WO2024065409A1 - 转发器的指示方法、转发器和网络设备 - Google Patents

转发器的指示方法、转发器和网络设备 Download PDF

Info

Publication number
WO2024065409A1
WO2024065409A1 PCT/CN2022/122669 CN2022122669W WO2024065409A1 WO 2024065409 A1 WO2024065409 A1 WO 2024065409A1 CN 2022122669 W CN2022122669 W CN 2022122669W WO 2024065409 A1 WO2024065409 A1 WO 2024065409A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time
repeater
forwarder
present application
Prior art date
Application number
PCT/CN2022/122669
Other languages
English (en)
French (fr)
Inventor
张磊
蒋琴艳
田妍
王昕�
Original Assignee
富士通株式会社
张磊
蒋琴艳
田妍
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张磊, 蒋琴艳, 田妍, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2022/122669 priority Critical patent/WO2024065409A1/zh
Publication of WO2024065409A1 publication Critical patent/WO2024065409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communication technology.
  • 5G (fifth generation mobile communication technology) systems can provide larger bandwidth and higher data rates, and can support more types of terminals and vertical services.
  • 5G systems are also deployed on new spectrum, which has significantly higher frequencies than the traditional telecommunication spectrum used by 3G and 4G systems.
  • 5G systems can be deployed in the millimeter wave band (28GHz, 38GHz, 60GHz and above, etc.).
  • 5G systems need cell coverage enhancement methods more than previous 3G and 4G systems, especially 5G systems deployed in the millimeter wave frequency band. How to better enhance the cell coverage of 5G systems has become one of the urgent issues to be solved.
  • 5G systems use more advanced multi-antenna propagation technology and corresponding transmission equipment.
  • the complexity of 5G systems is higher than that of 3G and 4G systems.
  • the power consumption of 5G systems is also higher than that of 3G and 4G systems. How to reduce the power consumption of 5G systems and save energy costs is also one of the problems that need to be solved urgently.
  • the embodiments of the present application provide a repeater indication method, a repeater and a network device.
  • the repeater has the ability to communicate with the network device, can better enhance signal coverage and cope with environmental changes under network configuration (for example, reduce interference with other network devices and terminal devices during forwarding, etc.), and can also reduce system power consumption and save energy costs.
  • a method for indicating a repeater including:
  • the forwarder determines not to forward at the first time unless first information is received from the network device.
  • the forwarder receives second information for instructing the forwarder not to forward at the first time.
  • a repeater including:
  • a determining unit which determines not to forward at a first time unless first information is received from a network device
  • a receiving unit receives second information for instructing the forwarder not to forward at the first time.
  • a method for indicating a repeater including:
  • the network device sends first information to the forwarder; wherein the forwarder determines not to forward at the first time unless the first information is received;
  • the network device sends, to the forwarder, second information for instructing the forwarder not to forward at the first time.
  • a network device including:
  • a first sending unit which sends first information to the forwarder; wherein the forwarder determines not to forward at the first time unless the first information is received;
  • a second sending unit is configured to send, to the forwarder, second information for instructing the forwarder not to forward at the first time.
  • a communication system including:
  • a forwarder determines not to forward at a first time unless the first information is received; and receives the second information for instructing the forwarder not to forward at the first time.
  • the forwarder determines (or defaults or is expected) not to forward at the first time unless it receives the first information from the network device; and the forwarder receives the second information for instructing the forwarder not to forward at the first time.
  • the forwarder is OFF by default at the first time, thereby reducing unnecessary interference and improving the transmission efficiency of the entire network; in addition, when the second information is received, the forwarder is instructed to be OFF at the first time, thereby reducing system power consumption and saving energy costs.
  • FIG1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG2 is a schematic diagram of an NCR according to an embodiment of the present application.
  • FIG3 is a schematic diagram of NCR forwarding according to an embodiment of the present application.
  • FIG4 is another schematic diagram of NCR forwarding according to an embodiment of the present application.
  • FIG5 is a schematic diagram of an indication method of a repeater according to an embodiment of the present application.
  • FIG6 is an example diagram of first information and first time according to an embodiment of the present application.
  • FIG7 is an example diagram of second information and second time according to an embodiment of the present application.
  • FIG8 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG9 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG10 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG11 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG12 is another example diagram of the first information and the first time according to an embodiment of the present application.
  • FIG13 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG14 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG15 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG16 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG17 is another example diagram of the first information and the first time according to an embodiment of the present application.
  • FIG18 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG19 is an example diagram of first information and third information according to an embodiment of the present application.
  • FIG20 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG21 is an example diagram of the second information and the fourth information according to an embodiment of the present application.
  • FIG22 is an example diagram of first information and second information according to an embodiment of the present application.
  • FIG23 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG. 24 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG25 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG26 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG27 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG28 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG29 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG30 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG31 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG32 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG33 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG34 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG35 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG36 is another example diagram of first information and second information according to an embodiment of the present application.
  • FIG37 is a schematic diagram of a repeater according to an embodiment of the present application.
  • FIG38 is another schematic diagram of the indication method of the repeater according to an embodiment of the present application.
  • FIG39 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 40 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, etc., and these elements should not be limited by these terms.
  • the term “and/or” includes any one and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having”, etc. refer to the existence of the stated features, elements, components or components, but do not exclude the existence or addition of one or more other features, elements, components or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE), enhanced Long Term Evolution (LTE-A), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and the like.
  • LTE Long Term Evolution
  • LTE-A enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • communication between devices in the communication system may be carried out according to communication protocols of any stage, such as but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G and future 5G
  • NR New Radio
  • the term "network device” refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • the network device may include, but is not limited to, the following devices: base station (BS), access point (AP), transmission reception point (TRP), broadcast transmitter, mobile management entity (MME), gateway, server, radio network controller (RNC), base station controller (BSC), etc.
  • Base stations may include, but are not limited to, Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base stations (gNB), IAB hosts, etc., and may also include remote radio heads (RRH, Remote Radio Head), remote radio units (RRU, Remote Radio Unit), relays, or low-power nodes (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base stations
  • IAB hosts etc.
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relays or low-power nodes (such as femto, pico, etc.).
  • base station may include some or all of their functions, and each base station may provide communication coverage for a specific geographical area.
  • the term “cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be referred to as "terminal equipment” (TE).
  • the terminal equipment may be fixed or mobile, and may also be referred to as a mobile station (MS), a terminal, a user, a subscriber station (SS), an access terminal (AT), a station, and the like.
  • Terminal devices may include but are not limited to the following devices: cellular phones, personal digital assistants (PDA, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, cordless phones, smart phones, smart watches, digital cameras, etc.
  • PDA personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers cordless phones
  • smart phones smart watches, digital cameras, etc.
  • the terminal device can also be a machine or device for monitoring or measuring, such as but not limited to: machine type communication (MTC) terminal, vehicle-mounted communication terminal, device to device (D2D) terminal, machine to machine (M2M) terminal, and so on.
  • MTC machine type communication
  • D2D device to device
  • M2M machine to machine
  • 3GPP Rel-17 introduces RF repeater to forward transmissions between terminal equipment (UE) and network equipment (base station).
  • UE terminal equipment
  • base station network equipment
  • the RF repeater introduced in Rel-17 is transparent, that is, the network equipment and terminal equipment are unaware of the existence of RF repeater.
  • Figure 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a network device such as a 5G base station gNB 101, a repeater (Repeater) 102 and a terminal device (such as UE) 103 are taken as an example for explanation, but the present application is not limited to this.
  • the terminal device 103 establishes a connection with the network device 101 and communicates with it.
  • the channel/signal transmitted between the terminal device 103 and the network device 101 is forwarded via the repeater 102.
  • the channel/signal interaction between the network device 101, the terminal device 103 and the repeater 102 can adopt a beam-based receiving and transmitting method.
  • the beam can be a fixed beam or an adaptive beam.
  • the network device 101 may have a cell/carrier, and the network device 101, the repeater 102, and the terminal device 103 may forward/communicate in the cell; however, the present application is not limited thereto, for example, the network device 101 may also have other cells/carriers.
  • existing services or future services that can be implemented can be transmitted between the network device and the terminal device.
  • these services may include but are not limited to: enhanced mobile broadband (eMBB), massive machine type communication (mMTC), highly reliable and low latency communication (URLLC) and vehicle-to-everything (V2X) communication, etc.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC highly reliable and low latency communication
  • V2X vehicle-to-everything
  • Traditional repeaters do not have the ability to communicate with network devices. Therefore, although traditional repeaters can help enhance signal strength, they are not flexible enough to cope with complex environmental changes. Deploying traditional repeaters in 5G networks (especially in high-frequency 5G networks) may cause unnecessary interference to other network devices and/or terminal devices, thereby reducing the transmission efficiency of the entire network (for example, throughput). In order to make the forwarding of repeaters more flexible to adapt to the characteristics of 5G networks, network devices need to assist repeaters and be able to configure the forwarding of repeaters according to network conditions.
  • NCR network-controlled repeater
  • FIG2 is a schematic diagram of the NCR of the embodiment of the present application.
  • the NCR 202 is configured between the network device 201 and the terminal device 203.
  • the NCR 202 may include the following two modules/components: a mobile terminal (NCR-MT) of the repeater and a forwarding module (NCR-Fwd) of the repeater; the NCR-Fwd may also be referred to as a routing unit (NCR-RU) of the NCR-RU.
  • the NCR-MT is mainly used to communicate with the network device, and the NCR-Fwd is mainly used to forward signals between the network device and the terminal device.
  • the NCR of the embodiment of the present application may have three links: a control link (C-link), a backhaul link (BH link) for forwarding, and an access link (AC link).
  • C-link control link
  • BH link backhaul link
  • AC link access link
  • the C-link is used for communication between the NCR and the network device.
  • the BH link is used for the repeater to receive a signal to be forwarded from the network device, or to forward a signal from the AC link (for example, from a terminal device) to the network device.
  • the AC link is used for the repeater to forward a signal from the network device (for example, to the terminal device), or to receive a signal for forwarding to the BH link (for example, a signal to be forwarded from the terminal device).
  • the inventors recognize that the 5G system is more complex than the previous 3G and 4G systems. For example, it can support more types of services and terminals, and needs to be deployed in multiple frequency bands and scenarios. Compared with the traditional RF repeater, NCR needs to have the function of beam-based transceiver (forwarding).
  • FIG3 is a schematic diagram of NCR forwarding according to an embodiment of the present application. As shown in FIG3, the repeater uses a transmit beam on the AC link to forward a signal from a network device.
  • FIG4 is another schematic diagram of NCR forwarding according to an embodiment of the present application. As shown in FIG4, the repeater uses a receive beam on the AC link to receive a signal for forwarding to a network device.
  • the repeater of the embodiment of the present application can operate in a first frequency range (FR1), or can also operate in a second frequency range (FR2), or can also operate in the first frequency range (FR1) and the second frequency range (FR2); for the specific contents of FR1 and FR2, please refer to the relevant technology.
  • a repeater can communicate with a network device.
  • the repeater can receive a communication channel/signal sent by the network device, and demodulate/decode the channel/signal, thereby obtaining information sent by the network device to the repeater.
  • the signal processing process is hereinafter referred to as "communication”.
  • the repeater can also forward a channel/signal transmitted between a network device and a terminal device.
  • the repeater does not demodulate/decode the channel/signal, but can perform amplification and other processing.
  • the signal processing process is hereinafter referred to as "forwarding".
  • "Communication” and “forwarding” are collectively referred to as "transmission”.
  • sending or receiving on an AC link can be equivalent to “forwarding on an AC link”
  • sending or receiving on a control link can be equivalent to "communicating on a control link”.
  • the channel/signal for direct communication between a network device and a repeater or between a third device (such as a terminal device) and a repeater may be referred to as a communication signal.
  • the repeater needs to perform encoding and/or modulation, and when receiving a communication signal, the repeater needs to perform decoding and/or demodulation.
  • the channel/signal forwarded by the repeater may be referred to as a forwarded signal.
  • the repeater may perform signal processing such as amplification on the forwarded signal, but will not perform decoding and/or demodulation.
  • the repeater can also be expressed as a repeater, a RF repeater, a repeater, a RF repeater; or it can also be expressed as a repeater node, a repeater node, a repeater node; or it can also be expressed as an intelligent repeater, an intelligent repeater, an intelligent repeater, an intelligent repeater node, an intelligent repeater node, an intelligent repeater node, etc., but the present application is not limited to this.
  • the network device may be a device of the service cell of the terminal device, or a device of the cell where the repeater is located, or a device of the service cell of the repeater, or a parent node (Parent node) of the repeater.
  • the present application does not impose any restriction on the name of the repeater. As long as the device can realize the above functions, it is included in the scope of the repeater of the present application.
  • beam may also be expressed as a lobe, a reference signal (RS), a transmission configuration indication (TCI), a spatial domain filter, etc.; or, may also be expressed as a beam index, a lobe index, a reference signal index, a transmission configuration indication index, a spatial domain filter index, etc.
  • the above-mentioned reference signals are, for example, a channel state information reference signal (CSI-RS, channel state Information reference signal), a sounding reference signal (SRS, sounding reference signal), an RS for use by a repeater, an RS sent by a repeater, etc.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • TCI may also be expressed as a TCI state.
  • the embodiments of the present application are not limited to this.
  • An embodiment of the present application provides an indication method for a repeater, which is described from the perspective of the repeater.
  • FIG. 5 is a schematic diagram of an indication method of a repeater according to an embodiment of the present application. As shown in FIG. 5 , the method includes:
  • the forwarder determines (or defaults or is expected) not to forward at the first time unless first information is received from the network device;
  • the forwarder receives second information for instructing the forwarder not to forward at the first time.
  • FIG. 5 is only a schematic illustration of the embodiment of the present application, but the present application is not limited thereto.
  • the execution order between the various operations can be appropriately adjusted, and other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of the above FIG. 5.
  • the forwarder is expected (or determined or defaulted) to be OFF unless first information (explicitly or implicitly indicated) is received from a network device; and the forwarder receives second information indicating that the forwarder does not forward.
  • the forwarder is expected (or determined or defaulted) to be in an OFF state at a first time unless receiving first information from a network device; and the forwarder receives second information indicating that the forwarder does not forward at the first time.
  • a forwarder determines (by default or expected) not to forward at a first time; and the forwarder receives second information indicating that the forwarder is not to forward at the first time.
  • the inventors recognize that, for example, the 5G system adopts more advanced MIMO technology, and the 5G base station can form narrower beams and use beam scanning (beam swiping) to serve the terminal devices in the cell, that is, the base station can use beams in different spatial directions at different times to serve the terminal devices in different geographical locations within the cell coverage.
  • the 5G base station will hardly always serve the terminal devices covered by the NCR.
  • the NCR can suspend forwarding signals by using the implementation method of the present application, thereby reducing interference to other surrounding devices, improving the transmission signal-to-noise ratio of other devices, and thus improving the throughput of the entire network.
  • the main function of NCR is to enhance the signal coverage of certain areas of the cell. Relatively speaking, the coverage area of NCR is small, so there is a situation where there is no terminal device that needs to be served in the area covered by NCR for a period of time (for example, there is no terminal device in the RRC connection state, or no terminal device has service transmission requirements, or there is no terminal device in the coverage area of NCR).
  • the base station can instruct NCR to enter the dormant/sleep state to save power consumption of NCR devices.
  • the OFF state that the NCR defaults to at the first time may be referred to as the default OFF state, and the OFF state indicated by the second information may be referred to as the indicated OFF state.
  • the behaviors of the repeaters in the default OFF state and the indicated OFF state may be the same, for example, the forwarding module (repeater) is turned off or suspended or stops forwarding or does not forward.
  • the behaviors of the repeaters in the default OFF state and the forwarding OFF state may also be different, for example, the forwarding module of the repeater in the default OFF state stops working (can start forwarding at any time), while the forwarding module of the repeater in the indicated OFF state is in a dormant state or a closed state (a certain delay is required to enter the forwarding state).
  • the forwarding module in the repeater in the default OFF state stops working, while the forwarding module in the repeater in the indicated OFF state is in a dormant state or both the forwarding module and the communication module (NCR-MT) are in a dormant state.
  • the forwarding module in the repeater in the default OFF state is turned off, while the forwarding module and the communication module of the repeater in the indicated OFF state are both in a closed state, etc.
  • the present application is not limited thereto.
  • the repeater is expected (or determined or defaulted) to be OFF, which may be that the repeater component or the repeater module (NCR-Fwd) of the repeater is expected to be OFF, or both the repeater module and the communication module are expected to be OFF, etc.
  • the present application is not limited thereto.
  • the NCR in the default OFF state, does not forward signals. However, when the NCR is powered on or powered on normally, the NCR forwarding module stops forwarding. The main purpose of putting the NCR in this OFF state is to reduce unnecessary interference of the NCR to surrounding devices.
  • 5G base stations serve terminal devices through beams.
  • the beams of 5G base stations are usually narrower than those of 4G and 3G base stations (due to the high operating frequency and the use of advanced MIMO technology). Therefore, it is impossible for the beams of 5G base stations to always point to a certain NCR.
  • 5G base stations use beam swiping to serve terminal devices in different directions at different times. It is impossible for a 5G base station to always serve terminal devices under the NCR.
  • the NCR can be in the default OFF state. When there is no signal interaction with the base station, the NCR does not forward.
  • the NCR in the indicated OFF state, does not forward signals and can enter a certain degree of dormancy.
  • the main purpose of putting the NCR in this OFF state is to save power.
  • the base station may configure the NCR to be in an OFF state.
  • the repeater determines (or defaults or is expected) not to forward at the first time unless the first information from the network device is received; and the repeater receives the second information for instructing the repeater not to forward at the first time.
  • the repeater is OFF (in the default OFF state) by default at the first time, thereby reducing unnecessary interference and improving the transmission efficiency of the entire network; in addition, when the second information is received, the repeater is instructed to be OFF (in the indicated OFF state) at the first time, thereby reducing system power consumption and saving energy costs.
  • the forwarder in the OFF state does not forward (or the forwarding module of the forwarder does not forward).
  • the forwarder does not forward means that it does not do at least one of the following:
  • the first time is defaulted to a period of time during which the forwarder does not forward.
  • the NCR is in the OFF state by default at the first time, unless it receives the first information instructing it to turn to the ON state or instructing it to forward at the first time. Since the forwarder in the OFF state can be changed to the ON state (forwarding state) at any time by the first information, the default OFF state can be a dynamic OFF state. Therefore, by adopting the dynamic OFF state, the state of the forwarder (forwarding or not forwarding) can be adjusted in time according to the real-time scheduling of the network device.
  • the NCR is in the OFF state by default until the NCR receives an instruction from the base station instructing it to forward or be in the ON state (for example, through the first information).
  • the first time can be understood as a time period before the first information is received or before the first information is executed.
  • the NCR before there is a specific instruction from the base station, the NCR is in the OFF state by default at a certain time (e.g., the first time). Unless the NCR receives a first message from the base station before the first time, instructing it to forward at the first time or instructing it to be in the ON state at the first time, the NCR is in the default OFF state at the first time.
  • a forwarder receives first information instructing the forwarder to forward at least at a first time, and the forwarder forwards at the first time according to the first information.
  • the forwarder is capable of forwarding at the first time according to the first information.
  • the forwarder forwards at least according to the first information at the first time.
  • the forwarder forwards or does not forward at least according to the other information at the first time.
  • the forwarder if the forwarder has not received the first information before the first time, it does not forward the first information at the first time.
  • the forwarder if the forwarder receives the first information before the first time, the forwarder forwards the first information at the first time.
  • the first time may be indicated by the first information.
  • the first time is a non-periodic period of time; the first information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • the first time is a periodic period of time; the first information further indicates at least one of the following of the first time: a period, an offset, a starting time point, an ending time point, and a duration.
  • the first information may explicitly indicate the first time, or may implicitly indicate the first time.
  • the first information may explicitly indicate a time period, which includes at least the first time; the time period may be periodic.
  • the first information may indicate a period and an offset, and/or a start time and a duration.
  • a first information may indicate a time point, and the time period starts from the time point and ends when the base station indicates the end.
  • the end time point of the time period may be indicated by another first information or by other information.
  • the first information may also implicitly indicate a time period, which at least includes the first time.
  • the first information is power indication information, indicating that the forwarding power of NCR Fwd is non-zero at the first time.
  • the first time is determined by the repeater according to other information and/or predefined rules.
  • FIG6 is an example diagram of the first information and the first time of an embodiment of the present application.
  • the NCR if the NCR has not received the first information before the first time, the NCR is in the OFF state by default at the first time, and the NCR does not forward at the first time.
  • the NCR receives the first information from the base station before the first time, instructing it to forward at the first time, the NCR determines to forward according to the first information at the first time (as shown in ON in FIG6).
  • the repeater further receives second information indicating that the repeater is in an OFF state at a second time. Further, the second information indicates that the repeater is in an OFF state at a second time, and the second time includes the first time.
  • the second time can be a period of time or multiple periods of time; it can be a periodic time period or a non-periodic time period.
  • the second time including the first time is indicated by the second information.
  • the second time is a non-periodic period of time; the second information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • the second time is a periodic period of time; the second information further indicates at least one of the following of the second time: a period, an offset, a starting time point, an ending time point, and a duration.
  • the second information may be explicit information or implicit information.
  • the second information may explicitly indicate a time period, which includes at least the first time; the time period may be periodic.
  • the second information may indicate a period and an offset, and/or a start time and a duration.
  • a second information may indicate a time point, and the time period starts from the time point until the base station indicates the end.
  • the end time point of the time period may be indicated by another second information or by other information.
  • the second information may also implicitly indicate a time period, which at least includes the second time period.
  • the second information is a DRX indication of the NCR-MT
  • the second time period is a sleep time period of the NCR-MT.
  • the second information is power indication information, indicating that the forwarding power of the NCR Fwd is zero at the second time period.
  • the second time including the first time is determined by the repeater according to other information and/or predefined rules. For example, the repeater determines the sleep time of the repeater communication module as the second time, or determines the start and/or end of the second time according to a high-level timer, etc.
  • Fig. 7 is an example diagram of the second information and the second time of the embodiment of the present application. As shown in Fig. 7, if the NCR receives the second information from the base station before the second time, it indicates that it will not forward it at the second time (OFF). The NCR determines not to forward it at the second time.
  • the above schematically illustrates the relationship between the first information and the first time, and the relationship between the second information and the second time.
  • the present application is not limited thereto, and in addition, the first time and/or the second time may be periodic.
  • the first information may instruct the forwarder to forward at a periodic first time.
  • FIG8 is another example diagram of the first information and the first time of an embodiment of the present application.
  • the repeater can forward at a periodic first time (as shown in ON).
  • the first information can also instruct the repeater not to forward at other times (as shown in OFF).
  • the second information may instruct the repeater not to repeat at a periodic second time.
  • Fig. 9 is another example diagram of the second information and the second time of the embodiment of the present application. As shown in Fig. 9, after receiving the second information sent by the base station, the repeater may not repeat at the periodic second time, for example, enter a dormant state.
  • the second information may also instruct the forwarder to forward (ON), and the ON state may be referred to as a tentative ON state, while the ON state indicated by the first information is referred to as an indicated ON state.
  • FIG10 is another example diagram of the second information and the second time of an embodiment of the present application.
  • the second information can be configured as ON/OFF.
  • the repeater may not forward at the periodic second time (as shown in OFF), for example, entering a dormant state.
  • the repeater can only forward after receiving the indication of the first information.
  • the second information indicates a tentative ON state
  • the repeater is in the OFF state by default unless the first information is received.
  • an interval time may be set between the first information and the second information.
  • N and M are both integers greater than or equal to 0.
  • a minimum interval (interval/gap) or a minimum processing delay is defined before the first time.
  • Fig. 11 is another example diagram of the first information and the first time of the embodiment of the present application.
  • the standard predefines the minimum interval or the minimum processing delay, that is, the first interval shown in Fig. 11.
  • the NCR NCR-MT
  • the NCR-Fwd forwards according to the first information, or the NCR-Fwd turns to the ON state.
  • the NCR is ON at the first time.
  • FIG12 is another example diagram of the first information and the first time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the first interval shown in FIG12.
  • the NCR NCR-MT
  • the NCR-Fwd does not forward according to the first information instruction, or the NCR-Fwd does not turn to the ON state.
  • the NCR does not execute the instruction of the first information, that is, the NCR is still OFF at the first time.
  • FIG13 is another example diagram of the first information and the first time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, that is, the first interval shown in FIG13.
  • the NCR NCR-MT
  • the NCR-Fwd forwards the first information, or the NCR-Fwd turns to the ON state.
  • FIG14 is another example diagram of the first information and the first time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the first interval shown in FIG14.
  • the NCR NCR-MT
  • the NCR-Fwd forwards the first information at the periodic first time, or the NCR-Fwd turns to the ON state at the periodic first time.
  • a minimum interval (interval/gap) or a minimum processing delay is defined before the second time.
  • the minimum interval before the first time and the minimum interval before the second time may be the same or different.
  • FIG15 is another example diagram of the second information and the second time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the second interval shown in FIG15.
  • the NCR NCR-MT
  • the NCR-Fwd does not forward the second information; otherwise, the second information can be ignored.
  • FIG16 is another example diagram of the second information and the second time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the second interval shown in FIG16.
  • the NCR NCR-MT
  • the NCR-Fwd does not forward the second information at the periodic second time; otherwise, the second information can be ignored.
  • defining or stipulating the minimum time interval will help standardize the implementation of terminal equipment and base stations, and facilitate the joint debugging of base station equipment and terminal equipment from different manufacturers, thereby accelerating product updates and providing faster and better services to the market.
  • FIG17 is another example diagram of the first information and the first time of an embodiment of the present application. As shown in FIG17 , there may be no minimum interval requirement. In this case, the base station may ensure that the interval between the arrival time of the first information and the start time of the first time is sufficient for the NCR-MT to demodulate/decode the received first information and for the NCR-Fwd to prepare to perform the forwarding indicated by the first information or enter the indicated ON state.
  • FIG17 illustrates the first information and the first time as an example.
  • the base station can ensure that the interval between the arrival time of the second information and the start time of the second time is sufficient for the NCR-MT to demodulate/decode the received second information and for the NCR-Fwd to prepare to execute the non-forwarding indicated by the second information or enter the indicated OFF state.
  • the base station guarantees the time interval between the reception of information and the execution of the content indicated by the information, which helps to provide greater freedom for the implementation of base station products and terminal products. For devices with strong hardware computing capabilities and advanced algorithms, this can allow them to maximize their capabilities, reduce the processing delay of the network deployed using the device, increase the effective transmission time, and thus improve the transmission efficiency of the network.
  • the first information indicates that the forwarder is capable of forwarding within a period of time starting from a first time point.
  • the first time is a period of time starting from the first time point.
  • FIG18 is another example diagram of the first information and the first time of the embodiment of the present application.
  • the NCR NCR-MT
  • the NCR-Fwd starts to enter the ON state at the first time point according to the instruction of the first information, that is, forwarding can be performed.
  • the first time can be a period of time after the first time point.
  • the forwarder may also receive third information; and the forwarder does not forward from a third time point according to the third information or does not forward according to the first information.
  • FIG. 19 is another example diagram of the first information and the first time of an embodiment of the present application.
  • the NCR NCR-MT
  • the NCR-Fwd starts to enter the ON state at the first time point according to the instruction of the first information, that is, forwarding can be performed.
  • the NCR NCR-MT
  • the NCR-Fwd starts to enter the OFF state at the third time point according to the instruction of the third information, that is, forwarding is not performed.
  • the first time may be a period of time between the first time point and the third time point.
  • the second information indicates that the forwarder is unable to forward for a period of time starting from a second time point.
  • Figure 20 is another example diagram of the second information and the second time of the embodiment of the present application.
  • the NCR NCR-MT
  • the NCR-Fwd starts to enter the OFF state (indicated OFF state) at the second time point according to the instruction of the second information, for example, enters the sleep state.
  • the forwarder may also receive fourth information; and the forwarder defaults to not forwarding from a fourth time point according to the fourth information.
  • FIG21 is another example diagram of the second information and the second time of the embodiment of the present application.
  • the NCR NCR-MT
  • the NCR-Fwd starts to enter the OFF state (indicated OFF state) at the second time point according to the instruction of the second information.
  • the NCR NCR-MT
  • the NCR-Fwd starts to enter the OFF state (default OFF state) at the fourth time point according to the instruction of the fourth information.
  • the first information and/or the first time are further explained below.
  • the first information further indicates a forwarding beam used by the forwarder.
  • the indicated forwarding beam is a beam on an access (AC) link and/or a beam on a backhaul link.
  • the first information further instructs the repeater to forward.
  • the repeater uses a default beam.
  • the default beam may be a pre-agreed beam or a default beam used by the repeater.
  • the repeater may use a default beam in a feedback link.
  • the repeater may use a fixed beam in the feedback link and/or access link in FR1 (Frequency range 1).
  • the repeater is configured and/or set to forward in FR1, and the network device does not indicate the forwarding beam to the repeater, and the repeater decides the forwarding beam on its own or uses a fixed forwarding beam.
  • the OAM or network device preconfigures/indicates a default forwarding beam for the repeater.
  • the first information instructs the repeater to forward or indicates that the repeater is in (or enters) the ON state.
  • the first information instructs the repeater to forward at a first time or to be in the ON state at a first time.
  • the first information instructs the repeater to start forwarding from a first time point or to enter the ON state at a first time point.
  • the repeater determines that it can use the default beam to forward at the first time.
  • the implementation method of using the default beam or the repeater to determine the beam for forwarding can help save the indication information overhead and improve the efficiency of effective data transmission.
  • FR1 Frequency range 2
  • the implementation method of using the default beam or the repeater to determine the beam for forwarding can also achieve similar performance as the adaptive adjustment beam.
  • the first time includes a flexible time unit.
  • the first information is used to indicate that the flexible time unit included in the first time is an uplink time unit, and/or the first information is used to indicate that the flexible time unit included in the first time is a downlink time unit.
  • the first information indicates that the flexible time unit included in the first time is an uplink time unit, and the repeater forwards the signal received in the access link to the network device through the feedback link at the first time indicated as the uplink time unit.
  • the first information indicates that the flexible time unit included in the first time is a downlink time unit, and the repeater forwards the signal received in the feedback link from the network device through the access link at the first time indicated as the downlink time unit.
  • the above-mentioned time unit may be one or any combination of a time slot, a symbol, a subframe or a mini-slot, and the present application is not limited thereto.
  • the first information indicates NCR power, the power is non-zero, and the NCR uses the power for forwarding at the first time.
  • the first information may be an explicit indication of forwarding or an implicit indication of forwarding.
  • the explicit first information may be used to indicate that the NCR enters the ON state at a first point in time, as shown in Figures 18 and 19.
  • the explicit first information may be used to indicate that the NCR enters (or is in) the ON state at a first time, as shown in Figures 6 and 8.
  • the explicit first information may be used to indicate that the NCR forwards (e.g., uses a default beam) at a first time, as shown in Figures 6 and 8.
  • the implicit first information may be used to indicate the forwarding beam used by the NCR, where the indicated forwarding beam is the beam of the AC link and/or the beam of the feedback link.
  • the NCR uses the beam indicated by the first information for forwarding at the first time.
  • the implicit first information can be used to indicate to the NCR whether the flexible unit of the first time is an uplink time unit or a downlink time unit.
  • the NCR forwards from the access link to the feedback link in the uplink time unit and forwards from the feedback link to the access link in the downlink time unit.
  • the first information is dynamic signaling or semi-static signaling.
  • the first information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the first information may be information used to dynamically instruct the NCR to forward.
  • the first information dynamically indicates to use a default beam for forwarding.
  • the default beam may be predefined by a communication standard, configured by OAM, or indicated or confirmed by a network device.
  • the first information dynamically indicates the forwarding beam corresponding to the first time of the NCR, and the NCR ends the OFF state at the first time and uses the indicated beam for forwarding.
  • the first information dynamically indicates the NCR power, and the power is non-zero, and the NCR uses the power for forwarding at the first time.
  • the first information dynamically indicates that the flexible time unit is an uplink time unit and/or a downlink time unit, and the NCR forwards the signal received from the access link on the feedback link in the uplink time unit and forwards the signal received in the feedback link on the access link in the downlink time unit.
  • the first information may also be semi-static (semi-persistent) information that semi-statically instructs the NCR to forward.
  • the first information is used to semi-statically indicate the time when the NCR is ON.
  • the first information is used to semi-statically/semi-persistently indicate the time and/or beam used by the NCR for forwarding.
  • the base station semi-statically/semi-persistently configures the NCR to forward the data through the first information.
  • This configuration can be used for reference signal forwarding, such as CSIRS and SRS.
  • the base station can only configure the NCR forwarding method without indicating the purpose of the configuration.
  • the first information is used to semi-statically/semi-continuously indicate the time and/or beam used by the NCR for forwarding. For example, forwarding a public signal used for UE to access a cell or maintain connection with a base station. Compared with the above-mentioned data transmission for UE, such a public signal is more important. Therefore, the forwarding configuration indicated by such first information has a higher priority. In addition, there may be terminal devices that require high-priority services, and their corresponding forwarding priorities are also higher.
  • the semi-static mode is indicated by MAC CE or RRC.
  • the semi-persistent mode is first configured with one or more configuration information by MAC CE or RRC, and then one or more of them are activated by DCI or MAC CE or other signals.
  • the second information and/or the second time are further described below.
  • the forwarder is not instructed to forward, or the forwarder is not able to forward, or the forwarder is not expected to forward.
  • the NCR in the OFF state indicated by the second information is not forwarded in the second time, which may specifically include: the NCR will no longer be indicated as ON in the second time (for specific instructions on ON, refer to the description of the first information above).
  • NCR does not expect to be indicated as ON at the second time
  • the NCR does not expect to receive a new indication that it is ON at a second time (unless a second message is received that overwrites the previous second message).
  • the forwarding corresponding to the first time has a high priority, and although the second time is indicated by the second information indicating an OFF state, the forwarder forwards at the first time.
  • the NCR does not forward the second time unless the first time included in the second time is a high priority time (or a special time unit).
  • the high priority time unit or the special time unit is a time unit used to forward important signals, such as SSB signals, PRACH signals, etc.
  • the first time unit may be indicated by the base station, and/or predefined by the standard, and/or determined by the NCR itself (for example, receiving system information).
  • the forwarding priority can be at least one or a combination of the following priorities:
  • the priority of semi-static signaling is higher than that of dynamic signaling, or the priority of signaling received later is higher than that of signaling received earlier, or the priority of dynamic signaling is higher than that of semi-static signaling.
  • it can be expressed as a priority of beams: the priority of one part of the beams is higher than the priority of another part.
  • the beam used to forward certain signals has a high priority.
  • the beam used to forward high priority signals such as SSB has a high priority.
  • the network side configures a part of beams with a high priority, such as specifying a part of beam scheduling index; or, the network side configures or indicates the priority of a beam.
  • beams indicated by certain signaling have high priorities
  • beams configured by OAM have high priorities
  • beams indicated by semi-static indications have high priorities
  • beams indicated by dynamic indications have high priorities
  • the priority of the forwarded signal it may be shown as the priority of the forwarded signal: the forwarded signal itself has a priority.
  • the signal with a higher priority may include at least one of the following: SS, SSB, SIB, MIB, RACH, PDCCH for scheduling Msg2 and/or Msg3 and/or Msg4 and/or Msg5, PDSCH for carrying Msg2 and/or Msg4, PUSCH for carrying Msg3 and/or Msg5, CSIRS, SRS, etc.
  • SS SS
  • SSB SIB
  • MIB MACH
  • PDCCH for scheduling Msg2 and/or Msg3 and/or Msg4 and/or Msg5
  • PDSCH for carrying Msg2 and/or Msg4
  • PUSCH for carrying Msg3 and/or Msg5, CSIRS, SRS, etc.
  • it may also be a signal other than the above signals, and the present application is not limited thereto.
  • the signal used by the terminal device served by NCR to report BFR may also have a higher priority, so that the network side can receive the BFR from the terminal side in time and perform appropriate processing to avoid further larger link failures.
  • the signal priority is indicated by the network side.
  • it may be expressed as indication/configuration information or signaling priority.
  • the beam configured by OAM has a high priority
  • the beam indicated semi-statically has a high priority
  • the beam indicated dynamically has a high priority
  • the important signals in the above examples are mostly related to key processes and capabilities such as initial access, channel tracking, and channel measurement of the served terminal equipment. Therefore, semi-static signaling or signaling configured by OAM may have a higher priority.
  • the network side may send dynamic signaling to indicate a new transmission beam to the NCR.
  • the priorities may be divided into three categories, for example, the beam used to forward SSB has the highest priority, the dynamic rewrite has the second highest priority, and other instructions have a lower priority.
  • the forwarding direction may be expressed as a priority of the forwarding direction: the forwarding direction has a priority.
  • beam conflict may occur between uplink forwarding and downlink forwarding.
  • the downlink forwarding beam can be given higher priority and has a higher priority on the network side during communication, which can guarantee services for more terminal devices served by the network device.
  • the uplink forwarding beam may be given priority so that the network side can obtain the request or reported information of the terminal device served by the NCR in a timely manner.
  • the priority may be expressed as a time unit/time period for use or forwarding of the beam.
  • the NCR may determine (based on received instructions or self-acquired system information) at what times more important signals may need to be forwarded. These times or time periods have higher priorities, and beams associated with these times or time periods have higher priorities in beam conflicts.
  • the second information is dynamic signaling or semi-static signaling.
  • the second information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the second information may be dynamic information indicated once.
  • the NCR enters the OFF state after receiving the dynamic information; or the dynamic information indicates a time period.
  • the dynamic information may also be periodic (specific period-related information may be indicated by dynamic signaling, or may be semi-statically configured in advance and activated by dynamic signaling).
  • the second information may also be semi-static information.
  • the semi-static information is used to configure an OFF state for the purpose of power saving.
  • the semi-static information may only indicate the time corresponding to the OFF state (e.g., the second time), or may indicate the periodic ON state time (e.g., the aforementioned tentative ON state) and the OFF state time.
  • the semi-static information reuses the DRX signaling of the NCR-MT, and the NCR interprets the DRX configuration signaling according to predefined rules and determines the second time corresponding to the OFF state.
  • the following further describes a situation in which the repeater receives both the first information and the second information.
  • FIG22 is an example diagram of the first information and the second information of an embodiment of the present application. As shown in FIG22, for example, the first information is received before the second information is received. The first information indicates the first time, and the second information indicates the second time. The first time and the second time do not overlap.
  • FIG. 23 is another example diagram of the first information and the second information of an embodiment of the present application, showing a case with a minimum interval
  • FIG. 24 is another example diagram of the first information and the second information of an embodiment of the present application, showing a case without a minimum interval.
  • the first information is received before the second information is received.
  • the first information indicates the third time
  • the second information indicates the second time.
  • the third time and the second time at least partially overlap, and the overlapping portion is the first time.
  • the forwarder when the forwarder receives the first information before receiving the second information, it forwards the information within a third time indicated by the first information based on the first information, and does not forward the information within the remaining time of the second time indicated by the second information based on the second information.
  • FIG25 is another example diagram of the first information and the second information of the embodiment of the present application, showing a case with a minimum interval
  • FIG26 is another example diagram of the first information and the second information of the embodiment of the present application, showing a case without a minimum interval. As shown in FIGS. 25 and 26, after the forwarding or ON indicated by the first information is completed, the OFF state indicated by the second information is entered.
  • the OFF state indicated by the second information can be used to save power, and this processing helps to balance data forwarding and power saving. After completing the forwarding of the indication, the OFF state (stop forwarding) can be entered. In addition, allowing such a conflict to exist can reduce the computational complexity of the network device's planning before scheduling and indication, thereby reducing the implementation cost of the network device.
  • the forwarder when the forwarder receives the first information before receiving the second information, it forwards the first information within a third time indicated by the first information that does not overlap with a second time indicated by the second information, and does not forward the second information within the second time.
  • FIG27 is another example diagram of the first information and the second information of the embodiment of the present application, showing a case with a minimum interval
  • FIG28 is another example diagram of the first information and the second information of the embodiment of the present application, showing a case without a minimum interval.
  • the NCR executes the ON/forwarding indicated by the first information for a period of time, it stops (suspends) the ON/forwarding indicated by the first information and directly enters the OFF state indicated by the second information.
  • the base station can interrupt unnecessary forwarding during the indication process.
  • the forwarding indication is predicted in advance, and in actual scheduling, there is no signal to be forwarded in the second half of the indicated forwarding time.
  • the base station can send the second information in a timely manner to allow the NCR to enter the OFF state as soon as possible, thereby achieving better power saving.
  • the forwarder when the forwarder receives the first information before receiving the second information, it does not forward within a third time indicated by the first information, and does not forward within a second time indicated by the second information based on the second information, and the second time at least partially overlaps with the third time.
  • FIG. 29 is another example diagram of the first information and the second information of the embodiment of the present application, showing a case with a minimum interval
  • FIG. 30 is another example diagram of the first information and the second information of the embodiment of the present application, showing a case without a minimum interval.
  • the NCR does not execute the ON/forwarding indicated by the first information, and directly enters the OFF state indicated by the second information. Thus, the best power saving purpose can be achieved.
  • the above schematically illustrates the situation where the first information is received first and then the second information is received, but the present application is not limited to this.
  • the above methods can also be implemented in combination. For example, if the forwarding or ON state indicated by the first information has already started when the second information is received, the method shown in Figure 27 can be used to stop the forwarding or the ON state as early as possible. If the forwarding or ON state indicated by the first information has not yet started when the second information is received, the method of Figure 29 can be used to directly enter the OFF state or not forward at the second time according to the indication of the second information.
  • the following schematically illustrates a situation where the second information is received first and then the first information is received.
  • FIG. 31 is another example diagram of the first information and the second information of an embodiment of the present application, showing a case with a first interval and a second interval
  • FIG. 32 is another example diagram of the first information and the second information of an embodiment of the present application, showing a case with a second interval.
  • the first information is received after the second information is received.
  • the first information indicates the third time
  • the second information indicates the second time.
  • the third time and the second time at least partially overlap, and the overlapping portion is the first time.
  • the forwarder when the forwarder receives the first information after receiving the second information, the forwarder does not forward the information within a second time indicated by the second information according to the second information.
  • FIG33 is another example diagram of the first information and the second information of the embodiment of the present application, showing a situation with a first interval and a second interval
  • FIG34 is another example diagram of the first information and the second information of the embodiment of the present application, showing a situation with a second interval.
  • the NCR does not perform the ON/forwarding indicated by the first information, and maintains the OFF state indicated by the second information.
  • the forwarder when the forwarder receives the first information after receiving the second information, it forwards the information within a third time indicated by the first information according to the first information, and does not forward the information within a time when the second time indicated by the second information does not overlap with the third time according to the second information, and the second time at least partially overlaps with the third time.
  • FIG. 35 is another example diagram of the first information and the second information of the embodiment of the present application, showing a situation with a first interval and a second interval
  • FIG. 36 is another example diagram of the first information and the second information of the embodiment of the present application, showing a situation with a second interval.
  • the NCR suspends the OFF state indicated by the second information, and is in the ON state/forwards at the first time according to the instruction of the first information.
  • the first time is, for example, a high priority time (or a special time unit).
  • the priority of the first information is higher than that of the second information, in which case the first information is executed first.
  • the priority of the second information is higher than that of the first information, in which case the second information is executed first.
  • the state and/or behavior indicated by the information received first on the timeline has a higher priority.
  • the information received first is executed first.
  • NCR determines whether the priority is higher than a threshold. For example, for first information whose priority is lower than a preset threshold, its priority is lower than second information; for first information whose priority is higher than the preset threshold, its priority is higher than second information.
  • the first time is taken as an example in the above description, and the present application is not limited thereto.
  • the first time may be a specific time indicated by at least one of the two messages, or may be a part of the indicated time. For example, when the NCR receives two messages, the first time is the overlapping part indicated by the two messages.
  • the default OFF state may be referred to as a first OFF state, and the indicated OFF state may be referred to as a second OFF state.
  • the repeater is expected (or determined or defaulted) to be in a first OFF state unless receiving first information from a network device; and the repeater receives second information indicating that the repeater is in a second OFF state at a first time.
  • the ON state indicated by the first information may be referred to as a first ON state (also referred to as an indicated ON state), in which the repeater can perform forwarding.
  • the ON state indicated by the second information may be referred to as a second ON state (also referred to as a tentative ON state), for example, in which the repeater cannot perform forwarding yet, and can only truly perform forwarding at a first time corresponding to the first information after receiving the first information.
  • the forwarder determines (or defaults or is expected) not to forward at the first time unless it receives the first information from the network device; and the forwarder receives the second information for instructing the forwarder not to forward at the first time.
  • the forwarder is OFF by default at the first time, thereby reducing unnecessary interference and improving the transmission efficiency of the entire network; in addition, when the second information is received, the forwarder is instructed to be OFF at the first time, thereby reducing system power consumption and saving energy costs.
  • An embodiment of the present application provides a repeater, which may be, for example, the aforementioned NCR, or a network device or terminal device with a forwarding function, or one or more parts or components configured in the NCR, network device or terminal device.
  • Figure 37 is a schematic diagram of a repeater of an embodiment of the present application. Since the principle of solving the problem by the repeater is the same as the method of the embodiment of the first aspect, its specific implementation can refer to the embodiment of the first aspect, and the same contents will not be repeated.
  • the forwarder 3700 of the embodiment of the present application includes:
  • a determining unit 3701 which determines not to forward at a first time unless first information is received from a network device
  • the receiving unit 3702 receives second information for instructing the forwarder not to forward at the first time.
  • the first time is defaulted to a period of time during which the forwarder does not forward.
  • the receiving unit 3702 further receives first information for instructing the forwarder to forward at least at the first time.
  • the repeater 3700 may further include:
  • the forwarding unit 3703 forwards the first information at the first time.
  • the first information indicates that the forwarder is capable of forwarding during a period of time starting from a first time point and including the first time;
  • the receiving unit 3702 further receives third information; and the forwarder does not forward from a third time point according to the third information or does not forward according to the first information.
  • the forwarder if the forwarder has not received the first information before the first time, the forwarder does not forward the first information at the first time.
  • N and M are both integers greater than or equal to 0.
  • the first information further indicates a forwarding beam used by the forwarder; the indicated forwarding beam is a beam on an access (AC) link and/or a beam on a backhaul link.
  • the indicated forwarding beam is a beam on an access (AC) link and/or a beam on a backhaul link.
  • the first information further instructs the repeater to use a default beam for forwarding.
  • the first time comprises a flexible time unit
  • the first information is used to indicate that the flexible time unit included in the first time is an uplink time unit, and/or the first information is used to indicate that the flexible time unit included in the first time is a downlink time unit.
  • the first information is dynamic signaling or semi-static signaling; the first information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the second information further indicates a second time including the first time; during the second time, the forwarder is not indicated to forward, or the forwarder is not capable of forwarding, or the forwarder is not expected to forward.
  • the second time is a periodic period of time
  • the second information further indicates at least one of the following of the second time: a period, an offset, a start time point, an end time point, and a duration.
  • the second time is a non-periodic period of time
  • the second information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • the second information indicates that the forwarder is unable to forward during a period of time starting from a second time point and including the first time
  • the receiving unit 3702 further receives fourth information; and the forwarder defaults to not forwarding from a fourth time point according to the fourth information.
  • the second information is dynamic signaling or semi-static signaling; the second information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the receiving unit 3702 also receives a signal whose priority is greater than a threshold; and the forwarder forwards the signal whose priority is greater than the threshold at the first time; wherein the first time includes a high priority time unit or includes a special time unit.
  • the forwarder when the forwarder receives the first information before receiving the second information, it forwards the information within a third time indicated by the first information based on the first information, and does not forward the information within the remaining time of the second time indicated by the second information based on the second information.
  • the forwarder when the forwarder receives the first information before receiving the second information, it forwards the first information within a third time indicated by the first information that does not overlap with a second time indicated by the second information, and does not forward the second information within the second time.
  • the forwarder when the forwarder receives the first information before receiving the second information, it does not forward within a third time indicated by the first information, and does not forward within a second time indicated by the second information based on the second information, and the second time at least partially overlaps with the third time.
  • the forwarder when the forwarder receives the first information after receiving the second information, the forwarder does not forward the information within a second time indicated by the second information according to the second information.
  • the forwarder when the forwarder receives the first information after receiving the second information, it forwards the information within a third time indicated by the first information according to the first information, and does not forward the information within a time when the second time indicated by the second information does not overlap with the third time according to the second information, and the second time at least partially overlaps with the third time.
  • FIG. 37 only exemplifies the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned various components or modules can be implemented by hardware facilities such as processors, memories, transmitters, and receivers; the implementation of this application is not limited to this.
  • the forwarder determines (or defaults or is expected) not to forward at the first time unless it receives the first information from the network device; and the forwarder receives the second information for instructing the forwarder not to forward at the first time.
  • the forwarder is OFF by default at the first time, thereby reducing unnecessary interference and improving the transmission efficiency of the entire network; in addition, when the second information is received, the forwarder is instructed to be OFF at the first time, thereby reducing system power consumption and saving energy costs.
  • An embodiment of the present application provides an indication method for a repeater, which is explained from the perspective of a network device, and the contents that are the same as those in the embodiment of the first aspect are not repeated here.
  • FIG. 38 is a schematic diagram of an indication method of a repeater according to an embodiment of the present application. As shown in FIG. 38 , the method includes:
  • the network device sends first information to the forwarder; wherein the forwarder determines (or defaults or is expected) not to forward at the first time unless the first information is received;
  • the network device sends second information to the forwarder to instruct the forwarder not to forward at the first time.
  • FIG. 38 is only a schematic illustration of the embodiment of the present application, but the present application is not limited thereto.
  • the execution order between the various operations can be appropriately adjusted, and other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the records of the above FIG. 38.
  • the network device may send a forwarding signal (e.g., destined for a terminal device and forwarded by the forwarder) and/or a communication signal (e.g., destined for the forwarder) to the forwarder, or the network device may also receive a forwarding signal (e.g., generated and sent by a terminal device and forwarded by the forwarder) and/or a communication signal (e.g., generated and sent by the forwarder) from the forwarder.
  • a forwarding signal e.g., destined for a terminal device and forwarded by the forwarder
  • a communication signal e.g., generated and sent by the forwarder
  • the first time is defaulted to a period of time during which the forwarder does not forward.
  • the first information indicates that the forwarder is capable of forwarding within a period of time starting from a first time point and including the first time; and the method further includes:
  • the network device sends third information to the forwarder; wherein the forwarder does not forward the information from a third time point according to the third information or does not forward the information according to the first information.
  • the first information further indicates a repeater beam used by the repeater.
  • the indicated forwarding beam is a beam on an access (AC) link and/or a beam on a backhaul link.
  • the first information further instructs the repeater to use a default beam for forwarding.
  • the first time comprises a flexible time unit
  • the first information is used to indicate that the flexible time unit included in the first time is an uplink time unit, and/or the first information is used to indicate that the flexible time unit included in the first time is a downlink time unit.
  • the first information is dynamic signaling or semi-static signaling.
  • the first information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the second information further indicates a second time including the first time.
  • the second time is a periodic period of time
  • the second information further indicates at least one of the following of the second time: a period, an offset, a start time point, an end time point, and a duration.
  • the second time is a non-periodic period of time
  • the second information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • the second information indicates that the forwarder cannot forward within a period of time starting from a second time point and including the first time; and the method further includes:
  • the network device sends fourth information to the forwarder; wherein the forwarder defaults to not forwarding from a fourth time point based on the fourth information.
  • the second information is dynamic signaling or semi-static signaling.
  • the second information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the forwarder determines (or defaults or is expected) not to forward at the first time unless it receives the first information from the network device; and the forwarder receives the second information for instructing the forwarder not to forward at the first time.
  • the forwarder is OFF by default at the first time, thereby reducing unnecessary interference and improving the transmission efficiency of the entire network; in addition, when the second information is received, the forwarder is instructed to be OFF at the first time, thereby reducing system power consumption and saving energy costs.
  • An embodiment of the present application provides a network device.
  • Figure 39 is a schematic diagram of a network device according to an embodiment of the present application. Since the principle of solving the problem by the network device is the same as the method of the embodiment of the third aspect, its specific implementation can refer to the embodiment of the third aspect, and the same contents will not be repeated.
  • the network device 3900 of the embodiment of the present application includes:
  • a first sending unit 3901 sends first information to a forwarder, wherein the forwarder determines (or defaults or is expected) not to forward at the first time unless the first information is received;
  • the second sending unit 3902 sends second information to the forwarder for instructing the forwarder not to forward at the first time.
  • the network device may send a forwarding signal (e.g., destined for a terminal device and forwarded by the forwarder) and/or a communication signal (e.g., destined for the forwarder) to the forwarder, or the network device may also receive a forwarding signal (e.g., generated and sent by a terminal device and forwarded by the forwarder) and/or a communication signal (e.g., generated and sent by the forwarder) from the forwarder.
  • a forwarding signal e.g., destined for a terminal device and forwarded by the forwarder
  • a communication signal e.g., generated and sent by the forwarder
  • the network device 3900 of the embodiment of the present application may also include other components or modules, and the specific contents of these components or modules may refer to the relevant technology.
  • FIG. 39 only exemplifies the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules can be implemented by hardware facilities such as processors, memories, transmitters, and receivers; the implementation of this application is not limited to this.
  • the forwarder determines (or defaults or is expected) not to forward at the first time unless it receives the first information from the network device; and the forwarder receives the second information for instructing the forwarder not to forward at the first time.
  • the forwarder is OFF by default at the first time, thereby reducing unnecessary interference and improving the transmission efficiency of the entire network; in addition, when the second information is received, the forwarder is instructed to be OFF at the first time, thereby reducing system power consumption and saving energy costs.
  • FIG1 is a schematic diagram of the communication system of the embodiment of the present application.
  • the communication system 100 includes a network device 101, a repeater 102, and a terminal device 103.
  • FIG1 only illustrates a network device, a repeater, and a terminal device as an example, but the embodiment of the present application is not limited to this.
  • existing services or future implementable services can be transmitted between the network device 101 and the terminal device 103.
  • these services may include, but are not limited to: enhanced mobile broadband (eMBB), massive machine type communication (mMTC), highly reliable and low latency communication (URLLC) and vehicle-to-everything (V2X) communication, etc.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC highly reliable and low latency communication
  • V2X vehicle-to-everything
  • An embodiment of the present application also provides an electronic device, which is, for example, a repeater or a network device.
  • FIG40 is a schematic diagram of the composition of an electronic device according to an embodiment of the present application.
  • the electronic device 4000 may include: a processor 4010 (e.g., a central processing unit CPU) and a memory 4020; the memory 4020 is coupled to the processor 4010.
  • the memory 4020 may store various data; in addition, it may store a program 4030 for information processing, and the program 4030 may be executed under the control of the processor 4010.
  • the processor 4010 may be configured to execute a program to implement the indication method of the forwarder as described in the embodiment of the first aspect.
  • the processor 4010 may be configured to perform the following control: determine (or default or be expected) not to forward at a first time unless first information from a network device is received; and receive second information for instructing the forwarder not to forward at the first time.
  • the processor 4010 may be configured to execute a program to implement the indication method of the forwarder as described in the embodiment of the third aspect.
  • the processor 4010 may be configured to perform the following control: sending first information to the forwarder; wherein the forwarder determines (or defaults or is expected) not to forward at a first time unless the first information is received; and sending second information to the forwarder to instruct the forwarder not to forward at the first time.
  • the electronic device 4000 may further include: a transceiver 4040 and an antenna 4050, etc.; wherein the functions of the above components are similar to those of the prior art and are not described in detail here. It is worth noting that the electronic device 4000 does not necessarily include all the components shown in FIG40 ; in addition, the electronic device 4000 may also include components not shown in FIG40 , which may refer to the prior art.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in a repeater, the program enables a computer to execute the repeater indication method described in the embodiment of the first aspect in the repeater.
  • An embodiment of the present application further provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the indication method of the repeater described in the embodiment of the first aspect in the repeater.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in a network device, the program causes the computer to execute the method for indicating the repeater described in the embodiment of the third aspect in the network device.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method for indicating a repeater described in the embodiment of the third aspect in a network device.
  • the above devices and methods of the present application can be implemented by hardware, or by hardware combined with software.
  • the present application relates to such a computer-readable program, which, when executed by a logic component, enables the logic component to implement the above-mentioned devices or components, or enables the logic component to implement the various methods or steps described above.
  • the logic component is, for example, a field programmable logic component, a microprocessor, a processor used in a computer, etc.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to various software modules of the computer program flow or to various hardware modules.
  • These software modules may correspond to the various steps shown in the figure, respectively.
  • These hardware modules may be implemented by solidifying these software modules, for example, using a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the software module may be located in a RAM memory, a flash memory, a ROM memory, an EPROM memory, an EEPROM memory, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to a processor so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and the storage medium may be located in an ASIC.
  • the software module may be stored in a memory of a mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module may be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • the functional blocks described in the drawings and/or one or more combinations of functional blocks it can be implemented as a general-purpose processor, digital signal processor (DSP), application-specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component or any appropriate combination thereof for performing the functions described in the present application.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • it can also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a method for indicating a repeater comprising:
  • the forwarder determines (or defaults to or is expected to) not to forward at the first time unless first information is received from the network device;
  • the forwarder receives second information for instructing the forwarder not to forward at the first time.
  • a method for indicating a repeater comprising:
  • the repeater is expected (or determined or defaulted) to be OFF unless receiving the first information from the network device;
  • the forwarder receives second information for instructing the forwarder not to forward.
  • a method for indicating a repeater comprising:
  • the repeater is expected (or determined or defaulted) to be in an OFF state at the first time unless receiving the first information from the network device;
  • the forwarder receives second information for instructing the forwarder not to forward at the first time.
  • a method for indicating a repeater comprising:
  • the repeater is expected (or determined or defaulted) to be in a first OFF state unless receiving first information from the network device;
  • the repeater receives second information indicating that the repeater is in a second OFF state at a first time.
  • a method for indicating a repeater comprising:
  • the forwarder determines (by default or expected) not to forward in the first place
  • the forwarder receives second information for instructing the forwarder not to forward at the first time.
  • the forwarder receives first information for instructing the forwarder to forward at least at the first time.
  • the forwarder forwards the first information at the first time according to the first information.
  • the method further comprises:
  • the repeater receives third information
  • the forwarder stops forwarding from a third time point according to the third information or stops forwarding according to the first information.
  • N and M are both integers greater than or equal to 0.
  • the indicated forwarding beam is a beam on an access (AC) link and/or a beam on a backhaul link.
  • the first information is used to indicate that the flexible time unit included in the first time is an uplink time unit, and/or the first information is used to indicate that the flexible time unit included in the first time is a downlink time unit.
  • the first information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the second information further indicates at least one of the following of the second time: a period, an offset, a start time point, an end time point, and a duration.
  • the second information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • the repeater receives fourth information
  • the forwarder defaults to not forwarding from a fourth time point according to the fourth information.
  • the repeater receives a signal with a priority greater than a threshold
  • the signal with a priority greater than a threshold is forwarded at the first time.
  • a method for indicating a repeater comprising:
  • the network device sends first information to the forwarder; wherein the forwarder determines (or defaults or is expected) not to forward at the first time unless the first information is received;
  • the network device sends, to the forwarder, second information for instructing the forwarder not to forward at the first time.
  • the network device sends third information to the forwarder; wherein the forwarder does not forward the information from a third time point according to the third information or does not forward the information according to the first information.
  • the indicated forwarding beam is a beam on an access (AC) link and/or a beam on a backhaul link.
  • the first information is used to indicate that the flexible time unit included in the first time is an uplink time unit, and/or the first information is used to indicate that the flexible time unit included in the first time is a downlink time unit.
  • the method according to Note 40 wherein the first information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the second information further indicates at least one of the following of the second time: a period, an offset, a start time point, an end time point, and a duration.
  • the second information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • the network device sends fourth information to the forwarder; wherein the forwarder defaults to not forwarding from a fourth time point based on the fourth information.
  • a repeater comprising a memory and a processor, wherein the memory stores a computer program, and the processor is configured to execute the computer program to implement the indication method of the repeater as described in any one of Notes 1 to 32.
  • a network device comprising a memory and a processor, wherein the memory stores a computer program, and the processor is configured to execute the computer program to implement the indication method of the repeater as described in any one of Notes 33 to 47.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种转发器的指示方法、转发器和网络设备。所述方法包括:转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。

Description

转发器的指示方法、转发器和网络设备 技术领域
本申请涉及通信技术领域。
背景技术
与传统的3G(第三代移动通信技术)、4G(第四代移动通信技术)系统相比,5G(第五代移动通信技术)系统能够提供更大的带宽以及更高的数据率,并且能够支持更多类型的终端和垂直业务。
为此,除了传统电信频谱以外,5G系统也被部署在新频谱上,新频谱的频率明显高于3G和4G系统使用的传统电信频谱。例如,5G系统可以部署在毫米波波段(28GHz,38GHz,60GHz以及以上等等)。
根据无线信号的传播规律,其所在载波的频率越高、信号在传播过程中遇到的衰落越严重。因此,实际部署中,5G系统比以往的3G、4G系统更需要小区覆盖增强方法,特别是部署在毫米波频段的5G系统。如何更好地增强5G系统小区覆盖,成为亟待解决的问题之一。
另一方面,相比于传统的3G和4G系统,5G系统采用了更为高级的多天线传播技术以及相应的传输设备。为了支持更为灵活和复杂的业务,5G系统的复杂度高于3G和4G系统。相应地,5G系统的耗电也高于3G和4G系统。如何降低5G系统的功耗,节省能源开销,也是亟待解决的问题之一。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
针对上述问题的至少之一,本申请实施例提供了一种转发器的指示方法、转发器和网络设备。转发器具有与网络设备通信的能力,能够在网络配置下更好地加强信号覆盖并应对环境变化(例如,在转发中减少对其它网络设备和终端设备的干扰等),此外还能够降低系统功耗和节省能源开销。
根据本申请实施例的一方面,提供一种转发器的指示方法,包括:
转发器确定在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及
所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
根据本申请实施例的另一方面,提供一种转发器,包括:
确定单元,其确定在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及
接收单元,其接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
根据本申请实施例的另一方面,提供一种转发器的指示方法,包括:
网络设备向转发器发送第一信息;其中,转发器确定在第一时间不进行转发,除非接收到所述第一信息;以及
所述网络设备向所述转发器发送用于指示所述转发器在所述第一时间不进行转发的第二信息。
根据本申请实施例的另一方面,提供一种网络设备,包括:
第一发送单元,其向转发器发送第一信息;其中,转发器确定在第一时间不进行转发,除非接收到所述第一信息;以及
第二发送单元,其向所述转发器发送用于指示所述转发器在所述第一时间不进行转发的第二信息。
根据本申请实施例的另一方面,提供一种通信系统,包括:
网络设备,其向转发器发送第一信息和/或第二信息;以及
转发器,其确定在第一时间不进行转发,除非接收到所述第一信息;以及接收用于指示所述转发器在所述第一时间不进行转发的所述第二信息。
本申请实施例的有益效果之一在于:转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。由此,转发器默认在第一时间为OFF,从而能够减少不必要的干扰,提高整个网络的传输效率;此外在收到第二信息的情况下转发器被指示在第一时间为OFF,从而还能够降低系统功耗和节省能源开销。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本申请实施例的应用场景的一示意图;
图2是本申请实施例的NCR的一示意图;
图3是本申请实施例的NCR转发的一示意图;
图4是本申请实施例的NCR转发的另一示意图;
图5是本申请实施例的转发器的指示方法的一示意图;
图6是本申请实施例的第一信息和第一时间的一示例图;
图7是本申请实施例的第二信息和第二时间的一示例图;
图8是本申请实施例的第一信息和第一时间的另一示例图;
图9是本申请实施例的第二信息和第二时间的另一示例图;
图10是本申请实施例的第二信息和第二时间的另一示例图;
图11是本申请实施例的第一信息和第一时间的另一示例图;
图12是本申请实施例的第一信息和第一时间的另一示例图;
图13是本申请实施例的第一信息和第一时间的另一示例图;
图14是本申请实施例的第一信息和第一时间的另一示例图;
图15是本申请实施例的第二信息和第二时间的另一示例图;
图16是本申请实施例的第二信息和第二时间的另一示例图;
图17是本申请实施例的第一信息和第一时间的另一示例图;
图18是本申请实施例的第一信息和第一时间的另一示例图;
图19是本申请实施例的第一信息和第三信息的一示例图;
图20是本申请实施例的第二信息和第二时间的另一示例图;
图21是本申请实施例的第二信息和第四信息的一示例图;
图22是本申请实施例的第一信息和第二信息的一示例图;
图23是本申请实施例的第一信息和第二信息的另一示例图;
图24是本申请实施例的第一信息和第二信息的另一示例图;
图25是本申请实施例的第一信息和第二信息的另一示例图;
图26是本申请实施例的第一信息和第二信息的另一示例图;
图27是本申请实施例的第一信息和第二信息的另一示例图;
图28是本申请实施例的第一信息和第二信息的另一示例图;
图29是本申请实施例的第一信息和第二信息的另一示例图;
图30是本申请实施例的第一信息和第二信息的另一示例图;
图31是本申请实施例的第一信息和第二信息的另一示例图;
图32是本申请实施例的第一信息和第二信息的另一示例图;
图33是本申请实施例的第一信息和第二信息的另一示例图;
图34是本申请实施例的第一信息和第二信息的另一示例图;
图35是本申请实施例的第一信息和第二信息的另一示例图;
图36是本申请实施例的第一信息和第二信息的另一示例图;
图37是本申请实施例的转发器的一示意图;
图38是本申请实施例的转发器的指示方法的另一示意图;
图39是本申请实施例的网络设备的一示意图;
图40是本申请实施例的电子设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原 则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、收发节点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),IAB宿主等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例 如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
为了增强覆盖,3GPP Rel-17研究中引入RF repeater来转发终端设备(UE)和网络设备(基站)之间的传输。对于网络设备和终端设备来说,Rel-17中引入的RF repeater是透明的,即网络设备和终端设备并不知道RF repeater的存在。
图1是本申请实施例的应用场景的一示意图,如图1所示,为了方便说明,以一个网络设备(例如5G基站gNB)101、一个转发器(Repeater)102和一个终端设备(例如UE)103为例进行说明,本申请不限于此。
如图1所示,终端设备103与网络设备101建立连接并与其通信。为了增加通信质量,终端设备103与网络设备101之间传输的信道/信号经由转发器102进行转发。网络设备101,终端设备103与转发器102之间的信道/信号交互可采用基于波束的接收和发送方法。波束可以为固定波束或者自适应波束。
如图1所示,网络设备101可以具有小区/载波,网络设备101、转发器102和终端设备103可以在该小区进行转发/通信;但本申请不限于此,例如网络设备101还可以具有其他小区/载波。
在本申请实施例中,网络设备和终端设备之间可以进行现有的业务或者未来可实 施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
传统转发器不具备与网络设备通信的能力,因此,传统转发器虽然能够帮助增强信号强度,但是不够灵活而无法应对复杂的环境变化,将传统转发器部署在5G网络(特别是部署在高频的5G网络)中可能引起对其它网络设备和/或终端设备的不必要的干扰,进而降低整个网络的传输效率(例如,吞吐量)。为了使得转发器的转发能够更为灵活以适应5G网络的特点,网络设备需要对转发器进行协助,并能够根据网络情况对转发器的转发进行配置。
3GPP Rel-18为了增强NR的覆盖,提出网络控制转发器(NCR,Network-controlled repeater)的方案,为网络设备与终端设备之间的信号进行转发。NCR通过控制链路可以与网络设备进行直接通信以辅助NCR的转发操作。
图2是本申请实施例的NCR的一示意图。如图2所示,NCR 202被配置在网络设备201和终端设备203之间。NCR 202可以包括如下两个模块/部件:转发器的移动终端(NCR-MT)和转发器的转发模块(NCR-Fwd);NCR-Fwd也可称为NCR-RU的路由单元(NCR-RU)。NCR-MT主要用于与网络设备通信,NCR-Fwd主要用于转发往来于网络设备和终端设备之间的信号。
如图2所示,本申请实施例的NCR可以具有3个链路:控制链路(control link,C-link),用于转发的回传链路(backhaul link,BH link)和接入链路(access link,AC link)。其中,C-link用于NCR与网络设备之间的通信。BH link用于转发器从网络设备接收待转发信号,或者,向网络设备转发来自AC链路(例如来自终端设备)的信号。AC link用于转发器(例如,向终端设备)转发来自网络设备的信号,或者,接收用于转发至BH链路的信号(例如,来自终端设备的待转发信号)。
发明人认识到,5G系统相对于以前的3G、4G系统等更为复杂,例如,能够支持更多种类的业务和终端类型,又例如,需要被部署在多种频段和场景等。与传统的RF repeater相比,NCR需要具备基于波束收发(转发)的功能。
图3是本申请实施例的NCR转发的一示意图。如图3所示,转发器在AC链路使用发送波束将来自网络设备的信号转发出去。图4是本申请实施例的NCR转发的另一示意图。如图4所示,转发器在AC链路使用接收波束来接收用于转发给网络设 备的信号。
下面结合附图对本申请实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。本申请实施例的转发器可以工作在第一频率范围(FR1),或者,也可以工作在第二频率范围(FR2),还可以工作在第一频率范围(FR1)和第二频率范围(FR2);关于FR1和FR2的具体内容可以参考相关技术。
在本申请实施例中,转发器可以与网络设备通信,转发器可以接收网络设备发送的通信信道/信号,并进行信道/信号的解调/解码,由此获得网络设备发给该转发器的信息,以下将该信号处理过程称为“通信”。转发器还可以转发网络设备和终端设备之间传输的信道/信号,转发器不对该信道/信号进行解调/解码,可以进行放大等处理,以下将该信号处理过程称为“转发”。将“通信”和“转发”合称为“传输”。此外,“在AC链路上进行发送或进行接收”可以等价于“在AC链路上进行转发”,“在控制链路上进行发送或进行接收”可以等价于“在控制链路上进行通信”。以上术语仅为了方便说明,并不构成对本申请的限制。
为方便起见,可以将网络设备和转发器之间或者第三设备(例如终端设备)和转发器之间进行直接通信的信道/信号称为通信信号,在发送通信信号时,转发器需要进行编码和/或调制,在接收通信信号时,转发器需要进行解码和/或解调。此外,可以将经由转发器转发的信道/信号称为转发信号,转发器对转发信号可以进行放大等信号处理,但不会进行解码和/或解调。
在本申请实施例中,转发器还可以表述为直放站、射频转发器、中继器、射频中继器;或者也可以表述为直放站节点、转发器节点、中继器节点;或者还可以表述为智能直放站、智能转发器、智能中继器、智能直放站节点、智能转发器节点、智能中继器节点,等等,本申请不限于此。
在本申请实施例中,网络设备可以是终端设备的服务小区的设备,也可以是转发器所在小区的设备,还可以是转发器的服务小区的设备,也可以是转发器的父节点(Parent node),本申请对该转发器的名称不做限制,只要能实现上述功能的设备,都包含于本申请的转发器的范围内。
在本申请实施例中,波束(beam)也可以表述为波瓣、参考信号(RS,reference signal)、传输配置指示(TCI,transmission configuration indication)、空域滤波器(spatial domain filter)等;或者,也可以表述为波束索引、波瓣索引、参考信号索引、传输 配置指示索引、空域滤波器索引等。上述参考信号例如为信道状态信息参考信号(CSI-RS,channel state Information reference signal)、探测参考信号(SRS,sounding reference signal)、供转发器使用的RS、由转发器发送的RS等。上述TCI也可以表述为TCI状态(state)。本申请实施例不限于此。
第一方面的实施例
本申请实施例提供一种转发器的指示方法,从转发器一侧进行说明。
图5是本申请实施例的转发器的指示方法的一示意图,如图5所示,该方法包括:
501,转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及
502,所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
值得注意的是,以上附图5仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图5的记载。
在一些实施例中,转发器被期望(或确定或默认)为关闭(OFF),除非接收到来自网络设备的第一信息(显式地指示或者隐式地指示);以及所述转发器接收用于指示所述转发器不进行转发的第二信息。
在一些实施例中,转发器被期望(或确定或默认)在第一时间处于关闭(OFF)状态,除非接收到来自网络设备的第一信息;以及所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
在一些实施例中,转发器确定(默认或被期望)在第一时间不进行转发;以及所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
以上示意性对本申请的转发器的一些行为进行了说明,但本申请不限于此,例如以上描述可以相互替换或者相互结合。
在本申请实施例中,发明人认识到,例如5G系统采用了更高级的MIMO技术,5G基站能够赋型更窄的波束,并采用波束扫描(beam swiping)服务小区内的终端设备,也即基站可以在不同时间使用不同空间方向的波束服务处于小区覆盖范围内不同 地理位置的终端设备。5G基站几乎不会一直服务NCR覆盖的终端设备,当5G基站不服务NCR覆盖的设备的时候,采用本申请的实施方式,NCR可以暂停转发信号,以此减小对周围其它设备的干扰,提高其它设备的传输信噪比,进而提升整个网络的吞吐量。
此外,NCR的主要作用是增强小区的某些区域的信号覆盖,相对而言NCR的覆盖面积较小,因此存在NCR所覆盖的区域在一段时间内没有需要服务的终端设备的情况(例如,没有处于RRC连接态的终端设备,或者,没有终端设备有业务传输需求,又或者,在NCR的覆盖范围里没有终端设备)。这种情况下,基站可以指示NCR进入休眠/睡眠状态,以节省NCR设备耗电。
在本申请实施例中,为了方便说明,可以将NCR在第一时间默认的OFF状态称为默认的OFF状态,由第二信息指示的OFF状态称为指示的OFF状态。处于默认的OFF状态和指示的OFF状态的转发器的行为可以相同,例如转发模块(转发器)被关闭或者暂停工作或者停止转发或者不转发。处于默认的OFF状态和转发的OFF状态的转发器的行为也可以不同,例如处于默认的OFF状态的转发器的转发模块停止工作(随时可以开始转发),而处于指示的OFF状态的转发器的转发模块处于休眠状态或者关闭状态(需要一定的时延进入转发状态)。又例如处于默认的OFF状态的转发器中仅转发模块停止工作,而处于指示的OFF状态的转发器中转发模块处于休眠状态或者转发模块和通信模块(NCR-MT)均处于休眠状态。又例如,处于默认的OFF状态的转发器中仅转发模块关闭,而处于指示的OFF状态的转发器转发模块和通信模块均处于关闭状态等等。但本申请不限于此。
在一些实施例中,上述转发器被期望(或确定或默认)为关闭(OFF)可以是所述转发器的转发部件或转发模块(NCR-Fwd)被期望为关闭,也可以是转发模块和通信模块均被期望为关闭等等。但本申请不限于此。
在一些实施例中,在默认的OFF状态下,NCR不对信号进行转发。但是,NCR处于开机或者正常上电的状态,NCR转发模块停止转发。使NCR处于这种OFF状态的主要目的是减少NCR对周围设备的不必要的干扰。
例如,5G基站通过波束来服务终端设备,5G基站的波束通常比4G和3G基站的窄(由于工作频率高和高级MIMO技术的采用),因此,5G基站的波束不可能总指向某一NCR。换句话说,5G基站利用beam swiping通常在不同的时间来服务不同 方向的终端设备。5G基站不可能一直服务该NCR下的终端设备。在5G基站服务其它方向终端设备的时候,NCR可以处于默认的OFF状态下。没有与基站通信的信号交互的时候,NCR不进行转发。这一点与RF repeater不同,RF repeater总是处于开机状态,不区分(也基本没有能力区分)是否有信号交互发生在基站和其所服务的终端设备之间,仅仅是将收到的信号放大再发送出去。因此,RF repeater在没有被基站指向的时候,会放大不必要的信号,进而产生不必要的干扰。
在一些实施例中,在指示的OFF状态下,NCR也不对信号进行转发,可以进入一定程度的休眠。使NCR处于这种的OFF状态的主要目的是省电。
例如,当NCR所覆盖的区域内没有终端设备,或者没有需要被服务的终端设备,基站可以为NCR配置OFF状态。
在本申请实施例中,转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。由此,转发器默认在第一时间为OFF(处于默认的OFF状态),从而能够减少不必要的干扰,提高整个网络的传输效率;此外在收到第二信息的情况下转发器被指示在第一时间为OFF(处于指示的OFF状态),从而还能够降低系统功耗和节省能源开销。
在本申请实施例中,处于OFF状态的转发器不转发(或转发器的转发模块不转发)。例如,转发器不转发是不做以下至少一项:
--在BH链路接收来自基站的信号;
--在AC链路发送经过放大的、在BH链路接收到的信号;
--在AC链路接收信号;
--在BH链路发送经过放大的、在AC链路接收到的信号。
在一些实施例中,第一时间被默认为转发器不进行转发的一段时间。
例如,NCR默认在第一时间处于OFF状态,除非收到第一信息指示其转为ON状态或者指示其在第一时间进行转发。由于这种OFF状态下的转发器可以随时被第一信息指示而变更为ON状态(转发状态),这种默认的OFF状态可以是一种动态OFF状态。由此,采用动态OFF状态,可以根据网络设备的实时调度,及时地调整转发器的状态(转发或者不转发)。
再例如,NCR默认处于OFF状态,直到该NCR收到来自基站的指示,指示其 进行转发或者处于ON状态(例如,通过第一信息)。这种情况下,可以将第一时间理解为接收到第一信息之前或者第一信息被执行之前的时间段。
再例如,在有基站具体指示之前,NCR在某一个时间(例如,第一时间)默认处于OFF状态。除非NCR在该第一时间之前收到了来自基站的第一信息,指示其在该第一时间进行转发或者指示其在第一时间为ON状态,NCR在第一时间处于默认的OFF状态。
在一些实施例中,转发器接收用于指示所述转发器至少在第一时间进行转发的第一信息,所述转发器根据所述第一信息在所述第一时间进行转发。
在一些实施例中,所述转发器根据所述第一信息能够在所述第一时间进行转发。
例如,在没有其他信息指示的情况下,转发器至少根据第一信息在第一时间进行转发。再例如,在还接收到其他信息且该其他信息的优先级高于第一信息的情况下或者该其它信息改写了第一信息的指示的情况下,转发器至少根据该其他信息在第一时间转发或者不转发。
在一些实施例中,转发器在第一时间之前未接收到第一信息的情况下,在所述第一时间不进行转发。
在一些实施例中,转发器在第一时间之前接收到第一信息的情况下,在所述第一时间进行转发。
在一些实施例中,所述第一时间可以由所述第一信息指示。
在一些实施例中,所述第一时间为非周期性的一段时间;所述第一信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
在一些实施例中,所述第一时间为周期性的一段时间;所述第一信息还指示所述第一时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
在一些实施例中,第一信息可以是显式指示第一时间,也可以是隐式指示第一时间。
例如,第一信息可以显式指示一个时间段,该时间段至少包含第一时间;该时间段可以是周期性的。第一信息可以指示周期和偏移量,和/或,起始时间和持续时间。
再例如,一个第一信息可以指示一个时间点,该时间段从该时间点开始,直至基站指示结束为止。该时间段的结束时间点可以由另一个第一信息指示,也可以由其它信息指示。
又例如,第一信息也可以隐式指示一个时间段,该时间段至少包含第一时间。例如,第一信息为功率指示信息,指示NCR Fwd的转发功率在第一时间为非零。
在又一些实施例中,所述第一时间由转发器根据其它信息和/或预定义规则确定。
图6是本申请实施例的第一信息和第一时间的一示例图。如图6的上半部分所示,如果NCR在第一时间之前没有收到第一信息,NCR在该第一时间默认处于OFF状态,NCR在该第一时间不进行转发。如图6的下半部分所示,如果NCR在第一时间之前收到了来自基站的第一信息,指示其在该第一时间进行转发,则NCR确定在该第一时间根据该第一信息进行转发(如图6中的ON所示)。
在一些实施例中,转发器还接收第二信息,指示该转发器在第二时间为OFF状态。进一步地,所述第二信息指示所述转发器在第二时间为OFF状态,所述第二时间包含所述第一时间。所述第二时间可以是一段时间,也可以是多段时间;可以是周期性的时间段,也可以是非周期性的时间段。
在一些实施例中,所述包括所述第一时间的第二时间由所述第二信息指示。
在一些实施例中,所述第二时间为非周期性的一段时间;所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
在一些实施例中,所述第二时间为周期性的一段时间;所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
在一些实施例中,第二信息可以是显式信息(explicit information),也可以是隐式信息(implicit information)。
例如,第二信息可以显式指示一个时间段,该时间段至少包含第一时间;该时间段可以是周期性的。第二信息可以指示周期和偏移量,和/或,起始时间和持续时间。
再例如,一个第二信息可以指示一个时间点,该时间段从该时间点开始,直至基站指示结束为止。该时间段的结束时间点可以由另一个第二信息指示,也可以由其它信息指示。
又例如,第二信息也可以隐式指示一个时间段,该时间段至少包含第二时间。例如,第二信息为NCR-MT的DRX指示,第二时间为NCR-MT的休眠时间。例如,第二信息为功率指示信息,指示NCR Fwd的转发功率在第二时间为零。
在又一些实施例中,所述包括所述第一时间的第二时间由转发器根据其它信息和/或预定义规则确定。例如,转发器确定转发器通信模块的休眠时间为所述第二时间, 或者,根据高层定时器确定第二时间的起始和/或终止等等。
图7是本申请实施例的第二信息和第二时间的一示例图。如图7所示,如果NCR在第二时间之前收到了来自基站的第二信息,指示其在该第二时间不进行转发(OFF)。NCR确定在该第二时间不转发。
以上示意性说明了第一信息和第一时间的关系,以及第二信息和第二时间的关系。本申请不限于此,此外,第一时间和/或第二时间可以是周期性的。
在一些实施例中,第一信息可以指示转发器在周期性的第一时间进行转发。
图8是本申请实施例的第一信息和第一时间的另一示例图。如图8所示,在接收到基站发送的第一信息之后,转发器可以在周期性的第一时间进行转发(如ON所示)。可选地,该第一信息还可以指示转发器在其他时间不进行转发(如OFF所示)。
在一些实施例中,第二信息可以指示转发器在周期性的第二时间不转发。
图9是本申请实施例的第二信息和第二时间的另一示例图。如图9所示,在接收到基站发送的第二信息之后,转发器可以在周期性的第二时间不转发,例如进入休眠状态。
在一些实施例中,第二信息还可以指示转发器进行转发(ON),该ON状态可以称为暂定的ON状态,而由第一信息指示的ON状态称为指示的ON状态。
图10是本申请实施例的第二信息和第二时间的另一示例图。如图10所示,第二信息可以配置ON/OFF。在接收到基站发送的第二信息之后,转发器可以在周期性的第二时间不转发(如OFF所示),例如进入休眠状态。对于暂定的ON状态,在接收到第一信息的指示后,转发器才能够转发。又例如,在第二信息指示的暂定的ON状态时,转发器默认处于OFF状态,除非接收到第一信息。
在一些实施例中,可以为第一信息和第二信息设置间隔时间。
在一些实施例中,所述转发器在所述第一时间之前的N个符号和/或M个时隙还未接收到所述第一信息的情况下,在所述第一时间不进行转发;N和M均为大于或等于0的整数。
例如,在第一时间之前定义最小间隔(interval/gap)或者最小处理时延。
图11是本申请实施例的第一信息和第一时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图11中所示的第一间隔。如图11所示,如果NCR(NCR-MT)在第一时间开始前的第一间隔之前收到第一信息,NCR-Fwd按照第一 信息进行转发,或者,NCR-Fwd转为ON状态。
也就是说,第一信息的到达时刻与第一时间的起始时刻之间大于或等于最小间隔,NCR在第一时间为ON。
图12是本申请实施例的第一信息和第一时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图12中所示的第一间隔。如图12所示,如果NCR(NCR-MT)在第一时间开始前的第一间隔之内收到第一信息,NCR-Fwd不按照第一信息指示进行转发,或者,NCR-Fwd不转为ON状态。
也就是说,第一信息的到达时刻与第一时间的起始时刻之间小于最小间隔,NCR不执行第一信息的指示,即NCR在第一时间仍为OFF。
图13是本申请实施例的第一信息和第一时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图13中所示的第一间隔。如图13所示,如果NCR(NCR-MT)在第一时间开始前的第一间隔之前收到第一信息,NCR-Fwd按照第一信息进行转发,或者,NCR-Fwd转为ON状态。
图14是本申请实施例的第一信息和第一时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图14中所示的第一间隔。如图14所示,如果NCR(NCR-MT)在第一时间开始前的第一间隔之前收到第一信息,NCR-Fwd按照第一信息在周期性的第一时间进行转发,或者,NCR-Fwd在周期性的第一时间转为ON状态。
在一些实施例中,在第二时间之前定义最小间隔(interval/gap)或者最小处理时延。第一时间之前的最小间隔与第二时间之前的最小间隔可以相同,或者也可以不同。
图15是本申请实施例的第二信息和第二时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图15中所示的第二间隔。如图15所示,如果NCR(NCR-MT)在第二时间开始前的第二间隔之前收到第二信息,NCR-Fwd按照第二信息不转发;否则可以忽略该第二信息。
图16是本申请实施例的第二信息和第二时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图16中所示的第二间隔。如图16所示,如果NCR(NCR-MT)在第二时间开始前的第二间隔之前收到第二信息,NCR-Fwd按照第二信息在周期性的第二时间不转发;否则可以忽略该第二信息。
由此,定义或规定最小时间间隔有助于规范终端设备和基站的实现,为不同厂商 的基站设备和终端设备联合调试提供便利,由此加快产品更新换代为市场提供更快更好的服务。
图17是本申请实施例的第一信息和第一时间的另一示例图。如图17所示,可以没有最小间隔的要求。在这种情况下,可以由基站保证:第一信息的到达时刻与第一时间的起始时刻之间的间隔足够NCR-MT对接收到的第一信息进行解调/解码以及NCR-Fwd准备执行第一信息所指示的转发或者进入所指示的ON状态。
图17以第一信息和第一时间为例进行了说明,类似地,第二信息和第二时间也可以没有最小间隔的要求。在这种情况下,可以由基站保证:第二信息的到达时刻与第二时间的起始时刻之间的间隔足够NCR-MT对接收到的第二信息进行解调/解码以及NCR-Fwd准备执行第二信息所指示的不转发或者进入所指示的OFF状态。
由此,由基站保证信息的接收和信息所指示内容的执行之间的时间间隔,有助于为基站产品和终端产品的实现提供更大的自由度。对于硬件计算能力强、算法先进的设备,如此可以允许其发挥最大能力,使得采用该设备部署的网络处理时延减小、有效传输时间增加,进而提高该网络的传输效率。
在一些实施例中,第一信息指示从第一时间点开始的一段时间内所述转发器能够进行转发。所述第一时间为从第一时间点开始的一段时间。
图18是本申请实施例的第一信息和第一时间的另一示例图。如图18所示,如果NCR(NCR-MT)在第一时间开始前收到第一信息,NCR-Fwd按照第一信息的指示在第一时间点开始进入ON状态,即能够进行转发。这种情况下,第一时间可以是该第一时间点之后的一段时间。
在一些实施例中,所述转发器还可以接收第三信息;以及所述转发器根据所述第三信息从第三时间点开始不转发或者不根据所述第一信息进行转发。
图19是本申请实施例的第一信息和第一时间的另一示例图。如图19所示,如果NCR(NCR-MT)在第一时间开始前收到第一信息,NCR-Fwd按照第一信息的指示在第一时间点开始进入ON状态,即能够进行转发。如果NCR(NCR-MT)在第一时间点之后收到第三信息,NCR-Fwd按照第三信息的指示在第三时间点开始进入OFF状态,即不进行转发。这种情况下,第一时间可以是该第一时间点和第三时间点之间的一段时间。
在一些实施例中,所述第二信息指示从第二时间点开始的一段时间内所述转发器 不能够进行转发。
图20是本申请实施例的第二信息和第二时间的另一示例图。如图20所示,如果NCR(NCR-MT)在第二时间开始前收到第二信息,NCR-Fwd按照第二信息的指示在第二时间点开始进入OFF状态(指示的OFF状态),例如进入休眠状态。
在一些实施例中,所述转发器还可以接收第四信息;以及所述转发器根据所述第四信息从第四时间点开始默认不转发。
图21是本申请实施例的第二信息和第二时间的另一示例图。如图21所示,如果NCR(NCR-MT)在第二时间开始前收到第二信息,NCR-Fwd按照第二信息的指示在第二时间点开始进入OFF状态(指示的OFF状态)。如果NCR(NCR-MT)在第二时间点之后收到第四信息,NCR-Fwd按照第四信息的指示在第四时间点开始进入OFF状态(默认的OFF状态)。
以下再对第一信息和/或第一时间进行进一步说明。
在一些实施例中,第一信息还指示所述转发器所使用的转发波束。例如,被指示的所述转发波束为接入(AC)链路上的波束和/或反馈(backhaul)链路上的波束。
在一些实施例中,第一信息还指示所述转发器进行转发。所述转发器使用默认波束。所述默认波束可以是预先约定的波束,也可以是转发器采用的默认波束。例如,转发器在反馈链路可以采用默认波束。
又例如,转发器在FR1(Frequency range1)可以在反馈链路和/或接入链路采用固定波束。或者,转发器被配置和/或设置在FR1进行转发,网络设备不向转发器指示转发波束,转发器自行决定转发波束或者采用固定转发波束。又或者,OAM或网络设备为转发器预先配置/指示默认转发波束。第一信息指示转发器进行转发或者指示转发器处于(或者进入)ON状态。或者,第一信息指示转发器在第一时间进行转发或者在第一时间处于ON状态。或者,第一信息指示转发器从第一时间点开始转发或者在第一时间点进入ON状态。转发器确定能够使用默认波束在第一时间转发。
采用默认波束或者由转发器自行确定波束进行转发的实施方法,有助于节省指示信息开销,提高有效数据传输效率。在FR1,由于其载波频率相较于FR2(Frequency range2)偏低,在一些情况下(例如转发器部署位置确定、覆盖面积偏小等)采用默认波束或者由转发器自行确定波束进行转发的实施方法也能够取得与采用自适应调整波束类似的性能。
在一些实施例中,第一时间包括灵活时间单位。第一信息用于指示所述第一时间中所包括的灵活时间单位为上行时间单位,和/或,所述第一信息用于指示所述第一时间中所包括的灵活时间单位为下行时间单位。第一信息指示所述第一时间中所包括的灵活时间单位为上行时间单位,所述转发器在所述被指示为上行时间单位的第一时间将其在接入链路接收到的信号通过反馈链路向网络设备转发。第一信息指示所述第一时间中所包括的灵活时间单位为下行时间单位,所述转发器在所述被指示为下行时间单位的第一时间将其在反馈链路接收到的、来自网络设备的信号通过接入链路转发出去。
上述的时间单位可以是时隙、符号、子帧或小时隙(mini-slot)的其中之一或任意组合,本申请不限于此。
在一些实施例中,第一信息指示NCR功率,该功率非零,NCR在第一时间使用该功率进行转发。
在一些实施例中,第一信息可以是显式指示转发,也可以是隐式指示转发。
在一些实施例中,例如,显式的第一信息可以用于指示NCR在第一时间点进入ON状态,如图18和19所示。再例如,显式的第一信息可以用于指示NCR在第一时间进入(或处于)ON状态,如图6和8所示。再例如,显式的第一信息可以用于指示NCR在第一时间进行转发(例如使用默认波束),如图6和8所示。
再例如,隐式的第一信息可以用于指示NCR使用的转发波束,所述被指示的转发波束为AC链路的波束和/或反馈链路的波束。NCR在第一时间使用所述第一信息指示的波束进行转发。
又例如,隐式的第一信息可以用于向NCR指示第一时间的灵活单位为上行时间单位还是下行时间单位。NCR在上行时间单位进行从接入链路到反馈链路的转发,在下行时间单位进行从反馈链路到接入链路的转发。
在一些实施例中,所述第一信息为动态信令或者半静态信令。
在一些实施例中,所述第一信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
例如,第一信息可以是用于动态指示NCR进行转发的信息。
--例如,第一信息动态地指示使用默认波束进行转发,默认波束可以由通信标准预定义,也可以由OAM进行配置,还可以由网络设备指示或者确认。
--例如,第一信息动态地指示NCR与第一时间对应的转发波束,NCR在第一时间结束OFF状态,使用该指示的波束进行转发。
--又例如,第一信息动态地指示NCR功率,该功率非零,NCR在第一时间使用该功率进行转发。
--还例如,第一信息动态地指示灵活时间单位为上行时间单位和/或下行时间单位,NCR在所述上行时间单位将从接入链路接收的信号在反馈链路转发,在所述下行时间单位将在反馈链路接收到的信号在接入链路转发。
再例如,第一信息还可以是半静态指示NCR进行转发的半静态(半持续)信息。
--例如,第一信息用于半静态地指示NCR处于ON的时间。
--又例如,第一信息用于半静态/半持续指示NCR进行转发的时间和或所使用的波束。例如,为了所服务的UE的半持续数据传输,基站通过第一信息半静态/半持续地配置NCR对该数据进行转发。这种配置可以用于参考信号转发,例如CSIRS和SRS等。基站可以仅配置NCR转发方法,而不指示该配置用途。
--又例如,第一信息用于半静态/半持续指示NCR进行转发的时间和或所使用的波束。例如,转发用于UE接入小区或者保持与基站连接等作用的公共信号。相较于上述用于UE的数据传输,这样的公共信号重要性比较高。因此,这样的第一信息指示的转发配置的优先级较高。除此以外,还可能有终端设备需要高优先级业务,其相应的转发优先级也较高。
在一些实施例中,上述半静态通过MAC CE或者RRC指示。在另一些实施例中,上述半持续通过MAC CE或者RRC先配置一种或者大于一种的配置信息,随后通过DCI或者MAC CE或者其它信号激活其中的一种或者几种。
以下再对第二信息和/或第二时间进行进一步说明。
在所述第二时间中,所述转发器不被指示进行转发,或者,所述转发器不能够进行转发,或者,所述转发器不被期望进行转发。
在一些实施例中,在第二时间内由第二信息指示处于OFF状态的NCR不转发,具体可以包括:NCR在第二时间不会再被指示为ON(具体如何指示ON,可以参照前述第一信息处的描述)。
例如,NCR不期待在第二时间被指示为ON;
再例如,NCR不期待接收到新的指示,指示其在第二时间为ON(除非接收到 一个第二信息,改写前一个第二信息)。
再例如,NCR即使又收到了指示进行转发的其他信息,也仍然处于OFF状态。
在一些实施例中,所述第一时间对应的转发的优先级高,尽管所述第二时间被指示所述第二信息指示为OFF状态,转发器在所述第一时间进行转发。
例如,NCR在第二时间不转发,除非该第二时间包含的第一时间为高优先级时间(或者,特殊时间单位)。高优先级时间单位或者特殊时间单位用来转发重要信号的时间单位,例如,SSB信号、PRACH信号等。该第一时间单位可以由基站指示,和/或,为标准预定义,和/或,由NCR自行确定(例如接收系统信息)。
在一些实施例中,转发的优先级可以为以下优先级至少之一或组合
--与该转发相应的转发波束的优先级;
--与该转发相应的配置的优先级;
--承载与该转发相应的配置的信令的优先级;
--与该转发相关的时域资源的优先级;
--与该转发的转发信号的优先级等。
在一些实施例中,半静态信令的优先级高于动态信令的优先级,或者,在后收到的信令的优先级高于在前收到的信令的优先级,或者,动态信令的优先级高于半静态信令的优先级。
在一些实施例中,可以表现为波束的优先级:一部分波束的优先级高于另一部分的优先级。
例如,用于转发某些信号的波束的优先级高。例如,用于转发SSB等高优先级信号的波束高。
再例如,网络侧配置一部分波束的优先级高,例如指定一部分波束调度index;或者,网络侧配置或指示一个波束的优先级。
再例如,事先约定某些信令指示的波束优先级高,例如OAM配置的波束优先级高,和/或,半静态指示的波束优先级高,和/或,动态指示的波束优先级高。
在一些实施例中,可以表现为转发信号的优先级:转发信号本身具有优先级。
例如,优先级可能较高的信号:至少包括以下之一:SS,SSB,SIB,MIB,RACH,用于调度Msg2和/或Msg3和/或Msg4和/或Msg5的PDCCH,用于承载Msg2和/或Msg4的PDSCH,用于承载Msg3和/或Msg5的PUSCH,CSIRS,SRS等。当然, 也可以是上述信号以外的信号,本申请不以此为限。
再例如,被NCR服务的终端设备用于汇报BFR(beam failure report)的信号也可能优先级更高,这样让网络侧及时收到终端侧的BFR并进行适当处理,以避免发生进一步的更大的链路失败等。
再例如,信号优先级是由网络侧指示的。
在一些实施例中,可以表现为指示/配置信息、信令的优先级。
例如,OAM配置的波束优先级高,和/或,半静态指示的波束优先级高,和/或,动态指示的波束优先级高。
再例如,上述例子里重要的信号,大多与被服务的终端设备的初始接入、信道追踪、信道测量等关键的流程和能力相关。因此半静态信令或者由OAM配置的信令可能优先级更高一些。
再例如,当NCR所服务的终端设备中有较需要对可靠性和时延要求较高的业务的时候,网络侧可能会发送动态信令,为NCR指示新的传输波束。在这种情况下,优先级有可能分为三类,例如,用于转发SSB等的波束优先级最高,动态改写的优先级次之,其它指示的优先级较低。
在一些实施例中,可以表现为转发方向的优先级:转发方向具有优先级。
例如,波束冲突可能发生在上行转发与下行转发之间,下行转发波束可以更为优先,在通信中网络侧的优先级较高,可以保障被该网络设备服务的更多终端设备的业务。
又例如,波束转发方向冲突中,上行转发波束可以更为优先,以便让网络侧及时获得NCR所服务的终端设备的请求或者上报的信息。
在一些实施例中,可以表现为该波束使用或者转发的时间单位/时间段的优先级。
例如,NCR可以确定(根据收到的指示或者自行获取的系统信息)较为重要的信号可能在哪些时间需要被转发,这些时间或者时间段优先级较高,与这些时间或者时间段相关的波束在波束冲突中具有更高优先级。
以上仅示意性对优先级进行了说明,但本申请不限于此。
在一些实施例中,所述第二信息为动态信令或者半静态信令。
在一些实施例中,所述第二信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
例如,第二信息可以是一次性指示的动态信息。例如,NCR收到该动态信息后进入OFF状态;又或者该动态信息指示一个时间段。该动态信息还可以是周期性的(具体周期相关信息可以由动态信令指示,也可以半静态的提前配置且由动态信令激活)。
再例如,第二信息也可以是半静态信息。例如,该半静态信息用于配置以省电为目的OFF状态,该半静态信息可以仅指示OFF状态对应的时间(例如第二时间),也可以指示周期的ON状态时间(例如前述暂定的ON状态)和OFF状态时间。再例如,该半静态信息重用NCR-MT的DRX信令,NCR根据预定义规则解读DRX配置信令,并确定与OFF状态对应的第二时间。
以下再对转发器既接收到第一信息又接收到第二信息的情况进行说明。
图22是本申请实施例的第一信息和第二信息的一示例图。如图22所示,例如,在接收到第二信息之前接收到第一信息。其中,第一信息指示第一时间,第二信息指示第二时间。第一时间和第二时间不重叠。
图23是本申请实施例的第一信息和第二信息的另一示例图,示出了具有最小间隔的情况;图24是本申请实施例的第一信息和第二信息的另一示例图,示出了不具有最小间隔的情况。如图23和24所示,例如,在接收到第二信息之前接收到第一信息。其中,第一信息指示第三时间,第二信息指示第二时间。
以下以第三时间和第二时间至少部分重叠,且重叠部分为第一时间为例进行说明。
在一些实施例中,所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内进行转发,并根据所述第二信息在所述第二信息所指示的第二时间的剩余时间内不进行转发。
图25是本申请实施例的第一信息和第二信息的另一示例图,示出了具有最小间隔的情况;图26是本申请实施例的第一信息和第二信息的另一示例图,示出了不具有最小间隔的情况。如图25和26所示,第一信息指示的转发或者ON完成后,进入第二信息指示的OFF状态。
第二信息指示的OFF状态可以用于省电,这种处理有助于平衡数据转发与省电。可以完成指示的转发后,再进入OFF状态(停止转发)。此外,允许这样的冲突存在,可以减少网络设备在调度和指示之前进行规划的计算复杂度,进而降低网络设备的实现成本。
在一些实施例中,所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内的不与所述第二信息所指示的第二时间重叠的时间内进行转发,并根据所述第二信息在所述第二时间内不进行转发。
图27是本申请实施例的第一信息和第二信息的另一示例图,示出了具有最小间隔的情况;图28是本申请实施例的第一信息和第二信息的另一示例图,示出了不具有最小间隔的情况。如图27和28所示,NCR执行第一信息指示的ON/转发一段时间后,停掉(中止)第一信息指示的ON/转发,直接进入第二信息指示的OFF状态。
由此,有助于基站在指示的过程中,中断不必要的转发。例如,转发指示为提前预测的,在实际调度中,被指示的后半段转发时间已经没有信号需要转发了。基站可以通过及时地发送第二信息,让NCR尽快进入OFF状态。从而达到更好的省电目的。
在一些实施例中,所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,在所述第一信息所指示的第三时间内不进行转发,并根据所述第二信息在所述第二信息所指示的第二时间内不进行转发,所述第二时间与所述第三时间至少部分重叠。
图29是本申请实施例的第一信息和第二信息的另一示例图,示出了具有最小间隔的情况;图30是本申请实施例的第一信息和第二信息的另一示例图,示出了不具有最小间隔的情况。如图29和30所示,NCR不执行第一信息指示的ON/转发,直接进入第二信息指示的OFF状态。由此,能够达到最好的省电目的。
以上示意性对先收到第一信息再收到第二信息的情况进行了说明,但本申请不限于此。上述方式也可以结合实施。例如,如果收到第二信息的时候,已经开始了由第一信息指示的转发或者ON状态,可以采用图27所示的方式,尽可能早地停止该转发或者该ON状态。如果收到第二信息的时候,尚未开始由第一信息指示的转发或者ON状态,则可以采用图29的方式,直接根据第二信息指示,在第二时间进入OFF状态或者不做转发。
以下示意性对先收到第二信息再收到第一信息的情况进行说明。
图31是本申请实施例的第一信息和第二信息的另一示例图,示出了具有第一间隔和第二间隔的情况;图32是本申请实施例的第一信息和第二信息的另一示例图,示出了具有第二间隔的情况。如图31和32所示,例如,在接收到第二信息之后接收 到第一信息。其中,第一信息指示第三时间,第二信息指示第二时间。
以下以第三时间和第二时间至少部分重叠,且重叠部分为第一时间为例进行说明。
在一些实施例中,所述转发器在接收到所述第二信息之后接收到所述第一信息的情况下,根据所述第二信息在所述第二信息所指示的第二时间内不进行转发。
图33是本申请实施例的第一信息和第二信息的另一示例图,示出了具有第一间隔和第二间隔的情况;图34是本申请实施例的第一信息和第二信息的另一示例图,示出了具有第二间隔的情况。如图33和34所示,NCR不执行第一信息指示的ON/转发,保持第二信息指示的OFF状态。
由此,有助于NCR设备的节能(尽可能保持由第二信息指示的OFF状态)。此外,由于允许这种冲突存在,即允许网络设备发送这样不会被执行的第一信息,可以减少网络设备在调度和指示之前进行规划的计算复杂度,进而降低网络设备的实现成本。
在一些实施例中,所述转发器在接收到所述第二信息之后接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内进行转发,并根据所述第二信息在所述第二信息所指示的第二时间不与所述第三时间重叠的时间内不进行转发,所述第二时间与所述第三时间至少部分重叠。
图35是本申请实施例的第一信息和第二信息的另一示例图,示出了具有第一间隔和第二间隔的情况;图36是本申请实施例的第一信息和第二信息的另一示例图,示出了具有第二间隔的情况。如图35和36所示,NCR暂停第二信息指示的OFF状态,按照第一信息的指示在第一时间处于ON状态/进行转发。第一时间例如为高优先级时间(或者,特殊时间单位)。
由此,可以保证高优先级的信号被优先转发,提高系统的可靠性。
以上示意性说明第一信息和第二信息的情况,但本申请不限于此,还可以将上述的各个实施例结合起来。
例如,第一信息优先级高于第二信息,这种情况下优先执行第一信息。再例如,第二信息优先级高于第一信息,这种情况下优先执行第二信息。
再例如,在时间轴上先收到的信息所指示的状态和/或行为优先级较高,这种情况下优先执行先接收到的信息。
再例如,由NCR根据优先级是否高于阈值来确定,例如对于优先级低于预设阈 值的第一信息,其优先级低于第二信息;对于优先级高于预设阈值的第一信息,其优先级高于第二信息。
此外,以上说明中以第一时间为例,本申请不限于此。第一时间可以是两个信息中至少之一所指示的具体时间,也可以是指示时间的一部分。例如,当NCR接收到两个信息的时候,第一时间是两个信息指示的重叠部分。
在一些实施例中,可以将默认的OFF状态称为第一OFF状态,将指示的OFF状态称为第二OFF状态。
例如,转发器被期望(或确定或默认)为处于第一关闭(OFF)状态,除非接收到来自网络设备的第一信息;以及所述转发器接收用于指示所述转发器在第一时间处于第二关闭(OFF)状态的第二信息。
在一些实施例中,可以将第一信息指示的ON状态称为第一ON状态(也可称为指示的ON状态),在该ON状态下转发器能够进行转发。将第二信息指示的ON状态称为第二ON状态(也可称为暂定的ON状态),例如,在该ON状态下转发器还不能够进行转发,在接收到第一信息之后才能在与第一信息对应的第一时间上真正地进行转发。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。由此,转发器默认在第一时间为OFF,从而能够减少不必要的干扰,提高整个网络的传输效率;此外在收到第二信息的情况下转发器被指示在第一时间为OFF,从而还能够降低系统功耗和节省能源开销。
第二方面的实施例
本申请实施例提供一种转发器,该转发器例如可以是前述的NCR,也可以是具有转发功能的网络设备或终端设备,也可以是配置于NCR、网络设备或终端设备的某个或某些部件或者组件。
图37是本申请实施例的转发器的一示意图,由于该转发器解决问题的原理与第 一方面的实施例的方法相同,因此其具体实施可以参照第一方面的实施例,内容相同之处不再重复说明。
如图37所示,本申请实施例的转发器3700包括:
确定单元3701,其确定在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及
接收单元3702,其接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
在一些实施例中,所述第一时间被默认为所述转发器不进行转发的一段时间。
在一些实施例中,接收单元3702还接收用于指示所述转发器至少在所述第一时间进行转发的第一信息。
在一些实施例中,如图37所示,转发器3700还可以包括:
转发单元3703,其根据所述第一信息在所述第一时间进行转发。
在一些实施例中,所述第一信息指示从第一时间点开始的包括所述第一时间的一段时间内所述转发器能够进行转发;
所述接收单元3702还接收第三信息;以及所述转发器根据所述第三信息从第三时间点开始不转发或者不根据所述第一信息进行转发。
在一些实施例中,所述转发器在所述第一时间之前未接收到所述第一信息的情况下,在所述第一时间不进行转发。
在一些实施例中,所述转发器在所述第一时间之前的N个符号和/或M个时隙还未接收到所述第一信息的情况下,在所述第一时间不进行转发;N和M均为大于或等于0的整数。
在一些实施例中,所述第一信息还指示所述转发器所使用的转发波束;被指示的所述转发波束为接入(AC)链路上的波束和/或反馈(backhaul)链路上的波束。
在一些实施例中,所述第一信息还指示所述转发器使用默认波束进行转发。
在一些实施例中,所述第一时间包括灵活时间单位,
所述第一信息用于指示所述第一时间中所包括的灵活时间单位为上行时间单位,和/或,所述第一信息用于指示所述第一时间中所包括的灵活时间单位为下行时间单位。
在一些实施例中,所述第一信息为动态信令或者半静态信令;所述第一信息由物 理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
在一些实施例中,所述第二信息还指示包括所述第一时间的第二时间;在所述第二时间中,所述转发器不被指示为进行转发,或者,所述转发器不能够进行转发,或者,所述转发器不期望进行转发。
在一些实施例中,所述第二时间为周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
在一些实施例中,所述第二时间为非周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
在一些实施例中,所述第二信息指示从第二时间点开始的包括所述第一时间的一段时间内所述转发器不能够进行转发;
所述接收单元3702还接收第四信息;以及所述转发器根据所述第四信息从第四时间点开始默认不转发。
在一些实施例中,所述第二信息为动态信令或者半静态信令;所述第二信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
在一些实施例中,所述接收单元3702还接收优先级大于阈值的信号;以及转发器在所述第一时间转发所述优先级大于阈值的信号;其中,所述第一时间包括高优先级时间单位或者包括特殊时间单位。
在一些实施例中,所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内进行转发,并根据所述第二信息在所述第二信息所指示的第二时间的剩余时间内不进行转发。
在一些实施例中,所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内的不与所述第二信息所指示的第二时间重叠的时间内进行转发,并根据所述第二信息在所述第二时间内不进行转发。
在一些实施例中,所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,在所述第一信息所指示的第三时间内不进行转发,并根据所述第二信息在所述第二信息所指示的第二时间内不进行转发,所述第二时间与所述第三时间至少部分 重叠。
在一些实施例中,所述转发器在接收到所述第二信息之后接收到所述第一信息的情况下,根据所述第二信息在所述第二信息所指示的第二时间内不进行转发。
在一些实施例中,所述转发器在接收到所述第二信息之后接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内进行转发,并根据所述第二信息在所述第二信息所指示的第二时间不与所述第三时间重叠的时间内不进行转发,所述第二时间与所述第三时间至少部分重叠。
此外,为了简单起见,图37中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。由此,转发器默认在第一时间为OFF,从而能够减少不必要的干扰,提高整个网络的传输效率;此外在收到第二信息的情况下转发器被指示在第一时间为OFF,从而还能够降低系统功耗和节省能源开销。
第三方面的实施例
本申请实施例提供一种转发器的指示方法,从网络设备一侧进行说明,与第一方面的实施例相同的内容不再赘述。
图38是本申请实施例的转发器的指示方法的一示意图,如图38所示,该方法包括:
3801,网络设备向转发器发送第一信息;其中,转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到所述第一信息;以及
3802,所述网络设备向所述转发器发送用于指示所述转发器在所述第一时间不进行转发的第二信息。
值得注意的是,以上附图38仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图38的记载。
在一些实施例中,网络设备可以向转发器发送转发信号(例如目的地为终端设备,由该转发器转发)和/或通信信号(例如目的地为该转发器),或者,网络设备也可以接收来自转发器的转发信号(例如由终端设备生成并发送,并由该转发器转发)和/或通信信号(例如由该转发器生成并发送)。
在一些实施例中,所述第一时间被默认为所述转发器不进行转发的一段时间。
在一些实施例中,所述第一信息指示从第一时间点开始的包括所述第一时间的一段时间内所述转发器能够进行转发;所述方法还包括:
所述网络设备向所述转发器发送第三信息;其中,所述转发器根据所述第三信息从第三时间点开始不转发或者不根据所述第一信息进行转发。
在一些实施例中,所述第一信息还指示所述转发器所使用的转发波束。
在一些实施例中,被指示的所述转发波束为接入(AC)链路上的波束和/或反馈(backhaul)链路上的波束。
在一些实施例中,所述第一信息还指示所述转发器使用默认波束进行转发。
在一些实施例中,所述第一时间包括灵活时间单位,
所述第一信息用于指示所述第一时间中所包括的灵活时间单位为上行时间单位,和/或,所述第一信息用于指示所述第一时间中所包括的灵活时间单位为下行时间单位。
在一些实施例中,所述第一信息为动态信令或者半静态信令。
在一些实施例中,所述第一信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
在一些实施例中,所述第二信息还指示包括所述第一时间的第二时间。
在一些实施例中,所述第二时间为周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
在一些实施例中,所述第二时间为非周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
在一些实施例中,所述第二信息指示从第二时间点开始的包括所述第一时间的一段时间内所述转发器不能够进行转发;所述方法还包括:
所述网络设备向所述转发器发送第四信息;其中,所述转发器根据所述第四信息从第四时间点开始默认不转发。
在一些实施例中,所述第二信息为动态信令或者半静态信令。
在一些实施例中,所述第二信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
以上仅对与本申请相关的各步骤或过程进行了说明,但本申请不限于此。本申请实施例的方法还可以包括其他步骤或者过程,关于这些步骤或者过程的具体内容,可以参考相关技术。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。由此,转发器默认在第一时间为OFF,从而能够减少不必要的干扰,提高整个网络的传输效率;此外在收到第二信息的情况下转发器被指示在第一时间为OFF,从而还能够降低系统功耗和节省能源开销。
第四方面的实施例
本申请实施例提供一种网络设备。
图39是本申请实施例的网络设备的一示意图,由于该网络设备解决问题的原理与第三方面的实施例的方法相同,因此其具体实施可以参照第三方面的实施例,内容相同之处不再重复说明。
如图39所示,本申请实施例的网络设备3900包括:
第一发送单元3901,其向转发器发送第一信息;其中,转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到所述第一信息;以及
第二发送单元3902,其向所述转发器发送用于指示所述转发器在所述第一时间不进行转发的第二信息。
在一些实施例中,网络设备可以向转发器发送转发信号(例如目的地为终端设备,由该转发器转发)和/或通信信号(例如目的地为该转发器),或者,网络设备也可以接收来自转发器的转发信号(例如由终端设备生成并发送,并由该转发器转发)和/或通信信号(例如由该转发器生成并发送)。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的网络设备3900还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图39中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。由此,转发器默认在第一时间为OFF,从而能够减少不必要的干扰,提高整个网络的传输效率;此外在收到第二信息的情况下转发器被指示在第一时间为OFF,从而还能够降低系统功耗和节省能源开销。
第五方面的实施例
本申请实施例提供了一种通信系统,图1是本申请实施例的通信系统的示意图,如图1所示,该通信系统100包括网络设备101、转发器102以及终端设备103,为简单起见,图1仅以一个网络设备、一个转发器以及一个终端设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、 大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。转发器102被配置为执行第一方面的实施例所述的转发器的指示方法,网络设备101被配置为执行第三方面的实施例所述的转发器的指示方法,其内容被合并于此,此处不再赘述。
本申请实施例还提供一种电子设备,该电子设备例如为转发器或者网络设备。
图40是本申请实施例的电子设备的构成示意图。如图40所示,电子设备4000可以包括:处理器4010(例如中央处理器CPU)和存储器4020;存储器4020耦合到处理器4010。其中该存储器4020可存储各种数据;此外还存储信息处理的程序4030,并且在处理器4010的控制下执行该程序4030。
例如,处理器4010可以被配置为执行程序而实现如第一方面的实施例所述的转发器的指示方法。例如,处理器4010可以被配置为进行如下的控制:确定(或默认或被期望)在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
再例如,处理器4010可以被配置为执行程序而实现如第三方面的实施例所述的转发器的指示方法。例如,处理器4010可以被配置为进行如下的控制:向转发器发送第一信息;其中,转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到所述第一信息;以及向所述转发器发送用于指示所述转发器在所述第一时间不进行转发的第二信息。
此外,如图40所示,电子设备4000还可以包括:收发机4040和天线4050等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,电子设备4000也并不是必须要包括图40中所示的所有部件;此外,电子设备4000还可以包括图40中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在转发器中执行所述程序时,所述程序使得计算机在所述转发器中执行第一方面的实施例所述的转发器的指示方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在转发器中执行第一方面的实施例所述的转发器的指示方法。
本申请实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行第三方面的实施例所述的转发器的指示 方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行第三方面的实施例所述的转发器的指示方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这 些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种转发器的指示方法,包括:
转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及
所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
2.一种转发器的指示方法,包括:
转发器被期望(或确定或默认)为关闭(OFF)除非接收到来自网络设备的第一信息;以及
所述转发器接收用于指示所述转发器不进行转发的第二信息。
3.根据附记2所述的方法,其中,所述转发器的转发部件或转发模块被期望为关闭。
4.一种转发器的指示方法,包括:
转发器被期望(或确定或默认)在第一时间处于关闭(OFF)状态除非接收到来自网络设备的第一信息;以及
所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
5.一种转发器的指示方法,包括:
转发器被期望(或确定或默认)为处于第一关闭(OFF)状态除非接收到来自网络设备的第一信息;以及
所述转发器接收用于指示所述转发器在第一时间处于第二关闭(OFF)状态的第二信息。
6.一种转发器的指示方法,包括:
转发器确定(默认或被期望)在第一时间不进行转发;以及
所述转发器接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
7.根据附记1至6任一项所述的方法,其中,所述第一时间被默认为所述转发器不进行转发的一段时间。
8.根据附记1至7任一项所述的方法,其中,所述方法还包括:
所述转发器接收用于指示所述转发器至少在所述第一时间进行转发的第一信息。
9.根据附记8所述的方法,其中,所述方法还包括:
所述转发器根据所述第一信息在所述第一时间进行转发。
10.根据附记8所述的方法,其中,所述第一信息指示从第一时间点开始的包括所述第一时间的一段时间内所述转发器能够进行转发;所述方法还包括:
所述转发器接收第三信息;以及
所述转发器根据所述第三信息从第三时间点开始不转发或者不根据所述第一信息进行转发。
11.根据附记1至10任一项所述的方法,其中,所述转发器在所述第一时间之前未接收到所述第一信息的情况下,在所述第一时间不进行转发。
12.根据附记1至11任一项所述的方法,其中,所述转发器在所述第一时间之前的N个符号和/或M个时隙还未接收到所述第一信息的情况下,在所述第一时间不进行转发;N和M均为大于或等于0的整数。
13.根据附记1至12任一项所述的方法,其中,所述第一信息还指示所述转发器所使用的转发波束。
14.根据附记13所述的方法,其中,被指示的所述转发波束为接入(AC)链路上的波束和/或反馈(backhaul)链路上的波束。
15.根据附记1至12任一项所述的方法,其中,所述第一信息还指示所述转发器使用默认波束进行转发。
16.根据附记1至15任一项所述的方法,其中,所述第一时间包括灵活时间单位,
所述第一信息用于指示所述第一时间中所包括的灵活时间单位为上行时间单位,和/或,所述第一信息用于指示所述第一时间中所包括的灵活时间单位为下行时间单位。
17.根据附记1至16任一项所述的方法,其中,所述第一信息为动态信令或者半静态信令。
18.根据附记17所述的方法,其中,所述第一信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
19.根据附记1至18任一项所述的方法,其中,所述第二信息还指示包括所述 第一时间的第二时间。
20.根据附记19所述的方法,其中,在所述第二时间中,所述转发器不被指示为进行转发,或者,所述转发器不能够进行转发,或者,所述转发器不期望进行转发。
21.根据附记19所述的方法,其中,所述第二时间为周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
22.根据附记19所述的方法,其中,所述第二时间为非周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
23.根据附记19所述的方法,其中,所述第二信息指示从第二时间点开始的包括所述第一时间的一段时间内所述转发器不能够进行转发;所述方法还包括:
所述转发器接收第四信息;以及
所述转发器根据所述第四信息从第四时间点开始默认不转发。
24.根据附记1至23任一项所述的方法,其中,所述第二信息为动态信令或者半静态信令。
25.根据附记24所述的方法,其中,所述第二信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
26.根据附记1至25任一项所述的方法,其中,所述方法还包括:
所述转发器接收优先级大于阈值的信号;以及
在所述第一时间转发所述优先级大于阈值的信号。
27.根据附记26所述的方法,其中,所述第一时间包括高优先级时间单位或者包括特殊时间单位。
28.根据附记1至27任一项所述的方法,其中,所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内进行转发,并根据所述第二信息在所述第二信息所指示的第二时间的剩余时间内不进行转发。
29.根据附记1至27任一项所述的方法,其中,所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内的不与所述第二信息所指示的第二时间重叠的时间内进行转发,并根据所 述第二信息在所述第二时间内不进行转发。
30.根据附记1至27任一项所述的方法,其中,所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,在所述第一信息所指示的第三时间内不进行转发,并根据所述第二信息在所述第二信息所指示的第二时间内不进行转发,所述第二时间与所述第三时间至少部分重叠。
31.根据附记1至27任一项所述的方法,其中,所述转发器在接收到所述第二信息之后接收到所述第一信息的情况下,根据所述第二信息在所述第二信息所指示的第二时间内不进行转发。
32.根据附记1至27任一项所述的方法,其中,所述转发器在接收到所述第二信息之后接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内进行转发,并根据所述第二信息在所述第二信息所指示的第二时间不与所述第三时间重叠的时间内不进行转发,所述第二时间与所述第三时间至少部分重叠。
33.一种转发器的指示方法,包括:
网络设备向转发器发送第一信息;其中,转发器确定(或默认或被期望)在第一时间不进行转发,除非接收到所述第一信息;以及
所述网络设备向所述转发器发送用于指示所述转发器在所述第一时间不进行转发的第二信息。
34.根据附记33所述的方法,其中,所述第一时间被默认为所述转发器不进行转发的一段时间。
35.根据附记33或34所述的方法,其中,所述第一信息指示从第一时间点开始的包括所述第一时间的一段时间内所述转发器能够进行转发;所述方法还包括:
所述网络设备向所述转发器发送第三信息;其中,所述转发器根据所述第三信息从第三时间点开始不转发或者不根据所述第一信息进行转发。
36.根据附记33至35任一项所述的方法,其中,所述第一信息还指示所述转发器所使用的转发波束。
37.根据附记36所述的方法,其中,被指示的所述转发波束为接入(AC)链路上的波束和/或反馈(backhaul)链路上的波束。
38.根据附记33至35任一项所述的方法,其中,所述第一信息还指示所述转发器使用默认波束进行转发。
39.根据附记33至38任一项所述的方法,其中,所述第一时间包括灵活时间单位,
所述第一信息用于指示所述第一时间中所包括的灵活时间单位为上行时间单位,和/或,所述第一信息用于指示所述第一时间中所包括的灵活时间单位为下行时间单位。
40.根据附记33至39任一项所述的方法,其中,所述第一信息为动态信令或者半静态信令。
41.根据附记40所述的方法,其中,所述第一信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
42.根据附记33至41任一项所述的方法,其中,所述第二信息还指示包括所述第一时间的第二时间。
43.根据附记42所述的方法,其中,所述第二时间为周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
44.根据附记42所述的方法,其中,所述第二时间为非周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
45.根据附记33至44任一项所述的方法,其中,所述第二信息指示从第二时间点开始的包括所述第一时间的一段时间内所述转发器不能够进行转发;所述方法还包括:
所述网络设备向所述转发器发送第四信息;其中,所述转发器根据所述第四信息从第四时间点开始默认不转发。
46.根据附记33至45任一项所述的方法,其中,所述第二信息为动态信令或者半静态信令。
47.根据附记46所述的方法,其中,所述第二信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
48.一种转发器,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至32任一项所述的转发器的指示方法。
49.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记33至47任一项所述的转发器的指示方法。

Claims (20)

  1. 一种转发器,包括:
    确定单元,其确定在第一时间不进行转发,除非接收到来自网络设备的第一信息;以及
    接收单元,其接收用于指示所述转发器在所述第一时间不进行转发的第二信息。
  2. 根据权利要求1所述的转发器,其中,所述第一时间被默认为所述转发器不进行转发的一段时间。
  3. 根据权利要求1所述的转发器,其中,所述接收单元还接收用于指示所述转发器至少在所述第一时间进行转发的第一信息。
  4. 根据权利要求1所述的转发器,其中,所述转发器还包括:
    转发单元,其根据所述第一信息在所述第一时间进行转发。
  5. 根据权利要求1所述的转发器,其中,所述第一信息指示从第一时间点开始的包括所述第一时间的一段时间内所述转发器能够进行转发;
    所述接收单元还接收第三信息;以及所述转发器根据所述第三信息从第三时间点开始不转发或者不根据所述第一信息进行转发。
  6. 根据权利要求1所述的转发器,其中,所述转发器在所述第一时间之前未接收到所述第一信息的情况下,在所述第一时间不进行转发。
  7. 根据权利要求1所述的转发器,其中,所述转发器在所述第一时间之前的N个符号和/或M个时隙还未接收到所述第一信息的情况下,在所述第一时间不进行转发;N和M均为大于或等于0的整数。
  8. 根据权利要求1所述的转发器,其中,所述第一信息还指示所述转发器所使用的转发波束;被指示的所述转发波束为接入链路上的波束和/或反馈链路上的波束。
  9. 根据权利要求1所述的转发器,其中,所述第一信息还指示所述转发器使用默认波束进行转发。
  10. 根据权利要求1所述的转发器,其中,所述第一时间包括灵活时间单位,
    所述第一信息用于指示所述第一时间中所包括的灵活时间单位为上行时间单位,和/或,所述第一信息用于指示所述第一时间中所包括的灵活时间单位为下行时间单位。
  11. 根据权利要求1所述的转发器,其中,所述第一信息为动态信令或者半静态信令;所述第一信息由物理下行控制信道和/或介质访问控制控制元素和/或无线资源控制信令承载。
  12. 根据权利要求1所述的转发器,其中,所述第二信息还指示包括所述第一时间的第二时间;在所述第二时间中,所述转发器不被指示为进行转发,或者,所述转发器不能够进行转发,或者,所述转发器不期望进行转发。
  13. 根据权利要求12所述的转发器,其中,所述第二时间为周期性的一段时间;
    所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
  14. 根据权利要求12所述的转发器,其中,所述第二时间为非周期性的一段时间;
    所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
  15. 根据权利要求1所述的转发器,其中,所述第二信息指示从第二时间点开始的包括所述第一时间的一段时间内所述转发器不能够进行转发;
    所述接收单元还接收第四信息;以及所述转发器根据所述第四信息从第四时间点开始默认不转发。
  16. 根据权利要求1所述的转发器,其中,所述第二信息为动态信令或者半静态信令;所述第二信息由物理下行控制信道和/或介质访问控制控制元素和/或无线资源控制信令承载。
  17. 根据权利要求1所述的转发器,其中,
    所述接收单元还接收优先级大于阈值的信号;以及转发器在所述第一时间转发所述优先级大于阈值的信号;其中,所述第一时间包括高优先级时间单位或者包括特殊时间单位。
  18. 根据权利要求1所述的转发器,其中,所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内进行转发,并根据所述第二信息在所述第二信息所指示的第二时间的剩余时间内不进行转发;或者
    所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,根据所述 第一信息在所述第一信息所指示的第三时间内的不与所述第二信息所指示的第二时间重叠的时间内进行转发,并根据所述第二信息在所述第二时间内不进行转发;或者
    所述转发器在接收到所述第二信息之前接收到所述第一信息的情况下,在所述第一信息所指示的第三时间内不进行转发,并根据所述第二信息在所述第二信息所指示的第二时间内不进行转发,所述第二时间与所述第三时间至少部分重叠;或者
    所述转发器在接收到所述第二信息之后接收到所述第一信息的情况下,根据所述第二信息在所述第二信息所指示的第二时间内不进行转发;或者
    所述转发器在接收到所述第二信息之后接收到所述第一信息的情况下,根据所述第一信息在所述第一信息所指示的第三时间内进行转发,并根据所述第二信息在所述第二信息所指示的第二时间不与所述第三时间重叠的时间内不进行转发,所述第二时间与所述第三时间至少部分重叠。
  19. 一种网络设备,包括:
    第一发送单元,其向转发器发送第一信息;其中,转发器确定在第一时间不进行转发,除非接收到所述第一信息;以及
    第二发送单元,其向所述转发器发送用于指示所述转发器在所述第一时间不进行转发的第二信息。
  20. 一种通信系统,包括:
    网络设备,其向转发器发送第一信息和/或第二信息;以及
    转发器,其确定在第一时间不进行转发,除非接收到所述第一信息;以及接收用于指示所述转发器在所述第一时间不进行转发的所述第二信息。
PCT/CN2022/122669 2022-09-29 2022-09-29 转发器的指示方法、转发器和网络设备 WO2024065409A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122669 WO2024065409A1 (zh) 2022-09-29 2022-09-29 转发器的指示方法、转发器和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122669 WO2024065409A1 (zh) 2022-09-29 2022-09-29 转发器的指示方法、转发器和网络设备

Publications (1)

Publication Number Publication Date
WO2024065409A1 true WO2024065409A1 (zh) 2024-04-04

Family

ID=90475256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122669 WO2024065409A1 (zh) 2022-09-29 2022-09-29 转发器的指示方法、转发器和网络设备

Country Status (1)

Country Link
WO (1) WO2024065409A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022140894A1 (zh) * 2020-12-28 2022-07-07 华为技术有限公司 一种中继通信方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022140894A1 (zh) * 2020-12-28 2022-07-07 华为技术有限公司 一种中继通信方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion on Side control information to enable NR network- controlled repeater", 3GPP TSG RAN WG1 #110, R1-2206597, 12 August 2022 (2022-08-12), XP052274529 *
INTEL CORPORATION: "Discussions on L1/L2 signaling for side control information", 3GPP TSG RAN WG1 #110, R1-2206598, 12 August 2022 (2022-08-12), XP052274530 *
SAMSUNG: "L1/L2 signaling for side control information", 3GPP TSG RAN WG1 #110, R1-2206841, 12 August 2022 (2022-08-12), XP052274778 *

Similar Documents

Publication Publication Date Title
US11006435B2 (en) Communication device and method for receiving signals in a frequency range
JP5944592B2 (ja) ワイヤレス機器、無線ネットワークノード、および機器間通信での不連続受信のための方法
EP3837902B1 (en) System and method for control channel reception in power save mode
US11102823B2 (en) Beam configuration of a smart MMW repeater for forwarding RACH message 1
WO2019232808A1 (zh) 无线通信方法和设备
US20240155326A1 (en) Management of default data subscription (dds) in multi-subscriber identity module devices
WO2021237558A1 (en) Managing beam failure recovery updates
WO2024065409A1 (zh) 转发器的指示方法、转发器和网络设备
US11962543B2 (en) Wireless device full duplex cooperative schemes
WO2024065417A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024092819A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024065538A1 (zh) 开关控制方法、信息指示方法、转发器和网络设备
WO2024065410A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024065541A1 (zh) 信息指示方法、转发器和网络设备
WO2024031435A1 (zh) 信息指示方法、转发器和网络设备
CN115280790A (zh) 在ue中支持entv广播模式和单播模式的方法
WO2023236021A1 (zh) 一种通信方法、装置和系统
WO2023092841A1 (zh) 转发器、网络设备及其通信方法
WO2024092836A1 (zh) 信息指示方法、转发器和网络设备
WO2024031509A1 (zh) 转发器及其传输方法、网络设备和通信系统
WO2024065537A1 (zh) 收发信号的方法、装置和通信系统
WO2023029238A1 (zh) 转发器、网络设备及其通信方法
WO2023236022A1 (zh) 一种通信方法、装置和系统
WO2023202350A1 (zh) 数据传输的方法和装置
WO2023028724A1 (zh) 转发器、网络设备及其通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960046

Country of ref document: EP

Kind code of ref document: A1