状态,如前所述,NCR-Fwd用于转发往来于网络设备和终端设备之间的信号,上述第一状态、第二状态或第三状态用于表征NCR-Fwd的工作状态或者说开关状态。
在一些实施例中,第一状态表征NCR-Fwd在转发信号。例如,转发单元在一个时间段(或者说时域资源)A为第一状态是指,转发单元在该时间段内转发信号,包括转发网络设备发给终端设备的下行信号和/或转发终端设备发给网络设备的上行信号。需要指出的是,如果转发单元在该时间段内时分地转发下行信号和上行信号和/或时分地采用不同的BH link波束和/或AC link波束转发信号,该时间段包括转发单元进行上下行转换和/或波束切换的时间。
在一些实施例中,第二状态表征NCR-Fwd被允许或有能力或者已经准备好转发信号。例如,转发单元在一个时间段(或者说时域资源)B为第二状态时,转发单元在该时间段内处于待机状态,或者所述转发单元在该时间段停止转发信号;或者所述转发单元在所述时间段不转发信号;或者所述转发单元有能力(或被允许或准备is  allowed to,or is able to,or is capable of,or is ready to)在时间段转发信号。
在一些实施例中,第三状态表征NCR-Fwd不被允许或没有能力或没有准备好转发信号。例如,转发单元在一个时间段(或者说时域资源)C为第三状态时,转发单元在该时间段内处于关机状态,或者所述转发单元在该时间段停止转发信号;或者所述转发单元在所述时间段不转发信号;或者所述转发单元有能力(或被允许或准备is allowed to,or is able to,or is capable of,or is ready to)在时间段转发信号;或者所述转发单元没有能力(或被不被允许或不准备is not allowed to,or is not able to,or is not capable of,or is not ready to)在时间段转发信号。
在一些实施例中,NCR支持第一状态,其中,也可以针对第一状态定义输出功率要求,例如NCR在第一状态的输出功率为不小于或大于第一功率(或者说功率水平),和/或,NCR在第一状态的输出功率为不大于或小于第四功率(或者说功率水平)。
在一些实施例中在第二状态和第三状态中,NCR(或者说NCR-Fwd)仅支持其中一个。例如,NCR支持第一状态和第二状态,或者第一状态和第三状态。
在一些实施例中,NCR(或者说NCR-Fwd)支持第二状态和第三状态。例如,NCR支持第一状态,第二状态和第三状态。
在一些实施例中,NCR(或者说NCR-MT)可以向网络设备上报其是否支持第二状态和/或第三状态。
在一些实施例中,仅针对第二状态或仅针对第三状态定义输出功率要求,例如,NCR在第二状态或第三状态的输出功率为不大于或小于下述第二功率(或者说功率水平)。
在一些实施例中,针对第二状态和第三状态均定义输出功率要求。
在一些实施例中,针对第二状态和第三状态的输出功率要求相同,例如,NCR在第二状态和第三状态的输出功率为不大于或小于下述第二功率(或者说功率水平)。
在一些实施例中,针对NCR-Fwd在第二状态和第三状态的输出功率要求不同。例如,若NCR-Fwd处于第二状态,NCR-Fwd的输出功率不大于或小于第二功率,若NCR-Fwd为第三状态,NCR-Fwd的输出功率不大于或小于第三功率。第二功率和第三功率的值不同,例如,第二功率大于第三功率。
在一些实施例中,第二功率/第三功率是指功率谱密度(dBm/MHz),可以分别称为第二功率谱密度和第三功率谱密度。例如,第二功率等于-85dBm/MHz,第三功率 小于-85dBm/MHz,或者,第二功率大于-85dBm/MHz,第三功率等于-85dBm/MHz。再例如,第二功率等于-50dBm/(SCS×(12×N RB+1)/1000)MHz,第三功率小于-50dBm/(SCS×(12×N RB+1)/1000)MHz;或者,第二功率大于-50dBm/(SCS×(12×N RB+1)/1000)MHz,第三功率等于-50dBm/(SCS×(12×N RB+1)/1000)MHz,该子载波间隔SCS例如是转发信号(并非在转发的)的SCS,但不限于此。再例如,第二功率等于-36dBm/MHz,第三功率小于-36dBm/MHz,或者,第二功率大于-36dBm/MHz,第三功率等于-36dBm/MHz。
在一些实施例中,可以针对上行和下行分别定义针对NCR-Fwd的输出功率要求,也就是说,针对BH link和AC link的输出功率分别定义上述第二功率和/或第三功率。例如,针对下行或者说AC link的输出功率,第二功率等于-85dBm/MHz,第三功率小于-85dBm/MHz,或者,第二功率大于-85dBm/MHz,第三功率等于-85dBm/MHz,针对上行或者说BH link的输出功率,第二功率等于-50dBm/(SCS×(12×N RB+1)/1000)MHz,第三功率小于-50dBm/(SCS×(12×N RB+1)/1000)MHz;或者,第二功率大于-50dBm/(SCS×(12×N RB+1)/1000)MHz,第三功率等于-50dBm/(SCS×(12×N RB+1)/1000)MHz,该子载波间隔SCS例如是转发信号(并非在转发的)的SCS,但不限于此。
在一些实施例中,可以针对不同工作频带或频率范围(e.g.FR1,FR2,FR2-1,FR2-2)分别定义输出功率要求,也就是说,针对工作于不同频带或频率范围的NCR-Fwd的输出功率分别定义上述第二功率和/或第三功率。例如,针对FR1的下行或者说AC link的输出功率,第二功率等于-85dBm/MHz,第三功率小于-85dBm/MHz,或者,第二功率大于-85dBm/MHz,第三功率等于-85dBm/MHz,针对FR1的上行或者说BH link的输出功率,第二功率等于-50dBm/(SCS×(12×N RB+1)/1000)MHz,第三功率小于-50dBm/(SCS×(12×N RB+1)/1000)MHz;或者,第二功率大于-50dBm/(SCS*(12*N RB+1)/1000)MHz,第三功率等于-50dBm/(SCS×(12×N RB+1)/1000)MHz,该子载波间隔SCS例如是转发信号(并非在转发的)的SCS,但不限于此。再例如,针对FR2的输出功率,第二功率等于-36dBm/MHz,第三功率小于-36dBm/MHz,或者,第二功率大于-36dBm/MHz,第三功率等于-36dBm/MHz。
在一些实施例中,NCR-Fwd在第二状态或第三状态的输出功率定义分别为:在其处于第二状态或第三状态的时间段内,超过/大于/不少于某一时间长度内测量得到 的平均功率。例如,在其处于第二状态或第三状态的时间段内,由带宽等于NCR-Fwd的通带带宽(passband bandwidth)且以指定的信道频率为中心(centred on the assigned channel frequency)的滤波器(e.g.方形滤波器)滤波,超过/大于/不少于某一时间长度内测量得到的平均功率。其中,该时间长度例如与SCS相关,例如,该时间长度=70/Nus,N=SCS/15。该SCS例如是转发信号(并非在转发的)的SCS,但不限于此。
在一些实施例中,支持转发单元从第三状态直接过渡(或者说切换)到第一状态。或者,不支持转发单元从第三状态直接过渡到第一状态和/或从第一状态直接过渡到第三状态,也就是说,若NCR-Fwd是第三状态,其必须先过渡到第二状态,才能再由第二状态过渡到第一状态。类似地,支持或不支持转发单元从第一状态直接过渡到第三状态。
在一些实施例中,仅定义第一状态和第二状态之间的过渡时间(或者说切换时间)或仅定义第一状态和第三状态之间的过渡时间,例如,为下述第一过渡时间。也就是说仅第一状态和第二状态切换时包括该第一过渡时间,第一状态和第三状态切换时不包括该第一过渡时间,或者说,仅第一状态和第三状态切换时包括该第一过渡时间,第一状态和第二状态切换时不包括该第一过渡时间。
在一些实施例中,定义第一状态和第二状态之间的过渡时间以及第一状态和第三状态之间的过渡时间,也就是说,第一状态和第二状态切换时包括过渡时间,第一状态和第三状态切换时也包括过渡时间。另外,可以定义或不定义第二状态和第三状态之间的过渡时间。
在一些实施例中,第一状态和第二状态之间的过渡时间与第一状态和第三状态之间的过渡时间长度相同,例如,为第一过渡时间。
在一些实施例中,第一状态和第二状态之间的过渡时间(transient period)与第一状态和第三状态之间的过渡时间长度不同,例如,第一状态和第二状态之间的过渡时间为第一过渡时间,第一状态和第三状态之间的过渡时间为第二过渡时间,第一过渡时间小于第二过渡时间。例如,第一过渡时间等于10us,第二过渡时间大于10us,或者,第一过渡时间小于10us,第二过渡时间等于10us。再例如,第一过渡时间等于3us,第二过渡时间大于3us,或者,第一过渡时间小于3us,第二过渡时间等于3us。
在一些实施例中,可以针对不同工作频带或频率范围(e.g.FR1,FR2,FR2-1, FR2-2)分别定义过渡时间,也就是说,针对工作于不同频带或频率范围的NCR-Fwd分别定义上述第一过渡时间和/或第二过渡时间。例如,针对FR1,第一过渡时间等于10us,第二过渡时间大于10us,或者,第一过渡时间小于10us,第二过渡时间等于10us。针对FR2,第一过渡时间等于3us,第二过渡时间大于3us,或者,第一过渡时间小于3us,第二过渡时间等于3us。
图3是本申请实施例中各个状态过渡时间和输出功率示意图一(假设过渡时间和输出功率要求均不同),如图3所示,从第二状态切换到第一状态包括第一过渡时间,从第一状态切换到第三状态包括第二过渡时间,第一状态下NCR-Fwd的输出功率大于第一功率,第二状态下NCR-Fwd的输出功率小于第二功率,第三状态下,NCR-Fwd的输出功率小于第三功率。第一功率>第二功率>第三功率的值不同,图3仅为示例说明,例如第二功率和第三功率可以相同,第一过渡时间和第二过渡时间可以相同,或者状态转换可以不包括第一过渡时间和第二过渡时间,此处不再一一赘述。
以上说明了转发单元在不同状态下的行为,以下说明转发单元在不同状态下,移动终端的行为。
在一些实施例中,转发单元在时间段D为第三状态,所述移动终端(NCR-MT)在时间段D不接收部分或全部下行信号,和/或,不发送部分或全部上行信号。例如,该下行信号包括用于指示转发单元转发信号的第二控制信息,该第二控制信息包括RRC或MAC CE或DCI。
在一些实施例中,转发单元在时间段D为第三状态,所述移动终端在该时间段D不监听用于指示所述转发单元转发信号的DCI格式,或者所述移动终端不期望在该时间段接收到指示所述转发单元转发信号的第二控制信息(例如DCI),或者所述移动终端不期望接收到指示所述转发单元在所述时间段内转发信号的第二控制信息(例如RRC或MAC CE或DCI)。
或者,转发单元在时间段D为第二状态或第三状态,所述移动终端在所述时间段监听用于指示所述转发单元转发信号的DCI格式,或者,所述移动终端在所述时间段接收指示所述转发单元在所述时间段内转发信号的第二控制信息,或者,所述移动终端在接收所述第一控制信息之后接收指示所述转发单元在所述时间段内转发信号的第二控制信息。
在一些实施例中,第一状态、第二状态和第三状态是指转发器的移动终端 (NCR-MT)的状态,上述第一状态、第二状态或第三状态用于表征NCR-MT的工作状态或者说开关状态。
在一些实施例中,第三状态表征NCR-MT不会在C-link发送或接收信号,例如在第三状态下,所述移动终端(NCR-MT)在时间段D不接收部分或全部下行信号,和/或,不发送部分或全部上行信号。例如,该下行信号包括用于指示转发单元转发信号的第二控制信息,该第二控制信息包括RRC或MAC CE或DCI。
在一些实施例中,第三状态表征NCR-MT不监听在C-link发送或接收信号或不期望在C-link发送或接收信号,例如,在第三状态下,所述移动终端在该时间段D不监听用于指示所述转发单元转发信号的DCI格式,或者所述移动终端不期望在该时间段接收到指示所述转发单元转发信号的第二控制信息(例如DCI),或者所述移动终端不期望接收到指示所述转发单元在所述时间段内转发信号的第二控制信息(例如RRC或MAC CE或DCI)。
或者,第二状态或第三状态表征NCR-MT监听在C-link发送或接收的信号或在C-link发送或接收信号,例如,在第二状态或第三状态下,所述移动终端在所述时间段监听用于指示所述转发单元转发信号的DCI格式,或者,所述移动终端在所述时间段接收指示所述转发单元在所述时间段内转发信号的第二控制信息,或者,所述移动终端在接收所述第一控制信息之后接收指示所述转发单元在所述时间段内转发信号的第二控制信息。
在一些实施例中,以上第一状态、第二状态或第三状态对应的时间段由网络设备配置的时域资源表示,即所述转发器的移动终端接收网络设备发送的第一控制信息,该第一控制信息可以包括DCI和/或RRC信令和/或MAC CE,所述第一控制信息至少包括用于指示时域资源(时间段)的第一信息;该第一信息可以显式或隐式指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态,由此,所述转发器的转发单元在所述第一信息指示的时域资源为第一状态或第二状态或第三状态。
以下说明如何通过第一信息指示时域资源。
在一些实施例中,该第一信息可以由一个或多个第一信息域承载,该一个或多个第一信息域指示该时域资源的起始位置(偏移)和/或时长和/或间隔和/或周期。该时域资源是周期性的或半持续的或非周期性的。前述起始位置(偏移)和/或时长和/或间隔和/或周期可以以以下时间单位为粒度指示。该时间单位例如是子帧、时隙、符 号、小时隙(mini-slot)、毫秒等等。
在一些实施例中,第一信息域可以包括该时域资源的起始位置(偏移)和/或时长和/或间隔和/或周期包括的时间单位的数量(例如后述示例中Element_2中field_1和/或field_2),通过该时间单位的数量来指示该时域资源的起始位置(偏移)和/或时长和/或间隔和/或周期,或者该第一信息域包括时间单位的索引(例如后述示例中Element_2中field_3),或者该第一信息域(例如后述时域资源分配信息域)也可以包括一个行索引值,通过该索引值结合时域资源分配表指示起始位置(偏移)和/或时长和/或间隔和/或周期。
在一些实施例中,在由多(X)个第一信息域承载时,不同第一信息域指示的与时域资源相关的信息不同,例如不同第一信息域可以分别指示偏移,时长,周期等不同的信息(例如后述示例中Element_2中field_1和field_2和field_3),或者不同第一信息域指示时间单位不同,例如不同第一信息域分别指示时隙和符号等;或者不同第一信息域指示的时域资源不重叠或不完全重叠,本申请实施例并不以此作为限制。
在一些实施例中,在由多(X)个第一信息域承载时,X个第一信息域可以分为多(Y)组第一信息域,每组第一信息域包括一个或多(Z)个第一信息域,一组第一信息域指示时域资源的一部分资源,不同组信息域指示的时域资源不重叠或不完全重叠。例如后述示例6中,Element_2包括一组第一信息域,其中包括3个第一信息域field_1和field_2和field_3。
在一些实施例中,该第一控制信息还可以包括或不包括用于指示一个或多个接入链路波束的第二信息。其中,所述第一控制信息是否包括第二信息与所述转发单元的工作频带(或者频率范围)和/或能力和/或高层参数配置有关。
例如,与工作频带(或者频率范围)相关:转发单元的工作频带在FR1时,第一控制信息不包括第二信息,转发单元的工作频带在FR2时,第一控制信息包括第二信息;
例如,与能力相关:在转发器的接入链路波束固定(或者说只支持一个接入链路波束(模拟波束))时,第一控制信息包括第二信息。在转发器的接入链路波束可以调整或转换(或者说转发器支持多于一个接入链路波束)时,第一控制信息包括第二信息;在该示例中,转发器可以向网络设备发送或不发送能力相关信息。该能力相关信息例如包括该转发器支持的接入链路波束的数量,和/或波束索引,和/或空间特性 相关信息。关于波束索引将在后述进行说明。
例如,转发器的工作频带在FR1,默认接入链路波束固定(或者说只支持一个接入链路波束(模拟波束)),该转发器无需向网络设备发送该能力相关信息;或者,如果该转发器的接入链路波束可以调整/转换(或者说转发器支持多于一个接入链路波束),则向网络设备发送该能力相关信息,否则,无需向网络设备发送该能力相关信息。
例如,该转发器的工作频带在FR2,默认接入链路波束可以调整/转换(或者说转发器支持多于一个接入链路波束),该转发器无需向网络设备发送该能力相关信息,或者,如果该转发器的接入链路波束固定(或者说只支持一个接入链路波束(模拟波束)),则向网络设备发送该能力相关信息,否则,无需向基站发送该能力相关信息。
再例如,该转发器的工作频带在FR1或FR2,无论接入链路波束是固定的还是可以调整/转换(或者说转发器支持多于一个接入链路波束),该转发器均向网络设备发送该能力相关信息,例如,当接入链路波束固定时,上报的接入链路波束数量为1,或者接入链路波束可以调整/转换(或者说转发器支持多于一个(N个)接入链路波束),上报的接入链路波束数量为N。
例如,与高层参数配置(时间上在第一控制信息之前)相关:例如,假设第一控制信息是DCI(DCI format X_Y),该高层参数是RRC信令的一个信息域,该信息域(直接或间接地)用于配置DCI format X_Y是否包括第二信息。例如,该高层参数可以是1比特,在高层参数配置包括第二信息(例如比特值为1)时,DCI format X_Y包括第二信息,在高层参数配置不包括第二信息(例如比特值为0)时,DCI format X_Y不包括第二信息。再例如,在某一信息元IE或另一信息域包括该信息域的情况下,DCI format X_Y包括第二信息,否则,不包括第二信息。再例如,该高层参数用于配置DCI format X_Y所能指示的接入链路波束所能指示的波束(例如称为候选波束),配置了转发器的其中一个接入链路波束为候选波束,则DCI format X_Y不包括第二信息。配置了多于一个接入链路波束为候选波束,DCI format X_Y包括第二信息。
例如,高层参数exampleField_4以及exampleField_5使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022130145-appb-000001
其中,exampleField_4用于配置DCI format X_Y中用于指示接入链路波束的信息域,INTEGER(0..3)可以是该信息域的比特数,可选的,也可以包括Element_3,该Element_3用于配置该信息域对应的波束图样的列表(假设该信息域指示一个波束图样的索引)。关于该exampleField_4可以存在或不存在,即exampleField_4是有条件存在的,该条件XYZ1包括针对FR2(或者FR2-1),可选存在(optional present);针对FR1,不存在(absent);或者针对FR2(或者FR2-1),必须存在(mandatory present);针对FR1,不存在(absent);或者针对FR2(或者FR2-1),必须存在(mandatory present);针对FR1,可选存在(optional present)。
其中,exampleField_5用于配置DCI format X_Y中用于指示时域资源的信息域,Element_4配置该信息域对应的时域资源列表,例如PDSCH-TimeDomainResourceAllocationList。
例如,高层参数ExampleIE_6或exampleField_6使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022130145-appb-000002
其中,ExampleIE_6或exampleField_6用于配置DCI format X_Y,aField用于配置DCI format X_Y中用于指示接入链路波束的信息域,INTEGER(0..3)可以是该信息域的比特数,可选的,也可以包括Element_3,该Element_3用于配置该信息域对应的波束图样的列表(假设该信息域指示一个波束图样的索引),本申请实施例并不以此作为限制,关于该aField可以存在或不存在,即aField是有条件存在的,该条件XYZ1如前所述,此处不再赘述。anotherField用于配置DCI format X_Y中用于指示时域资源的信息域,Element_4配置该信息域对应的时域资源列表,例如PDSCH-TimeDomainResourceAllocationList。
例如,第二信息可以是一个或多个接入链路波束的相关信息,该相关信息包括波束类型和/或波束索引等,关于波束类型和索引将在后述进行说明。
在一些实施例中,所述第一控制信息还包括或不包括用于指示所述第一状态或第二状态或第三状态的第三信息。例如,该第三信息可以是1比特信息或2比特信息,使用1比特或2比特信息指示转发单元的状态是第一状态还是第二状态还是第三状态,例如比特值为0时,指示第一状态,比特值为1时,指示第三状态,此处不再一一示 例。
在一些实施例中,第一控制信息是DCI(DCI format X_Y),对应第二信息和第三信息的包括同一信息域,也就是说,DCI format X_Y中的同一信息域在不同情况下提供第二信息或第三信息。例如,针对FR1,该信息域用于提供第三信息,针对FR2,该信息域用于提供第二信息。再例如,在NCR支持或者被配置了仅一个接入链路波束的情况下,该信息域用于提供第三信息,在NCR支持或者被配置了多于一个接入链路波束的情况下,该信息域用于提供第二信息。
以下示例说明第一控制信息的实施方式。
在一些实施例中,第一信息显式指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态,也就是说所述第一信息仅用于指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态,不会指示其他内容。
在该实施例中,第一控制信息包括或不包括用于指示一个或多个接入链路波束的第二信息。例如,转发器的工作频带在FR1时,和/或不支持波束控制或指示,和/或接入链路波束可以是默认的或者固定的或者缺省的(只支持一个模拟波束),因此,网络设备不会向终端设备发送用于指示一个或多个接入链路波束的第二信息,或者说,不会在第一控制信息中发送用于指示一个或多个接入链路波束的第二信息。
以上实施例中,以第二信息指示一个或多个接入链路波束为例,但本申请实施例并不以此作为限制,该第二信息还可以指示一个或多个回程链路波束,其实施方式类似,本申请实施例不再一一重复。
在该实施例中,第一控制信息还可以包括用于指示第一状态或第二状态或第三状态的第三信息。
例如,第一控制信息包括第一信息,不包括第二信息,可选的,还可以包括第三信息,在该情况下接入链路波束可以是默认的或者固定的或者缺省的,该第一信息仅指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态。
在一些实施例中,第一信息隐式指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态,第一信息还用于指示一个或多个接入链路波束和/或一个或多个回程链路波束对应的时域资源。该一个或多个接入链路波束和/或一个或多个回程链路波束由第二控制信息中包括的第二信息指示。例如,转发器的工作频带在FR2,和/或支持波束调整或指示或转换(或者说转发器支持多于一个(N个)接入链路波 束),因此,网络设备向终端设备发送用于指示一个或多个接入链路波束的第二信息。
例如,第一控制信息包括第一信息和第二信息,该第二信息指示一个或多个接入链路波束和/或一个或多个回程链路波束,第一信息指示一个或多个接入链路波束和/或一个或多个回程链路波束对应的时域资源,同时,该第一信息还可以隐式指示所述转发单元在所述时域资源的状态为第一状态或第二状态或第三状态。
以下示例说明。
以下先说明如何定义接入(AC)链路波束的索引。
AC链路波束也可以称为终端设备侧波束,是指转发器在AC链路采用的(使用)的接收波束/发送波束,该发送波束将来自网络设备的信号转发至终端设备,该接收波束将来自终端设备的信号转发给网络设备。回程链路波束也可以称为网络设备侧波束,是指转发器在BH链路采用的(使用)的接收波束/发送波束,该接收波束将来自终端设备的信号转发至网络设备,该发送波束将来自网络设备的信号转发给终端设备。其中,波束(天线的)例如是指天线阵列(antenna array)的辐射图样(radiation pattern)的主波瓣(main lobe)。
在一些实施例中,转发器可以支持多个不同方向和/或宽度的波束(或者说天线波束),波束之间可能存在关联关系。例如,第一波束和第二波束之间存在关联关系包括:第一波束和第二波束的波束中心方向相同,和/或第一波束和第二波束的波束峰值方向相同,和/或第一波束和第二波束是准共址(例如QCL类型D),和/或第一波束在第二波束范围内,或第二波束在第一波束范围内,和/或第一波束的波束宽度在第二波束的波束宽度范围内,和/或第二波束的波束宽度在第一波束的波束宽度范围内。其中,波束中心方向例如是指该波束的半功率轮廓(half power contour)的几何中心,波束峰值方向例如是指该波束的最大EIRP(maximum EIRP)所在的方向。
例如1,NCR支持的波束依次编号,该编号可以按空间关系进行。例如,相邻编号的波束在空间上是相邻的。例如,NCR支持4个波束,从0或1开始编号,各自的索引分别是0~3或1~4。
例如2,NCR同时支持第一波束(宽波束)和第二波束(窄波束),波束依次编号,该编号可以按空间关系进行。例如,先编号宽波束,再编号窄波束,相邻编号的宽波束在空间上是相邻的,相邻编号的窄波束在空间上是相邻的。或者,先编号一个宽波束和与该宽波束关联的窄波束,再以相同方式编号其他宽波束和窄波束,例如, 图4A是本申请实施例中波束索引示意图,如图4A所示,NCR支持2个宽波束(第一波束),8个窄波束(第二波束),前4个窄波束关联第一个宽波束,后4个窄波束关联第二个宽波束。所有波束从0或1开始编号,例如0~9(或未图示的1~10)。编号时可以前两个为宽波束,剩余为窄波束,或者第1和第6个编号为宽波束,其他为窄波束。
例如3,NCR同时支持第一波束(宽波束)和第二波束(窄波束),第一波束和第二波束分别依次编号,该编号可以按空间关系进行,相邻编号的宽波束在空间上是相邻的,相邻编号的窄波束在空间上是相邻的。例如,图4B是本申请实施例中波束索引示意图,如图4B所示,NCR支持2个宽波束(第一波束),8个窄波束(第二波束)。宽波束和窄波束分别从0或1开始编号,例如宽波束0~1(或未图示的1~2),窄波束0~7(或未图示的1~8)。例如。前4个窄波束关联第一个宽波束,后4个窄波束关联第二个宽波束。
例如4,NCR同时支持第一波束(宽波束)和第二波束(窄波束),第一波束和第二波束是按层级编号的,分别从0或1开始编号,该编号可以按空间关系进行。相邻编号的宽波束在空间上是相邻的,相邻编号的窄波束在空间上是相邻的。针对相邻编号的宽波束,编号较小的宽波束关联的窄波束中编号较大的与编号较大的宽波束关联的窄波束中编号较小的在空间上相邻。例如,图4C是本申请实施例中波束索引示意图,如图4C所示,NCR支持2个宽波束(第一波束),8个窄波束(第二波束)。宽波束编号为0~1(或未图示的1~2),关联第一个宽波束的4个窄波束和关联第二个宽波束的4个窄波束分别编号为0~3或(或未图示的1~4)。
上述索引均以一维为例,但本申请实施例并不以此作为限制,该索引也可以是二维或三维的。例如,波束可以按照二维阵列排列,可以对水平方向波束和垂直方向波束水平分别编号,该索引即为二维的索引,此处不再一一举例。
在一些实施例中,可编号波束对应的波束的范围可以是NCR可用于转发的所有波束或者该第一控制信息所能指示的所有波束(网络设备高层参数配置的候选波束)和/或NCR支持的所有波束,或者说,一个波束可以对应一个或多个波束索引(多个波束索引分别是预定义的和/或NCR上报给网络设备的和/或网络设备配置的)。例如,一个波束对应第一索引和第二索引,其中,第一索引是在NCR支持的所有波束中唯一标识该波束的索引,第二索引是在NCR可用于转发的所有波束或者该第一控制信 息所能指示的所有波束(网络设备高层参数配置的候选波束)中唯一标识该波束的索引。
在上述示例中,第一控制信息包括第一信息和第二信息,该第二信息指示的一个或多个接入链路波束与第一信息指示的时域资源对应,在第二信息指示多个接入链路波束时,多个接入链路波束是时分或频分。
在一些实施例中,该第一信息由一个第一信息域承载,第一信息域指示的时域资源对应一个接入链路波束;该第二信息由一个或多个第二信息域承载,该一个或多个第二信息域指示一个接入链路波束,对应该一个第一信息域指示的时域资源;
例如(一),在由多(M)个第二信息域承载时,不同第二信息域指示的与波束相关的信息不同。例如包括2个第二信息域时,一个用于指示波束类型(宽波束/窄波束),另一个用于指示(该波束类型的波束的)波束索引,或者,一个用于指示波束组标识,另一个用于指示(该波束组的波束的)波束索引,或者,一个用于指示宽波束的索引,另一个用于指示窄波束的索引(例如基于上述关于索引的例3,可以分别预留特定值表示没有指示宽波束或窄波束;例如基于上述关于索引的例4,仅用于指示窄波束的索引的第二信息域预留特定值表示没有指示窄波束(或者说,表示该DCI指示的是宽波束))。
例如(二),包括1个第二信息域时,该第二信息域直接或间接指示接入链路波束的波束索引(第一索引或第二索引)。直接指示时,该第二信息域的十进制值等于波束的索引值,从而指示相应波束。间接指示时,第二信息域的十进制值/二进制值按从小到大的顺序映射到从小到大的波束的索引值,从而指示相应波束。或者,第二信息域中的比特按MSB到LSB(或者相反)的顺序映射到从小到大的波束的索引值,若一个比特值为0,则没有指示相应波束,若一个比特值为1,则指示了相应波束(仅有一个比特位为1,其他为0)。例如针对例1,第二信息域可以为0001,指示最后一个编号的波束。
在一些实施例中,该第一信息由一个第一信息域承载,第一信息域指示的时域资源对应一个或多个接入链路波束,该第二信息由一个或多个第二信息域承载,该一个或多个第二信息域指示一个或多个接入链路波束,对应该一个第一信息域指示的时域资源。
例如(三),第二信息由多(K)个第二信息域承载时,每个第二信息域指示一 个接入链路波束,多个第二信息域指示的接入链路波束根据预定义规则对应第一信息域指示的时域资源的不同部分(时分),或者多个第二信息域指示的接入链路波束均对应第一信息域指示的时域资源的全部(频分),或者时域资源的混合。
例如(四),第二信息由多(K)个第二信息域承载时,K个第二信息域可以分为多(N)组第二信息域,每组第二信息域包括一个或多(M)个第二信息域,每组第二信息域指示一个接入链路波束,多组第二信息域指示的接入链路波束根据预定义规则对应第一信息域指示的时域资源的不同部分(时分),或者多组第二信息域指示的接入链路波束均对应第一信息域指示的时域资源的全部(频分),或者时域资源的混合。在一组第二信息域中包括M个第二信息域时,不同第二信息域指示的与波束相关的信息不同。具体指示方式如(一)所述,此处不再赘述。
在一些实施例中,该第一信息由多个第一信息域承载,多个第一信息域指示的时域资源对应一个或多个接入链路波束。例如,不同第一信息域指示的与时域资源相关的信息不同。例如,第一信息由2个第一信息域承载,不同第一信息域还是的时间单位不同,一个用于指示时隙,另一个用于指示符号;或者不同第一信息域指示的信息不同,一个用于指示起始位置,另一个用于指示时长(duration)。再例如,第一信息由3个第一信息域承载,分别用于指示时隙偏移,符号偏移以及时长(duration)。或者,例如,不同第一信息域指示的时域资源不重叠或不完全重叠。该多个第一信息域指示的时域资源是该多个第一信息域指示的时域资源的并集。
例如(五),该第一信息由多个第一信息域承载,该第二信息由一个或多个第二信息域承载,该一个或多个第二信息域指示一个接入链路波束,对应该多个第一信息域指示的时域资源。在第二信息由一个第二信息域承载时,该一个第二信息域直接或间接指示该一个接入链路波束,具体指示方式见(二),此处不再赘述,在第二信息由多个第二信息域承载时,不同第二信息域指示的与波束相关的信息不同。具体指示方式见(一),此处不再赘述,
例如(六),该第一信息由多个第一信息域承载,该第二信息由一个或多个第二信息域承载,该一个或多个第二信息域指示一个或多个接入链路波束,对应该多个第一信息域指示的时域资源。例1:第二信息由多(K)个第二信息域承载时,每个第二信息域指示一个接入链路波束,各个第一信息域和各个第二信息域一一对应,即一个第二信息域指示的接入链路波束应用于其对应的第一信息域指示的时域资源。例2: 第二信息由多(K)个第二信息域承载时,K个第二信息域可以分为多(N)组第二信息域,每组第二信息域包括一个或多(M)个第二信息域,每组第二信息域指示一个接入链路波束,各个第一信息域和各组第二信息域一一对应;一组第二信息域指示的接入链路波束应用于其对应的第一信息域指示的时域资源。在一组第二信息域中包括M个第二信息域时,不同第二信息域指示的与波束相关的信息不同。具体指示方式如(一)所述,此处不再赘述。
在一些实施例中,该第一控制信息可以是RRC信令。
在一些实施例中,该第一控制信息是RRC信令时,该RRC信令中的同一信息元(示例中的ExampleIE_1)或同一域(示例中的exampleField_1)在不同的情况分别用于配置接入链路波束,或者用于配置转发单元为第一状态或第二状态或第三状态。
例1,ExampleIE_1或exampleField_1使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022130145-appb-000003
其中,aField用于配置接入链路波束,INTEGER(0..9)可以是波束的索引(对应第二信息),也可以是波束数量等,可选的,也可以包括Element_X,该Element_X用于配置波束图样,本申请实施例并不以此作为限制,关于该aField可以存在或不存在(第一控制信息包括或不包括第二信息),即aField是有条件存在的,该条件XYZ1包括针对FR2(或者FR2-1),aField可选存在(optional present);针对FR1,aField不存在(absent);或者针对FR2(或者FR2-1),aField必须存在(mandatory present);针对FR1,aField不存在(absent);或者针对FR2(或者FR2-1),aField必须存在(mandatory present);针对FR1,aField可选存在(optional present)。
其中,在aField存在的情况下,anotherField用于配置(相应aField配置的)接入链路波束对应的时域资源,进而隐式指示NCR-Fwd在该时域资源为第一状态。在aField不存在的情况下,anotherField用于配置转发单元为第一状态或第二状态或第三状态的时域资源。Element_2中包括用于指示时域资源的第一信息,该Element_2中包括一个或多个第一信息域。
例2,ExampleIE_1或exampleField_1使用抽象语法标记ASN.1数据格式可以表示为:ExampleIE_1或exampleField_1用于配置接入链路波束,或者,用于配置转发单元为第一状态或第二状态或第三状态。
Figure PCTCN2022130145-appb-000004
其中,Element_1用于配置一个或多个接入链路波束及这些波束对应的时域资源,或者,用于配置转发单元为第一状态或第二状态或第三状态的时域资源。
其中,aField用于配置接入链路波束,INTEGER(0..9)可以是波束的索引(对应第二信息),也可以是波束数量等,可选的,也可以包括Element_X,该Element_X用于配置波束图样,本申请实施例并不以此作为限制,关于该aField可以存在或不存在(第一控制信息包括或不包括第二信息),即aField是有条件存在的,该条件XYZ1包括针对FR2(或者FR2-1),aField可选存在(optional present);针对FR1,aField不存在(absent);或者针对FR2(或者FR2-1),aField必须存在(mandatory present);针对FR1,aField不存在(absent);或者针对FR2(或者FR2-1),aField必须存在(mandatory present);针对FR1,aField可选存在(optional present)。
其中,在aField存在的情况下,anotherField用于配置(相应aField配置的)接入链路波束对应的时域资源,进而隐式指示NCR-Fwd在该时域资源为第一状态。在aField不存在的情况下,anotherField用于配置转发单元为第一状态或第二状态或第三状态的时域资源。Element_2中包括用于指示时域资源的第一信息,该Element_2中包括一个或多个第一信息域。
例3,ExampleIE_1或exampleField_1使用抽象语法标记ASN.1数据格式可以表示为:ExampleIE_1或exampleField_1用于配置接入链路波束,或者,用于配置转发单元为第一状态或第二状态或第三状态。
Figure PCTCN2022130145-appb-000005
Figure PCTCN2022130145-appb-000006
其中,Element_1用于配置一个或多个接入链路波束及这些波束对应的时域资源,或者,用于配置转发单元为第一状态或第二状态或第三状态的时域资源。
其中,aField用于配置接入链路波束,INTEGER(0..9)可以是波束的索引(对应第二信息),也可以是波束数量等,可选的,也可以包括Element_X,该Element_X用于配置波束图样,本申请实施例并不以此作为限制,关于该aField可以存在或不存在(第一控制信息包括或不包括第二信息),即aField是有条件存在的,该条件XYZ1包括针对FR2(或者FR2-1),aField可选存在(optional present);针对FR1,aField不存在(absent);或者针对FR2(或者FR2-1),aField必须存在(mandatory present);针对FR1,aField不存在(absent);或者针对FR2(或者FR2-1),aField必须存在(mandatory present);针对FR1,aField可选存在(optional present)。
其中,在aField存在的情况下,anotherField用于配置(相应aField配置的)接入链路波束对应的时域资源,进而隐式指示NCR-Fwd在该时域资源为第一状态。在aField不存在的情况下,anotherField用于配置转发单元为第一状态或第二状态或第三状态的时域资源。Element_2中包括用于指示时域资源的第一信息,该Element_2中包括一个或多个第一信息域。
在一些实施例中,该第一控制信息是RRC信令时,该RRC信令中的不同信息元或不同域分别用于配置接入链路波束,或者用于配置转发单元为第一状态或第二状态或第三状态,不同信息元(示例中的ExampleIE_2和ExampleIE_3)或不同域(示例中的exampleField_2和exampleField_3)共用相同的信息元(示例中的Element_1或Element_2)配置时域资源。例4,ExampleIE_2或exampleField_2以及ExampleIE_3或exampleField_3使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022130145-appb-000007
其中,ExampleIE_2或exampleField_2用于配置接入链路波束,ExampleIE_3或exampleField_3用于配置转发单元为第一状态或第二状态或第三状态。关于该ExampleIE_2或exampleField_2可以存在或不存在(第一控制信息包括或不包括第二 信息),即有条件存在的,该条件XYZ1包括针对FR2(或者FR2-1),可选存在(optional present);针对FR1,不存在(absent);或者针对FR2(或者FR2-1),必须存在(mandatory present);针对FR1,不存在(absent);或者针对FR2(或者FR2-1),必须存在(mandatory present);针对FR1,可选存在(optional present)。
例5,ExampleIE_2或exampleField_2以及ExampleIE_3或exampleField_3使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022130145-appb-000008
其中,ExampleIE_2或exampleField_2用于配置接入链路波束,ExampleIE_3或exampleField_3用于配置转发单元为第一状态或第二状态或第三状态。关于该ExampleIE_2或exampleField_2(对应第二信息)可以存在或不存在(第一控制信息包括或不包括第二信息),即有条件存在的,该条件XYZ1包括针对FR2(或者FR2-1),可选存在(optional present);针对FR1,不存在(absent);或者针对FR2(或者FR2-1),必须存在(mandatory present);针对FR1,不存在(absent);或者针对FR2(或者FR2-1),必须存在(mandatory present);针对FR1,可选存在(optional present)。关于Element_1的说明可以参考例6,此处不再重复。
例6,ExampleIE_2或exampleField_2以及ExampleIE_3或exampleField_3使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022130145-appb-000009
Figure PCTCN2022130145-appb-000010
其中,ExampleIE_2或exampleField_2用于配置接入链路波束(对应第二信息),ExampleIE_3或exampleField_3用于配置转发单元为第一状态或第二状态或第三状态。关于该ExampleIE_2或exampleField_2可以存在或不存在(第一控制信息包括或不包括第二信息),即有条件存在的,该条件XYZ1包括针对FR2(或者FR2-1),可选存在(optional present);针对FR1,不存在(absent);或者针对FR2(或者FR2-1),必须存在(mandatory present);针对FR1,不存在(absent);或者针对FR2(或者FR2-1),必须存在(mandatory present);针对FR1,可选存在(optional present)。
其中,Element_1用于配置一个或多个接入链路波束及这些波束对应的时域资源,或者,用于配置转发单元为第一状态或第二状态或第三状态的时域资源。
其中,aField用于配置接入链路波束,INTEGER(0..9)可以是波束的索引,也可以是波束数量等,可选的,也可以包括Element_X,该Element_X用于配置波束图样,本申请实施例并不以此作为限制,关于该aField可以存在或不存在,即aField是有条件存在的,该条件XYZ2包括针对ExampleIE_2或exampleField_2,必须存在(mandatory present);针对ExampleIE_3或exampleField_3,不存在(absent)。
其中,在aField存在的情况下,anotherField用于配置(相应aField配置的)接入链路波束对应的时域资源,进而隐式指示NCR-Fwd在该时域资源为第一状态。在aField不存在的情况下,anotherField用于配置转发单元为第一状态或第二状态或第三状态的时域资源。Element_2中包括用于指示时域资源的第一信息,该Element_2中包括一个或多个第一信息域。
其中,Element_2使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022130145-appb-000011
其中,field_1用于配置时域资源的周期和/或偏移(periodicityAndOffset),field_2用于配置周期内的时长(duration),field_3用于配置时长内的时隙和/或符号,例如指示时隙索引slot index,起始时隙索引slot index,起始符号索引,时隙数量,符号数量。其中,时隙索引是在10ms(一个帧)内或1ms(一个子帧)内的索引,符号索 引是在10ms(一个帧)内或1ms(一个子帧)或一个时隙内的索引。时隙数量是在该时长内的时隙数量。符号数量是在该时长或时隙内的符号数量。
在一些实施例中,该第一控制信息可以是DCI,该DCI可以是DCI format X_Y,例如,该DCI format X_Y可以是现有的DCI format(例如,DCI format 1_0/1_1/1_2/0_0/0_1/0_2/2_2等),或者是针对NCR新引入的DCI format。
在一些实施例中,该DCI可以是单播或专用(unicast/dedicated)的或共群(group common)的。
在一些实施例中,该DCI的CRC由第一无线网络临时标识(RNTI)加扰或第二RNTI加扰,第一RNTI例如包括非NCR也能采用/被配置的RNTI类型,例如第一C-RNTI,第一MCS-C-RNTI,SFI-RNTI,第二RNTI例如包括NCR特定的RNTI(例如NCR-RNTI或第二C-RNTI,第二MCS-C-RNTI),也就是说非NCR不能采用/被配置该第二RNTI。
在一些实施例中,NCR(例如NCR-MT)可以配置在专用搜索空间USS和/或公共搜索空间CSS监听DCI format X_Y。例如,如果DCI format X_Y是单播或专用(unicast/dedicated)的,可以配置在USS监听该DCI format,相应用于加扰CRC的RNTI例如是第一C-RNTI,或NCR-RNTI或第二C-RNTI,第二MCS-C-RNTI。如果DCI format X_Y是共群(group common)的,可以配置在CSS监听该DCI format,该CSS例如是Type3-PDCCH CSS set,相应用于加扰CRC的RNTI例如是SFI-RNTI,或NCR-RNTI或第二C-RNTI,第二MCS-C-RNTI。
例如,该DCI包括一个或多个第一信息域,所述第一信息域包括时域资源分配信息域。一个TDRA信息域通过行索引指示一行TDRA配置。时域资源分配(TDRA)表(或者简称为TDRA表)包括至少一行,以下,为方便描述,将一行称为一个TDRA配置,即TDRA表包括至少一个TDRA配置。一个TDRA配置包括至少一个时域资源配置,时域资源配置中至少包括时隙中的符号位置(起始位置符号+长度)配置;另外,可选的。一个TDRA配置还可以包括至少一个时隙偏移K0配置;该一个TDRA配置还可以包括或不包括其他信息(例如,映射类型,mapping type)本申请实施例并不以此作为限制。其中,关于时隙中的符号位置配置,其例如包括start and length indicator SLIV,该SLIV对应起始符号(S)和长度(L)的有效组合(valid combination),或者,其例如对应起始符号starting symbol配置和长度length配置,该starting symbol 配置和length配置是有效组合。
在一些实施例中,该第一控制信息相关的第一时间位置可以是承载该第一控制信息的时域资源或者物理信道(PDCCH/PDSCH)所在的时隙或最后一个时隙或最后一个符号,或者,该第一时间位置也可以是所述第一控制信息或者承载该第一控制信息的物理信道(PDCCH/PDSCH)对应的HARQ-ACK信息所在的子帧或时隙或最后一个时隙或最后一个符号,例如,在该第一控制信息是DCI时,该DCI由PDCCH承载,该第一时间位置可以是承载DCI的PDCCH所在的子帧或时隙或最后一个时隙或最后一个符号,或者该第一时间位置可以是该DCI或承载该DCI的PDCCH对应的HARQ-ACK反馈(所在的PUCCH/PUSCH)所在的子帧或时隙或最后一个时隙或最后一个符号。例如该第一控制信息是MAC CE,该MAC CE可以由PDSCH承载,该第一时间位置是承载该MAC CE的PDSCH对应的HARQ-ACK反馈(所在的PUCCH/PUSCH)所在的子帧或时隙或最后一个时隙或最后一个符号。
在一些实施例中,该所述第一信息指示的时域资源的第二时间位置是第一信息指示的时域资源所在的子帧或时隙或所在的第一个时隙或所在的第一个符号。
在一些实施例中,如果接收第一控制信息时转发器的状态或者说第一信息指示时域资源前转发器的状态和第一信息指示的时域资源的状态不相同,那么状态的切换也需要一定的过渡时间,此外,还可能包括一些其他转发器处理行为的时间(例如波束切换)和/或接收该第一控制信息所需要的时间(解码)等,因此,该第一时间位置和所述第一信息指示的时域资源的第二时间位置之间的第一间隔大于或不小于第一预定值或第二预定值。所述第一预定值大于所述第二预定值。以下先以从第三状态或第二状态转换到第一状态为例进行说明。
在一些实施例中,所述转发单元在所述移动终端接收所述第一控制信息时为第三状态或者所述转发单元在所述第一信息指示的时域资源前为第三状态,在所述第一信息指示的时域资源为第一状态,所述第一间隔大于或不小于所述第一预定值。
例如,所述第一预定值包括所述转发单元从第三状态切换到第一状态所需要的时间,其中所述从第三状态切换到第一状态所需要的时间包括或不包括波束切换所需要的时间,例如,第一控制信息包括第二信息时,从第三状态切换到第一状态所需要的时间包括波束切换所需要的时间,第一控制信息不包括第二信息时,从第三状态切换到第一状态所需要的时间不包括波束切换所需要的时间,可选的,所述第一预定值还 可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第一预定值包括所述转发单元从第三状态切换到第二状态所需要的时间,可选的,所述第一预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第一预定值包括所述转发单元从第三状态切换到第二状态所需要的时间以及从第二状态切换到第一状态所需要的时间。其中,所述从第二状态切换到第一状态所需要的时间包括或不包括波束切换所需要的时间,例如,第一控制信息包括第二信息时,从第二状态切换到第一状态所需要的时间包括波束切换所需要的时间,第一控制信息不包括第二信息时,从第二状态切换到第一状态所需要的时间不包括波束切换所需要的时间。可选的,所述第一预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第一预定值包括所述转发单元从第三状态切换到第二状态所需要的时间以及波束切换所需要的时间。可选的,所述第一预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
在一些实施例中,所述转发单元在接收所述第一控制信息时为第二状态或者所述转发单元在所述第一信息指示的时域资源前为第二状态,在所述指示的时域资源为第一状态,所述第一间隔大于或不小于第二预定值。
例如,所述第二预定值包括转发单元从第二状态切换到第一状态所需要的时间,其中,所述从第二状态切换到第一状态所需要的时间包括或不包括波束切换所需要的时间,例如,第一控制信息包括第二信息时,从第二状态切换到第一状态所需要的时间包括波束切换所需要的时间,第一控制信息不包括第二信息时,从第二状态切换到第一状态所需要的时间不包括波束切换所需要的时间。可选的,所述第二预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第二预定值包括波束切换所需要的时间。可选的,所述第二预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
以上以第三状态或第二状态转换到第一状态为例进行说明,在转发器由第一状态转换到第三状态,以及第一状态转换到第二状态的实施方式类似;而在转发器由第二状态切换到第三状态,或者由第三状态切换到第二状态时,例如所述转发单元在接收所述第一控制信息时为第三状态或者所述转发单元在所述第一信息指示的时域资源 前为第三状态,在所述指示的时域资源为第二状态,所述第一间隔大于或不小于第五预定值。例如,该第五预定值包括从第三状态切换到第二状态所需要的时间,可选的,所述第五预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
以上以状态切换为例说明该第一间隔的实施方式,以下以第一控制信息是否包括第二信息为例说明该第一间隔(以下称为第二间隔)的实施方式。
在一些实施例中,所述第一控制信息相关的第三时间位置和所述第一信息指示的时域资源的第四时间位置之间的第二间隔大于或不小于第三预定值或第四预定值。所述第三预定值大于所述第四预定值。该第三时间位置可以参考第一时间位置,该第四时间位置可以参考第二时间位置,此处不再重复。
在一些实施例中,所述第一控制信息包括用于指示一个或多个接入链路波束的第二信息,所述第二间隔大于或不小于所述第三预定值。
例如,该第三预定值包括所述转发单元从第三状态切换到第一状态所需要的时间,其中所述从第三状态切换到第一状态所需要的时间包括波束切换所需要的时间,可选的,所述第三预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第三预定值包括所述转发单元从第三状态切换到第二状态所需要的时间以及从第二状态切换到第一状态所需要的时间。其中,所述从第二状态切换到第一状态所需要的时间包括波束切换所需要的时间。可选的,所述第三预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第三预定值包括所述转发单元从第三状态切换到第二状态所需要的时间以及波束切换所需要的时间。可选的,所述第三预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。或者,例如,所述第三预定值包括转发单元从第二状态切换到第一状态所需要的时间,其中,所述从第二状态切换到第一状态所需要的时间包括波束切换所需要的时间,可选的,所述第三预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第三预定值包括波束切换所需要的时间。可选的,所述第三预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
在一些实施例中,所述第一控制信息不包括用于指示一个或多个接入链路波束的 第二信息,所述第二间隔大于或不小于所述第四预定值。
例如,所述第四预定值包括所述转发单元从第三状态切换到第一状态所需要的时间,其中所述从第三状态切换到第一状态所需要的时间不包括波束切换所需要的时间,可选的,所述第四预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第四预定值包括所述转发单元从第三状态切换到第二状态所需要的时间,可选的,所述第四预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第四预定值包括所述转发单元从第三状态切换到第二状态所需要的时间以及从第二状态切换到第一状态所需要的时间。其中,所述从第二状态切换到第一状态所需要的时间不包括波束切换所需要的时间。可选的,所述第四预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第四预定值包括转发单元从第二状态切换到第一状态所需要的时间,其中,所述从第二状态切换到第一状态所需要的时间不包括波束切换所需要的时间。可选的,所述第四预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
或者,例如,所述第四预定值包括波束切换所需要的时间。可选的,所述第四预定值还可以包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
在以上各个示例中,各预定值是否包括移动终端接收第一控制信息所需要的时间可以根据是否反馈针对该第一控制信息的HARQ-ACK确定。
例如在反馈时,该第一(三)时间位置是基于HARQ-ACK的位置(例如DCI或MAC CE对应的HARQ-ACK信息所在的时隙或最后一个时隙或最后一个符号),则各预定值无需包括移动终端接收第一控制信息所需要的时间;在第一(三)时间位置是基于第一控制信息的(承载DCI的PDCCH所在的时隙或最后一个时隙或最后一个符号),则各预定值需包括移动终端接收第一控制信息所需要的时间。
例如在不反馈:第一(三)时间位置是基于第一控制信息的(承载DCI的PDCCH所在的时隙或最后一个时隙或最后一个符号),则各预定值需包括移动终端接收第一控制信息所需要的时间。
以下说明如何确定是否反馈HARQ-ACK信息。
在一些实施例中,所述转发器的移动终端发送或不发送所述第一控制信息对应的HARQ-ACK信息。
在一些实施例中,所述移动终端是否发送所述第一控制信息对应的HARQ-ACK信息与所述转发器的能力和/或高层参数配置相关。或者说是否支持针对所述第一控制信息的HARQ-ACK反馈与所述转发器的能力和/或高层参数配置相关。例如,该第一控制信息可以是DCI。
例如,与能力相关:假设第一控制信息是DCI(DCI format X_Y),NCR向基站上报支持或不支持对DCI format X_Y的HARQ-ACK反馈,若上报了支持,则NCR接收到DCI format X_Y后向基站发送对应的HARQ-ACK信息(ACK),否则,NCR接收到DCI format X_Y后不向基站发送对应的HARQ-ACK信息(ACK)。在一些情况下,默认NCR不支持,因此,NCR仅在支持的情况下向基站上报支持对DCI format X_Y的HARQ-ACK反馈,否则不用上报。。
例如,与高层参数配置相关:假设第一控制信息是DCI(DCI format X_Y),该高层参数是RRC信令的一个信息域,该信息域(直接或间接地)用于配置NCR是否对DCI format X_Y进行HARQ-ACK反馈,若配置为对DCI format X_Y进行HARQ-ACK反馈,则NCR接收到DCI format X_Y后向基站发送对应的HARQ-ACK信息(ACK),否则,NCR接收到DCI format X_Y后不向基站发送对应的HARQ-ACK信息(ACK)。例如,该高层参数可以是1比特的信息元,在高层参数(例如由RRC承载)配置比特值为1时,针对所述第一控制信息的HARQ-ACK反馈,在高层参数(例如由RRC承载)配置比特值为0时,不针对所述第一控制信息的HARQ-ACK反馈。一般地,若如上所述,NCR的能力不支持该HARQ-ACK反馈,该高层参数不应配置为对DCI format X_Y进行HARQ-ACK反馈。
在一些实施例中,所述转发器的移动终端发送所述第一控制信息对应的HARQ-ACK信息,所述第一信息指示的时域资源的起始位置在用于发送所述HARQ-ACK信息的时域资源的结束位置之后(保证可靠性)或者之前(降低时延)或者相同。其中,发送HARQ-ACK信息的时域位置可以是预定义或者由网络设备指示的,网络设备可以考虑时延和可靠性因素配置该第一信息指示的时域资源的起始位置。
在一些实施例中,所述转发器的移动终端发送所述第一控制信息对应的 HARQ-ACK信息,所述第一信息指示的时域资源的位置与用于发送所述HARQ-ACK信息的时域资源的位置不相关。或者说,所述第一信息指示的时域资源的位置不受限于用于发送所述HARQ-ACK信息的时域资源的位置,或者说,网络设备在配置该第一信息指示的时域资源的位置时,无需考虑发送所述HARQ-ACK信息的时域资源的位置。例如,NCR接收到上述第一控制信息或者或用于承载第一控制信息的DCI/PDCCH/PDSCH后,发送相应的HARQ-ACK信息,并且,该第一控制信息相关的第一(三)时间位置是承载该第一控制信息的时域资源或者物理信道(PDCCH/PDSCH)所在的时隙或最后一个时隙或最后一个符号,例如,在该第一控制信息是DCI时,该DCI由PDCCH承载,该第一(三)时间位置可以是承载DCI的PDCCH所在的子帧或时隙或最后一个时隙或最后一个符号,由此,发送HARQ-ACK信息的时域资源的位置和该第一控制信息中第一信息指示的时域资源的位置没有先后顺序的限定关系,也就是说,该第一控制信息中第一信息指示的时域资源的位置不受限于用于发送所述HARQ-ACK信息的时域资源的位置,反之亦然。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,可以通过第一控制信息对转发器的开关进行控制,使得转发器开启状态对应的时域资源与网络设备和终端设备之间的数据传输的时域资源匹配,节省转发器功耗,同时减小对网络中其他设备的干扰,提升网络吞吐量。
第二方面的实施例
本申请实施例提供一种转发器,该转发器例如可以是前述的NCR,也可以是具有转发功能的网络设备或终端设备,也可以是配置于NCR、网络设备或终端设备的某个或某些部件或者组件。
图5是本申请实施例的转发器的一示意图,由于该转发器解决问题的原理与第一方面的实施例的方法相同,因此其具体实施可以参照第一方面的实施例,内容相同之处不再重复说明。
如图5所示,转发器500还包括:
接收单元501,其在所述转发器的移动终端接收第一控制信息,所述第一控制信 息至少包括用于指示时域资源的第一信息;
所述转发器的转发单元在所述第一信息指示的时域资源为第一状态或第二状态或第三状态。
关于第一状态,第二状态,第三状态的实施方式可以参考第一方面的实施例,关于该第一控制信息的实施方式可以参考第一方面的实施例,此处不再赘述。
此外,为了简单起见,图5中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,可以通过第一控制信息对转发器的开关进行控制,使得转发器开启状态对应的时域资源与网络设备和终端设备之间的数据传输的时域资源匹配,节省转发器功耗,同时减小对网络中其他设备的干扰,提升网络吞吐量。
第三方面的实施例
本申请实施例提供一种信息指示方法,从网络设备一侧进行说明,与第一方面的实施例相同的内容不再赘述。
图6是本申请实施例的信息指示方法的一示意图,如图6所示,该方法包括:
601,所述网络设备向转发器发送第一控制信息,所述第一控制信息至少包括用于指示时域资源的第一信息;和/或发送或不发送第二控制信息,所述第二控制信息用于指示所述转发单元在所述时域资源内转发信号。关于该第一控制信息和第二控制信息的实施方式可以参考第一方面的实施例,此处不再赘述。
值得注意的是,以上附图6仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图6的记载。
以上仅对与本申请相关的各步骤或过程进行了说明,但本申请不限于此。本申请 实施例的方法还可以包括其他步骤或者过程,关于这些步骤或者过程的具体内容,可以参考相关技术。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,可以通过第一控制信息对转发器的开关进行控制,使得转发器开启状态对应的时域资源与网络设备和终端设备之间的数据传输的时域资源匹配,节省转发器功耗,同时减小对网络中其他设备的干扰,提升网络吞吐量。
第四方面的实施例
本申请实施例提供一种网络设备。
图7是本申请实施例的网络设备的一示意图,由于该网络设备解决问题的原理与第三方面的实施例的方法相同,因此其具体实施可以参照第三方面的实施例,内容相同之处不再重复说明。
如图7所示,本申请实施例的网络设备700包括:
发送单元701,其向转发器发送第一控制信息,所述第一控制信息至少包括用于指示时域资源的第一信息;和/或发送或不发送第二控制信息,所述第二控制信息用于指示所述转发单元在所述时域资源内转发信号。关于该第一控制信息和第二控制信息的实施方式可以参考第一方面的实施例,此处不再赘述。,
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的网络设备700还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图7中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,可以通过第一控制信息对转发器的开关进行控制,使得转发器开启状态对应的时域资源与网络设备和终端设备之间的数据传输的时域资源匹配,节省转发器功耗,同时减小对网络中其他设备的干扰,提升网络吞吐量。
第五方面的实施例
本申请实施例提供了一种通信系统,图1是本申请实施例的通信系统的示意图,如图1所示,该通信系统包括网络设备101、转发器102以及终端设备103,为简单起见,图1仅以一个网络设备、一个转发器以及两个终端设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。转发器102被配置为执行第一方面的实施例所述的信息指示方法,网络设备101被配置为执行第三方面的实施例所述的信息指示方法,其内容被合并于此,此处不再赘述。
本申请实施例还提供一种电子设备,该电子设备例如为转发器或者网络设备。
图8是本申请实施例的电子设备的构成示意图。如图8所示,电子设备800可以包括:处理器810(例如中央处理器CPU)和存储器820;存储器820耦合到处理器810。其中该存储器820可存储各种数据;此外还存储信息处理的程序830,并且在处理器810的控制下执行该程序830。
例如,处理器810可以被配置为执行程序而实现如第一方面的实施例所述的信息指示方法。
再例如,处理器810可以被配置为执行程序而实现如第三方面的实施例所述的信息指示方法。
此外,如图8所示,电子设备800还可以包括:收发机840和天线850等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,电子设备800也并不是必须要包括图8中所示的所有部件;此外,电子设备800还可以包括图8中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在转发器中执行所述程序时, 所述程序使得计算机在所述转发器中执行第一方面的实施例所述的信息指示方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在转发器中执行第一方面的实施例所述的信息指示方法。
本申请实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行第三方面的实施例所述的信息指示方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行第三方面的实施例所述的信息指示方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方 框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种信息指示方法,应用于转发器,其特征在于,所述方法包括:
所述转发器的移动终端接收第一控制信息,所述第一控制信息至少包括用于指示时域资源的第一信息;
所述转发器的转发单元在所述第一信息指示的时域资源为第一状态或第二状态或第三状态。
2.根据附记1所述的方法,其中,所述转发单元在所述第一信息指示的时域资源为第一状态包括:所述转发单元在所述时域资源转发信号;
所述转发单元在所述第一信息指示的时域资源为第二状态包括:所述转发单元在所述时域资源处于待机状态,或者所述转发单元在所述时域资源停止转发信号;或者所述转发单元在所述时域资源不转发信号;或者所述转发单元有能力在所述时域资源转发信号;
所述转发单元在所述第一信息指示的时域资源为第三状态包括:所述转发单元在所述时域资源处于关机状态,或者所述转发单元在所述时域资源停止转发信号;或者所述转发单元在所述时域资源不转发信号;或者所述转发单元有能力在所述时域资源转发信号,或者所述转发单元没有能力在所述时域资源转发信号。
3.根据附记1或2所述的方法,其中,所述第一信息指示所述转发单元在所述时域资源为第三状态,所述移动终端在所述时域资源不接收部分或全部下行信号,和/或,不发送部分或全部上行信号。
4.根据附记1至3任一项所述的方法,其中,所述第一信息指示所述转发单元在所述时域资源为第三状态,所述移动终端在所述时域资源不监听用于指示所述转发单元转发信号的DCI格式,或者所述移动终端不期望在所述时域资源接收到指示所 述转发单元转发信号的第二控制信息,或者所述移动终端不期望接收到指示所述转发单元在所述时域资源内转发信号的第二控制信息。
5.根据附记1至3任一项所述的方法,其中,所述第一信息指示所述转发单元在所述时域资源为第二状态或第三状态,所述移动终端在所述时域资源监听用于指示所述转发单元转发信号的DCI格式,或者,所述移动终端在所述时域资源接收指示所述转发单元在所述时域资源内转发信号的第二控制信息,或者,所述移动终端在接收所述第一控制信息之后接收指示所述转发单元在所述时域资源内转发信号的第二控制信息。
6.根据附记1至5任一项所述的方法,其中,所述第一信息由一个或多个第一信息域承载。
7.根据附记1至5任一项所述的方法,其中,所述第一信息显式指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态。
8.根据附记7所述的方法,其中,所述第一控制信息不包括用于指示一个或多个接入链路波束的第二信息。
9.根据附记8所述的方法,其中,所述第二信息由一个或多个第二信息域承载。
10.根据附记7至9任一项所述的方法,所述第一信息显式指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态表示所述第一信息仅用于指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态。
11.根据附记7所述的方法,其中,所述第一控制信息还包括用于指示所述第一状态或第二状态或第三状态的第三信息。
12.根据附记10所述的方法,所述转发器的工作频带在FR1。
13.根据附记1至5任一项所述的方法,其中,所述第一信息隐式指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态。
14.根据附记13所述的方法,其中,所述第一控制信息还包括用于指示一个或多个接入链路波束的第二信息。
15.根据附记14所述的方法,其中,所述第二信息由一个或多个第二信息域承载。
16.根据附记13所述的方法,其中,所述第一信息还用于指示所述第二信息指示的一个或多个接入链路波束对应的时域资源。
17.根据附记13所述的方法,其中,所述转发器的工作频带在FR2。
18.根据附记1至17任一项所述的方法,其中,所述第一控制信息是否包括用于指示接入链路波束的第二信息与所述转发单元的工作频带和/或能力和/或高层参数配置有关。
19.根据附记1至18任一项所述的方法,其中,所述第一控制信息包括DCI和/或RRC信令和/或MAC CE。
20.根据附记1至19任一项所述的方法,其中,所述第一控制信息相关的第一时间位置和所述第一信息指示的时域资源的第二时间位置之间的第一间隔大于或不小于第一预定值或第二预定值。
21,根据附记20所述的方法,其中,所述第一预定值大于所述第二预定值。
22.根据附记20或21所述的方法,其中,所述第一预定值包括所述转发单元从第三状态切换到第二状态或第一状态所需要的时间,或者,所述第一预定值包括所述转发单元从第三状态切换到第二状态所需要的时间以及从第二状态切换到第一状态所需要的时间,或者,所述第一预定值包括所述转发单元从第三状态切换到第二状态所需要的时间以及波束切换所需要的时间。
23.根据附记20或21所述的方法,其中,所述第二预定值包括转发单元从第二状态切换到第一状态所需要的时间,或者,所述第二预定值包括波束切换所需要的时间。
24.根据附记22所述的方法,其中,所述从第三状态切换到第一状态所需要的时间包括或不包括波束切换所需要的时间。
25.根据附记22或23所述的方法,其中,所述从第二状态切换到第一状态所需要的时间包括或不包括波束切换所需要的时间。
26.根据附记20至25任一项所述的方法,其中,所述第一预定值和/或所述第二预定值包括或不包括所述移动终端接收所述第一控制信息所需要的时间。
27.根据附记20至26任一项所述的方法,其中,所述转发单元在所述移动终端接收所述第一控制信息时为第三状态或者所述转发单元在所述第一信息指示的时域资源前为第三状态,在所述第一信息指示的时域资源为第一状态,所述第一间隔大于或不小于所述第一预定值。
28.根据附记27所述的方法,其中,所述转发单元在接收所述第一控制信息时 为第二状态或者所述转发单元在所述第一信息指示的时域资源前为第二状态,在所述指示的时域资源为第一状态,所述第一间隔大于或不小于第二预定值。
29.根据附记1至19任一项所述的方法,其中,所述第一控制信息相关的第三时间位置和所述第一信息指示的时域资源的第四时间位置之间的第二间隔大于或不小于第三预定值或第四预定值。
30.根据附记29所述的方法,其中,所述第三预定值大于所述第四预定值。
31.根据附记29或30所述的方法,所述第一控制信息包括用于指示一个或多个接入链路波束的第二信息,所述第二间隔大于或不小于所述第三预定值。
32.根据附记29或30所述的方法,其中,所述第一控制信息不包括用于指示一个或多个接入链路波束的第二信息,所述第二间隔大于或不小于所述第四预定值。
33.根据附记1至32任一项所述的方法,其中,所述方法还包括:
所述转发器的移动终端发送所述第一控制信息对应的HARQ-ACK信息,所述第一信息指示的时域资源的起始位置在用于发送所述HARQ-ACK信息的时域资源的结束位置之后或者之前或者相同。
34.根据附记1至33任一项所述的方法,其中,所述转发器发送所述第一控制信息对应的HARQ-ACK信息,所述第一信息指示的时域资源的位置与用于发送所述HARQ-ACK信息的时域资源的位置不相关。
35.一种信息指示方法,应用于网络设备,其特征在于,所述方法包括:
所述网络设备向转发器发送第一控制信息,所述第一控制信息至少包括用于指示时域资源的第一信息;和/或发送或不发送第二控制信息,所述第二控制信息用于指示所述转发单元在所述时域资源内转发信号。
36.一种转发器,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至34任一项所述的信息指示方法。
37.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记35所述的信息指示方法。

Claims (20)

  1. 一种转发器,其特征在于,所述转发器包括:
    接收单元,其在所述转发器的移动终端接收第一控制信息,所述第一控制信息至少包括用于指示时域资源的第一信息;
    所述转发器的转发单元在所述第一信息指示的时域资源为第一状态或第二状态或第三状态。
  2. 根据权利要求1所述的转发器,其中,所述转发单元在所述第一信息指示的时域资源为第一状态包括:所述转发单元在所述时域资源转发信号;
    所述转发单元在所述第一信息指示的时域资源为第二状态包括:所述转发单元在所述时域资源处于待机状态,或者所述转发单元在所述时域资源停止转发信号;或者所述转发单元在所述时域资源不转发信号;或者所述转发单元有能力在所述时域资源转发信号;
    所述转发单元在所述第一信息指示的时域资源为第三状态包括:所述转发单元在所述时域资源处于关机状态,或者所述转发单元在所述时域资源停止转发信号;或者所述转发单元在所述时域资源不转发信号;或者所述转发单元有能力在所述时域资源转发信号,或者所述转发单元没有能力在所述时域资源转发信号。
  3. 根据权利要求1所述的转发器,其中,所述第一信息指示所述转发单元在所述时域资源为第三状态,所述移动终端在所述时域资源不监听用于指示所述转发单元转发信号的DCI格式,或者所述移动终端不期望在所述时域资源接收到指示所述转发单元转发信号的第二控制信息,或者所述移动终端不期望接收到指示所述转发单元在所述时域资源内转发信号的第二控制信息。
  4. 根据权利要求1所述的转发器,其中,所述第一信息指示所述转发单元在所述时域资源为第二状态或第三状态,所述移动终端在所述时域资源监听用于指示所述转发单元转发信号的DCI格式,或者,所述移动终端在所述时域资源接收指示所述转发单元在所述时域资源内转发信号的第二控制信息,或者,所述移动终端在接收所述第一控制信息之后接收指示所述转发单元在所述时域资源内转发信号的第二控制信息。
  5. 根据权利要求1所述的转发器,其中,所述第一信息显式指示所述转发单元 在所述时域资源为第一状态或第二状态或第三状态。
  6. 根据权利要求5所述的转发器,其中,所述第一控制信息不包括用于指示一个或多个接入链路波束的第二信息。
  7. 根据权利要求5所述的转发器,所述第一信息显式指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态表示所述第一信息仅用于指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态。
  8. 根据权利要求6所述的转发器,所述转发器的工作频带在FR1。
  9. 根据权利要求1所述的转发器,其中,所述第一信息隐式指示所述转发单元在所述时域资源为第一状态或第二状态或第三状态。
  10. 根据权利要求9所述的转发器,其中,所述第一控制信息还包括用于指示一个或多个接入链路波束的第二信息。
  11. 根据权利要求9所述的转发器,其中,所述第一信息还用于指示所述第二信息指示的一个或多个接入链路波束对应的时域资源。
  12. 根据权利要求9所述的转发器,其中,所述转发器的工作频带在FR2。
  13. 根据权利要求1所述的转发器,其中,所述第一控制信息相关的第一时间位置和所述第一信息指示的时域资源的第二时间位置之间的第一间隔大于或不小于第一预定值或第二预定值。
  14. 根据权利要求13所述的转发器,其中,所述第一预定值大于所述第二预定值。
  15. 根据权利要求13所述的转发器,其中,所述第一预定值包括所述转发单元从第三状态切换到第二状态或第一状态所需要的时间,或者,所述第一预定值包括所述转发单元从第三状态切换到第二状态所需要的时间以及从第二状态切换到第一状态所需要的时间,或者,所述第一预定值包括所述转发单元从第三状态切换到第二状态所需要的时间以及波束切换所需要的时间。
  16. 根据权利要求13所述的转发器,其中,所述第二预定值包括转发单元从第二状态切换到第一状态所需要的时间,或者,所述第二预定值包括波束切换所需要的时间。
  17. 根据权利要求1所述的转发器,其中,所述转发器还包括:
    反馈单元,其在所述转发器的移动终端发送所述第一控制信息对应的 HARQ-ACK信息,所述第一信息指示的时域资源的起始位置在用于发送所述HARQ-ACK信息的时域资源的结束位置之后或者之前或者相同。
  18. 根据权利要求1所述的转发器,其中,所述转发器发送所述第一控制信息对应的HARQ-ACK信息,所述第一信息指示的时域资源的位置与用于发送所述HARQ-ACK信息的时域资源的位置不相关。
  19. 一种网络设备,其特征在于,所述网络设备包括:
    发送单元,其向转发器发送第一控制信息,所述第一控制信息至少包括用于指示时域资源的第一信息;和/或发送或不发送第二控制信息,所述第二控制信息用于指示所述转发单元在所述时域资源内转发信号。
  20. 一种通信系统,包括:权利要求1所述的转发器和/或权利要求19所述的网络设备。
PCT/CN2022/130145 2022-11-04 2022-11-04 信息指示方法、转发器和网络设备 WO2024092836A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130145 WO2024092836A1 (zh) 2022-11-04 2022-11-04 信息指示方法、转发器和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130145 WO2024092836A1 (zh) 2022-11-04 2022-11-04 信息指示方法、转发器和网络设备

Publications (1)

Publication Number Publication Date
WO2024092836A1 true WO2024092836A1 (zh) 2024-05-10

Family

ID=90929494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130145 WO2024092836A1 (zh) 2022-11-04 2022-11-04 信息指示方法、转发器和网络设备

Country Status (1)

Country Link
WO (1) WO2024092836A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200366363A1 (en) * 2019-05-16 2020-11-19 Qualcomm Incorporated Joint beam management for backhaul links and access links
CN113261348A (zh) * 2019-01-10 2021-08-13 昕诺飞控股有限公司 在低功率中继器操作模式下可操作的信号中继器设备
CN114208096A (zh) * 2019-08-05 2022-03-18 高通股份有限公司 用于带内中继器控制的技术
CN114208304A (zh) * 2019-08-01 2022-03-18 高通股份有限公司 基于触发信号的智能中继器的功率节省

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113261348A (zh) * 2019-01-10 2021-08-13 昕诺飞控股有限公司 在低功率中继器操作模式下可操作的信号中继器设备
US20200366363A1 (en) * 2019-05-16 2020-11-19 Qualcomm Incorporated Joint beam management for backhaul links and access links
CN114208304A (zh) * 2019-08-01 2022-03-18 高通股份有限公司 基于触发信号的智能中继器的功率节省
CN114208096A (zh) * 2019-08-05 2022-03-18 高通股份有限公司 用于带内中继器控制的技术

Similar Documents

Publication Publication Date Title
US11888627B2 (en) Configuration and/or activation method for duplication transmission, method for duplication transmission and apparatuses thereof
JP7413274B2 (ja) ビーム指示方法、装置及びシステム
EP3886528B1 (en) Cell state management methods and apparatuses
WO2018028325A1 (zh) 一种数据通信方法及装置
US11172414B2 (en) Coordinated cell determining method and network device
US20230179374A1 (en) Channel transmission method, terminal device, and network device
WO2023050472A1 (zh) 用于寻呼的方法和装置
US20220352923A1 (en) Frequency hopping methods, electronic device, and storage medium
US11096105B2 (en) Communication method, base station, and terminal
JP6617839B2 (ja) リモート無線ユニットのチャネル送信電力設定方法および基地局
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2020000142A1 (zh) 无线通信方法、网络设备和终端设备
US11856539B2 (en) Method and device for transmitting downlink control information
WO2024092836A1 (zh) 信息指示方法、转发器和网络设备
JP2023524891A (ja) リソース決定方法及び装置
WO2024065541A1 (zh) 信息指示方法、转发器和网络设备
WO2024065538A1 (zh) 开关控制方法、信息指示方法、转发器和网络设备
WO2024065410A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024092819A1 (zh) 转发器的指示方法、转发器和网络设备
JP2022528515A (ja) システム情報要求の送信方法、装置及びシステム
WO2023236021A1 (zh) 一种通信方法、装置和系统
WO2023092426A1 (zh) 转发器、网络设备及其通信方法
WO2023028725A1 (zh) 一种用于转发器的波束指示方法、装置和系统
WO2024065537A1 (zh) 收发信号的方法、装置和通信系统
WO2024065417A1 (zh) 转发器的指示方法、转发器和网络设备