WO2024031704A1 - 回传链路的波束指示方法、装置及存储介质 - Google Patents

回传链路的波束指示方法、装置及存储介质 Download PDF

Info

Publication number
WO2024031704A1
WO2024031704A1 PCT/CN2022/112304 CN2022112304W WO2024031704A1 WO 2024031704 A1 WO2024031704 A1 WO 2024031704A1 CN 2022112304 W CN2022112304 W CN 2022112304W WO 2024031704 A1 WO2024031704 A1 WO 2024031704A1
Authority
WO
WIPO (PCT)
Prior art keywords
backhaul link
network
indication information
signaling
network control
Prior art date
Application number
PCT/CN2022/112304
Other languages
English (en)
French (fr)
Inventor
刘敏
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/112304 priority Critical patent/WO2024031704A1/zh
Priority to CN202280003154.9A priority patent/CN115516813A/zh
Publication of WO2024031704A1 publication Critical patent/WO2024031704A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a beam indication method, device and storage medium for a backhaul link.
  • the beam configuration of the control link can be indicated for each signal/channel separately, or it can be indicated for multiple channels/signals. In this case, multiple channels can be indicated with the same beam.
  • Downlink reception and uplink transmission such as PUCCH, PUSCH, PDCCH, and PDSCH all use one beam.
  • multiple TCI Transmission Configuration Indicator
  • TCI Transmission Configuration Indicator
  • the present disclosure provides a beam indication method, device and storage medium for a backhaul link.
  • a beam indication method for a backhaul link is provided, which is applied to a network control relay.
  • the method includes:
  • a target beam used by the backhaul link is determined from a plurality of beams configured by the network device for the control link of the network control relay.
  • a beam indication method for a backhaul link is provided, which is applied to a network device.
  • the method includes:
  • a target beam used by the backhaul link is determined among multiple beams configured for a control link of the network control relay.
  • a beam indication device for a backhaul link is provided, which is applied to a network control repeater.
  • the device includes:
  • a receiving module configured to receive signaling sent by the network device for configuring the beam of the backhaul link, where the signaling includes beam indication information;
  • the determining module is configured to determine a target beam used by the backhaul link from a plurality of beams configured by the network device for the control link of the network control relay according to the beam indication information.
  • a beam indication device for a backhaul link is provided, applied to network equipment, and the device includes:
  • a sending module configured to send signaling to the network control relay for configuring the beam of the backhaul link, where the signaling includes beam indication information, so that the network control relay responds to the beam indication.
  • a beam indicating device for a backhaul link including:
  • Memory used to store instructions executable by the processor
  • the processor is configured as:
  • a target beam used by the backhaul link is determined from a plurality of beams configured by the network device for the control link of the network control relay.
  • a beam indicating device for a backhaul link including:
  • Memory used to store instructions executable by the processor
  • the processor is configured as:
  • a target beam used by the backhaul link is determined among multiple beams configured for a control link of the network control relay.
  • a computer-readable storage medium having computer program instructions stored thereon.
  • the program instructions are executed by a processor, the steps of any one of the methods described in the first aspect of the present disclosure are implemented. , or the steps of the method according to any one of the second aspects of the present disclosure.
  • the network control repeater receives the beam indication information in the signaling sent by the network device, and based on the beam indication information, it can quickly and accurately control the beam from the network control repeater.
  • the multiple beams used by the control link for communication between the mobile terminal and the network device determine the beam used by the return link for communication between the transponder in the network control repeater and the network device.
  • the network control repeater does not need to control the multiple beams. Beam-by-beam testing can quickly determine the beam with better backhaul link performance, effectively improving communication efficiency and performance.
  • FIG. 1 is a schematic diagram of a system architecture based on a network control repeater according to an exemplary embodiment.
  • Figure 2 is a flowchart of a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 3 is a flowchart of a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 4 is a flowchart of a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 5 is a flowchart of a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 6 is a flowchart of a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 7 is a flowchart of a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 8 is a flowchart illustrating a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 9 is a flowchart of a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 10 is a flowchart illustrating a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 11 is a flowchart illustrating a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 12 is a flowchart illustrating a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 13 is a flowchart illustrating a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 14 is a flowchart illustrating a beam indication method for a backhaul link according to an exemplary embodiment.
  • Figure 15 is a block diagram of a beam pointing device for a backhaul link according to an exemplary embodiment.
  • Figure 16 is a block diagram of a beam pointing device for a backhaul link according to an exemplary embodiment.
  • Figure 17 is a block diagram of a network control relay according to an exemplary embodiment.
  • Figure 18 is a block diagram of a network device according to an exemplary embodiment.
  • Figure 1 exemplarily shows a schematic diagram of a system architecture based on a network controlled repeater.
  • Network controlled repeater (NCR, Network controlled repeater) can improve system coverage in a low-cost manner.
  • the network The control repeater consists of two parts.
  • the mobile terminal (NCR-MT, Network controlled repeater Mobile termination) part can be used to receive control commands sent by network equipment (such as base stations, high-level network equipment), and the control commands are used to control the repeater ( NCR-Fwd, Network controlled repeater-Forwarding) behavior, that is, the behavior on the backhaul link (backhaul link) and access link (control link), such as beam indication direction, opening and closing of forwarding, etc.
  • NCR-MT Network controlled repeater Mobile termination
  • the backhaul link can be used to communicate between the repeater and the network device, and the access link can be used to communicate between the repeater and the user equipment, thereby enabling the user equipment to control the repeater and network equipment through the network. communication.
  • the network control repeater can also communicate with multiple user devices.
  • the above-mentioned high-level network equipment may include mobility management network elements, session management network elements, user plane network elements, and data network (DN).
  • User equipment can communicate with the DN through base stations and user plane network elements.
  • the above network elements may be network elements in the 4G architecture or the network elements in the 5G architecture.
  • DN provides data transmission services to users
  • PDN Protocol Data Unit
  • IMS IP Multi-media Service
  • Mobility management network elements may include access and mobility management functions (AMF) in 5G.
  • the mobility management network element is responsible for access and mobility management of user equipment and/or network control relays in the mobile network.
  • AMF is responsible for user equipment and/or network control relay access and mobility management, NAS message routing, session management function entity (session management function, SMF) selection, etc.
  • AMF can serve as an intermediate network element to transmit session management messages between user equipment and/or network control relays and SMF.
  • the session management network element is responsible for forwarding path management, such as delivering packet forwarding policies to user plane network elements and instructing user plane network elements to process and forward packets according to the packet forwarding policy.
  • the session management network element can be the SMF in 5G, which is responsible for session management, such as session creation/modification/deletion, user plane network element selection, and allocation and management of user plane tunnel information.
  • the user plane network element can be a user plane function (UPF) in the 5G architecture.
  • UPF user plane function
  • the system architecture provided by the embodiments of the present disclosure may also include a data management network element for processing user equipment and/or network control relay device identification, access authentication, registration, mobility management, etc.
  • the data management network element may be a unified data management (UDM) network element.
  • the system architecture provided by the embodiments of the present disclosure may also include a policy control function entity (policy control function, PCF) or a policy charging control function entity (policy and charging control function, PCRF).
  • policy control function policy control function
  • PCRF policy charging control function entity
  • PCF or PCRF is responsible for policy control decisions and flow-based charging control.
  • the system architecture provided by the embodiments of the present disclosure may also include network storage network elements for maintaining real-time information of all network function services in the network.
  • the network storage network element may be a network repository function (NRF) network element.
  • NRF network repository function
  • Network repository network elements can store a lot of network element information, such as SMF information, UPF information, AMF information, etc.
  • Network elements such as AMF, SMF, and UPF in the network may be connected to the NRF.
  • they can register their own network element information to the NRF.
  • other network elements can obtain the information of already registered network elements from the NRF.
  • Other network elements (such as AMF) can obtain optional network elements by requesting NRF based on network element type, data network identification, unknown area information, etc.
  • the domain name system (DNS) server is integrated in the NRF, then the corresponding selection function network element (such as AMF) can request from the NRF to obtain other network elements to be selected (such as SMF).
  • DNS domain name system
  • the base station in the above network equipment can be used as a specific implementation form of the access network (AN), and can also be called an access node. If it is a wireless access form, it is called a wireless access network (radio access network, RAN), which can provide wireless access services to user equipment and/or network control relays.
  • AN access network
  • RAN wireless access network
  • the access node can be a base station in a global system for mobile communication (GSM) system or a code division multiple access (CDMA) system, or it can be a wideband code division multiple access (wideband code division multiple access)
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • the base station (NodeB) in the access, WCDMA) system can also be the evolutionary node B (eNB or eNodeB) in the LTE system, or the base station equipment, small base station equipment, wireless access node (WiFiAP) in the 5G network ), wireless interoperability for microwave access base station (WiMAX BS), etc. This disclosure is not limited to this.
  • the above user equipment may also be called a terminal, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication equipment, user agent or user device, etc.
  • the user equipment may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), or a device with wireless communication capabilities Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, IoT end devices such as fire detection sensors, smart water/electricity meters, factory monitoring equipment, etc.
  • the above functions can be either network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (e.g., a cloud platform).
  • the indication of beam forming information can indicate the beams on the backhaul link and/or control link in a semi-static manner. Since both the control link and the backhaul link are links between the NCR and the network equipment, at least when the mobile terminal and transponder of the network control relay work in the same frequency band or a similar frequency band, it can be assumed that the control link and The large-scale channel characteristics of the backhaul link are the same, so the beam used on the control link can be assumed to be the beam of the backhaul link.
  • the beam configuration of the control link can be indicated for each signal/channel separately, or it can be indicated for multiple channels/signals. In this case, multiple channels can be indicated with the same beam.
  • Downlink reception and uplink transmission such as PUCCH, PUSCH, PDCCH, and PDSCH all use one beam.
  • TCI Transmission Configuration Indicator
  • multiple TCI states may be configured for the control link of the mobile terminal to indicate multiple beams. In this case, how to make it faster and more efficient? Accurately enabling network control repeaters to determine the optimal beam for their backhaul link applications is an urgent problem to be solved.
  • the network control relay needs to test each beam to determine the beam with the best backhaul link performance, resulting in beam Determined to be inefficient and unable to guarantee the immediacy of communication.
  • embodiments of the present disclosure provide a beam indication method, device and storage medium for a backhaul link.
  • Figure 2 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to a network control repeater. As shown in Figure 2, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link, where the signaling includes beam indication information.
  • the network device may be a base station or a high-level network device.
  • the high-level network device may be, for example, a network device in a core network (such as an access and mobility management entity, etc.).
  • the network control repeater determines the target beam used by the backhaul link from the multiple beams configured by the network device for the control link of the network control repeater according to the beam indication information.
  • the target beam may be a beam with better transmission effect among multiple beams configured for the control link determined by the network device.
  • the beam indication information includes one or more of a beam identifier, a reference signal identifier, beam related information, and a binding relationship between the backhaul link and the target physical channel in the network control relay.
  • the network control repeater may The rate of the target beam is determined based on different information, and the information with the fastest determined rate is selected from the beam indication information to determine the target beam used by the backhaul link.
  • the beam ID (beam ID) and the reference signal ID (RS ID, Reference Signal ID) have a one-to-one correspondence with the multiple beams configured by the network device for the control link of the network control repeater.
  • the target physical channel may be any channel in the control link that the network device communicates with the network control relay, and the target physical channel may be the channel with the best performance detected by the network device.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-location information configured by the network device for the control link.
  • the transmission configuration indication state (TCI-State) sent when the network control relay controls the beam configuration of the link may include a transmission configuration indication state identifier (TCI-StateID) used to uniquely identify the transmission configuration indication state
  • the transmission configuration indication information may be a transmission configuration indication state identifier (TCI-StateID) in the transmission configuration indication.
  • the spatial relationship indication information may include a unique identifier corresponding to a spatial relationship indicator (SRI)
  • the quasi-co-location information may include a unique identifier corresponding to a quasi-co-location (QCL).
  • the transmission configuration indication information may be a transmission configuration indication status
  • the spatial relationship indication information may include a spatial relationship indication
  • the quasi-co-location information may include quasi-co-location, which is not limited in this disclosure.
  • the transmission configuration indication state can include quasi-colocation (QCL), where quasi-colocation can indicate the corresponding spatial reception parameters.
  • QCL quasi-colocation
  • the spatial transmission parameters and spatial reception parameters of the user equipment or network control repeater are the same, and the beam can be determined based on this quasi-colocation.
  • different quasi-colocation types contain different channel characteristics, and two reference signals with QCL relationships have the same channel characteristics.
  • the spatial relationship indicator can include the spatial relationship between the network control repeater and the network device, and then the network control repeater can determine the spatial relationship from multiple beams based on the spatial relationship. The beam corresponding to the relationship.
  • the network device can send any of the transmission configuration indication information, spatial relationship indication information and quasi-colocation information corresponding to the target beam, and the network control repeater can determine the target beam based on the corresponding beam indication information, without the need for Multiple beams configured for the control link are tested one by one, effectively improving the beam determination efficiency of the backhaul link.
  • the signaling used to configure the beam of the backhaul link is RRC signaling sent by the base station, or is the information carried in the OAM (Operation Administration and Maintenance, Operation Management and Maintenance) message sent by the high-level network device. make.
  • OAM Operaation Administration and Maintenance, Operation Management and Maintenance
  • the RRC signaling is sent by the base station in a unicast or multicast manner.
  • the base station can send RRC signaling in a targeted manner.
  • RRC signaling To indicate the beam used by each network control repeater, or the backhaul link of each network control repeater group.
  • the base station sends RRC signaling to the network control relay through unicast or multicast to indicate the beam used by the network control relay's backhaul link.
  • the instructions can be targeted and can effectively ensure Each network controls the performance of the beams used by the repeater backhaul link.
  • the network control repeater receives the beam indication information in the signaling sent by the network device, and based on the beam indication information, the mobile terminal in the network control repeater can quickly and accurately communicate with the network.
  • the multiple beams used by the control link for device communication determine the beam used by the repeater in the network control repeater and the backhaul link for network device communication.
  • the network control repeater does not need to test the multiple beams one by one. That is, the beam with better performance of the backhaul link can be quickly determined, effectively improving the efficiency and performance of communication.
  • Figure 3 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to a network control repeater. As shown in Figure 3, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link.
  • the signaling includes beam indication information; wherein the beam indication information includes a beam identifier or a reference signal identifier.
  • the network control repeater determines the target beam used by the backhaul link according to the reference signal identifier or the beam identifier.
  • control link of the network control repeater can uniquely identify each beam in the multiple beams or the reference signal corresponding to each beam, where the reference signal identification and reference There is a unique corresponding relationship between signals, and there is a unique corresponding relationship between beam identifiers and beams.
  • the network device can be a base station or a high-level network device
  • the signaling can be RRC signaling sent by the base station in a unicast or multicast manner, or it can be signaling carried in an OAM message sent by a high-level network device.
  • the present disclosure implements This example does not limit this.
  • the network control repeater can directly determine the target beam used by the backhaul link indicated by the network device by receiving the beam identifier or reference signal identifier in the signaling sent by the network device.
  • the network control repeater does not need to Testing the multiple beams one by one allows the backhaul link to quickly determine the beam with better performance, effectively improving communication efficiency and performance.
  • Figure 4 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to a network control repeater. As shown in Figure 4, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link.
  • the signaling includes beam indication information; wherein the beam indication information includes beam related information.
  • the network control relay determines the first reference signal identifier in the beam-related information based on the beam-related information.
  • the network control repeater determines the target beam used by the backhaul link according to the first reference signal identifier.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-location information configured by the network device for the control link.
  • the network control relay receives the beam-related information of the signaling sent by the network device and based on the transmission configuration indication information, spatial relationship indication information and/or quasi-co-location information in the beam-related information, the network control relay The device can determine the corresponding transmission configuration indication status, spatial relationship indication, and/or quasi-colocation, and then determine the corresponding reference signal identification based on the transmission configuration indication status, spatial relationship indication, and/or quasi-colocation, that is, the corresponding reference signal identification can be determined based on the transmission configuration indication status, spatial relationship indication, and/or quasi-colocation.
  • the reference signal identification determines the target beam indicated by the network device for the backhaul link of the network control repeater. This allows the backhaul link to quickly determine the beam with better performance without testing multiple beams one by one, which is effective It greatly improves the efficiency and performance of communication.
  • Figure 5 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to a network control repeater. As shown in Figure 5, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link.
  • the signaling includes beam indication information; where the beam indication information includes a beam identifier or a reference signal identifier, or beam related information.
  • the network control repeater determines the target beam used by the backhaul link from the multiple beams configured by the network device for the control link of the network control repeater according to the beam indication information.
  • the network control repeater determines the effective time of the target beam according to the preset duration in the communication protocol or the preset duration configured by the network device.
  • the preset duration is a duration relative to a specific time.
  • the specific time includes the end time when the network control relay receives the PDSCH where the beam indication information is located, and/or the network control relay feeds back the last symbol of the uplink resource of the HARQ-ACK information for the PDSCH including the beam indication information. moment.
  • the network device can be a base station or a high-level network device
  • the signaling can be RRC signaling sent by the base station in a unicast or multicast manner, or it can be signaling carried in an OAM message sent by a high-level network device.
  • the present disclosure implements This example does not limit this.
  • the preset duration may be X unit durations, and the unit duration may be a duration corresponding to a time slot, a duration corresponding to a symbol, or a duration corresponding to a subframe, and this disclosure does not specifically limit it.
  • the end time of the PDSCH where the network control relay receives the signaling of the beam indication information is the time corresponding to slot n
  • the unit duration is the time slot
  • slot represents the time slot
  • n is the number of the time slot
  • the network The effective time of controlling the target beam used by the repeater backhaul link can be the time corresponding to slot n+X, that is, the compression model is enabled at the time corresponding to the time slot numbered n+X.
  • the network equipment repeater can be based on the backhaul using the beam.
  • the link communicates reliably with the network equipment, ensuring the communication quality between the network equipment repeater and the network equipment.
  • Figure 6 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to a network control repeater. As shown in Figure 6, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link.
  • the signaling includes beam indication information; wherein the beam indication information includes the target in the backhaul link and the network control repeater. Physical channel binding relationship.
  • the network control repeater determines the first beam used by the target physical channel from the multiple beams configured by the network device for the control link of the network control repeater according to the binding relationship.
  • the network control repeater uses the first beam as the target beam.
  • the network device can be a base station or a high-level network device
  • the signaling can be RRC signaling sent by the base station in a unicast or multicast manner, or it can be signaling carried in an OAM message sent by a high-level network device.
  • the present disclosure implements This example does not limit this.
  • the target physical channel may be a channel of a control link for communication between the mobile terminal of the network control relay and the network device, and the channel may be a channel with better communication performance determined by the network device.
  • the network control relay may determine the reference signal identifier of the first beam used by the target physical channel according to the binding relationship and determine the target beam according to the reference signal identifier; or, it may According to the beam identifier of the beam used by the physical channel, the target beam is determined according to the beam identifier.
  • the network control repeater receives the binding relationship between the backhaul link in the beam information sent by the network device and the target physical channel in the network control repeater, and determines the binding relationship with the backhaul link based on the binding relationship.
  • the backhaul link can quickly determine the beam with better performance without testing multiple beams one by one, effectively improving the efficiency and performance of communication.
  • Figure 7 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to a network control repeater. As shown in Figure 7, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link.
  • the signaling includes beam indication information; wherein the beam indication information includes the target in the backhaul link and the network control repeater. Physical channel binding relationship.
  • the network control repeater determines the first beam used by the target physical channel from the multiple beams configured by the network device for the control link of the network control repeater according to the binding relationship.
  • the network control repeater uses the first beam as the target beam.
  • the network control repeater determines the first time to apply the first beam to the target physical channel
  • the network control relay determines the first time as the effective time for the target beam used by the backhaul link.
  • the network device can be a base station or a high-level network device
  • the signaling can be RRC signaling sent by the base station in a unicast or multicast manner, or it can be signaling carried in an OAM message sent by a high-level network device.
  • the present disclosure implements This example does not limit this.
  • the first beam used by the target physical channel may be a beam that the target physical channel will use but has not yet started to use.
  • the effective time of the target beam determined by the backhaul link and the binding relationship with the backhaul link uses the corresponding first beam at the same time, which can effectively ensure the reliability of communication between the network control repeater and the network equipment through the backhaul link.
  • Figure 8 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment, which is applied to a network control repeater. As shown in Figure 8, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link, where the signaling includes beam indication information.
  • the network control repeater determines the target beam used by the backhaul link from the multiple beams configured by the network device for the control link of the network control repeater according to the beam indication information.
  • the network control relay determines the beam used by the backhaul link before receiving signaling and/or before the target beam takes effect according to predefined rules.
  • the network device can be a base station or a high-level network device
  • the signaling can be RRC signaling sent by the base station in a unicast or multicast manner, or it can be signaling carried in an OAM message sent by a high-level network device.
  • the present disclosure implements This example does not limit this.
  • the beam indication information includes one or more of a beam identifier, a reference signal identifier, beam related information, and a binding relationship between the backhaul link and the target physical channel in the network control relay.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-location information configured by the network device for the control link.
  • the beams used by the backhaul link determined based on the predefined rules before the signaling is received and/or before the target beam takes effect may be multiple configurations configured by the network device for the control link of the network control repeater.
  • the beam other than the beams may also be one of the plurality of beams.
  • the predefined rules may be pre-configured in the network control relay, or may be sent to the network control relay through a network device. The embodiments of the present disclosure do not specifically limit this.
  • the backhaul link can still effectively communicate based on the beam determined by the predefined rules, ensuring the robustness of the communication between the network control repeater and the network device.
  • Figure 9 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment, which is applied to a network control repeater. As shown in Figure 9, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link, where the signaling includes beam indication information.
  • the network control repeater determines the target beam used by the backhaul link from the multiple beams configured by the network device for the control link of the network control repeater according to the beam indication information.
  • the network control relay determines the second beam used by the backhaul link before receiving the signaling according to the first predefined rule.
  • the network control relay determines the third beam used by the backhaul link before the target beam takes effect according to the second predefined rule.
  • the network device can be a base station or a high-level network device
  • the signaling can be RRC signaling sent by the base station in a unicast or multicast manner, or it can be signaling carried in an OAM message sent by a high-level network device.
  • the present disclosure implements This example does not limit this.
  • the beam indication information includes one or more of a beam identifier, a reference signal identifier, beam related information, and a binding relationship between the backhaul link and the target physical channel in the network control relay.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-location information configured by the network device for the control link.
  • the first predefined rule corresponding before the signaling is received and the second predefined rule corresponding before the target beam takes effect may be the same or different.
  • the second beam determined based on the first predefined rule is the same as the second predefined rule determined based on the first predefined rule.
  • the third beam determined by the second predefined rule may be the same beam or a different beam.
  • the beam used by the backhaul link before the signaling is received and the beam used before the target beam takes effect are determined according to the first predefined rule and the second predefined rule respectively, which can ensure that the network control repeater receives
  • the beams used before signaling and the beams used before the target beam takes effect can have good communication performance, effectively ensuring the communication quality between the transponder of the network control equipment and the network equipment.
  • Figure 10 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to a network control repeater. As shown in Figure 10, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link, where the signaling includes beam indication information.
  • the network control repeater determines the target beam used by the backhaul link from the multiple beams configured by the network device for the control link of the network control repeater according to the beam indication information.
  • the network control repeater uses the beam preconfigured by the base station or the high-level network device as the beam used by the backhaul link before receiving the signaling.
  • the network device may be a base station or a high-level network device.
  • the signaling used to configure the beam of the backhaul link may be RRC signaling sent by the base station in a unicast or multicast manner, or may be sent by a high-level network device.
  • the embodiment of the present disclosure does not limit the signaling carried by the OAM message.
  • the beam indication information includes one or more of a beam identifier, a reference signal identifier, beam related information, and a binding relationship between the backhaul link and the target physical channel in the network control relay.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-location information configured by the network device for the control link.
  • the beams preconfigured by the base station or preconfigured by the high-level network equipment may be other signals received by the network relay controller before the network control relay receives the signaling for configuring the beams of the backhaul link.
  • Let the indicated beam be a beam outside the multiple beams configured by the network device for the control link of the network control relay, or it may be one beam among the multiple beams.
  • the first predefined rule in the above embodiment may include using the beam preconfigured by the base station, or the beam preconfigured by the high-level network device as the beam used by the backhaul link before receiving the signaling, that is, the beam
  • the second beam is a beam preconfigured by the base station or preconfigured by a high-level network device.
  • the beam preconfigured by the base station or higher-level network equipment is used as the beam used by the backhaul link before receiving the signaling. It can be used to configure the backhaul link after receiving the signal sent by the network device. Before the signaling of the beam, the beams used by the network control repeater can have good communication performance, effectively ensuring the communication quality between the repeater of the network control equipment and the network equipment.
  • Figure 11 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to a network control repeater. As shown in Figure 11, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link, where the signaling includes beam indication information.
  • the network control repeater determines the target beam used by the backhaul link from the multiple beams configured by the network device for the control link of the network control repeater according to the beam indication information.
  • the network control repeater uses the beam preconfigured by the base station or the high-level network device as the beam used by the backhaul link before the target beam takes effect.
  • the network device may be a base station or a high-level network device.
  • the signaling used to configure the beam of the backhaul link may be RRC signaling sent by the base station in a unicast or multicast manner, or may be sent by a high-level network device.
  • the embodiment of the present disclosure does not limit the signaling carried by the OAM message.
  • the beam indication information includes one or more of a beam identifier, a reference signal identifier, beam related information, and a binding relationship between the backhaul link and the target physical channel in the network control relay.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-location information configured by the network device for the control link.
  • the beams preconfigured by the base station or preconfigured by the high-level network equipment may be other signals received by the network relay controller before the network control relay receives the signaling for configuring the beams of the backhaul link.
  • Let the indicated beam be a beam outside the multiple beams configured by the network device for the control link of the network control relay, or it may be one beam among the multiple beams.
  • the second predefined rule in the above embodiment may include using the beam preconfigured by the base station, or the beam preconfigured by the high-level network device as the beam used by the backhaul link before receiving the signaling, that is, the first The three beams are beams preconfigured by the base station or preconfigured by high-level network equipment.
  • the beams preconfigured by the base station or higher-level network equipment may be the same or different. That is to say, the second beam and the third beam may be The same beam can also be different beams.
  • the beams preconfigured by the base station or high-level network equipment are used as the beams used by the backhaul link before the target beam takes effect.
  • the beams used by the network control repeater can all be used. It can have good communication performance and effectively ensure the communication quality between the transponder of the network control equipment and the network equipment.
  • Figure 12 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to a network control repeater. As shown in Figure 12, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link, where the signaling includes beam indication information.
  • the network control repeater determines the target beam used by the backhaul link from the multiple beams configured by the network device for the control link of the network control repeater according to the beam indication information.
  • the network control repeater keeps the beam currently used by the backhaul link as the beam used by the backhaul link before receiving the signaling.
  • the network device may be a base station or a high-level network device.
  • the signaling used to configure the beam of the backhaul link may be RRC signaling sent by the base station in a unicast or multicast manner, or may be sent by a high-level network device.
  • the embodiment of the present disclosure does not limit the signaling carried by the OAM message.
  • the beam indication information includes one or more of a beam identifier, a reference signal identifier, beam related information, and a binding relationship between the backhaul link and the target physical channel in the network control relay.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-location information configured by the network device for the control link.
  • the second predefined rule in the above embodiment may also include maintaining the beam currently used by the backhaul link as the beam used by the backhaul link before the signaling is received.
  • the beam may be the network control repeater backhaul. The default beam used by the link, or the beam indicated by the network device before receiving the signaling to configure the beam for the backhaul link.
  • the network control repeater keeps the beam currently used by the backhaul link as the beam used by the backhaul link before receiving the signaling, and can be configured after receiving the configuration sent by the network device. Before the signaling of the beams of the backhaul link, the beams used by the network control repeaters can have good communication performance, effectively ensuring the communication quality between the repeaters of the network control equipment and the network equipment.
  • Figure 13 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to a network control repeater. As shown in Figure 13, the method includes:
  • the network control relay receives signaling sent by the network device for configuring the beam of the backhaul link, where the signaling includes beam indication information.
  • the network control repeater determines the target beam used by the backhaul link from the multiple beams configured by the network device for the control link of the network control repeater according to the beam indication information.
  • the network control repeater determines that the target beam includes a unique beam, it performs uplink transmission and downlink reception according to the target beam.
  • the network device may be a base station or a high-level network device.
  • the above-mentioned signaling used to configure the beam of the backhaul link may be RRC signaling sent by the base station through unicast or multicast, or may be sent by a high-level network device.
  • the embodiment of the present disclosure does not limit the signaling carried by the OAM message.
  • the beam indication information includes one or more of a beam identifier, a reference signal identifier, beam related information, and a binding relationship between the backhaul link and the target physical channel in the network control relay.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-location information configured by the network device for the control link.
  • the signaling sent by the network device for configuring the beam of the backhaul link may indicate one or two target beams for use by the backhaul link of the network control repeater.
  • the network control relay when determining that the target beam includes two beams, performs downlink reception based on the first target beam among the target beams, and performs uplink transmission based on the second target beam.
  • the first target beam and the second target beam may be randomly selected by the network relay controller from the two beams included in the target beam, or may be selected according to preset rules, which is not limited in this disclosure.
  • the backhaul link of the network control repeater can simultaneously perform uplink transmission and transmission based on the beam.
  • the signaling sent by the network device to configure the beam of the backhaul link indicates two beams
  • the two beams can be used for uplink transmission and downlink reception respectively, which can further improve network control.
  • Figure 14 is a flow chart of a beam indication method for a backhaul link according to an exemplary embodiment. It is applied to network equipment. As shown in Figure 14, the method includes:
  • the network device sends signaling for configuring the beam of the backhaul link to the network control relay.
  • the signaling includes beam indication information, so that the network control relay sends the signal from the network device to the network control center based on the beam indication information.
  • the network device may be a base station or a high-level network device
  • the target beam may be a predetermined communication performance of the network device based on the communication quality of multiple beams communicating with the control link of the network control repeater. beam.
  • the beam indication information in the signaling sent by the network device to the network control relay for configuring the beam of the backhaul link may indicate one or two beams.
  • the The network control repeater can use the beam for uplink transmission and downlink reception.
  • the network control repeater can use the two beams for uplink transmission and downlink reception respectively.
  • the signaling for configuring the beam of the backhaul link may be sent by the base station, or may be sent by a higher layer network device. Specifically, it may be RRC signaling sent by the base station, or may be sent by a higher layer network device. Signaling carried in OAM messages sent by network devices.
  • the RRC signaling used to configure the beam of the backhaul link may be sent by the base station in a unicast or multicast manner.
  • the beam indication information includes one or more of a beam identifier, a reference signal identifier, beam related information, and a binding relationship between the backhaul link and the target physical channel in the network control relay.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-location information configured by the network device for the control link.
  • the network control repeater can determine the number of nodes configured from the network device for the control link of the network control repeater in a corresponding manner based on the information included in the beam indication information. Determine the target beam used by the backhaul link among the beams. And, based on the information included in the beam indication information, the effective time of the target beam is determined.
  • the network relay controller can also determine, according to predefined rules, that the backhaul link of the network relay controller receives the configuration sent by the network device.
  • the network device sends signaling for configuring the beam of the backhaul link to the network control relay, so that the network control relay can directly base on the beam indication information in the signaling, Select the beam with better performance from the multiple beams pre-configured by the network device for the control link, so that the network control repeater does not need to test the multiple beams one by one, so that the backhaul link can quickly determine the better performance.
  • Good beams effectively improve communication efficiency and performance.
  • the foregoing multiple embodiments executed by the network control relay and the multiple embodiments executed by the network device correspond to each other, so corresponding steps may only be described on one side. , and the other side must perform the corresponding operation.
  • the network device broadcasts or sends signaling for configuring the beam of the backhaul link to the network control relay through unicast or multicast; then the terminal will inevitably receive the signal through the corresponding method. signaling.
  • Figure 15 is a block diagram of a beam indicating device for a backhaul link according to an exemplary embodiment, which is applied to a network control repeater. As shown in Figure 15, the device 1500 includes:
  • the receiving module 1501 is configured to receive signaling sent by the network device for configuring the beam of the backhaul link, where the signaling includes beam indication information;
  • the determining module 1502 is configured to determine a target beam used by the backhaul link from a plurality of beams configured by the network device for the control link of the network control relay according to the beam indication information.
  • the beam indication information includes one or more of a beam identifier, a reference signal identifier, beam related information, and a binding relationship between the backhaul link and the target physical channel in the network control relay.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-location information configured by the network device for the control link.
  • the beam indication information includes a beam identifier or a reference signal identifier
  • the device 1500 also includes: a first determining module configured to:
  • the target beam used by the backhaul link is determined according to the reference signal identification or beam identification.
  • the beam indication information includes beam related information
  • the device 1500 also includes: a second determination module configured to:
  • the target beam used by the backhaul link is determined.
  • the device 1500 also includes:
  • the first time determination module is configured to determine the effective time of the target beam according to the preset time length in the communication protocol or the preset time length configured by the network device, and the preset time length is the time length relative to a specific time;
  • the specific time includes the end time when the network control relay receives the PDSCH where the beam indication information is located, and/or the time when the network control relay feeds back the last symbol of the uplink resource of the HARQ-ACK information for the PDSCH including the beam indication information. .
  • the beam indication information includes binding relationships
  • the device 1500 also includes: a third determination module configured as:
  • device 1500 includes:
  • a second time determination module configured to determine a first time for applying the first beam to the target physical channel
  • the third time determination module is configured to determine the first time as the effective time for the backhaul link to use the target beam.
  • the device 1500 includes a fourth determination module configured to:
  • the beam used by the backhaul link is determined according to predefined rules before signaling is received and/or before the target beam becomes effective.
  • the predefined rules include a first predefined rule and a second predefined rule
  • the fourth determination module is specifically configured as:
  • a third beam used by the backhaul link before the target beam takes effect is determined according to the second predefined rule.
  • the fourth determination module is specifically configured as:
  • the beams preconfigured by the base station or preconfigured by higher-level network equipment are used as beams used by the backhaul link before signaling is received.
  • the fourth determination module is specifically configured as:
  • the fourth determination module is specifically configured as:
  • the beam currently used by the backhaul link is maintained as the beam used by the backhaul link before the signaling was received.
  • the signaling used to configure the beam of the backhaul link is RRC signaling sent by the base station, or signaling carried in the OAM message sent by the high-level network device.
  • the RRC signaling is sent by the base station in a unicast or multicast manner.
  • device 1500 includes:
  • the fifth determination module is configured to perform uplink transmission and downlink reception according to the target beam when it is determined that the target beam includes a unique beam;
  • the sixth determination module is configured to perform downlink reception based on the first target beam among the target beams and perform uplink transmission based on the second target beam when it is determined that the target beam includes two beams.
  • Figure 16 is a block diagram of a beam indication device for a backhaul link according to an exemplary embodiment, which is applied to network equipment. As shown in Figure 16, the device 1600 includes:
  • the sending module 1601 is configured to send signaling to the network control relay for configuring the beam of the backhaul link.
  • the signaling includes beam indication information, so that the network control relay receives the signal from the network device according to the beam indication information. Determine the target beam used by the backhaul link from among multiple beams configured for the control link of the network control repeater.
  • the device 1600 may be a base station or a high-level network device, and the target beam may be a predetermined communication performance of the device 1600 based on the communication quality of multiple beams communicating with the control link of the network control repeater. beam.
  • the beam indication information in the signaling for configuring the beam of the backhaul link sent by the device 1600 to the network control relay may indicate one or two beams. In the case of indicating only one beam, the The network control repeater can use the beam for uplink transmission and downlink reception. When two beams are indicated, the network control repeater can use the two beams for uplink transmission and downlink reception respectively.
  • the signaling for configuring the beam of the backhaul link may be sent by the base station, or may be sent by a higher layer network device. Specifically, it may be RRC signaling sent by the base station, or may be sent by a higher layer network device. Signaling carried in OAM messages sent by network devices.
  • the RRC signaling used to configure the beam of the backhaul link may be sent by the base station in a unicast or multicast manner.
  • the beam indication information includes one or more of a beam identifier, a reference signal identifier, beam related information, and a binding relationship between the backhaul link and the target physical channel in the network control relay.
  • the beam-related information includes one or more of transmission configuration indication information, spatial relationship indication information, and quasi-co-located information.
  • the network control repeater can determine the number of nodes configured from the network device for the control link of the network control repeater in a corresponding manner based on the information included in the beam indication information. Determine the target beam used by the backhaul link among the beams. And, based on the information included in the beam indication information, the effective time of the target beam is determined.
  • the network relay controller can also determine, according to predefined rules, that the backhaul link of the network relay controller receives the configuration sent by the network device.
  • the present disclosure also provides a computer-readable storage medium on which computer program instructions are stored.
  • the program instructions are executed by a processor, the beam indicating method for the backhaul link provided by any of the foregoing method embodiments provided by the present disclosure is implemented. step.
  • Figure 17 is a block diagram of a network control relay 1700 according to an exemplary embodiment.
  • the network control repeater 1700 may include one or more of the following components: a processing component 1702, a memory 1704, a power component 1706, a multimedia component 1708, an audio component 1710, an input/output (I/O) interface 1712, Sensor component 1714, and communications component 1716.
  • the processing component 1702 generally controls the overall operations of the network control relay 1700, such as operations associated with displays, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1702 may include one or more processors 1720 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1702 may include one or more modules that facilitate interaction between processing component 1702 and other components. For example, processing component 1702 may include a multimedia module to facilitate interaction between multimedia component 1708 and processing component 1702.
  • Memory 1704 is configured to store various types of data to support operations at network control repeater 1700. Examples of such data include instructions for any application or method operating on the network control relay 1700, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1704 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 1706 provides power to the various components of network control repeater 1700.
  • Power components 1706 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to network control repeater 1700.
  • Multimedia component 1708 includes a screen that provides an output interface between the network control repeater 1700 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 1708 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1710 is configured to output and/or input audio signals.
  • audio component 1710 includes a microphone (MIC) configured to receive external audio signals when network control repeater 1700 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 1704 or sent via communication component 1716 .
  • audio component 1710 also includes a speaker for outputting audio signals.
  • the I/O interface 1712 provides an interface between the processing component 1702 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 1714 includes one or more sensors that provide various aspects of status assessment for network control relay 1700 .
  • the sensor component 1714 can detect the on/off status of the network control repeater 1700, the relative positioning of components, such as the display and keypad of the network control repeater 1700, and the sensor component 1714 can also detect the network control repeater 1700. Change of position of a component of Repeater 1700 or Network Control Repeater 1700 , presence or absence of user contact with Network Control Repeater 1700 , Network Control Repeater 1700 orientation or acceleration/deceleration and Network Control Repeater 1700 temperature changes.
  • Sensor assembly 1714 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1714 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communications component 1716 is configured to facilitate wired or wireless communications between network control repeater 1700 and other devices.
  • the network control repeater 1700 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1716 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 1716 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the network control repeater 1700 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) , Field Programmable Gate Array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1704 including instructions, which can be executed by the processor 1720 of the network control relay 1700 to complete the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • the code part of the beam indication method of the backhaul link is also provided, the computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • FIG 18 is a block diagram of a network device according to an exemplary embodiment.
  • the network device 1800 may be provided as a base station or as other network logical entities in a core network.
  • network device 1800 includes a processing component 1822, which further includes one or more processors, and memory resources represented by memory 1832 for storing instructions, such as application programs, executable by processing component 1822.
  • the application program stored in memory 1832 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 1822 is configured to execute instructions to perform the steps of the beam pointing method for the backhaul link provided by the above method embodiment.
  • Network device 1800 may also include a power supply component 1826 configured to perform power management of device 1800, a wired or wireless network interface 1850 configured to connect network device 1800 to a network, and an input-output (I/O) interface 1858.
  • Network device 1800 may operate based on an operating system stored in memory 1832, such as Windows Server TM , Mac OS X TM , Unix TM , Linux TM , FreeBSD TM or the like.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • the code part of the beam indication method of the backhaul link is also provided, the computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.

Abstract

一种回传链路的波束指示方法、装置及存储介质。该方法包括:接收网络设备发送的用于配置回传链路的波束的信令,所述信令包括波束指示信息;据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。网络控制中继器通过接收网络设备发送的信令中的波束指示信息,根据该波束指示信息即可以快速、准确地从网络控制中继器中的移动终端与网络设备通信的控制链路使用的多个波束中,确定网络控制中继器中的转发器与网络设备通信的回传链路使用的波束,网络控制中继器无需对该多个波束一一测试即可以快速地确定回传链路性能较好的波束,有效地提高了通信的效率与性能。

Description

回传链路的波束指示方法、装置及存储介质 技术领域
本公开涉及通信领域,尤其涉及一种回传链路的波束指示方法、装置及存储介质。
背景技术
在相关技术中,对于控制链路的波束配置可以是分别针对每个信号/信道进行指示的,也可以是针对多个信道/信号指示的,此时多个信道可以用同一个波束进行指示,下行接收和上行发送比如PUCCH、PUSCH、PDCCH、PDSCH都统一使用一个波束。这样,在进行控制链路波束配置时,可能为移动终端的控制链路配置多个TCI(传输配置指示,Transmission Configuration Indicator)状态以指示多个波束。在此种情况下,如何更加快速、准确地使得网络控制中继器确定其回传链路应用的最优波束是亟待解决的问题。
发明内容
为克服相关技术中存在的问题,本公开提供一种回传链路的波束指示方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种回传链路的波束指示方法,应用于网络控制中继器,所述方法包括:
接收网络设备发送的用于配置回传链路的波束的信令,所述信令包括波束指示信息;
根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
根据本公开实施例的第二方面,提供一种回传链路的波束指示方法,应用于网络设备,所述方法包括:
向网络控制中继器发送用于配置回传链路的波束的信令,所述信令包括波束指示信息,以使得所述网络控制中继器根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
根据本公开实施例的第三方面,提供一种回传链路的波束指示装置,应用于网络控制中继器,所述装置包括:
接收模块,被配置为接收网络设备发送的用于配置回传链路的波束的信令,所述信令包括波束指示信息;
确定模块,被配置为根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
根据本公开实施例的第四方面,提供一种回传链路的波束指示装置,应用于网络设备,所述装置包括:
发送模块,被配置为向网络控制中继器发送的用于配置回传链路的波束的信令,所述信令包括波束指示信息,以使得所述网络控制中继器根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
根据本公开实施例的第五方面,提供一种回传链路的波束指示装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收网络设备发送的用于配置回传链路的波束的信令,所述信令包括波束指示信息;
根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
根据本公开实施例的第六方面,提供一种回传链路的波束指示装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
向网络控制中继器发送用于配置回传链路的波束的信令,所述信令包括波束指示信息,以使得所述网络控制中继器根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开第一方面中任一项所述方法的步骤,或者,本公开第二方面中任一项所述方法的步骤。
本公开的实施例提供的技术方案中,网络控制中继器通过接收网络设备发送的信令中的波束指示信息,并根据该波束指示信息即可以快速、准确地从网络控制中继器中的移动终端与网络设备通信的控制链路使用的多个波束中,确定网络控制中继器中的转发器与网络设备通信的回传链路使用的波束,网络控制中继器无需对该多个波束一一测试即可以快速地确定回传链路性能较好的波束,有效地提高了通信的效率与性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据一示例性实施例示出的一种基于网络控制中继器的系统架构的示意图。
图2是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图3是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图4是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图5是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图6是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图7是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图8是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图9是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图10是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图11是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图12是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图13是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图14是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图。
图15是根据一示例性实施例示出的一种回传链路的波束指示装置的框图。
图16是根据一示例性实施例示出的一种回传链路的波束指示装置的框图。
图17是根据一示例性实施例示出的一种网络控制中继器的框图。
图18是根据一示例性实施例示出的一种网络设备的框图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面首先介绍本公开实施例的实施环境:
图1示例性示出了一种基于网络控制中继器的系统架构的示意图,网络控制中继器(NCR,Network controlled repeater)可以以低成本的方式提高系统覆盖,如图1所示,网络控制中继器由两部分组成,移动终端(NCR-MT,Network controlled repeater Mobile termination)部分可以用来接收网络设备(例如基站、高层网络设备)发送的控制命令,控制命令用于控制转发器(NCR-Fwd,Network controlled repeater-Forwarding)的行为,即回传链路(backhaul link)和接入链路(control link)上的行为,比如波束指示方向、转发的开启和关闭等。其中,参照图1,回传链路可以用于转发器与网络设备通信,接入链路可以用于转发器与用户设备通信,进而使得用户设备能够通过该网络控制中继器与网络设备进行通信。可以理解的是,该网络控制中继器还可以与多个用户设备通信。
具体地,上述高层网络设备可以包括移动性管理网元、会话管理网元、用户面网元以及数据网络(data network,DN)。用户设备可以通过基站以及用户面网元与DN通信。
上述网元既可以是4G架构中的网元、还可以是5G架构中的网元。
数据网络(data network,DN),为用户提供数据传输服务,可以是协议数据单元(Protocol Data Unit,PDN)网络,如因特网(internet)、IP多媒体业务(IP Multi-media Service,IMS)等。
移动性管理网元可以包括是5G中的接入与移动性管理实体(access and mobility management function,AMF)。移动性管理网元负责移动网络中用户设备和/或网络控制中继器的接入与移动性管理。其中,AMF负责用户设备和/或网络控制中继器接入与移动性管理,NAS消息路由,会话管理功能实体(session management function,SMF)选择等。AMF可以作为中间网元,用来传输用户设备和/或网络控制中继器和SMF之间的会话管理消息。
会话管理网元,负责转发路径管理,如向用户面网元下发报文转发策略,指示用户面网元根据报文转发策略进行报文处理和转发。会话管理网元可以是5G中的SMF,负责会话管理,如会话创建/修改/删除,用户面网元选择以及用户面隧道信息的分配和管理等。
用户面网元可以是5G架构中的用户面功能实体(user plane function,UPF)。UPF负责报文处理与转发。
本公开实施例提供的系统架构中还可以包括数据管理网元,用于处理用户设备和/或网络控制中继器设备标识,接入鉴权,注册以及移动性管理等。在5G通信系统中,该数据管理网元可以是统一数据管理(unified data management,UDM)网元。
本公开实施例提供的系统架构中还可以包括策略控制功能实体(policy control function,PCF)或者为策略计费控制功能实体(policy and charging control function,PCRF)。其中,PCF 或者PCRF负责策略控制决策和基于流计费控制。
本公开实施例提供的系统架构中还可以包括网络存储网元,用于维护网络中所有网络功能服务的实时信息。在5G通信系统中,该网络存储网元可以是网络存储库功能(network repository function,NRF)网元。网络存储库网元中可以存储了很多网元的信息,比如SMF的信息,UPF的信息,AMF的信息等。网络中AMF、SMF、UPF等网元都可能与NRF相连,一方面可以将自身的网元信息注册到NRF,另一方面其他网元可以从NRF中获得已经注册过的网元的信息。其他网元(比如AMF)可以根据网元类型、数据网络标识、未知区域信息等,通过向NRF请求获得可选的网元。如果域名系统(domain name system,DNS)服务器集成在NRF,那么相应的选择功能网元(比如AMF)可以向NRF请求获得要选择的其他网元(比如SMF)。
上述网络设备中的基站可以作为接入网络(access network,AN)的一个具体实现形式,还可以称为接入节点,如果是无线接入的形式,称为无线接入网(radio access network,RAN),可以为用户设备和/或网络控制中继器提供无线接入服务。接入节点具体可以是全球移动通信(global system for mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)系统中的基站,也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB),还可以是LTE系统中的演进型基站(evolutional node B,eNB或eNodeB),或者是5G网络中的基站设备、小基站设备、无线访问节点(WiFiAP)、无线互通微波接入基站(worldwide interoperability for microwave access base station,WiMAX BS)等,本公开对此并不限定。
上述用户设备(user equipment,UE),也可称为终端、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置等。用户设备可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、物联网终端设备,比如火灾检测传感器、智能水表/电表、工厂监控设备等等。
上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
基于以上的系统架构,波束赋型信息的指示可以通过半静态的方式对回传链路和/或控制链路上的波束进行指示。由于控制链路和回传链路都是NCR和网络设备之间的链路, 因此至少网络控制中继器的移动终端和转发器工作在相同频段或者相近频段的时候,可以假设控制链路和回传链路的大尺度信道特性是相同的,因此在控制链路上使用的波束可以假设为回传链路的波束。
在相关技术中,对于控制链路的波束配置可以是分别针对每个信号/信道进行指示的,也可以是针对多个信道/信号指示的,此时多个信道可以用同一个波束进行指示,下行接收和上行发送比如PUCCH、PUSCH、PDCCH、PDSCH都统一使用一个波束。这样,在进行控制链路波束配置时,可能为移动终端的控制链路配置多个TCI(传输配置指示,Transmission Configuration Indicator)状态以指示多个波束,而在此种情况下,如何更加快速、准确地使得网络控制中继器确定其回传链路应用的最优波束是亟待解决的问题。
具体地,在相关技术中,对于为移动终端的控制链路配置多个波束的情况下,网络控制中继器需要对每一波束进行测试以确定回传链路性能最好的波束,导致波束确定效率低下,无法保证通信的即时性。
为了解决相关技术中存在的问题,本公开实施例提供一种回传链路的波束指示方法、装置及存储介质。
图2是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图2所示,方法包括:
S201、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息。
其中,网络设备可以是基站,也可以是高层网络设备,该高层网络设备例如可以是核心网中的网络设备(例如接入与移动性管理实体等)。
S202、网络控制中继器根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
其中,该目标波束可以是网络设备确定的为控制链路配置的多个波束中的传输效果较好的波束。
在一示例中,波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的一者或多者。
其中,在波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的多者的情况下,网络控制中继器可以根据不同信息确定目标波束的速率,从波束指示信息中选取确定速率最快的信息用于确定回传链路使用的目标波束。
其中,波束标识(beam ID)以及参考信号标识(RS ID,Reference Signal ID),与网络设备为网络控制中继器的控制链路配置的多个波束存在一一对应的关系。目标物理信道可以是网络设备与网络控制中继器通信的控制链路中任意一个信道,该目标物理信道可以是网络设备检测到的性能最好的信道。
在一示例中,波束相关信息包括网络设备为控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
其中,网络控制中继器的控制链路配置的波束时发送的传输配置指示状态(TCI-State)中可以包括用于唯一标识该传输配置指示状态的传输配置指示状态标识(TCI-StateID),传输配置指示信息可以是传输配置指示中的传输配置指示状态标识(TCI-StateID)。同理,空间关系指示信息可以包括空间关系指示(SRI,spatial relation indicator)对应的唯一标识,准同址信息可以包括准同址(QCL,quasi-co-location)对应的唯一标识。
或者,传输配置指示信息可以是传输配置指示状态,空间关系指示信息可以包括空间关系指示,准同址信息可以包括准同址,本公开对此不作限定。
值得说明的是,传输配置指示状态(TCI-State)中,可以包括准同址(QCL),其中,准同址可以指示对应的空间接收参数,在假设波束对应(beam correspondence)的情况下,用户设备或者网络控制中继器的空间发送参数和空间接收参数是相同的,进而可以基于该准同址确定波束。另外,不同的准同址类型(QCL type)所包含的信道特性不同,具有QCL关系的两个参考信号具有相同的信道特性。
此外,空间关系指示(SRI,spatial relation indicator)中可以包括网络控制中继器与网络设备之间的空间关系,进而该网络控制中继器可以根据该空间关系从多个波束中确定与该空间关系对应的波束。
采用上述方案,网络设备可以通过发送目标波束对应的传输配置指示信息、空间关系指示信息以及准同址信息任意一个,网络控制中继器即可基于对应的波束指示信息确定该目标波束,无需对为控制链路配置的多个波束一一测试,有效地提高了回传链路的波束确定效率。
在又一些示例中,用于配置回传链路的波束的信令为基站发送的RRC信令,或者,为高层网络设备发送的OAM(Operation Administration and Maintenance,操作管理和维护)消息携带的信令。
可选地,RRC信令是基站通过单播或者组播的方式发送的。
可以理解的是,与基站通信的网络控制中继器可以有多个,对于接入该基站的网络控 制中继器,或者,网络控制中继器组,基站可以针对性地发送RRC信令,以指示每一网络控制中继器,或者每一网络控制中继器组的回传链路使用的波束。
采用上述方案,基站通过单播或组播的方式向网络控制中继器发送RRC信令指示该网络控制中继器回传链路使用的波束,可以根据针对性地进行指示,能够有效地确保每一网络控制中继器回传链路使用的波束的性能。
在本公开实施例中,网络控制中继器通过接收网络设备发送的信令中的波束指示信息,并根据该波束指示信息即可以快速、准确地从网络控制中继器中的移动终端与网络设备通信的控制链路使用的多个波束中,确定网络控制中继器中的转发器与网络设备通信的回传链路使用的波束,网络控制中继器无需对该多个波束一一测试即可以快速地确定回传链路性能较好的波束,有效地提高了通信的效率与性能。
图3是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图3所示,方法包括:
S301、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息;其中,波束指示信息包括波束标识或者参考信号标识。
S302、网络控制中继器根据参考信号标识,或者,波束标识确定回传链路使用的目标波束。
可以理解的是,网络控制中继器的控制链路在配置多个波束后,可以对多个波束中的每一波束或者每一波束对应的参考信号进行唯一标识,其中,参考信号标识与参考信号存在唯一对应的关系,波束标识与波束存在唯一对应的关系。
其中,网络设备可以是基站也可以是高层网络设备,信令可以是基站通过单播或组播方式发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令,本公开实施例对此不作限定。
采用上述方案,网络控制中继器通过接收网络设备发送的信令中的波束标识或者参考信号标识即可直接的确定网络设备指示的回传链路使用的目标波束,网络控制中继器无需对该多个波束一一测试即可以令回传链路可以快速地确定性能较好的波束,有效地提高了通信的效率与性能。
图4是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图4所示,方法包括:
S401、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息;其中,波束指示信息包括波束相关信息。
S402、网络控制中继器根据波束相关信息,确定波束相关信息中的第一参考信号标识。
S403、网络控制中继器根据第一参考信号标识,确定回传链路使用的目标波束。
其中,波束相关信息包括网络设备为控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
采用上述方案,网络控制中继器通过接收网络设备发送的信令的波束相关信息,基于波束相关信息中的传输配置指示信息、空间关系指示信息和/或准同址信息,该网络控制中继器即可以确定与对应的传输配置指示状态、空间关系指示和/或准同址,进而可以基于传输配置指示状态、空间关系指示和/或准同址确定对应的参考信号标识,即可以基于该参考信号标识确定网络设备为该网络控制中继器的回传链路指示的目标波束,无需对该多个波束一一测试即可以令回传链路可以快速地确定性能较好的波束,有效地提高了通信的效率与性能。
图5是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图5所示,方法包括:
S501、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息;其中,波束指示信息包括波束标识或者参考信号标识,或者波束相关信息。
S502、网络控制中继器根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
S503、网络控制中继器根据通信协议中的预设时长或者网络设备配置的预设时长,确定目标波束的生效时间,预设时长为相对特定时刻的时长。
其中,特定时刻包括网络控制中继器接收波束指示信息所在的PDSCH的结束时刻,和/或,网络控制中继器反馈针对包括波束指示信息的PDSCH的HARQ-ACK信息的上行资源的最后一个符号的时刻。
其中,网络设备可以是基站也可以是高层网络设备,信令可以是基站通过单播或组播方式发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令,本公开实施例对此不作限定。
示例地,该预设时长可以是X个单位时长,该单位时长可以是一个时隙对应的时长,也可以也一个符号对应的时长或者一个子帧对应的时长,本公开也不做具体限定。
例如,若网络控制中继器接收波束指示信息所在信令的PDSCH的结束时刻为slot n对应的时刻,单位时长为时隙,其中,slot表示时隙,n为时隙的编号,若该网络控制中继 器回传链路使用目标波束的生效时间可以为slot n+X对应的时刻,即在编号为n+X的时隙对应的时刻启用该压缩模型。
采用上述方案,通过在通信协议中规定该预设时长,并基于与波束知识信息对应的特定时刻,确定该目标波束的生效时间,能够使得该网络设备中继器能够基于使用该波束的回传链路与网络设备进行可靠通信,保证了网络设备中继器与网络设备的通信质量。
图6是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图6所示,方法包括:
S601、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息;其中,波束指示信息包括回传链路与网络控制中继器中目标物理信道的绑定关系。
S602、网络控制中继器根据绑定关系,从网络设备为网络控制中继器的控制链路配置的多个波束中确定目标物理信道使用的第一波束。
S603、网络控制中继器将第一波束作为目标波束。
其中,网络设备可以是基站也可以是高层网络设备,信令可以是基站通过单播或组播方式发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令,本公开实施例对此不作限定。
可以理解的是,目标物理信道可以是网络控制中继器的移动终端与网络设备通信的控制链路的一个信道,该信道可以是网络设备确定的通信性能较好的一个信道。
具体地,在步骤S602中以及步骤S603中,网络控制中继器可以根据该绑定关系确定该目标物理信道使用的第一波束的参考信号标识并根据该参考信号标识确定目标波束;或者,可以根据该物理信道使用的波束的波束标识,并根据该波束标识确定目标波束。
采用上述方案,网络控制中继器通过接收网络设备发送的波束信息中的回传链路与网络控制中继器中目标物理信道的绑定关系,根据该绑定关系确定与回传链路绑定的信道使用的目标波束,无需对该多个波束一一测试即可以令回传链路可以快速地确定性能较好的波束,有效地提高了通信的效率与性能。
图7是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图7所示,方法包括:
S701、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息;其中,波束指示信息包括回传链路与网络控制中继器中目标物理信道的绑定关系。
S702、网络控制中继器根据绑定关系,从网络设备为网络控制中继器的控制链路配置的多个波束中确定目标物理信道使用的第一波束。
S703、网络控制中继器将第一波束作为目标波束。
S704、网络控制中继器确定目标物理信道应用第一波束的第一时间;
S705、网络控制中继器将第一时间确定为回传链路使用目标波束的生效时间。
其中,网络设备可以是基站也可以是高层网络设备,信令可以是基站通过单播或组播方式发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令,本公开实施例对此不作限定。
可以理解的是,在本公开实施例中,目标物理信道使用的第一波束可以是目标物理信道将要使用而还未开始使用的波束。
采用上述方案,在波束指示信息包括回传链路与网络控制中继器中目标物理信道的绑定关系的情况下,回传链路确定的目标波束的生效时间和与该回传链路绑定的目标物理信道使用对应的第一波束的时间一致,可以有效地保证网络控制中继器通过回传链路与网络设备之间的通信的可靠性。
图8是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图8所示,方法包括:
S801、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息。
S802、网络控制中继器根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
S803、网络控制中继器根据预定义规则确定在接收到信令之前,和/或,在目标波束生效之前回传链路使用的波束。
其中,网络设备可以是基站也可以是高层网络设备,信令可以是基站通过单播或组播方式发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令,本公开实施例对此不作限定。
在一示例中,波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的一者或多者。
另外,波束相关信息包括网络设备为控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
其中,基于该预定义规则确定的在接收到信令之前,和/或,在目标波束生效之前回传 链路使用的波束,可以是网络设备为网络控制中继器的控制链路配置的多个波束之外的波束,也可以是该多个波束中的一个波束。另外,该预定义规则可以是预先配置于该网络控制中继器中的,也可以是通过网络设备发送给该网络控制中继器的。本公开实施例对此不作具体限定。
采用上述方案,通过根据预定义规则确定在接收到信令之前,和/或,在目标波束生效之前回传链路使用的波束,可以确保网络控制中继器的转发器可以在网络设备指示的回传链路的波束生效之前,该回传链路仍然可以有效地基于预定义规则确定的波束进行通信,保证了网络控制中继器与网络设备的通信之间的鲁棒性。
图9是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图9所示,方法包括:
S901、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息。
S902、网络控制中继器根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
S903、网络控制中继器根据第一预定义规则确定在接收到信令之前回传链路使用的第二波束。
S904、网络控制中继器根据第二预定义规则确定在目标波束生效之前回传链路使用的第三波束。
其中,网络设备可以是基站也可以是高层网络设备,信令可以是基站通过单播或组播方式发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令,本公开实施例对此不作限定。
在一示例中,波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的一者或多者。
另外,波束相关信息包括网络设备为控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
其中,在接收到信令之前对应的第一预定义规则,与在目标波束生效之前对应的第二预定义规则可以相同也可以不同,进而,基于第一预定义规则确定的第二波束与基于第二预定义规则确定的第三波束可以是相同的波束,也可以是不同的波束。基于第一预定义规则与第二预定义确定回传链路使用的波束的方式在下述实施例中将更为详细的介绍,本公开实施例在此不作赘述。
采用上述方案,分别根据第一预定义规则以及第二预定义规则,确定接收到信令之前回传链路使用的波束,以及目标波束生效之前使用的波束,可以保证网络控制中继器在接收到信令之前使用的波束以及目标波束生效之前使用的波束均能够具备较好的通信性能,有效地保证了网络控制设备的转发器与网络设备之间的通信质量。
图10是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图10所示,方法包括:
S1001、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息。
S1002、网络控制中继器根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
S1003、网络控制中继器将基站预配置的,或者,高层网络设备预配置的波束作为在接收到信令之前回传链路使用的波束。
其中,网络设备可以是基站也可以是高层网络设备,该用于配置回传链路的波束的信令可以是基站通过单播或组播方式发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令,本公开实施例对此不作限定。
在一示例中,波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的一者或多者。
另外,波束相关信息包括网络设备为控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
其中,基站预配置的或高层网络设备预配置的波束可以是在网络控制中继器接收到的用于配置回传链路的波束的信令之前,该网络中继控制器接收到的其他信令指示的波束,该波束可以是网络设备为网络控制中继器的控制链路配置的多个波束之外的波束,也可以是该多个波束中的一个波束。
基于本公开实施例,上述实施例中的第一预定义规则可以包括将基站预配置的,或者,高层网络设备预配置的波束作为在接收到信令之前回传链路使用的波束,即该第二波束是基站预配置的或者高层网络设备预配置的波束。
采用上述方案,通过该预定义规则,将基站或者高层网络设备预配置的波束作为在接收到信令之前回传链路使用的波束,可以在接收到网络设备发送的用于配置回传链路的波束的信令之前,网络控制中继器使用的波束均能够具备较好的通信性能,有效地保证了网络控制设备的转发器与网络设备之间的通信质量。
图11是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图11所示,方法包括:
S1101、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息。
S1102、网络控制中继器根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
S1103、网络控制中继器将基站预配置的,或者,高层网络设备预配置的波束作为在目标波束生效之前回传链路使用的波束。
其中,网络设备可以是基站也可以是高层网络设备,该用于配置回传链路的波束的信令可以是基站通过单播或组播方式发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令,本公开实施例对此不作限定。
在一示例中,波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的一者或多者。
另外,波束相关信息包括网络设备为控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
其中,基站预配置的或高层网络设备预配置的波束可以是在网络控制中继器接收到的用于配置回传链路的波束的信令之前,该网络中继控制器接收到的其他信令指示的波束,该波束可以是网络设备为网络控制中继器的控制链路配置的多个波束之外的波束,也可以是该多个波束中的一个波束。
基于本公开实施例,上述实施例中的第二预定义规则可以包括将基站预配置的,或者,高层网络设备预配置的波束作为在接收到信令之前回传链路使用的波束,即第三波束是基站预配置的或者高层网络设备预配置的波束。
值得说明的是,对于目标波束生效之前,以及接收到信令之前,基站或者高层网络设备预配置的波束可以是相同的,也可以是不同的,也就是说第二波束与第三波束可以是相同的波束,也可以是不同的波束。
采用上述方案,通过该预定义规则,将基站或者高层网络设备预配置的波束作为在目标波束生效之前回传链路使用的波束,可以在目标波束生效之前,网络控制中继器使用的波束均能够具备较好的通信性能,有效地保证了网络控制设备的转发器与网络设备之间的通信质量。
图12是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于 网络控制中继器,如图12所示,方法包括:
S1201、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息。
S1202、网络控制中继器根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
S1203、网络控制中继器保持回传链路当前使用的波束作为在接收到信令之前回传链路使用的波束。
其中,网络设备可以是基站也可以是高层网络设备,该用于配置回传链路的波束的信令可以是基站通过单播或组播方式发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令,本公开实施例对此不作限定。
在一示例中,波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的一者或多者。
另外,波束相关信息包括网络设备为控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
其中,上述实施例中的第二预定义规则还可以包括保持回传链路当前使用的波束作为在接收到信令之前回传链路使用的波束,该波束可以是网络控制中继器回传链路使用的默认波束,或者,在接收到该用于配置回传链路的波束的信令之前网络设备指示的波束。
采用上述方案,通过该预定义规则,网络控制中继器保持回传链路当前使用的波束作为在接收到信令之前回传链路使用的波束,可以在接收到网络设备发送的用于配置回传链路的波束的信令之前,网络控制中继器使用的波束均能够具备较好的通信性能,有效地保证了网络控制设备的转发器与网络设备之间的通信质量。
图13是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络控制中继器,如图13所示,方法包括:
S1301、网络控制中继器接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息。
S1302、网络控制中继器根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
S1303、网络控制中继器在确定目标波束包括唯一波束的情况下,根据该目标波束进行上行发送和下行接收。
其中,网络设备可以是基站也可以是高层网络设备,上述用于配置回传链路的波束的信令可以是基站通过单播或组播方式发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令,本公开实施例对此不作限定。
在一示例中,波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的一者或多者。
另外,波束相关信息包括网络设备为控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
值得说明的是,网络设备发送的用于配置回传链路的波束的信令可以指示一个或两个目标波束,以供网络控制中继器的回传链路使用。
在一些可选实施例中,网络控制中继器在确定目标波束包括两个波束的情况下,根据目标波束中的第一目标波束进行下行接收,第二目标波束进行上行发送。
其中,第一目标波束与第二目标波束可以是网络中继控制器从目标波束包括的两个波束中随机选取的,也可以是根据预设规则选取的,本公开对此不作限定。
采用上述方案,在网络设备发送的用于配置回传链路的波束的信令仅指示一个波束的情况下,则该网络控制中继器的回传链路可以同时基于该波束进行上行发送以及下行接收,在网络设备发送的用于配置回传链路的波束的信令指示两个波束的情况下,则可以将该两个波束分别用于上行发送以及下行接收,可以进一步地提高网络控制中继器与网络设备之间的通信质量。
图14是根据一示例性实施例示出的一种回传链路的波束指示方法的流程图,应用于网络设备,如图14所示,方法包括:
S1401、网络设备向网络控制中继器发送用于配置回传链路的波束的信令,信令包括波束指示信息,以使得网络控制中继器根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
其中,该网络设备可以是基站,也可以是高层网络设备,该目标波束可以是网络设备基于与该网络控制中继器的控制链路通信的多个波束的通信质量预先确定的通信性能较好的波束。
在一示例中,该网络设备向网络控制中继器发送用于配置回传链路的波束的信令中的波束指示信息可以指示一个或两个波束,在仅指示一个波束的情况下,该网络控制中继器可以使用该波束进行上行发送以及下行接收,在指示两个波束的情况下,该网络控制中继器可以使用该两个波束分别进行上行发送与下行接收。
在另一示例中,该用于配置回传链路的波束的信令可以是基站发送的,也可以是高层网络设备发送的,具体地,可以是基站发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令。
在一示例中,该用于配置回传链路的波束的RRC信令可以是基站通过单播或组播方式发送的。
在一示例中,波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的一者或多者。
另外,波束相关信息包括网络设备为控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
如上述图2-图7所提供的实施例,网络控制中继器可以根据波束指示信息中的包括的信息,确定采用对应的方式从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。并且,根据波束指示信息中的包括的信息,确定该目标波束的生效时间。
进一步,如上述图8-图13所提供的实施例,网络中继控制器还可以根据预定义的规则,确定该网络中继控制器的回传链路在接收到该网络设备发送用于配置回传链路的波束的信令之前,和/或,在该目标波束生效之前回传链路使用的波束。
在本公开实施例中,网络设备通过向网络控制中继器发送用于配置回传链路的波束的信令,以使得该网络控制中继器能够直接基于该信令中的波束指示信息,从网络设备预先为控制链路配置的多个波束中的性能较好的波束,使得该网络控制中继器无需对该多个波束一一测试即可以令回传链路可以快速地确定性能较好的波束,有效地提高了通信的效率与性能。
本领域内技术人员可以理解,前述的多个由网络控制中继器执行的实施例和多个由网络设备执行的实施例是相互对应的,因此对于相当的步骤可能只在一侧进行了描述,而另一侧必然执行对应的操作。举例来说,网络设备是广播或通过单播的方式或通过组播的方式向网络控制中继器发送用于配置回传链路的波束的信令;则终端必然会通过对应的方式接收该信令。
以下对本公开实施例的装置进行说明,需要说明的是,其中各个模块的功能已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图15是根据一示例性实施例示出的一种回传链路的波束指示装置的框图,应用于网络控制中继器,如图15所示,装置1500包括:
接收模块1501,被配置为接收网络设备发送的用于配置回传链路的波束的信令,信令包括波束指示信息;
确定模块1502,被配置为根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
可选地,波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的一者或多者。
可选地,波束相关信息包括网络设备为控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
可选地,波束指示信息包括波束标识或者参考信号标识,
装置1500还包括:第一确定模块,被配置为:
根据参考信号标识,或者,波束标识确定回传链路使用的目标波束。
可选地,波束指示信息包括波束相关信息,
装置1500还包括:第二确定模块,被配置为:
根据波束相关信息,确定波束相关信息中的第一参考信号标识;
根据第一参考信号标识,确定回传链路使用的目标波束。
可选地,装置1500还包括:
第一时间确定模块,被配置为根据通信协议中的预设时长或者网络设备配置的预设时长,确定目标波束的生效时间,预设时长为相对特定时刻的时长;
特定时刻包括网络控制中继器接收波束指示信息所在的PDSCH的结束时刻,和/或,网络控制中继器反馈针对包括波束指示信息的PDSCH的HARQ-ACK信息的上行资源的最后一个符号的时刻。
可选地,波束指示信息包括绑定关系,
装置1500还包括:第三确定模块,被配置为:
根据绑定关系,从网络设备为网络控制中继器的控制链路配置的多个波束中确定目标物理信道使用的第一波束;
将第一波束作为目标波束。
可选地,装置1500包括:
第二时间确定模块,被配置为确定目标物理信道应用第一波束的第一时间;
第三时间确定模块,被配置为将第一时间确定为回传链路使用目标波束的生效时间。
可选地,装置1500包括,第四确定模块被配置为:
根据预定义规则确定在接收到信令之前,和/或,在目标波束生效之前回传链路使用的波束。
可选地,预定义规则包括第一预定义规则和第二预定义规则,第四确定模块具体被配置为:
根据第一预定义规则确定在接收到信令之前回传链路使用的第二波束;
根据第二预定义规则确定在目标波束生效之前回传链路使用的第三波束。
可选地,第四确定模块具体被配置为:
将基站预配置的,或者,高层网络设备预配置的波束作为在接收到信令之前回传链路使用的波束。
可选地,第四确定模块具体被配置为:
将基站预配置的,或者,高层网络设备预配置的波束作为在目标波束生效之前回传链路使用的波束。
可选地,第四确定模块具体被配置为:
保持回传链路当前使用的波束作为在接收到信令之前回传链路使用的波束。
可选地,用于配置回传链路的波束的信令为基站发送的RRC信令,或者,为高层网络设备发送的OAM消息携带的信令。
可选地,RRC信令是基站通过单播或者组播的方式发送的。
可选地,装置1500包括:
第五确定模块,被配置为在确定目标波束包括唯一波束的情况下,根据该目标波束进行上行发送和下行接收;
第六确定模块,被配置为在确定目标波束包括两个波束的情况下,根据目标波束中的第一目标波束进行下行接收,第二目标波束进行上行发送。
图16是根据一示例性实施例示出的一种回传链路的波束指示装置的框图,应用于网络设备,如图16所示,装置1600包括:
发送模块1601,被配置为向网络控制中继器发送的用于配置回传链路的波束的信令,信令包括波束指示信息,以使得网络控制中继器根据波束指示信息,从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。
其中,该装置1600可以是基站,也可以是高层网络设备,该目标波束可以是装置1600基于与该网络控制中继器的控制链路通信的多个波束的通信质量预先确定的通信性能较好的波束。
在一示例中,该装置1600向网络控制中继器发送用于配置回传链路的波束的信令中的波束指示信息可以指示一个或两个波束,在仅指示一个波束的情况下,该网络控制中继器可以使用该波束进行上行发送以及下行接收,在指示两个波束的情况下,该网络控制中继器可以使用该两个波束分别进行上行发送与下行接收。
在另一示例中,该用于配置回传链路的波束的信令可以是基站发送的,也可以是高层网络设备发送的,具体地,可以是基站发送的RRC信令,也可以是高层网络设备发送的OAM消息携带的信令。
在一示例中,该用于配置回传链路的波束的RRC信令可以是基站通过单播或组播方式发送的。
在一示例中,波束指示信息包括波束标识、参考信号标识、波束相关信息、回传链路与网络控制中继器中目标物理信道的绑定关系中的一者或多者。
另外,波束相关信息包括传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
如上述图2-图7所提供的实施例,网络控制中继器可以根据波束指示信息中的包括的信息,确定采用对应的方式从网络设备为网络控制中继器的控制链路配置的多个波束中确定回传链路使用的目标波束。并且,根据波束指示信息中的包括的信息,确定该目标波束的生效时间。
进一步,如上述图8-图13所提供的实施例,网络中继控制器还可以根据预定义的规则,确定该网络中继控制器的回传链路在接收到该网络设备发送用于配置回传链路的波束的信令之前,和/或,在该目标波束生效之前回传链路使用的波束。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开提供的前述任一方法实施例提供的回传链路的波束指示方法的步骤。
图17是根据一示例性实施例示出的一种网络控制中继器1700的框图。
参照图17,网络控制中继器1700可以包括以下一个或多个组件:处理组件1702,存储器1704,电力组件1706,多媒体组件1708,音频组件1710,输入/输出(I/O)的接口1712,传感器组件1714,以及通信组件1716。
处理组件1702通常控制网络控制中继器1700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1702可以包括一个或多个处理器1720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1702可以包 括一个或多个模块,便于处理组件1702和其他组件之间的交互。例如,处理组件1702可以包括多媒体模块,以方便多媒体组件1708和处理组件1702之间的交互。
存储器1704被配置为存储各种类型的数据以支持在网络控制中继器1700的操作。这些数据的示例包括用于在网络控制中继器1700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件1706为网络控制中继器1700的各种组件提供电力。电力组件1706可以包括电源管理系统,一个或多个电源,及其他与为网络控制中继器1700生成、管理和分配电力相关联的组件。
多媒体组件1708包括在所述网络控制中继器1700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1708包括一个前置摄像头和/或后置摄像头。当网络控制中继器1700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1710被配置为输出和/或输入音频信号。例如,音频组件1710包括一个麦克风(MIC),当网络控制中继器1700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1704或经由通信组件1716发送。在一些实施例中,音频组件1710还包括一个扬声器,用于输出音频信号。
I/O接口1712为处理组件1702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1714包括一个或多个传感器,用于为网络控制中继器1700提供各个方面的状态评估。例如,传感器组件1714可以检测到网络控制中继器1700的打开/关闭状态, 组件的相对定位,例如所述组件为网络控制中继器1700的显示器和小键盘,传感器组件1714还可以检测网络控制中继器1700或网络控制中继器1700一个组件的位置改变,用户与网络控制中继器1700接触的存在或不存在,网络控制中继器1700方位或加速/减速和网络控制中继器1700的温度变化。传感器组件1714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1716被配置为便于网络控制中继器1700和其他设备之间有线或无线方式的通信。网络控制中继器1700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,网络控制中继器1700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1704,上述指令可由网络控制中继器1700的处理器1720执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的回传链路的波束指示方法的代码部分。
图18是根据一示例性实施例示出的一种网络设备的框图。例如,网络设备1800可以被提供为一基站,也可以被提供为一核心网中的其他网络逻辑实体。参照图18,网络设备1800包括处理组件1822,其进一步包括一个或多个处理器,以及由存储器1832所代表的存储器资源,用于存储可由处理组件1822的执行的指令,例如应用程序。存储器1832中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组 件1822被配置为执行指令,以执行上述方法实施例提供的回传链路的波束指示方法的步骤。
网络设备1800还可以包括一个电源组件1826被配置为执行装置1800的电源管理,一个有线或无线网络接口1850被配置为将网络设备1800连接到网络,和一个输入输出(I/O)接口1858。网络设备1800可以操作基于存储在存储器1832的操作系统,例如Windows Server TM,Mac OS X TM,Unix TM,Linux TM,FreeBSD TM或类似。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的回传链路的波束指示方法的代码部分。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种回传链路的波束指示方法,其特征在于,应用于网络控制中继器,所述方法包括:
    接收网络设备发送的用于配置回传链路的波束的信令,所述信令包括波束指示信息;
    根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
  2. 根据权利要求1所述的方法,其特征在于,所述波束指示信息包括波束标识、参考信号标识、波束相关信息、所述回传链路与所述网络控制中继器中目标物理信道的绑定关系中的一者或多者。
  3. 根据权利要求2所述的方法,其特征在于,所述波束相关信息包括所述网络设备为所述控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
  4. 根据权利要求2所述的方法,其特征在于,所述波束指示信息包括所述波束标识或者所述参考信号标识,
    所述根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束包括:
    根据所述参考信号标识,或者,所述波束标识确定所述回传链路使用的目标波束。
  5. 根据权利要求2所述的方法,其特征在于,所述波束指示信息包括所述波束相关信息,
    所述根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束,包括:
    根据所述波束相关信息,确定所述波束相关信息中的第一参考信号标识;
    根据所述第一参考信号标识,确定所述回传链路使用的目标波束。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法包括:
    根据通信协议中的预设时长或者所述网络设备配置的预设时长,确定所述目标波束的生效时间,所述预设时长为相对特定时刻的时长;
    所述特定时刻包括所述网络控制中继器接收所述波束指示信息所在的PDSCH的结束时刻,和/或,所述网络控制中继器反馈针对包括所述波束指示信息的PDSCH的HARQ-ACK信息的上行资源的最后一个符号的时刻。
  7. 根据权利要求2所述的方法,其特征在于,所述波束指示信息包括所述绑定关系,
    所述根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束,包括:
    根据所述绑定关系,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述目标物理信道使用的第一波束;
    将所述第一波束作为所述目标波束。
  8. 根据权利要求7所述的方法,其特征在于,所述方法包括:
    确定所述目标物理信道应用所述第一波束的第一时间;
    将所述第一时间确定为所述回传链路使用所述目标波束的生效时间。
  9. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    根据预定义规则确定在接收到所述信令之前,和/或,在所述目标波束生效之前所述回传链路使用的波束。
  10. 根据权利要求9所述的方法,其特征在于,所述根据预定义规则确定在接收到所述信令之前所述回传链路使用的波束,包括:
    将基站预配置的,或者,高层网络设备预配置的波束作为在接收到所述信令之前所述回传链路使用的波束。
  11. 根据权利要求9所述的方法,其特征在于,所述根据预定义规则确定在所述目标波束生效之前所述回传链路使用的波束,包括:
    将基站预配置的,或者,高层网络设备预配置的波束作为在所述目标波束生效之 前所述回传链路使用的波束。
  12. 根据权利要求9所述的方法,其特征在于,所述根据预定义规则确定在所述目标波束生效之前所述回传链路使用的波束,包括:
    保持所述回传链路当前使用的波束作为在接收到所述信令之前所述回传链路使用的波束。
  13. 根据权利要求1所述的方法,其特征在于,所述用于配置回传链路的波束的信令为基站发送的RRC信令,或者,为高层网络设备发送的OAM消息携带的信令。
  14. 根据权利要求14所述的方法,其特征在于,所述RRC信令是所述基站通过单播或者组播的方式发送的。
  15. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    在确定所述目标波束包括唯一波束的情况下,根据该目标波束进行上行发送和下行接收。
  16. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    在确定所述目标波束包括两个波束的情况下,根据所述目标波束中的第一目标波束进行下行接收,第二目标波束进行上行发送。
  17. 一种回传链路的波束指示方法,其特征在于,应用于网络设备,所述方法包括:
    向网络控制中继器发送用于配置回传链路的波束的信令,所述信令包括波束指示信息,以使得所述网络控制中继器根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
  18. 根据权利要求17所述的方法,其特征在于,所述波束指示信息包括波束标识、参考信号标识、波束相关信息、所述回传链路与所述网络控制中继器中目标物理信道的绑定关系中的一者或多者。
  19. 根据权利要求18所述的方法,其特征在于,所述波束相关信息包括所述网络设备为所述控制链路配置的传输配置指示信息、空间关系指示信息以及准同址信息中的一者或多者。
  20. 根据权利要求17所述的方法,其特征在于,所述用于配置回传链路的波束的信令为基站发送的RRC信令,或者,为高层网络设备发送的OAM消息携带的信令。
  21. 根据权利要求20所述的方法,其特征在于,所述RRC信令是所述基站通过单播或者组播的方式发送的。
  22. 一种回传链路的波束指示装置,其特征在于,应用于网络控制中继器,所述装置包括:
    接收模块,被配置为接收网络设备发送的用于配置回传链路的波束的信令,所述信令包括波束指示信息;
    确定模块,被配置为根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
  23. 一种回传链路的波束指示装置,其特征在于,应用于网络设备,所述装置包括:
    发送模块,被配置为向网络控制中继器发送的用于配置回传链路的波束的信令,所述信令包括波束指示信息,以使得所述网络控制中继器根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
  24. 一种回传链路的波束指示装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收网络设备发送的用于配置回传链路的波束的信令,所述信令包括波束指示信 息;
    根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
  25. 一种回传链路的波束指示装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    向网络控制中继器发送用于配置回传链路的波束的信令,所述信令包括波束指示信息,以使得所述网络控制中继器根据所述波束指示信息,从所述网络设备为所述网络控制中继器的控制链路配置的多个波束中确定所述回传链路使用的目标波束。
  26. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理器执行时实现权利要求1-16中任一项所述方法的步骤,或者,权利要求17-21任一项所述方法的步骤。
PCT/CN2022/112304 2022-08-12 2022-08-12 回传链路的波束指示方法、装置及存储介质 WO2024031704A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/112304 WO2024031704A1 (zh) 2022-08-12 2022-08-12 回传链路的波束指示方法、装置及存储介质
CN202280003154.9A CN115516813A (zh) 2022-08-12 2022-08-12 回传链路的波束指示方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112304 WO2024031704A1 (zh) 2022-08-12 2022-08-12 回传链路的波束指示方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2024031704A1 true WO2024031704A1 (zh) 2024-02-15

Family

ID=84513540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112304 WO2024031704A1 (zh) 2022-08-12 2022-08-12 回传链路的波束指示方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN115516813A (zh)
WO (1) WO2024031704A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933749A (zh) * 2018-09-20 2020-03-27 成都华为技术有限公司 指示波束的方法和装置
EP3667943A1 (en) * 2018-12-14 2020-06-17 ASUSTek Computer Inc. Method and apparatus of beam indication in a wireless communication system
CN113890702A (zh) * 2020-07-03 2022-01-04 大唐移动通信设备有限公司 波束指示方法、装置、终端及网络侧设备
CN114270910A (zh) * 2021-11-26 2022-04-01 北京小米移动软件有限公司 一种智能中继服务链路的波束指示方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933749A (zh) * 2018-09-20 2020-03-27 成都华为技术有限公司 指示波束的方法和装置
EP3667943A1 (en) * 2018-12-14 2020-06-17 ASUSTek Computer Inc. Method and apparatus of beam indication in a wireless communication system
CN113890702A (zh) * 2020-07-03 2022-01-04 大唐移动通信设备有限公司 波束指示方法、装置、终端及网络侧设备
CN114270910A (zh) * 2021-11-26 2022-04-01 北京小米移动软件有限公司 一种智能中继服务链路的波束指示方法及其装置

Also Published As

Publication number Publication date
CN115516813A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN109417717B (zh) 测量配置方法、装置、设备、系统及存储介质
CN107637123B (zh) 信息传递方法、装置及计算机可读存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021196214A1 (zh) 传输方法、装置及计算机存储介质
WO2022141405A1 (zh) 资源集合配置方法、装置及存储介质
WO2022126345A1 (zh) Drx配置方法及装置、通信设备和存储介质
CN110337793B (zh) 载波聚合方法、装置、通信设备及存储介质
WO2022041008A1 (zh) 直连通信方法、直连通信装置及存储介质
WO2024026751A1 (zh) 确定用于压缩信道状态信息的压缩模型的方法、装置及存储介质
WO2021217595A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
WO2022261877A1 (zh) Drx定时器的启动方法、装置、通信设备及存储介质
US11356890B2 (en) Method and apparatus for transmitting radio resource control message
WO2024031704A1 (zh) 回传链路的波束指示方法、装置及存储介质
WO2023130472A1 (zh) 提早识别的方法、装置、通信设备及存储介质
WO2023050350A1 (zh) Cfr的确定方法、装置、通信设备及存储介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
EP4181578A1 (en) Information transmission method and apparatus, communication device, and storage medium
WO2023206504A1 (zh) 系统消息处理方法及装置、通信设备及存储介质
WO2024055313A1 (zh) 一种目标终端确定方法、装置、通信设备及存储介质
WO2024031288A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2024055317A1 (zh) 一种侧链路通信方法、装置及通信设备
WO2024016367A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2023155111A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2023230901A1 (zh) 保护间隔配置方法及装置、通信设备及存储介质
WO2024016194A1 (zh) 一种信息传输方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954656

Country of ref document: EP

Kind code of ref document: A1