WO2023044628A1 - 一种测量gap的调度方法及其装置 - Google Patents

一种测量gap的调度方法及其装置 Download PDF

Info

Publication number
WO2023044628A1
WO2023044628A1 PCT/CN2021/119714 CN2021119714W WO2023044628A1 WO 2023044628 A1 WO2023044628 A1 WO 2023044628A1 CN 2021119714 W CN2021119714 W CN 2021119714W WO 2023044628 A1 WO2023044628 A1 WO 2023044628A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
measurement gap
state
gap
indicate
Prior art date
Application number
PCT/CN2021/119714
Other languages
English (en)
French (fr)
Inventor
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/119714 priority Critical patent/WO2023044628A1/zh
Priority to CN202180003032.5A priority patent/CN116158112A/zh
Publication of WO2023044628A1 publication Critical patent/WO2023044628A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of communication technologies, and in particular to a scheduling method and device for gap measurement.
  • the terminal device when the terminal device performs mobility measurement, if the reference signal of the neighboring cell to be measured is not in the frequency domain of the currently activated Bandwidth Part (BWP), the terminal device needs to measure the gap to perform mobility measurements.
  • BWP Bandwidth Part
  • BWP can be switched through downlink control information (Downlink Control Information, DCI), timer timer, etc.
  • DCI Downlink Control Information
  • timer timer timer timer
  • Embodiments of the present application provide a measurement gap scheduling method and an apparatus therefor, which can realize dynamic switching of measurement gap states, thereby avoiding waste of resources.
  • an embodiment of the present application provides a method for scheduling a gap measurement, the method is executed by a terminal device, and the method includes: receiving first indication information, where the first indication information is used to indicate a state of a measurement gap.
  • the terminal device after receiving the indication information for indicating the state of the measurement gap, the terminal device can dynamically switch the state of the measurement gap according to the indication information, thereby avoiding waste of resources.
  • the first indication information is used to indicate the state of the measurement gap on each configured BWP on each serving cell;
  • the first indication information is used to indicate the number of serving cells and the status of the measurement gap on each serving cell.
  • receiving first indication information includes:
  • the first indication information is received.
  • the method further includes: receiving second indication information, where the second indication information is used to indicate the switched BWP;
  • the embodiment of the present application provides another method for scheduling gap measurement.
  • the method is executed by a network device, and the method includes: sending first indication information, where the first indication information is used to indicate a state of a gap measurement interval.
  • the network device indicates the state of the measurement gap to the terminal device, so that the terminal device can dynamically switch the state of the measurement gap according to the indication information, thereby avoiding waste of resources.
  • the first indication information is used to indicate the state of the measurement gap on each configured BWP on each serving cell;
  • the first indication information is used to indicate the number of serving cells and the status of the measurement gap on each serving cell.
  • send first indication information including:
  • the first indication information is sent.
  • the state of measuring the gap includes: an activated state or a deactivated state.
  • the second indication information is sent, where the second indication information is used to indicate the switched BWP.
  • the embodiment of the present application provides a communication device, including:
  • the transceiver module is configured to receive first indication information, wherein the first indication information is used to indicate the status of the measurement gap.
  • the first indication information is used to indicate the state of the measurement gap on each configured BWP on each serving cell;
  • the first indication information is used to indicate the number of serving cells and the status of the measurement gap on each serving cell.
  • the transceiver module is specifically used for:
  • the first indication information is received.
  • a processing module configured to activate or deactivate the measurement gap according to the status of the measurement gap in the indication information.
  • the embodiment of the present application provides another communication device.
  • the device On the network device side, the device includes:
  • the transceiver module is configured to send the first indication information, wherein the first indication information is used to indicate the state of measuring the gap interval.
  • the first indication information is used to indicate the state of the measurement gap on each configured BWP on each serving cell;
  • the first indication information is used to indicate the number of serving cells and the status of the measurement gap on each serving cell.
  • the transceiver module is specifically used for:
  • the first indication information is sent.
  • the state of measuring the gap includes: an activated state or a deactivated state.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • the embodiment of the present application provides a scheduling system for gap measurement
  • the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or, the system includes the communication device described in the fifth aspect
  • the communication device and the communication device described in the sixth aspect or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the first aspect
  • the communication device described in the tenth aspect the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or, the system includes the communication device described in the fifth aspect
  • the communication device and the communication device described in the sixth aspect or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the first aspect
  • the communication device described in the tenth aspect the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or, the system includes the communication
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to realize the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to realize the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a scheduling method for measuring gap provided in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another scheduling method for measuring gap provided in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another scheduling method for measuring gap provided in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another scheduling method for measuring gap provided in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another scheduling method for measuring gap provided in an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of another scheduling method for gap measurement provided by the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another scheduling method for measuring gap provided in an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another scheduling method for gap measurement provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • DCI Downlink control information
  • DCI is carried by a physical downlink control channel (physical downlink control channel, PDCCH), and DCI may include uplink and downlink resource allocation, hybrid automatic repeat request (hybrid automatic repeat request, HARQ) information, power control, etc.
  • PDCCH physical downlink control channel
  • HARQ hybrid automatic repeat request
  • the PDCCH is a physical channel used to carry downlink scheduling information.
  • BWP Bandwidth Part
  • Measuring gap is a kind of inter-frequency measurement method.
  • the specific operation is: during inter-frequency measurement, reserve a part of the time (that is, measure the gap time). During this time, the terminal device will not send and receive any data, but will receive The machine tunes to the frequency point of the target cell, performs inter-frequency measurement, and transfers to the current cell at the end of the interval.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiment of the application. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 11 and one terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 11 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), using CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a method for measuring gap scheduling provided by an embodiment of the present application, and the method is executed by a terminal device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step S21 Receive first indication information, where the first indication information is used to indicate the status of the measurement gap.
  • the network device can pass The first indication information indicates the status of each measurement gap to the terminal device, and then the terminal device can quickly activate or deactivate the measurement gap according to the measurement gap status indicated in the indication information, thereby avoiding waste of resources.
  • the terminal device when receiving the BWP switching instruction, may determine the state of the measurement gap on the currently activated BWP according to the first indication information, and then dynamically activate or deactivate the measurement gap.
  • the first indication information may include the state of the measurement gap corresponding to each configured BWP on each serving cell, or may include the state of the measurement gap corresponding to each serving cell. Measuring the state of a gap can include activation or deactivation.
  • the terminal device may dynamically activate or deactivate the measurement gap according to the state of the measurement gap in the first indication information. In this way, it is possible to avoid measuring the state that the gap is always assumed to be used for mobility measurement, thereby helping to avoid waste of resources.
  • FIG. 3 is a schematic flowchart of another method for measuring gap scheduling provided by an embodiment of the present application. As shown in Figure 3, the method may be performed by a terminal device, and the method may include but not limited to the following steps:
  • Step S31 Receive first indication information, where the first indication information is used to indicate the state of the measurement gap on each configured BWP on each serving cell.
  • each terminal device may have multiple serving cells, and each cell may be configured with multiple BWPs, and the terminal device may perform mobility measurement on each cell, so the first indication information may include each serving cell
  • the status indication information of the measurement gap of each BWP is configured, so that when performing BWP switching, the terminal device can quickly query the status of the measurement gap on the currently activated BWP based on the first indication information.
  • the first indication information may be organized in the following manner.
  • the content indicated in the first indication information may be shown in Table 1 below:
  • ON means the configured measurement gap is activated
  • OFF means the configured measurement gap is deactivated
  • the column where ServCellIndex is located represents the serving cell number
  • the row below BWP-Id represents the BWP number.
  • ServCellIndex#0 line and BWP-Id#0 column intersection cell is ON, indicating that the terminal device is in the service cell with index 0.
  • the measurement gap should be set to active state; similarly, ServCellIndex
  • the intersecting cell of #0 row and BWP-Id#1 column is OFF, which means that the terminal equipment is in the serving cell with index 0.
  • the measurement gap should be set to deactivated state.
  • each element and each corresponding relationship in Table 1 exists independently; these elements and corresponding relationships are exemplarily listed in the same table, but it does not represent all elements, Correspondence must exist simultaneously according to those shown in Table 1.
  • the value of each element and each corresponding relationship does not depend on any other element value or corresponding relationship in Table 1. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 1 is an independent embodiment.
  • the above-mentioned first indication information may also refer to the current protocol format to indicate the number of serving cells and the status of the measurement gap on each serving cell.
  • the first indication information indicates that the terminal device currently corresponds to four serving cells, and the measurement gap state corresponding to serving cell 1 is activated, the measurement gap state corresponding to serving cell 2 is deactivated, and the corresponding measurement gap state of serving cell 3 is The measurement gap state of the cell 4 is the deactivated state, and the measurement gap state corresponding to the serving cell 4 is the activated state. Then, when the terminal device performs mobility measurement, if the serving cell currently located is the serving cell 3, it can be known from the first indication information that the current measurement gap is in a deactivated state, and thus the measurement gap can be deactivated.
  • the first indication information can more comprehensively and effectively indicate the state of the measurement gap corresponding to each BWP, so that the terminal device can dynamically adjust the state of the measurement gap according to the switching of the BWP, thereby avoiding the network constant In the state where the measurement gap is activated, resources are wasted.
  • FIG. 4 is a schematic flowchart of another method for measuring gap scheduling provided by an embodiment of the present application, and the method is executed by a terminal device. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step S41 Based on the measurement gap configuration signaling, receive first indication information, where the first indication information is used to indicate the state of the measurement gap.
  • the first indication information may be recorded in the measurement gap configuration command MeasGapConfig, that is, the network device may simultaneously indicate the status of each measurement gap when configuring the measurement gap for the terminal device.
  • the content and implementation form of the first indication information can refer to any embodiment of the present disclosure, and will not be repeated here.
  • Step S42 Activate or deactivate the measurement gap according to the status of the measurement gap in the first indication information.
  • the terminal device can query the state of the corresponding measurement gap according to the cell to be measured and the currently activated BWP.
  • the measurement gap is activated; when the measurement gap When the state of is deactivated, deactivate the measurement gap.
  • the serving cell where the terminal device is currently located is the serving cell of ServCellIndex#1, and the activated BWP is BWP-id#1
  • the first indication information it can be determined that the measurement gap corresponding to ServCellIndex#1 and BWP-id#1 is Activated state, you can activate the gap measurement.
  • the terminal device can query the measurement gap corresponding to the BWP-id#2 of the serving cell of ServCellIndex#1 in the first instruction information If the status indication information is activated, keep the measurement gap in the active state and perform mobility measurement; when the status indication information is deactivated, deactivate the measurement gap and do not perform mobility measurement.
  • the terminal device can quickly update the state of the measurement gap according to the state of the measurement gap indicated in the measurement gap configuration signaling. Thus, it is avoided that the measurement gap is always activated, and resources are saved.
  • FIG. 5 is a schematic flowchart of another method for measuring gap scheduling provided by an embodiment of the present application, and the method is executed by a terminal device. As shown in Figure 5, the method may include but not limited to the following steps:
  • Step S51 Receive second indication information, where the second indication information is used to indicate the switched BWP.
  • the second indication information may be DCI information.
  • the network device may send BWP switching instruction information to the terminal device in real time according to the current location of the terminal device, so as to instruct the terminal device to perform BWP switching.
  • Step S52 According to the status of the measurement gap corresponding to the switched BWP in the first indication information, activate or deactivate the measurement gap corresponding to the switched BWP.
  • each BWP in each serving cell may correspond to a measurement gap state.
  • the terminal device receives the BWP transformation instruction, it can determine the interval gap corresponding to the transformed BWP according to the BWP state indicated in the first instruction information. State, and then switch the state of the measurement gap, so that the change of the measurement gap can be synchronized with the switching of the BWP.
  • the first indication information may be preconfigured in the terminal device, or may be received by the terminal device before receiving the second indication information, or may be received by the terminal device while receiving the second indication information.
  • the terminal device can query the status of the measurement gap indicated by the first indication information according to the serving cell and the second indication information used to indicate BWP handover, To determine the status of the corresponding measurement gap in the switched BWP, when the status of the measurement gap is activated, the measurement gap is activated; when the status of the measurement gap is deactivated, the measurement gap is deactivated.
  • the serving cell where the terminal device is currently located is the serving cell of ServCellIndex#1, and the activated BWP is BWP-id#1, and the measurement gap is in the active state
  • the cell after switching indicated by the second indication information received by the terminal device is BWP-id#2.
  • the terminal device can determine the state of the measurement gap corresponding to the BWP-id#2 of the serving cell No. ServCellIndex#1 according to the indication in the first indication information, and when the state indication information is active, keep the measurement gap active state, perform mobility measurement; when the state indication information is deactivation, deactivate measurement gap, and do not perform mobility measurement.
  • FIG. 6 is a schematic flowchart of another method for measuring gap scheduling provided by an embodiment of the present application, and the method is executed by a network device. As shown in Figure 6, the method may include but not limited to the following steps:
  • Step S61 Sending first indication information, where the first indication information is used to indicate the status of the measurement gap.
  • the network device can pass The first indication information indicates the state of each measurement gap to the terminal device, so that the terminal device can quickly activate or deactivate the measurement gap according to the measurement gap state indicated in the first indication information, thereby avoiding waste of resources.
  • the first indication information may include the status of the measurement gap corresponding to each configured BWP on each serving cell, or may include the status of the measurement gap corresponding to each serving cell. Measuring the state of a gap can include activation or deactivation.
  • the network device indicates the state of the measurement gap to the terminal device, so that the terminal device can dynamically activate or deactivate the measurement gap. In this way, it is possible to avoid the state that the measurement gap is assumed to be used for mobility measurement all the time, thereby helping to avoid waste of resources.
  • FIG. 7 is a schematic flowchart of another method for measuring gap scheduling provided by an embodiment of the present application, and the method is executed by a network device. As shown in Figure 7, the method may include but not limited to the following steps:
  • Step S71 Sending first indication information, where the first indication information is used to indicate the state of the measurement gap on each configured BWP on each serving cell.
  • each terminal device may have multiple serving cells, and each cell may be configured with multiple BWPs, and the terminal device may perform mobility measurement on each cell, so the first indication information may include each serving cell
  • the status indication information of the measurement gap of each BWP is configured, so that when performing BWP switching, the terminal device can quickly query the status of the measurement gap on the currently activated BWP based on the first indication information.
  • the content indicated in the first indication information may be as shown in Table 1 in the present disclosure, which will not be repeated here.
  • the network device sends the first instruction information to the terminal device, and after receiving the first instruction information, the terminal device can quickly query the status of the corresponding measurement gap when performing BWP switching, and then perform measurement The activation or deactivation of the gap.
  • the above-mentioned first indication information may also refer to the current protocol format to indicate the number of serving cells and the status of the measurement gap on each serving cell.
  • the first indication information indicates that the terminal device currently corresponds to four serving cells, and the measurement gap state corresponding to serving cell 1 is activated, the measurement gap state corresponding to serving cell 2 is deactivated, and the corresponding measurement gap state of serving cell 3 is The measurement gap state of the cell 4 is the deactivated state, and the measurement gap state corresponding to the serving cell 4 is the activated state. Then, when the terminal device performs mobility measurement, if the serving cell currently located is the serving cell 3, it can be known from the first indication information that the current measurement gap is in a deactivated state, and thus the measurement gap can be deactivated.
  • the indication information can more comprehensively and effectively indicate the state of the measurement gap corresponding to each BWP, so that the terminal device can dynamically adjust the state of the measurement gap according to the switching of the BWP, thereby avoiding that the network is always in the measurement gap The state where the gap is activated wastes resources.
  • FIG. 8 is a schematic flowchart of another method for measuring gap scheduling provided by an embodiment of the present application, and the method is executed by a network device. As shown in Figure 8, the method may include but not limited to the following steps:
  • Step S81 Send the first indication information based on the measurement gap configuration signaling.
  • the indication information can be recorded in the measurement gap configuration command MeasGapConfig, that is, the network device can simultaneously indicate the status of each measurement gap when configuring the measurement gap for the terminal device.
  • the terminal device after the terminal device receives the first indication information, it can query the state of the corresponding measurement gap according to the serving cell and the currently activated BWP. When the state of the measurement gap is active, the measurement gap is activated; when the measurement gap is When the state is deactivated, deactivate the measurement gap.
  • the terminal device can query the status indication information of the measurement gap corresponding to the BWP-id#2 of the serving cell of ServCellIndex#1 in the first instruction information , when the status indication information is activated, keep the measurement gap in the activated state, and perform mobility measurement; when the status indication information is deactivated, deactivate the measurement gap, and do not perform mobility measurement.
  • the network device indicates the state of the measurement gap to the terminal device through the measurement gap configuration signaling, and then the terminal device can quickly update the state of the measurement gap as required.
  • the measurement gap is always activated, and resources are saved.
  • FIG. 9 is a schematic flowchart of another method for measuring gap scheduling provided by an embodiment of the present application, and the method is executed by a network device. As shown in Figure 9, the method may include but not limited to the following steps:
  • Step S91 Sending second indication information, where the second indication information is used to indicate the switched BWP.
  • the second indication information may be DCI information.
  • the network device may send BWP switching instruction information to the terminal device in real time according to the current location of the terminal device, so as to instruct the terminal device to perform BWP switching.
  • the terminal device may query the status of the measurement gap indicated by the first indication information according to the serving cell and the second indication information used to indicate BWP switching, To determine the state of the corresponding measurement gap in the switched BWP.
  • the first indication information may be pre-configured in the terminal device, or may be sent by the network device before sending the second indication information, or may be sent by the network device while sending the second indication information.
  • the terminal device can determine the state of the measurement gap corresponding to BWP-id#2 of the serving cell with ServCellIndex#1 according to the indication in the first indication information.
  • the network device indicates the switched BWP to the terminal device by sending the second indication information, and the terminal device can, according to the first indication information, The state of the measurement gap corresponding to the switched BWP, dynamically activates or deactivates the measurement gap. In this way, it is possible to avoid measuring the state that the gap is always assumed to be used for mobility measurement, thereby helping to avoid waste of resources.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of the network device and the terminal device respectively.
  • the network device and the first terminal device may include a hardware structure and a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module .
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 10 is a schematic structural diagram of a communication device 100 provided in an embodiment of the present application.
  • the communication device 100 shown in FIG. 10 may include a transceiver module 1001 and a processing module 1002 .
  • the transceiver module 1001 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 1001 can realize the sending function and/or the receiving function.
  • the communication device 100 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched with the terminal device.
  • the communication device 100 is on the terminal device side, and the device includes:
  • the transceiver module 1001 is configured to receive first indication information, where the first indication information is used to indicate the status of the measurement gap.
  • the first indication information is used to indicate the state of the measurement gap on each configured BWP on each serving cell;
  • the first indication information is used to indicate the number of serving cells and the state of measurement gap on each serving cell.
  • the transceiver module 1001 is specifically used for:
  • the first indication information is received based on measurement gap configuration signaling.
  • the processing module 1002 is configured to activate or deactivate the measurement gap according to the status of the measurement gap in the first indication information.
  • the communication device provided in the present disclosure indicates the status of the measurement gap through the first indication information, so that the measurement gap can be dynamically activated or deactivated. In this way, it is possible to avoid measuring the state that the gap is always assumed to be used for mobility measurement, thereby helping to avoid waste of resources.
  • the communication device 100 may be a network device, a device in the network device, or a device that can be matched with the network device.
  • the communication device 100 on the network device side, the device includes:
  • the transceiver module 1001 is configured to send first indication information, where the first indication information is used to indicate the state of measuring gap intervals.
  • the first indication information is used to indicate the state of the measurement gap on each configured BWP on each serving cell;
  • the first indication information is used to indicate the number of serving cells and the state of measurement gap on each serving cell.
  • the transceiver module 1001 is specifically used for:
  • the state of measuring the gap includes: an activated state or a deactivated state.
  • the communication device provided in the present disclosure indicates the status of the measurement gap through the first indication information, so that the measurement gap can be dynamically activated or deactivated. In this way, it is possible to avoid measuring the state where the gap has been assumed to be used for mobility measurements, which is beneficial to avoid resource waste
  • FIG. 11 is a schematic structural diagram of another communication device 110 provided by an embodiment of the present application.
  • the communication device 100 may be a network device, or a terminal device (such as the first terminal device in the foregoing method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or a A chip, chip system, or processor that supports the terminal device to implement the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 110 may include one or more processors 1101 .
  • the processor 1101 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 110 may further include one or more memories 1102, on which a computer program 1104 may be stored, and the processor 1101 executes the computer program 1104, so that the communication device 110 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 1102 .
  • the communication device 110 and the memory 1102 can be set separately or integrated together.
  • the communication device 110 may further include a transceiver 1105 and an antenna 1106 .
  • the transceiver 1105 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1105 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit, etc., for realizing a receiving function; the transmitter may be called a transmitter, or a sending circuit, for realizing a sending function.
  • the communication device 110 may further include one or more interface circuits 1107 .
  • the interface circuit 1107 is used to receive code instructions and transmit them to the processor 1101 .
  • the processor 1101 runs the code instructions to enable the communication device 110 to execute the methods described in the foregoing method embodiments.
  • the communication device 110 is a terminal device (such as the first terminal device in the foregoing method embodiments): the processor 1101 is configured to execute S41 in FIG. 4 .
  • the communication device 110 is a network device: the transceiver 1105 is used to execute step S61 in FIG. 6 ; execute step S71 in FIG. 7 ; step S81 in FIG. 8 ; and step S91 in FIG. 9 .
  • the processor 1101 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1101 may store a computer program 1103 , and the computer program 1103 runs on the processor 1001 to enable the communication device 110 to execute the methods described in the foregoing method embodiments.
  • the computer program 1103 may be solidified in the processor 1101, and in this case, the processor 1101 may be implemented by hardware.
  • the communication device 110 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiments), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device can be Not limited by Figure 11.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 12 includes a processor 1201 and an interface 1202 .
  • the number of processors 1201 may be one or more, and the number of interfaces 1202 may be more than one.
  • the interface 1202 is used to execute step S21 in FIG. 2 ; step S31 in FIG. 3 ; or step S41 in FIG. 4 ; step S51 in FIG. 5 , and so on.
  • the interface 1102 is used to execute step S61 in FIG. 6 ; step S71 in FIG. 7 ; or step S81 in FIG. 8 ; or step S91 in FIG. 9 , and so on.
  • the chip further includes a memory 1103 for storing necessary computer programs and data.
  • the embodiment of the present application also provides a system for determining the duration of the side link.
  • the system includes the communication device as the terminal device (such as the first terminal device in the method embodiment above) in the aforementioned embodiment of FIG. 8 and the communication device as the network device.
  • the system includes a communication device serving as a terminal device (such as the first terminal device in the foregoing method embodiment) and a communication device serving as a network device in the foregoing embodiment in FIG. 10 .
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种测量gap的调度方法及其装置,可应用于通信技术领域,其中,由终端设备执行的方法包括:接收指示信息,其中,所述指示信息用于指示测量gap的状态。通过实施本申请实施例,可以实现测量gap的动态切换,从而节省资源,避免资源浪费。

Description

一种测量gap的调度方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种测量gap的调度方法及其装置。
背景技术
在新空口(New Radio,NR)系统中,当终端设备进行移动性测量时,如果待测邻小区的参考信号不在当前激活的带宽部分(Bandwidth Part,BWP)频域内,则终端设备需要测量gap来完成移动性测量。
通常,BWP可以通过下行控制信息(Downlink Control Information,DCI)、计时器timer等方式进行切换,当BWP通过DCI指示进行切换时,其切换比测量gap更动态或者更快速,在这种情况下,网络可能总是假设测量gap用于移动性测量,这样将会给网络和终端造成吞吐量的损失。
因此,如何提供一种测量gap的调度方法,是目前亟需解决的问题。
发明内容
本申请实施例提供一种测量gap的调度方法及其装置,可以实现动态的切换测量gap的状态,从而避免资源浪费。
第一方面,本申请实施例提供一种测量gap的调度方法,该方法由终端设备执行,方法包括:接收第一指示信息,其中,第一指示信息用于指示测量gap的状态。
在该技术方案中,终端设备接收用于指示测量gap的状态的指示信息后,即可根据指示信息指示,对测量gap的状态进行动态切换,从而避免资源浪费。
可选的,第一指示信息用于指示每个服务小区上每个配置的BWP上的测量gap的状态;
或者,
第一指示信息用于指示服务小区的数量,以及每个服务小区上测量gap的状态。
可选的,接收第一指示信息,包括:
基于测量gap配置信令,接收第一指示信息。
可选的,还包括:
根据第一指示信息中所述测量gap的状态,激活或者去激活所述测量gap。
可选的,还包括:接收第二指示信息,其中,第二指示信息用于指示切换后的BWP;
根据第一指示信息中切换后的BWP对应的测量gap的状态,激活或者去激活所述切换后的BWP对应的测量gap。第二方面,本申请实施例提供另一种测量gap的调度方法,方法由网络设备执行,方法包括:发送第一指示信息,其中,第一指示信息用于指示测量gap间隔的状态。
在该方案中,网络设备通过向终端设备指示测量gap的状态,从而使得终端设备可以根据指示信息,动态的切换测量gap的状态,避免了资源浪费。
可选的,第一指示信息用于指示每个服务小区上每个配置的BWP上的测量gap的状态;
或者,
第一指示信息用于指示服务小区的数量,以及每个服务小区上测量gap的状态。
可选的,发送第一指示信息,包括:
基于测量gap配置信令,发送第一指示信息。
可选的,测量gap的状态包括:激活状态或去激活状态。
可选的,发送第二指示信息,其中,第二指示信息用于指示切换后的BWP。第三方面,本申请实施例提供一种通信装置,包括:
收发模块,用于接收第一指示信息,其中,第一指示信息用于指示测量gap的状态。
可选的,第一指示信息用于指示每个服务小区上每个配置的BWP上的测量gap的状态;
或者,
第一指示信息用于指示服务小区的数量,以及每个服务小区上测量gap的状态。
可选的,收发模块,具体用于:
基于测量gap配置信令,接收第一指示信息。
可选的,还包括:
处理模块,用于根据指示信息中所述测量gap的状态,激活或者去激活所述测量gap。
第四方面,本申请实施例提供另一种通信装置,在网络设备侧,该装置,包括:
收发模块,用于发送第一指示信息,其中,第一指示信息用于指示测量gap间隔的状态。
可选的,第一指示信息用于指示每个服务小区上每个配置的BWP上的测量gap的状态;
或者,
第一指示信息用于指示服务小区的数量,以及每个服务小区上测量gap的状态。
可选的,收发模块,具体用于:
基于测量gap配置信令,发送第一指示信息。
可选的,测量gap的状态包括:激活状态或去激活状态。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种测量gap的调度系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面 所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种测量gap的调度方法的流程示意图;
图3是本申请实施例提供的另一种测量gap的调度方法的流程示意图;
图4是本申请实施例提供的又一种测量gap的调度方法的流程示意图;
图5是本申请实施例提供的又一种测量gap的调度方法的流程示意图;
图6是本申请实施例提供的又一种测量gap的调度方法的流程示意图;
图7是本申请实施例提供的又一种测量gap的调度方法的流程示意图
图8是本申请实施例提供的再一种测量gap的调度方法的流程示意图;
图9是本申请实施例提供的又一种测量gap的调度方法的流程示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的另一种通信装置的结构示意图;
图12是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本申请涉及的术语。
1、下行控制信息(downlink control information,DCI)
DCI由物理下行控制信道(physical downlink control channel,PDCCH)承载,DCI可以包括上下行资源分配、混合自动重传请求(hybrid automatic repeat request,HARQ)信息、功率控制等。PDCCH是一种物理信道,用于承载下行调度信息。
2、带宽部分(Bandwidth Part,BWP)
BWP(Bandwidth Part),是总带宽的一个子集带宽,其通过NR中的带宽自适应灵活调整终端设备接收和发送带宽大小,使得终端设备接收和发送带宽不需要与小区的带宽一样大。
3、测量gap
测量gap即一种异频测量方式,具体操作为:在异频测量时,预留一部分时间(即测量gap时间),在这段时间内,终端设备不会发送和接收任何数据,而将接收机调向目标小区频点,进行异频的测量,间隔时间结束时再转到当前本小区。
为了更好的理解本申请实施例公开的一种测量gap的调度方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11和一个终端设备12为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、 智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的一种测量gap的调度方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种测量gap的调度的方法流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤S21:接收第一指示信息,其中,第一指示信息用于指示测量gap的状态。
本公开中,考虑到当BWP通过DCI命令的方式进行切换时,BWP切换比测量gap更快,为了避免网络可能总是假设测量gap用于移动性测量,造成资源的浪费情况,网络设备可以通过第一指示信息,向终端设备指示各个测量gap的状态,之后,终端设备即可根据指示信息中指示的测量gap状态快速的激活或者去激活测量gap,从而避免资源浪费。
本公开中,终端设备在接收到BWP切换指令时,可以根据第一指示信息,确定当前激活的BWP上的测量gap的状态,进而动态的激活或者去激活测量gap。
可选的,第一指示信息可以包括每个服务小区上每个配置的BWP对应的测量gap的状态,或者,可以包括每个服务小区对应的测量gap的状态。测量gap的状态可以包含激活,或者去激活。
通过实施本公开实施例,终端设备接收指示信息后,可以根据第一指示信息中测量gap的状态,动态的激活或者去激活测量gap。通过这种方式,可以避免测量gap一直被假设用于进行移动性测量的状态,从而有利于避免资源浪费。
请参见图3,图3是本申请实施例提供的另一种测量gap的调度的方法流程示意图。如图3所示,该方法可以由终端设备执行,该方法可以包括但不限于如下步骤:
步骤S31:接收第一指示信息,所述第一指示信息用于指示每个服务小区上每个配置的BWP上的测量gap的状态。
本公开中,每个终端设备可能存在多个服务小区,每个小区可能配置了多个BWP,终端设备可能会对每个小区都进行移动性测量,因此第一指示信息可以包含每个服务小区配置的每个BWP的测量gap的状态指示信息,从而终端设备在进行BWP切换时,可以基于该第一指示信息,快速查询到当前激活的BWP上测量gap的状态。
可选的,该第一指示信息可以通过以下方式组织。实现时,第一指示信息中指示的内容,可以如下表1所示:
表1
Figure PCTCN2021119714-appb-000001
上表中,ON代表配置的测量gap处于激活状态,OFF表示配置的测量gap处于去激活状态,ServCellIndex所在列代表服务小区编号,BWP-Id下一行代表BWP编号。ServCellIndex#0行与BWP-Id#0列交叉单元格为ON,表示终端设备在索引为0的服务小区内,当切换至编号为0的BWP,测量gap应设置为激活状态;类似的,ServCellIndex#0行与BWP-Id#1列交叉单元格为OFF,代表终端设备在索引为0的服务小区内,当切换至编号为1的BWP,测量gap应设置为去激活状态。
可以理解的是,表1中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表格1中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表1中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表1中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
可选的,上述第一指示信息还可以参照当前协议形式,指示服务小区的数量及每个服务小区上测量gap的状态。
比如,该第一指示信息指示了终端设备当前对应的服务小区为4个,且服务小区1对应的测量gap状态为激活态,服务小区2对应的测量gap状态为去激活态,服务小区3对应的测量gap状态为去激活态,服务小区4对应的测量gap状态为激活态。则终端设备在进行移动性测量时,若当前所在的服务小区为服务小区3,则根据第一指示信息可知,当前的测量gap为去激活态,从而即可将测量gap去激活。
可以理解的是,该指示形式,测量gap的状态变换,不依赖于BWP的切换,而是依赖于服务小区的切换。
通过实施本公开实施例,第一指示信息可以更全面更有效的指示了每个BWP对应的测量gap的状态,使得终端设备可以根据BWP的切换,动态调整测量gap的状态,从而可以避免网络一直处于测量gap被激活的状态,浪费资源。
请参见图4,图4是本申请实施例提供的又一种测量gap的调度的方法流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤S41:基于测量gap配置信令,接收第一指示信息,第一指示信息用于指示测量gap的状态。
在通信系统中,信息通常以某种方式进行传输。本公开中,可以将第一指示信息记录在测量gap配置命令MeasGapConfig中,即,网络设备可以在给终端设备配置测量gap时,同时指示各个测量gap的状态。
其中,第一指示信息的内容及实现形式,可参照本公开任一实施例所述,此处不再赘述
步骤S42:根据第一指示信息中测量gap的状态,激活或者去激活测量gap。
本公开中,终端设备接收到第一指示信息后,可以根据待测小区以及当前激活的BWP,查询对应的测量gap的状态,当测量gap的状态为激活时,则激活测量gap;当测量gap的状态为去激活时,去激活测量gap。
比如:假设终端设备当前所在的服务小区为ServCellIndex#1服务小区、且激活BWP为BWP-id#1,通过查询第一指示信息,可以确定ServCellIndex#1、BWP-id#1对应的测量gap为激活状态,则可以激活测量gap。
可选的,在终端设备在根据BWP切换指示信息,切换至BWP-id#2时,终端设备即可查询第一指示信息中ServCellIndex#1号服务小区的BWP-id#2所对应的测量gap的状态指示信息,当该状态指示信息为激活时,则保持测量gap处于激活态,进行移动性测量;当该状态指示信息为去激活时,则去激活 测量gap,不进行移动性测量。
通过实施本公开实施例,终端设备可以根据测量gap配置信令中指示的测量gap的状态,根据需要快速地更新测量gap的状态。由此,避免了测量gap一直处于被激活的状态,节省了资源。
请参见图5,图5是本申请实施例提供的又一种测量gap的调度的方法流程示意图,该方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤S51:接收第二指示信息,其中,第二指示信息用于指示切换后的BWP。
可选的,第二指示信息,可以为DCI信息。
本公开中,终端设备在移动过程中,网络设备可以根据终端设备当前所在的位置,实时的向终端设备发送BWP切换指示信息,以指示终端设备进行BWP切换。
步骤S52:根据第一指示信息中切换后的BWP对应的测量gap的状态,激活或者去激活切换后的BWP对应的测量gap。
其中,每个服务小区中的每个BWP可能对应一种测量gap状态,当终端设备收到BWP变换指示后,可以根据第一指示信息中指示的BWP状态,确定变换后的BWP对应的间隔gap状态,进而进行测量gap状态的切换,从而使得测量gap的变换可以与BWP的切换同步。其中,第一指示信息,可以是预先配置在终端设备中的,或者,也可以是终端设备在接收第二指示信息之前接收的,或者,可以是终端设备在接收第二指示信息同时接收的。本公开中,终端设备在接收到第一指示信息和第二指示信息后,可以根据服务小区以及用于指示BWP切换的第二指示信息,即可查询第一指示信息指示的测量gap的状态,以确定切换后的BWP中对应的测量gap的状态,当测量gap的状态为激活时,则激活测量gap;当测量gap的状态为去激活时,去激活测量gap。
比如,假设终端设备当前所在的服务小区为ServCellIndex#1服务小区、且激活BWP为BWP-id#1,且测量gap为激活状态,终端设备接收到的第二指示信息指示的切换后的小区为BWP-id#2。则终端设备即可根据第一指示信息中指示,确定与ServCellIndex#1号服务小区的BWP-id#2所对应的测量gap的状态,当该状态指示信息为激活时,则保持测量gap处于激活态,进行移动性测量;当该状态指示信息为去激活时,则去激活测量gap,不进行移动性测量。通过实施本公开实施例,终端设备在接收到用于指示BWP切换的第二指示信息后,即可以根据第一指示信息中与切换后的BWP对应的测量gap的状态,动态的激活或者去激活测量gap。通过这种方式,可以避免测量gap一直被假设用于进行移动性测量的状态,从而有利于避免资源浪费。请参见图6,图6是本申请实施例提供的又一种测量gap的调度的方法流程示意图,该方法由网络设备执行执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤S61:发送第一指示信息,其中,第一指示信息用于指示测量gap的状态。
本公开中,考虑到当BWP通过DCI命令的方式进行切换时,BWP切换比测量gap更快,为了避免网络可能总是假设测量gap用于移动性测量,造成资源的浪费情况,网络设备可以通过第一指示信息,向终端设备指示各个测量gap的状态,从而使得终端设备即可根据第一指示信息中指示的测量gap状态快速的激活或者去激活测量gap,从而避免资源浪费。
可选的,第一指示信息可以包括每个服务小区上每个配置的BWP对应的测量gap的状态,或者,可以可以包括每个服务小区对应的测量gap的状态。测量gap的状态可以包含激活,或者去激活。
通过实施本公开实施例,网络设备通过向终端设备指示测量gap的状态,从而使得终端设备可以动态的激活或者去激活测量gap。通过这种方式,可以避免测量gap一直被假设用于进行移动性测量的状 态,从而有利于避免资源浪费。
请参见图7,图7是本申请实施例提供的又一种测量gap的调度的方法流程示意图,该方法由网络设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤S71:发送第一指示信息,第一指示信息用于指示每个服务小区上每个配置的BWP上的测量gap的状态。
本公开中,每个终端设备可能存在多个服务小区,每个小区可能配置了多个BWP,终端设备可能会对每个小区都进行移动性测量,因此第一指示信息可以包含每个服务小区配置的每个BWP的测量gap的状态指示信息,从而终端设备在进行BWP切换时,可以基于该第一指示信息,快速查询到当前激活的BWP上测量gap的状态。
可选的,该第一指示信息中指示的内容,可以如本公开中表1所示,此处不再赘述。
可以理解的是,网络设备将第一指示信息发送给终端设备,终端设备接收到第一指示信息后,即可在进行BWP切换时,快速的查询到出其对应测量gap的状态,进而进行测量gap的激活或者去激活。
可选的,上述第一指示信息还可以参照当前协议形式,指示服务小区的数量及每个服务小区上测量gap的状态。
比如,该第一指示信息指示了终端设备当前对应的服务小区为4个,且服务小区1对应的测量gap状态为激活态,服务小区2对应的测量gap状态为去激活态,服务小区3对应的测量gap状态为去激活态,服务小区4对应的测量gap状态为激活态。则终端设备在进行移动性测量时,若当前所在的服务小区为服务小区3,则根据第一指示信息可知,当前的测量gap为去激活态,从而即可将测量gap去激活。
可以理解的是,该指示形式,测量gap的状态变换,不依赖于BWP的切换,而是依赖于服务小区的切换。
通过实施本公开实施例,指示信息可以更全面更有效的指示了每个BWP对应的测量gap的状态,使得终端设备可以根据BWP的切换,动态调整测量gap的状态,从而可以避免网络一直处于测量gap被激活的状态,浪费资源。
请参见图8,图8是本申请实施例提供的再一种测量gap的调度的方法流程示意图,该方法由网络设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤S81:基于测量gap配置信令,发送第一指示信息。
在通信系统中,信息通常以某种方式进行传输。本公开中,可以将指示信息记录在测量gap配置命令MeasGapConfig中,即,网络设备可以在给终端设备配置测量gap时,同时指示各个测量gap的状态。
本公开中,终端设备接收到第一指示信息后,可以根据服务小区以及当前激活的BWP,查询对应的测量gap的状态,当测量gap的状态为激活时,则激活测量gap;当测量gap的状态为去激活时,去激活测量gap。
比如:假设终端设备当前所在的服务小区为ServCellIndex#1服务小区、且激活BWP为BWP-id#1,且测量gap为激活状态。在终端设备在根据BWP切换指示信息,切换至BWP-id#2时,终端设备即可查询第一指示信息中ServCellIndex#1号服务小区的BWP-id#2所对应的测量gap的状态指示信息,当该状态指示信息为激活时,则保持测量gap处于激活态,进行移动性测量;当该状态指示信息为去激活时,则去激活测量gap,不进行移动性测量。
通过实施本公开实施例,网络设备通过测量gap配置信令,向终端设备指示测量gap的状态,进而 终端设备即可根据需要快速地更新测量gap的状态。由此,避免了测量gap一直处于被激活的状态,节省了资源。
请参见图9,图9是本申请实施例提供的再一种测量gap的调度的方法流程示意图,该方法由网络设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤S91:发送第二指示信息,其中,第二指示信息用于指示切换后的BWP。
可选的,第二指示信息,可以为DCI信息。
本公开中,终端设备在移动过程中,网络设备可以根据终端设备当前所在的位置,实时的向终端设备发送BWP切换指示信息,以指示终端设备进行BWP切换。
可选的,终端设备在接收到第一指示信息和第二指示信息后,可以根据服务小区以及用于指示BWP切换的第二指示信息,即可查询第一指示信息指示的测量gap的状态,以确定切换后的BWP中对应的测量gap的状态。其中,第一指示信息,可以是预先配置在终端设备中的,或者,也可以是网络设备在发送第二指示信息之前发送的,或者,可以是网络设备在发送第二指示信息同时发送的。
比如,假设终端设备当前所在的服务小区为ServCellIndex#1服务小区、且激活BWP为BWP-id#1,且测量gap为激活状态,终端设备接收到的第二指示信息指示的切换后的小区为BWP-id#2,则终端设备即可根据第一指示信息中指示,确定与ServCellIndex#1号服务小区的BWP-id#2所对应的测量gap的状态。
通过实施本公开实施例,网络设备通过发送第二指示信息,向终端设备指示切换后的BWP,终端设备在接收到用于指示BWP切换的第二指示信息后,即可以根据第一指示信息中与切换后的BWP对应的测量gap的状态,动态的激活或者去激活测量gap。通过这种方式,可以避免测量gap一直被假设用于进行移动性测量的状态,从而有利于避免资源浪费。上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和第一终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图10,为本申请实施例提供的一种通信装置100的结构示意图。图10所示的通信装置100可包括收发模块1001和处理模块1002。收发模块1001可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1001可以实现发送功能和/或接收功能。
可以理解的是,通信装置100可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置100在终端设备侧,所述装置,包括:
收发模块1001,用于接收第一指示信息,其中,所述第一指示信息用于指示测量gap的状态。
可选的,所述第一指示信息用于指示每个服务小区上每个配置的BWP上的测量gap的状态;
或者,
所述第一指示信息用于指示服务小区的数量,以及每个服务小区上测量gap的状态。
可选的,所述收发模块1001,具体用于:
基于测量gap配置信令,接收所述第一指示信息。
可选的,还包括:
处理模块1002,用于根据所述第一指示信息中所述测量gap的状态,激活或者去激活所述测量gap。
本公开提供的通信装置,通过第一指示信息指示测量gap的状态,从而可以动态的激活或者去激活测量gap。通过这种方式,可以避免测量gap一直被假设用于进行移动性测量的状态,从而有利于避免资源浪费。
可以理解的是,通信装置100可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置100,在网络设备侧,所述装置,包括:
收发模块1001,用于发送第一指示信息,其中,所述第一指示信息用于指示测量gap间隔的状态。
可选的,所述第一指示信息用于指示每个服务小区上每个配置的BWP上的测量gap的状态;
或者,
所述第一指示信息用于指示服务小区的数量,以及每个服务小区上测量gap的状态。
可选的,所述收发模块1001,具体用于:
基于测量gap配置信令,发送所述第一指示信息。
可选的,所述测量gap的状态包括:激活状态或去激活状态。
本公开提供的通信装置,通过第一指示信息指示测量gap的状态,从而可以动态的激活或者去激活测量gap。通过这种方式,可以避免测量gap一直被假设用于进行移动性测量的状态,从而有利于避免资源浪费
请参见图11,图11是本申请实施例提供的另一种通信装置110的结构示意图。通信装置100可以是网络设备,也可以是终端设备(如前述方法实施例中的第一终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置110可以包括一个或多个处理器1101。处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置110中还可以包括一个或多个存储器1102,其上可以存有计算机程序1104,处理器1101执行所述计算机程序1104,以使得通信装置110执行上述方法实施例中描述的方法。可选的,所述存储器1102中还可以存储有数据。通信装置110和存储器1102可以单独设置,也可以集成在一起。
可选的,通信装置110还可以包括收发器1105、天线1106。收发器1105可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1105可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置110中还可以包括一个或多个接口电路1107。接口电路1107用于接收代码指令并传输至处理器1101。处理器1101运行所述代码指令以使通信装置110执行上述方法实施例中描述的方法。
通信装置110为终端设备(如前述方法实施例中的第一终端设备):处理器1101用于执行图4中的S41。
通信装置110为网络设备:收发器1105用于执行图6中的步骤S61;执行图7中的步骤S71;图8 中的步骤S81;图9中的步骤S91。
在一种实现方式中,处理器1101中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1101可以存有计算机程序1103,计算机程序1103在处理器1001上运行,可使得通信装置110执行上述方法实施例中描述的方法。计算机程序1103可能固化在处理器1101中,该种情况下,处理器1101可能由硬件实现。
在一种实现方式中,通信装置110可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图12所示的芯片的结构示意图。图12所示的芯片包括处理器1201和接口1202。其中,处理器1201的数量可以是一个或多个,接口1202的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口1202,用于执行图2中的步骤S21;图3中的步骤S31;或图4中的步骤S41;图5中的步骤S51等等。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口1102,用于执行图6中的步骤S61;图7中的步骤S71;或8中的步骤S81;或图9中的步骤S91等等。
可选的,芯片还包括存储器1103,存储器1103用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和 步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种确定侧链路时长的系统,该系统包括前述图8实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述图10实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能 够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种测量gap的调度方法,其特征在于,由终端设备执行,所述方法包括:
    接收第一指示信息,其中,所述第一指示信息用于指示测量gap的状态。
  2. 如权利要求1所述的方法,其特征在于,
    所述第一指示信息用于指示每个服务小区上每个配置的带宽部分BWP上的测量gap的状态;
    或者,
    所述第一指示信息用于指示服务小区的数量,以及每个服务小区上测量gap的状态。
  3. 如权利要求1所述的方法,其特征在于,所述接收第一指示信息,包括:
    基于测量gap配置信令,接收所述第一指示信息。
  4. 如权利要求1-3任一所述的方法,其特征在于,还包括:
    根据所述第一指示信息中所述测量gap的状态,激活或者去激活所述测量gap。
  5. 如权利要求1-3任一所述的方法,其特征在于,还包括:
    接收第二指示信息,其中,所述第二指示信息用于指示切换后的BWP;
    根据所述第一指示信息中切换后的BWP对应的测量gap的状态,激活或者去激活所述切换后的BWP对应的测量gap。
  6. 一种测量gap的调度方法,其特征在于,由网络设备执行,所述方法包括:
    发送第一指示信息,其中,所述第一指示信息用于指示测量gap间隔的状态。
  7. 如权利要求6所述的方法,其特征在于,所述第一指示信息用于指示每个服务小区上每个配置的带宽部分BWP上的测量gap的状态;
    或者,
    所述第一指示信息用于指示服务小区的数量,以及每个服务小区上测量gap的状态。
  8. 如权利要求6所述的方法,其特征在于,所述发送第一指示信息,包括:
    基于测量gap配置信令,发送所述第一指示信息。
  9. 如权利要求6-8任一所述的方法,其特征在于,所述测量gap的状态包括:激活状态或去激活状态。
  10. 如权利要求6-8任一所述的方法,其特征在于,还包括:
    发送第二指示信息,其中,所述第二指示信息用于指示切换后的BWP。
  11. 一种通信装置,其特征在于,所述装置在终端设备侧,所述装置包括:
    收发模块,用于接收第一指示信息,其中,所述第一指示信息用于指示测量gap的状态。
  12. 如权利要求11所述的装置,其特征在于,
    所述第一指示信息用于指示每个服务小区上每个配置的BWP上的测量gap的状态;
    或者,
    所述第一指示信息用于指示服务小区的数量,以及每个服务小区上测量gap的状态。
  13. 如权利要求11所述的装置,其特征在于,所述收发模块,具体用于:
    基于测量gap配置信令,接收所述第一指示信息。
  14. 如权利要求11-13任一所述的装置,其特征在于,还包括:
    处理模块,用于根据所述第一指示信息中所述测量gap的状态,激活或者去激活所述测量gap。
  15. 一种通信装置,其特征在于,所述装置在网络设备侧,所述装置包括:
    收发模块,用于发送第一指示信息,其中,所述第一指示信息用于指示测量gap间隔的状态。
  16. 如权利要求15所述的装置,其特征在于,
    所述第一指示信息用于指示每个服务小区上每个配置的BWP上的测量gap的状态;
    或者,
    所述第一指示信息用于指示服务小区的数量,以及每个服务小区上测量gap的状态。
  17. 如权利要求15所述的装置,其特征在于,所述收发模块,具体用于:
    基于测量gap配置信令,发送所述第一指示信息。
  18. 如权利要求15-17任一所述的装置,其特征在于,所述测量gap的状态包括:激活状态或去激活状态。
  19. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至5中任一项所述的方法。
  20. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求6至10中任一项所述的方法。
  21. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至5中任一项所述的方法被实现。
  22. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求6至10中任一项所述的方法被实现。
PCT/CN2021/119714 2021-09-22 2021-09-22 一种测量gap的调度方法及其装置 WO2023044628A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/119714 WO2023044628A1 (zh) 2021-09-22 2021-09-22 一种测量gap的调度方法及其装置
CN202180003032.5A CN116158112A (zh) 2021-09-22 2021-09-22 一种测量gap的调度方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119714 WO2023044628A1 (zh) 2021-09-22 2021-09-22 一种测量gap的调度方法及其装置

Publications (1)

Publication Number Publication Date
WO2023044628A1 true WO2023044628A1 (zh) 2023-03-30

Family

ID=85719756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119714 WO2023044628A1 (zh) 2021-09-22 2021-09-22 一种测量gap的调度方法及其装置

Country Status (2)

Country Link
CN (1) CN116158112A (zh)
WO (1) WO2023044628A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190044689A1 (en) * 2017-09-28 2019-02-07 Intel IP Corporation Bandwidth part signaling and measurement handling
CN109391983A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 一种测量间隔参数配置、测量参考信号的方法及设备
CN109803304A (zh) * 2017-11-16 2019-05-24 维沃移动通信有限公司 测量间隔的指示方法和设备
CN110740050A (zh) * 2018-07-19 2020-01-31 维沃移动通信有限公司 用于测量配置的方法、用户设备、网络设备、及存储介质
CN112840696A (zh) * 2018-09-17 2021-05-25 苹果公司 具有带宽部分(bwp)的测量间隙(mg)配置的技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391983A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 一种测量间隔参数配置、测量参考信号的方法及设备
US20190044689A1 (en) * 2017-09-28 2019-02-07 Intel IP Corporation Bandwidth part signaling and measurement handling
CN109803304A (zh) * 2017-11-16 2019-05-24 维沃移动通信有限公司 测量间隔的指示方法和设备
CN110740050A (zh) * 2018-07-19 2020-01-31 维沃移动通信有限公司 用于测量配置的方法、用户设备、网络设备、及存储介质
CN112840696A (zh) * 2018-09-17 2021-05-25 苹果公司 具有带宽部分(bwp)的测量间隙(mg)配置的技术

Also Published As

Publication number Publication date
CN116158112A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
EP4336902A1 (en) Method for releasing remote terminal device and apparatus therefor
WO2023000149A1 (zh) 一种中继终端设备测量上报的方法及其装置
WO2023159449A1 (zh) 数据传输方法和装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023201756A1 (zh) 一种用于基于条件的移动性的信息的处理方法及装置
WO2023010499A1 (zh) 一种无线资源管理测量方法及其装置
WO2023044628A1 (zh) 一种测量gap的调度方法及其装置
WO2022266963A1 (zh) 资源分配方法及其装置
WO2023035202A1 (zh) 一种跟踪参考信号周期的确定方法及其装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2023123474A1 (zh) 一种非地面网络中无随机接入信道切换的方法及其装置
WO2023010429A1 (zh) 一种带宽部分的同步方法及其装置
WO2023004548A1 (zh) 一种上行发送的控制方法及其装置
WO2023010428A1 (zh) 准共址配置方法、准共址qcl信息确定方法及其装置
WO2023130321A1 (zh) 一种数据压缩方法和装置
WO2023272535A1 (zh) 一种实现寻呼原因指示的方法及其装置
WO2023004653A1 (zh) 一种时隙结构的配置方法及其装置
WO2023155206A1 (zh) 联合信道估计的最大持续时间的上报方法及其装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2024031274A1 (zh) 成功切换报告shr的记录上报方法和装置
WO2023050152A1 (zh) 终端能力上报方法、装置及存储介质
WO2023123118A1 (zh) 一种测量间隙Gap的配置方法和装置
WO2023102945A1 (zh) 测量间隔配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18693490

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021957768

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021957768

Country of ref document: EP

Effective date: 20240422