WO2023019411A1 - 一种下行控制信息的对齐方法及其装置 - Google Patents

一种下行控制信息的对齐方法及其装置 Download PDF

Info

Publication number
WO2023019411A1
WO2023019411A1 PCT/CN2021/112873 CN2021112873W WO2023019411A1 WO 2023019411 A1 WO2023019411 A1 WO 2023019411A1 CN 2021112873 W CN2021112873 W CN 2021112873W WO 2023019411 A1 WO2023019411 A1 WO 2023019411A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
payload
rbs included
format1
scrambled
Prior art date
Application number
PCT/CN2021/112873
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002565.1A priority Critical patent/CN113841430B/zh
Priority to PCT/CN2021/112873 priority patent/WO2023019411A1/zh
Priority to EP21953665.3A priority patent/EP4391676A4/en
Priority to KR1020247008383A priority patent/KR20240039062A/ko
Priority to CN202310014728.9A priority patent/CN116208921A/zh
Priority to JP2024509009A priority patent/JP2024531285A/ja
Publication of WO2023019411A1 publication Critical patent/WO2023019411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/003Adaptive formatting arrangements particular to signalling, e.g. variable amount of bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a downlink control information alignment method and device thereof.
  • the downlink control information may be different from the information field contained in the DCI for dispatching other services, which may cause the payload payload of the DCI for dispatching the MBS service to be different from the payload of the DCI for dispatching other services.
  • the number of DCIs of different sizes resulting in a network device configuration may exceed the capability of the end device.
  • Embodiments of the present disclosure provide a method and device for aligning downlink control information, which can be applied in the field of communication technologies.
  • an embodiment of the present disclosure provides a method for aligning downlink control information, the method is executed by a network device, and the method includes: according to the statistical method of the DCI size of the first downlink control information, aligning the first DCI The payload payload is aligned with the payload of one of the second DCIs, where the first DCI is a DCI for scheduling multicast scheduling MBS specific services, and the second DCI is a DCI for scheduling other services.
  • the aligning the payload of the first DCI with the payload of one of the second DCIs according to the statistical manner of the size of the first DCI includes:
  • the statistical method of the first DCI size is to classify the first DCI as the DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned
  • the The payload of the first DCI is aligned with the payload of one of the second DCIs transmitted in the common search space CSS or the terminal device-specific search space USS.
  • the aligning the payload of the first DCI with the payload of one of the second DCI transmitted in the public search space CSS or the terminal device-specific search space USS includes:
  • the payload of the DCI is consistent with the payload of the DCI transmitted in the CSS in the format of format1_0;
  • the aligning the payload of the first DCI with the payload of one of the second DCIs according to the statistical manner of the size of the first DCI includes:
  • the statistical method of the first DCI size is to classify the first DCI as DCI scrambled by other RNTIs for statistics, combine the payload of the first DCI with the second DCI scrambled by other RNTIs payload alignment.
  • the aligning the payload of the first DCI with the payload of the second DCI scrambled by other RNTIs includes:
  • the number of resource blocks RB included in the control resource set CORESET#0, or the number of RBs included in the initial downlink DL bandwidth part BWP determine the size of the frequency domain resource allocation FDRA domain in the first DCI;
  • the payload of the first DCI is different from the payload of the second DCI scrambled by the other RNTI, align the first DCI with the payload of the second DCI scrambled by the other RNTI.
  • the aligning the first DCI with the payload of the second DCI scrambled by the other RNTI includes:
  • padding bits are added to the first DCI, or, after all valid information fields of the first DCI Add appended bits;
  • the first DCI is truncated.
  • the truncating the first DCI includes:
  • N is a positive integer.
  • the frequency-domain scheduling granularity of the first DCI is scaled.
  • the scaling the frequency-domain scheduling granularity of the first DCI includes:
  • the aligning the payload of the first DCI with the payload of one of the second DCIs according to the statistical manner of the size of the first DCI includes:
  • the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, and other second DCIs have not been aligned, according to the format of the first DCI , aligning the payload of the first DCI with the payload of one of the second DCIs.
  • the aligning the payload of the first DCI with the payload of one of the second DCIs according to the format of the first DCI includes:
  • the format of the first DCI is format1_0, determine the size of the FDRA field in the first DCI according to the number of RBs included in CORESET#0 or initial DL BWP;
  • the payload of the first DCI is different from the payload of the second DCI scrambled by other RNTIs, add padding bits in the first DCI, or add padding bits after all valid information fields of the first DCI appended bits, or perform a truncation operation on part of the information field, so that the payload of the first DCI is aligned with the payload of the second DCI scrambled by the other RNTI.
  • the number of RBs included in the CORESET#0 is greater than the number of RBs included in the CFR, or, the number of RBs included in the initial DL BWP is greater than the number of RBs included in the CFR
  • the frequency-domain scheduling granularity of the first DCI is scaled.
  • the scaling the frequency-domain scheduling granularity of the first DCI includes:
  • the aligning the payload of the first DCI with the payload of one of the second DCIs according to the format of the first DCI includes:
  • the format of the first DCI is format1_1 or format1_2, determine the size of the FDRA field in the first DCI according to the number of RBs included in the CFR;
  • the aligning the payload of the first DCI with the payload of one of the second DCIs includes:
  • the current cell is not configured with a second DCI having the same format as the first DCI, align the payload of the first DCI with the payload of the specified second DCI, where the specified second DCI is DCI in format1_1 or format1_2.
  • the aligning the payload of the first DCI with the payload of one of the second DCIs includes:
  • the first DCI is truncated.
  • adding padding bits in the first DCI, or adding appended bits after the information field of the first DCI includes:
  • the truncating the first DCI includes:
  • an embodiment of the present disclosure provides another downlink control information alignment method, the method is executed by a terminal device, and the method includes: determining the first DCI according to the statistical method of the DCI size of the first downlink control information The alignment of the payload payload of the second DCI and the payload of one of the second DCIs, wherein the first DCI is a DCI for scheduling multicast scheduling MBS specific services, and the second DCI is a DCI for scheduling other services DCI.
  • determining the alignment of the payload of the first DCI and the payload of one of the second DCIs according to the statistics of the size of the first DCI includes:
  • the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, determine the payload of the first DCI and one of the second DCI transmitted in the CSS DCI payload alignment;
  • the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, determine the payload of the first DCI and one of the second DCI transmitted in the USS DCI payload alignment;
  • the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, determine to align with the first DCI according to the format of the first DCI the second DCI;
  • the statistical method of the first DCI size is to classify the first DCI as DCI scrambled by other RNTIs for statistics, determine the payload of the first DCI and the second DCI scrambled by other RNTIs payload alignment.
  • the determining the second DCI aligned with the first DCI according to the format of the first DCI includes:
  • the current cell is configured with a second DCI having the same format as the first DCI, determine that the second DCI aligned with the payload of the first DCI is The second DCI scrambled by the C-RNTI;
  • the format of the first DCI is format1_1 or format1_2
  • the current cell is not configured with a second DCI having the same format as the first DCI
  • determine that the second DCI aligned with the payload of the first DCI is Specifying the second DCI, wherein the specified second DCI is a DCI with format1_1 or format1_2.
  • N is a positive integer.
  • the frequency-domain scheduling granularity of the first DCI is scaled.
  • the scaling the frequency-domain scheduling granularity of the first DCI includes:
  • the embodiment of the present disclosure provides a communication device, which has part or all of the functions of the network device in the method described in the first aspect above, for example, the functions of the communication device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the present disclosure provides another communication device, which has some or all functions of the terminal device in the method example described in the second aspect above, for example, the function of the communication device may have part of the present disclosure Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present disclosure alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned network device, and when the instructions are executed, the method described in the above-mentioned first aspect is implemented.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned terminal device, and when the instructions are executed, the method described in the above-mentioned second aspect is implemented.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the network device aligns the payload payload of the first DCI with the payload of one of the second DCIs according to the statistical method of the size of the first downlink control information DCI, wherein the first DCI is A DCI for scheduling multicast scheduling MBS specific services, and the second DCI is a DCI for scheduling other services.
  • the network equipment avoids that the total number of DCIs of different sizes finally sent by the network equipment exceeds Capabilities of terminal equipment.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for aligning downlink control information provided by another embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for aligning downlink control information provided by another embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for aligning downlink control information provided by another embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for aligning downlink control information provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a method for aligning downlink control information provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a downlink control information alignment method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a method for aligning downlink control information provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a method for aligning downlink control information provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a downlink control information alignment method provided by another embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a downlink control information alignment method provided by another embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of a downlink control information alignment method provided by another embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a chip according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 11 and one terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step 21 according to the statistical method of the DCI size of the first downlink control information, align the payload payload of the first DCI with the payload of one of the second DCIs, wherein the first DCI is used for scheduling multicast scheduling MBS specific services
  • the DCI and the second DCI is a DCI for scheduling other services.
  • the frequency domain resource allocation (FrequencyDomainResource Allocation, FDRA) domain of the first DCI used to schedule the MBS service is determined according to the common frequency domain resource (Common frequency resource, CFR) on the network device side and the information field contained in the first DCI may be different from the information field in the second DCI. Therefore, the total number of DCI sizes configured by the network device may exceed the number of DCIs blindly detected by the terminal device by at most 3+1 maximum capacity. At this time, it is necessary to align the payload of the first DCI with the payload of one of the second DCIs, so that the number of DCIs to be detected by the final terminal device does not exceed the limit of the DCI budget budget 3+1.
  • the second DCI for scheduling other services may be aligned first according to the DCI alignment operation in Rel-15/16, and then the payload of the first DCI may be aligned with the payload of one of the second DCIs.
  • the payload of the first DCI may be aligned with the payload of one of the second DCIs.
  • the network device may align the payload of the first DCI with the payload of one of the second DCIs according to the statistical method of the size of the first DCI .
  • the statistical method of the first DCI size is to classify the first DCI as a DCI scrambled by a Cell-Radio Network Temporary Identifier (C-RNTI) for statistics, and other second DCIs have been
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the statistical method of the first DCI size is to classify the first DCI as DCI scrambled by other RNTIs for statistics, align the payload of the first DCI with the payload of the second DCI scrambled by other RNTIs .
  • the first DCI size is counted by classifying the first DCI as C-RNTI scrambled DCI for statistics, and other second DCIs have not been aligned, according to the format of the first DCI, the The payload of the first DCI is aligned with the payload of one of the second DCIs.
  • the network device aligns the payload payload of the first DCI with the payload of one of the second DCIs according to the statistical method of the DCI size of the first downlink control information, wherein the first DCI is used for scheduling The DCI for multicast scheduling MBS specific services, and the second DCI is the DCI for scheduling other services. . Therefore, by aligning the payload of the first DCI used to schedule MBS services with the payload of one of the second DCIs used to schedule other services, it is avoided that the total number of DCIs of different sizes sent by the network equipment eventually exceeds the terminal equipment Ability.
  • FIG. 3 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step 31 in the case that the statistics method of the first DCI size is to classify the first DCI as DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned, in the case of the first DCI Add bit padding bits in the first DCI, or add appended bits after all valid information fields of the first DCI, or truncate the first DCI so that the payload of the first DCI after processing is the same as that transmitted in the CSS The payload of DCI format1_0 is the same.
  • the network device configures the MBS service for the terminal device, and schedules through DCI format 1_0 scrambled by G-RNTI. If the size of DCI format 1_0 scrambled by G-RNTI is counted in DCI budget3+1 3, that is, classify the first DCI as the DCI scrambled by the C-RNTI to perform statistics on the size and quantity.
  • the second DCI format0_0 transmitted in CSS and USS can be completed according to the DCI alignment operation in Rel-16 And the alignment between the second DCI format1_0, the second DCI format 0_1 transmitted in USS and the second DCI format 1_1, the second DCI format 0_2 transmitted in USS and the second DCI format1_2, so that it satisfies the requirement of 3+1 DCI budget requirements.
  • the first DCI The payload is aligned with the payload of the second DCI in format1_0 transmitted in the CSS.
  • bit padding bits may be added to the first DCI, or appended bits may be added after all valid information fields of the first DCI , so that the processed payload of the first DCI is consistent with the payload of the DCI transmitted in the CSS in the format of format1_0.
  • the first DCI may be truncated so that the processed payload of the first DCI is the same as the payload transmitted in the CSS
  • the payload of DCI format1_0 is the same.
  • the FDRA field of the first DCI may be preferentially truncated.
  • the network device will preferentially delete the highest bit Nbits of the FDRA field in the first DCI when sending the first DCI to the terminal device , so as to complete the truncation operation of the FDRA domain in the first DCI and the entire DCI format.
  • the bit width may be determined according to the number of resource blocks RB included in the CFR. Alternatively, the bit width is determined according to the number of resource blocks RB included in the control resource set CORESET#0. Alternatively, the bit width is determined according to the number of RBs included in the initial downlink DL bandwidth part BWP.
  • a scaling operation may be performed on frequency domain scheduling strength. For example, after the FDRA field of the first DCI is truncated by Nbits, the resource scheduling granularity in the frequency domain can be changed from the original M consecutive RBs to 2 N ⁇ M consecutive RBs.
  • the network device counts the size of the first DCI by classifying the first DCI as DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned Next, add bit padding bits in the first DCI, or add added bits appendedbits after all valid information fields of the first DCI, or truncate the first DCI, so that the payload of the first DCI after processing and The payload of the DCI format1_0 transmitted in the CSS is consistent.
  • FIG. 4 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step 41 in the case that the statistics method of the first DCI size is to classify the first DCI as the DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned, in the case of the first DCI Add padding bits in the first DCI, or add appended bits after all valid information fields of the first DCI, or truncate the first DCI so that the processed first DCI payload and the format transmitted in the USS are format1_0 The payload of the DCI is consistent.
  • the network device configures the MBS service for the terminal device, and schedules through DCI format 1_0 scrambled by G-RNTI. If the size of DCI format 1_0 scrambled by G-RNTI is counted in DCI budget3+1 3, that is, classify the first DCI as the DCI scrambled by the C-RNTI to perform statistics on the size and quantity.
  • the second DCI format0_0 transmitted in CSS and USS can be completed according to the DCI alignment operation in Rel-16 And the alignment between the second DCI format1_0, the second DCI format 0_1 transmitted in USS and the second DCI format 1_1, the second DCI format 0_2 transmitted in USS and the second DCI format1_2, so that it satisfies the requirement of 3+1 DCI budget requirements.
  • the first DCI The payload is aligned with the payload of the second DCI in format1_0 transmitted in the USS.
  • padding bits may be added to the first DCI, or the padding bits may be added after all valid information fields of the first DCI appendedbits, so that the processed first DCI payload is consistent with the format1_0 DCI payload transmitted in the USS.
  • the first DCI may be truncated so that the processed payload of the first DCI is the same as that transmitted in the USS
  • the payload of DCI format1_0 is the same.
  • the FDRA field of the first DCI may be preferentially truncated.
  • the network device will preferentially delete the highest bit Nbits of the FDRA domain in the first DCI when sending the first DCI to the terminal device , so as to complete the truncation operation of the FDRA domain in the first DCI and the entire DCI format.
  • the bit width may be determined according to the number of resource blocks RB included in the CFR. Alternatively, the bit width is determined according to the number of resource blocks RB included in the control resource set CORESET#0. Alternatively, the bit width is determined according to the number of RBs included in the initial downlink DL bandwidth part BWP.
  • a scaling operation may be performed on frequency domain scheduling strength. For example, after the FDRA field of the first DCI is truncated by Nbits, the resource scheduling granularity in the frequency domain can be changed from the original M consecutive RBs to 2 N ⁇ M consecutive RBs.
  • the network device counts the size of the first DCI by classifying the first DCI as DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned
  • the payload of the DCI transmitted in the format of format1_0 is consistent.
  • FIG. 5 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 5, the method may include but not limited to the following steps:
  • Step 51 when the first DCI size is counted by classifying the first DCI as DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned, the first DCI Add padding bits in the first DCI, or add appended bits after all valid information fields of the first DCI, or truncate the first DCI so that the payload of the processed first DCI is the same as the one transmitted in the USS in format1_1 The payload of DCI is the same.
  • the network device configures the MBS service for the terminal device, and performs scheduling through DCI format 1_1 scrambled by G-RNTI. If the size of DCI format 1_1 scrambled by G-RNTI is counted in DCI budget3+1 3, that is, classify the first DCI as the DCI scrambled by the C-RNTI to perform statistics on the size and quantity.
  • the second DCI format0_0 transmitted in CSS and USS can be completed according to the DCI alignment operation in Rel-16 And the alignment between the second DCI format1_0, the second DCI format 0_1 transmitted in USS and the second DCI format 1_1, the second DCI format 0_2 transmitted in USS and the second DCI format1_2, so that it satisfies the requirement of 3+1 DCI budget requirements.
  • the first DCI The payload is aligned with the payload of the second DCI in format1_1 transmitted in the USS.
  • padding bits may be added to the first DCI, or the padding bits may be added after all valid information fields of the first DCI appendedbits, so that the processed payload of the first DCI is consistent with the payload of the DCI transmitted in the USS in format1_1 format.
  • the first DCI may be truncated so that the processed payload of the first DCI is the same as the payload transmitted in the USS
  • the payload of the DCI in format1_1 is the same.
  • the FDRA field of the first DCI may be preferentially truncated.
  • the network device will preferentially delete the highest bit Nbits of the FDRA domain in the first DCI when sending the first DCI to the terminal device , so as to complete the truncation operation of the FDRA domain in the first DCI and the entire DCI format.
  • the bit width may be determined according to the number of resource blocks RB included in the CFR. Alternatively, the bit width is determined according to the number of resource blocks RB included in the control resource set CORESET#0. Alternatively, the bit width is determined according to the number of RBs included in the initial downlink DL bandwidth part BWP.
  • a scaling operation may be performed on frequency domain scheduling strength. For example, after the FDRA field of the first DCI is truncated by Nbits, the resource scheduling granularity in the frequency domain can be changed from the original M consecutive RBs to 2 N ⁇ M consecutive RBs.
  • the network device counts the size of the first DCI by classifying the first DCI as DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned Next, add padding bits in the first DCI, or add appended bits after all valid information fields of the first DCI, or truncate the first DCI so that the payload of the processed first DCI is the same as that in the USS The payload of the DCI whose transmission format is format1_1 is consistent.
  • FIG. 6 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 6, the method may include but not limited to the following steps:
  • Step 61 when the first DCI size is counted by classifying the first DCI as DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned, the first DCI Add padding bits in the first DCI, or add appended bits after all valid information fields of the first DCI, or truncate the first DCI so that the processed payload of the first DCI is format1_2 transmitted in the USS The payload of DCI is the same.
  • the network device configures the MBS service for the terminal device, and performs scheduling through DCI format 1_2 scrambled by G-RNTI. If the size of DCI format 1_2 scrambled by G-RNTI is counted in DCI budget3+1 3, that is, classify the first DCI as the DCI scrambled by the C-RNTI to perform statistics on the size and quantity.
  • the second DCI format0_0 transmitted in CSS and USS can be completed according to the DCI alignment operation in Rel-16 and Alignment between the second DCI format1_0, the second DCI format 0_1 transmitted in the USS and the second DCI format 1_1, the second DCI format 0_2 transmitted in the USS, and the second DCI format1_2, so that it meets the DCI of 3+1 budget requirements.
  • the first DCI The payload is aligned with the payload of the second DCI in format1_2 transmitted in the USS.
  • padding bits may be added to the first DCI, or, padding bits may be added after all valid information fields of the first DCI appendedbits, so that the processed first DCI payload is consistent with the format1_2 DCI payload transmitted in the USS.
  • the first DCI may be truncated so that the processed payload of the first DCI is the same as that transmitted in the USS
  • the payload of DCI format1_2 is the same.
  • the FDRA field of the first DCI may be preferentially truncated.
  • the network device will preferentially delete the highest bit Nbits of the FDRA domain in the first DCI when sending the first DCI to the terminal device , so as to complete the truncation operation of the FDRA domain in the first DCI and the entire DCI format.
  • the bit width may be determined according to the number of resource blocks RB included in the CFR. Alternatively, the bit width is determined according to the number of resource blocks RB included in the control resource set CORESET#0. Alternatively, the bit width is determined according to the number of RBs included in the initial downlink DL bandwidth part BWP.
  • a scaling operation may be performed on frequency domain scheduling strength. For example, after the FDRA field of the first DCI is truncated by Nbits, the resource scheduling granularity in the frequency domain can be changed from the original M consecutive RBs to 2 N ⁇ M consecutive RBs.
  • the network device counts the size of the first DCI by classifying the first DCI as DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned Next, add padding bits in the first DCI, or add appended bits after all valid information fields of the first DCI, or truncate the first DCI so that the payload of the processed first DCI is the same as that in the USS
  • the transmitted format is the same as the payload of the DCI in format1_2.
  • FIG. 7 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 7, the method may include but not limited to the following steps:
  • Step 71 when the first DCI size is counted by classifying the first DCI as DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned, transmit in the USS Add padding bits to the second DCI whose format is format1_1 or format1_2, or add appended bits after all valid information fields of the above-mentioned second DCI, or truncate the above-mentioned second DCI so that the processed second DCI The payload is consistent with the payload of the first DCI.
  • the network device configures the MBS service for the terminal device, and performs scheduling through DCI format1_1 or DCI format1_2 scrambled by G-RNTI. If the size of DCI format 1_1 or DCI format1_2 scrambled by G-RNTI is counted in Within 3 of DCI budget3+1, the first DCI is classified as the DCI scrambled by C-RNTI for statistics of the size and number.
  • the second DCI format0_0 transmitted in CSS and USS can be completed according to the DCI alignment operation in Rel-16 and Alignment between the second DCI format1_0, the second DCI format 0_1 transmitted in the USS and the second DCI format 1_1, the second DCI format 0_2 transmitted in the USS, and the second DCI format1_2, so that it meets the DCI of 3+1 budget requirements.
  • the first DCI The payload is aligned with the payload of the second DCI transmitted in the USS in format1_1 or format1_2.
  • padding bits may be added to the second DCI whose format is format1_1 or format1_2, or, in the format: Appended bits are added after all valid information fields of the second DCI of format1_1 or format1_2, so that the processed payload of the second DCI is consistent with the payload of the first DCI.
  • the second DCI transmitted in the USS format1_1 or format1_2 may be truncated, so that the processed The payload of the second DCI is consistent with the payload of the first DCI.
  • the bit width may be determined according to the number of resource blocks RB included in the CFR. Alternatively, the bit width is determined according to the number of resource blocks RB included in the control resource set CORESET#0. Alternatively, the bit width is determined according to the number of RBs included in the initial downlink DL bandwidth part BWP.
  • the network device counts the size of the first DCI by classifying the first DCI as DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned
  • the network device avoids the total DCI of different sizes finally sent by the network device. The number exceeds the capability of the end device.
  • FIG. 8 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 8, the method may include but not limited to the following steps:
  • Step 81 when the statistical method of the first DCI size is to classify the first DCI as DCI scrambled by other RNTIs for statistics, according to the number of resource blocks RB contained in the control resource set CORESET#0, or, The number of RBs included in the initial downlink DL bandwidth part BWP determines the size of the frequency domain resource allocation FDRA field in the first DCI.
  • the network device configures the MBS service for the terminal device, and performs scheduling through DCI format1_0 scrambled by G-RNTI. If the size of DCI format 1_1 or DCI format 1_2 scrambled by G-RNTI is counted in DCI budget3 Within 1 of +1, that is, the first DCI is classified as the DCI scrambled by other RNTIs for statistics of the size and number.
  • determining the size of the frequency domain resource allocation FDRA field in the first DCI may include:
  • the frequency domain resource is determined according to the N highest bits or N lowest bits in the first DCI Assignment information. Wherein, N is a positive number.
  • the frequency-domain scheduling granularity of the first DCI is scaled.
  • the scaling factor when scaling the frequency-domain scheduling granularity of the first DCI may be determined according to the ratio of the number of RBs included in the CFR to the number of RBs included in CORESET#0.
  • determining the size of the frequency domain resource allocation FDRA domain in the first DCI may include:
  • the frequency-domain scheduling granularity of the first DCI is scaled.
  • the scaling factor may be determined according to the ratio of the number of RBs included in the CFR to the number of RBs included in the DL BWP.
  • Step 82 in the case that the payload of the first DCI is different from the payload of the second DCI scrambled by other RNTIs, align the payload of the first DCI with the payload of the second DCI scrambled by other RNTIs.
  • padding bits may be added to the first DCI, or , adding appended bits after all valid information fields of the first DCI, or truncating the first DCI, so that the processed payload of the first DCI is aligned with the payload of the second DCI scrambled by other RNTIs.
  • padding bits are added to the first DCI, or appended bits are added after all valid information fields of the first DCI.
  • the first DCI is truncated.
  • the FDRA field in the first DCI may be truncated preferentially.
  • the network device when the statistics method of the first DCI size is to classify the first DCI as DCI scrambled by other RNTIs for statistics, the network device, according to the resource block RB contained in the control resource set CORESET#0 or, the number of RBs contained in the initial downlink DL bandwidth part BWP determines the size of the frequency domain resource allocation FDRA domain in the first DCI, and then the payload of the first DCI and the second DCI scrambled by other RNTIs In the case that the payloads of different RNTIs are different, the payload of the first DCI is aligned with the payload of the second DCI scrambled by other RNTIs.
  • the network device avoids that the total number of DCIs of different sizes finally sent by the network device exceeds the capability of the terminal device .
  • FIG. 9 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 9, the method may include but not limited to the following steps:
  • Step 91 when the statistics method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, the format of the first DCI is format1_0, and other second DCIs have not been aligned, according to The number of RBs contained in CORESET#0 or initial DL BWP determines the size of the FDRA field in the first DCI.
  • the network device configures the MBS service for the terminal device, and performs scheduling through the DCI format scrambled by G-RNTI.
  • the first DCI is classified as the DCI scrambled by the C-RNTI to perform statistics on the size and quantity.
  • the frequency-domain resource allocation information is determined according to the N highest bits or the N lowest bits in the first DCI, where N is a positive integer.
  • the scaling factor is determined according to the ratio of the number of RBs included in CFR to the number of RBs included in the DL BWP.
  • Step 92 in the case that the payload of the first DCI is different from the payload of the second DCI scrambled by other RNTIs, add padding bits in the first DCI, or add appended bits after all valid information fields of the first DCI, or A truncation operation is performed on part of the information field, so that the payload of the first DCI is aligned with the payload of the second DCI scrambled by other RNTIs.
  • the statistics method of the first DCI size of the network device is to classify the first DCI as C-RNTI scrambled DCI for statistics, the format of the first DCI is format1_0, and the other second DCI is not completed
  • the payload of the second DCI is aligned.
  • the network device aligns the payload of the first DCI used to schedule the MBS service with the payload of the second DCI scrambled by other RNTIs, thereby preventing the total DCI size sent by the network device from exceeding the capability of the terminal device .
  • FIG. 10 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 10, the method may include but not limited to the following steps:
  • Step 101 when the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, the format of the first DCI is format1_1, and other second DCIs have not been aligned, according to The number of RBs included in the CFR determines the size of the FDRA field in the first DCI.
  • Step 102 align the payload of the first DCI with the payload of one of the second DCIs.
  • the payload of the first DCI is aligned with the payload of the second DCI with the same format and C-RNTI scrambled.
  • the current cell is not configured with the second DCI having the same format as the first DCI, align the payload of the first DCI with the payload of the designated second DCI, wherein the designated second DCI is a DCI with format1_1 format.
  • padding bits are added to the first DCI, or appended bits are added after the information field of the first DCI, so that the first The payload of the DCI is aligned with the payload of the second DCI whose format is format1_1.
  • padding bits may be preferentially added to the FDRA field of the first DCI.
  • the FDRA field in the first DCI may be truncated preferentially.
  • the format of the first DCI is format1_1, and other second DCIs have not been aligned, according to the CFR
  • the number of included RBs determines the size of the FDRA field in the first DCI, and then aligns the payload of the first DCI with the payload of one of the second DCIs.
  • the payload of the first DCI used to schedule the MBS service is aligned with the payload of one of the second DCIs, avoiding the total difference in the final transmission of the network device
  • the number of large and small DCIs exceeds the capability of the terminal equipment.
  • FIG. 11 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 11, the method may include but not limited to the following steps:
  • Step 111 when the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, the format of the first DCI is format1_2, and other second DCIs have not been aligned, according to The number of RBs included in the CFR determines the size of the FDRA field in the first DCI.
  • Step 112 align the payload of the first DCI with the payload of one of the second DCIs.
  • the payload of the first DCI is aligned with the payload of the second DCI with the same format and C-RNTI scrambled.
  • the current cell is not configured with the second DCI having the same format as the first DCI, align the payload of the first DCI with the payload of the designated second DCI, wherein the designated second DCI is a DCI with format1_2 format.
  • padding bits are added to the first DCI, or appended bits are added after the information field of the first DCI, so that the first The payload of the DCI is aligned with the payload of the second DCI whose format is format1_2.
  • the first DCI is truncated so that the payload of the first DCI is aligned with the payload of the second DCI whose format is format1_1.
  • padding bits may be preferentially added to the FDRA field of the first DCI.
  • the FDRA field in the first DCI may be truncated preferentially.
  • the network device calculates the size of the first DCI by classifying the first DCI as C-RNTI scrambled DCI for statistics, the format of the first DCI is format1_2, and the other second DCI is not completed
  • the size of the FDRA field in the first DCI is determined according to the number of RBs included in the CFR, and then the payload of the first DCI is aligned with the payload of one of the second DCIs.
  • the payload of the first DCI used to schedule the MBS service is aligned with the payload of the second DCI with the same format, which avoids the total
  • the number of DCIs of different sizes exceeds the capability of the terminal equipment.
  • FIG. 12 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 12, the method may include but not limited to the following steps:
  • Step 121 according to the statistical method of the DCI size of the first downlink control information, determine the alignment of the payload payload of the first DCI and the payload of one of the second DCIs, wherein the first DCI is MBS specific for scheduling multicast scheduling The DCI of the service, and the second DCI is a DCI for scheduling other services.
  • the terminal device may determine a statistical manner of the first DCI size according to an instruction of the network device or a protocol agreement.
  • the present disclosure does not limit this.
  • the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, determine the payload of the first DCI and one of the second DCIs transmitted in the CSS payload alignment.
  • the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, determine that the payload of the first DCI is aligned with the payload of one of the second DCIs transmitted in the USS .
  • the statistics method of the size of the first DCI is to classify the first DCI as C-RNTI scrambled DCI for statistics, determine the second DCI aligned with the first DCI according to the format of the first DCI.
  • the statistics method of the size of the first DCI is to classify the first DCI as DCI scrambled by other RNTIs for statistics, it is determined that the payload of the first DCI is aligned with the payload of the second DCI scrambled by other RNTIs.
  • the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, determine the second DCI aligned with the first DCI according to the format of the first DCI , which can include:
  • the format of the first DCI is format1_0
  • it is determined that the second DCI aligned with the payload of the first DCI is the second DCI scrambled by other RNTIs.
  • the second DCI aligned with the payload of the first DCI is C-RNTI plus Interfering with the second DCI.
  • the current cell is not configured with a second DCI having the same format as the first DCI
  • determine that the second DCI aligned with the payload of the first DCI is the specified second DCI , where the second DCI is specified as a DCI in format1_1 or format1_2 format.
  • the terminal device determines the alignment of the payload payload of the first DCI and the payload of one of the second DCIs according to the statistical method of the DCI size of the first downlink control information, wherein the first DCI is used for The DCI for scheduling multicast scheduling MBS specific services, and the second DCI is the DCI for scheduling other services.
  • the terminal device determines the alignment manner between the payload of the first DCI and the payload of one of the second DCIs through the statistics of the size of the first DCI, so as to determine the service type indicated by the DCI.
  • FIG. 13 is a schematic flowchart of a method for aligning downlink control information provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 13, the method may include but not limited to the following steps:
  • Step 131 according to the statistical method of the DCI size of the first downlink control information, determine the alignment of the payload payload of the first DCI and the payload of one of the second DCIs, wherein the first DCI is MBS specific for scheduling multicast scheduling The DCI of the service, and the second DCI is a DCI for scheduling other services.
  • step 131 for the specific implementation form of step 131, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • Step 132 Determine frequency domain resource allocation information according to the number of resource blocks RB included in the control resource set CORESET#0, or the number of RBs included in the initial downlink DL bandwidth part BWP.
  • the frequency domain resource is determined according to the N highest bits or N lowest bits in the first DCI Assignment information.
  • N is a positive integer.
  • the frequency-domain scheduling granularity of the first DCI is scaled.
  • the frequency-domain scheduling granularity of the first DCI is scaled.
  • the scaling factor may be determined according to the ratio of the number of RBs included in the CFR to the number of RBs included in CORESET 0.
  • the scaling factor may also be determined according to the ratio of the number of RBs included in the CFR to the number of RBs included in the initial DL BWP.
  • the terminal device determines the alignment of the payload payload of the first DCI and the payload of one of the second DCIs according to the statistical method of the DCI size of the first downlink control information, wherein the first DCI is used for Scheduling the DCI of multicast scheduling MBS specific services, and the second DCI is the DCI used to schedule other services, and then according to the number of resource blocks RB contained in the control resource set CORESET#0, or the initial initial downlink DL bandwidth part The number of RBs included in the BWP determines frequency domain resource allocation information.
  • the terminal device determines the alignment of the payload of the first DCI and the payload of one of the second DCIs through the statistical method of the size of the first DCI, so as to determine the service type indicated by the DCI, and then allocate frequency domain resources for the service.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of network devices and terminal devices respectively.
  • the network device and the terminal device may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 14 is a schematic structural diagram of a communication device 140 provided by an embodiment of the present disclosure.
  • the communication device 140 shown in FIG. 14 may include a processing module 1401 and a transceiver module 1402 .
  • the transceiver module 1402 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 1402 can realize the sending function and/or the receiving function.
  • the communication device 140 may be a network device, may also be a device in the network device, and may also be a device that can be matched and used with the network device.
  • the communication device 140 on the network device side, the device includes:
  • the processing module 1401 is configured to align the payload payload of the first DCI with the payload of one of the second DCIs according to the statistical method of the DCI size of the first downlink control information, wherein the first DCI is used for scheduling multicast scheduling The DCI of the MBS specific service, and the second DCI is the DCI used to schedule other services.
  • processing module 1401 is specifically used for:
  • the statistical method of the first DCI size is to classify the first DCI as DCI scrambled by the cell radio network temporary identifier C-RNTI for statistics, and other second DCIs have been aligned, the payload of the first DCI and The payload of one of the second DCIs transmitted in the common search space CSS or the terminal device-specific search space USS is aligned.
  • processing module 1401 is specifically used for:
  • the transmitted format is the same as the payload of DCI in format1_0;
  • the payload of DCI in format1_0 is consistent;
  • the payload of DCI in format1_1 is consistent;
  • the payload of DCI in format1_2 is consistent;
  • processing module 1401 is specifically used for:
  • the statistics method of the size of the first DCI is to classify the first DCI as DCI scrambled by other RNTIs for statistics
  • the payload of the first DCI is aligned with the payload of the second DCI scrambled by other RNTIs.
  • processing module 1401 is specifically used for:
  • the number of resource blocks RB included in the control resource set CORESET#0, or the number of RBs included in the initial downlink DL bandwidth part BWP determine the size of the frequency domain resource allocation FDRA domain in the first DCI;
  • the payload of the first DCI is different from the payload of the second DCI scrambled by other RNTIs, align the first DCI with the payload of the second DCI scrambled by other RNTIs.
  • processing module 1401 is specifically used for:
  • padding bits are added to the first DCI, or appended bits are added after all valid information fields of the first DCI;
  • the first DCI is truncated.
  • processing module 1401 is specifically used for:
  • the FDRA field in the first DCI is truncated.
  • processing module 1401 is also specifically used for:
  • the frequency domain resource is determined according to the N highest bits or N lowest bits in the first DCI distribution information
  • N is a positive integer.
  • processing module 1401 is also specifically used for:
  • the frequency-domain scheduling granularity of the first DCI is scaled.
  • processing module 1401 is specifically used for:
  • the scaling factor is determined according to the ratio of the number of RBs included in the CFR to the number of RBs included in the DL BWP.
  • processing module 1401 is specifically used for:
  • the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, and other second DCIs have not been aligned, according to the format of the first DCI, the first DCI The payload is aligned with the payload of one of the second DCIs.
  • processing module 1401 is specifically used for:
  • the format of the first DCI is format1_0
  • the payload of the first DCI is different from the payload of the second DCI scrambled by other RNTIs, add padding bits to the first DCI, or add appended bits after all valid information fields of the first DCI, or add padding bits to some information
  • the domain performs a truncation operation, so that the payload of the first DCI is aligned with the payload of the second DCI scrambled by other RNTIs.
  • processing module 1401 is also specifically used for:
  • processing module 1401 is specifically used for:
  • the scaling factor is determined according to the ratio of the number of RBs included in the CFR to the number of RBs included in the DL BWP.
  • processing module 1401 is specifically used for:
  • the format of the first DCI is format1_1 or format1_2, determine the size of the FDRA domain in the first DCI according to the number of RBs included in the CFR;
  • processing module 1401 is specifically used for:
  • the current cell is configured with a second DCI having the same format as the first DCI, aligning the payload of the first DCI with the payload of the second DCI having the same format and scrambling by C-RNTI;
  • the current cell is not configured with the second DCI having the same format as the first DCI, align the payload of the first DCI with the payload of the designated second DCI, wherein the designated second DCI is a DCI in format1_1 or format1_2.
  • processing module 1401 is specifically used for:
  • the first DCI is truncated.
  • processing module 1401 is specifically used for:
  • processing module 1401 is specifically used for:
  • the FDRA field in the first DCI is truncated.
  • the network device aligns the payload payload of the first DCI with the payload of one of the second DCIs according to the statistical method of the DCI size of the first downlink control information, wherein the first DCI is used for scheduling The DCI for multicast scheduling MBS specific services, and the second DCI is the DCI for scheduling other services. Therefore, by aligning the payload of the first DCI used to schedule MBS services with the payload of one of the second DCIs used to schedule other services, it is avoided that the total number of DCIs of different sizes configured by the network device exceeds that of the terminal device. ability.
  • the communication device 140 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device 140 on the side of the terminal device, the device includes:
  • the processing module 1401 determines the alignment of the payload payload of the first DCI and the payload of one of the second DCIs according to the statistical method of the DCI size of the first downlink control information, wherein the first DCI is an MBS for scheduling multicast scheduling The DCI of the specific service, and the second DCI is a DCI for scheduling other services.
  • processing module 1401 is specifically used for:
  • the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, determine that the payload of the first DCI is aligned with the payload of one of the second DCIs transmitted in the CSS;
  • the statistical method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, determine that the payload of the first DCI is aligned with the payload of one of the second DCIs transmitted in the USS;
  • the statistics method of the first DCI size is to classify the first DCI as C-RNTI scrambled DCI for statistics, according to the format of the first DCI, determine the second DCI aligned with the first DCI;
  • the statistics method of the size of the first DCI is to classify the first DCI as DCI scrambled by other RNTIs for statistics, it is determined that the payload of the first DCI is aligned with the payload of the second DCI scrambled by other RNTIs.
  • processing module 1401 is specifically used for:
  • the current cell is configured with a second DCI with the same format as the first DCI, determine that the second DCI aligned with the payload of the first DCI is C-RNTI scrambled second DCI;
  • the format of the first DCI is format1_1 or format1_2
  • the current cell is not configured with a second DCI having the same format as the first DCI
  • determine that the second DCI aligned with the payload of the first DCI is the designated second DCI, where , specifying that the second DCI is a DCI whose format is format1_1 or format1_2.
  • processing module 1401 is also specifically used for:
  • N is a positive integer.
  • processing module 1401 is also specifically used for:
  • the frequency-domain scheduling granularity of the first DCI is scaled.
  • processing module 1401 is also specifically used for:
  • the terminal device determines the alignment of the payload payload of the first DCI and the payload of one of the second DCIs according to the statistical method of the DCI size of the first downlink control information, wherein the first DCI is used for The DCI for scheduling multicast scheduling MBS specific services, and the second DCI is the DCI for scheduling other services.
  • the terminal device determines the alignment manner between the payload of the first DCI and the payload of one of the second DCIs through the statistics of the size of the first DCI, so as to determine the service type indicated by the DCI.
  • FIG. 15 is a schematic structural diagram of another communication device 150 provided by an embodiment of the present disclosure.
  • the communication device 150 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 150 may include one or more processors 1501 .
  • the processor 1501 may be a general purpose processor or a special purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 150 may further include one or more memories 1502, on which a computer program 1504 may be stored, and the processor 1501 executes the computer program 1504, so that the communication device 150 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 1502 .
  • the communication device 150 and the memory 1502 can be set separately or integrated together.
  • the communication device 150 may further include a transceiver 1505 and an antenna 1506 .
  • the transceiver 1505 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1505 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 150 may further include one or more interface circuits 1507 .
  • the interface circuit 1507 is used to receive code instructions and transmit them to the processor 1501.
  • the processor 1501 runs the code instructions to enable the communication device 150 to execute the methods described in the foregoing method embodiments.
  • the communication device 150 is a network device: the processor 1501 is used to execute step 21 in FIG. 2; or step 31 in FIG. 3; or step 41 in FIG. 4; or step 51 in FIG. 5; or step in FIG. 6 61; or step 71 in Fig. 7 and so on.
  • the communication device 150 is a terminal device: the processor 1501 is configured to execute step 121 in FIG. 12 ; or step 131 , step 132 in FIG. 13 , and so on.
  • the processor 1501 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1501 may store a computer program 1503 , and the computer program 1503 runs on the processor 1501 to enable the communication device 150 to execute the methods described in the foregoing method embodiments.
  • the computer program 1503 may be solidified in the processor 1501, and in this case, the processor 1501 may be implemented by hardware.
  • the communication device 150 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 14 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 16 refer to the schematic structural diagram of the chip shown in FIG. 16 .
  • the chip shown in FIG. 16 includes a processor 1601 and an interface 1602 .
  • the number of processors 1601 may be one or more, and the number of interfaces 1602 may be more than one.
  • the processor 1601 is used to execute step 21 in FIG. 2; or step 31 in FIG. 3; or step 41 in FIG. 4; or step 51 in FIG. 5; or step 61 in FIG. 6; Step 71 and so on.
  • the processor 1601 is configured to execute step 121 in FIG. 12 ; or step 131 , step 132 in FIG. 13 , and so on.
  • the chip further includes a memory 1603 for storing necessary computer programs and data.
  • the embodiment of the present disclosure also provides a communication system, the system includes the communication device as the terminal device and the communication device as the network device in the aforementioned embodiment of Figure 14, or the system includes the communication device as the terminal device in the aforementioned embodiment of Figure 15 devices and communication devices as network devices.
  • the present disclosure also provides a computer-readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种下行控制信息的对齐方法及其装置,可应用于通信技术领域,其中,由网络设备执行的方法包括:根据第一下行控制信息DCI大小的统计方式,将该第一DCI的有效载荷payload与其中一个第二DCI的payload进行对齐,其中,该第一DCI为用于调度组播调度MBS specific业务的DCI,以及,该第二DCI为用于调度其他业务的DCI(S21)。由此,网络设备通过将用于调度MBS业务的第一DCI的payload与其中一个用于调度其他业务的第二DCI的payload进行对齐,避免了网络设备最终发送的总的不同大小DCI的数量超出终端设备的能力。

Description

一种下行控制信息的对齐方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种下行控制信息的对齐方法及其装置。
背景技术
在通信系统中的组播调度(Multi-broadcastscheduling,MBS)业务中,由于MBS业务传输的频域资源与终端设备的部分带宽(Bandwidth Part,BWP)不同,用于调度MBS业务的下行控制信息(Downlink Control Information,DCI)中包含的信息域与调度其他业务的DCI中包含的信息域可能不同等原因,可能导致调度MBS业务的DCI的有效载荷payload与调度其他业务的DCI的payload均不同,进而导致网络设备配置的不同大小DCI的数量可能超出终端设备的能力。
发明内容
本公开实施例提供一种下行控制信息的对齐方法及其装置,可应用于通信技术领域中。
第一方面,本公开实施例提供一种下行控制信息的对齐方法,所述方法由网络设备执行,该方法包括:根据第一下行控制信息DCI大小的统计方式,将所述第一DCI的有效载荷payload与其中一个第二DCI的payload进行对齐,其中,所述第一DCI为用于调度组播调度MBS specific业务的DCI,以及,所述第二DCI为用于调度其他业务的DCI。
可选的,所述根据第一DCI大小的统计方式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
在所述第一DCI大小的统计方式为将所述第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,将所述第一DCI的payload与公共搜索空间CSS或终端设备专属搜索空间USS中传输的其中一个第二DCI的payload进行对齐。
可选的,所述将所述第一DCI的payload与公共搜索空间CSS或终端设备专属搜索空间USS中传输的其中一个第二DCI的payload进行对齐,包括:
在所述第一DCI中增加比特padding bits,或者,在所述第一DCI的所有有效信息域之后增加添加比特appendedbits,或者,将所述第一DCI进行截短truncation,以使处理后的第一DCI的payload与在CSS中传输的格式为format1_0的DCI的payload一致;
或者,
在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者,将所述第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_0的DCI的payload一致;
或者,
在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者,将所述第一DCI进行截短,以使处理后的第一DCI的payload 与在USS中传输的格式为format1_1的DCI的payload一致;
或者,
在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者,将所述第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_2的DCI的payload一致;
或者,
在USS中传输的格式为format1_1或format1_2的第二DCI中增加padding bits,或者,在上述第二DCI的所有有效信息域之后增加appendedbits,或者,将上述第二DCI进行截短,以使处理后的第二DCI的payload与所述第一DCI的payload一致。
可选的,所述根据所述第一DCI大小的统计方式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
在所述第一DCI大小的统计方式为将所述第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,将所述第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
可选的,所述将所述第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐,包括:
根据控制资源集CORESET#0中包含的资源块RB的个数,或者,初始initial下行DL带宽部分BWP中包含的RB的个数,确定所述第一DCI中频域资源分配FDRA域的大小;
在所述第一DCI的payload与所述其他RNTI加扰的第二DCI的payload不同的情况下,将所述第一DCI与所述其他RNTI加扰的第二DCI的payload对齐。
可选的,所述将所述第一DCI与所述其他RNTI加扰的第二DCI的payload对齐,包括:
在所述第一DCI的payload小于所述其他RNTI加扰的第二DCI的payload的情况下,在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits;
或者,
在所述第一DCI的payload大于所述其他RNTI加扰的第二DCI的payload的情况下,将所述第一DCI进行截短。
可选的,所述将所述第一DCI进行截短,包括:
将所述第一DCI中的FDRA域进行截短。
可选的,还包括:
在所述CORESET#0中包含的RB的个数大于公共频域资源CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
或者,
在所述initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
其中,N为正整数。
可选的,还包括:
在所述CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放;
或者,
在所述initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放。
可选的,所述对所述第一DCI的频域调度粒度进行缩放,包括:
根据所述CFR包含的RB的个数与所述CORESET#0包含的RB的个数的比值,确定缩放系数;
或者,
根据所述CFR包含的RB的个数与所述DL BWP包含的RB的个数的比值,确定缩放系数。
可选的,所述根据所述第一DCI大小的统计方式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计、且其他第二DCI未完成对齐的情况下,根据所述第一DCI的格式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐。
可选的,所述根据所述第一DCI的格式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
在所述第一DCI的格式为format1_0的情况下,根据CORESET#0或者initial DL BWP中包含的RB的个数,确定所述第一DCI中的FDRA域的大小;
在所述第一DCI的payload与其他RNTI加扰的第二DCI的payload不同的情况下,在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者对部分信息域进行截短操作,使得所述第一DCI的payload与所述其他RNTI加扰的第二DCI的payload对齐。
可选的,还包括:
在所述CORESET#0中包含的RB的个数大于CFR中包含的RB的个数的情况下,或者,在所述initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息,其中,N为正整数;
或者,
在所述CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,或者,在所述initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放。
可选的,所述对所述第一DCI的频域调度粒度进行缩放,包括:
根据所述CFR包含的RB的个数与所述CORESET 0包含的RB的个数的比值,确定缩放系数;
或者,
根据所述CFR包含的RB的个数与所述DL BWP包含的RB的个数的比值,确定缩放系数。
可选的,所述根据所述第一DCI的格式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
在所述第一DCI的格式为format1_1或format1_2的情况下,根据CFR中包含的RB的个数,确定所述第一DCI中的FDRA域的大小;
将所述第一DCI的payload与其中一个第二DCI的payload进行对齐。
可选的,所述将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
在当前小区配置了与所述第一DCI格式相同的第二DCI的情况下,将所述第一DCI的payload与所述格式相同的、C-RNTI加扰的第二DCI的payload进行对齐;
或者,
在所述当前小区未配置与所述第一DCI格式相同的第二DCI的情况下,将所述第一DCI的payload与指定第二DCI的payload进行对齐,其中,所述指定第二DCI为格式为format1_1或format1_2的DCI。
可选的,所述将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
在所述第一DCI的payload小于所述其中一个第二DCI的payload的情况下,在所述第一DCI中增加padding bits,或者,在所述第一DCI的信息域之后增加appendedbits;
或者,
在所述第一DCI的payload大于所述其中一个第二DCI的payload的情况下,将所述第一DCI进行截短。
可选的,所述在所述第一DCI中增加padding bits,或者,在所述第一DCI的信息域之后增加appendedbits,包括:
在所述第一DCI的FDRA域中增加padding bits;
可选的,所述将所述第一DCI进行截短,包括:
将所述第一DCI中的FDRA域进行截短。
第二方面,本公开实施例提供另一种下行控制信息的对齐方法,所述方法由终端设备执行,该方法包括:根据第一下行控制信息DCI大小的统计方式,确定所述第一DCI的有效载荷payload与其中一个第二DCI的payload的对齐方式,其中,所述第一DCI为用于调度组播调度MBS specific业务的DCI,以及,所述第二DCI为用于调度其他业务的DCI。
可选的,所述根据第一DCI大小的统计方式,确定所述第一DCI的payload与其中一个第二DCI的payload的对齐方式,包括:
在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,确定所述第一DCI的payload与CSS中传输的其中一个第二DCI的payload对齐;
或者,
在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,确定所述第一DCI的payload与USS中传输的其中一个第二DCI的payload对齐;
或者,
在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,根据所述第一DCI的格式,确定与所述第一DCI对齐的第二DCI;
或者,
在所述第一DCI大小的统计方式为将所述第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,确定所述第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
可选的,所述根据所述第一DCI的格式,确定与所述第一DCI对齐的第二DCI,包括:
在所述第一DCI的格式为format1_0的情况下,确定与所述第一DCI的payload对齐的第二DCI为其他RNTI加扰的第二DCI;
或者,
在所述第一DCI的格式为format1_1或者format1_2,且在当前小区配置了与所述第一DCI格式相同的第二DCI的情况下,确定与所述第一DCI的payload对齐的第二DCI为C-RNTI加扰的第二DCI;
或者,
在所述第一DCI的格式为format1_1或者format1_2,且在当前小区未配置与所述第一DCI格式相同的第二DCI的情况下,确定与所述第一DCI的payload对齐的第二DCI为指定第二DCI,其中,所述指定第二DCI为格式为format1_1或format1_2的DCI。
可选的,还包括:
在CORESET#0中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
或者,
在initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
其中,N为正整数。
可选的,还包括:
在所述CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放;
或者,
在所述initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放。
可选的,所述对所述第一DCI的频域调度粒度进行缩放,包括:
根据所述CFR包含的RB的个数与所述CORESET 0包含的RB的个数的比值,确定缩放 系数;
或者,
根据所述CFR包含的RB的个数与所述初始DL BWP包含的RB的个数的比值,确定缩放系数。
第三方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中网络设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第四方面,本公开实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中终端设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使上述第一方面所述的方法被实现。
第十三方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使上述第二方面所述的方法被实现。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
基于上述各实施例,网络设备根据第一下行控制信息DCI大小的统计方式,将所述第一DCI的有效载荷payload与其中一个第二DCI的payload进行对齐,其中,所述第一DCI为用于调度组播调度MBS specific业务的DCI,以及,所述第二DCI为用于调度其他业务的DCI。由此,网络设备通过将用于调度MBS业务的第一DCI的payload与其中一个用于调度其他业务的第二DCI的payload进行对齐,避免了网络设备最终发送的总的不同大小DCI的数量超出终端设备的能力。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构示意图;
图2是本公开一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图3是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图4是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图5是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图6是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图7是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图8是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图9是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图10是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图11是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图12是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图13是本公开另一实施例提供的一种下行控制信息的对齐方法的流程示意图;
图14是本公开一实施例的通信装置的结构示意图;
图15是本公开另一实施例的通信装置的结构示意图;
图16是本公开一实施例的芯片的结构示意图。
具体实施方式
为了更好的理解本公开实施例公开的一种下行控制信息的对齐方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备、一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11、一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶 (self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的下行控制信息的对齐方法及其装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由网络设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤21,根据第一下行控制信息DCI大小的统计方式,将第一DCI的有效载荷payload与其中一个第二DCI的payload进行对齐,其中,第一DCI为用于调度组播调度MBS specific业务的DCI,以及,第二DCI为用于调度其他业务的DCI。
需要说明的是,在调度MBS业务中,用于调度MBS业务的第一DCI的频域资源分配(FrequencyDomainResource Allocation,FDRA)域是根据网络设备侧的公共频域资源(Common frequency resource,CFR)确定的,且第一DCI中包含的信息域与第二DCI中的信息域可能不同,因此,可能导致网络设备配置的DCI大小的总数量超出终端设备盲检的DCI的数量最多为3+1个的最大能力。此时,需要将第一DCI的payload与其中一个第二DCI的payload进行对齐,以使得最终终端设备需要检测的DCI的数量不超过DCI预算budget 3+1的限制。
本公开中,可以先按照Rel-15/16中的DCI对齐操作,将用于调度其他业务的第二DCI进行对齐,之后将第一DCI的payload与其中一个第二DCI的payload进行对齐。或者,也可以在对第二DCI的payload进行对齐的过程中,将第一DCI的payload与其中一个第二DCI的payload进行对齐。
可选的,网络设备可以在第一DCI的payload与第二DCI的payload均不同的情况下,根据第一DCI大小的统计方式,将第一DCI的payload与其中一个第二DCI的payload进行对齐。
可选的,在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,将第一DCI的payload与公共搜索空间(Common Search Space,CSS)或终端设备专属搜索空间(User Search Space,USS)中传输的其中一个第二DCI的payload进行对齐。
可选的,在第一DCI大小的统计方式为将第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,将第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
可选的,在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计、且其他第二DCI未完成对齐的情况下,根据第一DCI的格式,将第一DCI的payload与其中一个第二DCI的payload进行对齐。
通过实施本公开实施例,网络设备根据第一下行控制信息DCI大小的统计方式,将第一DCI的有效载荷payload与其中一个第二DCI的payload进行对齐,其中,第一DCI为用于调度组播调度MBS specific业务的DCI,以及,第二DCI为用于调度其他业务的DCI。。由此,通过将用于调度MBS业务的第一DCI的payload与其中一个用于调度其他业务的第二DCI的payload进行对齐,避免了网络设备最终发送的总的不同大小DCI的数量超出终端设备的能力。
请参见图3,图3是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由网络设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤31,在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,在第一DCI中增加比特padding bits,或者,在第一DCI的所有有效信息域之后增加添加比特appendedbits,或者,将第一DCI进行截短truncation,以使处理后的第一DCI的payload与在CSS中传输的格式为format1_0的DCI的payload一致。
本公开实施例中,网络设备为终端设备配置了MBS业务,并通过G-RNTI加扰的DCI format1_0进行调度,若通过G-RNTI加扰的DCI format 1_0的大小统计在DCI budget3+1中的3内,也即将第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计。
在将第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计的情况下,可以首先按照Rel-16中的DCI对齐操作,完成在CSS和USS中传输的第二DCI format0_0以及第二DCI format1_0、在USS中传输的第二DCI format 0_1以及第二DCI format 1_1、在USS中传输的第二DCI format 0_2以及第二DCI format1_2之间的对齐,使其满足3+1的DCI budget要求。之后在小区配置的通过C-RNTI加扰的第二DCI的不同大小个数已经达到了3个,且第一DCI的大小不同于任意一个第二DCI的大小的情况下,将第一DCI的payload与在CSS中传输的格式为format1_0的第二DCI的payload进行对齐。
可选的,若第一DCI的payload小于在CSS中传输的格式为format1_0的DCI的payload,则可以在第一DCI中增加比特padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,以使处理后的第一DCI的payload与在CSS中传输的格式为format1_0的DCI的payload一致。
可选的,若第一DCI的payload大于在CSS中传输的格式为format1_0的DCI的payload,则可以将第一DCI进行截短,以使处理后的第一DCI的payload与在CSS中传输的格式为format1_0的DCI的payload一致。
可选的,若第一DCI的payload大于在CSS中传输的格式为format1_0的DCI的payload,则可以优先选择将第一DCI的FDRA域进行截短。
举例来说,若第一DCI的payload比在CSS中传输的格式为format1_0的DCI大Nbits,则网络设备在向终端设备发送第一DCI时,将优先删除第一DCI中FDRA域的最高位Nbits,从而完成对第一DCI中FDRA域以及整个DCI format的截短操作。
可选的,在确定第一DCI的FDRA域的长度时,可以根据CFR包含的资源块RB个数确定bit宽度。或者,根据控制资源集CORESET#0中包含的资源块RB的个数确定bit宽度。或者,根据初始initial下行DL带宽部分BWP中包含的RB的个数确定bit宽度。
可选的,在将第一DCI的FDRA域进行截短操作之后,可对频域调度力度进行缩放操作。比如,第一DCI的FDRA域截短Nbits之后,频域资源调度粒度可以由原来的M个连续RB变更为2 N×M个连续RB。
通过实施本公开实施例,网络设备在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,在第一DCI中增加比特padding bits,或者,在第一DCI的所有有效信息域之后增加添加比特appendedbits,或者,将第一DCI进行截短,以使处理后的第一DCI的payload与在CSS中传输的格式为format1_0的DCI的payload一致。由此,通过将用于调度MBS业务的第一DCI的payload与在CSS中传输的格式为format1_0的DCI的payload进行对齐,避免了网络设备最终发送的的总的不同大小DCI的数量超出终端设备的能力。
请参见图4,图4是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由网络设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤41,在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者,将第一DCI进行截短truncation,以使处理后的第一DCI的payload与在USS中传输的格式为format1_0的DCI的payload一致。
本公开实施例中,网络设备为终端设备配置了MBS业务,并通过G-RNTI加扰的DCI format1_0进行调度,若通过G-RNTI加扰的DCI format 1_0的大小统计在DCI budget3+1中的3内,也即将第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计。
在将第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计的情况下,可以首先按照Rel-16中的DCI对齐操作,完成在CSS和USS中传输的第二DCI format0_0以及第二DCI format1_0、在USS中传输的第二DCI format 0_1以及第二DCI format 1_1、在USS中传输的第二DCI format 0_2以及第二DCI format1_2之间的对齐,使其满足3+1的DCI budget要求。之后在小区配置的通过C-RNTI加扰的第二DCI的不同大小个数已经达到了3个,且第一DCI的大小不同于任意一个第二DCI的大小的情况下,将第一DCI的payload与在USS中传输的格式为format1_0的第二DCI的payload进行对齐。
可选的,若第一DCI的payload小于在USS中传输的格式为format1_0的DCI的payload,则可以在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加添 加比特appendedbits,以使处理后的第一DCI的payload与在USS中传输的格式为format1_0的DCI的payload一致。
可选的,若第一DCI的payload大于在USS中传输的格式为format1_0的DCI的payload,则可以将第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_0的DCI的payload一致。
可选的,若第一DCI的payload大于在USS中传输的格式为format1_0的DCI的payload,则可以优先选择将第一DCI的FDRA域进行截短。
举例来说,若第一DCI的payload比在USS中传输的格式为format1_0的DCI大Nbits,则网络设备在向终端设备发送第一DCI时,将优先删除第一DCI中FDRA域的最高位Nbits,从而完成对第一DCI中FDRA域以及整个DCI format的截短操作。
可选的,在确定第一DCI的FDRA域的长度时,可以根据CFR包含的资源块RB个数确定bit宽度。或者,根据控制资源集CORESET#0中包含的资源块RB的个数确定bit宽度。或者,根据初始initial下行DL带宽部分BWP中包含的RB的个数确定bit宽度。
可选的,在将第一DCI的FDRA域进行截短操作之后,可对频域调度力度进行缩放操作。比如,第一DCI的FDRA域截短Nbits之后,频域资源调度粒度可以由原来的M个连续RB变更为2 N×M个连续RB。
通过实施本公开实施例,网络设备在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者,将第一DCI进行截短truncation,以使处理后的第一DCI的payload与在USS中传输的格式为format1_0的DCI的payload一致。由此,通过将用于调度MBS业务的第一DCI的payload与在USS中传输的格式为format1_0的DCI的payload进行对齐,避免了网络设备最终发送的的总的不同大小DCI的数量超出终端设备的能力。
请参见图5,图5是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由网络设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤51,在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者,将第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_1的DCI的payload一致。
本公开实施例中,网络设备为终端设备配置了MBS业务,并通过G-RNTI加扰的DCI format1_1进行调度,若通过G-RNTI加扰的DCI format 1_1的大小统计在DCI budget3+1中的3内,也即将第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计。
在将第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计的情况下,可以首先按照Rel-16中的DCI对齐操作,完成在CSS和USS中传输的第二DCI format0_0以及第二 DCI format1_0、在USS中传输的第二DCI format 0_1以及第二DCI format 1_1、在USS中传输的第二DCI format 0_2以及第二DCI format1_2之间的对齐,使其满足3+1的DCI budget要求。之后在小区配置的通过C-RNTI加扰的第二DCI的不同大小个数已经达到了3个,且第一DCI的大小不同于任意一个第二DCI的大小的情况下,将第一DCI的payload与在USS中传输的格式为format1_1的第二DCI的payload进行对齐。
可选的,若第一DCI的payload小于在USS中传输的格式为format1_1的DCI的payload,则可以在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加添加比特appendedbits,以使处理后的第一DCI的payload与在USS中传输的格式为format1_1的DCI的payload一致。
可选的,若第一DCI的payload大于在USS中传输的格式为format1_1的DCI的payload,则可以将第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_1的DCI的payload一致。
可选的,若第一DCI的payload大于在USS中传输的格式为format1_1的DCI的payload,则可以优先选择将第一DCI的FDRA域进行截短。
举例来说,若第一DCI的payload比在USS中传输的格式为format1_1的DCI大Nbits,则网络设备在向终端设备发送第一DCI时,将优先删除第一DCI中FDRA域的最高位Nbits,从而完成对第一DCI中FDRA域以及整个DCI format的截短操作。
可选的,在确定第一DCI的FDRA域的长度时,可以根据CFR包含的资源块RB个数确定bit宽度。或者,根据控制资源集CORESET#0中包含的资源块RB的个数确定bit宽度。或者,根据初始initial下行DL带宽部分BWP中包含的RB的个数确定bit宽度。
可选的,在将第一DCI的FDRA域进行截短操作之后,可对频域调度力度进行缩放操作。比如,第一DCI的FDRA域截短Nbits之后,频域资源调度粒度可以由原来的M个连续RB变更为2 N×M个连续RB。
通过实施本公开实施例,网络设备在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者,将第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_1的DCI的payload一致。由此,通过将用于调度MBS业务的第一DCI的payload与在USS中传输的格式为format1_1的DCI的payload进行对齐,避免了网络设备最终发送的的总的不同大小DCI的数量超出终端设备的能力。
请参见图6,图6是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由网络设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤61,在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者,将第 一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_2的DCI的payload一致。
本公开实施例中,网络设备为终端设备配置了MBS业务,并通过G-RNTI加扰的DCI format1_2进行调度,若通过G-RNTI加扰的DCI format 1_2的大小统计在DCI budget3+1中的3内,也即将第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计。
在第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计的情况下,可以首先按照Rel-16中的DCI对齐操作,完成在CSS和USS中传输的第二DCI format0_0以及第二DCI format1_0、在USS中传输的第二DCI format 0_1以及第二DCI format 1_1、在USS中传输的第二DCI format 0_2以及第二DCI format1_2之间的对齐,使其满足3+1的DCI budget要求。之后在小区配置的通过C-RNTI加扰的第二DCI的不同大小个数已经达到了3个,且第一DCI的大小不同于任意一个第二DCI的大小的情况下,将第一DCI的payload与在USS中传输的格式为format1_2的第二DCI的payload进行对齐。
可选的,若第一DCI的payload小于在USS中传输的格式为format1_2的DCI的payload,则可以在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后添加比特增加appendedbits,以使处理后的第一DCI的payload与在USS中传输的格式为format1_2的DCI的payload一致。
可选的,若第一DCI的payload大于在USS中传输的格式为format1_2的DCI的payload,则可以将第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_2的DCI的payload一致。
可选的,若第一DCI的payload大于在USS中传输的格式为format1_2的DCI的payload,则可以优先选择将第一DCI的FDRA域进行截短。
举例来说,若第一DCI的payload比在USS中传输的格式为format1_2的DCI大Nbits,则网络设备在向终端设备发送第一DCI时,将优先删除第一DCI中FDRA域的最高位Nbits,从而完成对第一DCI中FDRA域以及整个DCI format的截短操作。
可选的,在确定第一DCI的FDRA域的长度时,可以根据CFR包含的资源块RB个数确定bit宽度。或者,根据控制资源集CORESET#0中包含的资源块RB的个数确定bit宽度。或者,根据初始initial下行DL带宽部分BWP中包含的RB的个数确定bit宽度。
可选的,在将第一DCI的FDRA域进行截短操作之后,可对频域调度力度进行缩放操作。比如,第一DCI的FDRA域截短Nbits之后,频域资源调度粒度可以由原来的M个连续RB变更为2 N×M个连续RB。
通过实施本公开实施例,网络设备在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者,将第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_2的DCI的payload一致。由此,通过将用于调度MBS业务的第一DCI的payload与在USS中传输的格式为format1_2的DCI的payload进行对齐,避免 了网络设备最终发送的的总的不同大小DCI的数量超出终端设备的能力。
请参见图7,图7是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由网络设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤71,在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,在USS中传输的格式为format1_1或format1_2的第二DCI中增加padding bits,或者,在上述第二DCI的所有有效信息域之后增加appendedbits,或者,将上述第二DCI进行截短,以使处理后的第二DCI的payload与第一DCI的payload一致。
本公开实施例中,网络设备为终端设备配置了MBS业务,并通过G-RNTI加扰的DCI format1_1或DCI format1_2进行调度,若通过G-RNTI加扰的DCI format 1_1或DCI format1_2的大小统计在DCI budget3+1中的3内,也即将第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计。
在第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计的情况下,可以首先按照Rel-16中的DCI对齐操作,完成在CSS和USS中传输的第二DCI format0_0以及第二DCI format1_0、在USS中传输的第二DCI format 0_1以及第二DCI format 1_1、在USS中传输的第二DCI format 0_2以及第二DCI format1_2之间的对齐,使其满足3+1的DCI budget要求。之后在小区配置的通过C-RNTI加扰的第二DCI的不同大小个数已经达到了3个,且第一DCI的大小不同于任意一个第二DCI的大小的情况下,将第一DCI的payload与在USS中传输的格式为format1_1或format1_2的第二DCI的payload进行对齐。
可选的,若第一DCI的payload小于在USS中传输的格式为format1_1或format1_2的第二DCI的payload,则可以在格式为format1_1或format1_2的第二DCI中增加padding bits,或者,在格式为format1_1或format1_2的第二DCI的所有有效信息域之后增加添加比特appendedbits,以使处理后的第二DCI的payload与第一DCI的payload一致。
可选的,若第一DCI的payload大于在USS中传输的格式为format1_2的DCI的payload,则可以将在USS中传输的格式为format1_1或format1_2的第二DCI进行截短,以使处理后的第二DCI的payload与第一DCI的payload一致。
可选的,在确定第一DCI的FDRA域的长度时,可以根据CFR包含的资源块RB个数确定bit宽度。或者,根据控制资源集CORESET#0中包含的资源块RB的个数确定bit宽度。或者,根据初始initial下行DL带宽部分BWP中包含的RB的个数确定bit宽度。
通过实施本公开实施例,网络设备在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,在USS中传输的格式为format1_1或format1_2的第二DCI中增加padding bits,或者,在上述第二DCI的所有有效信息域之后增加appendedbits,或者,将上述第二DCI进行截短,以使处理后的第二DCI的payload与第一DCI的payload一致。由此,网络设备通过将在USS中传输的格式为format1_1或format1_2的DCI的payload与用于调度MBS业务 的第一DCI的payload进行对齐,避免了网络设备最终发送的的总的不同大小DCI的数量超出终端设备的能力。
请参见图8,图8是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由网络设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤81,在第一DCI大小的统计方式为将第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,根据控制资源集CORESET#0中包含的资源块RB的个数,或者,初始initial下行DL带宽部分BWP中包含的RB的个数,确定第一DCI中频域资源分配FDRA域的大小。
本公开实施例中,网络设备为终端设备配置了MBS业务,并通过G-RNTI加扰的DCI format1_0进行调度,若通过G-RNTI加扰的DCI format 1_1或DCI format 1_2的大小统计在DCI budget3+1中的1内,也即将第一DCI归类为通过其他RNTI加扰的DCI进行大小个数的统计。
可选的,根据控制资源集CORESET#0中包含的资源块RB的个数,确定第一DCI中频域资源分配FDRA域的大小,可以包括:
在CORESET#0中包含的RB的个数大于公共频域资源CFR中包含的RB的个数的情况下,根据第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息。其中,N为正数。
或者,在CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,对第一DCI的频域调度粒度进行缩放。
可选的,可以根据CFR包含的RB的个数与CORESET#0包含的RB的个数的比值,确定对第一DCI的频域调度粒度进行缩放时的缩放系数。
可选的,根据初始initial下行DL带宽部分BWP中包含的RB的个数,确定第一DCI中频域资源分配FDRA域的大小,可以包括:
在initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息。
或者,在initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对第一DCI的频域调度粒度进行缩放。
可选的,可以根据CFR包含的RB的个数与DL BWP包含的RB的个数的比值,确定缩放系数。
步骤82,在第一DCI的payload与其他RNTI加扰的第二DCI的payload不同的情况下,将第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
需要说明的是,如果在确定的第一DCI的FDRA域的大小之后,第一DCI的payload与其他RNTI加扰的第二DCI的payload仍旧不同,则可以在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者,将第一DCI进行截短,以使处理后的第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
可选的,在第一DCI的payload小于其他RNTI加扰的第二DCI的payload的情况下, 在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits。
或者,在第一DCI的payload大于其他RNTI加扰的第二DCI的payload的情况下,将第一DCI进行截短。
可选的,在第一DCI的payload大于其他RNTI加扰的第二DCI的payload的情况下,可以优先将第一DCI中的FDRA域进行截短。
通过实施本公开实施例,网络设备在第一DCI大小的统计方式为将第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,根据控制资源集CORESET#0中包含的资源块RB的个数,或者,初始initial下行DL带宽部分BWP中包含的RB的个数,确定第一DCI中频域资源分配FDRA域的大小,之后在第一DCI的payload与其他RNTI加扰的第二DCI的payload不同的情况下,将第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。由此,网络设备通过将用于调度MBS业务第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐,避免了网络设备最终发送的的总的不同大小DCI的数量超出终端设备的能力。
请参见图9,图9是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由网络设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤91,在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计、第一DCI的格式为format1_0、且其他第二DCI未完成对齐的情况下,根据CORESET#0或者initial DL BWP中包含的RB的个数,确定第一DCI中的FDRA域的大小。
本公开实施例中,网络设备为终端设备配置了MBS业务,并通过G-RNTI加扰的DCI format进行调度,若通过G-RNTI加扰的DCI format的大小统计在DCI budget3+1中的3内,也即将第一DCI归类为通过C-RNTI加扰的DCI进行大小个数的统计。
本公开实施例中,在进行CSS和USS中传输的第二DCI format0_0以及第二DCI format1_0、在USS中传输的第二DCI format 0_1以及第二DCI format 1_1、在USS中传输的第二DCI format 0_2以及第二DCI format1_2之间的对齐操作的同时,将用于调度MBS业务的第一DCI与其他RNTI加扰的第二DCI的payload对齐,以使网络设备为终端设备配置的DCI满足3+1的DCI budget要求。
可选的,在CORESET#0中包含的RB的个数大于CFR中包含的RB的个数的情况下,或者,在initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息,其中,N为正整数。
或者,在CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,或者,在initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对第一DCI的频域调度粒度进行缩放。
可选的,根据CFR包含的RB的个数与CORESET 0包含的RB的个数的比值,确定缩放 系数。或者,根据CFR包含的RB的个数与DL BWP包含的RB的个数的比值,确定缩放系数。
步骤92,在第一DCI的payload与其他RNTI加扰的第二DCI的payload不同的情况下,在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者对部分信息域进行截短操作,使得第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
通过实施本公开实施例,网络设备在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计、第一DCI的格式为format1_0、且其他第二DCI未完成对齐的情况下,根据CORESET#0或者initial DL BWP中包含的RB的个数,确定第一DCI中的FDRA域的大小,之后在第一DCI的payload与其他RNTI加扰的第二DCI的payload不同的情况下,在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者对部分信息域进行截短操作,使得第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。由此,网络设备通过将用于调度MBS业务第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐,从而避免了网络设备最终发送的的总的DCI大小的数量超出终端设备的能力。
请参见图10,图10是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由网络设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤101,在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计、第一DCI的格式为format1_1、且其他第二DCI未完成对齐的情况下,根据CFR中包含的RB的个数,确定第一DCI中的FDRA域的大小。
步骤102,将第一DCI的payload与其中一个第二DCI的payload进行对齐。
可选的,在当前小区配置了与第一DCI格式相同的第二DCI的情况下,将第一DCI的payload与格式相同的、C-RNTI加扰的第二DCI的payload进行对齐。
或者,在当前小区未配置与第一DCI格式相同的第二DCI的情况下,将第一DCI的payload与指定第二DCI的payload进行对齐,其中,指定第二DCI为格式为format1_1的DCI。
可选的,在第一DCI的payload小于格式为format1_1的第二DCI的payload的情况下,在第一DCI中增加padding bits,或者,在第一DCI的信息域之后增加appendedbits,以使第一DCI的payload与格式为format1_1第二DCI的payload进行对齐。
或者,在第一DCI的payload大于格式为format1_1的第二DCI的payload的情况下,将第一DCI进行截短,以使第一DCI的payload与格式为format1_1第二DCI的payload进行对齐。
可选的,在第一DCI的payload小于格式为format1_1的第二DCI的payload的情况下,可以优先在第一DCI的FDRA域中增加padding bits。
可选的,在第一DCI的payload大于格式为format1_1第二DCI的payload的情况下,可以优先将第一DCI中的FDRA域进行截短。
通过实施本公开实施例,网络设备在将第一DCI归类为C-RNTI加扰的DCI进行统计、第一DCI的格式为format1_1、且其他第二DCI未完成对齐的情况下,根据CFR中包含的RB的个数,确定第一DCI中的FDRA域的大小,之后将第一DCI的payload与其中一个第二DCI的payload进行对齐。由此,网络设备其他第二DCI未完成对齐的情况下,将用于调度MBS业务的第一DCI的payload与其中一个第二DCI的payload进行对齐,避免了网络设备最终发送的的总的不同大小DCI的数量超出终端设备的能力。
请参见图11,图11是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由网络设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤111,在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计、第一DCI的格式为format1_2、且其他第二DCI未完成对齐的情况下,根据CFR中包含的RB的个数,确定第一DCI中的FDRA域的大小。
步骤112,将第一DCI的payload与其中一个第二DCI的payload进行对齐。
可选的,在当前小区配置了与第一DCI格式相同的第二DCI的情况下,将第一DCI的payload与格式相同的、C-RNTI加扰的第二DCI的payload进行对齐。
或者,在当前小区未配置与第一DCI格式相同的第二DCI的情况下,将第一DCI的payload与指定第二DCI的payload进行对齐,其中,指定第二DCI为格式为format1_2的DCI。
可选的,在第一DCI的payload小于格式为format1_2的第二DCI的payload的情况下,在第一DCI中增加padding bits,或者,在第一DCI的信息域之后增加appendedbits,以使第一DCI的payload与格式为format1_2第二DCI的payload进行对齐。
或者,在第一DCI的payload大于格式为format1_2的第二DCI的payload的情况下,将第一DCI进行截短,以使第一DCI的payload与格式为format1_1第二DCI的payload进行对齐。
可选的,在第一DCI的payload小于格式为format1_2的第二DCI的payload的情况下,可以优先在第一DCI的FDRA域中增加padding bits。
可选的,在第一DCI的payload大于格式为format1_2的第二DCI的payload的情况下,可以优先将第一DCI中的FDRA域进行截短。
通过实施本公开实施例,网络设备在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计、第一DCI的格式为format1_2、且其他第二DCI未完成对齐的情况下,根据CFR中包含的RB的个数,确定第一DCI中的FDRA域的大小,之后将第一DCI的payload与其中一个第二DCI的payload进行对齐。由此,网络设备其他第二DCI未完成对齐的情况下,将用于调度MBS业务的第一DCI的payload与格式相同的第二DCI的payload进行对齐,避免了网络设备最终发送的的总的不同大小DCI的数量超出终端设备的能力。
请参见图12,图12是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由终端设备执行。如图12所示,该方法可以包括但不限于如下步骤:
步骤121,根据第一下行控制信息DCI大小的统计方式,确定第一DCI的有效载荷payload与其中一个第二DCI的payload的对齐方式,其中,第一DCI为用于调度组播调度MBS specific业务的DCI,以及,第二DCI为用于调度其他业务的DCI。
可选的,终端设备可以根据网络设备的指示,或者协议约定,确定第一DCI大小的统计方式。本公开对此不做限定。
可选的,在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,确定第一DCI的payload与CSS中传输的其中一个第二DCI的payload对齐。
或者,在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,确定第一DCI的payload与USS中传输的其中一个第二DCI的payload对齐。
或者,在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,根据第一DCI的格式,确定与第一DCI对齐的第二DCI。
或者,在第一DCI大小的统计方式为将第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,确定第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
可选的,在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,根据第一DCI的格式,确定与第一DCI对齐的第二DCI,可以包括:
在第一DCI的格式为format1_0的情况下,确定与第一DCI的payload对齐的第二DCI为其他RNTI加扰的第二DCI。
或者,在第一DCI的格式为format1_1或者format1_2,且在当前小区配置了与第一DCI格式相同的第二DCI的情况下,确定与第一DCI的payload对齐的第二DCI为C-RNTI加扰的第二DCI。
或者,在第一DCI的格式为format1_1或者format1_2,且在当前小区未配置与第一DCI格式相同的第二DCI的情况下,确定与第一DCI的payload对齐的第二DCI为指定第二DCI,其中,指定第二DCI为格式为format1_1或format1_2的DCI。
通过实施本公开实施例,终端设备根据第一下行控制信息DCI大小的统计方式,确定第一DCI的有效载荷payload与其中一个第二DCI的payload的对齐方式,其中,第一DCI为用于调度组播调度MBS specific业务的DCI,以及,第二DCI为用于调度其他业务的DCI。由此,终端设备通过第一DCI大小的统计方式,确定第一DCI的payload与其中一个第二DCI的payload的对齐方式,从而可以确定DCI指示的业务类型。
请参见图13,图13是本公开实施例提供的一种下行控制信息的对齐方法的流程示意图,该方法由终端设备执行。如图13所示,该方法可以包括但不限于如下步骤:
步骤131,根据第一下行控制信息DCI大小的统计方式,确定第一DCI的有效载荷payload与其中一个第二DCI的payload的对齐方式,其中,第一DCI为用于调度组播调度MBS specific业务的DCI,以及,第二DCI为用于调度其他业务的DCI。
其中,步骤131的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤132,根据控制资源集CORESET#0中包含的资源块RB的个数,或者,初始initial下行DL带宽部分BWP中包含的RB的个数,确定频域资源分配信息。
可选的,在CORESET#0中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息。
或者,在initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息。
其中,N为正整数。
可选的,在CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,对第一DCI的频域调度粒度进行缩放。
或者,在initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对第一DCI的频域调度粒度进行缩放。
可选的,可以根据CFR包含的RB的个数与CORESET 0包含的RB的个数的比值,确定缩放系数。
或者,也可以根据CFR包含的RB的个数与初始DL BWP包含的RB的个数的比值,确定缩放系数。
通过实施本公开实施例,终端设备根据第一下行控制信息DCI大小的统计方式,确定第一DCI的有效载荷payload与其中一个第二DCI的payload的对齐方式,其中,第一DCI为用于调度组播调度MBS specific业务的DCI,以及,第二DCI为用于调度其他业务的DCI,之后根据控制资源集CORESET#0中包含的资源块RB的个数,或者,初始initial下行DL带宽部分BWP中包含的RB的个数,确定频域资源分配信息。由此,终端设备通过第一DCI大小的统计方式,确定第一DCI的payload与其中一个第二DCI的payload的对齐方式,从而可以确定DCI指示的业务类型,进而为该业务分配频域资源。
上述本公开提供的实施例中,分别从网络设备、终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图14,为本公开实施例提供的一种通信装置140的结构示意图。图14所示的通信装置140可包括处理模块1401和收发模块1402。
收发模块1402可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1402可以实现发送功能和/或接收功能。
可以理解的是,通信装置140可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置140,在网络设备侧,该装置,包括:
处理模块1401,用于根据第一下行控制信息DCI大小的统计方式,将第一DCI的有效载荷payload与其中一个第二DCI的payload进行对齐,其中,第一DCI为用于调度组播调度MBS specific业务的DCI,以及,第二DCI为用于调度其他业务的DCI。
可选的,处理模块1401,具体用于:
在第一DCI大小的统计方式为将第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,将第一DCI的payload与公共搜索空间CSS或终端设备专属搜索空间USS中传输的其中一个第二DCI的payload进行对齐。
可选的,处理模块1401,具体用于:
在第一DCI中增加比特padding bits,或者,在第一DCI的所有有效信息域之后添加比特appendedbits,或者,将第一DCI进行截短,以使处理后的第一DCI的payload与在CSS中传输的格式为format1_0的DCI的payload一致;
或者,
在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者,将第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_0的DCI的payload一致;
或者,
在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者,将第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_1的DCI的payload一致;
或者,
在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者,将第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_2的DCI的payload一致;
或者,
在USS中传输的格式为format1_1或format1_2的第二DCI中增加padding bits,或者,在上述第二DCI的所有有效信息域之后增加appendedbits,或者,将上述第二DCI进行截短,以使处理后的第二DCI的payload与第一DCI的payload一致。
可选的,处理模块1401,具体用于:
在第一DCI大小的统计方式为将第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,将第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
可选的,处理模块1401,具体用于:
根据控制资源集CORESET#0中包含的资源块RB的个数,或者,初始initial下行DL带宽部分BWP中包含的RB的个数,确定第一DCI中频域资源分配FDRA域的大小;
在第一DCI的payload与其他RNTI加扰的第二DCI的payload不同的情况下,将第一DCI与其他RNTI加扰的第二DCI的payload对齐。
可选的,处理模块1401,具体用于:
在第一DCI的payload小于其他RNTI加扰的第二DCI的payload的情况下,在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后添加appendedbits;
或者,
在第一DCI的payload大于其他RNTI加扰的第二DCI的payload的情况下,将第一DCI进行截短。
可选的,处理模块1401,具体用于:
将第一DCI中的FDRA域进行截短。
可选的,处理模块1401,还具体用于:
在CORESET#0中包含的RB的个数大于公共频域资源CFR中包含的RB的个数的情况下,根据第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
或者,
在initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
其中,N为正整数。
可选的,处理模块1401,还具体用于:
在CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,对第一DCI的频域调度粒度进行缩放;
或者,
在initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对第一DCI的频域调度粒度进行缩放。
可选的,处理模块1401,具体用于:
根据CFR包含的RB的个数与CORESET#0包含的RB的个数的比值,确定缩放系数;
或者,
根据CFR包含的RB的个数与DL BWP包含的RB的个数的比值,确定缩放系数。
可选的,处理模块1401,具体用于:
在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计、且其他第二DCI未完成对齐的情况下,根据第一DCI的格式,将第一DCI的payload与其中一个第二DCI的payload进行对齐。
可选的,处理模块1401,具体用于:
在第一DCI的格式为format1_0的情况下,根据CORESET#0或者initial DL BWP中包含的RB的个数,确定第一DCI中的FDRA域的大小;
在第一DCI的payload与其他RNTI加扰的第二DCI的payload不同的情况下,在第一DCI中增加padding bits,或者,在第一DCI的所有有效信息域之后增加appendedbits,或者对部分信息域进行截短操作,使得第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
可选的,处理模块1401,还具体用于:
在CORESET#0中包含的RB的个数大于CFR中包含的RB的个数的情况下,或者,在initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息,其中,N为正整数;
或者,
在CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,或者,在initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对第一DCI的频域调度粒度进行缩放。
可选的,处理模块1401,具体用于:
根据CFR包含的RB的个数与CORESET 0包含的RB的个数的比值,确定缩放系数;
或者,
根据CFR包含的RB的个数与DL BWP包含的RB的个数的比值,确定缩放系数。
可选的,处理模块1401,具体用于:
在第一DCI的格式为format1_1或format1_2的情况下,根据CFR中包含的RB的个数,确定第一DCI中的FDRA域的大小;
将第一DCI的payload与其中一个第二DCI的payload进行对齐。
可选的,处理模块1401,具体用于:
在当前小区配置了与第一DCI格式相同的第二DCI的情况下,将第一DCI的payload与格式相同的、C-RNTI加扰的第二DCI的payload进行对齐;
或者,
在当前小区未配置与第一DCI格式相同的第二DCI的情况下,将第一DCI的payload与指定第二DCI的payload进行对齐,其中,指定第二DCI为格式为format1_1或format1_2的DCI。
可选的,处理模块1401,具体用于:
在第一DCI的payload小于其中一个第二DCI的payload的情况下,在第一DCI中增加padding bits,或者,在第一DCI的信息域之后增加appendedbits;
或者,
在第一DCI的payload大于其中一个第二DCI的payload的情况下,将第一DCI进行截短。
可选的,处理模块1401,具体用于:
在第一DCI的FDRA域中增加padding bits;
可选的,处理模块1401,具体用于:
将第一DCI中的FDRA域进行截短。
本公开提供的通信装置,网络设备根据第一下行控制信息DCI大小的统计方式,将第一DCI的有效载荷payload与其中一个第二DCI的payload进行对齐,其中,第一DCI为用于调度组播调度MBS specific业务的DCI,以及,第二DCI为用于调度其他业务的DCI。 由此,通过将用于调度MBS业务的第一DCI的payload与其中一个用于调度其他业务的第二DCI的payload进行对齐,避免了网络设备配置的总的不同大小DCI的数量超出终端设备的能力。
可以理解的是,通信装置140可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置140,在终端设备侧,该装置,包括:
处理模块1401,根据第一下行控制信息DCI大小的统计方式,确定第一DCI的有效载荷payload与其中一个第二DCI的payload的对齐方式,其中,第一DCI为用于调度组播调度MBS specific业务的DCI,以及,第二DCI为用于调度其他业务的DCI。
可选的,处理模块1401,具体用于:
在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,确定第一DCI的payload与CSS中传输的其中一个第二DCI的payload对齐;
或者,
在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,确定第一DCI的payload与USS中传输的其中一个第二DCI的payload对齐;
或者,
在第一DCI大小的统计方式为将第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,根据第一DCI的格式,确定与第一DCI对齐的第二DCI;
或者,
在第一DCI大小的统计方式为将第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,确定第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
可选的,处理模块1401,具体用于:
在第一DCI的格式为format1_0的情况下,确定与第一DCI的payload对齐的第二DCI为其他RNTI加扰的第二DCI;
或者,
在第一DCI的格式为format1_1或者format1_2,且在当前小区配置了与第一DCI格式相同的第二DCI的情况下,确定与第一DCI的payload对齐的第二DCI为C-RNTI加扰的第二DCI;
或者,
在第一DCI的格式为format1_1或者format1_2,且在当前小区未配置与第一DCI格式相同的第二DCI的情况下,确定与第一DCI的payload对齐的第二DCI为指定第二DCI,其中,指定第二DCI为格式为format1_1或format1_2的DCI。
可选的,处理模块1401,还具体用于:
在CORESET#0中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
或者,
在initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
其中,N为正整数。
可选的,处理模块1401,还具体用于:
在CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,对第一DCI的频域调度粒度进行缩放;
或者,
在initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对第一DCI的频域调度粒度进行缩放。
可选的,处理模块1401,还具体用于:
根据CFR包含的RB的个数与CORESET 0包含的RB的个数的比值,确定缩放系数;
或者,
根据CFR包含的RB的个数与初始DL BWP包含的RB的个数的比值,确定缩放系数。
本公开提供的通信装置,终端设备根据第一下行控制信息DCI大小的统计方式,确定第一DCI的有效载荷payload与其中一个第二DCI的payload的对齐方式,其中,第一DCI为用于调度组播调度MBS specific业务的DCI,以及,第二DCI为用于调度其他业务的DCI。由此,终端设备通过第一DCI大小的统计方式,确定第一DCI的payload与其中一个第二DCI的payload的对齐方式,从而可以确定DCI指示的业务类型。
请参见图15,图15是本公开实施例提供的另一种通信装置150的结构示意图。通信装置150可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置150可以包括一个或多个处理器1501。处理器1501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置150中还可以包括一个或多个存储器1502,其上可以存有计算机程序1504,处理器1501执行所述计算机程序1504,以使得通信装置150执行上述方法实施例中描述的方法。可选的,所述存储器1502中还可以存储有数据。通信装置150和存储器1502可以单独设置,也可以集成在一起。
可选的,通信装置150还可以包括收发器1505、天线1506。收发器1505可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1505可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置150中还可以包括一个或多个接口电路1507。接口电路1507用于 接收代码指令并传输至处理器1501。处理器1501运行所述代码指令以使通信装置150执行上述方法实施例中描述的方法。
通信装置150为网络设备:处理器1501用于执行图2中的步骤21;或图3中的步骤31;或图4中的步骤41;或图5中的步骤51;或图6中的步骤61;或图7中的步骤71等等。
通信装置150为终端设备:处理器1501用于执行图12中的步骤121;或图13中的步骤131、步骤132等等。
在一种实现方式中,处理器1501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1501可以存有计算机程序1503,计算机程序1503在处理器1501上运行,可使得通信装置150执行上述方法实施例中描述的方法。计算机程序1503可能固化在处理器1501中,该种情况下,处理器1501可能由硬件实现。
在一种实现方式中,通信装置150可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图14的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图16所示的芯片的结构示意图。 图16所示的芯片包括处理器1601和接口1602。其中,处理器1601的数量可以是一个或多个,接口1602的数量可以是多个。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
处理器1601用于执行图2中的步骤21;或图3中的步骤31;或图4中的步骤41;或图5中的步骤51;或图6中的步骤61;或图7中的步骤71等等。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
处理器1601用于执行图12中的步骤121;或图13中的步骤131、步骤132等等。
可选的,芯片还包括存储器1603,存储器1603用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种通信系统,该系统包括前述图14实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图15实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本公开还提供一种计算机可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更 多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (56)

  1. 一种下行控制信息的对齐方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    根据第一下行控制信息DCI大小的统计方式,将所述第一DCI的有效载荷payload与其中一个第二DCI的payload进行对齐,其中,所述第一DCI为用于调度组播调度MBS specific业务的DCI,以及,所述第二DCI为用于调度其他业务的DCI。
  2. 如权利要求1所述的方法,其特征在于,所述根据第一DCI大小的统计方式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
    在所述第一DCI大小的统计方式为将所述第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,将所述第一DCI的payload与公共搜索空间CSS或终端设备专属搜索空间USS中传输的其中一个第二DCI的payload进行对齐。
  3. 如权利要求2所述的方法,其特征在于,所述将所述第一DCI的payload与公共搜索空间CSS或终端设备专属搜索空间USS中传输的其中一个第二DCI的payload进行对齐,包括:
    在所述第一DCI中增加比特padding bits,或者,在所述第一DCI的所有有效信息域之后增加添加比特appendedbits,或者,将所述第一DCI进行截短truncation,以使处理后的第一DCI的payload与在CSS中传输的格式为format1_0的DCI的payload一致;
    或者,
    在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者,将所述第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_0的DCI的payload一致;
    或者,
    在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者,将所述第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_1的DCI的payload一致;
    或者,
    在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者,将所述第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_2的DCI的payload一致;
    或者,
    在USS中传输的格式为format1_1或format1_2的第二DCI中增加padding bits,或者,在上述第二DCI的所有有效信息域之后增加appendedbits,或者,将上述第二DCI进 行截短,以使处理后的第二DCI的payload与所述第一DCI的payload一致。
  4. 如权利要求1所述的方法,其特征在于,所述根据第一DCI大小的统计方式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
    在所述第一DCI大小的统计方式为将所述第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,将所述第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
  5. 如权利要求4所述的方法,其特征在于,所述将所述第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐,包括:
    根据控制资源集CORESET#0中包含的资源块RB的个数,或者,初始initial下行DL带宽部分BWP中包含的RB的个数,确定所述第一DCI中频域资源分配FDRA域的大小;
    在所述第一DCI的payload与所述其他RNTI加扰的第二DCI的payload不同的情况下,将所述第一DCI与所述其他RNTI加扰的第二DCI的payload对齐。
  6. 如权利要求5所述的方法,其特征在于,所述将所述第一DCI与所述其他RNTI加扰的第二DCI的payload对齐,包括:
    在所述第一DCI的payload小于所述其他RNTI加扰的第二DCI的payload的情况下,在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits;
    或者,
    在所述第一DCI的payload大于所述其他RNTI加扰的第二DCI的payload的情况下,将所述第一DCI进行截短。
  7. 如权利要求6所述的方法,其特征在于,所述将所述第一DCI进行截短,包括:
    将所述第一DCI中的FDRA域进行截短。
  8. 如权利要求5所述的方法,其特征在于,还包括:
    在所述CORESET#0中包含的RB的个数大于公共频域资源CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
    或者,
    在所述initialDL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
    其中,N为正整数。
  9. 如权利要求5所述的方法,其特征在于,还包括:
    在所述CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放;
    或者,
    在所述initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放。
  10. 如权利要求9所述的方法,其特征在于,所述对所述第一DCI的频域调度粒度进行缩放,包括:
    根据所述CFR包含的RB的个数与所述CORESET#0包含的RB的个数的比值,确定缩放系数;
    或者,
    根据所述CFR包含的RB的个数与所述DL BWP包含的RB的个数的比值,确定缩放系数。
  11. 如权利要求1任一所述的方法,其特征在于,根据第一DCI大小的统计方式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
    在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计、且其他第二DCI未完成对齐的情况下,根据所述第一DCI的格式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐。
  12. 如权利要求11所述的方法,其特征在于,所述根据所述第一DCI的格式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
    在所述第一DCI的格式为format1_0的情况下,根据CORESET#0或者initialDL BWP中包含的RB的个数,确定所述第一DCI中的FDRA域的大小;
    在所述第一DCI的payload与其他RNTI加扰的第二DCI的payload不同的情况下,在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者对部分信息域进行截短操作,使得所述第一DCI的payload与所述其他RNTI加扰的第二DCI的payload对齐。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    在所述CORESET#0中包含的RB的个数大于CFR中包含的RB的个数的情况下,或者,在所述initialDL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息,其中,N为正整数;
    或者,
    在所述CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,或者,在所述initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述 第一DCI的频域调度粒度进行缩放。
  14. 如权利要求13所述的方法,其特征在于,所述对所述第一DCI的频域调度粒度进行缩放,包括:
    根据所述CFR包含的RB的个数与所述CORESET 0包含的RB的个数的比值,确定缩放系数;
    或者,
    根据所述CFR包含的RB的个数与所述DL BWP包含的RB的个数的比值,确定缩放系数。
  15. 如权利要求11所述的方法,其特征在于,所述根据所述第一DCI的格式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
    在所述第一DCI的格式为format1_1或format1_2的情况下,根据CFR中包含的RB的个数,确定所述第一DCI中的FDRA域的大小;
    将所述第一DCI的payload与其中一个第二DCI的payload进行对齐。
  16. 如权利要求15所述的方法,其特征在于,所述将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
    在当前小区配置了与所述第一DCI格式相同的第二DCI的情况下,将所述第一DCI的payload与所述格式相同的、C-RNTI加扰的第二DCI的payload进行对齐;
    或者,
    在所述当前小区未配置与所述第一DCI格式相同的第二DCI的情况下,将所述第一DCI的payload与指定第二DCI的payload进行对齐,其中,所述指定第二DCI为格式为format1_1或format1_2的DCI。
  17. 如权利要求11-16任一所述的方法,其特征在于,所述将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,包括:
    在所述第一DCI的payload小于所述其中一个第二DCI的payload的情况下,在所述第一DCI中增加padding bits,或者,在所述第一DCI的信息域之后增加appendedbits;
    或者,
    在所述第一DCI的payload大于所述其中一个第二DCI的payload的情况下,将所述第一DCI进行截短。
  18. 如权利要求17所述的方法,其特征在于,所述在所述第一DCI中增加padding bits,或者,在所述第一DCI的信息域之后增加appendedbits,包括:
    在所述第一DCI的FDRA域中增加padding bits;
  19. 如权利要求17所述的方法,其特征在于,所述将所述第一DCI进行截短,包括:
    将所述第一DCI中的FDRA域进行截短。
  20. 一种下行控制信息的对齐方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    根据第一下行控制信息DCI大小的统计方式,确定所述第一DCI的有效载荷payload与其中一个第二DCI的payload的对齐方式,其中,所述第一DCI为用于调度组播调度MBS specific业务的DCI,以及,所述第二DCI为用于调度其他业务的DCI。
  21. 如权利要求20所述的方法,其特征在于,所述根据第一DCI大小的统计方式,确定所述第一DCI的payload与其中一个第二DCI的payload的对齐方式,包括:
    在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,确定所述第一DCI的payload与CSS中传输的其中一个第二DCI的payload对齐;
    或者,
    在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,确定所述第一DCI的payload与USS中传输的其中一个第二DCI的payload对齐;
    或者,
    在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,根据所述第一DCI的格式,确定与所述第一DCI对齐的第二DCI;
    或者,
    在所述第一DCI大小的统计方式为将所述第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,确定所述第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
  22. 如权利要求21所述的方法,其特征在于,所述根据所述第一DCI的格式,确定与所述第一DCI对齐的第二DCI,包括:
    在所述第一DCI的格式为format1_0的情况下,确定与所述第一DCI的payload对齐的第二DCI为其他RNTI加扰的第二DCI;
    或者,
    在所述第一DCI的格式为format1_1或者format1_2,且在当前小区配置了与所述第一DCI格式相同的第二DCI的情况下,确定与所述第一DCI的payload对齐的第二DCI为C-RNTI加扰的第二DCI;
    或者,
    在所述第一DCI的格式为format1_1或者format1_2,且在当前小区未配置与所述第一DCI格式相同的第二DCI的情况下,确定与所述第一DCI的payload对齐的第二DCI为指 定第二DCI,其中,所述指定第二DCI为格式为format1_1或format1_2的DCI。
  23. 如权利要求21所述的方法,其特征在于,还包括:
    在CORESET#0中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
    或者,
    在initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
    其中,N为正整数。
  24. 如权利要求23所述的方法,其特征在于,还包括:
    在所述CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放;
    或者,
    在所述initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放。
  25. 如权利要求24所述的方法,其特征在于,所述对所述第一DCI的频域调度粒度进行缩放,包括:
    根据所述CFR包含的RB的个数与所述CORESET 0包含的RB的个数的比值,确定缩放系数;
    或者,
    根据所述CFR包含的RB的个数与所述初始DL BWP包含的RB的个数的比值,确定缩放系数。
  26. 一种下行控制信息的对齐装置,其特征在于,所述装置在网络设备侧,所述装置包括:
    处理模块,用于根据第一DCI大小的统计方式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐,其中,所述第一DCI为用于调度组播调度MBS specific业务的第一下行控制信息DCI,以及,所述第二DCI为用于调度其他业务的下行控制信息DCI。
  27. 如权利要求26所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI大小的统计方式为将所述第一DCI归类为小区无线网络临时标识C-RNTI加扰的DCI进行统计、且其他第二DCI已完成对齐的情况下,将所述第一DCI的payload与公共搜索空间CSS或终端设备专属搜索空间USS中传输的其中一个第二DCI的 payload进行对齐。
  28. 如权利要求27所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI中增加比特padding bits,或者,在所述第一DCI的所有有效信息域之后添加比特appendedbits,或者,将所述第一DCI进行截短,以使处理后的第一DCI的payload与在CSS中传输的格式为format1_0的DCI的payload一致;
    或者,
    在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者,将所述第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_0的DCI的payload一致;
    或者,
    在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者,将所述第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_1的DCI的payload一致;
    或者,
    在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者,将所述第一DCI进行截短,以使处理后的第一DCI的payload与在USS中传输的格式为format1_2的DCI的payload一致;
    或者,
    在USS中传输的格式为format1_1或format1_2的第二DCI中增加padding bits,或者,在上述第二DCI的所有有效信息域之后增加appendedbits,或者,将上述第二DCI进行截短,以使处理后的第二DCI的payload与所述第一DCI的payload一致。
  29. 如权利要求26所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI大小的统计方式为将所述第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,将所述第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
  30. 如权利要求29所述的装置,其特征在于,所述处理模块,具体用于:
    根据控制资源集CORESET#0中包含的资源块RB的个数,或者,初始initial下行DL带宽部分BWP中包含的RB的个数,确定所述第一DCI中频域资源分配FDRA域的大小;
    在所述第一DCI的payload与所述其他RNTI加扰的第二DCI的payload不同的情况下,将所述第一DCI与所述其他RNTI加扰的第二DCI的payload对齐。
  31. 如权利要求30所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI的payload小于所述其他RNTI加扰的第二DCI的payload的情况下,在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加 appendedbits;
    或者,
    在所述第一DCI的payload大于所述其他RNTI加扰的第二DCI的payload的情况下,将所述第一DCI进行截短。
  32. 如权利要求31所述的装置,其特征在于,所述处理模块,具体用于:
    将所述第一DCI中的FDRA域进行截短。
  33. 如权利要求30所述的装置,其特征在于,所述处理模块,还具体用于:
    在所述CORESET#0中包含的RB的个数大于公共频域资源CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
    或者,
    在所述initialDL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
    其中,N为正整数。
  34. 如权利要求30所述的装置,其特征在于,所述处理模块,还具体用于:
    在所述CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放;
    或者,
    在所述initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放。
  35. 如权利要求34所述的装置,其特征在于,所述处理模块,具体用于:
    根据所述CFR包含的RB的个数与所述CORESET#0包含的RB的个数的比值,确定缩放系数;
    或者,
    根据所述CFR包含的RB的个数与所述DL BWP包含的RB的个数的比值,确定缩放系数。
  36. 如权利要求26任一所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计、且其他第二DCI未完成对齐的情况下,根据所述第一DCI的格式,将所述第一DCI的payload与其中一个第二DCI的payload进行对齐。
  37. 如权利要求36所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI的格式为format1_0的情况下,根据CORESET#0或者initialDL BWP中包含的RB的个数,确定所述第一DCI中的FDRA域的大小;
    在所述第一DCI的payload与其他RNTI加扰的第二DCI的payload不同的情况下,在所述第一DCI中增加padding bits,或者,在所述第一DCI的所有有效信息域之后增加appendedbits,或者对部分信息域进行截短操作,使得所述第一DCI的payload与所述其他RNTI加扰的第二DCI的payload对齐。
  38. 如权利要求37所述的装置,其特征在于,所述处理模块,还具体用于:
    在所述CORESET#0中包含的RB的个数大于CFR中包含的RB的个数的情况下,或者,在所述initialDL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息,其中,N为正整数;
    或者,
    在所述CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,或者,在所述initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放。
  39. 如权利要求38所述的装置,其特征在于,所述处理模块,具体用于:
    根据所述CFR包含的RB的个数与所述CORESET 0包含的RB的个数的比值,确定缩放系数;
    或者,
    根据所述CFR包含的RB的个数与所述DL BWP包含的RB的个数的比值,确定缩放系数。
  40. 如权利要求36所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI的格式为format1_1或format1_2的情况下,根据CFR中包含的RB的个数,确定所述第一DCI中的FDRA域的大小;
    将所述第一DCI的payload与其中一个第二DCI的payload进行对齐。
  41. 如权利要求40所述的装置,其特征在于,所述处理模块,具体用于:
    在当前小区配置了与所述第一DCI格式相同的第二DCI的情况下,将所述第一DCI的payload与所述格式相同的、C-RNTI加扰的第二DCI的payload进行对齐;
    或者,
    在所述当前小区未配置与所述第一DCI格式相同的第二DCI的情况下,将所述第一DCI的payload与指定第二DCI的payload进行对齐,其中,所述指定第二DCI为格式为format1_1或format1_2的DCI。
  42. 如权利要求36-41任一所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI的payload小于所述其中一个第二DCI的payload的情况下,在所述第一DCI中增加padding bits,或者,在所述第一DCI的信息域之后增加appendedbits;
    或者,
    在所述第一DCI的payload大于所述其中一个第二DCI的payload的情况下,将所述第一DCI进行截短。
  43. 如权利要求42所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI的FDRA域中增加padding bits;
  44. 如权利要求42所述的装置,其特征在于,所述处理模块,具体用于:
    将所述第一DCI中的FDRA域进行截短。
  45. 一种下行控制信息的对齐装置,其特征在于,所述装置由终端设备执行,所述装置包括:
    处理模块,用于根据第一下行控制信息DCI大小的统计方式,确定所述第一DCI的有效载荷payload与其中一个第二DCI的payload的对齐方式,其中,所述第一DCI为用于调度组播调度MBS specific业务的DCI,以及,所述第二DCI为用于调度其他业务的DCI。
  46. 如权利要求45所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,确定所述第一DCI的payload与CSS中传输的其中一个第二DCI的payload对齐;
    或者,
    在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,确定所述第一DCI的payload与USS中传输的其中一个第二DCI的payload对齐;
    或者,
    在所述第一DCI大小的统计方式为将所述第一DCI归类为C-RNTI加扰的DCI进行统计的情况下,根据所述第一DCI的格式,确定与所述第一DCI对齐的第二DCI;
    或者,
    在将所述第一DCI归类为其他RNTI加扰的DCI进行统计的情况下,确定所述第一DCI的payload与其他RNTI加扰的第二DCI的payload对齐。
  47. 如权利要求46所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第一DCI大小的统计方式为所述第一DCI的格式为format1_0的情况下,确定 与所述第一DCI的payload对齐的第二DCI为其他RNTI加扰的第二DCI;
    或者,
    在所述第一DCI大小的统计方式为所述第一DCI的格式为format1_1或者format1_2,且在当前小区配置了与所述第一DCI格式相同的第二DCI的情况下,确定与所述第一DCI的payload对齐的第二DCI为C-RNTI加扰的第二DCI;
    或者,
    在所述第一DCI大小的统计方式为所述第一DCI的格式为format1_1或者format1_2,且在当前小区未配置与所述第一DCI格式相同的第二DCI的情况下,确定与所述第一DCI的payload对齐的第二DCI为指定第二DCI,其中,所述指定第二DCI为格式为format1_1或format1_2的DCI。
  48. 如权利要求46所述的装置,其特征在于,所述处理模块,还具体用于:
    在CORESET#0中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
    或者,
    在initial DL BWP中包含的RB的个数大于CFR中包含的RB的个数的情况下,根据所述第一DCI中的N个最高比特位或者N个最低比特位,确定频域资源分配信息;
    其中,N为正整数。
  49. 如权利要求48所述的装置,其特征在于,所述处理模块,还具体用于:
    在所述CORESET#0中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放;
    或者,
    在所述initial DL BWP中包含的RB的个数小于CFR中包含的RB的个数的情况下,对所述第一DCI的频域调度粒度进行缩放。
  50. 如权利要求49所述的装置,其特征在于,所述处理模块,还具体用于:
    根据所述CFR包含的RB的个数与所述CORESET 0包含的RB的个数的比值,确定缩放系数;
    或者,
    根据所述CFR包含的RB的个数与所述初始DL BWP包含的RB的个数的比值,确定缩放系数。
  51. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至19中任一项所述的方法。
  52. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求20至25中任一项所述的方法。
  53. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至19中任一项所述的方法。
  54. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求20至25中任一项所述的方法。
  55. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至19中任一项所述的方法被实现。
  56. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求20至25中任一项所述的方法被实现。
PCT/CN2021/112873 2021-08-16 2021-08-16 一种下行控制信息的对齐方法及其装置 WO2023019411A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180002565.1A CN113841430B (zh) 2021-08-16 2021-08-16 一种下行控制信息的对齐方法及其装置
PCT/CN2021/112873 WO2023019411A1 (zh) 2021-08-16 2021-08-16 一种下行控制信息的对齐方法及其装置
EP21953665.3A EP4391676A4 (en) 2021-08-16 2021-08-16 METHOD AND APPARATUS FOR ALIGNING DOWNLINK CONTROL INFORMATION
KR1020247008383A KR20240039062A (ko) 2021-08-16 2021-08-16 다운링크 제어 정보의 정렬 방법 및 장치
CN202310014728.9A CN116208921A (zh) 2021-08-16 2021-08-16 一种下行控制信息的对齐方法及其装置
JP2024509009A JP2024531285A (ja) 2021-08-16 2021-08-16 ダウンリンク制御情報のアライン方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112873 WO2023019411A1 (zh) 2021-08-16 2021-08-16 一种下行控制信息的对齐方法及其装置

Publications (1)

Publication Number Publication Date
WO2023019411A1 true WO2023019411A1 (zh) 2023-02-23

Family

ID=78971939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112873 WO2023019411A1 (zh) 2021-08-16 2021-08-16 一种下行控制信息的对齐方法及其装置

Country Status (5)

Country Link
EP (1) EP4391676A4 (zh)
JP (1) JP2024531285A (zh)
KR (1) KR20240039062A (zh)
CN (2) CN116208921A (zh)
WO (1) WO2023019411A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122918A1 (zh) * 2021-12-27 2023-07-06 北京小米移动软件有限公司 资源确定和监听mbs的方法、装置、通信设备及存储介质
WO2024007314A1 (en) * 2022-07-08 2024-01-11 Nec Corporation Methods, devices, and medium for communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391867A (zh) * 2018-04-16 2019-10-29 维沃移动通信有限公司 Dci检测方法、dci发送方法、终端和基站
US20200328840A1 (en) * 2019-04-15 2020-10-15 Mediatek Singapore Pte. Ltd. Method And Apparatus For Downlink Control Information Size Alignment In Mobile Communications
CN112954797A (zh) * 2019-12-11 2021-06-11 大唐移动通信设备有限公司 一种下行控制信息dci的对齐方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119198A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated Support of transmission mode and impact on pdcch blind decodes of ptm (point-to-multipoint) transmission
US12082055B2 (en) * 2016-11-17 2024-09-03 Comcast Cable Communications, Llc Handover of user equipment with multimedia broadcast multicast services
CN111096029B (zh) * 2018-08-03 2023-08-08 Lg电子株式会社 与公共资源块网格无关地配置参考点的方法和用于该方法的设备
WO2020197333A1 (ko) * 2019-03-28 2020-10-01 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
CN114175558B (zh) * 2019-08-02 2024-04-05 夏普株式会社 用户装备、基站和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391867A (zh) * 2018-04-16 2019-10-29 维沃移动通信有限公司 Dci检测方法、dci发送方法、终端和基站
US20200328840A1 (en) * 2019-04-15 2020-10-15 Mediatek Singapore Pte. Ltd. Method And Apparatus For Downlink Control Information Size Alignment In Mobile Communications
CN112954797A (zh) * 2019-12-11 2021-06-11 大唐移动通信设备有限公司 一种下行控制信息dci的对齐方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Multiplexing and channel coding (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.212, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.6.0, 30 June 2021 (2021-06-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 153, XP052029952 *
ERICSSON: "Mechanisms to support MBS group scheduling for RRC_CONNECTED UEs", 3GPP DRAFT; R1-2101726, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. eMeeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971877 *

Also Published As

Publication number Publication date
JP2024531285A (ja) 2024-08-29
EP4391676A4 (en) 2024-10-23
KR20240039062A (ko) 2024-03-26
EP4391676A1 (en) 2024-06-26
CN116208921A (zh) 2023-06-02
CN113841430B (zh) 2023-05-09
CN113841430A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2023130322A1 (zh) 确定共享信道占用时间的方法及其装置
WO2023019411A1 (zh) 一种下行控制信息的对齐方法及其装置
WO2023159449A1 (zh) 数据传输方法和装置
WO2023039852A1 (zh) 系统信息传输方法和装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2023201497A1 (zh) 一种确定非授权频谱中频域资源的方法及装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
WO2023060491A1 (zh) 一种多载波聚合能力的上报方法及其装置
WO2023010428A1 (zh) 准共址配置方法、准共址qcl信息确定方法及其装置
WO2023019410A1 (zh) 一种传输下行控制信息dci的方法及其装置
WO2023115279A1 (zh) 数据传输方法及装置
WO2024036519A1 (zh) 一种侧行链路pdcp复用的激活方法及装置
RU2828400C2 (ru) Способ и устройство для выравнивания управляющей информации нисходящей линии связи
WO2023130321A1 (zh) 一种数据压缩方法和装置
WO2024197931A1 (zh) 侧行链路数据无线承载drb配置方法及装置
WO2022266963A1 (zh) 资源分配方法及其装置
WO2024045078A1 (zh) 一种终端处理能力的上报方法、数据处理方法及其装置
WO2022236622A1 (zh) 一种寻呼方法及其装置
WO2024036520A1 (zh) 一种侧行链路逻辑信道标识的确定方法及装置
WO2023122990A1 (zh) 物理随机接入信道prach的传输方法和装置
WO2023155206A1 (zh) 联合信道估计的最大持续时间的上报方法及其装置
WO2023004653A1 (zh) 一种时隙结构的配置方法及其装置
WO2023044811A1 (zh) 应用于组播调度mbs的半持续调度sps传输指示方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024509009

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024002995

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20247008383

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202447018705

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2024106160

Country of ref document: RU

Ref document number: 2021953665

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021953665

Country of ref document: EP

Effective date: 20240318

WWE Wipo information: entry into national phase

Ref document number: 11202401027Q

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112024002995

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240215