WO2024065414A1 - 转发器接入链路的转发方法及装置 - Google Patents

转发器接入链路的转发方法及装置 Download PDF

Info

Publication number
WO2024065414A1
WO2024065414A1 PCT/CN2022/122685 CN2022122685W WO2024065414A1 WO 2024065414 A1 WO2024065414 A1 WO 2024065414A1 CN 2022122685 W CN2022122685 W CN 2022122685W WO 2024065414 A1 WO2024065414 A1 WO 2024065414A1
Authority
WO
WIPO (PCT)
Prior art keywords
access link
network device
repeater
forwarder
beam identifier
Prior art date
Application number
PCT/CN2022/122685
Other languages
English (en)
French (fr)
Inventor
田妍
蒋琴艳
张磊
Original Assignee
富士通株式会社
田妍
蒋琴艳
张磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 田妍, 蒋琴艳, 张磊 filed Critical 富士通株式会社
Priority to PCT/CN2022/122685 priority Critical patent/WO2024065414A1/zh
Publication of WO2024065414A1 publication Critical patent/WO2024065414A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the field of communications.
  • the 5G (fifth generation mobile communication technology) system can provide a larger bandwidth and a higher data rate, and can support more types of terminals and vertical services.
  • the frequency band range/working bandwidth supported by the 5G system is significantly larger than that of the 2G, 3G, and 4G systems, and the 5G system supports a higher carrier frequency.
  • the 5G system can be deployed in the millimeter wave band.
  • RF repeaters In order to better solve the coverage problem of cellular mobile communication systems in actual deployment, the use of RF repeaters to amplify and forward signals between devices is a common deployment method.
  • RF repeaters are widely used in the actual deployment of 2G systems, 3G systems and 4G systems. Their advantages are low cost, easy deployment, and no excessive delay.
  • a traditional RF repeater is a device that amplifies and forwards signals between devices in the RF domain.
  • a traditional RF repeater is a non-regenerative type of relay node, which simply amplifies and forwards all received signals.
  • the RF repeater proposed in the Rel-17 3GPP study can forward the transmission between the base station and the terminal to enhance the network coverage of the 5G system.
  • the RF repeater is transparent to the base station and the terminal and is not controlled by the base station. Therefore, the RF repeater in Rel-17 causes interference to other devices and cannot control its energy consumption, and needs to be in a state of monitoring and forwarding all the time.
  • NCR network-controlled repeater
  • NCR can receive the control information (side control information) from the network side.
  • NCR includes NCR-MT (also called communication unit) and NCR-Fwd (also called forwarding unit), among which NCR-MT can communicate with the base station and control the forwarding of NCR-Fwd according to the control information sent by the base station.
  • NCR-Fwd is the part of NCR that realizes the forwarding between the base station and the terminal, including the backhaul link (backhaul link, BH-link) connecting NCR and the base station and the access link (access link, AC-link) on the terminal side.
  • the base station controls and instructs the backhaul link beam and access link beam of NCR-Fwd.
  • the beam index can be used for beam management of the access link.
  • the embodiments of the present application provide a forwarding method and device for a forwarder access link. That is, for one or more of the above problems, the embodiments of the present application propose corresponding solutions.
  • a forwarding device for a repeater access link wherein the device is arranged in the repeater, and comprises: a first receiving unit, which receives a beam identifier of an access link from a network device; and a forwarding unit, which uses the beam corresponding to the received beam identifier for forwarding.
  • a device for indicating a beam identifier of an access link of a repeater is provided.
  • the device is arranged in a network device, and comprises: a first indication unit, which indicates the beam identifier of the access link to the repeater.
  • a repeater is provided, wherein the repeater includes the device according to the first aspect of an embodiment of the present application.
  • a network device is provided, wherein the network device includes the apparatus according to the second aspect of an embodiment of the present application.
  • a communication system which includes the repeater according to the third aspect of the embodiment of the present application and/or the network device according to the fourth aspect of the embodiment of the present application, and a terminal device.
  • a forwarding method for a forwarder access link comprising: a receiving unit of the forwarder receives a beam identifier of an access link from a network device; and a forwarding unit of the forwarder uses the beam corresponding to the received beam identifier for forwarding.
  • a method for indicating a beam identifier of an access link of a repeater comprising: a network device indicating the beam identifier of the access link to a repeater.
  • a computer-readable program is provided, wherein when the program is executed in a forwarding device or a forwarder of a forwarder access link, the program causes the forwarding device or the forwarder of the forwarder access link to execute the forwarding method of the forwarder access link described in the sixth aspect of the embodiment of the present application.
  • a storage medium storing a computer-readable program
  • the computer-readable program enables a forwarding device or a forwarder of a forwarder access link to execute the forwarding method of a forwarder access link described in the sixth aspect of an embodiment of the present application.
  • a computer-readable program is provided, wherein when the program is executed in a forwarding device or a network device of a forwarder access link, the program causes the forwarding device or the network device of the forwarder access link to execute the method for indicating the beam identification of the forwarder access link described in the seventh aspect of the embodiment of the present application.
  • a storage medium storing a computer-readable program
  • the computer-readable program enables the forwarding device or network equipment of the forwarder access link to execute the method for indicating the beam identification of the forwarder access link described in the seventh aspect of the embodiments of the present application.
  • the forwarder uses the beam corresponding to the beam identifier of the access link received from the network device to forward on the access link, so that the network device can schedule the access link beam used by the forwarder for forwarding and the forwarder can determine the access link beam for forwarding. Therefore, the beam identifier can be effectively utilized and the forwarding between the terminal and the network device can be completed.
  • FIG1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG2 is a logical schematic diagram of a repeater according to an embodiment of the present application.
  • FIG3 is a schematic diagram of a forwarding method for a forwarder access link according to Embodiment 1 of the present application;
  • FIG4 is a schematic diagram of a beam marker according to Embodiment 1 of the present application.
  • FIG5 is a schematic diagram of the relationship between beams in Example 1 of the present application.
  • FIG6 is a schematic diagram of MAC CE of Example 1 of the present application.
  • FIG. 7 is a schematic diagram of a method for indicating a beam identifier of a repeater access link according to Embodiment 2 of the present application;
  • FIG8 is an interactive diagram of a forwarding method for implementing a forwarder access link according to Embodiment 2 of the present application.
  • FIG. 9 is a schematic diagram of a forwarding device of a forwarder access link in Example 3 of the present application.
  • FIG. 10 is a schematic diagram of an indication device for a beam identifier of a transponder access link according to Embodiment 4 of the present application;
  • FIG. 11 is another schematic diagram of an indication device for a beam identifier of a transponder access link according to Embodiment 4 of the present application;
  • FIG. 12 is another schematic diagram of an indication device for a beam identifier of a transponder access link according to Embodiment 4 of the present application;
  • FIG13 is a schematic block diagram of a system structure of a repeater according to Embodiment 5 of the present application.
  • Figure 14 is a schematic block diagram of the system structure of the network device of Example 6 of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, etc., and these elements should not be limited by these terms.
  • the term “and/or” includes any one and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having”, etc. refer to the existence of the stated features, elements, components or components, but do not exclude the existence or addition of one or more other features, elements, components or components.
  • plural refers to at least two (two or more) or at least two.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE), enhanced Long Term Evolution (LTE-A), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and the like.
  • LTE Long Term Evolution
  • LTE-A enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • communication between devices in the communication system may be carried out according to communication protocols of any stage, such as but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G and future 5G
  • NR New Radio
  • the term "network device” refers to, for example, a device in a communication system that connects a user device to a communication network and provides services for the user device.
  • the network device may include, but is not limited to, the following devices: a base station (BS), an access point (AP), a transmission reception point (TRP), a broadcast transmitter, a mobile management entity (MME), a gateway, a server, a radio network controller (RNC), a base station controller (BSC), and the like.
  • base stations may include but are not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB) and 5G base station (gNB), etc., and may also include remote radio heads (RRH, Remote Radio Head), remote radio units (RRU, Remote Radio Unit), relays or low-power nodes (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • base station may include remote radio heads (RRH, Remote Radio Head), remote radio units (RRU, Remote Radio Unit), relays or low-power nodes (such as femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relays or low-power nodes such as femto, pico, etc.
  • base station may include some or all of their functions, and each base station can provide communication coverage for a specific geographical area.
  • the term "cell” can refer
  • the term "user equipment” or “terminal equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services.
  • the user equipment may be fixed or mobile, and may also be referred to as a mobile station (MS), a terminal, a subscriber station (SS), an access terminal (AT), a station, and the like.
  • user devices may include but are not limited to the following devices: cellular phones, personal digital assistants (PDA, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, cordless phones, smart phones, smart watches, digital cameras, etc.
  • PDA personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers cordless phones
  • smart phones smart watches, digital cameras, etc.
  • the user device can also be a machine or device for monitoring or measuring, such as but not limited to: machine type communication (MTC) terminal, vehicle-mounted communication terminal, device-to-device (D2D) terminal, machine-to-machine (M2M) terminal, and the like.
  • MTC machine type communication
  • D2D device-to-device
  • M2M machine-to-machine
  • the term "repeater” is a relay device, for example, a relay device set in a service cell corresponding to a network device, which is used to forward transmission signals between the network device and the terminal device.
  • it can also be called a repeater or a repeater node.
  • forwarding by the repeater includes uplink forwarding and/or downlink forwarding, wherein the uplink forwarding includes forwarding channels and/or signals transmitted by the terminal device to the network device; the downlink forwarding includes forwarding channels and/or signals transmitted by the network device to the terminal device.
  • the repeater has a communication function, that is, the repeater can receive information (including channels and/or signals) from the network device, i.e., downlink transmission, and/or send information (including channels and/or signals) to the network device, i.e., uplink transmission.
  • the receiving information includes at least one of the processes of detecting sequence, demodulating, descrambling, decoding and interpreting information;
  • the sending information includes at least one of the processes of generating information, generating sequence, scrambling, encoding, modulating, mapping to time-frequency resources, etc.
  • the process of forwarding information does not include at least one of the above processes included in the receiving information (downlink transmission) and/or sending information (uplink transmission).
  • the communication between the repeater and the network device is also referred to as transmission of the repeater.
  • the repeater may be referred to as a network-controlled repeater (NCR).
  • NCR network-controlled repeater
  • other names may also be used, and the various names of the repeater are not limitations on the embodiment of the present application.
  • the repeater may include a communication unit (NCR-MT, also referred to as an MT unit) and a forwarding unit (NCR-Fwd, also referred to as an RU module), the communication unit being used to support the communication function between the repeater and the network device (such as the above-mentioned receiving and/or sending information), and the communication unit for example includes a receiving unit and a sending unit; the forwarding unit is used to support the forwarding function of the repeater.
  • NCR-MT also referred to as an MT unit
  • NCR-Fwd also referred to as an RU module
  • the link between the network device and the communication module is a communication link or a control link.
  • the communication unit or the receiving unit of the repeater can receive information from the network device, and the communication link or the control link can be based on the existing Uu interface.
  • the communication unit or the receiving unit of the repeater can apply the information received from the network device to the repeater unit through the internal operation of the repeater.
  • beam can also be expressed as beam, reference signal (RS), transmission configuration indication (TCI) or spatial domain filter, etc., or, can also be expressed as beam index, lobe index, reference signal index, transmission configuration indication index or spatial domain filter index, etc.;
  • reference signals are, for example, CSI-RS, SRS, RS for use by repeaters, RS sent by repeaters, etc.;
  • TCI can also be expressed as TCI state.
  • the uplink beam and the downlink beam are beam-corresponding, that is, the uplink beam and the downlink beam are shared.
  • FIG1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • a communication system 100 may include a network device 101 , a terminal device 102 , and a repeater 103 .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable and low-latency communication
  • the repeater 103 receives a first RF signal from the network device 101, amplifies the first RF signal to obtain a first forwarding signal and sends it to the terminal device 102, and/or, the repeater 103 receives a second RF signal from the terminal device 102, amplifies the second RF signal to obtain a second forwarding signal and sends it to the network device 101.
  • the repeater 103 and the network device 101 can also communicate through a communication link (Down C-link, Down Communication-link) and/or an up communication link (Up C-link, Up Communication-link).
  • Fig. 2 is a logical schematic diagram of a repeater of an embodiment of the present application.
  • the repeater 103 includes NCR-MT (also called a communication unit) and NCR-Fwd (also called a forwarding unit), wherein NCR-MT can communicate with the network device 101 and control the forwarding of NCR-Fwd according to the control information sent by the network device 101, for example, NCR-MT includes a receiving unit and a sending unit, the receiving unit receives the control information from the network device 101, and the sending unit sends the relevant information to the network device 101; NCR-Fwd is the part that realizes the forwarding between the network device 101 and the terminal device 102, including the backhaul link (backhaul link, BH-link) connecting the repeater 103 to the network device 101 and the access link (access link, AC-link) connected to the terminal device 102.
  • NCR-MT also called a communication unit
  • NCR-Fwd also called a forwarding unit
  • the embodiment of the present application provides a forwarding method for a forwarder access link, which is applied to a forwarder, for example, to the forwarder 103 in FIG. 1 and FIG. 2 .
  • FIG3 is a schematic diagram of a forwarding method for a forwarder access link according to Embodiment 1 of the present application. As shown in FIG3 , the method includes:
  • Step 301 A receiving unit of a repeater receives a beam identifier of an access link from a network device.
  • Step 302 The forwarding unit of the forwarder uses the beam corresponding to the received beam identifier for forwarding.
  • the forwarder uses the beam corresponding to the beam identifier of the access link received from the network device to forward on the access link, so that the network device can schedule the access link beam used by the forwarder for forwarding, and the forwarder can determine the access link beam for forwarding. Therefore, the beam identifier can be effectively utilized and the forwarding between the terminal and the network device can be completed.
  • the repeater is a network controlled repeater, ie, NCR.
  • the receiving unit of the repeater is NCR-MT or a part of NCR-MT; the forwarding unit of the repeater is NCR-Fwd.
  • the receiving unit of the repeater is NCR-MT or a part of NCR-MT; the forwarding unit of the repeater is NCR-Fwd.
  • the beam index is used to number (also referred to as a number) the beam of the access link (AC-link) to obtain the beam index, and the network device indicates the beam index forwarded by the forwarder.
  • the beam identifier can also be expressed as a beam index, a beam number, or a beam label, etc.
  • FIG4 is a schematic diagram of beam identification in Example 1 of the present application. As shown in FIG4, the beams of the access link of the repeater are numbered, wherein the beam identification includes beam #1, beam #2, and beam #3. In addition, the beam identification can also be expressed in other forms, and the embodiment of the present application does not limit the expression form of the beam identification.
  • the beam identifier received by the forwarder is indicated by at least one of RRC signaling, MAC CE, and physical layer signaling.
  • the physical layer signaling is, for example, DCI, or may be other physical layer signaling.
  • the beam identifier of the access link is indicated by physical layer signaling, which reduces the signaling overhead and transmission delay of the beam identifier indication, thereby improving the utilization efficiency of the system.
  • the beam identifier received by the repeater is at least one of the beam identifiers of the access link configured by the network device, that is, the network device determines the beam identifier of the access link and indicates at least one of the determined beam identifiers to the repeater.
  • the beam identifier of the access link configured by the network device is beam #1, beam #2, beam #3, ...
  • the beam identifier indicated by the network device to the forwarder (that is, the beam identifier received by the forwarder) is at least one of beam #1, beam #2, beam #3, ... configured by the network device, and the forwarder uses the beam corresponding to the received beam identifier to forward on the access link; wherein the correspondence between the beam identifier configured by the network device and the beam is determined by the forwarder implementation.
  • the beam identifier received by the forwarder is at least one of the beam identifiers of the access link reported by the forwarder, that is, the beam identifier of the access link is determined and reported by the forwarder, and the network device indicates to the forwarder at least one of the beam identifiers reported by the forwarder.
  • the forwarder reports beam identifiers Beam #1, Beam #2, Beam #3, ... to the network device.
  • the beam identifier indicated by the network device to the forwarder i.e., the beam identifier received by the forwarder
  • the forwarder uses the beam corresponding to the received beam identifier to forward on the access link; wherein the correspondence between the beam identifier indicated by the network device and the beam is determined by the forwarder implementation.
  • the beam identifier received by the forwarder is at least one of the beam identifiers configured by the network device for accessing the link, for example, the beam identifier is configured by the network device according to information reported by the forwarder.
  • the information reported by the forwarder includes: information on the number of beams supported by the access link, the relationship between the beams of the access link, and whether simultaneous forwarding on different beams of the access link is supported.
  • the information on the number of beams supported by the access link includes at least one of: the total number of beams supported by the access link, the total number of forwarding beams supported by the access link, the total number of simultaneously forwarded beams supported by the access link, and the number of beams of different types.
  • different types of beams are beams in different directions, or beams of different widths, or beams of different precisions.
  • whether simultaneous forwarding on different beams of the access link is supported includes: the number of beams supporting simultaneous forwarding; whether the precision of beams supporting simultaneous forwarding is the same or different; and at least one of the relationships between beams supporting simultaneous forwarding.
  • the network device configures the beam identifier of the access link according to the information reported by the forwarder.
  • the beam identifier of the access link is configured by the network device, that is, the network device does not need the forwarder to report information and independently determines the beam identifier of the access link.
  • the method may further include: the repeater receives, from the network device, relationship information between beams corresponding to the beam identifier.
  • the network device also indicates to the repeater the relationship information between beams corresponding to the beam identifier of the access link.
  • the method may further include: the forwarder reporting, to the network device, relationship information between beams corresponding to the beam identifier.
  • the network device indicates according to the beam identifier of the access link reported by the repeater, that is, the network device does not need to process the beam identifier of the access link.
  • the network device processes the beam identifier of the access link reported by the forwarder and then re-indicates the beam identifier to the forwarder. For example, the network device re-numbers the beam identifier of the access link reported by the forwarder according to a reference value, for example, starting from beam #4 reported by the forwarder, 0, 1, 2, 3.
  • the relationship between beams may also be referred to as a QCL (quasi-colocation) relationship between beams or a spatial relation between beams.
  • QCL quadsi-colocation
  • the relationship between the beams is the relationship between beams corresponding to different beam identifiers.
  • the relationship between the beams at least includes: beams corresponding to different beam identifiers are in different directions, or beams corresponding to different beam identifiers are in the same direction but with different widths.
  • the width of the beam may also be expressed as the accuracy (fineness) of the beam or the type of the beam.
  • Fig. 5 is a schematic diagram of the relationship between beams in Example 1 of the present application.
  • the beams corresponding to beam #1 and beams #4, beam #5, and beam #6 are beams in the same direction
  • the beams corresponding to beam #2 and beams #7, beam #8, and beam #9 are beams in the same direction
  • the beams corresponding to beam #3 and beams #10, beam #11, and beam #12 are beams in the same direction.
  • the beam corresponding to beam #1, the beam corresponding to beam #2, and the beam corresponding to beam #3 are beams in different directions; the beams corresponding to beam #4, beam #5, and beam #6 are beams in different directions; the beams corresponding to beam #7, beam #8, and beam #9 are beams in different directions; the beams corresponding to beam #10, beam #11, and beam #12 are beams in different directions.
  • the relationship between beams may include type 1 and type 2, wherein type 1 means that the two beams are in different directions, for example, the beam corresponding to beam #1 in FIG. 5 and the beam corresponding to beam #2, the beam corresponding to beam #4 and the beam corresponding to beam #3, the beam corresponding to beam #5 and the beam corresponding to beam #8, and the beam corresponding to beam #11 and the beam corresponding to beam #12;
  • Type 2 means that the two beams are in the same direction but with different widths (different precision or types), for example, the beam corresponding to beam #1 in FIG. 5 and the beam corresponding to beam #4, and the beam corresponding to beam #2 and the beam corresponding to beam #9.
  • the network device may determine the relationship between beams of the access link, that is, the relationship between beams corresponding to different beam identifiers, and indicate it to the repeater.
  • the network device uses a bit to indicate whether the relationship between beams corresponding to beam #1 and beam #2 is type 1 or type 2. For example, if the bit indicates "0", it means that the relationship between beams corresponding to beam #1 and beam #2 is type 1; if the bit indicates "1", it means that the relationship between beams corresponding to beam #1 and beam #2 is type 2.
  • the network device indicates that the beams corresponding to the beam identifiers in the same set are beams of different widths (different precisions or types) in the same direction, for example, set 1 is ⁇ beam #1, beam #4, beam #5, beam #6 ⁇ , and set 2 is ⁇ beam #2, beam #7, beam #8 ⁇ ;
  • the network device indicates beams with the same width (or accuracy or type) in a set, for example, set 1 is ⁇ beam #1, beam #2, beam #3 ⁇ , and set 2 is ⁇ beam #5, beam #6, beam #7 ⁇ .
  • the relationship between beams of the access link may be determined by the repeater, and reported to the network device.
  • the transponder uses one bit to report whether the relationship between the beam corresponding to beam #1 and the beam corresponding to beam #2 is type 1 or type 2. For example, if the bit indicates "0", it means that the beam corresponding to beam #1 and the beam corresponding to beam #2 are in a type 1 relationship; if the bit indicates "1", it means that the beam corresponding to beam #1 and the beam corresponding to beam #2 are in a type 2 relationship;
  • the transponder reports the beam identifier, and the beam identifiers in the same set correspond to beams of different widths (different precisions or types) in the same direction.
  • set 1 is ⁇ beam #1, beam #4, beam #5, beam #6 ⁇
  • set 2 is ⁇ beam #2, beam #7, beam #8 ⁇ ;
  • the repeater reports beams in a set with the same width (or accuracy or type), such as set 1 is ⁇ beam #1, beam #2, beam #3 ⁇ , and set 2 is ⁇ beam #5, beam #6, beam #7 ⁇ .
  • the forwarder may support one of the reporting methods in the above examples, or the forwarder may support multiple reporting methods in the above examples simultaneously.
  • the relationship between beams corresponding to different beam identifiers may be specified by default.
  • the beam relationship corresponding to the beam identifier is type 1 or type 2;
  • the beams corresponding to certain beam identifiers are beams of different widths (different precisions or types) in the same direction;
  • the beams corresponding to certain beam identifiers are beams of the same width (same accuracy or type) but in different directions.
  • the beam identifier of the access link received by the forwarder is configured by the network device or reported by the forwarder.
  • beam information for an access link of a repeater is specified by default.
  • the maximum number of access link beams supported by the repeater is M, such as 8 or 4;
  • the relationship between access link beams of a repeater is specified by default.
  • the beam identifier received by the repeater indicates the corresponding beam identifier by a first number of bits.
  • the first number is determined by the total number of beam identifiers of the access link, or the first number is determined by the total number of forwarding beams supported by the access link, or the first number is determined by the total number of beam identifiers received by the forwarder.
  • the beam identifier is indicated by log 2 M bits corresponding to the identification number, where M is the first number.
  • the beam identifier received by the repeater indicates the corresponding beam identifier in the form of a bitmap.
  • the number of bits in the bitmap is the total number of beam identifiers of the access link, or the number of bits in the bitmap is the total number of forwarding beams supported by the access link, or the number of bits in the bitmap is the total number of beam identifiers received by the forwarder.
  • the network device may indicate the beam identification in a variety of ways.
  • method 1 the beam identifier received by the forwarder (i.e., the beam identifier indicated by the network device) is at least one of the beam identifiers of the access link reported by the forwarder, or the beam identifier received by the forwarder is at least one of the beam identifiers of the access link configured by the network device.
  • the beam identifier received by the forwarder is at least one (all or part) of the beam identifiers of the access link reported by the forwarder, or the beam identifier received by the forwarder is at least one (all or part) of the beam identifiers of the access link configured by the network device.
  • method 2 the network device configures at least one of the beam identifiers of the access link configured by the network device or at least one of the beam identifiers of the access link reported by the forwarder through RRC signaling, that is, for the case where the network device configures the beam identifier of the access link, the RRC signaling configures at least one of the beam identifiers of the access link configured by the network device, and for the case where the forwarder reports the beam identifier of the access link, the RRC signaling configures at least one of the beam identifiers of the access link reported by the forwarder;
  • a first part of the beam identifier is activated through the MAC CE, and a second part of the beam identifier is indicated through a field of the physical layer signaling, the first part of the beam identifier includes at least one beam identifier in the beam identifiers configured by the RRC signaling, the second part of the beam identifier includes at least one beam identifier in the first part of the beam identifier, and the beam identifier received by the forwarder is the second part of the beam identifier.
  • the physical layer signaling is, for example, DCI.
  • the forwarder is configured with at most beam identifiers by RRC signaling for access link forwarding of transmissions of terminal devices in the designated service cell.
  • M1 is determined by the forwarder's ability to support the number of access link beams, and M1 is a positive integer, such as 128.
  • Each beam identifier corresponds to an access link beam of the forwarder, and the corresponding relationship is determined by the forwarder implementation.
  • the repeater in order for the repeater to forward downlink and uplink transmissions between the terminal device and the network device, the repeater is configured with a list of up to 128 beam identifiers, which are configured in the RRC signaling.
  • the repeater receives an activation instruction in the MAC CE, which is used to map up to M2 beam identifiers, each beam identifier corresponding to an access link of the repeater forwarding an uplink or downlink beam, where M2 is a positive integer and M2 is less than or equal to M1.
  • FIG6 is a schematic diagram of the MAC CE of the embodiment 1 of the present application. It should be noted that the MAC CE shown in FIG6 is only an example, and the MAC CE of the embodiment of the present application can adopt various other structures.
  • the field Ti in the MAC CE indicates the activation or deactivation status of the beam identifier i (beam #i), otherwise the field Ti in the MAC CE is ignored.
  • the field Ti when the field Ti is set to 1, it indicates that the beam identifier i (beam #i) is activated and mapped to the codeword indicating the access link forwarding beam identifier in the DCI; when the field Ti is set to 0, it indicates that the beam identifier i (beam #i) is deactivated and is not mapped to the codeword indicating the access link forwarding beam identifier in the DCI.
  • the forwarder applies the beam identifier indicated by the DCI codeword to forward the downlink and uplink transmissions between the terminal device and the network device.
  • the codewords mapped to the beam identifiers in the DCI are determined in the order (ascending order) in which Ti is set to 1, that is, the first Ti set to 1 maps the codeword in the DCI to 0, the second Ti set to 1 maps the codeword in the DCI to 1, and so on.
  • the maximum number of activated beam identifiers is M2.
  • the beam identifier codeword mapped in the DCI indicates a maximum of N beam identifiers, and there are N log 2 M2 codewords indicating the beam identifier field in the DCI, where N is a positive integer and N is less than or equal to M2.
  • the maximum number of activated beam identifiers is 8. If the DCI indicates that the beam identifier is invalid, the codeword in the DCI is 0 bits, otherwise it indicates a beam identifier of 3 bits;
  • the indication 0 in DCI represents beam #4
  • the indication 1 represents beam #20
  • the indication 2 represents beam #22.
  • the codeword indicating the beam identifier of the DCI indicates 2 beam identifiers, and the codeword in the DCI is 6 bits.
  • the beam identifier received by the repeater includes a first beam identifier indicated by the network device, configured by the network device or reported by the repeater, and a second beam identifier configured by the network device through RRC signaling, activated by MAC CE, and indicated by a field of physical layer signaling. That is, the beam identifier received by the repeater is the first beam identifier and the second beam identifier indicated by the network device according to the above-mentioned method 1 and method 2.
  • the beam that the repeater forwards the broadcast signal corresponds to the first beam identifier indicated by the network device according to the above method 1
  • the beam that the repeater forwards the terminal-specific signal corresponds to the second beam identifier indicated by the network device according to the above method 2.
  • the beam of the semi-static beam configuration received by the repeater corresponds to the first beam identifier indicated by the network device according to the above method 1
  • the beam of the dynamic beam configuration received by the repeater corresponds to the second beam identifier indicated by the network device according to the above method 2.
  • the wide beam of the repeater access link corresponds to the first beam identifier indicated by the network device in accordance with the above method 1
  • the narrow beam of the repeater access link corresponds to the second beam identifier indicated by the network device in accordance with the above method 2
  • the low-precision beam of the repeater access link corresponds to the first beam identifier indicated by the network device in accordance with the above method 1
  • the high-precision beam of the repeater access link corresponds to the second beam identifier indicated by the network device in accordance with the above method 2.
  • the forwarder uses the beam corresponding to the beam identifier of the access link received from the network device to forward on the access link, so that the network device can schedule the access link beam used by the forwarder for forwarding, and the forwarder can determine the access link beam for forwarding. Therefore, the beam identifier can be effectively utilized and the forwarding between the terminal and the network device can be completed.
  • Embodiment 2 of the present application also provides a method for indicating a beam identifier of a repeater access link, which is applied to a network device side.
  • the method corresponds to the forwarding method of the repeater access link on the repeater side in Embodiment 1, and the same content is not repeated.
  • the method is applied to the network device 101 in Figures 1 and 2.
  • FIG7 is a schematic diagram of a method for indicating a beam identifier of a repeater access link according to Embodiment 2 of the present application. As shown in FIG7 , the method includes:
  • Step 701 The network device indicates the beam identifier of the access link to the repeater.
  • the network device indicates the beam identifier of the access link through at least one of RRC signaling, MAC CE, and physical layer signaling.
  • the network device indicates to the forwarder at least one of the beam identifiers of the access link configured by the network device; or, the network device indicates to the forwarder at least one of the beam identifiers of the access link reported by the forwarder.
  • the method further includes: the network device receives information reported by the repeater; and the network device configures the beam identifier of the access link according to the information reported by the repeater.
  • the information reported by the forwarder includes at least one of: information on the number of beams supported by the access link, the relationship between the beams of the access link, and whether simultaneous forwarding on different beams of the access link is supported.
  • the information on the number of beams supported by the access link includes at least one of: the total number of beams supported by the access link, the total number of forwarding beams supported by the access link, the total number of simultaneously forwarded beams supported by the access link, and the number of beams of different types.
  • the method further includes: the network device configuring a beam identifier of the access link.
  • the method further includes: the network device indicating to the forwarder relationship information between beams corresponding to the beam identifiers of the access link;
  • the method also includes: the network device receives the beam identifier of the access link reported by the forwarder; and the network device receives relationship information between the beams corresponding to the beam identifier of the access link reported by the forwarder.
  • the network device indicates to the forwarder at least one of the beam identifiers of the access link reported by the forwarder; or, the network device indicates to the forwarder at least one of the beam identifiers of the access link configured by the network device.
  • the network device configures at least one of the beam identifiers of the access link configured by the network device or at least one of the beam identifiers of the access link reported by the repeater through RRC signaling; the network device activates the first part of the beam identifiers through MAC CE; and the network device indicates the second part of the beam identifier through a field of physical layer signaling, the first part of the beam identifier includes at least one of the beam identifiers configured by the RRC signaling, and the second part of the beam identifier includes at least one of the first part of the beam identifiers.
  • the beam identifier indicated by the network device to the repeater is the second part of the beam identifier.
  • the relationship between the beams refers to the relationship between beams corresponding to different beam identifiers.
  • the relationship between the beams includes: the two beams are in different directions, or the two beams are in the same direction but with different widths.
  • the beam identifier indicated by the network device to the repeater indicates the corresponding beam identifier by a first number of bits, or the beam identifier indicated by the network device to the repeater indicates the corresponding beam identifier by means of a bitmap.
  • the first number is determined by the total number of beam identifiers of the access link, or the first number is determined by the total number of forwarding beams supported by the access link, or the first number is determined by the total number of beam identifiers received by the forwarder.
  • the number of bits of the bitmap is the total number of beam identifiers of the access link, or the number of bits of the bitmap is the total number of forwarding beams supported by the access link, or the number of bits of the bitmap is the total number of beam identifiers received by the forwarder.
  • FIG8 is an interactive diagram of a forwarding method for implementing a forwarder access link according to Embodiment 2 of the present application. As shown in FIG8 , the method includes:
  • Step 801 The network device indicates the beam identifier of the access link to the repeater
  • Step 802 The forwarding unit of the forwarder uses the beam corresponding to the received beam identifier for forwarding.
  • the forwarder uses the beam corresponding to the beam identifier of the access link received from the network device to forward on the access link, so that the network device can schedule the access link beam used by the forwarder for forwarding, and the forwarder can determine the access link beam for forwarding. Therefore, the beam identifier can be effectively utilized and the forwarding between the terminal and the network device can be completed.
  • Embodiment 3 of the present application provides a forwarding device for a forwarder access link, which is arranged in the forwarder. Since the principle of solving the problem by the device is similar to that of embodiment 1, its specific implementation can refer to the implementation of the method described in embodiment 1, and the same or related contents will not be repeated.
  • FIG. 9 is a schematic diagram of a forwarding device for a forwarder access link according to Embodiment 3 of the present application. As shown in FIG. 9 , a forwarding device 900 for a forwarder access link includes:
  • a receiving unit 901 which receives a beam identifier of an access link from a network device.
  • the forwarding unit 902 uses the beam corresponding to the received beam identifier for forwarding.
  • the receiving unit 901 is an NCR-MT or a part of an NCR-MT; and the forwarding unit 902 is an NCR-Fwd.
  • the beam identifier received by the forwarder is indicated by at least one of RRC signaling, MAC CE, and physical layer signaling.
  • the beam identifier received by the repeater is at least one of the beam identifiers of the access link configured by the network device; or, the beam identifier received by the repeater is at least one of the beam identifiers of the access link reported by the repeater.
  • the beam identifier is at least one of the beam identifiers of the access link configured by the network device
  • the beam identifier is configured by the network device based on the information reported by the forwarder.
  • the information reported by the forwarder includes at least one of: information on the number of beams supported by the access link, the relationship between the beams of the access link, and whether simultaneous forwarding on different beams of the access link is supported.
  • the information on the number of beams supported by the access link includes at least one of: the total number of beams supported by the access link, the total number of forwarding beams supported by the access link, the total number of simultaneously forwarded beams supported by the access link, and the number of beams of different types.
  • the receiving unit 901 also receives relationship information between the beams corresponding to the beam identifier from the network device.
  • the apparatus further includes:
  • a sending unit 903 reports the relationship information between the beams corresponding to the beam identifier to the network device.
  • the sending unit 903 is an NCR-MT or a part of the NCR-MT.
  • the network device configures at least one of the beam identifiers of the access link configured by the network device or at least one of the beam identifiers of the access link reported by the repeater through RRC signaling, activates the first part of the beam identifier through MAC CE, and indicates the second part of the beam identifier through the field of physical layer signaling, the first part of the beam identifier includes at least one of the beam identifiers configured by the RRC signaling, the second part of the beam identifier includes at least one of the first part of the beam identifier, and the beam identifier received by the repeater is the second part of the beam identifier.
  • the beam identifier received by the forwarder includes a first beam identifier configured by the network device or reported by the forwarder, and a second beam identifier configured by RRC signaling and activated by MAC CE and indicated by a domain of physical layer signaling.
  • the beam through which the repeater forwards the broadcast signal corresponds to the first beam identifier indicated by the network device in method 1 in Example 1
  • the beam through which the repeater forwards the terminal-specific signal corresponds to the second beam identifier indicated by the network device in method 2 in Example 1
  • the beam through which the repeater receives a semi-static beam configuration corresponds to the first beam identifier indicated by the network device in method 1 in Example 1
  • the beam through which the repeater receives a dynamic beam configuration corresponds to the second beam identifier indicated by the network device in method 2 in Example 1
  • the wide beam through which the repeater accesses the link corresponds to the first beam identifier indicated by the network device in method 1 in Example 1
  • the narrow beam through which the repeater accesses the link corresponds to the second beam identifier indicated by the network device in method 2 in Example 1.
  • the relationship between the beams is the relationship between beams corresponding to different beam identifiers.
  • the relationship between the beams includes at least: beams corresponding to different beam identifiers are in different directions, or beams corresponding to different beam identifiers are in the same direction but with different widths.
  • the beam identifier received by the repeater indicates the corresponding beam identifier by a first number of bits, or the beam identifier received by the repeater indicates the corresponding beam identifier by a bitmap.
  • the first number is determined by the total number of beam identifiers of the access link, or the first number is determined by the total number of forwarding beams supported by the access link, or the first number is determined by the total number of beam identifiers received by the forwarder.
  • the number of bits of the bitmap is the total number of beam identifiers of the access link, or the number of bits of the bitmap is the total number of forwarding beams supported by the access link, or the number of bits of the bitmap is the total number of beam identifiers received by the forwarder.
  • the forwarder uses the beam corresponding to the beam identifier of the access link received from the network device to forward on the access link, so that the network device can schedule the access link beam used by the forwarder for forwarding, and the forwarder can determine the access link beam for forwarding. Therefore, the beam identifier can be effectively utilized and the forwarding between the terminal and the network device can be completed.
  • Embodiment 4 of the present application provides a device for indicating the beam identification of a repeater access link, which is applied to a network device side. Since the principle of solving the problem by the device is similar to that of Embodiment 2, its specific implementation can refer to the implementation of the method described in Embodiment 2, and the same or related contents will not be repeated.
  • FIG10 is a schematic diagram of a device for indicating a beam identifier of a repeater access link according to Embodiment 4 of the present application.
  • the device for indicating a beam identifier of a repeater access link 1000 includes:
  • the first indicating unit 1001 indicates a beam identifier of an access link to a repeater.
  • the network device indicates the beam identifier of the access link through at least one of RRC signaling, MAC CE, and physical layer signaling.
  • FIG. 11 is another schematic diagram of a device for indicating a beam identifier of a repeater access link according to Embodiment 4 of the present application.
  • a device 1100 for indicating a beam identifier of a repeater access link includes:
  • a first indication unit 1001 which indicates a beam identifier of an access link to a repeater
  • the apparatus further includes:
  • the second indicating unit 1002 indicates to the repeater the relationship information between the beams corresponding to the beam identifiers of the access link.
  • the apparatus further includes:
  • the first configuration unit 1004 configures the beam identifier of the access link according to the information reported by the forwarder.
  • the information reported by the forwarder includes at least one of: information on the number of beams supported by the access link, the relationship between the beams of the access link, and whether simultaneous forwarding on different beams of the access link is supported.
  • the information on the number of beams supported by the access link includes at least one of: the total number of beams supported by the access link, the total number of forwarding beams supported by the access link, the total number of simultaneously forwarded beams supported by the access link, and the number of beams of different types.
  • the apparatus further includes:
  • the second configuration unit 1005 is configured to configure the beam identifier of the access link, that is, the network device independently determines the beam identifier of the access link.
  • the second configuration unit 1005 may replace the first receiving unit 1003 and the second configuration unit 1004 .
  • the second indicating unit 1002 , the first receiving unit 1003 , the second configuring unit 1004 and the second configuring unit 1005 are optional components.
  • FIG. 12 is another schematic diagram of a device for indicating a beam identifier of a repeater access link according to Embodiment 4 of the present application.
  • a device 1200 for indicating a beam identifier of a repeater access link includes:
  • a first indication unit 1001 which indicates a beam identifier of an access link to a repeater
  • the apparatus further includes:
  • a second receiving unit 1006 which receives the beam identifier of the access link reported by the forwarder
  • the third receiving unit 1007 receives the relationship information between the beams corresponding to the beam identifiers of the access link reported by the forwarder.
  • the second receiving unit 1006 and the third receiving unit 1007 are optional components.
  • the network device configures at least one of the beam identifiers of the access link configured by the network device or at least one of the beam identifiers of the access link reported by the repeater through RRC signaling; the network device activates the first part of the beam identifiers through MAC CE; and the network device indicates the second part of the beam identifier through a field of physical layer signaling, the first part of the beam identifier includes at least one of the beam identifiers configured by the RRC signaling, and the second part of the beam identifier includes at least one of the first part of the beam identifiers.
  • the beam identifier indicated by the network device to the repeater is the second part of the beam identifier.
  • the relationship between the beams refers to the relationship between beams corresponding to different beam identifiers.
  • the relationship between the beams includes: the two beams are in different directions, or the two beams are in the same direction but with different widths.
  • the beam identifier indicated by the network device to the repeater indicates the corresponding beam identifier by a first number of bits, or the beam identifier indicated by the network device to the repeater indicates the corresponding beam identifier by means of a bitmap.
  • the first number is determined by the total number of beam identifiers of the access link, or the first number is determined by the total number of forwarding beams supported by the access link, or the first number is determined by the total number of beam identifiers received by the forwarder.
  • the number of bits of the bitmap is the total number of beam identifiers of the access link, or the number of bits of the bitmap is the total number of forwarding beams supported by the access link, or the number of bits of the bitmap is the total number of beam identifiers received by the forwarder.
  • the forwarder uses the beam corresponding to the beam identifier of the access link received from the network device to forward on the access link, so that the network device can schedule the access link beam used by the forwarder for forwarding, and the forwarder can determine the access link beam for forwarding. Therefore, the beam identifier can be effectively utilized and the forwarding between the terminal and the network device can be completed.
  • An embodiment of the present application provides a repeater, which includes a forwarding device for the repeater access link as described in Example 3.
  • FIG13 is a schematic block diagram of the system structure of the repeater of Embodiment 5 of the present application.
  • the repeater 1300 may include a processor 1310 and a memory 1320; the memory 1320 is coupled to the processor 1310.
  • the memory 1320 may store various data; in addition, it may store a program 1330 for information processing, and execute the program 1330 under the control of the processor 1310. It is worth noting that the figure is exemplary; other types of structures may also be used to supplement or replace the structure to implement telecommunication functions or other functions.
  • the function of the forwarding device of the access link of the forwarder may be integrated into the processor 1310.
  • the processor 1310 may be configured as follows: the receiving unit of the forwarder receives the beam identifier of the access link from the network device; and the forwarding unit of the forwarder forwards using the beam corresponding to the received beam identifier.
  • the forwarding device of the forwarder access link can be configured separately from the processor 1310.
  • the forwarding device of the forwarder access link can be configured as a chip connected to the processor 1310, and the function of the forwarding device of the forwarder access link is realized through the control of the processor 1310.
  • the repeater 1300 may further include: a network-side transceiver 1340-1 and a network-side antenna 1350-1, a terminal-side transceiver 1340-2 and a terminal-side antenna 1350-2, and a signal amplification circuit 1360, etc.; wherein the functions of the above components are similar to those of the prior art and are not described in detail here. It is worth noting that the repeater 1300 does not necessarily have to include all the components shown in FIG13; in addition, the repeater 1300 may also include components not shown in FIG13, and reference may be made to the prior art.
  • the processor 1310 may include a microprocessor or other processor device and/or logic device, which receives input and controls the operation of various components of the repeater 1300 .
  • the memory 1320 may be, for example, a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory or other suitable devices, one or more thereof.
  • Various data may be stored, and programs for executing related information may also be stored.
  • the processor 1310 may execute the program stored in the memory 1320 to implement information storage or processing, etc.
  • the functions of other components are similar to those of the prior art and will not be described in detail herein.
  • the components of the repeater 1300 may be implemented by dedicated hardware, firmware, software, or a combination thereof without departing from the scope of the present application.
  • the forwarder uses the beam corresponding to the beam identifier of the access link received from the network device to forward on the access link, so that the network device can schedule the access link beam used by the forwarder for forwarding, and the forwarder can determine the access link beam for forwarding. Therefore, the beam identifier can be effectively utilized and the forwarding between the terminal and the network device can be completed.
  • An embodiment of the present application provides a network device, which includes an indication device for the beam identification of the repeater access link as described in Example 4.
  • FIG14 is a schematic block diagram of the system structure of the network device of Embodiment 6 of the present application.
  • the network device 1400 may include: a processor 1410 and a memory 1420; the memory 1420 is coupled to the processor 1410.
  • the memory 1420 may store various data; in addition, it may store a program 1430 for information processing, and the program 1430 may be executed under the control of the processor 1410 to receive various information sent by the forwarder and send various information to the forwarder.
  • the function of the device for indicating the beam identification of the access link of the repeater may be integrated into the processor 1410.
  • the processor 1410 may be configured as follows: the network device indicates the beam identification of the access link to the repeater.
  • the network device 1400 may further include: a transceiver 1440 and an antenna 1450, etc.; wherein the functions of the above components are similar to those of the prior art and are not described in detail here. It is worth noting that the network device 1400 does not necessarily include all the components shown in FIG14 ; in addition, the network device 1400 may also include components not shown in FIG14 , which may refer to the prior art.
  • the forwarder uses the beam corresponding to the beam identifier of the access link received from the network device to forward on the access link, so that the network device can schedule the access link beam used by the forwarder for forwarding, and the forwarder can determine the access link beam for forwarding. Therefore, the beam identifier can be effectively utilized and the forwarding between the terminal and the network device can be completed.
  • An embodiment of the present application provides a communication system, including the repeater as described in Example 5 and/or the network device as described in Example 6.
  • the structure of the communication system may refer to FIG. 1 and FIG. 2 .
  • the communication system 100 includes a network device 101 and a terminal device 102, as well as a repeater 103.
  • the repeater 103 may be the same as the repeater described in Example 5.
  • the network device 101 is the same as the network device described in Example 6, and repeated contents are not repeated here.
  • the above devices and methods of the embodiments of the present application can be implemented by hardware, or by hardware combined with software.
  • the embodiments of the present application relate to such a computer-readable program, which, when executed by a logic component, enables the logic component to implement the above-mentioned devices or components, or enables the logic component to implement the various methods or steps described above.
  • the embodiments of the present application also relate to a storage medium for storing the above program, such as a hard disk, a disk, an optical disk, a DVD, a flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in FIG. 9 and/or one or more combinations of functional block diagrams may correspond to various software modules of a computer program flow or to various hardware modules.
  • These software modules may correspond to the various steps shown in FIG. 3 , respectively.
  • These hardware modules may be implemented by solidifying these software modules, for example, using a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the software module may be located in a RAM memory, a flash memory, a ROM memory, an EPROM memory, an EEPROM memory, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to a processor so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and the storage medium may be located in an ASIC.
  • the software module may be stored in a memory of a mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module may be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • the functional blocks described in FIG. 9 and/or one or more combinations of functional blocks it can be implemented as a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or any appropriate combination thereof for performing the functions described in the present application.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • it can also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a forwarding device for a forwarder access link the device being arranged in the forwarder, the device comprising:
  • a receiving unit which receives a beam identifier of an access link from a network device
  • a forwarding unit which uses the beam corresponding to the received beam identifier for forwarding.
  • the beam identifier received by the forwarder is indicated by at least one of RRC signaling, MAC CE and physical layer signaling.
  • the beam identifier received by the forwarder is at least one of the beam identifiers of the access link configured by the network device; or,
  • the beam identifier received by the repeater is at least one of the beam identifiers of the access link reported by the repeater.
  • the beam identifier is at least one of the beam identifiers of the access link configured by the network device
  • the beam identifier is configured by the network device according to the information reported by the forwarder.
  • the total number of beams supported by the access link the total number of forwarding beams supported by the access link, the total number of simultaneously forwarded beams supported by the access link, and the number of beams of different types.
  • the receiving unit also receives, from the network device, relationship information between beams corresponding to the beam identifiers.
  • the apparatus further comprises:
  • a sending unit reports the relationship information between the beams corresponding to the beam identifiers to the network device.
  • the network device configures at least one of the beam identifiers of the access link configured by the network device or at least one of the beam identifiers of the access link reported by the forwarder through RRC signaling, activates the first part of the beam identifiers through MAC CE, and indicates the second part of the beam identifiers through a domain of physical layer signaling,
  • the first part of beam identifiers includes at least one beam identifier among the beam identifiers configured by the RRC signaling,
  • the second part of beam identifiers includes at least one beam identifier in the first part of beam identifiers
  • the beam identifier received by the repeater is the second partial beam identifier.
  • the beam identifier received by the forwarder includes a first beam identifier indicated by the network device, configured by the network device or reported by the forwarder, and a second beam identifier configured by the network device through RRC signaling and activated by MAC CE and indicated by a domain of physical layer signaling,
  • the beam through which the repeater forwards broadcast signals corresponds to the first beam identifier indicated by the network device, and the beam through which the repeater forwards terminal-specific signals corresponds to the second beam identifier indicated by the network device, and/or,
  • the beam of the semi-static beam configuration received by the repeater corresponds to the first beam identifier indicated by the network device
  • the beam of the dynamic beam configuration received by the repeater corresponds to the second beam identifier indicated by the network device
  • the wide beam of the repeater access link corresponds to the first beam identifier indicated by the network device, and the narrow beam of the repeater access link corresponds to the second beam identifier indicated by the network device.
  • the relationship between the beams is the relationship between beams corresponding to different beam identifiers.
  • the relationship between the beams at least includes: beams corresponding to different beam identifiers are in different directions, or beams corresponding to different beam identifiers are in the same direction but with different widths.
  • the beam identifier received by the repeater is indicated by a first number of bits corresponding to the beam identifier, or,
  • the beam identifier received by the repeater indicates the corresponding beam identifier in the form of a bitmap.
  • the first number is determined by the total number of beam identifiers of the access link, or,
  • the first number is determined by the total number of forwarding beams supported by the access link, or,
  • the first number is determined by a total number of the beam identifiers received by the repeater.
  • the number of bits in the bitmap is the total number of beam identifiers of the access link, or,
  • the number of bits in the bitmap is the total number of forwarding beams supported by the access link, or,
  • the number of bits in the bitmap is the total number of beam identifiers received by the repeater.
  • a device for indicating a beam identifier of a repeater access link the device being arranged in a network device, the device comprising:
  • a first indicating unit indicates a beam identifier of an access link to a repeater.
  • the network device indicates the beam identifier of the access link through at least one of RRC signaling, MAC CE and physical layer signaling.
  • the network device indicates to the forwarder at least one of the beam identifiers of the access link configured by the network device; or,
  • the network device indicates to the forwarder at least one of the beam identifiers of the access link reported by the forwarder.
  • a first receiving unit which receives information reported by the forwarder
  • a first configuration unit is configured to configure a beam identifier of an access link according to information reported by the forwarder.
  • the total number of beams supported by the access link the total number of forwarding beams supported by the access link, the total number of simultaneously forwarded beams supported by the access link, and the number of beams of different types.
  • the second configuration unit configures the beam identifier of the access link.
  • a second indicating unit which indicates to the forwarder the relationship information between the beams corresponding to the beam identifiers of the access link
  • the device further comprises:
  • a second receiving unit configured to receive the beam identifier of the access link reported by the forwarder
  • a third receiving unit receives the relationship information between the beams corresponding to the beam identifiers of the access link reported by the forwarder.
  • the network device configures, through RRC signaling, at least one beam identifier of the access link configured by the network device or at least one beam identifier of the access link reported by the forwarder;
  • the network device activates the first part of the beam identification via MAC CE.
  • the network device indicates the second part of the beam identifier through a field of physical layer signaling
  • the first part of beam identifiers includes at least one beam identifier among the beam identifiers configured by the RRC signaling,
  • the second part of beam identifiers includes at least one beam identifier in the first part of beam identifiers
  • the beam identifier indicated by the network device to the repeater is the second partial beam identifier.
  • the relationship between the beams refers to the relationship between beams corresponding to different beam identifiers.
  • the relationship between the beams includes: the two beams are in different directions, or the two beams are in the same direction but with different widths.
  • the beam identifier indicated by the network device to the repeater is a beam identifier corresponding to a first number of bits, or,
  • the beam identifier indicated by the network device to the repeater indicates the corresponding beam identifier in the form of a bitmap.
  • the first number is determined by the total number of beam identifiers of the access link, or,
  • the first number is determined by the total number of forwarding beams supported by the access link, or,
  • the first number is determined by a total number of the beam identifiers received by the repeater.
  • the number of bits in the bitmap is the total number of beam identifiers of the access link, or,
  • the number of bits in the bitmap is the total number of forwarding beams supported by the access link, or,
  • the number of bits in the bitmap is the total number of beam identifiers received by the repeater.
  • a repeater comprising the device as described in any one of Notes 1-16.
  • a network device comprising the apparatus described in any one of Notes 17-30.
  • a communication system comprising the repeater described in Note 31 and/or the network device described in Note 32.
  • a forwarding method for a forwarder access link comprising:
  • the receiving unit of the repeater receives a beam identifier of an access link from a network device
  • the forwarding unit of the repeater uses the beam corresponding to the received beam identifier for forwarding.
  • the beam identifier received by the forwarder is indicated by at least one of RRC signaling, MAC CE and physical layer signaling.
  • the beam identifier received by the forwarder is at least one of the beam identifiers of the access link configured by the network device; or,
  • the beam identifier received by the repeater is at least one of the beam identifiers of the access link reported by the repeater.
  • the beam identifier is configured by the network device
  • the beam identifier is configured by the network device according to the information reported by the forwarder.
  • the total number of beams supported by the access link the total number of forwarding beams supported by the access link, the total number of simultaneously forwarded beams supported by the access link, and the number of beams of different types.
  • the method further comprises:
  • the repeater receives, from the network device, relationship information between beams corresponding to the beam identifiers.
  • the method further comprises:
  • the forwarder reports the relationship information between the beams corresponding to the beam identifiers to the network device.
  • the network device configures at least one of the beam identifiers of the access link configured by the network device or at least one of the beam identifiers of the access link reported by the forwarder through RRC signaling, activates the first part of the beam identifiers through MAC CE, and indicates the second part of the beam identifiers through a domain of physical layer signaling,
  • the first part of beam identifiers includes at least one beam identifier among the beam identifiers configured by the RRC signaling,
  • the second part of beam identifiers includes at least one beam identifier in the first part of beam identifiers
  • the beam identifier received by the repeater is the second partial beam identifier.
  • the beam identifier received by the forwarder includes a first beam identifier indicated by the network device, configured by the network device or reported by the forwarder, and a second beam identifier configured by the network device through RRC signaling and activated by MAC CE and indicated by a domain of physical layer signaling,
  • the beam through which the repeater forwards broadcast signals corresponds to the first beam identifier indicated by the network device, and the beam through which the repeater forwards terminal-specific signals corresponds to the second beam identifier indicated by the network device, and/or,
  • the beam of the semi-static beam configuration received by the repeater corresponds to the first beam identifier indicated by the network device
  • the beam of the dynamic beam configuration received by the repeater corresponds to the second beam identifier indicated by the network device
  • the wide beam of the repeater access link corresponds to the first beam identifier indicated by the network device, and the narrow beam of the repeater access link corresponds to the second beam identifier indicated by the network device.
  • the relationship between the beams is the relationship between beams corresponding to different beam identifiers.
  • the relationship between the beams at least includes: beams corresponding to different beam identifiers are in different directions, or beams corresponding to different beam identifiers are in the same direction but with different widths.
  • the beam identifier received by the repeater is indicated by a first number of bits corresponding to the beam identifier, or,
  • the beam identifier received by the repeater indicates the corresponding beam identifier in the form of a bitmap.
  • the first number is determined by the total number of beam identifiers of the access link, or,
  • the first number is determined by the total number of forwarding beams supported by the access link, or,
  • the first number is determined by a total number of the beam identifiers received by the repeater.
  • the number of bits in the bitmap is the total number of beam identifiers of the access link, or,
  • the number of bits in the bitmap is the total number of forwarding beams supported by the access link, or,
  • the number of bits in the bitmap is the total number of beam identifiers received by the repeater.
  • a method for indicating a beam identifier of a repeater access link comprising:
  • the network device indicates the beam identification of the access link to the repeater.
  • the network device indicates the beam identifier of the access link through at least one of RRC signaling, MAC CE and physical layer signaling.
  • the network device indicates to the forwarder at least one of the beam identifiers of the access link configured by the network device; or,
  • the network device indicates to the forwarder at least one of the beam identifiers of the access link reported by the forwarder.
  • the network device receives information reported by the forwarder
  • the network device configures the beam identifier of the access link according to the information reported by the forwarder.
  • the total number of beams supported by the access link the total number of forwarding beams supported by the access link, the total number of simultaneously forwarded beams supported by the access link, and the number of beams of different types.
  • the network device configures a beam identifier of an access link.
  • the network device indicates to the forwarder the relationship information between the beams corresponding to the beam identifiers of the access link,
  • the method further comprises:
  • the network device receives the beam identifier of the access link reported by the forwarder.
  • the network device receives the relationship information between beams corresponding to the beam identifiers of the access link reported by the forwarder.
  • the network device configures, through RRC signaling, at least one beam identifier of the access link configured by the network device or at least one beam identifier of the access link reported by the forwarder;
  • the network device activates the first part of the beam identification via MAC CE.
  • the network device indicates the second part of the beam identifier through a field of physical layer signaling
  • the first part of beam identifiers includes at least one beam identifier among the beam identifiers configured by the RRC signaling,
  • the second part of beam identifiers includes at least one beam identifier in the first part of beam identifiers
  • the beam identifier indicated by the network device to the repeater is the second partial beam identifier.
  • the relationship between the beams refers to the relationship between beams corresponding to different beam identifiers.
  • the relationship between the beams includes: the two beams are in different directions, or the two beams are in the same direction but with different widths.
  • the beam identifier indicated by the network device to the repeater is a beam identifier corresponding to a first number of bits, or,
  • the beam identifier indicated by the network device to the repeater indicates the corresponding beam identifier in the form of a bitmap.
  • the first number is determined by the total number of beam identifiers of the access link, or,
  • the first number is determined by the total number of forwarding beams supported by the access link, or,
  • the first number is determined by a total number of the beam identifiers received by the repeater.
  • the number of bits in the bitmap is the total number of beam identifiers of the access link, or,
  • the number of bits in the bitmap is the total number of forwarding beams supported by the access link, or,
  • the number of bits in the bitmap is the total number of beam identifiers received by the repeater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种转发器接入链路的转发方法及装置。该方法包括:转发器的接收单元接收来自网络设备的接入链路的波束标识;以及,转发器的转发单元使用接收的所述波束标识对应的波束进行转发。

Description

转发器接入链路的转发方法及装置 技术领域
本申请涉及通信领域。
背景技术
与传统的2G(第二代移动通信技术)、3G(第三代移动通信技术)、4G(第四代移动通信技术)系统相比,5G(第五代移动通信技术)系统能够提供更大的带宽以及更高的数据率,并且能够支持更多类型的终端和垂直业务。为此,5G系统支持的频带范围/工作带宽明显大于2G,3G和4G系统,并且,5G系统支持更高的载波频率。例如,5G系统可以部署在毫米波波段。
然而,载波频率越高,信号在传输过程中遇到的衰落越严重。因此,在5G系统的实际部署中,特别是在毫米波段,如何更好的增强小区覆盖,成为亟待解决的问题。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
为了更好的解决蜂窝移动通信系统在实际部署中的覆盖问题,采用射频转发器(RF Repeater)放大和转发设备之间的信号,是比较常用的部署手段。射频转发器在2G系统、3G系统和4G系统的实际部署中具有较为广泛的应用,其优点在于低成本,易部署,且不会增加过多时延。通常来说,传统的射频转发器是一种在射频域放大(amplify)和转发(forward)设备往来信号的设备。也就是说,传统的射频转发器是一种非再生类型的中继节点,射频转发器只是将接收到的所有信号直接放大并转发。
在Rel-17 3GPP研究中提出的RF repeater能够转发基站与终端之间的传输从而增强5G系统的网络覆盖。然而RF repeater对于基站和终端是透明的并且不受基站的控制,因此Rel-17中的RF repeater对其他设备造成干扰且不能控制其能耗,需要一直处于监听转发的状态。
在Rel-18的研究中,提出由网络控制的转发器(NCR,network-controlled repeater) 能够接收网络侧的控制信息(side control information)。NCR包括NCR-MT(也称为通信单元)和NCR-Fwd(也称为转发单元),其中,NCR-MT能够与基站进行通信,并根据基站发送的控制信息对NCR-Fwd的转发进行控制,NCR-Fwd是组成NCR的实现基站与终端之间转发的部分,包括NCR与基站连接的回传链路(backhaul link,BH-link)以及终端侧的接入链路(access link,AC-link)。
为了使NCR能够更好的增强覆盖,更准确地转发基站与终端的通信,并减小对周围其他设备的干扰,基站控制并指示NCR-Fwd的回传链路波束和接入链路波束。目前,仅确定可以将波束标识(beam index)用于接入链路的波束管理。
发明人发现,在现有技术中,并没有如何确定波束标识以及如何使用波束标识进行接入链路的波束管理的具体方案,即,缺乏有效的接入链路的波束管理机制,导致无法确定NCR的接入链路的波束,从而无法有效利用波束标识并完成终端与基站之间的转发。
为了解决上述问题中的一个或多个,本申请实施例提供一种转发器接入链路的转发方法及装置。即,针对上述问题中的一个或多个,本申请实施例提出了相应的解决方案。
根据本申请实施例的第一方面,提供一种转发器接入链路的转发装置,所述装置设置于转发器,所述装置包括:第一接收单元,其接收来自网络设备的接入链路的波束标识;以及,转发单元,其使用接收的所述波束标识对应的波束进行转发。
根据本申请实施例的第二方面,提供一种转发器接入链路的波束标识的指示装置,所述装置设置于网络设备,所述装置包括:第一指示单元,其向转发器指示接入链路的波束标识。
根据本申请实施例的第三方面,提供一种转发器,所述转发器包括根据本申请实施例的第一方面所述的装置。
根据本申请实施例的第四方面,提供一种网络设备,所述网络设备包括根据本申请实施例的第二方面所述的装置。
根据本申请实施例的第五方面,提供一种通信系统,所述通信系统包括根据本申请实施例的第三方面所述的转发器和/或根据本申请实施例的第四方面所述的网络设备,以及终端设备。
根据本申请实施例的第六方面,提供一种转发器接入链路的转发方法,所述方法 包括:转发器的接收单元接收来自网络设备的接入链路的波束标识;以及,转发器的转发单元使用接收的所述波束标识对应的波束进行转发。
根据本申请实施例的第七方面,提供一种转发器接入链路的波束标识的指示方法,所述方法包括:网络设备向转发器指示接入链路的波束标识。
根据本申请实施例的第八方面,提供了一种计算机可读程序,其中当在转发器接入链路的转发装置或转发器中执行所述程序时,所述程序使得所述转发器接入链路的转发装置或转发器执行本申请实施例的第六方面所述的转发器接入链路的转发方法。
根据本申请实施例的第九方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得转发器接入链路的转发装置或转发器执行本申请实施例的第六方面所述的转发器接入链路的转发方法。
根据本申请实施例的第十方面,提供了一种计算机可读程序,其中当在转发器接入链路的转发装置或网络设备中执行所述程序时,所述程序使得所述转发器接入链路的转发装置或网络设备执行本申请实施例的第七方面所述的转发器接入链路的波束标识的指示方法。
根据本申请实施例的第十一方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得转发器接入链路的转发装置或网络设备执行本申请实施例的第七方面所述的转发器接入链路的波束标识的指示方法。
本申请实施例的有益效果之一在于:
转发器根据从网络设备接收的接入链路的波束标识,使用与该波束标识对应的波束进行接入链路上的转发,使网络设备能够调度转发器用于转发的接入链路波束,并使转发器能够确定转发的接入链路波束,因此,能够有效利用波束标识并完成终端与网络设备之间的转发。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在, 但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请实施例的通信系统的一示意图;
图2是本申请实施例的转发器的一逻辑示意图;
图3是本申请实施例1的转发器接入链路的转发方法的一示意图;
图4是本申请实施例1的波束标识的一示意图;
图5是本申请实施例1的波束之间的关系的一示意图;
图6是本申请实施例1的MAC CE的一示意图;
图7是本申请实施例2的转发器接入链路的波束标识的指示方法的一示意图;
图8是本申请实施例2的实施转发器接入链路的转发方法的一交互图;
图9是本申请实施例3的转发器接入链路的转发装置的一示意图;
图10是本申请实施例4的转发器接入链路的波束标识的指示装置的一示意图;
图11是本申请实施例4的转发器接入链路的波束标识的指示装置的另一示意图;
图12是本申请实施例4的转发器接入链路的波束标识的指示装置的又一示意图;
图13是本申请实施例5的转发器的系统构成的一示意框图;
图14是本申请实施例6的网络设备的系统构成的一示意框图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。 术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等可以包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,“多个”或“多种”指的是至少两个(两个或两个以上)或至少两种。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将用户设备接入通信网络并为该用户设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区 域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。用户设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,用户设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,用户设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
在本申请实施例中,术语“转发器(repeater)”是一种中继(relay)设备,例如,设置在网络设备对应的服务小区中的中继设备,其用于转发网络设备和终端设备之间的传输信号。另外,也可以称为直放站,也可以是直放站节点(repeater node)。
在本申请实施例中,转发器的转发包括上行转发和/或下行转发,该上行转发包括转发终端设备向网络设备传输的信道和/或信号;该下行转发包括转发网络设备向终端设备传输的信道和/或信号。
在本申请实施例中,转发器具有通信功能,也就是说,转发器能够从网络设备接收信息(包括信道和/或信号),即下行传输,和/或,向网络设备发送信息(包括信道和/或信号),即上行传输。
该接收信息(下行传输)包括检测序列、解调、解扰、解码以及解读信息等处理中的至少一个;该发送信息(上行传输)包括生成信息、生成序列、加扰、编码、调制、映射到时频资源等处理中的至少一个。而转发信息(上行转发和/或下行转发)的过程不包括该接收信息(下行传输)和/或发送信息(上行传输)所包括的上述处理中的至少一个。
在本申请实施例中,转发器与网络设备的通信又称为转发器的传输。
在本申请实施例中,转发器可以称为网络控制的转发器(Network-controlled  repeater,NCR)。但是,其也可以使用其他名称,转发器的各种名称并不是对本申请实施例的限制。
在本申请实施例中,转发器可以包括通信单元(NCR-MT,也可以称为MT单元)和转发单元(NCR-Fwd,也可以称为RU模块),通信单元用于支持转发器和网络设备之间的通信功能(例如上述接收和/或发送信息),通信单元例如包括接收单元和发送单元;转发单元则用于支持转发器的转发功能。
在本申请实施例中,网络设备和通信模块之间的链路是一个通信链路或控制链路。通过该通信链路或控制链路,转发器的通信单元或接收单元可以从网络设备接收信息,该通信链路或控制链路可以基于已有的Uu接口。另外,转发器的通信单元或接收单元可以将从网络设备接收的信息通过转发器的内部操作运用到转发单元中。
在本申请实施例中,波束(beam)也可以表述为波瓣(beam)、参考信号(RS)、传输配置指示(TCI,transmission configuration indication)或空域滤波器(spatial domain filter)等,或者,也可以表述为波束索引、波瓣索引、参考信号索引、传输配置指示索引或空域滤波器索引等;上述参考信号例如为CSI-RS、SRS、供转发器使用的RS、由转发器发送的RS等;上述TCI也可以表述为TCI状态(state)。
在本申请实施例中,上行波束与下行波束之间是波束对应的,即上行波束与下行波束是共用的。
以下通过示例,结合本申请实施例的场景以及存在的问题进行说明,但本申请实施例不限于此。
图1是本申请实施例的通信系统的一示意图,如图1所示,通信系统100可以包括网络设备101、终端设备102以及转发器103。
在本申请实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
如图1所示,转发器103接收来自网络设备101的第一RF信号,将该第一RF信号放大后得到第一转发信号并发送至终端设备102,和/或,转发器103接收来自终端设备102的第二RF信号,将该第二RF信号放大后得到第二转发信号并发送至网 络设备101。
另外,如图1所示,转发器103和网络设备101之间还可以通过通信链路(Down C-link,Down Comunication-link)和/或上行通信链路(Up C-link,Up Comunication-link)进行通信。
图2是本申请实施例的转发器的一逻辑示意图。如图2所示,转发器103包括NCR-MT(也称为通信单元)和NCR-Fwd(也称为转发单元),其中,NCR-MT能够与网络设备101进行通信,并根据网络设备101发送的控制信息对NCR-Fwd的转发进行控制,例如,NCR-MT包括接收单元和发送单元,接收单元从网络设备101接收控制信息,发送单元向网络设备101发送相关信息;NCR-Fwd是实现网络设备101与终端设备102之间转发的部分,包括转发器103与网络设备101连接的回传链路(backhaul link,BH-link)以及与终端设备102连接的接入链路(access link,AC-link)。
下面结合附图对本申请实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
实施例1
本申请实施例提供一种转发器接入链路的转发方法,应用于转发器。例如,应用于图1和图2中的转发器103。
图3是本申请实施例1的转发器接入链路的转发方法的一示意图。如图3所示,该方法包括:
步骤301:转发器的接收单元接收来自网络设备的接入链路的波束标识;以及
步骤302:转发器的转发单元使用接收的该波束标识对应的波束进行转发。
这样,转发器根据从网络设备接收的接入链路的波束标识,使用与该波束标识对应的波束进行接入链路上的转发,使网络设备能够调度转发器用于转发的接入链路波束,并使转发器能够确定转发的接入链路波束,因此,能够有效利用波束标识并完成终端与网络设备之间的转发。
在一些实施例中,转发器为网络控制的转发器,即NCR。
在一些实施例中,转发器的接收单元是NCR-MT或NCR-MT的一部分;转发器的转发单元是NCR-Fwd。例如,可以参见图2中的相关结构。
在一些实施例中,波束标识(beam index)对接入链路(AC-link)的波束进行标号(也可以称为编号),得到波束标识,并由网络设备指示转发器所转发的波束标识。
另外,波束标识也可以表述为波束索引或波束编号或波束标号等。
图4是本申请实施例1的波束标识的一示意图。如图4所示,对转发器的的接入链路的波束进行标号,其中,波束标识包括波束#1、波束#2、波束#3。另外,波束标识也可以表示为其他形式,本申请实施例不对波束标识的表示形式进行限制。
在一些实施例中,转发器接收的该波束标识通过RRC信令、MAC CE以及物理层信令中的至少一种指示。
该物理层信令例如是DCI,或者,也可以是其他物理层信令。
这样,通过物理层信令指示接入链路的波束标识,减小了波束标识指示的信令开销及传输的时延,从而提高系统的利用效率。
在一些实施例中,转发器接收的该波束标识是网络设备配置的接入链路的波束标识中的至少一个,也就是说,由网络设备确定接入链路的波束标识并向转发器指示确定的波束标识中的至少一个。
例如,网络设备配置的接入链路的波束标识为波束#1,波束#2,波束#3,……,当转发器需要在接入链路上进行转发时,网络设备向转发器指示的波束标识(即转发器接收的该波束标识)为该网络设备配置的波束#1,波束#2,波束#3,……中的至少一个,该转发器使用接收的该波束标识对应的波束在接入链路上进行转发;其中,网络设备配置的波束标识与波束之间的对应关系由转发器实现决定。
在一些实施例中,或者,转发器接收的该波束标识是该转发器上报的接入链路的波束标识中的至少一个,也就是说,由转发器确定并上报接入链路的波束标识,网络设备向转发器指示该转发器上报的波束标识中的至少一个。
例如,转发器向网络设备上报波束标识波束#1,波束#2,波束#3,……,当转发器需要在接入链路上进行转发时,网络设备向转发器指示的波束标识(即转发器接收的该波束标识)为该转发器上报的波束#1,波束#2,波束#3,……中的至少一个,该转发器使用接收的该波束标识对应的波束在接入链路上进行转发;其中,网络设备指示的波束标识与波束之间的对应关系由转发器实现决定。
在转发器接收的该波束标识是网络设备配置接入链路的波束标识中的至少一个的情况下,例如,该波束标识是该网络设备根据该转发器上报的信息配置的。
在一些实施例中,该转发器上报的信息包括:该接入链路支持的波束数量信息、该接入链路的波束之间的关系以及是否支持同时在不同该接入链路的波束上转发中 的至少一个。
在一些实施例中,该接入链路支持的波束数量信息包括以下中的至少一个:该接入链路支持的波束总数、该接入链路支持的转发波束总数、该接入链路支持的同时转发的波束总数以及不同类型的波束数量。
在一些实施例中,不同类型的波束是不同方向的波束,或者,不同宽窄的波束,或者,不同精度的波束。
另外,关于波束之间的关系以及波束的方向和宽窄将在下面详细说明。
在一些实施例中,是否支持同时在不同该接入链路的波束上转发,包括:支持同时转发的波束数;支持同时转发的波束精度相同或不同;以及支持同时转发的波束之间的关系中的至少一个。
对于转发器接收的该波束标识是网络设备配置接入链路的波束标识中的至少一个的情况,在上述示例中,网络设备根据该转发器上报的信息配置接入链路的波束标识。又例如,接入链路的波束标识是网络设备配置的,也就是说,网络设备不需要转发器上报信息,独立的确定接入链路的波束标识。
对于转发器接收的该波束标识是网络设备配置接入链路的波束标识中的至少一个的情况,该方法还可以包括:该转发器从网络设备接收该波束标识对应的波束之间的关系信息。也就是说,网络设备还向转发器指示接入链路的波束标识对应的波束之间的关系信息。
对于转发器接收的该波束标识是转发器上报的接入链路的波束标识中的至少一个的情况,该方法还可以包括:该转发器向该网络设备上报该波束标识对应的波束之间的关系信息。
在一些实施例中,网络设备按照转发器上报的接入链路的波束标识进行指示,也就是说,不需要网络设备对接入链路的波束标识进行处理。
或者,网络设备对转发器上报的接入链路的波束标识进行处理后再向该转发器重新指示波束标识。例如:网络设备根据一个参考值对转发器上报的接入链路的波束标识重新标号,例如,从转发器上报的波束#4开始标0,1,2,3。
下面,对波束之间的关系进行详细的说明。
在一些实施例中,波束之间的关系也可以称为波束之间的QCL(准共址,Quasi-Colocation)关系或者波束的空域关系(spatial relation)。
在一些实施例中,该波束之间的关系是不同波束标识对应的波束之间的关系。
例如,该波束之间的关系至少包括:不同波束标识对应的波束是不同方向的,或者,不同波束标识对应波束是同一方向不同宽窄的。
在一些实施例中,波束的宽窄也可以表述为波束的精度(精细度)或波束的类型。
图5是本申请实施例1的波束之间的关系的一示意图。如图5所示,波束标识波束#1对应的波束分别与波束#4、波束#5、波束#6对应的波束为同一方向的波束,波束#2对应的波束分别与波束#7、波束#8、波束#9对应的波束为同一方向的波束,波束#3对应的波束分别与波束#10、波束#11、波束#12对应的波束为同一方向的波束。
另外,波束标识波束#1对应的波束、波束#2对应的波束、波束#3对应的波束为不同方向的波束;波束#4、波束#5、波束#6对应的波束为不同方向的波束;波束#7、波束#8、波束#9对应的波束为不同方向的波束;波束#10、波束#11、波束#12对应的波束为不同方向的波束。
在一些实施例中,波束之间的关系可以包括类型1和类型2,其中,类型1是指两个的波束是不同方向的,例如图5中的波束#1对应的波束与波束#2对应的波束,波束#4对应的波束与波束#3对应的波束,波束#5对应的波束与波束#8对应的波束,波束#11对应的波束与波束#12对应的波束;类型2是指两个波束是同一方向不同宽窄(不同精度或类型)的,例如图5中的波束#1对应的波束与波束#4对应的波束,波束#2对应的波束与波束#9对应的波束。
如上所述,在一些实施例中,可以由网络设备确定接入链路的波束之间的关系,即不同的波束标识对应波束之间的关系,并指示给转发器。
例如,网络设备利用一个比特(bit)指示波束#1、波束#2对应的波束之间的关系是类型1还是类型2,例如,该比特指示“0”,则表示波束#1与波束#2对应的波束是类型1的关系;该比特指示“1”,则表示波束#1与波束#2对应的波束是类型2的关系;
又例如,网络设备指示同一集合中的波束标识对应的波束是同一方向不同宽窄(不同精度或类型)的波束,例如,集合1是{波束#1,波束#4,波束#5,波束#6},集合2是{波束#2,波束#7,波束#8};
又例如,网络设备指示一个集合中波束的宽窄(或精度或类型)相同的波束,例如,集合1是{波束#1,波束#2,波束#3},集合2是{波束#5,波束#6,波束#7}。
如上所述,在一些实施例中,可以由转发器确定接入链路的波束之间的关系,即不同的波束标识对应波束之间的关系,并上报给网络设备。
例如,转发器利用一个比特(bit)上报波束#1对应的波束与波束#2对应的波束之间的关系是类型1还是类型2,例如,该比特指示“0”,则表示波束#1对应的波束与波束#2对应的波束是类型1的关系;该比特指示“1”,则表示波束#1对应的波束与波束#2对应的波束是类型2的关系;
又例如,转发器上报波束标识,同一集合中的波束标识对应的波束是同一方向的不同宽窄(不同精度或类型)的波束,例如,集合1是{波束#1,波束#4,波束#5,波束#6},集合2是{波束#2,波束#7,波束#8};
又例如,转发器上报一个集合中波束的宽窄(或精度或类型)相同的波束,比如集合1是{波束#1,波束#2,波束#3},集合2是{波束#5,波束#6,波束#7}。
在一些实施例中,转发器可以支持上述示例中的一个上报方式,或者,转发器可以同时支持上述示例中的多个上报方式。
另外,在一些实施例中,可以默认规定不同波束标识对应波束之间的关系。
例如,规定波束标识对应的波束关系是类型1还是类型2;
又例如,规定某些波束标识对应的波束是同一方向不同宽窄(不同精度或类型)的波束;
又例如,规定某些波束标识对应的波束是相同宽窄(相同精度或类型)不同方向的波束。
如上所述,转发器接收的接入链路的波束标识是网络设备配置的或者转发器上报的。
另外,在一些实施例中,默认规定转发器的接入链路的波束信息。
例如,默认规定转发器支持的接入链路波束数最大为M个,例如8个或4个;
又例如,默认规定转发器支持的同时在M’个接入链路波束上转发;
又例如,默认规定转发器的接入链路波束之间的关系。
在一些实施例中,该转发器接收的该波束标识由第一数量的比特指示对应的波束标识。
例如,该第一数量由该接入链路的波束标识总数确定,或者,该第一数量由该接入链路支持的转发波束总数确定,或者,该第一数量由该转发器接收的该波束标识总 数确定。例如,波束标识由log 2M个比特指示对应标识数字,其中M为第一数量。
在一些实施例中,或者,该转发器接收的该波束标识由位图(bitmap)的方式指示对应的波束标识。
例如,该位图的比特数是该接入链路的波束标识总数,或者,该位图的比特数是该接入链路支持的转发波束总数,或者,该位图的比特数是该转发器接收的该波束标识总数。
在一些实施例中,网络设备指示该波束标识可以采用多种方式。
例如,方式1:该转发器接收的该波束标识(即网络设备指示的该波束标识)是该转发器上报的接入链路的波束标识中的至少一个,或者,该转发器接收的该波束标识是该网络设备配置的接入链路的波束标识中的至少一个。
也就是说,该转发器接收的该波束标识是该转发器上报的接入链路的波束标识的至少一个(全部或一部分),或者,该转发器接收的该波束标识是该网络设备配置的接入链路的波束标识的至少一个(全部或一部分)。
例如,方式2:该网络设备通过RRC信令配置网络设备配置的接入链路的波束标识中的至少一个波束标识或转发器上报的接入链路的波束标识中的至少一个波束标识,也就是说,对于网络设备配置接入链路的波束标识的情况,RRC信令配置的是该网络设备配置的接入链路的波束标识中的至少一个波束标识,对于转发器上报接入链路的波束标识的情况,RRC信令配置的是该转发器上报的接入链路的波束标识中的至少一个波束标识;
并且,通过MAC CE激活第一部分波束标识,通过物理层信令的域指示第二部分波束标识,该第一部分波束标识包括该RRC信令配置的波束标识中的至少一个波束标识,该第二部分波束标识包括该第一部分波束标识中的至少一个波束标识,该转发器接收的该波束标识是该第二部分波束标识。其中,物理层信令例如是DCI。
以下通过具体的示例进行说明。
转发器最多被RRC信令配置个波束标识为了接入链路转发指定的服务小区内终端设备的传输。例如,M1由转发器的支持接入链路波束数量的能力确定,M1为正整数,例如为128。每个波束标识对应转发器的接入链路波束,其对应关系由转发器实现决定。
例如,为了转发器转发终端设备与网络设备之间下行和上行的传输,转发器被配 置最多128个波束标识的列表,其配置在RRC信令中。
该转发器接收在MAC CE中的激活指令,用于映射最多M2个波束标识,每个波束标识对应转发器的接入链路转发上行或下行的波束,其中,M2为正整数,M2小于或等于M1。
图6是本申请实施例1的MAC CE的一示意图。需要说明的是,图6所示的MAC CE仅是一个示例,本申请实施例的MAC CE可以采用各种其他的结构。
例如,如果RRC信令中配置了波束标识,MAC CE中的域Ti指示波束标识i(波束#i)的激活或去激活状态,否则忽略MAC CE中的域Ti。如图6所示,域Ti设置为1时指示波束标识i(波束#i)被激活,并且映射到DCI中指示接入链路转发波束标识的码字;域Ti设置为0时指示波束标识i(波束#i)被去激活,并且不被映射到DCI中指示接入链路转发波束标识的码字。
如果激活指令映射到DCI中的码字,转发器则应用DCI的码字指示的波束标识来转发终端设备与网络设备之间下行和上行的传输。DCI中映射波束标识的码字是按Ti设为1的顺序(升序)确定的,即第一个设为1的Ti映射DCI中的码字为0,第二个设为1的Ti映射DCI中的码字为1,以此类推。激活的波束标识数量最大为M2个。DCI中映射波束标识码字最多指示N个波束标识,DCI中指示波束标识域的码字有N log 2M2个,N为正整数,N小于或等于M2。
例如,激活的波束标识数最多为8个。如果DCI指示波束标识无效则DCI中码字为0比特,否则指示一个波束标识为3比特;
又例如,MAC CE中的域激活T4,T20,T22,则DCI中指示0则代表波束#4,指示1则代表波束#20,指示2则代表波束#22;
又例如,DCI指示波束标识的码字指示2个波束标识,DCI中码字为6个比特。
在一些实施例中,该转发器接收的该波束标识包括该网络设备指示的由该网络设备配置的或该转发器上报的第一波束标识,以及该网络设备通过RRC信令配置和MAC CE激活和物理层信令的域指示的第二波束标识。也就是说,该转发器接收的该波束标识是网络设备按照上述方式1和方式2指示的第一波束标识和第二波束标识。
在一些实施例中,可以根据转发的信号类型,确定网络设备按照上述方式1还是方式2指示转发该信号的波束对应第一波束标识还是第二波束标识。
例如,该转发器转发广播信号的波束对应于网络设备按照上述方式1指示的第一 波束标识,该转发器转发终端特定的信号的波束对应于网络设备按照上述方式2指示的第二波束标识。
在一些实施例中,还可以根据接收的波束配置是半静态波束配置还是动态波束配置来确定网络设备按照上述方式1还是方式2指示接收该波束配置的波束对应第一波束标识还是第二波束标识。
例如,该转发器接收半静态波束配置的波束对应于网络设备按照上述方式1指示的第一波束标识,该转发器接收动态波束配置的波束对应于网络设备按照上述方式2指示的第二波束标识。
在一些实施例中,还可以根据接入链路的波束的宽窄或类型或精度来确定网络设备按照上述方式1指示与该波束对应的第一波束标识还是按照方式2指示与该波束对应的第二波束标识。
例如,该转发器接入链路的宽波束对应于网络设备按照上述方式1指示的第一波束标识,该转发器接入链路的窄波束对应于网络设备按照上述方式2指示的第二波束标识;也可以说,该转发器接入链路的低精度波束对应于网络设备按照上述方式1指示的第一波束标识,该转发器接入链路的高精度波束对应于网络设备按照上述方式2指示的第二波束标识。
由上述实施例可知,转发器根据从网络设备接收的接入链路的波束标识,使用与该波束标识对应的波束进行接入链路上的转发,使网络设备能够调度转发器用于转发的接入链路波束,并使转发器能够确定转发的接入链路波束,因此,能够有效利用波束标识并完成终端与网络设备之间的转发。
实施例2
本申请实施例2还提供一种转发器接入链路的波束标识的指示方法,该方法应用于网络设备侧。该方法对应于实施例1中的转发器侧的转发器接入链路的转发方法,相同的内容不再重复说明。例如,该方法应用于图1和图2中的网络设备101。
图7是本申请实施例2的转发器接入链路的波束标识的指示方法的一示意图。如图7所示,该方法包括:
步骤701:网络设备向转发器指示接入链路的波束标识。
在一些实施例中,该网络设备通过RRC信令、MAC CE以及物理层信令中的至少一种指示该接入链路的波束标识。
在一些实施例中,该网络设备向该转发器指示该网络设备配置的接入链路的波束标识中的至少一个;或者,该网络设备向该转发器指示该转发器上报的接入链路的波束标识中的至少一个。
在一些实施例中,该方法还包括:该网络设备接收该转发器上报的信息;该网络设备根据该转发器上报的信息配置该接入链路的波束标识。
在一些实施例中,该转发器上报的信息包括:该接入链路支持的波束数量信息、该接入链路的波束之间的关系以及是否支持同时在不同该接入链路的波束上转发中的至少一个。
在一些实施例中,该接入链路支持的波束数量信息包括以下中的至少一个:该接入链路支持的波束总数、该接入链路支持的转发波束总数、该接入链路支持的同时转发的波束总数以及不同类型的波束数量。
在一些实施例中,该方法还包括:该网络设备配置接入链路的波束标识。
在一些实施例中,
对于该网络设备向该转发器指示该网络设备配置的接入链路的波束标识中的至少一个的情况,该方法还包括:该网络设备向该转发器指示该接入链路的波束标识对应的波束之间的关系信息;
对于该网络设备向该转发器指示该转发器上报的接入链路的波束标识中的至少一个的情况,该方法还包括:该网络设备接收该转发器上报的该接入链路的波束标识;以及该网络设备接收该转发器上报的该接入链路的波束标识对应的波束之间的关系信息。
在一些实施例中,该网络设备向该转发器指示该转发器上报的接入链路的波束标识中的至少一个;或者,该网络设备向该转发器指示该网络设备配置的接入链路的波束标识中的至少一个。
在一些实施例中,该网络设备通过RRC信令配置该网络设备配置的接入链路的波束标识中的至少一个波束标识或该转发器上报的接入链路的波束标识中的至少一个波束标识;该网络设备通过MAC CE激活第一部分波束标识;以及该网络设备通过物理层信令的域指示第二部分波束标识,该第一部分波束标识包括该RRC信令配置的波束标识中的至少一个波束标识,该第二部分波束标识包括该第一部分波束标识中的至少一个波束标识。该网络设备向该转发器指示的该波束标识是该第二部分波束 标识。
在一些实施例中,该波束之间的关系是指不同波束标识对应的波束之间的关系。
在一些实施例中,该波束之间的关系包括:两个波束是不同方向的,或者,两个波束是同一方向不同宽窄的。
在一些实施例中,该网络设备向该转发器指示的该波束标识由第一数量的比特指示对应的波束标识,或者,该网络设备向该转发器指示的该波束标识由位图(bitmap)的方式指示对应的波束标识。
在一些实施例中,对于该波束标识由第一数量的比特指示对应波束标识的情况,该第一数量由该接入链路的波束标识总数确定,或者,该第一数量由该接入链路支持的转发波束总数确定,或者,该第一数量由该转发器接收的该波束标识总数确定。
在一些实施例中,对于该波束标识由位图的方式指示对应波束标识的情况,该位图的比特数是该接入链路的波束标识总数,或者,该位图的比特数是该接入链路支持的转发波束总数,或者,该位图的比特数是该转发器接收的该波束标识总数。
图8是本申请实施例2的实施转发器接入链路的转发方法的一交互图。如图8所示,该方法包括:
步骤801:网络设备向转发器指示接入链路的波束标识;
步骤802:转发器的转发单元使用接收的该波束标识对应的波束进行转发。
图7和图8中的上述各个步骤的具体实施方法可以参考实施例1中的记载,此处不再重复说明。
由上述实施例可知,转发器根据从网络设备接收的接入链路的波束标识,使用与该波束标识对应的波束进行接入链路上的转发,使网络设备能够调度转发器用于转发的接入链路波束,并使转发器能够确定转发的接入链路波束,因此,能够有效利用波束标识并完成终端与网络设备之间的转发。
实施例3
本申请实施例3提供了一种转发器接入链路的转发装置,该装置设置于转发器。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参照实施例1所述的方法的实施,内容相同或相关之处不再重复说明。
图9是本申请实施例3的转发器接入链路的转发装置的一示意图,如图9所示,转发器接入链路的转发装置900包括:
接收单元901,其接收来自网络设备的接入链路的波束标识;以及,
转发单元902,其使用接收的该波束标识对应的波束进行转发。
在一些实施例中,接收单元901是NCR-MT或NCR-MT的一部分;转发单元902是NCR-Fwd。
在一些实施例中,该转发器接收的该波束标识通过RRC信令、MAC CE以及物理层信令中的至少一种指示。
在一些实施例中,该转发器接收的该波束标识是该网络设备配置的接入链路的波束标识中的至少一个;或者,该转发器接收的该波束标识是该转发器上报的该接入链路的波束标识中的至少一个。
在一些实施例中,对于该波束标识是该网络设备配置的接入链路的波束标识中的至少一个的情况,该波束标识是该网络设备根据该转发器上报的信息配置的。
在一些实施例中,该转发器上报的信息包括:该接入链路支持的波束数量信息、该接入链路的波束之间的关系以及是否支持同时在不同该接入链路的波束上转发中的至少一个。
在一些实施例中,该接入链路支持的波束数量信息包括以下中的至少一个:该接入链路支持的波束总数、该接入链路支持的转发波束总数、该接入链路支持的同时转发的波束总数以及不同类型的波束数量。
在一些实施例中,对于该波束标识是该网络设备配置的的接入链路的波束标识中的至少一个情况,该接收单元901还从该网络设备接收该波束标识对应的波束之间的关系信息。
在一些实施例中,对于该波束标识是该转发器上报的接入链路的波束标识中的至少一个的情况,如图9所示,该装置还包括:
发送单元903,其向该网络设备上报该波束标识对应的波束之间的关系信息。
在一些实施例中,发送单元903是NCR-MT或NCR-MT的一部分。
在一些实施例中,该网络设备通过RRC信令配置该网络设备配置的接入链路的波束标识中的至少一个波束标识或该转发器上报的接入链路的波束标识中的至少一个波束标识,通过MAC CE激活第一部分波束标识,通过物理层信令的域指示第二部分波束标识,该第一部分波束标识包括该RRC信令配置的波束标识中的至少一个波束标识,该第二部分波束标识包括该第一部分波束标识中的至少一个波束标识,该 转发器接收的该波束标识是该第二部分波束标识。
在一些实施例中,该转发器接收的该波束标识包括该网络设备配置的或该转发器上报的第一波束标识,以及通过RRC信令配置和MAC CE激活和物理层信令的域指示的第二波束标识,
在一些实施例中,该转发器转发广播信号的波束对应于网络设备按照实施例1中的方式1指示的第一波束标识,该转发器转发终端特定的信号的波束对应于网络设备按照实施例1中的方式2指示的第二波束标识,和/或,该转发器接收半静态波束配置的波束对应于网络设备按照实施例1中的方式1指示的第一波束标识,该转发器接收动态波束配置的波束对应于网络设备按照实施例1中的方式2指示的第二波束标识,和/或,该转发器接入链路的宽波束对应于网络设备按照实施例1中的方式1指示的第一波束标识,该转发器接入链路的窄波束对应于网络设备按照实施例1中的方式2指示的第二波束标识。
在一些实施例中,该波束之间的关系是不同波束标识对应的波束之间的关系。
在一些实施例中,该波束之间的关系至少包括:不同波束标识对应的波束是不同方向的,或者,不同波束标识对应波束是同一方向不同宽窄的。
在一些实施例中,该转发器接收的该波束标识由第一数量的比特指示对应的波束标识,或者,该转发器接收的该波束标识由位图(bitmap)的方式指示对应的波束标识。
在一些实施例中,对于该波束标识由第一数量的比特指示对应波束标识的情况,该第一数量由该接入链路的波束标识总数确定,或者,该第一数量由该接入链路支持的转发波束总数确定,或者,该第一数量由该转发器接收的该波束标识总数确定。
在一些实施例中,对于该波束标识由位图的方式指示对应波束标识的情况,该位图的比特数是该接入链路的波束标识总数,或者,该位图的比特数是该接入链路支持的转发波束总数,或者,该位图的比特数是该转发器接收的该波束标识总数。
上述各个单元的功能及其具体内容可以参考实施例1中的相关步骤的记载,此处不再重复说明。
由上述实施例可知,转发器根据从网络设备接收的接入链路的波束标识,使用与该波束标识对应的波束进行接入链路上的转发,使网络设备能够调度转发器用于转发的接入链路波束,并使转发器能够确定转发的接入链路波束,因此,能够有效利用波 束标识并完成终端与网络设备之间的转发。
实施例4
本申请实施例4提供了一种转发器接入链路的波束标识的指示装置,该装置应用于网络设备侧。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参照实施例2所述的方法的实施,内容相同或相关之处不再重复说明。
图10是本申请实施例4的转发器接入链路的波束标识的指示装置的一示意图,如图10所示,转发器接入链路的波束标识的指示装置1000包括:
第一指示单元1001,其向转发器指示接入链路的波束标识。
在一些实施例中,该网络设备通过RRC信令、MAC CE以及物理层信令中的至少一种指示该接入链路的波束标识。
图11是本申请实施例4的转发器接入链路的波束标识的指示装置的另一示意图,如图11所示,转发器接入链路的波束标识的指示装置1100包括:
第一指示单元1001,其向转发器指示接入链路的波束标识;
在一些实施例中,对于由网络设备配置接入链路的波束标识的情况,该装置还包括:
第二指示单元1002,其向该转发器指示该接入链路的波束标识对应的波束之间的关系信息。
在一些实施例中,对于由网络设备配置接入链路的波束标识的情况,该装置还包括:
第一接收单元1003,其接收该转发器上报的信息;
第一配置单元1004,其根据该转发器上报的信息配置该接入链路的波束标识。
在一些实施例中,该转发器上报的信息包括:该接入链路支持的波束数量信息、该接入链路的波束之间的关系以及是否支持同时在不同该接入链路的波束上转发中的至少一个。
在一些实施例中,该接入链路支持的波束数量信息包括以下中的至少一个:该接入链路支持的波束总数、该接入链路支持的转发波束总数、该接入链路支持的同时转发的波束总数以及不同类型的波束数量。
或者,在一些实施例中,对于由网络设备配置接入链路的波束标识的情况,该装置还包括:
第二配置单元1005,其配置接入链路的波束标识。即,网络设备独立的确定接入链路的波束标识。
例如,第二配置单元1005可替代第一接收单元1003和第二配置单元1004。
第二指示单元1002、第一接收单元1003、第二配置单元1004以及第二配置单元1005为可选部件。
图12是本申请实施例4的转发器接入链路的波束标识的指示装置的又一示意图,如图12所示,转发器接入链路的波束标识的指示装置1200包括:
第一指示单元1001,其向转发器指示接入链路的波束标识;
在一些实施例中,对于由转发器上报接入链路的波束标识的情况,该装置还包括:
第二接收单元1006,其接收该转发器上报的该接入链路的波束标识;
第三接收单元1007,其接收该转发器上报的该接入链路的波束标识对应的波束之间的关系信息。
第二接收单元1006、第三接收单元1007为可选部件。
在一些实施例中,该网络设备通过RRC信令配置该网络设备配置的接入链路的波束标识中的至少一个波束标识或该转发器上报的接入链路的波束标识中的至少一个波束标识;该网络设备通过MAC CE激活第一部分波束标识;以及该网络设备通过物理层信令的域指示第二部分波束标识,该第一部分波束标识包括该RRC信令配置的波束标识中的至少一个波束标识,该第二部分波束标识包括该第一部分波束标识中的至少一个波束标识。该网络设备向该转发器指示的该波束标识是该第二部分波束标识。
在一些实施例中,该波束之间的关系是指不同波束标识对应的波束之间的关系。
在一些实施例中,该波束之间的关系包括:两个波束是不同方向的,或者,两个波束是同一方向不同宽窄的。
在一些实施例中,该网络设备向该转发器指示的该波束标识由第一数量的比特指示对应的波束标识,或者,该网络设备向该转发器指示的该波束标识由位图(bitmap)的方式指示对应的波束标识。
在一些实施例中,对于该波束标识由第一数量的比特指示对应波束标识的情况,该第一数量由该接入链路的波束标识总数确定,或者,该第一数量由该接入链路支持的转发波束总数确定,或者,该第一数量由该转发器接收的该波束标识总数确定。
在一些实施例中,对于该波束标识由位图的方式指示对应波束标识的情况,该位图的比特数是该接入链路的波束标识总数,或者,该位图的比特数是该接入链路支持的转发波束总数,或者,该位图的比特数是该转发器接收的该波束标识总数。
上述各个单元的功能及其具体内容可以参考实施例2中的相关步骤的记载,此处不再重复说明。
由上述实施例可知,转发器根据从网络设备接收的接入链路的波束标识,使用与该波束标识对应的波束进行接入链路上的转发,使网络设备能够调度转发器用于转发的接入链路波束,并使转发器能够确定转发的接入链路波束,因此,能够有效利用波束标识并完成终端与网络设备之间的转发。
实施例5
本申请实施例提供了一种转发器,该转发器包括如实施例3所述的转发器接入链路的转发装置。
图13是本申请实施例5的转发器的系统构成的一示意框图。如图13所示,转发器1300可以包括处理器1310和存储器1320;存储器1320耦合到处理器1310。其中该存储器1320可存储各种数据;此外还存储信息处理的程序1330,并且在处理器1310的控制下执行该程序1330。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,转发器接入链路的转发装置的功能可以被集成到处理器1310中。其中,处理器1310可以被配置为:转发器的接收单元接收来自网络设备的接入链路的波束标识;以及,转发器的转发单元使用接收的该波束标识对应的波束进行转发。
在另一个实施方式中,转发器接入链路的转发装置可以与处理器1310分开配置,例如可以将转发器接入链路的转发装置配置为与处理器1310连接的芯片,通过处理器1310的控制来实现转发器接入链路的转发装置的功能。
如图13所示,转发器1300还可以包括:网络侧收发机1340-1和网络侧天线1350-1、终端侧收发机1340-2和终端侧天线1350-2以及信号放大电路1360等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,转发器1300也并不是必须要包括图13中所示的所有部件;此外,转发器1300还可以包括图13中没有示出的部件,可以参考现有技术。
如图13所示,处理器1310有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该处理器1310接收输入并控制转发器1300的各个部件的操作。
其中,存储器1320,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种数据,此外还可存储执行有关信息的程序。并且处理器1310可执行该存储器1320存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。
转发器1300的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本申请的范围。
由上述实施例可知,转发器根据从网络设备接收的接入链路的波束标识,使用与该波束标识对应的波束进行接入链路上的转发,使网络设备能够调度转发器用于转发的接入链路波束,并使转发器能够确定转发的接入链路波束,因此,能够有效利用波束标识并完成终端与网络设备之间的转发。
实施例6
本申请实施例提供了一种网络设备,该网络设备包括如实施例4所述的转发器接入链路的波束标识的指示装置。
图14是本申请实施例6的网络设备的系统构成的一示意框图。如图14所示,网络设备1400可以包括:处理器(processor)1410和存储器1420;存储器1420耦合到处理器1410。其中该存储器1420可存储各种数据;此外还存储信息处理的程序1430,并且在处理器1410的控制下执行该程序1430,以接收转发器发送的各种信息、并且向转发器发送各种信息。
在一个实施方式中,转发器接入链路的波束标识的指示装置的功能可以被集成到处理器1410中。其中,处理器1410可以被配置为:网络设备向转发器指示接入链路的波束标识。
此外,如图14所示,网络设备1400还可以包括:收发机1440和天线1450等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1400也并不是必须要包括图14中所示的所有部件;此外,网络设备1400还可以包括图14中没有示出的部件,可以参考现有技术。
由上述实施例可知,转发器根据从网络设备接收的接入链路的波束标识,使用与 该波束标识对应的波束进行接入链路上的转发,使网络设备能够调度转发器用于转发的接入链路波束,并使转发器能够确定转发的接入链路波束,因此,能够有效利用波束标识并完成终端与网络设备之间的转发。
实施例7
本申请实施例提供了一种通信系统,包括如实施例5所述的转发器和/或如实施例6所述的网络设备。
例如,该通信系统的结构可以参照图1和图2。
如图1所示,通信系统100包括网络设备101和终端设备102,以及转发器103,转发器103可以与实施例5中记载的转发器相同,网络设备101与实施例6中记载的网络设备相同,重复的内容不再赘述。
本申请实施例以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请实施例涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请实施例还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图9中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图3所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对图9中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合, 可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对图9描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记一
1、一种转发器接入链路的转发装置,所述装置设置于转发器,所述装置包括:
接收单元,其接收来自网络设备的接入链路的波束标识;以及,
转发单元,其使用接收的所述波束标识对应的波束进行转发。
2、根据附记1所述的装置,其中,
所述转发器接收的所述波束标识通过RRC信令、MAC CE以及物理层信令中的至少一种指示。
3、根据附记1所述的装置,其中,
所述转发器接收的所述波束标识是所述网络设备配置的接入链路的波束标识中的至少一个;或者,
所述转发器接收的所述波束标识是所述转发器上报的接入链路的波束标识中的至少一个。
4、根据附记3所述的装置,其中,
对于所述波束标识是所述网络设备配置的接入链路的波束标识中的至少一个的情况,所述波束标识是所述网络设备根据所述转发器上报的信息配置的。
5、根据附记4所述的装置,其中,所述转发器上报的信息包括:
所述接入链路支持的波束数量信息、所述接入链路的波束之间的关系以及是否支持同时在不同所述接入链路的波束上转发中的至少一个。
6、根据附记5所述的装置,其中,所述接入链路支持的波束数量信息包括以下中的至少一个:
所述接入链路支持的波束总数、所述接入链路支持的转发波束总数、所述接入链路支持的同时转发的波束总数以及不同类型的波束数量。
7、根据附记3所述的装置,其中,对于所述波束标识是所述网络设备配置的接入链路的波束标识中的至少一个的情况,
所述接收单元还从所述网络设备接收所述波束标识对应的波束之间的关系信息。
8、根据附记3所述的装置,其中,对于所述波束标识是所述转发器上报的接入链路的波束标识中的至少一个的情况,所述装置还包括:
发送单元,其向所述网络设备上报所述波束标识对应的波束之间的关系信息。
9、根据附记2-8中的任一项所述的装置,其中,
所述网络设备通过RRC信令配置所述网络设备配置的接入链路的波束标识中的至少一个波束标识或所述转发器上报的接入链路的波束标识中的至少一个波束标识,通过MAC CE激活第一部分波束标识,通过物理层信令的域指示第二部分波束标识,
所述第一部分波束标识包括所述RRC信令配置的波束标识中的至少一个波束标识,
所述第二部分波束标识包括所述第一部分波束标识中的至少一个波束标识,
所述转发器接收的所述波束标识是所述第二部分波束标识。
10、根据附记2-9中的任一项所述的装置,其中,
所述转发器接收的所述波束标识包括所述网络设备指示的由所述网络设备配置的或所述转发器上报的第一波束标识,以及所述网络设备通过RRC信令配置和MAC CE激活和物理层信令的域指示的第二波束标识,
11、根据附记10所述的装置,其中,
所述转发器转发广播信号的波束对应于所述网络设备指示的所述第一波束标识,所述转发器转发终端特定的信号的波束对应于所述网络设备指示的所述第二波束标识,和/或,
所述转发器接收半静态波束配置的波束对应于所述网络设备指示的所述第一波束标识,所述转发器接收动态波束配置的波束对应于所述网络设备指示的所述第二波束标识,和/或,
所述转发器接入链路的宽波束对应于所述网络设备指示的所述第一波束标识,所述转发器接入链路的窄波束对应于所述网络设备指示的所述第二波束标识。
12、根据附记5、7、8中的任一项所述的装置,其中,
所述波束之间的关系是不同波束标识对应的波束之间的关系。
13、根据附记12所述的装置,其中,
所述波束之间的关系至少包括:不同波束标识对应的波束是不同方向的,或者,不同波束标识对应波束是同一方向不同宽窄的。
14、根据附记1或2所述的装置,其中,
所述转发器接收的所述波束标识由第一数量的比特指示对应的波束标识,或者,
所述转发器接收的所述波束标识由位图(bitmap)的方式指示对应的波束标识。
15、根据附记14所述的装置,其中,对于所述波束标识由第一数量的比特指示对应波束标识的情况,
所述第一数量由所述接入链路的波束标识总数确定,或者,
所述第一数量由所述接入链路支持的转发波束总数确定,或者,
所述第一数量由所述转发器接收的所述波束标识总数确定。
16、根据附记14所述的装置,其中,对于所述波束标识由位图的方式指示对应波束标识的情况,
所述位图的比特数是所述接入链路的波束标识总数,或者,
所述位图的比特数是所述接入链路支持的转发波束总数,或者,
所述位图的比特数是所述转发器接收的所述波束标识总数。
17、一种转发器接入链路的波束标识的指示装置,所述装置设置于网络设备,所述装置包括:
第一指示单元,其向转发器指示接入链路的波束标识。
18、根据附记17所述的装置,其中,
所述网络设备通过RRC信令、MAC CE以及物理层信令中的至少一种指示所述接入链路的波束标识。
19、根据权利要求17所述的装置,其中,
所述网络设备向所述转发器指示所述网络设备配置的接入链路的波束标识中的至少一个;或者,
所述网络设备向所述转发器指示所述转发器上报的接入链路的波束标识中的至少一个。
20、根据附记17所述的装置,其中,所述装置还包括:
第一接收单元,其接收所述转发器上报的信息;
第一配置单元,其根据所述转发器上报的信息配置接入链路的波束标识。
21、根据附记20所述的装置,其中,所述转发器上报的信息包括:
所述接入链路支持的波束数量信息、所述接入链路的波束之间的关系以及是否支持同时在不同所述接入链路的波束上转发中的至少一个。
22、根据附记21所述的装置,其中,所述接入链路支持的波束数量信息包括以下中的至少一个:
所述接入链路支持的波束总数、所述接入链路支持的转发波束总数、所述接入链路支持的同时转发的波束总数以及不同类型的波束数量。
23、根据附记17所述的装置,其中,所述装置还包括:
第二配置单元,其配置接入链路的波束标识。
24、根据附记19所述的装置,其中,所述装置还包括:
第二指示单元,其向所述转发器指示所述接入链路的波束标识对应的波束之间的关系信息,
或者,所述装置还包括:
第二接收单元,其接收所述转发器上报的所述接入链路的波束标识;以及
第三接收单元,其接收所述转发器上报的所述接入链路的波束标识对应的波束之间的关系信息。
25、根据附记19-24中的任一项所述的装置,其中,
所述网络设备通过RRC信令配置所述网络设备配置的接入链路的波束标识中的至少一个波束标识或所述转发器上报的接入链路的波束标识中的至少一个波束标识;
所述网络设备通过MAC CE激活第一部分波束标识;以及
所述网络设备通过物理层信令的域指示第二部分波束标识,
所述第一部分波束标识包括所述RRC信令配置的波束标识中的至少一个波束标识,
所述第二部分波束标识包括所述第一部分波束标识中的至少一个波束标识,
所述网络设备向所述转发器指示的所述波束标识是所述第二部分波束标识。
26、根据附记21或24所述的装置,其中,
所述波束之间的关系是指不同波束标识对应的波束之间的关系。
27、根据附记26所述的装置,其中,
所述波束之间的关系包括:两个波束是不同方向的,或者,两个波束是同一方向不同宽窄的。
28、根据附记1或2所述的装置,其中,
所述网络设备向所述转发器指示的所述波束标识由第一数量的比特指示对应的波束标识,或者,
所述网络设备向所述转发器指示的所述波束标识由位图(bitmap)的方式指示对应的波束标识。
29、根据附记28所述的装置,其中,对于所述波束标识由第一数量的比特指示对应波束标识的情况,
所述第一数量由所述接入链路的波束标识总数确定,或者,
所述第一数量由所述接入链路支持的转发波束总数确定,或者,
所述第一数量由所述转发器接收的所述波束标识总数确定。
30、根据附记28所述的装置,其中,对于所述波束标识由位图的方式指示对应波束标识的情况,
所述位图的比特数是所述接入链路的波束标识总数,或者,
所述位图的比特数是所述接入链路支持的转发波束总数,或者,
所述位图的比特数是所述转发器接收的所述波束标识总数。
31、一种转发器,所述转发器包括附记1-16中的任一项所述的装置。
32、一种网络设备,所述网络设备包括附记17-30中的任一项所述的装置。
33、一种通信系统,所述通信系统包括附记31所述的转发器和/或附记32所述的网络设备。
附记二
1、一种转发器接入链路的转发方法,所述方法包括:
转发器的接收单元接收来自网络设备的接入链路的波束标识;以及,
转发器的转发单元使用接收的所述波束标识对应的波束进行转发。
2、根据附记1所述的方法,其中,
所述转发器接收的所述波束标识通过RRC信令、MAC CE以及物理层信令中的至少一种指示。
3、根据附记1所述的方法,其中,
所述转发器接收的所述波束标识是所述网络设备配置的接入链路的波束标识中的至少一个;或者,
所述转发器接收的所述波束标识是所述转发器上报的接入链路的波束标识中的至少一个。
4、根据附记3所述的方法,其中,
对于所述波束标识是所述网络设备配置的情况,所述波束标识是所述网络设备根据所述转发器上报的信息配置的。
5、根据附记4所述的方法,其中,所述转发器上报的信息包括:
所述接入链路支持的波束数量信息、所述接入链路的波束之间的关系以及是否支持同时在不同所述接入链路的波束上转发中的至少一个。
6、根据附记5所述的方法,其中,所述接入链路支持的波束数量信息包括以下中的至少一个:
所述接入链路支持的波束总数、所述接入链路支持的转发波束总数、所述接入链路支持的同时转发的波束总数以及不同类型的波束数量。
7、根据附记3所述的方法,其中,对于所述波束标识是所述网络设备配置的接入链路的波束标识中的至少一个的情况,所述方法还包括:
所述转发器从所述网络设备接收所述波束标识对应的波束之间的关系信息。
8、根据附记3所述的方法,其中,对于所述波束标识是所述转发器上报的接入链路的波束标识中的至少一个的情况,所述方法还包括:
所述转发器向所述网络设备上报所述波束标识对应的波束之间的关系信息。
9、根据附记2-8中的任一项所述的方法,其中,
所述网络设备通过RRC信令配置所述网络设备配置的接入链路的波束标识中的至少一个波束标识或所述转发器上报的接入链路的波束标识中的至少一个波束标识,通过MAC CE激活第一部分波束标识,通过物理层信令的域指示第二部分波束标识,
所述第一部分波束标识包括所述RRC信令配置的波束标识中的至少一个波束标识,
所述第二部分波束标识包括所述第一部分波束标识中的至少一个波束标识,
所述转发器接收的所述波束标识是所述第二部分波束标识。
10、根据附记2-9中的任一项所述的方法,其中,
所述转发器接收的所述波束标识包括所述网络设备指示的由所述网络设备配置的或所述转发器上报的第一波束标识,以及所述网络设备通过RRC信令配置和MAC CE激活和物理层信令的域指示的第二波束标识,
11、根据附记10所述的方法,其中,
所述转发器转发广播信号的波束对应于所述网络设备指示的所述第一波束标识,所述转发器转发终端特定的信号的波束对应于所述网络设备指示的所述第二波束标识,和/或,
所述转发器接收半静态波束配置的波束对应于所述网络设备指示的所述第一波束标识,所述转发器接收动态波束配置的波束对应于所述网络设备指示的所述第二波束标识,和/或,
所述转发器接入链路的宽波束对应于所述网络设备指示的所述第一波束标识,所述转发器接入链路的窄波束对应于所述网络设备指示的所述第二波束标识。
12、根据附记5、7、8中的任一项所述的方法,其中,
所述波束之间的关系是不同波束标识对应的波束之间的关系。
13、根据附记12所述的方法,其中,
所述波束之间的关系至少包括:不同波束标识对应的波束是不同方向的,或者,不同波束标识对应波束是同一方向不同宽窄的。
14、根据附记1或2所述的方法,其中,
所述转发器接收的所述波束标识由第一数量的比特指示对应的波束标识,或者,
所述转发器接收的所述波束标识由位图(bitmap)的方式指示对应的波束标识。
15、根据附记14所述的方法,其中,对于所述波束标识由第一数量的比特指示对应波束标识的情况,
所述第一数量由所述接入链路的波束标识总数确定,或者,
所述第一数量由所述接入链路支持的转发波束总数确定,或者,
所述第一数量由所述转发器接收的所述波束标识总数确定。
16、根据附记14所述的方法,其中,对于所述波束标识由位图的方式指示对应波束标识的情况,
所述位图的比特数是所述接入链路的波束标识总数,或者,
所述位图的比特数是所述接入链路支持的转发波束总数,或者,
所述位图的比特数是所述转发器接收的所述波束标识总数。
17、一种转发器接入链路的波束标识的指示方法,所述方法包括:
网络设备向转发器指示接入链路的波束标识。
18、根据附记17所述的方法,其中,
所述网络设备通过RRC信令、MAC CE以及物理层信令中的至少一种指示所述接入链路的波束标识。
19、根据权利要求17所述的方法,其中,
所述网络设备向所述转发器指示所述网络设备配置的接入链路的波束标识中的至少一个;或者,
所述网络设备向所述转发器指示所述转发器上报的接入链路的波束标识中的至少一个。
20、根据附记17所述的方法,其中,所述方法还包括:
所述网络设备接收所述转发器上报的信息;
所述网络设备根据所述转发器上报的信息配置所述接入链路的波束标识。
21、根据附记20所述的方法,其中,所述转发器上报的信息包括:
所述接入链路支持的波束数量信息、所述接入链路的波束之间的关系以及是否支持同时在不同所述接入链路的波束上转发中的至少一个。
22、根据附记21所述的方法,其中,所述接入链路支持的波束数量信息包括以下中的至少一个:
所述接入链路支持的波束总数、所述接入链路支持的转发波束总数、所述接入链路支持的同时转发的波束总数以及不同类型的波束数量。
23、根据附记17所述的装置,其中,所述方法还包括:
所述网络设备配置接入链路的波束标识。
24、根据附记17所述的方法,其中,所述方法还包括:
所述网络设备向所述转发器指示所述接入链路的波束标识对应的波束之间的关系信息,
或者,所述方法还包括:
所述网络设备接收所述转发器上报的所述接入链路的波束标识;以及
所述网络设备接收所述转发器上报的所述接入链路的波束标识对应的波束之间的关系信息。
25、根据附记19-24中的任一项所述的方法,其中,
所述网络设备通过RRC信令配置所述网络设备配置的接入链路的波束标识中的至少一个波束标识或所述转发器上报的接入链路的波束标识中的至少一个波束标识;
所述网络设备通过MAC CE激活第一部分波束标识;以及
所述网络设备通过物理层信令的域指示第二部分波束标识,
所述第一部分波束标识包括所述RRC信令配置的波束标识中的至少一个波束标识,
所述第二部分波束标识包括所述第一部分波束标识中的至少一个波束标识,
所述网络设备向所述转发器指示的所述波束标识是所述第二部分波束标识。
26、根据附记21或24所述的方法,其中,
所述波束之间的关系是指不同波束标识对应的波束之间的关系。
27、根据附记26所述的方法,其中,
所述波束之间的关系包括:两个波束是不同方向的,或者,两个波束是同一方向不同宽窄的。
28、根据附记1或2所述的方法,其中,
所述网络设备向所述转发器指示的所述波束标识由第一数量的比特指示对应的波束标识,或者,
所述网络设备向所述转发器指示的所述波束标识由位图(bitmap)的方式指示对应的波束标识。
29、根据附记28所述的方法,其中,对于所述波束标识由第一数量的比特指示对应波束标识的情况,
所述第一数量由所述接入链路的波束标识总数确定,或者,
所述第一数量由所述接入链路支持的转发波束总数确定,或者,
所述第一数量由所述转发器接收的所述波束标识总数确定。
30、根据附记28所述的方法,其中,对于所述波束标识由位图的方式指示对应波束标识的情况,
所述位图的比特数是所述接入链路的波束标识总数,或者,
所述位图的比特数是所述接入链路支持的转发波束总数,或者,
所述位图的比特数是所述转发器接收的所述波束标识总数。

Claims (20)

  1. 一种转发器接入链路的转发装置,所述装置设置于转发器,所述装置包括:
    接收单元,其接收来自网络设备的接入链路的波束标识;以及,
    转发单元,其使用接收的所述波束标识对应的波束进行转发。
  2. 根据权利要求1所述的装置,其中,
    所述转发器接收的所述波束标识通过RRC信令、MAC CE以及物理层信令中的至少一种指示。
  3. 根据权利要求1所述的装置,其中,
    所述转发器接收的所述波束标识是所述网络设备配置的接入链路的波束标识中的至少一个;或者,
    所述转发器接收的所述波束标识是所述转发器上报的接入链路的波束标识中的至少一个。
  4. 根据权利要求3所述的装置,其中,
    对于所述波束标识是所述网络设备配置的情况,所述波束标识是所述网络设备根据所述转发器上报的信息配置的。
  5. 根据权利要求4所述的装置,其中,所述转发器上报的信息包括:
    所述接入链路支持的波束数量信息、所述接入链路的波束之间的关系以及是否支持同时在不同所述接入链路的波束上转发中的至少一个。
  6. 根据权利要求5所述的装置,其中,所述接入链路支持的波束数量信息包括以下中的至少一个:
    所述接入链路支持的波束总数、所述接入链路支持的转发波束总数、所述接入链路支持的同时转发的波束总数以及不同类型的波束数量。
  7. 根据权利要求3所述的装置,其中,对于所述波束标识是所述网络设备配置接入链路的波束标识中的至少一个的情况,
    所述接收单元还从所述网络设备接收所述波束标识对应的波束之间的关系信息。
  8. 根据权利要求3所述的装置,其中,对于所述波束标识是所述转发器上报的接入链路的波束标识中的至少一个的情况,所述装置还包括:
    发送单元,其向所述网络设备上报所述波束标识对应的波束之间的关系信息。
  9. 根据权利要求2所述的装置,其中,
    所述网络设备通过RRC信令配置所述网络设备配置的接入链路的波束标识中的至少一个波束标识或所述转发器上报的接入链路的波束标识中的至少一个波束标识,通过MAC CE激活第一部分波束标识,通过物理层信令的域指示第二部分波束标识,
    所述第一部分波束标识包括所述RRC信令配置的波束标识中的至少一个波束标识,
    所述第二部分波束标识包括所述第一部分波束标识中的至少一个波束标识,
    所述转发器接收的所述波束标识是所述第二部分波束标识。
  10. 根据权利要求2所述的装置,其中,
    所述转发器接收的所述波束标识包括所述网络设备指示的由所述网络设备配置的或所述转发器上报的第一波束标识,以及所述网络设备通过RRC信令配置和MAC CE激活和物理层信令的域指示的第二波束标识。
  11. 根据权利要求10所述的装置,其中,
    所述转发器转发广播信号的波束对应于所述网络设备指示的所述第一波束标识,所述转发器转发终端特定的信号的波束对应于所述网络设备指示的所述第二波束标识,和/或,
    所述转发器接收半静态波束配置的波束对应于所述网络设备指示的所述第一波束标识,所述转发器接收动态波束配置的波束对应于所述网络设备指示的所述第二波束标识,和/或,
    所述转发器接入链路的宽波束对应于所述网络设备指示的所述第一波束标识,所述转发器接入链路的窄波束对应于所述网络设备指示的所述第二波束标识。
  12. 根据权利要求5所述的装置,其中,
    所述波束之间的关系是不同波束标识对应的波束之间的关系。
  13. 根据权利要求12所述的装置,其中,
    所述波束之间的关系至少包括:不同波束标识对应的波束是不同方向的,或者,不同波束标识对应波束是同一方向不同宽窄的。
  14. 根据权利要求1所述的装置,其中,
    所述转发器接收的所述波束标识由第一数量的比特指示对应的波束标识,或者,
    所述转发器接收的所述波束标识由位图(bitmap)的方式指示对应的波束标识。
  15. 根据权利要求14所述的装置,其中,对于所述波束标识由第一数量的比特指示对应波束标识的情况,
    所述第一数量由所述接入链路的波束标识总数确定,或者,
    所述第一数量由所述接入链路支持的转发波束总数确定,或者,
    所述第一数量由所述转发器接收的所述波束标识总数确定。
  16. 根据权利要求14所述的装置,其中,对于所述波束标识由位图的方式指示对应波束标识的情况,
    所述位图的比特数是所述接入链路的波束标识总数,或者,
    所述位图的比特数是所述接入链路支持的转发波束总数,或者,
    所述位图的比特数是所述转发器接收的所述波束标识总数。
  17. 一种转发器接入链路的波束标识的指示装置,所述装置设置于网络设备,所述装置包括:
    第一指示单元,其向转发器指示接入链路的波束标识。
  18. 根据权利要求17所述的装置,其中,
    所述网络设备通过RRC信令、MAC CE以及物理层信令中的至少一种指示所述接入链路的波束标识。
  19. 根据权利要求17所述的装置,其中,
    所述网络设备向所述转发器指示所述网络设备配置的接入链路的波束标识中的至少一个;或者,
    所述网络设备向所述转发器指示所述转发器上报的接入链路的波束标识中的至少一个。
  20. 一种通信系统,所述通信系统包括转发器和/或网络设备,所述转发器包括权利要求1所述的装置,所述网络设备包括权利要求17所述的装置。
PCT/CN2022/122685 2022-09-29 2022-09-29 转发器接入链路的转发方法及装置 WO2024065414A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122685 WO2024065414A1 (zh) 2022-09-29 2022-09-29 转发器接入链路的转发方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122685 WO2024065414A1 (zh) 2022-09-29 2022-09-29 转发器接入链路的转发方法及装置

Publications (1)

Publication Number Publication Date
WO2024065414A1 true WO2024065414A1 (zh) 2024-04-04

Family

ID=90475287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122685 WO2024065414A1 (zh) 2022-09-29 2022-09-29 转发器接入链路的转发方法及装置

Country Status (1)

Country Link
WO (1) WO2024065414A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544981A (zh) * 2019-03-15 2021-10-22 高通股份有限公司 利用中继的定位
US20220053486A1 (en) * 2020-08-14 2022-02-17 Qualcomm Incorporated Control signal design for smart repeater devices
CN114270910A (zh) * 2021-11-26 2022-04-01 北京小米移动软件有限公司 一种智能中继服务链路的波束指示方法及其装置
CN114556806A (zh) * 2019-10-11 2022-05-27 高通股份有限公司 经由无线通信中继器进行调度
CN114982153A (zh) * 2020-01-23 2022-08-30 高通股份有限公司 用于转发rach消息2的智能mmw转发器的波束配置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544981A (zh) * 2019-03-15 2021-10-22 高通股份有限公司 利用中继的定位
CN114556806A (zh) * 2019-10-11 2022-05-27 高通股份有限公司 经由无线通信中继器进行调度
CN114982153A (zh) * 2020-01-23 2022-08-30 高通股份有限公司 用于转发rach消息2的智能mmw转发器的波束配置
US20220053486A1 (en) * 2020-08-14 2022-02-17 Qualcomm Incorporated Control signal design for smart repeater devices
CN114270910A (zh) * 2021-11-26 2022-04-01 北京小米移动软件有限公司 一种智能中继服务链路的波束指示方法及其装置

Similar Documents

Publication Publication Date Title
US10972924B2 (en) Beam-based multi-connection communication method, terminal device, and network device
US8958404B2 (en) Apparatus and method for providing access to a local area network
US9860712B2 (en) Communicating broadcast signals in carrier-aggregated wireless networks
US20220369214A1 (en) Method for indicating antenna switching capability, terminal device and communication device
US11751278B2 (en) Cell state management method and apparatus, terminal device, and network device
US12004012B2 (en) Method and device used for duplicate data transmission
US11546044B2 (en) Wireless communication method, terminal device and network device
US20230179374A1 (en) Channel transmission method, terminal device, and network device
WO2019072170A1 (zh) 通信方法和通信装置
WO2019237315A1 (zh) 一种控制安全功能的方法及装置、网络设备、终端设备
WO2018137569A1 (zh) 数据发送方法和装置及数据接收方法和装置
WO2024065414A1 (zh) 转发器接入链路的转发方法及装置
WO2024065416A1 (zh) 转发器的开关方法及装置
EP3883319A1 (en) Wireless communication method, terminal device and network device
WO2023206244A1 (zh) 转发器的配置方法及装置
WO2020087361A1 (zh) 信号发送方法、天线面板信息的指示方法、装置和系统
WO2023201661A1 (zh) 网络设备和转发器间的通信方法及装置
WO2023236023A1 (zh) 一种通信方法、装置和系统
WO2023236022A1 (zh) 一种通信方法、装置和系统
WO2023236021A1 (zh) 一种通信方法、装置和系统
WO2024065410A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024092819A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024092836A1 (zh) 信息指示方法、转发器和网络设备
WO2023028725A1 (zh) 一种用于转发器的波束指示方法、装置和系统
WO2023092426A1 (zh) 转发器、网络设备及其通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960051

Country of ref document: EP

Kind code of ref document: A1