WO2023010499A1 - 一种无线资源管理测量方法及其装置 - Google Patents

一种无线资源管理测量方法及其装置 Download PDF

Info

Publication number
WO2023010499A1
WO2023010499A1 PCT/CN2021/111089 CN2021111089W WO2023010499A1 WO 2023010499 A1 WO2023010499 A1 WO 2023010499A1 CN 2021111089 W CN2021111089 W CN 2021111089W WO 2023010499 A1 WO2023010499 A1 WO 2023010499A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
threshold value
rrm
antennas
measurement
Prior art date
Application number
PCT/CN2021/111089
Other languages
English (en)
French (fr)
Inventor
施饶
李艳华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/111089 priority Critical patent/WO2023010499A1/zh
Priority to KR1020247007303A priority patent/KR20240036118A/ko
Priority to CN202180002419.9A priority patent/CN115956381A/zh
Publication of WO2023010499A1 publication Critical patent/WO2023010499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a radio resource management measurement method and device thereof.
  • the movement of a terminal device causes the channel conditions around it to change constantly.
  • the network device will configure radio resource management (radio resource management) for the terminal device.
  • RRM radio resource management
  • Embodiments of the present disclosure provide a radio resource management measurement method and device thereof, which can be applied in the field of communication technologies.
  • an embodiment of the present disclosure provides a radio resource management measurement method, the method is executed by a terminal device, and the method includes: determining the number of antennas corresponding to the receiving antenna in the terminal device based on the mapping relationship between the number of antennas and the radio resource management RRM measurement parameter A first RRM measurement parameter corresponding to the quantity; performing RRM measurement based on the first RRM measurement parameter.
  • the mapping relationship between the number of antennas and the RRM measurement parameters is determined.
  • the determining the first RRM measurement parameter corresponding to the number of receiving antennas in the terminal device includes:
  • the first number is different from the second number
  • the first threshold is different from or the same as the second threshold
  • the first threshold and the second threshold are measurement duration thresholds
  • the first threshold and the second threshold are signal strength difference thresholds
  • the first threshold value and the second threshold value are a measurement duration threshold value and a signal strength difference threshold value.
  • the determining the first RRM measurement parameter corresponding to the number of receiving antennas in the terminal device includes:
  • the first number is different from the second number
  • the third threshold is different from or the same as the fourth threshold
  • the third threshold and the fourth threshold are measurement duration thresholds
  • the third threshold and the fourth threshold are signal strength difference thresholds
  • the third threshold value and the fourth threshold value are a measurement duration threshold value and a signal strength difference threshold value.
  • the determining the first RRM measurement parameter corresponding to the number of receiving antennas in the terminal device includes:
  • the first number is different from the second number
  • the fifth threshold is different from or the same as the sixth threshold.
  • the fifth threshold and the sixth threshold are signal strength thresholds
  • the fifth threshold and the sixth threshold are signal quality thresholds
  • the fifth threshold value and the sixth threshold value are a signal strength threshold value and a signal quality threshold value.
  • the performing RRM measurement based on the first RRM measurement parameter includes:
  • RRM measurement is performed based on the first RRM measurement parameter.
  • an embodiment of the present disclosure provides another radio resource management measurement method, the method is executed by a network device, and the method includes: sending indication information, wherein the indication information is used to indicate the number of antennas and the radio resource management RRM Mapping relationship of measurement parameters.
  • the instruction information includes at least one of the following:
  • mapping relationship between the number of antennas and the RRM low mobility criterion measurement parameters includes:
  • the first number is different from the second number
  • the first threshold is different from or the same as the second threshold
  • the first threshold and the second threshold are measurement duration thresholds
  • the first threshold and the second threshold are signal strength difference thresholds
  • the first threshold value and the second threshold value are a measurement duration threshold value and a signal strength difference threshold value.
  • mapping relationship between the number of antennas and the RRM static criterion measurement parameters includes:
  • the first number is different from the second number
  • the third threshold is different from or the same as the fourth threshold
  • the third threshold and the fourth threshold are measurement duration thresholds
  • the third threshold and the fourth threshold are signal strength difference thresholds
  • the third threshold value and the fourth threshold value are a measurement duration threshold value and a signal strength difference threshold value.
  • mapping relationship between the number of antennas and the RRM non-cell edge criterion measurement parameters includes:
  • the first number is different from the second number
  • the fifth threshold is different from or the same as the sixth threshold.
  • the fifth threshold and the sixth threshold are signal strength thresholds
  • the fifth threshold and the sixth threshold are signal quality thresholds
  • the fifth threshold value and the sixth threshold value are a signal strength threshold value and a signal quality threshold value.
  • the embodiment of the present disclosure provides a communication device, which has part or all of the functions of the terminal device in the method described in the first aspect above, for example, the communication device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the present disclosure provides another communication device, which has some or all functions of the network device in the method example described in the second aspect above, for example, the function of the communication device may have some of the functions in the present disclosure Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present disclosure alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned terminal device, and when the instructions are executed, the method described in the above-mentioned first aspect is implemented.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned network device, and when the instructions are executed, the method described in the above-mentioned second aspect is implemented.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a radio resource management measurement method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a radio resource management measurement method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a radio resource management measurement method provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a radio resource management measurement method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a chip according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 11 and one terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a radio resource management measurement method provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step 21 Determine a first RRM measurement parameter corresponding to the number of receiving antennas in the terminal device based on the mapping relationship between the number of antennas and the RRM measurement parameter of the radio resource management.
  • mapping relationship between the number of antennas and the radio resource management RRM measurement parameter may include at least one of the following:
  • mapping relationship between the number of antennas and the RRM non-cell edge criterion measurement parameters is the mapping relationship between the number of antennas and the RRM non-cell edge criterion measurement parameters.
  • each terminal device may have corresponding RRM low mobility criterion measurement parameters, RRM static criterion measurement parameters and RRM non-cell edge criterion measurement parameters, wherein the RRM low mobility criterion measurement parameters, RRM stationary criterion
  • the criterion measurement parameter and the RRM non-cell-edge criterion measurement parameter may be the same or different.
  • the corresponding RRM measurement parameters for terminal devices with different numbers of antennas may be the same or different, which is not limited in the present disclosure.
  • Step 22 Perform RRM measurement based on the first RRM measurement parameter.
  • the number of receiving antennas in the terminal device is different, and there is a deviation in the corresponding measured signal strength.
  • the signal strength measurement value of the terminal device with two antennas is often greater than that of the terminal device with one antenna.
  • terminal devices with different numbers of antennas have different environmental interference capabilities, that is, terminal devices with two antennas are less affected by environmental interference and have relatively stable signal fluctuations. At this time, if terminal devices with different numbers of antennas use a set of measurement parameters to perform RRM measurement, it may lead to inaccurate radio resource management and affect the battery life of the terminal devices.
  • RRM measurement parameters are determined for terminal devices with different numbers of antennas, and RRM measurement is performed based on the determined RRM measurement parameters, thereby reducing the number of terminal devices on the basis of reliably supporting the mobility of terminal devices. power consumption.
  • the terminal device determines the first RRM measurement parameter, it can judge the state of the terminal device according to the first RRM measurement parameter. For example, the low mobility state, the static state, the non-cell edge state, and after the state of the terminal equipment is determined, the measurement cycle and measurement range of the RRM can be updated. For example, the RRM measurement period may be extended accordingly or the measurement of adjacent cells may be stopped, so as to save power consumption of the terminal equipment.
  • the measurement period of the updated RRM may be the same or different.
  • the updated measurement ranges may be the same or different.
  • the measurement periods of the updated RRM may be the same or different.
  • the updated measurement ranges may be the same or different. The present disclosure does not limit this.
  • the terminal device may determine the corresponding RRM measurement period and measurement range when it is in different states according to the protocol agreement or the instruction of the network device.
  • the terminal device determines the first RRM measurement parameter corresponding to the number of receiving antennas in the terminal device based on the mapping relationship between the number of antennas and the radio resource management RRM measurement parameter, and then performs RRM measurement based on the first RRM measurement parameter . Therefore, the terminal device performs RRM measurement based on the first RRM measurement parameter corresponding to the number of its antennas, thereby not only ensuring the accuracy and reliability of its antenna resource management, but also saving the power consumption of the terminal device and improving the efficiency of the terminal device. battery life.
  • FIG. 3 is a schematic flowchart of a radio resource management measurement method provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step 31 Determine the mapping relationship between the number of antennas and the RRM measurement parameters according to the received indication message.
  • the instruction information may include at least one of the following:
  • mapping relationship between the number of antennas and the RRM non-cell edge criterion measurement parameters is the mapping relationship between the number of antennas and the RRM non-cell edge criterion measurement parameters.
  • Step 32 Determine a first RRM measurement parameter corresponding to the number of receiving antennas in the terminal device based on the mapping relationship between the number of antennas and the RRM measurement parameter of the radio resource management.
  • the RRM low mobility criterion measurement parameter is the first threshold value.
  • the RRM low mobility criterion measurement parameter in response to the number of receiving antennas in the terminal device being the second number, determine the RRM low mobility criterion measurement parameter as the second threshold.
  • the first quantity is different from the second quantity
  • the first threshold value is different from or the same as the second threshold value
  • the first quantity may be 1, and the second quantity may be 2.
  • the first threshold and the second threshold may be measurement duration thresholds
  • the first threshold and the second threshold may also be signal strength difference thresholds
  • the first threshold and the second threshold may be a measurement duration threshold and a signal strength difference threshold.
  • the signal strength difference threshold is used to indicate the threshold of the difference between the reference received signal strength and the signal strength of the serving cell at the current moment measured by the terminal device within the time period exceeding the measurement duration threshold value.
  • the first number is 1, and the second number is 2. Since the anti-interference ability of a terminal device with one antenna is weak, the gate In the case of the same limit value, the signal strength difference threshold value corresponding to the first number may be greater than the signal strength difference threshold value corresponding to the second number.
  • the first number is 1, the second number is 2, and the signal strength difference threshold value corresponding to the first number may be smaller than the signal strength difference threshold value corresponding to the second number.
  • the first number is 1, the second number is 2, and the signal strength difference threshold value corresponding to the first number may be equal to the signal strength difference threshold value corresponding to the second number.
  • the present disclosure does not limit this.
  • the RRM stationary criterion measurement parameter is a third threshold value.
  • the RRM stationary criterion measurement parameter is the fourth threshold value.
  • the third threshold and the fourth threshold may be measurement duration thresholds
  • the third threshold and the fourth threshold may also be signal strength difference thresholds
  • the third threshold and the fourth threshold may be a measurement duration threshold and a signal strength difference threshold.
  • the RRM non-cell edge criterion measurement parameter is a fifth threshold value.
  • the RRM non-cell edge criterion measurement parameter is the sixth threshold value.
  • the first quantity is different from the second quantity
  • the fifth threshold value is different from or the same as the sixth threshold value
  • the fifth threshold and the sixth threshold may be signal strength thresholds
  • the fifth threshold and the sixth threshold may also be signal quality thresholds
  • the fifth threshold and the sixth threshold may be a signal strength threshold and a signal quality threshold.
  • the signal quality threshold value is a threshold value of the signal quality received by the terminal equipment.
  • the signal strength threshold value is a threshold value of the signal strength received by the terminal device. That is, when the signal quality received by the terminal device is greater than the signal quality threshold, and the received signal strength is greater than the signal strength threshold, the terminal device is in the non-cell-edge state.
  • Step 33 Perform RRM measurement based on the first RRM measurement parameter.
  • step 33 reference may be made to the detailed descriptions in other embodiments of the present disclosure, which will not be described in detail here.
  • the terminal device first determines the mapping relationship between the number of antennas and the RRM measurement parameter according to the received indication message, and then determines the number of receiving antennas in the terminal device based on the mapping relationship between the number of antennas and the RRM measurement parameter of the radio resource management Corresponding to the first RRM measurement parameter, finally perform RRM measurement based on the first RRM measurement parameter. Therefore, the terminal device performs RRM measurement based on the first RRM measurement parameter corresponding to the number of its antennas, thereby not only ensuring the accuracy and reliability of its antenna resource management, but also saving the power consumption of the terminal device and improving the efficiency of the terminal device. battery life.
  • FIG. 4 is a schematic flowchart of a radio resource management measurement method provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step 41 Determine the mapping relationship between the number of antennas and the RRM measurement parameters according to the agreement.
  • Step 42 Determine a first RRM measurement parameter corresponding to the number of receiving antennas in the terminal device based on the mapping relationship between the number of antennas and the RRM measurement parameter of the radio resource management.
  • step 42 reference may be made to the detailed descriptions in other embodiments of the present disclosure, which will not be repeated here.
  • Step 43 When the terminal device is in a radio resource control (radioresourcecontrol, RRC) idle state or an RRC inactive state, perform RRM measurement based on the first RRM measurement parameter.
  • RRC radio resource control
  • the RRM measurement can be performed based on the first first RRM measurement parameter.
  • the power consumption of the terminal equipment is further saved, and the battery life of the terminal equipment is improved.
  • the terminal device first determines the mapping relationship between the number of antennas and the RRM measurement parameter according to the agreement, and then determines the number corresponding to the number of receiving antennas in the terminal device based on the mapping relationship between the number of antennas and the RRM measurement parameter of radio resource management.
  • the first RRM measurement parameter, and finally the RRM measurement is performed based on the first RRM measurement parameter when the terminal device is in the RRC idle state or the RRC inactive state. Therefore, the terminal device performs RRM measurement based on the first RRM measurement parameter corresponding to the number of its antennas, thereby not only ensuring the accuracy and reliability of its antenna resource management, but also saving the power consumption of the terminal device and improving the efficiency of the terminal device. battery life.
  • FIG. 5 is a schematic flowchart of a radio resource management measurement method provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 5, the method may include but not limited to the following steps:
  • Step 51 Send indication information, where the indication information is used to indicate the mapping relationship between the number of antennas and the RRM measurement parameters.
  • the instruction information includes at least one of the following:
  • mapping relationship between the number of antennas and the RRM non-cell edge criterion measurement parameters is the mapping relationship between the number of antennas and the RRM non-cell edge criterion measurement parameters.
  • each terminal device may have corresponding RRM low mobility criterion measurement parameters, RRM static criterion measurement parameters and RRM non-cell edge criterion measurement parameters, wherein the RRM low mobility criterion measurement parameters, RRM stationary criterion
  • the criterion measurement parameter and the RRM non-cell-edge criterion measurement parameter may be the same or different.
  • the corresponding RRM measurement parameters for terminal devices with different numbers of antennas may be the same or different, which is not limited in the present disclosure.
  • the mapping relationship between the number of antennas and the RRM low mobility criterion measurement parameter may include: a first threshold value corresponding to the first number of antennas, and a second threshold value corresponding to the second number of antennas.
  • the first quantity is different from the second quantity
  • the first threshold value is different from or the same as the second threshold value
  • the first threshold and the second threshold may be measurement duration thresholds
  • the first threshold and the second threshold may also be signal strength difference thresholds
  • the first threshold and the second threshold may be a measurement duration threshold and a signal strength difference threshold.
  • the signal strength difference threshold is used to indicate the threshold of the difference between the reference received signal strength and the signal strength of the serving cell at the current moment measured by the terminal device within the time period exceeding the measurement duration threshold value.
  • the mapping relationship between the number of antennas and the RRM stationary criterion measurement parameter may include: a third threshold value corresponding to the first number of antennas, and a fourth threshold value corresponding to the second number of antennas.
  • the first quantity is different from the second quantity
  • the third threshold value is different from or the same as the fourth threshold value
  • the third threshold and the fourth threshold may be measurement duration thresholds
  • the third threshold and the fourth threshold may be signal strength difference thresholds
  • the third threshold and the fourth threshold may be a measurement duration threshold and a signal strength difference threshold.
  • the mapping relationship between the number of antennas and the RRM non-cell-edge criterion measurement parameter may include: a fifth threshold value corresponding to the first number of antennas, and a sixth threshold value corresponding to the second number of antennas.
  • the first quantity is different from the second quantity
  • the fifth threshold value is different from or the same as the sixth threshold value
  • the fifth threshold and the sixth threshold may be signal strength thresholds
  • the fifth threshold and the sixth threshold may also be signal quality thresholds
  • the fifth threshold and the sixth threshold may be a signal strength threshold and a signal quality threshold.
  • the signal quality threshold value is a threshold value of the signal quality received by the terminal equipment.
  • the signal strength threshold value is a threshold value of the signal strength received by the terminal device. That is, when the signal quality received by the terminal device is greater than the signal quality threshold, and the received signal strength is greater than the signal strength threshold, the terminal device is in the non-cell-edge state.
  • the network device sends indication information, where the indication information is used to indicate the mapping relationship between the number of antennas and the radio resource management RRM measurement parameter. Therefore, the network device sends the mapping relationship between the number of antennas and the radio resource management RRM measurement parameter to the terminal device, so that the terminal device performs RRM measurement based on the first RRM measurement parameter corresponding to the number of antennas, thereby not only ensuring that its antenna
  • the accuracy and reliability of resource management not only saves the power consumption of terminal equipment, but also improves the battery life of terminal equipment.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of network devices and terminal devices respectively.
  • the network device and the terminal device may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 6 is a schematic structural diagram of a communication device 60 provided by an embodiment of the present disclosure.
  • the communication device 60 shown in FIG. 6 may include a processing module 601 and a transceiver module 602 .
  • the transceiver module 602 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 602 can realize the sending function and/or the receiving function.
  • the communication device 60 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device 60 on the side of the terminal device, the device includes:
  • the processing module 601 is configured to determine a first RRM measurement parameter corresponding to the number of receiving antennas in the terminal device based on the mapping relationship between the number of antennas and the radio resource management RRM measurement parameter;
  • the processing module 601 is further configured to perform RRM measurement based on the first RRM measurement parameter.
  • processing module 601 is also specifically used for:
  • the mapping relationship between the number of antennas and the RRM measurement parameters is determined.
  • processing module 601 is also used for:
  • the first quantity is different from the second quantity
  • the first threshold value is different from or the same as the second threshold value
  • the first threshold and the second threshold are measurement duration thresholds
  • the first threshold and the second threshold are signal strength difference thresholds
  • the first threshold value and the second threshold value are the measurement duration threshold value and the signal strength difference threshold value.
  • processing module 601 is also used for:
  • the RRM stationary criterion measurement parameter is a fourth threshold value
  • the first quantity is different from the second quantity
  • the third threshold value is different from or the same as the fourth threshold value
  • the third threshold and the fourth threshold are measurement duration thresholds
  • the third threshold and the fourth threshold are signal strength difference thresholds
  • the third threshold value and the fourth threshold value are the measurement duration threshold value and the signal strength difference threshold value.
  • processing module 601 is also used for:
  • the first quantity is different from the second quantity
  • the fifth threshold value is different from or the same as the sixth threshold value
  • the fifth threshold and the sixth threshold are signal strength thresholds
  • the fifth threshold and the sixth threshold are signal quality thresholds
  • the fifth threshold value and the sixth threshold value are a signal strength threshold value and a signal quality threshold value.
  • processing module 601 is also used for:
  • RRM measurement is performed based on the first RRM measurement parameter.
  • the terminal device determines the first RRM measurement parameter corresponding to the number of receiving antennas in the terminal device based on the mapping relationship between the number of antennas and the radio resource management RRM measurement parameter, and then performs RRM measurement based on the first RRM measurement parameter . Therefore, the terminal device performs RRM measurement based on the first RRM measurement parameter corresponding to the number of its antennas, thereby not only ensuring the accuracy and reliability of its antenna resource management, but also saving the power consumption of the terminal device and improving the efficiency of the terminal device. battery life.
  • the communication device 60 may be a network device, may also be a device in the network device, and may also be a device that can be matched with the network device.
  • the communication device 60 on the network device side, the device includes:
  • the transceiver module 602 is configured to send indication information, where the indication information is used to indicate the mapping relationship between the number of antennas and the radio resource management RRM measurement parameter.
  • the instruction information includes at least one of the following:
  • mapping relationship between the number of antennas and the RRM non-cell edge criterion measurement parameters is the mapping relationship between the number of antennas and the RRM non-cell edge criterion measurement parameters.
  • mapping relationship between the number of antennas and the measurement parameters of the RRM low mobility criterion includes:
  • the first quantity is different from the second quantity
  • the first threshold value is different from or the same as the second threshold value
  • the first threshold and the second threshold are measurement duration thresholds
  • the first threshold and the second threshold are signal strength difference thresholds
  • the first threshold value and the second threshold value are the measurement duration threshold value and the signal strength difference threshold value.
  • mapping relationship between the number of antennas and the RRM static criterion measurement parameters includes:
  • the first quantity is different from the second quantity
  • the third threshold value is different from or the same as the fourth threshold value
  • the third threshold and the fourth threshold are measurement duration thresholds
  • the third threshold and the fourth threshold are signal strength difference thresholds
  • the third threshold value and the fourth threshold value are the measurement duration threshold value and the signal strength difference threshold value.
  • mapping relationship between the number of antennas and the RRM non-cell edge criterion measurement parameters includes:
  • the first quantity is different from the second quantity
  • the fifth threshold value is different from or the same as the sixth threshold value
  • the fifth threshold and the sixth threshold are signal strength thresholds
  • the fifth threshold and the sixth threshold are signal quality thresholds
  • the fifth threshold value and the sixth threshold value are a signal strength threshold value and a signal quality threshold value.
  • the network device sends indication information, where the indication information is used to indicate the mapping relationship between the number of antennas and the radio resource management RRM measurement parameter. Therefore, the network device sends the mapping relationship between the number of antennas and the radio resource management RRM measurement parameter to the terminal device, so that the terminal device performs RRM measurement based on the first RRM measurement parameter corresponding to the number of antennas, thereby not only ensuring that its antenna.
  • the accuracy and reliability of resource management not only saves the power consumption of terminal equipment, but also improves the battery life of terminal equipment.
  • FIG. 7 is a schematic structural diagram of another communication device 70 provided by an embodiment of the present disclosure.
  • the communication device 70 may be a network device, may also be a terminal device, may also be a chip, a chip system, or a processor that supports the network device to implement the above method, or may be a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 70 may include one or more processors 701 .
  • the processor 701 may be a general-purpose processor or a special-purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 70 may further include one or more memories 702, on which a computer program 704 may be stored, and the processor 701 executes the computer program 704, so that the communication device 70 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory 702 .
  • the communication device 70 and the memory 702 can be set separately or integrated together.
  • the communication device 70 may further include a transceiver 705 and an antenna 706 .
  • the transceiver 705 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 705 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 70 may further include one or more interface circuits 707 .
  • the interface circuit 707 is used to receive code instructions and transmit them to the processor 701 .
  • the processor 701 executes code instructions to enable the communication device 70 to execute the methods described in the foregoing method embodiments.
  • the communication device 70 is a terminal device: the processor 701 is used to execute step 21 and step 22 in FIG. 2; or step 31, step 32, and step 33 in FIG. 3; or step 41, step 42, and Step 43 and so on.
  • the communication device 70 is a network device: the transceiver 705 is used to execute step 51 in FIG. 5 and so on.
  • the processor 701 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 701 may store a computer program 703 , and the computer program 703 runs on the processor 701 to enable the communication device 70 to execute the methods described in the foregoing method embodiments.
  • the computer program 703 may be solidified in the processor 701, and in this case, the processor 701 may be implemented by hardware.
  • the communication device 70 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 11 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 8 includes a processor 801 and an interface 802 .
  • the number of processors 801 may be one or more, and the number of interfaces 802 may be more than one.
  • the interface 802 is used to execute step 31 in FIG. 3 and so on.
  • the interface 802 is used to execute step 51 in FIG. 5 and so on.
  • the chip further includes a memory 803 for storing necessary computer programs and data.
  • the embodiment of the present disclosure also provides a communication system, the system includes the communication device as the terminal device and the communication device as the network device in the aforementioned embodiment of Figure 11, or, the system includes the communication device as the terminal device in the aforementioned embodiment of Figure 8 devices and communication devices as network devices.
  • the present disclosure also provides a computer-readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线资源管理测量方法及其装置,应用于通信技术领域,其中,测量方法由终端设备(12)执行,包括:基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备(12)中接收天线数量对应的第一RRM测量参数(21);基于第一RRM测量参数,进行RRM测量(22)。终端设备(12)通过基于与其天线数量对应的第一RRM测量参数,进行RRM测量,不仅保证了其天线资源管理的准确性和可靠性,而且节省了终端设备(12)的功耗,提高了终端设备(12)的续航能力。

Description

一种无线资源管理测量方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种无线资源管理测量方法及其装置。
背景技术
在通信系统中,终端设备的移动导致其周围的信道状况时刻发生变化,为了支持终端设备的移动性,及时获取终端设备当前的小区信道状况,网络设备会为终端设备配置无线资源管理(radioresourcemanagement,RRM)测量,用于测量当前服务小区和邻小区的信号质量。但是,过多地测量会增加终端设备的功耗,影响续航能力。
因此,如何在支持终端设备的移动性的情况下,尽量降低终端设备的功耗,是目前亟需解决的问题。
发明内容
本公开实施例提供一种无线资源管理测量方法及其装置,可应用于通信技术领域中。
第一方面,本公开实施例提供一种无线资源管理测量方法,所述方法由终端设备执行,该方法包括:基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备中接收天线数量对应的第一RRM测量参数;基于所述第一RRM测量参数,进行RRM测量。
可选的,还包括:
根据协议约定,确定天线数量与RRM测量参数的映射关系;
或者,
根据接收的指示消息,确定天线数量与RRM测量参数的映射关系。
可选的,所述确定与终端设备中接收天线数量对应的第一RRM测量参数,包括:
响应于所述终端设备中接收天线的数量为第一数量,确定所述RRM低移动性准则测量参数为第一门限值;
或者,
响应于所述终端设备中接收天线的数量为第二数量,确定所述RRM低移动性准则测量参数为第二门限值;
其中,所述第一数量与所述第二数量不同,所述第一门限值与所述第二门限值不同或相同。
可选的,所述第一门限值和所述第二门限值为测量时长门限值;
或者,所述第一门限值和所述第二门限值为信号强度差值门限值;
或者,所述第一门限值和所述第二门限值为测量时长门限值及信号强度差值门限值。
可选的,所述确定与终端设备中接收天线数量对应的第一RRM测量参数,包括:
响应于所述终端设备中接收天线的数量为第一数量,确定所述RRM静止准则测量参数为第三门限值;
或者,
响应于所述终端设备中接收天线的数量为第二数量,确定所述RRM静止准则测量参数为第四门限值;
其中,所述第一数量与所述第二数量不同,所述第三门限值与所述第四门限值不同或相同。
可选的,所述第三门限值和所述第四门限值为测量时长门限值;
或者,所述第三门限值和所述第四门限值为信号强度差值门限值;
或者,所述第三门限值和所述第四门限值为测量时长门限值及信号强度差值门限值。
可选的,所述确定与终端设备中接收天线数量对应的第一RRM测量参数,包括:
响应于所述终端设备中接收天线的数量为第一数量,确定所述RRM非小区边缘准则测量参数为第五门限值;
或者,
响应于所述终端设备中接收天线的数量为第二数量,确定所述RRM非小区边缘准则测量参数为第六门限值;
其中,所述第一数量与所述第二数量不同,所述第五门限值与所述第六门限值不同或相同。
可选的,所述第五门限值和所述第六门限值为信号强度门限值;
或者,所述第五门限值和所述第六门限值为信号质量门限值;
或者,所述第五门限值和所述第六门限值为信号强度门限值及信号质量门限值。
可选的,所述基于所述第一RRM测量参数,进行RRM测量,包括:
在所述终端设备处于无线资源控制RRC空闲态的情况下,基于所述第一RRM测量参数,进行RRM测量;
或者,
在所述终端设备处于RRC非激活态的情况下,基于所述第一RRM测量参数,进行RRM测量。
第二方面,本公开实施例提供另一种无线资源管理测量方法,所述方法由网络设备执行,该方法包括:发送指示信息,其中,所述指示信息用于指示天线数量与无线资源管理RRM测量参数的映射关系。
可选的,所述指示信息中包括以下至少一项:
天线数量与RRM低移动性准则测量参数的映射关系;
天线数量与RRM静止准则测量参数的映射关系;以及,
天线数量与RRM非小区边缘准则测量参数的映射关系;
可选的,所述天线数量与RRM低移动性准则测量参数的映射关系,包括:
第一数量天线对应的第一门限值,以及,第二数量天线对应的第二门限值;
其中,所述第一数量与所述第二数量不同,所述第一门限值与所述第二门限值不同或相同。
可选的,所述第一门限值和所述第二门限值为测量时长门限值;
或者,所述第一门限值和所述第二门限值为信号强度差值门限值;
或者,所述第一门限值和所述第二门限值为测量时长门限值及信号强度差值门限值。
可选的,所述天线数量与RRM静止准则测量参数的映射关系,包括:
第一数量天线对应的第三门限值,以及,第二数量天线对应的第四门限值;
其中,所述第一数量与所述第二数量不同,所述第三门限值与所述第四门限值不同或相同。
可选的,所述第三门限值和所述第四门限值为测量时长门限值;
或者,所述第三门限值和所述第四门限值为信号强度差值门限值;
或者,所述第三门限值和所述第四门限值为测量时长门限值及信号强度差值门限值。
可选的,所述天线数量与RRM非小区边缘准则测量参数的映射关系,包括:
第一数量天线对应的第五门限值,以及,第二数量天线对应的第六门限值;
其中,所述第一数量与所述第二数量不同,所述第五门限值与所述第六门限值不同或相同。
可选的,所述第五门限值和所述第六门限值为信号强度门限值;
或者,所述第五门限值和所述第六门限值为信号质量门限值;
或者,所述第五门限值和所述第六门限值为信号强度门限值及信号质量门限值。
第三方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第四方面,本公开实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使上述第一方面所述的方法被实现。
第十三方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使上述第二方面所述的方法被实现。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构示意图;
图2是本公开一实施例提供的一种无线资源管理测量方法的流程示意图;
图3是本公开另一实施例提供的一种无线资源管理测量方法的流程示意图;
图4是本公开另一实施例提供的一种无线资源管理测量方法的流程示意图;
图5是本公开另一实施例提供的一种无线资源管理测量方法的流程示意图;
图6是本公开一实施例的通信装置的结构示意图;
图7是本公开另一实施例的通信装置的结构示意图;
图8是本公开一实施例的芯片的结构示意图。
具体实施方式
为了更好的理解本公开实施例公开的一种无线资源管理测量方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备、一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11、一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety) 中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的无线资源管理测量方法及其装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种无线资源管理测量方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤21,基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备中接收天线数量对应的第一RRM测量参数。
可选的,天线数量与无线资源管理RRM测量参数的映射关系可以包括以下至少一项:
天线数量与RRM低移动性准则测量参数的映射关系;
天线数量与RRM静止准则测量参数的映射关系;以及,
天线数量与RRM非小区边缘准则测量参数的映射关系。
可以理解的是,每个终端设备均可以有与之对应的RRM低移动性准则测量参数、RRM静止准则测量参数及RRM非小区边缘准则测量参数,其中,RRM低移动性准则测量参数、RRM静止准则测量参数及RRM非小区边缘准则测量参数,可以相同,也可以不同。另外,天线数量不同的终端设备,对应的RRM测量参数可以相同,也可以不同,本公开对此不做限定。
步骤22,基于第一RRM测量参数,进行RRM测量。
需要说明的是,终端设备中接收天线的数量不同,对应的测量的信号强度存在偏差。比如,处于小区同一位置、具备相同移动速度的具有一根天线的终端设备与具有两根天线的终端设备相比,两根天线的终端设备的信号强度测量值往往大于一根天线的终端设备的信号强度测量值。另外,天线数量不同的终端设备受环境干扰能力也不同,即具有两根天线的终端设备受环境干扰小,信号波动相对稳定。此时,若不同天线数量的终端设备采用一套测量参数,进行RRM测量,则可能会导致无线资源管理不准确,并且影响终端设备的续航能力。因此,本公开中,通过为不同天线数量的终端设备确定不同的RRM测量参数,进而基于确定的RRM测量参数,进行RRM测量,从而在可靠支持终端设备的移动性的基础上,降低了终端设备的功耗。
可选的,终端设备在确定了第一RRM测量参数之后,即可根据第一RRM测量参数判断终端设备的状态。如,低移动性状态、静止状态、非小区边缘状态,进而在确定了终端设备的状态之后,可对RRM的测量周期及测量范围进行更新。比如,可相应的延长RRM的测量周期或停止对邻小区的测量,以节省终端设备的功耗。
需要说明的是,天线数量相同,状态不同的终端设备,更新后的RRM的测量周期可以 相同,也可以不同。或者,天线数量相同,状态不同的终端设备,更新后的测量范围可以相同,也可以不同。天线数量不同,状态相同的终端设备,更新后的RRM的测量周期可以相同,也可以不同。或者,天线数量不同,状态相同的终端设备,更新后的测量范围可以相同,也可以不同。本公开对此不做限定。
可选的,终端设备可以根据协议约定,或者网络设备的指示,确定处于不同状态时对应的RRM的测量周期及测量范围。
通过实施本公开实施例,终端设备基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备中接收天线数量对应的第一RRM测量参数,之后基于第一RRM测量参数,进行RRM测量。由此,终端设备通过基于与其天线数量对应的第一RRM测量参数,进行RRM测量,从而不仅保证了其天线资源管理的准确性和可靠性,而且节省了终端设备的功耗,提高了终端设备的续航能力。
请参见图3,图3是本公开实施例提供的一种无线资源管理测量方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤31,根据接收的指示消息,确定天线数量与RRM测量参数的映射关系。
可选的,指示信息中可以包括以下至少一项:
天线数量与RRM低移动性准则测量参数的映射关系;
天线数量与RRM静止准则测量参数的映射关系;以及,
天线数量与RRM非小区边缘准则测量参数的映射关系。
步骤32,基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备中接收天线数量对应的第一RRM测量参数。
可选的,响应于终端设备中接收天线的数量为第一数量,确定RRM低移动性准则测量参数为第一门限值。
或者,响应于终端设备中接收天线的数量为第二数量,确定RRM低移动性准则测量参数为第二门限值。
其中,第一数量与第二数量不同,第一门限值与第二门限值不同或相同。
比如,第一数量可以为1,第二数量可以2。
可选的,第一门限值和第二门限值可以为测量时长门限值;
或者,第一门限值和第二门限值也可以为信号强度差值门限值;
或者,第一门限值和第二门限值可以为测量时长门限值及信号强度差值门限值。
其中,信号强度差值门限值,用于指示在超过测量时长门限值的时间段内,参考的接收信号强度与终端设备测量的当前时刻的服务小区的信号强度之间差值的门限值。
可选的,在天线数量与RRM低移动性准则测量参数的映射关系中,第一数量为1,第二数量为2,由于一根天线的终端设备抗干扰能力弱,所以,在测量时长门限值相同的情况下,第一数量对应的信号强度差值门限值可以大于第二数量对应的信号强度差值门限值。
或者,第一数量为1,第二数量为2,第一数量对应的信号强度差值门限值可以小于第二数量对应的信号强度差值门限值。
或者,第一数量为1,第二数量为2,第一数量对应的信号强度差值门限值可以等于第 二数量对应的信号强度差值门限值。本公开对此不做限定。
可选的,响应于终端设备中接收天线的数量为第一数量,确定RRM静止准则测量参数为第三门限值。
或者,响应于终端设备中接收天线的数量为第二数量,确定RRM静止准则测量参数为第四门限值。
可选的,第三门限值和第四门限值可以为测量时长门限值;
或者,第三门限值和第四门限值也可以为信号强度差值门限值;
或者,第三门限值和第四门限值可以为测量时长门限值及信号强度差值门限值。
可选的,响应于终端设备中接收天线的数量为第一数量,确定RRM非小区边缘准则测量参数为第五门限值。
或者,响应于终端设备中接收天线的数量为第二数量,确定RRM非小区边缘准则测量参数为第六门限值。
其中,第一数量与第二数量不同,第五门限值与第六门限值不同或相同。
可选的,第五门限值和第六门限值可以为信号强度门限值;
或者,第五门限值和第六门限值也可以为信号质量门限值;
或者,第五门限值和第六门限值可以为信号强度门限值及信号质量门限值。
其中,信号质量门限值为,终端设备接收的信号质量的门限值。信号强度门限值为,终端设备接收的信号强度的门限值。即终端设备接收的信号质量大于信号质量门限值,接收的信号强度大于信号强度门限值时,该终端设备处于非小区边缘状态。
步骤33,基于第一RRM测量参数,进行RRM测量。
其中,步骤33的具体实现形式,可参照本公开中其它个实施例中的详细描述,此处不再详细赘述。
通过实施本公开实施例,终端设备首先根据接收的指示消息,确定天线数量与RRM测量参数的映射关系,之后基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备中接收天线数量对应的第一RRM测量参数,最后基于第一RRM测量参数,进行RRM测量。由此,终端设备通过基于与其天线数量对应的第一RRM测量参数,进行RRM测量,从而不仅保证了其天线资源管理的准确性和可靠性,而且节省了终端设备的功耗,提高了终端设备的续航能力。
请参见图4,图4是本公开实施例提供的一种无线资源管理测量方法的流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤41,根据协议约定,确定天线数量与RRM测量参数的映射关系。
步骤42,基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备中接收天线数量对应的第一RRM测量参数。
其中,步骤42的具体实现形式,可参照本公开中其它个实施例中的详细描述,此处不再详细赘述。
步骤43,在终端设备处于无线资源控制(radioresourcecontrol,RRC)空闲态,或 RRC非激活态的情况下,基于第一RRM测量参数,进行RRM测量。
可以理解的是,在终端设备处于RRC空闲态或RRC非激活态的情况下,均可基于第一第一RRM测量参数,进行RRM测量。进一步节省了终端设备的功耗,提高了终端设备的续航能力。
通过实施本公开实施例,终端设备首先根据协议约定,确定天线数量与RRM测量参数的映射关系,之后基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备中接收天线数量对应的第一RRM测量参数,最后在终端设备处于RRC空闲态或RRC非激活态的情况下基于第一RRM测量参数,进行RRM测量。由此,终端设备通过基于与其天线数量对应的第一RRM测量参数,进行RRM测量,从而不仅保证了其天线资源管理的准确性和可靠性,而且节省了终端设备的功耗,提高了终端设备的续航能力。
请参见图5,图5是本公开实施例提供的一种无线资源管理测量方法的流程示意图,该方法由网络设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤51,发送指示信息,其中,指示信息用于指示天线数量与无线资源管理RRM测量参数的映射关系。
可选的,指示信息中包括以下至少一项:
天线数量与RRM低移动性准则测量参数的映射关系;
天线数量与RRM静止准则测量参数的映射关系;以及,
天线数量与RRM非小区边缘准则测量参数的映射关系。
可以理解的是,每个终端设备均可以有与之对应的RRM低移动性准则测量参数、RRM静止准则测量参数及RRM非小区边缘准则测量参数,其中,RRM低移动性准则测量参数、RRM静止准则测量参数及RRM非小区边缘准则测量参数,可以相同,也可以不同。另外,天线数量不同的终端设备,对应的RRM测量参数可以相同,也可以不同,本公开对此不做限定。
可选的,天线数量与RRM低移动性准则测量参数的映射关系,可以包括:第一数量天线对应的第一门限值,以及,第二数量天线对应的第二门限值。
其中,第一数量与第二数量不同,第一门限值与第二门限值不同或相同。
可选的,第一门限值和第二门限值可以为测量时长门限值;
或者,第一门限值和第二门限值也可以为信号强度差值门限值;
或者,第一门限值和第二门限值可以为测量时长门限值及信号强度差值门限值。
其中,信号强度差值门限值,用于指示在超过测量时长门限值的时间段内,参考的接收信号强度与终端设备测量的当前时刻的服务小区的信号强度之间差值的门限值。
可选的,天线数量与RRM静止准则测量参数的映射关系,可以包括:第一数量天线对应的第三门限值,以及,第二数量天线对应的第四门限值。
其中,第一数量与第二数量不同,第三门限值与第四门限值不同或相同。
可选的,第三门限值和第四门限值可以为测量时长门限值;
或者,第三门限值和第四门限值可以为信号强度差值门限值;
或者,第三门限值和第四门限值可以为测量时长门限值及信号强度差值门限值。
可选的,天线数量与RRM非小区边缘准则测量参数的映射关系,可以包括:第一数量天线对应的第五门限值,以及,第二数量天线对应的第六门限值。
其中,第一数量与第二数量不同,第五门限值与第六门限值不同或相同。
可选的,第五门限值和第六门限值可以为信号强度门限值;
或者,第五门限值和第六门限值也可以为信号质量门限值;
或者,第五门限值和第六门限值可以为信号强度门限值及信号质量门限值。
其中,信号质量门限值为,终端设备接收的信号质量的门限值。信号强度门限值为,终端设备接收的信号强度的门限值。即终端设备接收的信号质量大于信号质量门限值,接收的信号强度大于信号强度门限值时,该终端设备处于非小区边缘状态。
通过实施本公开实施例,网络设备发送指示信息,其中,指示信息用于指示天线数量与无线资源管理RRM测量参数的映射关系。由此,网络设备通过向终端设备发送天线数量与无线资源管理RRM测量参数的映射关系,以使终端设备通过基于与其天线数量对应的第一RRM测量参数,进行RRM测量,从而不仅保证了其天线资源管理的准确性和可靠性,而且节省了终端设备的功耗,提高了终端设备的续航能力。
上述本公开提供的实施例中,分别从网络设备、终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图6,为本公开实施例提供的一种通信装置60的结构示意图。图6所示的通信装置60可包括处理模块601和收发模块602。
收发模块602可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块602可以实现发送功能和/或接收功能。
可以理解的是,通信装置60可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置60,在终端设备侧,该装置,包括:
处理模块601,用于基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备中接收天线数量对应的第一RRM测量参数;
处理模块601,还用于基于第一RRM测量参数,进行RRM测量。
可选的,处理模块601,还具体用于:
根据协议约定,确定天线数量与RRM测量参数的映射关系;
或者,
根据接收的指示消息,确定天线数量与RRM测量参数的映射关系。
可选的,处理模块601,还用于:
响应于终端设备中接收天线的数量为第一数量,确定RRM低移动性准则测量参数为第一门限值;
或者,
响应于终端设备中接收天线的数量为第二数量,确定RRM低移动性准则测量参数为第二门限值;
其中,第一数量与第二数量不同,第一门限值与第二门限值不同或相同。
可选的,第一门限值和第二门限值为测量时长门限值;
或者,第一门限值和第二门限值为信号强度差值门限值;
或者,第一门限值和第二门限值为测量时长门限值及信号强度差值门限值。
可选的,处理模块601,还用于:
响应于终端设备中接收天线的数量为第一数量,确定RRM静止准则测量参数为第三门限值;
或者,
响应于终端设备中接收天线的数量为第二数量,确定RRM静止准则测量参数为第四门限值;
其中,第一数量与第二数量不同,第三门限值与第四门限值不同或相同。
可选的,第三门限值和第四门限值为测量时长门限值;
或者,第三门限值和第四门限值为信号强度差值门限值;
或者,第三门限值和第四门限值为测量时长门限值及信号强度差值门限值。
可选的,处理模块601,还用于:
响应于终端设备中接收天线的数量为第一数量,确定RRM非小区边缘准则测量参数为第五门限值;
或者,
响应于终端设备中接收天线的数量为第二数量,确定RRM非小区边缘准则测量参数为第六门限值;
其中,第一数量与第二数量不同,第五门限值与第六门限值不同或相同。
可选的,第五门限值和第六门限值为信号强度门限值;
或者,第五门限值和第六门限值为信号质量门限值;
或者,第五门限值和第六门限值为信号强度门限值及信号质量门限值。
可选的,处理模块601,还用于:
在终端设备处于无线资源控制RRC空闲态的情况下,基于第一RRM测量参数,进行RRM测量;
或者,
在终端设备处于RRC非激活态的情况下,基于第一RRM测量参数,进行RRM测量。
本公开提供的通信装置,终端设备基于天线数量与无线资源管理RRM测量参数的映射 关系,确定与终端设备中接收天线数量对应的第一RRM测量参数,之后基于第一RRM测量参数,进行RRM测量。由此,终端设备通过基于与其天线数量对应的第一RRM测量参数,进行RRM测量,从而不仅保证了其天线资源管理的准确性和可靠性,而且节省了终端设备的功耗,提高了终端设备的续航能力。
可以理解的是,通信装置60可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置60,在网络设备侧,该装置,包括:
收发模块602,用于发送指示信息,其中,指示信息用于指示天线数量与无线资源管理RRM测量参数的映射关系。
可选的,指示信息中包括以下至少一项:
天线数量与RRM低移动性准则测量参数的映射关系;
天线数量与RRM静止准则测量参数的映射关系;以及,
天线数量与RRM非小区边缘准则测量参数的映射关系。
可选的,天线数量与RRM低移动性准则测量参数的映射关系,包括:
第一数量天线对应的第一门限值,以及,第二数量天线对应的第二门限值;
其中,第一数量与第二数量不同,第一门限值与第二门限值不同或相同。
可选的,第一门限值和第二门限值为测量时长门限值;
或者,第一门限值和第二门限值为信号强度差值门限值;
或者,第一门限值和第二门限值为测量时长门限值及信号强度差值门限值。
可选的,天线数量与RRM静止准则测量参数的映射关系,包括:
第一数量天线对应的第三门限值,以及,第二数量天线对应的第四门限值;
其中,第一数量与第二数量不同,第三门限值与第四门限值不同或相同。
可选的,第三门限值和第四门限值为测量时长门限值;
或者,第三门限值和第四门限值为信号强度差值门限值;
或者,第三门限值和第四门限值为测量时长门限值及信号强度差值门限值。
可选的,天线数量与RRM非小区边缘准则测量参数的映射关系,包括:
第一数量天线对应的第五门限值,以及,第二数量天线对应的第六门限值;
其中,第一数量与第二数量不同,第五门限值与第六门限值不同或相同。
可选的,第五门限值和第六门限值为信号强度门限值;
或者,第五门限值和第六门限值为信号质量门限值;
或者,第五门限值和第六门限值为信号强度门限值及信号质量门限值。
本公开提供的通信装置,网络设备发送指示信息,其中,指示信息用于指示天线数量与无线资源管理RRM测量参数的映射关系。由此,网络设备通过向终端设备发送天线数量与无线资源管理RRM测量参数的映射关系,以使终端设备通过基于与其天线数量对应的第一RRM测量参数,进行RRM测量,从而不仅保证了其天线资源管理的准确性和可靠性,而且节省了终端设备的功耗,提高了终端设备的续航能力。
请参见图7,图7是本公开实施例提供的另一种通信装置70的结构示意图。通信装置70可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置70可以包括一个或多个处理器701。处理器701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置70中还可以包括一个或多个存储器702,其上可以存有计算机程序704,处理器701执行计算机程序704,以使得通信装置70执行上述方法实施例中描述的方法。可选的,存储器702中还可以存储有数据。通信装置70和存储器702可以单独设置,也可以集成在一起。
可选的,通信装置70还可以包括收发器705、天线706。收发器705可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器705可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置70中还可以包括一个或多个接口电路707。接口电路707用于接收代码指令并传输至处理器701。处理器701运行代码指令以使通信装置70执行上述方法实施例中描述的方法。
通信装置70为终端设备:处理器701用于执行图2中的步骤21及步骤22;或图3中的步骤31、步骤32、及步骤33;或图4中的步骤41、步骤42、及步骤43等等。
通信装置70为网络设备:收发器705用于执行图5中的步骤51等等。
在一种实现方式中,处理器701中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器701可以存有计算机程序703,计算机程序703在处理器701上运行,可使得通信装置70执行上述方法实施例中描述的方法。计算机程序703可能固化在处理器701中,该种情况下,处理器701可能由硬件实现。
在一种实现方式中,通信装置70可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit  board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图8所示的芯片的结构示意图。图8所示的芯片包括处理器801和接口802。其中,处理器801的数量可以是一个或多个,接口802的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口802,用于执行图3中的步骤31等等。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口802,用于执行图5中的步骤51等等。
可选的,芯片还包括存储器803,存储器803用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种通信系统,该系统包括前述图11实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图8实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本公开还提供一种计算机可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种无线资源管理测量方法,其特征在于,包括:
    基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备中接收天线数量对应的第一RRM测量参数;
    基于所述第一RRM测量参数,进行RRM测量。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    根据协议约定,确定天线数量与RRM测量参数的映射关系;
    或者,
    根据接收的指示消息,确定天线数量与RRM测量参数的映射关系。
  3. 如权利要求1所述的方法,其特征在于,所述确定与终端设备中接收天线数量对应的第一RRM测量参数,包括:
    响应于所述终端设备中接收天线的数量为第一数量,确定所述RRM低移动性准则测量参数为第一门限值;
    或者,
    响应于所述终端设备中接收天线的数量为第二数量,确定所述RRM低移动性准则测量参数为第二门限值;
    其中,所述第一数量与所述第二数量不同,所述第一门限值与所述第二门限值不同或相同。
  4. 如权利要求3所述的方法,其特征在于,
    所述第一门限值和所述第二门限值为测量时长门限值;
    或者,所述第一门限值和所述第二门限值为信号强度差值门限值;
    或者,所述第一门限值和所述第二门限值为测量时长门限值及信号强度差值门限值。
  5. 如权利要求1所述的方法,其特征在于,所述确定与终端设备中接收天线数量对应的第一RRM测量参数,包括:
    响应于所述终端设备中接收天线的数量为第一数量,确定所述RRM静止准则测量参数为第三门限值;
    或者,
    响应于所述终端设备中接收天线的数量为第二数量,确定所述RRM静止准则测量参数为第四门限值;
    其中,所述第一数量与所述第二数量不同,所述第三门限值与所述第四门限值不同或相同。
  6. 如权利要求5所述的方法,其特征在于,
    所述第三门限值和所述第四门限值为测量时长门限值;
    或者,所述第三门限值和所述第四门限值为信号强度差值门限值;
    或者,所述第三门限值和所述第四门限值为测量时长门限值及信号强度差值门限值。
  7. 如权利要求1所述的方法,其特征在于,所述确定与终端设备中接收天线数量对应的第一RRM测量参数,包括:
    响应于所述终端设备中接收天线的数量为第一数量,确定所述RRM非小区边缘准则测量参数为第五门限值;
    或者,
    响应于所述终端设备中接收天线的数量为第二数量,确定所述RRM非小区边缘准则测量参数为第六门限值;
    其中,所述第一数量与所述第二数量不同,所述第五门限值与所述第六门限值不同或相同。
  8. 如权利要求7所述的方法,其特征在于,
    所述第五门限值和所述第六门限值为信号强度门限值;
    或者,所述第五门限值和所述第六门限值为信号质量门限值;
    或者,所述第五门限值和所述第六门限值为信号强度门限值及信号质量门限值。
  9. 如权利要求1-8任一所述的方法,其特征在于,所述基于所述第一RRM测量参数,进行RRM测量,包括:
    在所述终端设备处于无线资源控制RRC空闲态的情况下,基于所述第一RRM测量参数,进行RRM测量;
    或者,
    在所述终端设备处于RRC非激活态的情况下,基于所述第一RRM测量参数,进行RRM测量。
  10. 一种无线资源管理测量方法,其特征在于,包括:
    发送指示信息,其中,所述指示信息用于指示天线数量与无线资源管理RRM测量参数的映射关系。
  11. 如权利要求10所述的方法,其特征在于,所述指示信息中包括以下至少一项:
    天线数量与RRM低移动性准则测量参数的映射关系;
    天线数量与RRM静止准则测量参数的映射关系;以及,
    天线数量与RRM非小区边缘准则测量参数的映射关系。
  12. 如权利要求11所述的方法,其特征在于,所述天线数量与RRM低移动性准则测量参数的映射关系,包括:
    第一数量天线对应的第一门限值,以及,第二数量天线对应的第二门限值;
    其中,所述第一数量与所述第二数量不同,所述第一门限值与所述第二门限值不同或相同。
  13. 如权利要求12所述的方法,其特征在于,
    所述第一门限值和所述第二门限值为测量时长门限值;
    或者,所述第一门限值和所述第二门限值为信号强度差值门限值;
    或者,所述第一门限值和所述第二门限值为测量时长门限值及信号强度差值门限值。
  14. 如权利要求11所述的方法,其特征在于,所述天线数量与RRM静止准则测量参数的映射关系,包括:
    第一数量天线对应的第三门限值,以及,第二数量天线对应的第四门限值;
    其中,所述第一数量与所述第二数量不同,所述第三门限值与所述第四门限值不同或相同。
  15. 如权利要求14所述的方法,其特征在于,
    所述第三门限值和所述第四门限值为测量时长门限值;
    或者,所述第三门限值和所述第四门限值为信号强度差值门限值;
    或者,所述第三门限值和所述第四门限值为测量时长门限值及信号强度差值门限值。
  16. 如权利要求11-15任一所述的方法,其特征在于,所述天线数量与RRM非小区边缘准则测量参数的映射关系,包括:
    第一数量天线对应的第五门限值,以及,第二数量天线对应的第六门限值;
    其中,所述第一数量与所述第二数量不同,所述第五门限值与所述第六门限值不同或相同。
  17. 如权利要求16所述的方法,其特征在于,
    所述第五门限值和所述第六门限值为信号强度门限值;
    或者,所述第五门限值和所述第六门限值为信号质量门限值;
    或者,所述第五门限值和所述第六门限值为信号强度门限值及信号质量门限值。
  18. 一种通信装置,其特征在于,所述装置在终端设备侧,所述装置包括:
    处理模块,用于基于天线数量与无线资源管理RRM测量参数的映射关系,确定与终端设备中接收天线数量对应的第一RRM测量参数;
    所述处理模块,还用于基于所述第一RRM测量参数,进行RRM测量。
  19. 如权利要求18所述的装置,其特征在于,所述处理模块,还具体用于:
    根据协议约定,确定天线数量与RRM测量参数的映射关系;
    或者,
    根据接收的指示消息,确定天线数量与RRM测量参数的映射关系。
  20. 如权利要求18所述的装置,其特征在于,所述处理模块,还具体用于:
    响应于所述终端设备中接收天线的数量为第一数量,确定所述RRM低移动性准则测量参数为第一门限值;
    或者,
    响应于所述终端设备中接收天线的数量为第二数量,确定所述RRM低移动性准则测量参数为第二门限值;
    其中,所述第一数量与所述第二数量不同,所述第一门限值与所述第二门限值不同或相同。
  21. 如权利要求20所述的装置,其特征在于,
    所述第一门限值和所述第二门限值为测量时长门限值;
    或者,所述第一门限值和所述第二门限值为信号强度差值门限值;
    或者,所述第一门限值和所述第二门限值为测量时长门限值及信号强度差值门限值。
  22. 如权利要求18所述的装置,其特征在于,所述处理模块,还具体用于:
    响应于所述终端设备中接收天线的数量为第一数量,确定所述RRM静止准则测量参数为第三门限值;
    或者,
    响应于所述终端设备中接收天线的数量为第二数量,确定所述RRM静止准则测量参数为第四门限值;
    其中,所述第一数量与所述第二数量不同,所述第三门限值与所述第四门限值不同或相同。
  23. 如权利要22所述的装置,其特征在于,
    所述第三门限值和所述第四门限值为测量时长门限值;
    或者,所述第三门限值和所述第四门限值为信号强度差值门限值;
    或者,所述第三门限值和所述第四门限值为测量时长门限值及信号强度差值门限值。
  24. 如权利要求18所述的装置,其特征在于,所述处理模块,还具体用于:
    响应于所述终端设备中接收天线的数量为第一数量,确定所述RRM非小区边缘准则测量参数为第五门限值;
    或者,
    响应于所述终端设备中接收天线的数量为第二数量,确定所述RRM非小区边缘准则测量参数为第六门限值;
    其中,所述第一数量与所述第二数量不同,所述第五门限值与所述第六门限值不同或相同。
  25. 如权利要求24所述的装置,其特征在于,
    所述第五门限值和所述第六门限值为信号强度门限值;
    或者,所述第五门限值和所述第六门限值为信号质量门限值;
    或者,所述第五门限值和所述第六门限值为信号强度门限值及信号质量门限值。
  26. 如权利要求18-25任一所述的装置,其特征在于,所述处理模块,还具体用于:
    在所述终端设备处于无线资源控制RRC空闲态的情况下,基于所述第一RRM测量参数,进行RRM测量;
    或者,
    在所述终端设备处于RRC非激活态的情况下,基于所述第一RRM测量参数,进行RRM测量。
  27. 一种无线资源管理测量装置,其特征在于,所述装置在网络设备侧,所述装置包括:
    收发模块,用于发送指示信息,其中,所述指示信息用于指示天线数量与无线资源管理RRM测量参数的映射关系。
  28. 如权利要求27所述的装置,其特征在于,所述指示信息中包括以下至少一项:
    天线数量与RRM低移动性准则测量参数的映射关系;
    天线数量与RRM静止准则测量参数的映射关系;以及,
    天线数量与RRM非小区边缘准则测量参数的映射关系。
  29. 如权利要求28所述的装置,其特征在于,所述天线数量与RRM低移动性准则测量参数的映射关系,包括:
    第一数量天线对应的第一门限值,以及,第二数量天线对应的第二门限值;
    其中,所述第一数量与所述第二数量不同,所述第一门限值与所述第二门限值不同或相同。
  30. 如权利要求29所述的装置,其特征在于,
    所述第一门限值和所述第二门限值为测量时长门限值;
    或者,所述第一门限值和所述第二门限值为信号强度差值门限值;
    或者,所述第一门限值和所述第二门限值为测量时长门限值及信号强度差值门限值。
  31. 如权利要求28所述的装置,其特征在于,所述天线数量与RRM静止准则测量参数的映射关系,包括:
    第一数量天线对应的第三门限值,以及,第二数量天线对应的第四门限值;
    其中,所述第一数量与所述第二数量不同,所述第三门限值与所述第四门限值不同或相同。
  32. 如权利要求31所述的装置,其特征在于,
    所述第三门限值和所述第四门限值为测量时长门限值;
    或者,所述第三门限值和所述第四门限值为信号强度差值门限值;
    或者,所述第三门限值和所述第四门限值为测量时长门限值及信号强度差值门限值。
  33. 如权利要求28-32任一所述的装置,其特征在于,所述天线数量与RRM非小区边缘准则测量参数的映射关系,包括:
    第一数量天线对应的第五门限值,以及,第二数量天线对应的第六门限值;
    其中,所述第一数量与所述第二数量不同,所述第五门限值与所述第六门限值不同或相同。
  34. 如权利要求33所述的装置,其特征在于,
    所述第五门限值和所述第六门限值为信号强度门限值;
    或者,所述第五门限值和所述第六门限值为信号质量门限值;
    或者,所述第五门限值和所述第六门限值为信号强度门限值及信号质量门限值。
  35. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至9中任一项所述的方法。
  36. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求10至17中任一项所述的方法。
  37. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至9中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求10至17中任一项所述的方法。
  39. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至9中任一项所述的方法被实现。
  40. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求10至17中任一项所述的方法被实现。
PCT/CN2021/111089 2021-08-06 2021-08-06 一种无线资源管理测量方法及其装置 WO2023010499A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/111089 WO2023010499A1 (zh) 2021-08-06 2021-08-06 一种无线资源管理测量方法及其装置
KR1020247007303A KR20240036118A (ko) 2021-08-06 2021-08-06 무선 리소스 관리 측정 방법 및 그의 장치
CN202180002419.9A CN115956381A (zh) 2021-08-06 2021-08-06 一种无线资源管理测量方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111089 WO2023010499A1 (zh) 2021-08-06 2021-08-06 一种无线资源管理测量方法及其装置

Publications (1)

Publication Number Publication Date
WO2023010499A1 true WO2023010499A1 (zh) 2023-02-09

Family

ID=85154099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111089 WO2023010499A1 (zh) 2021-08-06 2021-08-06 一种无线资源管理测量方法及其装置

Country Status (3)

Country Link
KR (1) KR20240036118A (zh)
CN (1) CN115956381A (zh)
WO (1) WO2023010499A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116567800A (zh) * 2023-06-30 2023-08-08 湖南时空信安科技有限公司 时间校准方法、调整模型训练方法及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379535A (zh) * 2012-04-19 2013-10-30 展讯通信(上海)有限公司 通信终端及其小区测量方法与装置
CN109792624A (zh) * 2018-12-25 2019-05-21 北京小米移动软件有限公司 信号质量测量方法、装置及终端
CN111417217A (zh) * 2019-01-04 2020-07-14 电信科学技术研究院有限公司 一种双连接配置方法、装置、基站及终端
CN111586853A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种无线通信的方法和装置
WO2021020952A1 (en) * 2019-08-01 2021-02-04 Samsung Electronics Co.,Ltd. Method and system for performing radio resource management (rrm) measurements by a wtru in a 3gpp networks
CN112586042A (zh) * 2018-08-31 2021-03-30 华为技术有限公司 一种监测方法及设备
CN113196840A (zh) * 2019-03-28 2021-07-30 华为技术有限公司 一种通信方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379535A (zh) * 2012-04-19 2013-10-30 展讯通信(上海)有限公司 通信终端及其小区测量方法与装置
CN112586042A (zh) * 2018-08-31 2021-03-30 华为技术有限公司 一种监测方法及设备
CN109792624A (zh) * 2018-12-25 2019-05-21 北京小米移动软件有限公司 信号质量测量方法、装置及终端
CN111417217A (zh) * 2019-01-04 2020-07-14 电信科学技术研究院有限公司 一种双连接配置方法、装置、基站及终端
CN111586853A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种无线通信的方法和装置
CN113196840A (zh) * 2019-03-28 2021-07-30 华为技术有限公司 一种通信方法及装置
WO2021020952A1 (en) * 2019-08-01 2021-02-04 Samsung Electronics Co.,Ltd. Method and system for performing radio resource management (rrm) measurements by a wtru in a 3gpp networks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116567800A (zh) * 2023-06-30 2023-08-08 湖南时空信安科技有限公司 时间校准方法、调整模型训练方法及电子设备
CN116567800B (zh) * 2023-06-30 2023-09-08 湖南时空信安科技有限公司 时间校准方法、调整模型训练方法及电子设备

Also Published As

Publication number Publication date
KR20240036118A (ko) 2024-03-19
CN115956381A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2023000149A1 (zh) 一种中继终端设备测量上报的方法及其装置
WO2023028924A1 (zh) 参考信号的生效指示方法及装置
WO2023010499A1 (zh) 一种无线资源管理测量方法及其装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023272624A1 (zh) 一种追踪参考信号的窗口配置方法及装置
WO2023201756A1 (zh) 一种用于基于条件的移动性的信息的处理方法及装置
WO2023201754A1 (zh) 一种终端设备的移动性管理方法及装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
CN114175840B (zh) 随机接入方法和装置
WO2022233066A1 (zh) 一种确定终端激活状态的方法及装置
WO2023035202A1 (zh) 一种跟踪参考信号周期的确定方法及其装置
WO2023010428A1 (zh) 准共址配置方法、准共址qcl信息确定方法及其装置
WO2023035125A1 (zh) 一种小区重选测量的方法及其装置
WO2023201755A1 (zh) 一种移动性管理的配置方法及装置
WO2023015424A1 (zh) 一种定位方法及其装置
WO2023283964A1 (zh) 多载波小区的移动性测量的配置方法及装置
WO2023044628A1 (zh) 一种测量gap的调度方法及其装置
WO2023230794A1 (zh) 一种定位方法及装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2022266963A1 (zh) 资源分配方法及其装置
WO2023010475A1 (zh) 一种服务小区测量方法及其装置
WO2022236624A1 (zh) 一种通信方法及其装置
WO2023044807A1 (zh) 一种控制信令的执行方法及其装置
WO2023044621A1 (zh) 一种波束测量和上报的方法及其装置
WO2023283827A1 (zh) 一种定时误差的上报方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952376

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024002330

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20247007303

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2024105538

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952376

Country of ref document: EP

Effective date: 20240306

ENP Entry into the national phase

Ref document number: 112024002330

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240205