WO2024000529A1 - 一种信道状态信息反馈方法及其装置 - Google Patents

一种信道状态信息反馈方法及其装置 Download PDF

Info

Publication number
WO2024000529A1
WO2024000529A1 PCT/CN2022/103165 CN2022103165W WO2024000529A1 WO 2024000529 A1 WO2024000529 A1 WO 2024000529A1 CN 2022103165 W CN2022103165 W CN 2022103165W WO 2024000529 A1 WO2024000529 A1 WO 2024000529A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
basis vector
length
network side
side device
Prior art date
Application number
PCT/CN2022/103165
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/103165 priority Critical patent/WO2024000529A1/zh
Priority to CN202280002423.XA priority patent/CN117643028A/zh
Publication of WO2024000529A1 publication Critical patent/WO2024000529A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communication technology, and in particular, to a channel state information feedback method and a device thereof.
  • the channel state information is still fed back based on the traditional Type II codebook.
  • the fed back CSI and the current channel information no longer match, resulting in System performance degrades. Therefore, how to match the CSI fed back by terminal devices in medium- and high-speed mobile scenarios with the current channel information has become an urgent problem to be solved.
  • Embodiments of the present application provide a channel state information feedback method and device.
  • the length can be used to determine the TD basis vector used in the codebook or
  • the DD basis vector allows the introduction of time domain basis vectors or Doppler domain basis vectors based on the Rel-16 or 17 Type II codebook, which can not only determine the corresponding precoding at different times, but also avoid the redundancy of codebook parameters. Redundant reporting of configuration or codebook parameters reduces signaling overhead.
  • embodiments of the present application provide a channel state information feedback method, which is executed by a terminal device.
  • the method includes:
  • Channel state information CSI including the codebook indication information is sent to the network side device, where the codebook indication information is used to instruct the network side device to determine precoding matrices corresponding to different times.
  • the length of the time domain TD basis vector or the Doppler domain DD basis vector can be determined, so that the length can be used to determine the TD basis vector or DD basis vector used in the codebook, so that in Rel-16 or 17 Type II codebook introduces time domain basis vectors or Doppler domain basis vectors to realize precoding calculation or prediction at future moments, so that the calculated or predicted precoding matches the channel at the corresponding time in the future.
  • Determining the precoding corresponding to different moments can also avoid redundant configuration of codebook parameters or redundant reporting of codebook parameters, thereby reducing signaling configuration overhead or reporting feedback overhead.
  • the codebook indication information corresponding to the data transmission layer is determined based on the length of the time domain TD basis vector or the Doppler domain DD basis vector and the codebook parameters configured by the network side device, including:
  • the codebook indication information corresponding to the data transmission layer is determined.
  • determining the length of the time domain TD basis vector or the Doppler domain DD basis vector includes:
  • the length of the TD basis vector or the DD basis vector is determined according to the first parameter configured by the network side device.
  • the first parameter is the number of channel state information reference signal CSI-RS resources or the number of CSI-RS resources within the CSI-RS measurement window; the network side device
  • the first parameter of the configuration determines the length of the TD basis vector or DD basis vector, including:
  • the length of the TD basis vector or DD basis vector is equal to the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources within the CSI-RS measurement window;
  • the length of the TD basis vector or DD basis vector is equal to
  • the Q 1 is a positive integer
  • the N CSI-RS is the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources within the CSI-RS measurement window
  • the C u It is a compression unit in the time domain.
  • the first parameter is the size of the CSI-RS measurement window and the interval between adjacent CSI measurement moments; and the TD base is determined according to the first parameter configured by the network side device.
  • the length of the vector or DD basis vector including: determining that the length of the TD basis vector or DD basis vector is equal to Wherein, the W meas is the size of the CSI-RS measurement window, and the d is the interval between the adjacent CSI measurement moments, or the maximum or minimum interval of the adjacent CSI measurements, or a plurality of The average value of adjacent CSI measurement intervals.
  • the first parameter is the number of CSI measurements or the number of CSI measurements within the CSI-RS measurement window; and the TD base vector or DD is determined according to the first parameter configured by the network side device.
  • the length of the basis vector including:
  • the length of the TD basis vector or DD basis vector is equal to
  • the Q 2 is a positive integer
  • the B is the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window
  • the C u is a compression unit in the time domain.
  • the first parameter is parameter W; and determining the length of the TD basis vector or DD basis vector according to the first parameter configured by the network side device includes:
  • the parameter W is determined by at least one parameter in the following items 1) to 4):
  • the method further includes: determining the compression unit Cu in the time domain.
  • the compression unit C u is ⁇ T c , where the ⁇ is an integer less than or equal to 1, and the T c is the channel coherence time; or, the compression unit C u is The measurement period of CSI-RS resources; or the compression unit C u is ⁇ d 1 , where the ⁇ is an integer greater than or equal to 1, and the d 1 is the measurement interval of adjacent CSI; or the compression unit The unit C u is ⁇ d 2 , where ⁇ is an integer greater than or equal to 1, and d 2 is the maximum or minimum interval of adjacent CSI measurements, or is the average of multiple adjacent CSI measurement intervals.
  • determining the length of the time domain TD basis vector or the Doppler domain DD basis vector includes: Doppler Doppler offset information and Doppler offset information obtained by using CSI-RS estimation based on the terminal device. Extension, determine the length of the TD basis vector or DD basis vector.
  • determining the length of the time domain TD basis vector or the Doppler domain DD basis vector includes: receiving the length of the TD basis vector or the DD basis vector configured by the network side device.
  • the codebook indication information includes at least one matrix composed of spatial domain SD basis vectors, a combined coefficient matrix, at least one matrix composed of frequency domain FD basis vectors, and at least one TD basis vector or DD basis vector.
  • One or more combinations of matrices are possible.
  • embodiments of the present application provide another channel state information feedback method.
  • the method is executed by a network side device.
  • the method includes: determining the length of the time domain TD basis vector or the Doppler domain DD basis vector; as The terminal device configures codebook parameters; sends the length of the TD basis vector or DD basis vector and the codebook parameters to the terminal device; receives data determined by the terminal device through the length and the codebook parameters.
  • Codebook indication information corresponding to the transmission layer; determining precoding matrices corresponding to different times according to the codebook indication information.
  • the length of the time domain TD basis vector or the Doppler domain DD basis vector can be determined, so that the length can be used to determine the TD basis vector or DD basis vector used in the codebook, so that in Rel-16 or 17 Type II codebook introduces time domain basis vectors or Doppler domain basis vectors to realize precoding calculation or prediction at future moments, so that the calculated or predicted precoding matches the channel at the corresponding time in the future.
  • Determining the precoding corresponding to different moments can also avoid redundant configuration of codebook parameters or redundant reporting of codebook parameters, thereby reducing signaling configuration overhead or reporting feedback overhead.
  • determining the length of the time domain TD basis vector or the Doppler domain DD basis vector includes: determining the length of the TD basis vector or the DD basis vector according to the first parameter configured by the network side device. .
  • the first parameter is the number of channel state information reference signal CSI-RS resources or the number of CSI-RS resources within the CSI-RS measurement window; the network side device The first parameter of the configuration is to determine the length of the TD basis vector or the DD basis vector, including: determining that the length of the TD basis vector or the DD basis vector is equal to the number of CSI-RS resources or CSI-RS configured by the network side device.
  • the number of CSI-RS resources within the measurement window or, determining that the length of the TD basis vector or DD basis vector is equal to Q1 times the number of CSI-RS resources configured by the network side device; or, determining the The length of the TD basis vector or the DD basis vector is equal to Q1 times the number of CSI-RS resources in the CSI-RS measurement window configured by the network side device; or, it is determined that the length of the TD basis vector or the DD basis vector is equal to
  • the Q 1 is a positive integer
  • the N CSI-RS is the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources within the CSI-RS measurement window
  • the C u It is a compression unit in the time domain.
  • the first parameter is the size of the CSI-RS measurement window and the interval between adjacent CSI measurement moments; and the TD base is determined according to the first parameter configured by the network side device.
  • the length of the vector or DD basis vector including: determining that the length of the TD basis vector or DD basis vector is equal to Wherein, the W meas is the size of the CSI-RS measurement window, and the d is the interval between the adjacent CSI measurement moments, or the maximum or minimum interval of the adjacent CSI measurements, or a plurality of The average value of adjacent CSI measurement intervals.
  • the first parameter is the number of CSI measurements or the number of CSI measurements within the CSI-RS measurement window; and the TD base vector or DD is determined according to the first parameter configured by the network side device.
  • the length of the basis vector includes: determining that the length of the TD basis vector or DD basis vector is equal to the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window; or, determining the TD basis vector Or the length of the DD basis vector is equal to Q 2 times the number of CSI measurements configured by the network side device; or, it is determined that the length of the TD basis vector or DD basis vector is equal to the CSI-RS measurement window configured by the network side device.
  • the Q 2 times the number of CSI measurements; alternatively, determine that the length of the TD basis vector or DD basis vector is equal to
  • the Q 2 is a positive integer
  • the B is the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window
  • the C u is a compression unit in the time domain.
  • the parameter W is determined by at least one of the following parameters 1) to 4): 1) the time slot corresponding to the CSI reporting time; 2) the time slot where the CSI reference resource is located; 3) the left side of the CSI-RS measurement window The time slot corresponding to the boundary or the right boundary; 4) The time slot corresponding to the left boundary or the right boundary of the CSI reporting window.
  • the method further includes: determining the compression unit Cu in the time domain.
  • the compression unit C u is ⁇ T c , where the ⁇ is an integer less than or equal to 1, and the T c is the channel coherence time; or, the compression unit C u is The measurement period of CSI-RS resources; or the compression unit C u is ⁇ d 1 , where the ⁇ is an integer greater than or equal to 1, and the d 1 is the measurement interval of adjacent CSI; or the compression unit The unit C u is ⁇ d 2 , where ⁇ is an integer greater than or equal to 1, and d 2 is the maximum or minimum interval of adjacent CSI measurements, or is the average of multiple adjacent CSI measurement intervals.
  • determining the length of the time domain TD basis vector or the Doppler domain DD basis vector includes: determining the TD based on the Doppler offset information and Doppler extension reported by the terminal device. The length of the basis vector or DD basis vector.
  • determining the precoding matrices corresponding to different times according to the codebook indication information includes: determining the length of the codebook indication information and the TD basis vector or DD basis vector, The codebook structure or the precoding matrix indicator PMI prediction algorithm is used to determine the precoding matrices corresponding to different times.
  • embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect.
  • the functions of the communication device may have some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • embodiments of the present application provide another communication device that has part or all of the functions of the network side device in the method example described in the second aspect.
  • the functions of the communication device may include the functions of the communication device in the present application.
  • the functions in some or all of the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may also include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present application provide a channel state information feedback system.
  • the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect.
  • the communication device according to the tenth aspect includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network-side device. When the instructions are executed, the network-side device is caused to execute the above-mentioned second aspect. Methods.
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the network side device to implement the functions involved in the second aspect, for example, determining or processing the functions involved in the above method. At least one of data and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network side device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • this application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a channel state information feedback method provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another channel state information feedback method provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of yet another channel state information feedback method provided by an embodiment of the present application.
  • Figure 5 is a schematic flow chart of yet another channel state information feedback method provided by an embodiment of the present application.
  • Figure 6 is an example diagram of the relationship between CSI-based measurement and CSI reporting in the time domain provided by the embodiment of the present application;
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • Vector or DD basis vector; "and/or" in this article is just an association relationship that describes associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, and A exists at the same time and B, there are three cases of B alone.
  • the channel state information is still fed back based on the traditional Type II codebook.
  • the fed back CSI and the current channel information no longer match, resulting in System performance degrades.
  • research shows that introducing time domain or Doppler domain basis vectors on the basis of Rel-16 or 17 Type II codebooks can achieve precoding prediction in the future, making the predicted precoding consistent with Match the channel at the corresponding time in the future.
  • the codebook structure corresponding to the enhanced CSI feedback based on Rel-16 or 17 Type II codebook can be written as or Among them, W 1 in these two codebook structures represents a matrix composed of multiple spatial domain (SD) basis vectors or a unit matrix composed of at least one unit vector, W 2 represents a combined coefficient matrix, and W f represents multiple A matrix composed of frequency domain (Frequency Domain, FD) basis vectors, W d represents a matrix composed of multiple Doppler Domain (DD) basis vectors, W t represents a plurality of time domain (Time Domain, TD) basis vectors A matrix of vectors.
  • SD spatial domain
  • DD Doppler Domain
  • TD time domain
  • TD basis vectors or DD basis vectors are introduced to enhance the design of Rel-16 or 17 Type II codebooks, it is necessary to first determine the length of the TD basis vector N 4 or the length of the DD basis vector.
  • the length is N 4 to calculate the precoding corresponding to different moments.
  • embodiments of the present application provide a channel state information feedback method and device, which can determine the length of the time domain TD basis vector or the Doppler domain DD basis vector, so as to use the length to determine the length used in the codebook.
  • TD basis vectors or DD basis vectors enable the introduction of time domain basis vectors or Doppler domain basis vectors on the basis of Rel-16 or 17 Type II codebooks, which can not only determine the corresponding precoding at different times, but also avoid codebooks Redundant configuration of parameters or redundant reporting of codebook parameters reduces signaling overhead.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to one network side device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network side device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network side device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network side device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other future mobile communication systems.
  • eNB evolved base station
  • TRP transmission reception point
  • gNB next generation base station
  • WiFi wireless fidelity
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network side equipment.
  • the network-side equipment may be composed of a centralized unit (central unit, CU) and a distributed unit (DU), where the CU may also be called a control unit (control unit), using CU-
  • the structure of DU can separate the protocol layers of network-side equipment, such as base stations, with some protocol layer functions placed under centralized control by the CU, while the remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the terminal device 102 may also include a relay (English: Relay) and other devices capable of performing data communication with the network side device 101 (for example, a base station).
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • Figure 2 is a schematic flow chart of a channel state information feedback method provided by an embodiment of the present application. It should be noted that the channel state information feedback method in this embodiment of the present application can be executed by a terminal device. That is to say, the channel state information feedback method in this embodiment of the present application is described from the terminal device side. As shown in Figure 2, the method may include but is not limited to the following steps:
  • codebook indication information corresponding to the data transmission layer is determined based on the length of the time domain TD basis vector or the Doppler domain DD basis vector and the codebook parameters configured by the network side device.
  • the length of the time domain TD basis vector or the Doppler domain DD basis vector may be determined.
  • the length may be determined by the terminal device based on relevant information, or the length may also be configured by the network side device.
  • the terminal device can implicitly determine the length of the time domain TD basis vector or the length of the Doppler domain DD basis vector according to relevant parameters configured on the network side device.
  • the terminal device determines the length of the time domain TD basis vector or the length of the Doppler domain DD basis vector based on the estimated Doppler offset information, Doppler extension and other information.
  • the terminal device may also receive the length of the time domain TD basis vector or the length of the Doppler domain DD basis vector configured by the network side device.
  • the terminal device can receive a codebook parameter sent by a network-side device (such as a base station).
  • the codebook parameter is configured by the network-side device and is used to instruct the terminal device to feedback the maximum supported parameters of CSI information.
  • the terminal device can receive the codebook parameters configured by the network side device (such as the base station), and determine the codebook indication information corresponding to the data transmission layer based on the codebook parameters and the length of the TD basis vector.
  • the codebook indication information may include at least but is not limited to at least a matrix composed of spatial domain SD basis vectors, a combined coefficient matrix, at least one matrix composed of frequency domain FD basis vectors, and at least one TD One or more combinations of matrices composed of basis vectors.
  • the length of the TD basis vector is used to determine the TD basis vector used in the codebook, and the time domain basis vector is introduced based on the Rel-16 or 17 Type II codebook.
  • the "at least one" can be understood as one or more, and the “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited.
  • the terminal device can receive the codebook parameters configured by the network side device (such as the base station), and determine the codebook indication information corresponding to the data transmission layer based on the codebook parameters and the length of the DD basis vector.
  • the codebook indication information may include at least but is not limited to at least a matrix composed of spatial domain SD basis vectors, a combined coefficient matrix, at least one matrix composed of frequency domain FD basis vectors, and at least one DD One or more combinations of matrices composed of basis vectors.
  • the length of the DD basis vector is used to determine the DD basis vector used in the codebook, and the Doppler domain basis vector is introduced on the basis of the Rel-16 or 17 Type II codebook.
  • channel state information CSI including codebook indication information is sent to the network side device, where the codebook indication information is used to instruct the network side device to determine the precoding matrices corresponding to different times.
  • the terminal device may send the channel state information CSI containing the codebook indication information to the network side device.
  • the network side device can determine the precoding matrices corresponding to different times according to the codebook indication information in the CSI.
  • the codebook indication information may include a matrix composed of multiple spatial domain SD basis vectors, a combined coefficient matrix, a matrix composed of multiple frequency domain FD basis vectors, and a matrix composed of multiple TD basis vectors.
  • the network side device when the network side device receives the CSI containing the codebook indication information, it can use the codebook structure according to the codebook indication information. Calculate the precoding matrices corresponding to different times, or use the Pre-coding Matrix Indicator (PMI) prediction algorithm to predict the precoding matrices corresponding to different times.
  • PMI Pre-coding Matrix Indicator
  • W 1 represents a matrix composed of multiple spatial domain basis vectors or a unit matrix composed of at least one unit vector
  • W 2 represents a combined coefficient matrix
  • W f represents a matrix composed of multiple frequency domain basis vectors
  • W t represents multiple A matrix composed of TD basis vectors.
  • the codebook indication information may include a matrix composed of multiple spatial domain SD basis vectors, a combined coefficient matrix, a matrix composed of multiple frequency domain FD basis vectors, and a matrix composed of multiple DD basis vectors.
  • the network side device when the network side device receives the CSI containing the codebook indication information, it can use the codebook structure according to the codebook indication information. Calculate the precoding matrices corresponding to different times, or use the Pre-coding Matrix Indicator (PMI) prediction algorithm to predict the precoding matrices corresponding to different times.
  • PMI Pre-coding Matrix Indicator
  • W 1 represents a matrix composed of multiple spatial domain basis vectors or a unit matrix composed of at least one unit vector
  • W 2 represents a combined coefficient matrix
  • W f represents a matrix composed of multiple frequency domain basis vectors
  • W d represents multiple A matrix composed of DD basis vectors.
  • the length of the time domain TD basis vector or the Doppler domain DD basis vector can be determined, so that the length can be used to determine the TD basis vector or DD basis vector used in the codebook, so that in Rel-16 Or the introduction of time domain basis vectors or Doppler domain basis vectors on the basis of 17 Type II codebooks can realize precoding calculation or prediction at future moments, so that the calculated or predicted precoding matches the channel at the corresponding future moment, not only Precoding corresponding to different moments can be determined, and redundant configuration of codebook parameters or redundant reporting of codebook parameters can be avoided to reduce signaling configuration overhead or reporting feedback overhead.
  • the terminal device can implicitly determine the length of the TD basis vector or the length of the DD basis vector according to relevant parameters configured on the network side device.
  • the channel state information feedback method may include but is not limited to the following steps.
  • step 301 the length of the TD basis vector or the DD basis vector is determined according to the first parameter configured by the network side device.
  • the terminal device may implicitly determine the length of the TD basis vector or the length of the DD basis vector according to the first parameter configured by the network side device.
  • the first parameter may include but is not limited to at least one of the following information: the number of channel state information reference signal CSI-RS resources; CSI-RS within the CSI-RS measurement window The number of RS resources; the size of the CSI-RS measurement window; the interval between adjacent CSI measurement moments; the number of CSI measurements; the number of CSI measurements within the CSI-RS measurement window; parameter W, etc.
  • the CSI-RS measurement window configured by the network side device is to facilitate the description of CSI-RS channel measurement one or more times within a certain time range. It is also possible that the network side device does not configure the CSI-RS measurement window. .
  • the network side device can be configured according to The number of CSI-RS resources or the number of CSI-RS resources within the CSI-RS measurement window determines the length of the TD basis vector or the length of the DD basis vector.
  • the length of the TD basis vector or the length of the DD basis vector is equal to the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources within the CSI-RS measurement window. For example, assuming that the number of CSI-RS resources N CSI-RS configured by the network side device is 4, it can be determined that the length of the TD base vector or the length of the DD base vector N 4 is 4. For another example, taking the number of CSI-RS resources N CSI-RS in the CSI-RS measurement window configured by the network side device as 6, it can be determined that the length of the TD base vector or the length of the DD base vector N 4 is 6.
  • the length of the TD basis vector or the length of the DD basis vector is equal to Q 1 times the number of CSI-RS resources configured by the network side device.
  • Q 1 is a positive integer. For example, assuming that Q 1 is 1 and the number of CSI-RS resources N CSI-RS configured by the network side device is 4, it can be determined that the length of the TD base vector or the length of the DD base vector N 4 is 4.
  • the length of the TD basis vector or the DD basis vector is equal to Q 1 times the number of CSI-RS resources in the CSI-RS measurement window configured by the network side device; where Q 1 is positive integer. For example, assuming that Q 1 is 1 and the number of CSI-RS resources N in the CSI - RS measurement window configured by the network side device is 6, the length of the TD basis vector or the length of the DD basis vector N can be determined. 4 for 6.
  • the length of the TD basis vector or the DD basis vector is equal to Among them, Q 1 is a positive integer, N CSI-RS is the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources in the CSI-RS measurement window, and C u is the compression unit in the time domain. For example, assuming that Q 1 is 1, the number of CSI-RS resources configured by the network side device N CSI-RS is 4, and C u is 2 ms, then the length of the TD basis vector or the length of the DD basis vector N 4 can be determined for That is, the length of the TD basis vector or the length of the DD basis vector N 4 is 2.
  • the N CSI-RS resources when the number N CSI-RS of the above-mentioned CSI-RS resources is greater than 1, the N CSI -RS resources may be of the same or different time domain types. Time domain types include periodic, semi-persistent and aperiodic.
  • the N CSI-RS CSI-RS resources when the number N CSI-RS of the above-mentioned CSI-RS resources is greater than 1, the N CSI-RS CSI-RS resources may also be CSI-RS resources with different functions. For example, one CSI-RS is configured as a CSI-RS resource for channel acquisition, and the remaining CSI-RS resources are configured as CSI-RS resources for time-frequency tracking.
  • the size of the CSI-RS measurement window configured by the network side device can be and the interval between adjacent CSI measurement moments to determine the length of the TD basis vector or the length of the DD basis vector.
  • the length of the TD basis vector or the DD basis vector is equal to
  • W meas is the size of the CSI-RS measurement window
  • d is the interval between adjacent CSI measurement moments
  • d can be the maximum or minimum interval of adjacent CSI measurements
  • d can be multiple adjacent CSI measurement intervals. average of.
  • the number of CSI measurements determines the length of the TD basis vector or the length of the DD basis vector.
  • the length of the TD basis vector or the DD basis vector is equal to the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window. For example, assuming that the number of CSI measurements B configured by the network side device is 2, the length of the TD basis vector or the length of the DD basis vector N 4 is 2. As another example, taking the number of CSI measurements B within the CSI-RS measurement window configured by the network side device as 2, then the length of the TD basis vector or the length of the DD basis vector N 4 is 2.
  • the length of the TD basis vector or the DD basis vector is equal to Q 2 times the number of CSI measurements configured by the network side device; where Q 2 is a positive integer.
  • the length of the TD basis vector or the DD basis vector is equal to Q 2 times the number of CSI measurements within the CSI-RS measurement window configured by the network side device; where Q 2 is a positive integer.
  • the length of the TD basis vector or the DD basis vector is equal to Among them, Q 2 is a positive integer, B is the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window, and C u is the compression unit in the time domain. For example, assuming Q 2 is 1, the number of CSI measurements configured by the network side device or the number of CSI measurements B within the CSI-RS measurement window is 4, and C u is 2 ms, then the length of the TD basis vector or DD basis vector That is, the length of the TD basis vector or the length of the DD basis vector N 4 is 2.
  • the length of the TD basis vector or the DD basis vector can be determined according to the parameter W configured by the network side device.
  • the length of the TD basis vector or the DD basis vector is equal to or Among them, W mod C u ⁇ 0, To round up, is rounded down.
  • W mod C u 0
  • the length N 4 of the TD basis vector or DD basis vector is Alternatively, the length N 4 of the TD basis vector or DD basis vector is
  • the parameter W can be determined by at least one parameter in the following items 1) to 4):
  • the time slot corresponding to the left or right boundary of the CSI reporting window is configured by the network-side device.
  • the CSI reporting window is configured to facilitate the description of CSI reporting once within a certain time range.
  • the CSI reporting window may not be configured.
  • the parameter W represents the time length from the time slot corresponding to the time when the first CSI-RS resource is received for CSI measurement to the time slot corresponding to the time when the right boundary of the CSI reporting window is located.
  • the unit of this time length is a time slot.
  • the parameter W represents the time length from the time slot corresponding to the right boundary or the left boundary of the CSI-RS measurement window to the time slot corresponding to the time when the right boundary of the CSI reporting window is located.
  • the parameter W table represents the time length from the time slot corresponding to the CSI reference resource to the time slot corresponding to the time when the right boundary of the CSI reporting window is located.
  • N CSI-RS , B, d, Q 1 , Q 2 , W meas and W meas mentioned above may be reported by the terminal device, or may also be reported by the network side.
  • the terminal device also needs to determine the compression unit C u in the time domain.
  • the compression unit C u can be determined by any of the following methods:
  • the compression unit C u may be ⁇ T c , where ⁇ is an integer less than or equal to 1, and T c is the channel coherence time.
  • the channel coherence time The f d is the Doppler extension of the channel.
  • the compression unit C u may be a measurement period of the CSI-RS resource.
  • the compression unit C u may be ⁇ d 1 , where ⁇ is an integer greater than or equal to 1, and d 1 is the measurement interval of adjacent CSI.
  • d 1 may be the measurement interval of adjacent CSI, and the values of d 1 and ⁇ may be used to determine the compression unit C u .
  • the compression unit C u can be ⁇ d 2 , where ⁇ is an integer greater than or equal to 1, d 2 is the maximum or minimum interval of adjacent CSI measurements, or d 2 can also be multiple The average value of adjacent CSI measurement intervals.
  • d 2 may be the maximum or minimum interval between adjacent CSI measurements, and the values of d 2 and ⁇ may be used to determine the compression unit C u .
  • the values of ⁇ and ⁇ in the above text can be reported by the terminal device, or can also be configured by the network side device, or can also be predefined by the terminal device and the network side device. of.
  • step 302 codebook indication information corresponding to the data transmission layer is determined according to the codebook parameters and length configured by the network side device.
  • Step 302 can be implemented in any manner among the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • channel state information CSI containing codebook indication information is sent to the network side device, where the codebook indication information is used to instruct the network side device to determine the precoding matrices corresponding to different times.
  • Step 302 can be implemented in any manner among the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • the length of the TD or DD basis vector can be determined implicitly according to the relevant parameters of the network side device configuration, so that the length can be used to determine the TD basis vector or DD basis vector used in the codebook, so that in Rel -16 or 17 Type II codebook introduces time domain basis vectors or Doppler domain basis vectors, which can realize precoding calculation or prediction at future moments, so that the calculated or predicted precoding matches the channel at the corresponding future moment , not only can determine the precoding corresponding to different moments, but also avoid redundant configuration of codebook parameters or redundant reporting of codebook parameters, so as to reduce signaling configuration overhead or reporting feedback overhead.
  • the terminal device can determine the length of the TD basis vector or the DD basis vector based on the estimated Doppler offset information and Doppler extension. For example, the terminal device receives the CSI-RS resources configured by the network side device and uses the CSI-RS resources to perform CSI measurement processing to estimate the Doppler offset information and Doppler extension.
  • the terminal device can estimate the Doppler Doppler according to the estimated Doppler Doppler
  • the offset information and Doppler extension determine the length of the TD basis vector or DD basis vector, so that the length can be used to determine the TD basis vector or DD basis vector used in the codebook, so that on the basis of Rel-16 or 17 Type II codebook Introducing time domain basis vectors or Doppler domain basis vectors can realize precoding calculation or prediction at future moments, so that the calculated or predicted precoding matches the channel at the corresponding time in the future. Not only can the precoding corresponding to different moments be determined, It can also avoid redundant configuration of codebook parameters or redundant reporting of codebook parameters to reduce signaling configuration overhead or reporting feedback overhead.
  • the terminal device may receive the length of the TD basis vector or DD basis vector configured by the network side device. That is to say, the length of the TD basis vector or DD basis vector may be configured by the network side device to the terminal device.
  • the network side device can implicitly determine the length of the TD basis vector or DD basis vector according to the relevant parameters configured by the network side device (such as the first parameter in the above text), or the network side device can determine the length of the TD basis vector or DD basis vector according to the parameters reported by the terminal device.
  • the Doppler offset information and Doppler expansion determine the length of the TD basis vector or DD basis vector.
  • the length of the TD basis vector or DD basis vector can be sent to the terminal device so that the terminal device can use the length to determine the TD used in the codebook.
  • the basis vector or DD basis vector enables the introduction of time domain basis vectors or Doppler domain basis vectors based on the Rel-16 or 17 Type II codebook, which can realize precoding calculation or prediction in the future, making the calculation or prediction
  • the precoding matches the channel at the corresponding time in the future, which not only determines the precoding corresponding to different times, but also avoids redundant configuration of codebook parameters or redundant reporting of codebook parameters to reduce signaling configuration overhead or reporting feedback overhead. .
  • the above embodiment describes the implementation of the channel state information feedback method in the embodiment of the present application from the terminal device side.
  • the embodiment of the present application also proposes another channel state information feedback method.
  • the implementation of the channel state information feedback method will be described below from the network side device.
  • Figure 4 is a schematic flow chart of yet another channel state information feedback method provided by an embodiment of the present application.
  • the channel state information feedback method in the embodiment of the present application can be executed by the network side device.
  • the channel state information feedback method may include but is not limited to the following steps.
  • step 401 the length of the time domain TD basis vector or the Doppler domain DD basis vector is determined.
  • the network side device may implicitly determine the length of the time domain TD basis vector or the length of the Doppler domain DD basis vector according to relevant parameters configured by the network side device.
  • the network side device can also determine the length of the time domain TD basis vector or the length of the Doppler domain DD basis vector based on the Doppler offset information, Doppler extension and other information reported by the terminal device.
  • the terminal device receives the CSI-RS resources configured by the network side device and uses the CSI-RS resources to perform CSI measurement processing to estimate the Doppler offset information and Doppler extension.
  • the terminal device can use the estimated Doppler offset information and Doppler extension are reported to the network side device, so that the network side device determines the length of the time domain TD basis vector or the length of the Doppler domain DD basis vector based on the Doppler offset information, Doppler extension and other information reported by the terminal device.
  • step 402 codebook parameters are configured for the terminal device.
  • step 403 the length of the TD basis vector or the DD basis vector and the codebook parameters are sent to the terminal device.
  • the network side device sends the length and codebook parameters of the TD basis vector or DD basis vector to the terminal device, so that the terminal device determines the length and code of the TD basis vector or DD basis vector sent by the network side device.
  • This parameter determines the codebook indication information corresponding to the data transmission layer.
  • the terminal device can receive the codebook parameters configured by the network side device (such as the base station) and the length of the TD basis vector, and determine the corresponding data transmission layer based on the codebook parameters and the length of the TD basis vector.
  • Codebook instruction information may include at least a matrix composed of at least one spatial domain SD basis vector, a combined coefficient matrix, at least one matrix composed of frequency domain FD basis vectors, and at least one TD basis vector.
  • the length of the TD basis vector is used to determine the TD basis vector used in the codebook, and the time domain basis vector is introduced based on the Rel-16 or 17 Type II codebook.
  • the terminal device can receive the codebook parameters and the length of the DD basis vector configured by the network side device (such as the base station), and determine the codebook corresponding to the data transmission layer based on the codebook parameters and the length of the DD basis vector.
  • the codebook indication information may include at least but is not limited to at least a matrix composed of spatial domain SD basis vectors, a combined coefficient matrix, at least one matrix composed of frequency domain FD basis vectors, and at least one DD One or more combinations of matrices composed of basis vectors.
  • the length of the DD basis vector is used to determine the DD basis vector used in the codebook, and the Doppler domain basis vector is introduced on the basis of the Rel-16 or 17 Type II codebook.
  • step 404 receive the codebook indication information corresponding to the data transmission layer determined by the terminal device through the length and codebook parameters.
  • the terminal device can send the codebook indication information to the network side device, so that the network side device The codebook indication information sent by the terminal device is received.
  • step 405 precoding matrices corresponding to different times are determined according to the codebook indication information.
  • the codebook structure formula may be used to calculate the precoding matrices corresponding to different times, or the PMI prediction algorithm may be used to predict the precoding matrices corresponding to different times.
  • the codebook indication information may include a matrix composed of multiple spatial domain SD basis vectors, a combined coefficient matrix, a matrix composed of multiple frequency domain FD basis vectors, and a matrix composed of multiple TD basis vectors.
  • the network side device when the network side device receives the CSI containing the codebook indication information, it can use the codebook structure according to the codebook indication information. Calculate the precoding matrices corresponding to different times, or use the Pre-coding Matrix Indicator (PMI) prediction algorithm to predict the precoding matrices corresponding to different times.
  • PMI Pre-coding Matrix Indicator
  • W 1 represents a matrix composed of multiple spatial domain basis vectors or a unit matrix composed of at least one unit vector
  • W 2 represents a combined coefficient matrix
  • W f represents a matrix composed of multiple frequency domain basis vectors
  • W t represents multiple A matrix composed of TD basis vectors.
  • the codebook indication information may include a matrix composed of multiple spatial domain SD basis vectors, a combined coefficient matrix, a matrix composed of multiple frequency domain FD basis vectors, and a matrix composed of multiple DD basis vectors.
  • the network side device when the network side device receives the CSI containing the codebook indication information, it can use the codebook structure according to the codebook indication information. Calculate the precoding matrices corresponding to different times, or use the Pre-coding Matrix Indicator (PMI) prediction algorithm to predict the precoding matrices corresponding to different times.
  • PMI Pre-coding Matrix Indicator
  • W 1 represents a matrix composed of multiple spatial domain basis vectors or a unit matrix composed of at least one unit vector
  • W 2 represents a combined coefficient matrix
  • W f represents a matrix composed of multiple frequency domain basis vectors
  • W d represents multiple A matrix composed of DD basis vectors.
  • the length of the time domain TD basis vector or the Doppler domain DD basis vector can be determined, so that the length can be used to determine the TD basis vector or DD basis vector used in the codebook, so that in Rel-16 Or the introduction of time domain basis vectors or Doppler domain basis vectors on the basis of 17 Type II codebooks can realize precoding calculation or prediction at future moments, so that the calculated or predicted precoding matches the channel at the corresponding future moment, not only Precoding corresponding to different moments can be determined, and redundant configuration of codebook parameters or redundant reporting of codebook parameters can be avoided to reduce signaling configuration overhead or reporting feedback overhead.
  • the network side device can implicitly determine the length of the TD basis vector or the length of the DD basis vector according to relevant parameters configured by the network side device.
  • the channel state information feedback method may include but is not limited to the following steps.
  • step 501 the length of the TD basis vector or the DD basis vector is determined according to the first parameter configured by the network side device.
  • the network side device may implicitly determine the length of the TD basis vector or the length of the DD basis vector according to the first parameter configured by the network side device.
  • the first parameter may include but is not limited to at least one of the following information: the number of channel state information reference signal CSI-RS resources; CSI-RS within the CSI-RS measurement window The number of RS resources; the size of the CSI-RS measurement window; the interval between adjacent CSI measurement moments; the number of CSI measurements; the number of CSI measurements within the CSI-RS measurement window; parameter W, etc.
  • the CSI-RS measurement window configured by the network side device is to facilitate the description of CSI-RS channel measurement one or more times within a certain time range. It is also possible that the network side device does not configure the CSI-RS measurement window. .
  • the network side device can be configured according to The number of CSI-RS resources or the number of CSI-RS resources within the CSI-RS measurement window determines the length of the TD basis vector or the length of the DD basis vector.
  • the length of the TD basis vector or the DD basis vector is equal to the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources within the CSI-RS measurement window.
  • the number of CSI-RS resources N CSI-RS configured by the network side device is 4, it can be determined that the length of the TD base vector or the length of the DD base vector N 4 is 4. For another example, taking the number of CSI-RS resources N CSI-RS in the CSI-RS measurement window configured by the network side device as 6, it can be determined that the length of the TD base vector or the length of the DD base vector N 4 is 6.
  • the length of the TD basis vector or the length of the DD basis vector is equal to Q 1 times the number of CSI-RS resources configured by the network side device.
  • Q 1 is a positive integer. For example, assuming that Q 1 is 1 and the number of CSI-RS resources N CSI-RS configured by the network side device is 4, it can be determined that the length of the TD base vector or the length of the DD base vector N 4 is 4.
  • the length of the TD basis vector or the DD basis vector is equal to Q 1 times the number of CSI-RS resources in the CSI-RS measurement window configured by the network side device; where Q 1 is positive integer. For example, assuming that Q 1 is 1 and the number of CSI-RS resources N in the CSI - RS measurement window configured by the network side device is 6, the length of the TD basis vector or the length of the DD basis vector N can be determined. 4 for 6.
  • the length of the TD basis vector or the DD basis vector is equal to Among them, Q 1 is a positive integer, N CSI-RS is the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources in the CSI-RS measurement window, and C u is the compression unit in the time domain. For example, assuming that Q 1 is 1, the number of CSI-RS resources configured by the network side device N CSI-RS is 4, and C u is 2 ms, then the length of the TD basis vector or the length of the DD basis vector N 4 can be determined for That is, the length of the TD basis vector or the length of the DD basis vector N 4 is 2.
  • the N CSI-RS resources when the number N CSI-RS of the above-mentioned CSI-RS resources is greater than 1, the N CSI -RS resources may be of the same or different time domain types. Time domain types include periodic, semi-persistent and aperiodic.
  • the N CSI-RS CSI-RS resources when the number N CSI-RS of the above-mentioned CSI-RS resources is greater than 1, the N CSI-RS CSI-RS resources may also be CSI-RS resources with different functions. For example, one CSI-RS is configured as a CSI-RS resource for channel acquisition, and the remaining CSI-RS resources are configured as CSI-RS resources for time-frequency tracking.
  • the size of the CSI-RS measurement window configured by the network side device can be and the interval between adjacent CSI measurement moments to determine the length of the TD basis vector or the length of the DD basis vector.
  • the length of the TD basis vector or the DD basis vector is equal to
  • W meas is the size of the CSI-RS measurement window
  • d is the interval between adjacent CSI measurement moments
  • d can be the maximum or minimum interval of adjacent CSI measurements
  • d can be multiple adjacent CSI measurement intervals. average of.
  • the number of CSI measurements determines the length of the TD basis vector or the length of the DD basis vector.
  • the length of the TD basis vector or the DD basis vector is equal to the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window. For example, assuming that the number of CSI measurements B configured by the network side device is 2, the length of the TD basis vector or the length of the DD basis vector N 4 is 2. As another example, taking the number of CSI measurements B within the CSI-RS measurement window configured by the network side device as 2, then the length of the TD basis vector or the length of the DD basis vector N 4 is 2.
  • the length of the TD basis vector or the DD basis vector is equal to Q 2 times the number of CSI measurements configured by the network side device; where Q 2 is a positive integer.
  • the length of the TD basis vector or the DD basis vector is equal to Q 2 times the number of CSI measurements within the CSI-RS measurement window configured by the network side device; where Q 2 is a positive integer.
  • the length of the TD basis vector or the DD basis vector is equal to Among them, Q 2 is a positive integer, B is the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window, and C u is the compression unit in the time domain. For example, assuming Q 2 is 1, the number of CSI measurements configured by the network side device or the number of CSI measurements B within the CSI-RS measurement window is 4, and C u is 2 ms, then the length of the TD basis vector or DD basis vector That is, the length of the TD basis vector or the length of the DD basis vector N 4 is 2.
  • the length of the TD basis vector or the DD basis vector can be determined according to the parameter W configured by the network side device.
  • the length of the TD basis vector or the DD basis vector is equal to or Among them, W mod C u ⁇ 0, To round up, is rounded down.
  • W mod C u 0
  • the length N 4 of the TD basis vector or DD basis vector is Alternatively, the length N 4 of the TD basis vector or DD basis vector is
  • the parameter W can be determined by at least one parameter in the following items 1) to 4):
  • the time slot corresponding to the left or right boundary of the CSI reporting window is configured by the network-side device.
  • the CSI reporting window is configured to facilitate the description of CSI reporting once within a certain time range.
  • the CSI reporting window may not be configured.
  • the parameter W represents the time length from the time slot corresponding to the time when the first CSI-RS resource is received for CSI measurement to the time slot corresponding to the time when the right boundary of the CSI reporting window is located.
  • the unit of this time length is a time slot.
  • the parameter W represents the time length from the time slot corresponding to the right boundary or the left boundary of the CSI-RS measurement window to the time slot corresponding to the time when the right boundary of the CSI reporting window is located.
  • the parameter W table represents the time length from the time slot corresponding to the CSI reference resource to the time slot corresponding to the time when the right boundary of the CSI reporting window is located.
  • N CSI-RS , B, d, Q 1 , Q 2 , W meas and W meas mentioned above may be reported by the terminal device, or may also be reported by the network side.
  • the network side device also needs to determine the compression unit C u in the time domain.
  • the compression unit C u can be determined by any of the following methods:
  • the compression unit C u may be ⁇ T c , where ⁇ is an integer less than or equal to 1, and T c is the channel coherence time.
  • the channel coherence time The f d is the Doppler extension of the channel.
  • the compression unit C u may be a measurement period of the CSI-RS resource.
  • the compression unit C u may be ⁇ d 1 , where ⁇ is an integer greater than or equal to 1, and d 1 is the measurement interval of adjacent CSI.
  • d 1 may be the measurement interval of adjacent CSI, and the values of d 1 and ⁇ may be used to determine the compression unit C u .
  • the compression unit C u can be ⁇ d 2 , where ⁇ is an integer greater than or equal to 1, d 2 is the maximum or minimum interval of adjacent CSI measurements, or d 2 can also be multiple The average value of adjacent CSI measurement intervals.
  • d 2 may be the maximum or minimum interval between adjacent CSI measurements, and the values of d 2 and ⁇ may be used to determine the compression unit C u .
  • the compression unit C u 2ms.
  • the length N 4 of the TD or DD basis vector is equal to W or C u .
  • the meaning of W can be expressed in any of the above texts.
  • the values of ⁇ and ⁇ in the above text can be reported by the terminal device, or can also be configured by the network side device, or can also be predefined by the terminal device and the network side device. of.
  • f d in the above text may be reported by the terminal device to the network side device.
  • step 502 codebook parameters are configured for the terminal device.
  • Step 502 can be implemented in any manner among the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • step 503 the length of the TD basis vector or the DD basis vector and the codebook parameters are sent to the terminal device.
  • Step 503 can be implemented in any manner among the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • step 504 receive the codebook indication information corresponding to the data transmission layer determined by the terminal device through the length and codebook parameters.
  • Step 504 can be implemented in any manner among the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • step 505 precoding matrices corresponding to different times are determined according to the codebook indication information.
  • the codebook structure or the precoding matrix indicator PMI prediction algorithm can be used to determine the precoding matrices corresponding to different times according to the codebook indication information and the determination method of the length of the TD basis vector or DD basis vector. That is to say, depending on how the length N4 of the TD basis vector or DD basis vector is determined, different methods are used to obtain the precoding matrix, such as using a prediction algorithm to predict the precoding matrix, or directly using the codebook structure. Calculate the precoding matrix.
  • the network side device configures an aperiodic CSI-RS resource set for the terminal equipment (UE), and the resource set includes 4 aperiodic CSI-RS resources.
  • the four aperiodic CSI-RS resources measure the downlink channel information at four different times within a CSI-RS measurement window, and the interval between adjacent CSI-RS resources is d.
  • Figure 6 the relationship between CSI-RS-based measurement and CSI reporting in the time domain is shown.
  • the measurement time of the first CSI-RS resource is t 0
  • the measurement time of the last CSI-RS resource is recorded as t 0 +3.
  • the UE calculates W 1 , the combination coefficient W 2 , and multiple FD basis vectors composed of multiple SD basis vectors in the codebook according to the codebook parameters configured by the base station.
  • W f composed of W f and W t or W d composed of multiple TD or DD basis vectors.
  • the UE reports these parameter information to the base station at time t 0 +n, and the base station uses or
  • the precoding matrix corresponding to the length of N 4 moments can be calculated.
  • t 0 +n and t 0 +l respectively represent the left boundary and right boundary of the CSI reporting window.
  • the length N 4 of the TD or DD basis vector may be equal to the number 4 of CSI-RS resources in the CSI-RS measurement window shown in Figure 6, or the length N 4 of the TD or DD basis vector may be equal to the CSI in the CSI-RS measurement window.
  • N 4 4 the base station can use the PMI prediction algorithm to calculate the precoding matrices corresponding to different times in the time range from t 0 +3 to t 0 +1.
  • W CSI is the length of the CSI reporting window
  • Cu is the compression unit in the time domain
  • the length N 4 is configured by the base station to the UE through Radio Resource Control (RRC) signaling, and the UE sends the selected S ( Among them, S>1) basis vectors with length N 4 are reported to the base station.
  • RRC Radio Resource Control
  • the base station can use the above codebook formula to directly obtain the precoding matrices corresponding to different times in the reporting window.
  • V ⁇ 1 matrix composed of TD or DD basis vectors be expressed as Where the vth TD or DD basis vector is expressed as
  • the precoding matrix corresponding to or calculated For N 4 moments, the precoding matrix corresponding to or calculated.
  • W 1 and W f follow the traditional Rel-16 or 17 Type II calculation method, and W d or W t selects V basis vectors from a codebook composed of basis vectors of length N 4 .
  • N 5 QN 4 . Then, the base station passes Calculate the precoding matrix corresponding to N 5 times.
  • this application determines the length of the time domain TD basis vector or the Doppler domain DD basis vector in order to use this length to determine the TD basis vector or DD basis vector used in the codebook, so that in Rel-16 or 17 Type II codebook introduces time domain basis vectors or Doppler domain basis vectors to realize precoding calculation or prediction at future moments, so that the calculated or predicted precoding matches the channel at the corresponding time in the future. Not only can Determining the precoding corresponding to different moments can also avoid redundant configuration of codebook parameters or redundant reporting of codebook parameters, thereby reducing signaling configuration overhead or reporting feedback overhead.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of terminal equipment and network side equipment respectively.
  • the terminal device and the network side device may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 7 is a schematic structural diagram of a communication device 70 provided by an embodiment of the present application.
  • the communication device 70 shown in FIG. 7 may include a transceiver module 701 and a processing module 702.
  • the transceiving module 701 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 701 may implement the sending function and/or the receiving function.
  • the communication device 70 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 70 may be a network-side device, a device in the network-side device, or a device that can be used in conjunction with the network-side device.
  • the communication device 70 is a terminal device: the processing module 702 is used to determine the codebook indication information corresponding to the data transmission layer according to the length of the time domain TD basis vector or the Doppler domain DD basis vector and the codebook parameters configured by the network side device; send and receive Module 701 is configured to send channel state information CSI including codebook indication information to the network side device; wherein the codebook indication information is used to instruct the network side device to determine the precoding matrices corresponding to different times.
  • the processing module 702 is specifically configured to: determine the length of the time domain TD basis vector or the Doppler domain DD basis vector; determine the length corresponding to the data transmission layer based on the length and the codebook parameters configured by the network side device. Codebook instruction information.
  • the processing module 702 is specifically configured to determine the length of the TD basis vector or the DD basis vector according to the first parameter configured by the network side device.
  • the first parameter is the number of channel state information reference signal CSI-RS resources or the number of CSI-RS resources in the CSI-RS measurement window; the processing module 702 is specifically used to: determine the TD base The length of the vector or DD basis vector is equal to the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources within the CSI-RS measurement window; or, it is determined that the length of the TD basis vector or DD basis vector is equal to the number of CSI-RS resources configured by the network side device.
  • Q 1 times the number of CSI-RS resources configured by the device; or, determine that the length of the TD basis vector or DD basis vector is equal to Q 1 times the number of CSI-RS resources within the CSI-RS measurement window configured by the network side device ; Or, determine the length of the TD basis vector or DD basis vector equal to Among them, Q 1 is a positive integer, N CSI-RS is the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources in the CSI-RS measurement window, and C u is the compression unit in the time domain.
  • the first parameter is the size of the CSI-RS measurement window and the interval between adjacent CSI measurement moments; the processing module 702 is specifically used to: determine that the length of the TD basis vector or DD basis vector is equal to Where, W meas is the size of the CSI-RS measurement window, d is the interval between adjacent CSI measurement moments, or is the maximum or minimum interval of the adjacent CSI measurements, or is the average of multiple adjacent CSI measurement intervals. value.
  • the first parameter is the number of CSI measurements or the number of CSI measurements within the CSI-RS measurement window; the processing module 702 is specifically configured to: determine that the length of the TD basis vector or DD basis vector is equal to the network side device configuration The number of CSI measurements or the number of CSI measurements within the CSI-RS measurement window; or, determine that the length of the TD basis vector or DD basis vector is equal to Q 2 times the number of CSI measurements configured by the network side device; or, determine the TD basis vector or DD The length of the basis vector is equal to Q 2 times the number of CSI measurements within the CSI-RS measurement window configured on the network side device; alternatively, determine that the length of the TD basis vector or DD basis vector is equal to Among them, Q 2 is a positive integer, B is the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window, and C u is the compression unit in the time domain.
  • the compression unit C u is ⁇ T c , where ⁇ is an integer less than or equal to 1, and T c is the channel coherence time; or, the compression unit C u is the measurement period of the CSI-RS resource;
  • the compression unit C u is ⁇ d 1 , where ⁇ is an integer greater than or equal to 1, and d 1 is the measurement interval of adjacent CSI; or the compression unit C u is ⁇ d 2 , where ⁇ is an integer greater than or equal to 1.
  • An integer, d 2 is the maximum or minimum interval of adjacent CSI measurements, or the average of multiple adjacent CSI measurement intervals.
  • the processing module 702 is specifically configured to determine the length of the TD basis vector or the DD basis vector according to the Doppler offset information and Doppler extension obtained by the terminal device by using CSI-RS estimation.
  • the transceiving module 701 is also configured to: receive the length of the TD basis vector or the DD basis vector configured by the network side device.
  • the codebook indication information at least includes at least one matrix composed of spatial domain SD basis vectors, a combined coefficient matrix, at least one matrix composed of frequency domain FD basis vectors, and at least one TD basis vector or DD basis vector.
  • the codebook indication information at least includes at least one matrix composed of spatial domain SD basis vectors, a combined coefficient matrix, at least one matrix composed of frequency domain FD basis vectors, and at least one TD basis vector or DD basis vector.
  • the communication device 70 is a network-side device: the processing module 702 is used to determine the length of the time domain TD basis vector or the Doppler domain DD basis vector; the processing module 702 is also used to configure codebook parameters for the terminal device; the transceiver module 701 is used to The length and codebook parameters of the TD basis vector or DD basis vector are sent to the terminal device; the transceiver module 701 is also used to receive the codebook indication information corresponding to the data transmission layer determined by the terminal device through the length and codebook parameters; the processing module 702 is also used Precoding matrices corresponding to different times are determined according to the codebook indication information.
  • the first parameter is the number of channel state information reference signal CSI-RS resources or the number of CSI-RS resources in the CSI-RS measurement window; the processing module 702 is specifically used to: determine the TD base The length of the vector or DD basis vector is equal to the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources within the CSI-RS measurement window; or, it is determined that the length of the TD basis vector or DD basis vector is equal to the number of CSI-RS resources configured by the network side device.
  • Q 1 times the number of CSI-RS resources configured by the device; or, determine that the length of the TD basis vector or DD basis vector is equal to Q 1 times the number of CSI-RS resources within the CSI-RS measurement window configured by the network side device ; Or, determine the length of the TD basis vector or DD basis vector equal to Among them, Q 1 is a positive integer, N CSI-RS is the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources in the CSI-RS measurement window, and C u is the compression unit in the time domain.
  • the first parameter is the number of CSI measurements or the number of CSI measurements within the CSI-RS measurement window; the processing module 702 is specifically configured to: determine that the length of the TD basis vector or DD basis vector is equal to the network side device configuration The number of CSI measurements or the number of CSI measurements within the CSI-RS measurement window; or, determine that the length of the TD basis vector or DD basis vector is equal to Q 2 times the number of CSI measurements configured by the network side device; or, determine the TD basis vector or DD The length of the basis vector is equal to Q 2 times the number of CSI measurements within the CSI-RS measurement window configured on the network side device; alternatively, determine that the length of the TD basis vector or DD basis vector is equal to Among them, Q 2 is a positive integer, B is the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window, and C u is the compression unit in the time domain.
  • the processing module 702 is also used to determine the compression unit C u in the time domain.
  • the compression unit C u is ⁇ T c , where ⁇ is an integer less than or equal to 1, and T c is the channel coherence time; or, the compression unit C u is the measurement period of the CSI-RS resource;
  • the compression unit C u is ⁇ d 1 , where ⁇ is an integer greater than or equal to 1, and d 1 is the measurement interval of adjacent CSI; or the compression unit C u is ⁇ d 2 , where ⁇ is an integer greater than or equal to 1.
  • An integer, d 2 is the maximum or minimum interval of adjacent CSI measurements, or the average of multiple adjacent CSI measurement intervals.
  • the processing module 702 is specifically configured to determine the length of the TD basis vector or the DD basis vector according to the Doppler offset information and Doppler extension reported by the terminal device.
  • the processing module 702 is specifically configured to: use the codebook structure or the precoding matrix indicator PMI prediction algorithm to determine different The precoding matrix corresponding to the time.
  • FIG. 8 is a schematic structural diagram of another communication device 80 provided by an embodiment of the present application.
  • the communication device 80 may be a network-side device, a terminal device, a chip, a chip system, a processor, etc. that supports the network-side device to implement the above method, or a chip or a chip system that supports the terminal device to implement the above method. , or processor, etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 80 may include one or more processors 801.
  • the processor 801 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 80 may also include one or more memories 802, on which a computer program 804 may be stored.
  • the processor 801 executes the computer program 804, so that the communication device 80 performs the steps described in the above method embodiments. method.
  • the memory 802 may also store data.
  • the communication device 80 and the memory 802 can be provided separately or integrated together.
  • the communication device 80 is a terminal device: the processor 801 is used to execute step 201 in Figure 2; and execute step 301 and step 302 in Figure 3.
  • the transceiver 805 is used to perform step 202 in Figure 2; perform step 303 in Figure 3.
  • the communication device 80 is a network-side device: the transceiver 805 is used to execute step 401, step 402 and step 405 in Figure 4; and execute step 501, step 502 and step 505 in Figure 5.
  • the processor 801 is configured to execute steps 403 and 404 in Figure 4; and execute steps 503 and 504 in Figure 5.
  • the processor 801 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes or data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the IC collection may also include storage components for storing data and computer programs;
  • the processor 901 is specifically configured to: determine the length of the time domain TD basis vector or the Doppler domain DD basis vector; determine the length corresponding to the data transmission layer based on the length and the codebook parameters configured by the network side device. Codebook instruction information.
  • the processor 901 is specifically configured to determine the length of the TD basis vector or the DD basis vector according to the first parameter configured by the network side device.
  • the first parameter is the number of channel state information reference signal CSI-RS resources or the number of CSI-RS resources within the CSI-RS measurement window; the processor 901 is specifically used to: determine the TD base The length of the vector or DD basis vector is equal to the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources within the CSI-RS measurement window; or, it is determined that the length of the TD basis vector or DD basis vector is equal to the number of CSI-RS resources configured by the network side device.
  • Q 1 times the number of CSI-RS resources configured by the device; or, determine that the length of the TD basis vector or DD basis vector is equal to Q 1 times the number of CSI-RS resources within the CSI-RS measurement window configured by the network side device ; Or, determine the length of the TD basis vector or DD basis vector equal to Among them, Q 1 is a positive integer, N CSI-RS is the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources in the CSI-RS measurement window, and C u is the compression unit in the time domain.
  • the first parameter is the size of the CSI-RS measurement window and the interval between adjacent CSI measurement moments; the processor 901 is specifically configured to: determine that the length of the TD basis vector or DD basis vector is equal to Where, W meas is the size of the CSI-RS measurement window, d is the interval between adjacent CSI measurement moments, or d can be the maximum or minimum interval of adjacent CSI measurements, or d can be multiple adjacent CSI measurement intervals. average of.
  • the first parameter is the number of CSI measurements or the number of CSI measurements within the CSI-RS measurement window; the processor 901 is specifically configured to: determine that the length of the TD basis vector or DD basis vector is equal to the network side device configuration The number of CSI measurements or the number of CSI measurements within the CSI-RS measurement window; or, determine that the length of the TD basis vector or DD basis vector is equal to Q 2 times the number of CSI measurements configured by the network side device; or, determine the TD basis vector or DD The length of the basis vector is equal to Q 2 times the number of CSI measurements within the CSI-RS measurement window configured on the network side device; alternatively, determine that the length of the TD basis vector or DD basis vector is equal to Among them, Q 2 is a positive integer, B is the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window, and C u is the compression unit in the time domain.
  • the processor 901 is also configured to determine the compression unit C u in the time domain.
  • the compression unit C u is ⁇ T c , where ⁇ is an integer less than or equal to 1, and T c is the channel coherence time; or, the compression unit C u is the measurement period of the CSI-RS resource;
  • the compression unit C u is ⁇ d 1 , where ⁇ is an integer greater than or equal to 1, and d 1 is the measurement interval of adjacent CSI; or the compression unit C u is ⁇ d 2 , where ⁇ is an integer greater than or equal to 1.
  • An integer, d 2 is the maximum or minimum interval of adjacent CSI measurements, or d 2 can also be the average of multiple adjacent CSI measurement intervals.
  • the processor 901 is specifically configured to determine the length of the TD basis vector or the DD basis vector according to the Doppler offset information and Doppler extension obtained by the terminal device by using CSI-RS estimation.
  • the interface 902 is also used to receive the length of the TD basis vector or the DD basis vector configured by the network side device.
  • the codebook indication information at least includes at least one matrix composed of spatial domain SD basis vectors, a combined coefficient matrix, at least one matrix composed of frequency domain FD basis vectors, and at least one TD basis vector or DD basis vector.
  • the codebook indication information at least includes at least one matrix composed of spatial domain SD basis vectors, a combined coefficient matrix, at least one matrix composed of frequency domain FD basis vectors, and at least one TD basis vector or DD basis vector.
  • the processor 901 is used to determine the length of the time domain TD basis vector or the Doppler domain DD basis vector; the processor 901 is also used to configure codebook parameters for the terminal device; the interface 902 is used to determine the length of the TD basis vector or the DD basis vector. and codebook parameters are sent to the terminal device; the interface 902 is also used to receive the codebook indication information corresponding to the data transmission layer determined by the terminal device through the length and codebook parameters; the processor 901 is also used to determine the corresponding time at different times based on the codebook indication information. precoding matrix.
  • the processor 901 is specifically configured to determine the length of the TD basis vector or the DD basis vector according to the first parameter configured by the network side device.
  • the first parameter is the number of channel state information reference signal CSI-RS resources or the number of CSI-RS resources within the CSI-RS measurement window; the processor 901 is specifically used to: determine the TD base The length of the vector or DD basis vector is equal to the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources within the CSI-RS measurement window; or, it is determined that the length of the TD basis vector or DD basis vector is equal to the number of CSI-RS resources configured by the network side device.
  • Q 1 times the number of CSI-RS resources configured by the device; or, determine that the length of the TD basis vector or DD basis vector is equal to Q 1 times the number of CSI-RS resources within the CSI-RS measurement window configured by the network side device ; Or, determine the length of the TD basis vector or DD basis vector equal to Among them, Q 1 is a positive integer, N CSI-RS is the number of CSI-RS resources configured by the network side device or the number of CSI-RS resources in the CSI-RS measurement window, and C u is the compression unit in the time domain.
  • the first parameter is the size of the CSI-RS measurement window and the interval between adjacent CSI measurement moments; the processor 901 is specifically configured to: determine that the length of the TD basis vector or DD basis vector is equal to Where, W meas is the size of the CSI-RS measurement window, d is the interval between adjacent CSI measurement moments, or d can be the maximum or minimum interval of adjacent CSI measurements, or d can be multiple adjacent CSI measurement intervals. average of.
  • the first parameter is the number of CSI measurements or the number of CSI measurements within the CSI-RS measurement window; the processor 901 is specifically configured to: determine that the length of the TD basis vector or DD basis vector is equal to the network side device configuration The number of CSI measurements or the number of CSI measurements within the CSI-RS measurement window; or, determine that the length of the TD basis vector or DD basis vector is equal to Q 2 times the number of CSI measurements configured by the network side device; or, determine the TD basis vector or DD The length of the basis vector is equal to Q 2 times the number of CSI measurements within the CSI-RS measurement window configured on the network side device; alternatively, determine that the length of the TD basis vector or DD basis vector is equal to Among them, Q 2 is a positive integer, B is the number of CSI measurements configured by the network side device or the number of CSI measurements within the CSI-RS measurement window, and C u is the compression unit in the time domain.
  • the processor 901 is also used to determine the compression unit C u in the time domain.
  • the compression unit C u is ⁇ T c , where ⁇ is an integer less than or equal to 1, and T c is the channel coherence time; or, the compression unit C u is the measurement period of the CSI-RS resource;
  • the compression unit C u is ⁇ d 1 , where ⁇ is an integer greater than or equal to 1, and d 1 is the measurement interval of adjacent CSI; or the compression unit C u is ⁇ d 2 , where ⁇ is an integer greater than or equal to 1.
  • An integer, d 2 is the maximum or minimum interval of adjacent CSI measurements, or d 2 can also be the average of multiple adjacent CSI measurement intervals.
  • the processor 901 is specifically configured to determine the length of the TD basis vector or the DD basis vector according to the Doppler offset information and Doppler extension reported by the terminal device.
  • the processor 901 is specifically configured to: use the codebook structure or the precoding matrix indicator PMI prediction algorithm to determine different The precoding matrix corresponding to the time.
  • Embodiments of the present application also provide a communication system that includes a communication device as a terminal device in the aforementioned embodiment of FIG. 7 and a communication device as a network-side device, or the system includes a communication device as a terminal device in the aforementioned embodiment of FIG. 8 A communication device and a communication device as a network side device.
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信道状态信息反馈方法及其装置。其中,该方法包括:终端设备根据时域TD基向量或多普勒域DD基向量的长度和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息;终端设备将包含码本指示信息的信道状态信息CSI发送给网络侧设备,其中,码本指示信息用于指示网络侧设备确定不同时刻对应的预编码矩阵。通过实施本申请实施例,可以确定TD基向量或DD基向量的长度,以便利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17Type II码本的基础上引入时域基向量或多普勒域基向量,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,减少信令开销。

Description

一种信道状态信息反馈方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种信道状态信息反馈方法及其装置。
背景技术
对于中高速移动的终端设备,由于信道在时域的快速变化,信道状态信息(Channel State Information,CSI)仍基于传统的Type II码本进行反馈,反馈的CSI和当前信道信息不再匹配,导致系统性能下降。因此,如何使得中高速移动场景下的终端设备反馈的CSI与当前信道信息相匹配,已经成为亟待解决的问题。
发明内容
本申请实施例提供一种信道状态信息反馈方法及其装置,可以通过确定时域TD基向量或多普勒域DD基向量的长度,以便利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17 Type II码本的基础上引入时域基向量或多普勒域基向量,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,减少信令开销。
第一方面,本申请实施例提供一种信道状态信息反馈方法,所述方法由终端设备执行,所述方法包括:
根据时域TD基向量或多普勒域DD基向量的长度和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息;
将包含所述码本指示信息的信道状态信息CSI发送给所述网络侧设备,其中,所述码本指示信息用于指示所述网络侧设备确定不同时刻对应的预编码矩阵。
在该技术方案中,可以通过确定时域TD基向量或多普勒域DD基向量的长度,以便利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17 Type II码本的基础上引入时域基向量或多普勒域基向量,可以实现未来时刻的预编码计算或预测,使得计算或预测的预编码与未来相应时刻的信道相匹配,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,以减少信令配置开销或者上报反馈开销。
在一种实现方式中,根据时域TD基向量或多普勒域DD基向量的长度,和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息,包括:
确定时域TD基向量或多普勒域DD基向量的长度;
根据所述长度和所述网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息。
在一种实现方式中,所述确定时域TD基向量或多普勒域DD基向量的长度,包括:
根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,所述第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数;
或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数的Q 1倍;
或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;
或者,确定所述TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000001
其中,所述Q 1为正整数,所述N CSI-RS为所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,所述C u为时域的压缩单元。
在一种可能的实现方式中,所述第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:确定所述TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000002
其中,所述W meas为所述CSI-RS测量窗的大小,所述d为所述相邻CSI测量时刻之间的间隔,或者为所述相邻CSI测量的最大或最小间隔,或者为多个相邻 CSI测量间隔的平均值。
在一种可能的实现方式中,所述第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数;
或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数的Q 2倍;
或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;
或者,确定所述TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000003
其中,所述Q 2为正整数,所述B为所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,所述C u为时域的压缩单元。
在一种可能的实现方式中,所述第一参数为参数W;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
确定所述TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000004
其中,W mod C u=0,所述C u为时域的压缩单元;
或者,确定所述TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000005
Figure PCTCN2022103165-appb-000006
其中,W mod C u≠0,
Figure PCTCN2022103165-appb-000007
为向上取整,
Figure PCTCN2022103165-appb-000008
为向下取整;
其中,所述参数W通过以下1)至4)项中至少一项参数确定:
1)CSI上报时刻对应的时隙;
2)CSI参考资源所在的时隙;
3)CSI-RS测量窗的左边界或右边界所对应的时隙;
4)CSI上报窗的左边界或右边界所对应的时隙。
在一种可能的实现方式中,所述方法还包括:确定所述时域的压缩单元C u
在一种可能的实现方式中,所述压缩单元C u为αT c,其中,所述α为小于或等于1的整数,所述T c为信道相干时间;或者,所述压缩单元C u为CSI-RS资源的测量周期;或者,所述压缩单元C u为βd 1,其中,所述β为大于或等于1的整数,所述d 1为相邻CSI的测量间隔;或者,所述压缩单元C u为βd 2,其中,所述β为大于或等于1的整数,所述d 2为相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
在一种实现方式中,所述确定时域TD基向量或多普勒域DD基向量的长度,包括:根据所述终端设备通过使用CSI-RS估计得到的多普勒Doppler偏移信息和Doppler扩展,确定所述TD基向量或DD基向量的长度。
在一种实现方式中,所述确定时域TD基向量或多普勒域DD基向量的长度,包括:接收所述网络侧设备配置的TD基向量或DD基向量的长度。
在一种实现方式中,所述码本指示信息至少包括至少一个空域SD基向量组成的矩阵,组合系数矩阵,至少一个频域FD基向量组成的矩阵,以及至少一个TD基向量或DD基向量组成的矩阵的一种或多种组合。
第二方面,本申请实施例提供另一种信道状态信息反馈方法,所述方法由网络侧设备执行,所述方法包括:确定时域TD基向量或多普勒域DD基向量的长度;为终端设备配置码本参数;将所述TD基向量或DD基向量的长度和所述码本参数发送给所述终端设备;接收所述终端设备通过所述长度和所述码本参数确定的数据传输层对应的码本指示信息;根据所述码本指示信息确定不同时刻对应的预编码矩阵。
在该技术方案中,可以通过确定时域TD基向量或多普勒域DD基向量的长度,以便利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17 Type II码本的基础上引入时域基向量或多普勒域基向量,可以实现未来时刻的预编码计算或预测,使得计算或预测的预编码与未来相应时刻的信道相匹配,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,以减少信令配置开销或者上报反馈开销。
在一种实现方式中,所述确定时域TD基向量或多普勒域DD基向量的长度,包括:根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,所述第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数;或者,确定所述TD基向量或DD基向量的长度等于所 述网络侧设备配置的CSI-RS资源的个数的Q 1倍;或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;或者,确定所述TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000009
其中,所述Q 1为正整数,所述N CSI-RS为所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,所述C u为时域的压缩单元。
在一种可能的实现方式中,所述第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:确定所述TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000010
其中,所述W meas为所述CSI-RS测量窗的大小,所述d为所述相邻CSI测量时刻之间的间隔,或者为所述相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
在一种可能的实现方式中,所述第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数;或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数的Q 2倍;或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;或者,确定所述TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000011
其中,所述Q 2为正整数,所述B为所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,所述C u为时域的压缩单元。
在一种可能的实现方式中,所述第一参数为参数W;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:确定所述TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000012
其中,W mod C u=0,所述C u为时域的压缩单元;或者,确定所述TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000013
Figure PCTCN2022103165-appb-000014
其中,W mod C u≠0,
Figure PCTCN2022103165-appb-000015
为向上取整,
Figure PCTCN2022103165-appb-000016
为向下取整;
其中,所述参数W通过以下1)至4)项中至少一项参数确定:1)CSI上报时刻对应的时隙;2)CSI参考资源所在的时隙;3)CSI-RS测量窗的左边界或右边界所对应的时隙;4)CSI上报窗的左边界或右边界所对应的时隙。
在一种可能的实现方式中,所述方法还包括:确定所述时域的压缩单元C u
在一种可能的实现方式中,所述压缩单元C u为αT c,其中,所述α为小于或等于1的整数,所述T c为信道相干时间;或者,所述压缩单元C u为CSI-RS资源的测量周期;或者,所述压缩单元C u为βd 1,其中,所述β为大于或等于1的整数,所述d 1为相邻CSI的测量间隔;或者,所述压缩单元C u为βd 2,其中,所述β为大于或等于1的整数,所述d 2为相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
在一种实现方式中,所述确定时域TD基向量或多普勒域DD基向量的长度,包括:根据所述终端设备上报的多普勒Doppler偏移信息和Doppler扩展,确定所述TD基向量或DD基向量的长度。
在一种实现方式中,所述根据所述码本指示信息确定不同时刻对应的预编码矩阵,包括:根据所述码本指示信息和所述TD基向量或DD基向量的长度的确定方式,采用码本结构或预编码矩阵指示符PMI预测算法确定不同时刻对应的预编码矩阵。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络侧设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置 还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种信道状态信息反馈系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络侧设备所用的指令,当所述指令被执行时,使所述网络侧设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络侧设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络侧设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种信道状态信息反馈方法的流程示意图;
图3是本申请实施例提供的另一种信道状态信息反馈方法的流程示意图;
图4是本申请实施例提供的又一种信道状态信息反馈方法的流程示意图;
图5是本申请实施例提供的又一种信道状态信息反馈方法的流程示意图;
图6为本申请实施例提供的基于CSI的测量与CSI上报在时域上的关系示例图;
图7是本申请实施例提供的一种通信装置的结构示意图;
图8是本申请实施例提供的另一种通信装置的结构示意图;
图9是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。其中,在本公开的描述中,除非另有说明,“或”表示或的意思,例如,A或B可以表示A或B,比如本文中的“TD基向量或DD基向量”可以表示TD基向量或DD基向量;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
对于中高速移动的终端设备,由于信道在时域的快速变化,信道状态信息(Channel State Information,CSI)仍基于传统的Type II码本进行反馈,反馈的CSI和当前信道信息不再匹配,导致系统性能下降。为了解决该问题,研究表明在Rel-16或17 Type II码本的基础上再引入时域或多普勒(Doppler)域基向量,可实现未来时刻的预编码预测,使得预测的预编码与未来相应时刻的信道相匹配。基于Rel-16或17 Type II码本的增强的CSI反馈所对应的码本结构可写为
Figure PCTCN2022103165-appb-000017
Figure PCTCN2022103165-appb-000018
其中,这两种码本结构中的W 1表示多个空域(Spatial Domain,SD)基向量组成的矩阵或者是由至少一个单位向量组成的单位阵,W 2表示组合系数矩阵,W f表示多个频域(Frequency Domain,FD)基向量组成的矩阵,W d表示多个多普勒域(Doppler Domain,DD)基向量组成的矩阵,W t表示多个时域(Time Domain,TD)基向量组成的矩阵。为了确定码本中所采用的TD基向量或DD基向量,首先需要确定TD基向量的长度N 4或DD基向量的长度N 4。目前,还没有长度N 4的确定方法。
值得注意的是,在中高速移动场景下,若引入TD基向量或DD基向量对Rel-16或17 Type II码本进行增强设计,需要首先确定TD基向量的长度N 4或DD基向量的长度N 4,以计算不同时刻对应的预编码。为此,本申请实施例提供了一种信道状态信息反馈方法及其装置,可以通过确定时域TD基向量或多普勒域DD基向量的长度,以便利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17 Type II码本的基础上引入时域基向量或多普勒域基向量,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,减少信令开销。
为了更好的理解本申请实施例公开的一种信道状态信息反馈方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络侧设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络侧设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络侧设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络侧设备101是网络侧的一种用于发射或接收信号的实体。例如,网络侧设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络侧设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络侧设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络侧设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。此外,在 本发明实施例中,终端设备102还可以包括中继(英文:Relay)等其他能够和网络侧设备101(例如,基站)进行数据通信的设备。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的信道状态信息反馈方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种信道状态信息反馈方法的流程示意图。需要说明的是,本申请实施例的信道状态信息反馈方法可由终端设备执行,也就是说,本申请实施例的信道状态信息反馈方法从终端设备侧进行描述。如图2所示,该方法可以包括但不限于如下步骤:
在步骤201中,根据时域TD基向量或多普勒域DD基向量的长度和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息。
可选地,可以确定时域TD基向量或多普勒域DD基向量的长度。在一种实现方式中,该长度可以是终端设备根据相关信息确定的,或者,该长度还可以是网络侧设备配置的。例如,终端设备可以根据网络侧设备配置的相关参数隐式地确定时域TD基向量的长度或多普勒域DD基向量的长度。或者,终端设备根据估计的Doppler偏移信息、Doppler扩展等信息确定时域TD基向量的长度或多普勒域DD基向量的长度。或者,终端设备还可以接收网络侧设备配置的时域TD基向量的长度或多普勒域DD基向量的长度。
在一种实现方式中,终端设备可以接收网络侧设备(如基站)发送的码本参数,该码本参数是网络侧设备配置的,用于指示终端设备反馈CSI信息的最大支持参数。
在一种可能的实现方式中,终端设备可以接收网络侧设备(如基站)配置的码本参数,并根据该码本参数和TD基向量的长度,确定数据传输层对应的码本指示信息。其中,在本申请的实施例中,该码本指示信息可以至少包括但不限于至少一个空域SD基向量组成的矩阵,组合系数矩阵,至少一个频域FD基向量组成的矩阵,以及至少一个TD基向量组成的矩阵的一种或多种组合。其中,该TD基向量的长度是用于确定码本中所采用的TD基向量,在Rel-16或17 Type II码本的基础上引入时域基向量。其中,该“至少一个”可理解为一个或多个,该“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在一种可能的实现方式中,终端设备可以接收网络侧设备(如基站)配置的码本参数,并根据该码本参数和DD基向量的长度,确定数据传输层对应的码本指示信息。其中,在本申请的实施例中,该码本指示信息可以至少包括但不限于至少一个空域SD基向量组成的矩阵,组合系数矩阵,至少一个频域FD基向量组成的矩阵,以及至少一个DD基向量组成的矩阵的一种或多种组合。其中,该DD基向量的长度是用于确定码本中所采用的DD基向量,在Rel-16或17 Type II码本的基础上引入多普勒域基向量。
在步骤202中,将包含码本指示信息的信道状态信息CSI发送给网络侧设备,其中,码本指示信息用于指示网络侧设备确定不同时刻对应的预编码矩阵。
可选地,终端设备在确定数据传输层对应的码本指示信息时,可以将包含该码本指示信息的信道状态信息CSI发送给网络侧设备。网络侧设备在接收到终端设备发送的该CSI时,可以根据该CSI中的码本指示信息,确定不同时刻对应的预编码矩阵。
在一种实现方式中,以码本指示信息可以包括多个空域SD基向量组成的矩阵,组合系数矩阵,多个频域FD基向量组成的矩阵,以及多个TD基向量组成的矩阵为例,网络侧设备在接收到包含该码本指示信息的CSI时,可以根据该码本指示信息,利用码本结构
Figure PCTCN2022103165-appb-000019
计算不同时刻对应的预编码矩阵,或者利用预编码矩阵指示符(Pre-coding Matrix Indicator,PMI)预测算法预测不同时刻对应的预编码矩阵。其中,W 1表示多个空域基向量组成的矩阵或者是由至少一个单位向量组成的单位阵,W 2表示组合系数矩阵,W f表示多个频域基向量组成的矩阵,W t表示多个TD基向量组成的矩阵。
在一种实现方式中,以码本指示信息可以包括多个空域SD基向量组成的矩阵,组合系数矩阵,多个频域FD基向量组成的矩阵,以及多个DD基向量组成的矩阵为例,网络侧设备在接收到包含该码本指示信息的CSI时,可以根据该码本指示信息,利用码本结构
Figure PCTCN2022103165-appb-000020
计算不同时刻对应的预编码矩阵,或者利用预编码矩阵指示符(Pre-coding Matrix Indicator,PMI)预测算法预测不同时刻对应的预编码矩阵。其中,W 1表示多个空域基向量组成的矩阵或者是由至少一个单位向量组成的单位阵,W 2表示组合系数矩阵,W f表示多个频域基向量组成的矩阵,W d表示多个DD基向量组成的矩阵。
通过实施本申请实施例,可以通过确定时域TD基向量或多普勒域DD基向量的长度,以便利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17 Type II码本的基础上引入时域 基向量或多普勒域基向量,可以实现未来时刻的预编码计算或预测,使得计算或预测的预编码与未来相应时刻的信道相匹配,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,以减少信令配置开销或者上报反馈开销。
需要说明的是,终端设备可以根据网络侧设备配置的相关参数隐式地确定TD基向量的长度或DD基向量的长度。在本申请的一些实施例中,如图3所示,该信道状态信息反馈方法可以包括但不限于以下步骤。
在步骤301中,根据网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
可选地,终端设备可以根据网络侧设备配置的第一参数隐式地确定TD基向量的长度或DD基向量的长度。
其中,在本申请的一些实施例中,该第一参数可以包括但不限于以下信息中的至少一种信息:信道状态信息参考信号CSI-RS资源的个数;CSI-RS测量窗内CSI-RS资源的个数;CSI-RS测量窗的大小;相邻CSI测量时刻之间的间隔;CSI测量次数;CSI-RS测量窗内的CSI测量次数;参数W等。需要说明的是,网络侧设备配置的CSI-RS测量窗是为了便于描述CSI-RS在一定的时间范围内进行一次或多次的信道测量,也有可能网络侧设备不配置该CSI-RS测量窗。
在一种实现方式中,以该第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数为例,则可以根据网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数,确定TD基向量的长度或DD基向量的长度。
在一种可能的实现方式中,可以确定TD基向量的长度或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数。例如,以网络侧设备配置的CSI-RS资源的个数N CSI-RS为4为例,则可以确定TD基向量的长度或DD基向量的长度N 4为4。又如,以网络侧设备配置的CSI-RS测量窗内CSI-RS资源的个数N CSI-RS为6为例,则可以确定TD基向量的长度或DD基向量的长度N 4为6。
在一种可能的实现方式中,可以确定TD基向量的长度或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数的Q 1倍。其中,Q 1为正整数。例如,以Q 1为1,网络侧设备配置的CSI-RS资源的个数N CSI-RS为4为例,则可以确定TD基向量的长度或DD基向量的长度N 4为4。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;其中,Q 1为正整数。例如,以Q 1为1,网络侧设备配置的CSI-RS测量窗内CSI-RS资源的个数N CSI-RS为6为例,则可以确定TD基向量的长度或DD基向量的长度N 4为6。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000021
其中,Q 1为正整数,N CSI-RS为网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,C u为时域的压缩单元。例如,以Q 1为1,网络侧设备配置的CSI-RS资源的个数N CSI-RS为4,C u为2ms为例,则可以确定TD基向量的长度或DD基向量的长度N 4
Figure PCTCN2022103165-appb-000022
即该TD基向量的长度或DD基向量的长度N 4为2。
需要说明的是,在本申请的实施例中,上述CSI-RS资源的个数N CSI-RS大于1时,该N CSI-RS个CSI-RS资源可以是时域类型相同或不同。时域类型包含周期、半持续和非周期。此外,在本申请的实施例中,上述CSI-RS资源的个数N CSI-RS大于1时,该N CSI-RS个CSI-RS资源还可以是不同功能的CSI-RS资源。例如,有一个CSI-RS配置为用于信道获取的CSI-RS资源,剩余的配置为用于时频跟踪的CSI-RS资源。
在本申请的一些实施例中,以该第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔为例,则可以根据网络侧设备配置的CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔,确定TD基向量的长度或DD基向量的长度。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000023
其中,W meas为CSI-RS测量窗的大小,d为相邻CSI测量时刻之间的间隔,或者d可以为相邻CSI测量的最大或最小间隔,或者d可以为多个相邻CSI测量间隔的平均值。
在本申请的一些实施例中,以该第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数为例,则可以根据网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,确定TD基向量的长度或DD基向量的长度。
在一种可能的实现方式中,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数。例如,以网络侧设备配置的CSI测量次数B为2为例,则TD基向量的长度或DD基向量的长度N 4为2。又如,以网络侧设备配置的CSI-RS测量窗内的CSI测量次数B为2为例,则TD基向量的长度或DD基向量的长度N 4为2。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数的Q 2倍;其中,Q 2为正整数。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;其中,Q 2为正整数。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000024
其中,Q 2为正整数,B为网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,C u为时域的压缩单元。例如,以Q 2为1,网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数B为4,C u为2ms为例,则TD基向量或DD基向量的长度
Figure PCTCN2022103165-appb-000025
即该TD基向量的长度或DD基向量的长度N 4为2。
在本申请的一些实施例中,以该第一参数为参数W为例,则可以根据网络侧设备配置的参数W,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000026
其中,W mod C u=0,C u为时域的压缩单元,mod表示取余函数。例如,以参数W的数值为4,C u=2ms为例,则TD基向量或DD基向量的长度N 4为2。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000027
Figure PCTCN2022103165-appb-000028
其中,W mod C u≠0,
Figure PCTCN2022103165-appb-000029
为向上取整,
Figure PCTCN2022103165-appb-000030
为向下取整。例如,以参数W的数值为5,C u=2ms为例,则TD基向量或DD基向量的长度N 4
Figure PCTCN2022103165-appb-000031
或者,TD基向量或DD基向量的长度N 4
Figure PCTCN2022103165-appb-000032
其中,在本申请的一些实施例中,该参数W可以通过以下1)至4)项中至少一项参数确定:
1)CSI上报时刻对应的时隙;
2)CSI参考资源所在的时隙;
3)CSI-RS测量窗的左边界或右边界所对应的时隙;
4)CSI上报窗的左边界或右边界所对应的时隙。需要说明的是,CSI上报窗是由网络侧设备配置的,配置CSI上报窗是为了便于描述CSI在一定的时间范围内上报了一次CSI,也有可能不配置CSI上报窗。
例如,该参数W可以表示CSI上报窗的长度W CSI,即W=W CSI。或者,该参数W可以表示CSI测量窗的长度W meas,即W=W meas。或者,该参数W表示从第一个接收CSI-RS资源进行CSI测量的时刻所对应的时隙到CSI上报窗的右边界所在时刻对应的时隙之间的时间长度,该时间长度的单位为一个时隙。或者,该参数W表示从CSI-RS测量窗的右边界或左边界所对应的时隙到CSI上报窗的右边界所在时刻对应的时隙之间的时间长度。或者,该参数W表表示从CSI参考资源所对应的时隙到CSI上报窗的右边界所在时刻对应的时隙之间的时间长度。
需要说明的是,在本申请的实施例中,上述文中的N CSI-RS、B、d、Q 1、Q 2、W meas和W meas的值可由终端设备上报,或者,还可以由网络侧设备配置,或者,还可以是终端设备和网络侧设备预定义的。
在本申请的一些实施例中,终端设备还需要确定时域的压缩单元C u。其中,该压缩单元C u可通过以下任意一种方式确定:
在一种可能的实现方式中,该压缩单元C u可以为αT c,其中,α为小于或等于1的整数,T c为信道相干时间。其中,该信道相干时间
Figure PCTCN2022103165-appb-000033
该f d为信道的Doppler扩展。
在一种可能的实现方式中,该压缩单元C u可以为CSI-RS资源的测量周期。
在一种可能的实现方式中,该压缩单元C u可以为βd 1,其中,β为大于或等于1的整数,d 1为相邻CSI的测量间隔。例如,对于均匀的多次CSI测量,则d 1可以是相邻CSI的测量间隔,可以利用该d 1和β的数值来确定该压缩单元C u
在一种可能的实现方式中,该压缩单元C u可以为βd 2,其中,β为大于或等于1的整数,d 2为相邻CSI测量的最大或最小间隔,或者d 2还可以为多个相邻CSI测量间隔的平均值。例如,对于非均匀的多次CSI测量,则d 2可以是相邻CSI测量的最大或最小间隔,可以利用该d 2和β的数值来确定该压缩单元C u
需要说明的是,在本申请的实施例中,上述文本中的α和β的值可以由终端设备上报,或者,还可以由网络侧设备配置,或者还可以是终端设备和网络侧设备预定义的。
在步骤302中,根据网络侧设备配置的码本参数和长度,确定数据传输层对应的码本指示信息。
其中,步骤302可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤303中,将包含码本指示信息的信道状态信息CSI发送给网络侧设备,其中,码本指示信 息用于指示网络侧设备确定不同时刻对应的预编码矩阵。
其中,步骤302可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
通过实施本申请实施例,可以根据网络侧设备配置的相关参数隐式地确定TD或DD基向量的长度,以便利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17 Type II码本的基础上引入时域基向量或多普勒域基向量,可以实现未来时刻的预编码计算或预测,使得计算或预测的预编码与未来相应时刻的信道相匹配,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,以减少信令配置开销或者上报反馈开销。
需要说明的是,在本申请的一些实施例中,终端设备可以根据估计的多普勒Doppler偏移信息和Doppler扩展,确定TD基向量或DD基向量的长度。例如,终端设备接收网络侧设备配置的CSI-RS资源,利用该CSI-RS资源进行CSI测量处理,以估计得到多普勒Doppler偏移信息和Doppler扩展,终端设备可以根据估计的多普勒Doppler偏移信息和Doppler扩展确定TD基向量或DD基向量的长度,以便利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17 Type II码本的基础上引入时域基向量或多普勒域基向量,可以实现未来时刻的预编码计算或预测,使得计算或预测的预编码与未来相应时刻的信道相匹配,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,以减少信令配置开销或者上报反馈开销。
在本申请的一些实施例中,终端设备可以接收网络侧设备配置的TD基向量或DD基向量的长度。也就是说,该TD基向量或DD基向量的长度可以是由网络侧设备配置给终端设备的。其中,网络侧设备可以根据网络侧设备配置的相关参数(如上述文中的第一参数)隐式地确定该TD基向量或DD基向量的长度,或者,该网络侧设备可以根据终端设备上报的多普勒Doppler偏移信息和Doppler扩展确定该TD基向量或DD基向量的长度。网络侧设备在确定终端设备的TD基向量或DD基向量的长度时,可以将该TD基向量或DD基向量的长度发送给终端设备,以便终端设备利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17 Type II码本的基础上引入时域基向量或多普勒域基向量,可以实现未来时刻的预编码计算或预测,使得计算或预测的预编码与未来相应时刻的信道相匹配,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,以减少信令配置开销或者上报反馈开销。
可以理解,上述实施例是从终端设备侧描述本申请实施例的信道状态信息反馈方法的实现方式。本申请实施例还提出了另一种信道状态信息反馈方法,下面将从网络侧设备描述该信道状态信息反馈方法的实现方式。请参见图4,图4是本申请实施例提供的又一种信道状态信息反馈方法的流程示意图。需要说明的是,本申请实施例的信道状态信息反馈方法可由网络侧设备执行。如图4所示,该信道状态信息反馈方法可以包括但不限于以下步骤。
在步骤401中,确定时域TD基向量或多普勒域DD基向量的长度。
可选地,网络侧设备可以根据网络侧设备配置的相关参数隐式地确定时域TD基向量的长度或多普勒域DD基向量的长度。或者,网络侧设备还可以根据终端设备上报的Doppler偏移信息、Doppler扩展等信息确定时域TD基向量的长度或多普勒域DD基向量的长度。例如,终端设备接收网络侧设备配置的CSI-RS资源,利用该CSI-RS资源进行CSI测量处理,以估计得到多普勒Doppler偏移信息和Doppler扩展,终端设备可以将估计的Doppler偏移信息和Doppler扩展上报给网络侧设备,以使得网络侧设备根据终端设备上报的Doppler偏移信息、Doppler扩展等信息确定时域TD基向量的长度或多普勒域DD基向量的长度。
在步骤402中,为终端设备配置码本参数。
在步骤403中,将TD基向量或DD基向量的长度和码本参数发送给终端设备。
在一种实现方式中,网络侧设备将TD基向量或DD基向量的长度和码本参数发送给终端设备,以使得终端设备根据网络侧设备发送的TD基向量或DD基向量的长度和码本参数确定数据传输层对应的码本指示信息。
在一种可能的实现方式中,终端设备可以接收网络侧设备(如基站)配置的码本参数和TD基向量的长度,根据该码本参数和TD基向量的长度,确定数据传输层对应的码本指示信息。其中,在本申请的实施例中,该码本指示信息可以至少包括至少一个空域SD基向量组成的矩阵,组合系数矩阵,至少一个频域FD基向量组成的矩阵,以及至少一个TD基向量组成的矩阵的一种或多种组合。其中,该TD基向量的长度是用于确定码本中所采用的TD基向量,在Rel-16或17 Type II码本的基础上引入时域基向量。
在一种可能的实现方式中,终端设备可以接收网络侧设备(如基站)配置的码本参数和DD基向量 的长度,根据码本参数和DD基向量的长度确定数据传输层对应的码本指示信息。其中,在本申请的实施例中,该码本指示信息可以至少包括但不限于至少一个空域SD基向量组成的矩阵,组合系数矩阵,至少一个频域FD基向量组成的矩阵,以及至少一个DD基向量组成的矩阵的一种或多种组合。其中,该DD基向量的长度是用于确定码本中所采用的DD基向量,在Rel-16或17 Type II码本的基础上引入多普勒域基向量。
在步骤404中,接收终端设备通过长度和码本参数确定的数据传输层对应的码本指示信息。
可选地,终端设备通过TD基向量或DD基向量的长度和码本参数确定出数据传输层对应的码本指示信息之后,可以将该码本指示信息发送给网络侧设备,以便网络侧设备接收到终端设备发送的该码本指示信息。
在步骤405中,根据码本指示信息确定不同时刻对应的预编码矩阵。
可选地,可以根据该码本指示信息,采用码本结构公式计算不同时刻对应的预编码矩阵,或者采用PMI预测算法对不同时刻对应的预编码矩阵进行预测。
在一种实现方式中,以码本指示信息可以包括多个空域SD基向量组成的矩阵,组合系数矩阵,多个频域FD基向量组成的矩阵,以及多个TD基向量组成的矩阵为例,网络侧设备在接收到包含该码本指示信息的CSI时,可以根据该码本指示信息,利用码本结构
Figure PCTCN2022103165-appb-000034
计算不同时刻对应的预编码矩阵,或者利用预编码矩阵指示符(Pre-coding Matrix Indicator,PMI)预测算法预测不同时刻对应的预编码矩阵。其中,W 1表示多个空域基向量组成的矩阵或者是由至少一个单位向量组成的单位阵,W 2表示组合系数矩阵,W f表示多个频域基向量组成的矩阵,W t表示多个TD基向量组成的矩阵。
在一种实现方式中,以码本指示信息可以包括多个空域SD基向量组成的矩阵,组合系数矩阵,多个频域FD基向量组成的矩阵,以及多个DD基向量组成的矩阵为例,网络侧设备在接收到包含该码本指示信息的CSI时,可以根据该码本指示信息,利用码本结构
Figure PCTCN2022103165-appb-000035
计算不同时刻对应的预编码矩阵,或者利用预编码矩阵指示符(Pre-coding Matrix Indicator,PMI)预测算法预测不同时刻对应的预编码矩阵。其中,W 1表示多个空域基向量组成的矩阵或者是由至少一个单位向量组成的单位阵,W 2表示组合系数矩阵,W f表示多个频域基向量组成的矩阵,W d表示多个DD基向量组成的矩阵。
通过实施本申请实施例,可以通过确定时域TD基向量或多普勒域DD基向量的长度,以便利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17 Type II码本的基础上引入时域基向量或多普勒域基向量,可以实现未来时刻的预编码计算或预测,使得计算或预测的预编码与未来相应时刻的信道相匹配,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,以减少信令配置开销或者上报反馈开销。
需要说明的是,网络侧设备可以根据网络侧设备配置的相关参数隐式地确定TD基向量的长度或DD基向量的长度。在本申请的一些实施例中,如图5所示,该信道状态信息反馈方法可以包括但不限于以下步骤。
在步骤501中,根据网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
可选地,网络侧设备可以根据网络侧设备配置的第一参数隐式地确定TD基向量的长度或DD基向量的长度。
其中,在本申请的一些实施例中,该第一参数可以包括但不限于以下信息中的至少一种信息:信道状态信息参考信号CSI-RS资源的个数;CSI-RS测量窗内CSI-RS资源的个数;CSI-RS测量窗的大小;相邻CSI测量时刻之间的间隔;CSI测量次数;CSI-RS测量窗内的CSI测量次数;参数W等。需要说明的是,网络侧设备配置的CSI-RS测量窗是为了便于描述CSI-RS在一定的时间范围内进行一次或多次的信道测量,也有可能网络侧设备不配置该CSI-RS测量窗。
在一种实现方式中,以该第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数为例,则可以根据网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数,确定TD基向量的长度或DD基向量的长度。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数。
例如,以网络侧设备配置的CSI-RS资源的个数N CSI-RS为4为例,则可以确定TD基向量的长度或DD基向量的长度N 4为4。又如,以网络侧设备配置的CSI-RS测量窗内CSI-RS资源的个数N CSI-RS为6为例,则可以确定TD基向量的长度或DD基向量的长度N 4为6。
在一种可能的实现方式中,可以确定TD基向量的长度或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数的Q 1倍。其中,Q 1为正整数。例如,以Q 1为1,网络侧设备配置的CSI-RS资源的个数N CSI-RS为4为例,则可以确定TD基向量的长度或DD基向量的长度N 4为4。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;其中,Q 1为正整数。例如,以Q 1为1,网络侧设备配置的CSI-RS测量窗内CSI-RS资源的个数N CSI-RS为6为例,则可以确定TD基向量的长度或DD基向量的长度N 4为6。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000036
其中,Q 1为正整数,N CSI-RS为网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,C u为时域的压缩单元。例如,以Q 1为1,网络侧设备配置的CSI-RS资源的个数N CSI-RS为4,C u为2ms为例,则可以确定TD基向量的长度或DD基向量的长度N 4
Figure PCTCN2022103165-appb-000037
即该TD基向量的长度或DD基向量的长度N 4为2。
需要说明的是,在本申请的实施例中,上述CSI-RS资源的个数N CSI-RS大于1时,该N CSI-RS个CSI-RS资源可以是时域类型相同或不同。时域类型包含周期、半持续和非周期。此外,在本申请的实施例中,上述CSI-RS资源的个数N CSI-RS大于1时,该N CSI-RS个CSI-RS资源还可以是不同功能的CSI-RS资源。例如,有一个CSI-RS配置为用于信道获取的CSI-RS资源,剩余的配置为用于时频跟踪的CSI-RS资源。
在本申请的一些实施例中,以该第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔为例,则可以根据网络侧设备配置的CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔,确定TD基向量的长度或DD基向量的长度。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000038
其中,W meas为CSI-RS测量窗的大小,d为相邻CSI测量时刻之间的间隔,或者d可以为相邻CSI测量的最大或最小间隔,或者d可以为多个相邻CSI测量间隔的平均值。
在本申请的一些实施例中,以该第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数为例,则可以根据网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,确定TD基向量的长度或DD基向量的长度。
在一种可能的实现方式中,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数。例如,以网络侧设备配置的CSI测量次数B为2为例,则TD基向量的长度或DD基向量的长度N 4为2。又如,以网络侧设备配置的CSI-RS测量窗内的CSI测量次数B为2为例,则TD基向量的长度或DD基向量的长度N 4为2。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数的Q 2倍;其中,Q 2为正整数。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;其中,Q 2为正整数。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000039
其中,Q 2为正整数,B为网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,C u为时域的压缩单元。例如,以Q 2为1,网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数B为4,C u为2ms为例,则TD基向量或DD基向量的长度
Figure PCTCN2022103165-appb-000040
即该TD基向量的长度或DD基向量的长度N 4为2。
在本申请的一些实施例中,以该第一参数为参数W为例,则可以根据网络侧设备配置的参数W,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000041
其中,W mod C u=0,C u为时域的压缩单元,mod表示取余函数。例如,以参数W的数值为4,C u=2ms为例,则TD基向量或DD基向量的长度N 4为2。
在一种可能的实现方式中,可以确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000042
Figure PCTCN2022103165-appb-000043
其中,W mod C u≠0,
Figure PCTCN2022103165-appb-000044
为向上取整,
Figure PCTCN2022103165-appb-000045
为向下取整。例如,以参数W的数值为5,C u=2ms为例,则TD基向量或DD基向量的长度N 4
Figure PCTCN2022103165-appb-000046
或者,TD基向量或DD基向量的长度N 4
Figure PCTCN2022103165-appb-000047
其中,在本申请的一些实施例中,该参数W可以通过以下1)至4)项中至少一项参数确定:
1)CSI上报时刻对应的时隙;
2)CSI参考资源所在的时隙;
3)CSI-RS测量窗的左边界或右边界所对应的时隙;
4)CSI上报窗的左边界或右边界所对应的时隙。需要说明的是,CSI上报窗是由网络侧设备配置的,配置CSI上报窗是为了便于描述CSI在一定的时间范围内上报了一次CSI,也有可能不配置CSI上报窗。
例如,该参数W可以表示CSI上报窗的长度W CSI,即W=W CSI。或者,该参数W可以表示CSI测 量窗的长度W meas,即W=W meas。或者,该参数W表示从第一个接收CSI-RS资源进行CSI测量的时刻所对应的时隙到CSI上报窗的右边界所在时刻对应的时隙之间的时间长度,该时间长度的单位为一个时隙。或者,该参数W表示从CSI-RS测量窗的右边界或左边界所对应的时隙到CSI上报窗的右边界所在时刻对应的时隙之间的时间长度。或者,该参数W表表示从CSI参考资源所对应的时隙到CSI上报窗的右边界所在时刻对应的时隙之间的时间长度。
需要说明的是,在本申请的实施例中,上述文中的N CSI-RS、B、d、Q 1、Q 2、W meas和W meas的值可由终端设备上报,或者,还可以由网络侧设备配置,或者,还可以是终端设备和网络侧设备预定义的。
在本申请的一些实施例中,网络侧设备还需要确定时域的压缩单元C u。其中,该压缩单元C u可通过以下任意一种方式确定:
在一种可能的实现方式中,该压缩单元C u可以为αT c,其中,α为小于或等于1的整数,T c为信道相干时间。其中,该信道相干时间
Figure PCTCN2022103165-appb-000048
该f d为信道的Doppler扩展。
在一种可能的实现方式中,该压缩单元C u可以为CSI-RS资源的测量周期。
在一种可能的实现方式中,该压缩单元C u可以为βd 1,其中,β为大于或等于1的整数,d 1为相邻CSI的测量间隔。例如,对于均匀的多次CSI测量,则d 1可以是相邻CSI的测量间隔,可以利用该d 1和β的数值来确定该压缩单元C u
在一种可能的实现方式中,该压缩单元C u可以为βd 2,其中,β为大于或等于1的整数,d 2为相邻CSI测量的最大或最小间隔,或者d 2还可以为多个相邻CSI测量间隔的平均值。例如,对于非均匀的多次CSI测量,则d 2可以是相邻CSI测量的最大或最小间隔,可以利用该d 2和β的数值来确定该压缩单元C u
举例而言,假设终端设备(UE)的移动速度为27Km或h,UE所在小区的系统载频为4GHz,则该用户的最大Doppler扩展f d=100Hz,用户信道的相干时间可表示
Figure PCTCN2022103165-appb-000049
用于确定TD或DD基向量长度N 4的压缩单元C u=αT c,若α为网络配置的0.5,则压缩单元C u=αT c=5ms。又如,若网络侧设备配置的相邻CSI-RS资源测量间隔d=2ms,压缩单元C u=dβ。假设β的值是预定义默认的值为1,则压缩单元C u=2ms。则TD或DD基向量的长度N 4等于W或C u。其中,W的表示含义为上述文中的任意一种来表示。
需要说明的是,在本申请的实施例中,上述文本中的α和β的值可以由终端设备上报,或者,还可以由网络侧设备配置,或者还可以是终端设备和网络侧设备预定义的。此外,上述文中的f d可以是由终端设备上报给网络侧设备。
在步骤502中,为终端设备配置码本参数。
其中,步骤502可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤503中,将TD基向量或DD基向量的长度和码本参数发送给终端设备。
其中,步骤503可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤504中,接收终端设备通过长度和码本参数确定的数据传输层对应的码本指示信息。
其中,步骤504可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤505中,根据码本指示信息确定不同时刻对应的预编码矩阵。
在一种实现方式中,可以根据码本指示信息和TD基向量或DD基向量的长度的确定方式,采用码本结构或预编码矩阵指示符PMI预测算法确定不同时刻对应的预编码矩阵。也就是说,TD基向量或DD基向量的长度N4确定方式的不同,则采用不同的方式来获得该预编码矩阵,比如采用预测算法进行预编码矩阵的预测,或者,直接使用码本结构来计算预编码矩阵。
举例而言,假设网络侧设备(如基站)给终端设备(UE)配置了一个非周期的CSI-RS资源集,该资源集包含了4个非周期的CSI-RS资源。该4个非周期的CSI-RS资源在一个CSI-RS测量窗内测量了4个不同时刻的下行信道信息,相邻CSI-RS资源的间隔为d。如图6所示,为基于CSI-RS的测量与CSI上报在时域上的关系,其中,第一个CSI-RS资源的测量时刻为t 0,最后一个CSI-RS资源的测量时刻记为t 0+3。UE基于这四个不同时刻的CSI-RS资源所测量的下行信道,根据基站配置的码本参数计算出码本中多个SD基向量组成的W 1、组合系数W 2、多个FD基向量组成的W f和多个TD或DD基向量组成的W t或W d。UE在t 0+n时刻将这些参数信息上报给基站,基站利用
Figure PCTCN2022103165-appb-000050
Figure PCTCN2022103165-appb-000051
可计算出长度为N 4个时刻所对应的预编码矩阵。t 0+n和t 0+l分别表示CSI上报窗的左边界和右边界。TD或DD基向量的长度N 4可以等于图6中所示的CSI-RS测量窗内CSI-RS资源的 个数4,或者TD或DD基向量长度N 4等于CSI-RS测量窗内的CSI-RS测量次数B=4,或者TD或DD基向量长度N 4等于
Figure PCTCN2022103165-appb-000052
其中,W meas,=4,d=1。当N 4=4时,基站可利用PMI预测算法计算t 0+3到t 0+l时间范围内不同时刻对应的预编码矩阵。
例如,当TD或DD基向量的长度N 4定义为
Figure PCTCN2022103165-appb-000053
其中,W CSI为CSI上报窗的长度,C u为时域的压缩单元;该长度N 4由基站通过无线资源控制(Radio Resource Control,RRC)信令配置给UE,UE将所选的S(其中S>1)个长度为N 4的基向量上报给基站,则基站可利用上述的码本公式直接出上报窗内不同时刻对应的预编码矩阵。
又如,当TD或DD基向量的长度N 4等于B的Q倍,或者,TD或DD基向量的长度N 4等于B或C u的Q倍,其中,B=4,Q=5,C u=1,即N 4=20。令V≥1个TD或DD基向量组成的矩阵表示为
Figure PCTCN2022103165-appb-000054
其中第v个TD或DD基向量表示为
Figure PCTCN2022103165-appb-000055
对于N 4个时刻对应的预编码矩阵可通过
Figure PCTCN2022103165-appb-000056
Figure PCTCN2022103165-appb-000057
计算得到。其中,W 1和W f沿用传统的Rel-16或17 Type II的计算方式,W d或W t是从由长度为N 4的基向量组成的码本中选择V个基向量。
对于计算N 4个时刻之后的N 5时刻的预编码矩阵,即预测N 5>N 4个时刻对应的预编码矩阵可通过以下方式计算:
首先令
Figure PCTCN2022103165-appb-000058
Figure PCTCN2022103165-appb-000059
其中,N 5=QN 4。然后,基站通过
Figure PCTCN2022103165-appb-000060
计算出个N 5时刻对应的预编码矩阵。
综上所述,本申请通过确定时域TD基向量或多普勒域DD基向量的长度,以便利用该长度确定码本中所采用的TD基向量或DD基向量,使得在Rel-16或17 Type II码本的基础上引入时域基向量或多普勒域基向量,可以实现未来时刻的预编码计算或预测,使得计算或预测的预编码与未来相应时刻的信道相匹配,不仅可以确定不同时刻对应的预编码,还能够避免码本参数的冗余配置或者码本参数的冗余上报,以减少信令配置开销或者上报反馈开销。
上述本申请提供的实施例中,分别从终端设备、网络侧设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备、网络侧设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图7,为本申请实施例提供的一种通信装置70的结构示意图。图7所示的通信装置70可包括收发模块701和处理模块702。收发模块701可包括发送模块和或或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块701可以实现发送功能和或或接收功能。
通信装置70可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置70可以是网络侧设备,也可以是网络侧设备中的装置,还可以是能够与网络侧设备匹配使用的装置。
通信装置70为终端设备:处理模块702用于根据时域TD基向量或多普勒域DD基向量的长度和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息;收发模块701用于将包含码本指示信息的信道状态信息CSI发送给网络侧设备;其中,码本指示信息用于指示网络侧设备确定不同时刻对应的预编码矩阵。
在一种实现方式中,处理模块702具体用于:确定时域TD基向量或多普勒域DD基向量的长度;根据该长度和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息。
在一种实现方式中,处理模块702具体用于:根据网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数;处理模块702具体用于:确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数的Q 1倍;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000061
其中,Q 1为正整数,N CSI-RS为网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,C u为时域的压缩单元。
在一种可能的实现方式中,第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔;处 理模块702具体用于:确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000062
其中,W meas为CSI-RS测量窗的大小,d为相邻CSI测量时刻之间的间隔,或者为所述相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
在一种可能的实现方式中,第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数;处理模块702具体用于:确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数的Q 2倍;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000063
其中,Q 2为正整数,B为网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,C u为时域的压缩单元。
在一种可能的实现方式中,第一参数为参数W;处理模块702具体用于:确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000064
其中,W mod C u=0,C u为时域的压缩单元;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000065
Figure PCTCN2022103165-appb-000066
其中,W mod C u≠0,
Figure PCTCN2022103165-appb-000067
为向上取整,
Figure PCTCN2022103165-appb-000068
为向下取整;其中,参数W通过以下1)至4)项中至少一项参数确定:1)CSI上报时刻对应的时隙;2)CSI参考资源所在的时隙;3)CSI-RS测量窗的左边界或右边界所对应的时隙;4)CSI上报窗的左边界或右边界所对应的时隙。
在一种可能的实现方式中,处理模块702还用于:确定时域的压缩单元C u
在一种可能的实现方式中,压缩单元C u为αT c,其中,α为小于或等于1的整数,T c为信道相干时间;或者,压缩单元C u为CSI-RS资源的测量周期;或者,压缩单元C u为βd 1,其中,β为大于或等于1的整数,d 1为相邻CSI的测量间隔;或者,压缩单元C u为βd 2,其中,β为大于或等于1的整数,d 2为相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
在一种可能的实现方式中,处理模块702具体用于:根据终端设备通过使用CSI-RS估计得到的多普勒Doppler偏移信息和Doppler扩展,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,收发模块701还用于:接收网络侧设备配置的TD基向量或DD基向量的长度。
在一种可能的实现方式中,码本指示信息至少包括至少一个空域SD基向量组成的矩阵,组合系数矩阵,至少一个频域FD基向量组成的矩阵,以及至少一个TD基向量或DD基向量组成的矩阵的一种或多种组合。
通信装置70为网络侧设备:处理模块702用于确定时域TD基向量或多普勒域DD基向量的长度;处理模块702还用于为终端设备配置码本参数;收发模块701用于将TD基向量或DD基向量的长度和码本参数发送给终端设备;收发模块701还用于接收终端设备通过长度和码本参数确定的数据传输层对应的码本指示信息;处理模块702还用于根据码本指示信息确定不同时刻对应的预编码矩阵。
在一种实现方式中,处理模块702具体用于:根据网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数;处理模块702具体用于:确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数的Q 1倍;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000069
其中,Q 1为正整数,N CSI-RS为网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,C u为时域的压缩单元。
在一种可能的实现方式中,第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔;处理模块702具体用于:确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000070
其中,W meas为CSI-RS测量窗的大小,d为相邻CSI测量时刻之间的间隔,或者为所述相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
在一种可能的实现方式中,第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数;处理模块702具体用于:确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数的Q 2倍;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000071
其中,Q 2为正整数,B为网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,C u为时域的压缩单元。
在一种可能的实现方式中,第一参数为参数W;处理模块702具体用于:确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000072
其中,W mod C u=0,C u为时域的压缩单元;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000073
Figure PCTCN2022103165-appb-000074
其中,W mod C u≠0,
Figure PCTCN2022103165-appb-000075
为向上取整,
Figure PCTCN2022103165-appb-000076
为向下取整;其中,参数W通过以下1)至4)项中至少一项参数确定:1)CSI上报时刻对应的时隙;2)CSI参考资源所在的时隙;3)CSI-RS测量窗的左边界或右边界所对应的时隙;4)CSI上报窗的左边界或右边界所对应的时隙。
在一种可能的实现方式中,处理模块702还用于确定时域的压缩单元C u
在一种可能的实现方式中,压缩单元C u为αT c,其中,α为小于或等于1的整数,T c为信道相干时间;或者,压缩单元C u为CSI-RS资源的测量周期;或者,压缩单元C u为βd 1,其中,β为大于或等于1的整数,d 1为相邻CSI的测量间隔;或者,压缩单元C u为βd 2,其中,β为大于或等于1的整数,d 2为相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
在一种实现方式中,处理模块702具体用于:根据终端设备上报的多普勒Doppler偏移信息和Doppler扩展,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,处理模块702具体用于:根据码本指示信息和TD基向量或DD基向量的长度的确定方式,采用码本结构或预编码矩阵指示符PMI预测算法确定不同时刻对应的预编码矩阵。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参见图8,图8是本申请实施例提供的另一种通信装置80的结构示意图。通信装置80可以是网络侧设备,也可以是终端设备,也可以是支持网络侧设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置80可以包括一个或多个处理器801。处理器801可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置80中还可以包括一个或多个存储器802,其上可以存有计算机程序804,处理器801执行所述计算机程序804,以使得通信装置80执行上述方法实施例中描述的方法。可选的,所述存储器802中还可以存储有数据。通信装置80和存储器802可以单独设置,也可以集成在一起。
可选的,通信装置80还可以包括收发器805、天线806。收发器805可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器805可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置80中还可以包括一个或多个接口电路807。接口电路807用于接收代码指令并传输至处理器801。处理器801运行所述代码指令以使通信装置80执行上述方法实施例中描述的方法。
通信装置80为终端设备:处理器801用于执行图2中的步骤201;执行图3中的步骤301和步骤302。收发器805用于执行图2中的步骤202;执行图3中的步骤303。
通信装置80为网络侧设备:收发器805用于执行图4中的步骤401、步骤402和步骤405;执行图5中的步骤501、步骤502和步骤505。处理器801用于执行图4中的步骤403和步骤404;执行图5中的步骤503和步骤504。
在一种实现方式中,处理器801中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码或数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器801可以存有计算机程序,计算机程序在处理器801上运行,可使得通信装置80执行上述方法实施例中描述的方法。计算机程序可能固化在处理器801中,该种情况下,处理器801可能由硬件实现。
在一种实现方式中,通信装置80可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide  semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络侧设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图8的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络侧设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图9所示的芯片的结构示意图。图9所示的芯片包括处理器901和接口902。其中,处理器901的数量可以是一个或多个,接口902的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
处理器901用于根据时域TD基向量或多普勒域DD基向量的长度和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息;接口902用于将包含码本指示信息的信道状态信息CSI发送给网络侧设备;其中,码本指示信息用于指示网络侧设备确定不同时刻对应的预编码矩阵。
在一种实现方式中,处理器901具体用于:确定时域TD基向量或多普勒域DD基向量的长度;根据该长度和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息。
在一种实现方式中,处理器901具体用于:根据网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数;处理器901具体用于:确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数的Q 1倍;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000077
其中,Q 1为正整数,N CSI-RS为网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,C u为时域的压缩单元。
在一种可能的实现方式中,第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔;处理器901具体用于:确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000078
其中,W meas为CSI-RS测量窗的大小,d为相邻CSI测量时刻之间的间隔,或者d可以为相邻CSI测量的最大或最小间隔,或者d可以为多个相邻CSI测量间隔的平均值。
在一种可能的实现方式中,第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数;处理器901具体用于:确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数的Q 2倍;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000079
其中,Q 2为正整数,B为网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,C u为时域的压缩单元。
在一种可能的实现方式中,第一参数为参数W;处理器901具体用于:确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000080
其中,W mod C u=0,C u为时域的压缩单元;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000081
Figure PCTCN2022103165-appb-000082
其中,W mod C u≠0,
Figure PCTCN2022103165-appb-000083
为向上取整,
Figure PCTCN2022103165-appb-000084
为向下取整;其中,参数W通过以下1)至4)项中至少一项参数确定:1)CSI上报时刻对应的时隙;2)CSI参考资源所在的时隙;3)CSI-RS测量窗的左边界或右边界所对应的时隙;4)CSI上报窗的左边界或右边界所对应的时隙。
在一种可能的实现方式中,处理器901还用于:确定时域的压缩单元C u
在一种可能的实现方式中,压缩单元C u为αT c,其中,α为小于或等于1的整数,T c为信道相干时间;或者,压缩单元C u为CSI-RS资源的测量周期;或者,压缩单元C u为βd 1,其中,β为大于或等于1的整数,d 1为相邻CSI的测量间隔;或者,压缩单元C u为βd 2,其中,β为大于或等于1的整数,d 2为 相邻CSI测量的最大或最小间隔,或者d 2还可以为多个相邻CSI测量间隔的平均值。
在一种可能的实现方式中,处理器901具体用于:根据终端设备通过使用CSI-RS估计得到的多普勒Doppler偏移信息和Doppler扩展,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,接口902还用于:接收网络侧设备配置的TD基向量或DD基向量的长度。
在一种可能的实现方式中,码本指示信息至少包括至少一个空域SD基向量组成的矩阵,组合系数矩阵,至少一个频域FD基向量组成的矩阵,以及至少一个TD基向量或DD基向量组成的矩阵的一种或多种组合。
对于芯片用于实现本申请实施例中网络侧设备的功能的情况:
处理器901用于确定时域TD基向量或多普勒域DD基向量的长度;处理器901还用于为终端设备配置码本参数;接口902用于将TD基向量或DD基向量的长度和码本参数发送给终端设备;接口902还用于接收终端设备通过长度和码本参数确定的数据传输层对应的码本指示信息;处理器901还用于根据码本指示信息确定不同时刻对应的预编码矩阵。
在一种实现方式中,处理器901具体用于:根据网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数;处理器901具体用于:确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS资源的个数的Q 1倍;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000085
其中,Q 1为正整数,N CSI-RS为网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,C u为时域的压缩单元。
在一种可能的实现方式中,第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔;处理器901具体用于:确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000086
其中,W meas为CSI-RS测量窗的大小,d为相邻CSI测量时刻之间的间隔,或者d可以为相邻CSI测量的最大或最小间隔,或者d可以为多个相邻CSI测量间隔的平均值。
在一种可能的实现方式中,第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数;处理器901具体用于:确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI测量次数的Q 2倍;或者,确定TD基向量或DD基向量的长度等于网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000087
其中,Q 2为正整数,B为网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,C u为时域的压缩单元。
在一种可能的实现方式中,第一参数为参数W;处理器901具体用于:确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000088
其中,W mod C u=0,C u为时域的压缩单元;或者,确定TD基向量或DD基向量的长度等于
Figure PCTCN2022103165-appb-000089
Figure PCTCN2022103165-appb-000090
其中,W mod C u≠0,
Figure PCTCN2022103165-appb-000091
为向上取整,
Figure PCTCN2022103165-appb-000092
为向下取整;其中,参数W通过以下1)至4)项中至少一项参数确定:1)CSI上报时刻对应的时隙;2)CSI参考资源所在的时隙;3)CSI-RS测量窗的左边界或右边界所对应的时隙;4)CSI上报窗的左边界或右边界所对应的时隙。
在一种可能的实现方式中,处理器901还用于确定时域的压缩单元C u
在一种可能的实现方式中,压缩单元C u为αT c,其中,α为小于或等于1的整数,T c为信道相干时间;或者,压缩单元C u为CSI-RS资源的测量周期;或者,压缩单元C u为βd 1,其中,β为大于或等于1的整数,d 1为相邻CSI的测量间隔;或者,压缩单元C u为βd 2,其中,β为大于或等于1的整数,d 2为相邻CSI测量的最大或最小间隔,或者d 2还可以为多个相邻CSI测量间隔的平均值。
在一种实现方式中,处理器901具体用于:根据终端设备上报的多普勒Doppler偏移信息和Doppler扩展,确定TD基向量或DD基向量的长度。
在一种可能的实现方式中,处理器901具体用于:根据码本指示信息和TD基向量或DD基向量的长度的确定方式,采用码本结构或预编码矩阵指示符PMI预测算法确定不同时刻对应的预编码矩阵。
可选的,芯片还包括存储器903,存储器903用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用 各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种通信系统,该系统包括前述图7实施例中作为终端设备的通信装置和作为网络侧设备的通信装置,或者,该系统包括前述图8实施例中作为终端设备的通信装置和作为网络侧设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (48)

  1. 一种信道状态信息反馈方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    根据时域TD基向量或多普勒域DD基向量的长度和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息;
    将包含所述码本指示信息的信道状态信息CSI发送给所述网络侧设备,其中,所述码本指示信息用于指示所述网络侧设备确定不同时刻对应的预编码矩阵。
  2. 如权利要求1所述的方法,其特征在于,所述根据时域TD基向量或多普勒域DD基向量的长度,和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息,包括:
    确定时域TD基向量或多普勒域DD基向量的长度;
    根据所述长度和所述网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息。
  3. 如权利要求2所述的方法,其特征在于,所述确定时域TD基向量或多普勒域DD基向量的长度,包括:
    根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
  4. 如权利要求3所述的方法,其特征在于,所述第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
    确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数的Q 1倍;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100001
    其中,所述Q 1为正整数,所述N CSI-RS为所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,所述C u为时域的压缩单元。
  5. 如权利要求3所述的方法,其特征在于,所述第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
    确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100002
    其中,所述W meas为所述CSI-RS测量窗的大小,所述d为所述相邻CSI测量时刻之间的间隔,或者为所述相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
  6. 如权利要求3所述的方法,其特征在于,所述第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
    确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数的Q 2倍;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100003
    其中,所述Q 2为正整数,所述B为所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,所述C u为时域的压缩单元。
  7. 如权利要求3所述的方法,其特征在于,所述第一参数为参数W;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
    确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100004
    其中,W mod C u=0,所述C u为时域的压缩单元;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100005
    Figure PCTCN2022103165-appb-100006
    其中,W mod C u≠0,
    Figure PCTCN2022103165-appb-100007
    为向上取整,
    Figure PCTCN2022103165-appb-100008
    为向下取整;
    其中,所述参数W通过以下1)至4)项中至少一项参数确定:
    1)CSI上报时刻对应的时隙;
    2)CSI参考资源所在的时隙;
    3)CSI-RS测量窗的左边界或右边界所对应的时隙;
    4)CSI上报窗的左边界或右边界所对应的时隙。
  8. 如权利要求4至7中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述时域的压缩单元C u
  9. 如权利要求8所述的方法,其特征在于,
    所述压缩单元C u为αT c,其中,所述α为小于或等于1的整数,所述T c为信道相干时间;
    或者,所述压缩单元C u为CSI-RS资源的测量周期;
    或者,所述压缩单元C u为βd 1,其中,所述β为大于或等于1的整数,所述d 1为相邻CSI的测量间隔;
    或者,所述压缩单元C u为βd 2,其中,所述β为大于或等于1的整数,所述d 2为相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
  10. 如权利要求2所述的方法,其特征在于,所述确定时域TD基向量或多普勒域DD基向量的长 度,包括:
    根据所述终端设备通过使用CSI-RS估计得到的多普勒Doppler偏移信息和Doppler扩展,确定所述TD基向量或DD基向量的长度。
  11. 如权利要求2所述的方法,其特征在于,所述确定时域TD基向量或多普勒域DD基向量的长度,包括:
    接收所述网络侧设备配置的TD基向量或DD基向量的长度。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,所述码本指示信息至少包括至少一个空域SD基向量组成的矩阵,组合系数矩阵,至少一个频域FD基向量组成的矩阵,以及至少一个TD基向量或DD基向量组成的矩阵的一种或多种组合。
  13. 一种信道状态信息反馈方法,其特征在于,所述方法由网络侧设备执行,所述方法包括:
    确定时域TD基向量或多普勒域DD基向量的长度;
    为终端设备配置码本参数;
    将所述TD基向量或DD基向量的长度和所述码本参数发送给所述终端设备;
    接收所述终端设备通过所述长度和所述码本参数确定的数据传输层对应的码本指示信息;
    根据所述码本指示信息确定不同时刻对应的预编码矩阵。
  14. 如权利要求13所述的方法,其特征在于,所述确定时域TD基向量或多普勒域DD基向量的长度,包括:
    根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
  15. 如权利要求14所述的方法,其特征在于,所述第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
    确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数的Q 1倍;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100009
    其中,所述Q 1为正整数,所述N CSI-RS为所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,所述C u为时域的压缩单元。
  16. 如权利要求14所述的方法,其特征在于,所述第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
    确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100010
    其中,所述W meas为所述CSI-RS测量窗的大小,所述d为所述相邻CSI测量时刻之间的间隔,或者为所述相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
  17. 如权利要求14所述的方法,其特征在于,所述第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
    确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数的Q 2倍;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100011
    其中,所述Q 2为正整数,所述B为所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,所述C u为时域的压缩单元。
  18. 如权利要求14所述的方法,其特征在于,所述第一参数为参数W;所述根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度,包括:
    确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100012
    其中,W mod C u=0,所述C u为时域的压缩单元;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100013
    Figure PCTCN2022103165-appb-100014
    其中,W mod C u≠0,
    Figure PCTCN2022103165-appb-100015
    为向上取整,
    Figure PCTCN2022103165-appb-100016
    为向下取整;
    其中,所述参数W通过以下1)至4)项中至少一项参数确定:
    1)CSI上报时刻对应的时隙;
    2)CSI参考资源所在的时隙;
    3)CSI-RS测量窗的左边界或右边界所对应的时隙;
    4)CSI上报窗的左边界或右边界所对应的时隙。
  19. 如权利要求15至18中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述时域的压缩单元C u
  20. 如权利要求19所述的方法,其特征在于,
    所述压缩单元C u为αT c,其中,所述α为小于或等于1的整数,所述T c为信道相干时间;
    或者,所述压缩单元C u为CSI-RS资源的测量周期;
    或者,所述压缩单元C u为βd 1,其中,所述β为大于或等于1的整数,所述d 1为相邻CSI的测量间隔;
    或者,所述压缩单元C u为βd 2,其中,所述β为大于或等于1的整数,所述d 2为相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
  21. 如权利要求13所述的方法,其特征在于,所述确定时域TD基向量或多普勒域DD基向量的长度,包括:
    根据所述终端设备上报的多普勒Doppler偏移信息和Doppler扩展,确定所述TD基向量或DD基向量的长度。
  22. 如权利要求13至21中任一项所述的方法,其特征在于,所述根据所述码本指示信息确定不同时刻对应的预编码矩阵,包括:
    根据所述码本指示信息和所述TD基向量或DD基向量的长度的确定方式,采用码本结构或预编码矩阵指示符PMI预测算法确定不同时刻对应的预编码矩阵。
  23. 一种通信装置,其特征在于,包括:
    处理模块,用于根据时域TD基向量或多普勒域DD基向量的长度,和网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息;
    收发模块,用于将包含所述码本指示信息的信道状态信息CSI发送给所述网络侧设备;其中,所述码本指示信息用于指示所述网络侧设备确定不同时刻对应的预编码矩阵。
  24. 如权利要求23所述的通信装置,其特征在于,所述处理模块具体用于:
    确定时域TD基向量或多普勒域DD基向量的长度;
    根据所述长度和所述网络侧设备配置的码本参数,确定数据传输层对应的码本指示信息。
  25. 如权利要求24所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
  26. 如权利要求25所述的通信装置,其特征在于,所述第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数;所述处理模块具体用于:
    确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数的Q 1倍;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100017
    其中,所述Q 1为正整数,所述N CSI-RS为所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,所述C u为时域的压缩单元。
  27. 如权利要求25所述的通信装置,其特征在于,所述第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔;所述处理模块具体用于:
    确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100018
    其中,所述W meas为所述CSI-RS测量窗的大小,所述d为所述相邻CSI测量时刻之间的间隔,或者为所述相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
  28. 如权利要求25所述的通信装置,其特征在于,所述第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数;所述处理模块具体用于:
    确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数的Q 2倍;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100019
    其中,所述Q 2为正整数,所述B为所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,所述C u为时域的压缩单元。
  29. 如权利要求25所述的通信装置,其特征在于,所述第一参数为参数W;所述处理模块具体用于:
    确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100020
    其中,W mod C u=0,所述C u为时域的压缩单元;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100021
    Figure PCTCN2022103165-appb-100022
    其中,W mod C u≠0,
    Figure PCTCN2022103165-appb-100023
    为向上取整,
    Figure PCTCN2022103165-appb-100024
    为向下取整;
    其中,所述参数W通过以下1)至4)项中至少一项参数确定:
    1)CSI上报时刻对应的时隙;
    2)CSI参考资源所在的时隙;
    3)CSI-RS测量窗的左边界或右边界所对应的时隙;
    4)CSI上报窗的左边界或右边界所对应的时隙。
  30. 如权利要求26至29中任一项所述的通信装置,其特征在于,所述处理模块还用于:
    确定所述时域的压缩单元C u
  31. 如权利要求30所述的通信装置,其特征在于,
    所述压缩单元C u为αT c,其中,所述α为小于或等于1的整数,所述T c为信道相干时间;
    或者,所述压缩单元C u为CSI-RS资源的测量周期;
    或者,所述压缩单元C u为βd 1,其中,所述β为大于或等于1的整数,所述d 1为相邻CSI的测量间隔;
    或者,所述压缩单元C u为βd 2,其中,所述β为大于或等于1的整数,所述d 2为相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
  32. 如权利要求24所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述终端设备通过使用CSI-RS估计得到的多普勒Doppler偏移信息和Doppler扩展,确定所述TD基向量或DD基向量的长度。
  33. 如权利要求23所述的通信装置,其特征在于,所述收发模块还用于:
    接收所述网络侧设备配置的TD基向量或DD基向量的长度。
  34. 如权利要求23至33中任一项所述的通信装置,其特征在于,所述码本指示信息至少包括至少一个空域SD基向量组成的矩阵,组合系数矩阵,至少一个频域FD基向量组成的矩阵,以及至少一个TD基向量或DD基向量组成的矩阵的一种或多种组合。
  35. 一种通信装置,其特征在于,包括:
    处理模块,用于确定时域TD基向量或多普勒域DD基向量的长度;
    所述处理模块,还用于为终端设备配置码本参数;
    收发模块,用于将所述TD基向量或DD基向量的长度和所述码本参数发送给所述终端设备;
    所述收发模块,还用于接收所述终端设备通过所述长度和所述码本参数确定的数据传输层对应的码本指示信息;
    所述处理模块,还用于根据所述码本指示信息确定不同时刻对应的预编码矩阵。
  36. 如权利要求35所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述网络侧设备配置的第一参数,确定TD基向量或DD基向量的长度。
  37. 如权利要求35所述的通信装置,其特征在于,所述第一参数为信道状态信息参考信号CSI-RS资源的个数或CSI-RS测量窗内CSI-RS资源的个数;所述处理模块具体用于:
    确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS资源的个数的Q 1倍;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗口内CSI-RS资源的个数的Q 1倍;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100025
    其中,所述Q 1为正整数,所述N CSI-RS为所述网络侧设备配置的CSI-RS资源的个数或CSI-RS测量窗口内CSI-RS资源的个数,所述C u为时域的压缩单元。
  38. 如权利要求36所述的通信装置,其特征在于,所述第一参数为CSI-RS测量窗的大小和相邻CSI测量时刻之间的间隔;所述处理模块具体用于:
    确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100026
    其中,所述W meas为所述CSI-RS测量窗的大小,所述d为所述相邻CSI测量时刻之间的间隔,或者为所述相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
  39. 如权利要求36所述的通信装置,其特征在于,所述第一参数为CSI测量次数或CSI-RS测量窗内的CSI测量次数;所述处理模块具体用于:
    确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI测量次数的Q 2倍;
    或者,确定所述TD基向量或DD基向量的长度等于所述网络侧设备配置的CSI-RS测量窗内的CSI测量次数的Q 2倍;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100027
    其中,所述Q 2为正整数,所述B为所述网络侧设备配置的CSI测量次数或CSI-RS测量窗内的CSI测量次数,所述C u为时域的压缩单元。
  40. 如权利要求36所述的通信装置,其特征在于,所述第一参数为参数W;所述处理模块具体用于:
    确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100028
    其中,W mod C u=0,所述C u为时域的压缩单元;
    或者,确定所述TD基向量或DD基向量的长度等于
    Figure PCTCN2022103165-appb-100029
    Figure PCTCN2022103165-appb-100030
    其中,W mod C u≠0,
    Figure PCTCN2022103165-appb-100031
    为向上取整,
    Figure PCTCN2022103165-appb-100032
    为向下取整;
    其中,所述参数W通过以下1)至4)项中至少一项参数确定:
    1)CSI上报时刻对应的时隙;
    2)CSI参考资源所在的时隙;
    3)CSI-RS测量窗的左边界或右边界所对应的时隙;
    4)CSI上报窗的左边界或右边界所对应的时隙。
  41. 如权利要求37至40中任一项所述的通信装置,其特征在于,所述处理模块还用于确定所述时域的压缩单元C u
  42. 如权利要求41所述的通信装置,其特征在于,
    所述压缩单元C u为αT c,其中,所述α为小于或等于1的整数,所述T c为信道相干时间;
    或者,所述压缩单元C u为CSI-RS资源的测量周期;
    或者,所述压缩单元C u为βd 1,其中,所述β为大于或等于1的整数,所述d 1为相邻CSI的测量间隔;
    或者,所述压缩单元C u为βd 2,其中,所述β为大于或等于1的整数,所述d 2为相邻CSI测量的最大或最小间隔,或者为多个相邻CSI测量间隔的平均值。
  43. 如权利要求35所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述终端设备上报的多普勒Doppler偏移信息和Doppler扩展,确定所述TD基向量或DD基向量的长度。
  44. 如权利要求35至43中任一项所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述码本指示信息和所述TD基向量或DD基向量的长度的确定方式,采用码本结构或预编码矩阵指示符PMI预测算法确定不同时刻对应的预编码矩阵。
  45. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法。
  46. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至22中任一项所述的方法。
  47. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中任一项所述的方法被实现。
  48. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13至22中任一项所述的方法被实现。
PCT/CN2022/103165 2022-06-30 2022-06-30 一种信道状态信息反馈方法及其装置 WO2024000529A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/103165 WO2024000529A1 (zh) 2022-06-30 2022-06-30 一种信道状态信息反馈方法及其装置
CN202280002423.XA CN117643028A (zh) 2022-06-30 2022-06-30 一种信道状态信息反馈方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103165 WO2024000529A1 (zh) 2022-06-30 2022-06-30 一种信道状态信息反馈方法及其装置

Publications (1)

Publication Number Publication Date
WO2024000529A1 true WO2024000529A1 (zh) 2024-01-04

Family

ID=89383862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103165 WO2024000529A1 (zh) 2022-06-30 2022-06-30 一种信道状态信息反馈方法及其装置

Country Status (2)

Country Link
CN (1) CN117643028A (zh)
WO (1) WO2024000529A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3855635A1 (en) * 2020-01-24 2021-07-28 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Csi reporting based on linear combination port-selection codebook
CN113840324A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种测量上报方法及装置
US20220094412A1 (en) * 2019-06-06 2022-03-24 Huawei Technologies Co., Ltd. Channel Measurement Method and Communications Apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220094412A1 (en) * 2019-06-06 2022-03-24 Huawei Technologies Co., Ltd. Channel Measurement Method and Communications Apparatus
EP3855635A1 (en) * 2020-01-24 2021-07-28 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Csi reporting based on linear combination port-selection codebook
CN113840324A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种测量上报方法及装置

Also Published As

Publication number Publication date
CN117643028A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023184457A1 (zh) 生效时间确定方法及装置
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024000529A1 (zh) 一种信道状态信息反馈方法及其装置
WO2024031718A1 (zh) 支持8Tx的基于非码本的PUSCH传输的预编码指示方法及装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2024065426A1 (zh) 一种信道质量指示cqi上报方法、装置、设备及存储介质
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2024016245A1 (zh) 一种信息指示方法、装置、设备及存储介质
WO2024000133A1 (zh) 一种测量配置方法、装置、设备及存储介质
WO2023245683A1 (zh) 基向量类型的指示方法和装置
WO2023216166A1 (zh) 相干带宽的测量方法和装置
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
WO2024011543A1 (zh) 基向量的选择指示上报方法和装置
WO2023168611A1 (zh) 一种附加解调参考信号dmrs的发送方法及其装置
WO2023206047A1 (zh) 信道状态信息csi上报方法和装置
WO2023102942A1 (zh) 测量间隔指示方法及装置
WO2024031719A1 (zh) 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置
WO2023230794A1 (zh) 一种定位方法及装置
WO2023206566A1 (zh) 信息传输方法、装置、设备及存储介质
WO2023206296A1 (zh) 一种轨道角动量oam模态的确定方法及其装置
WO2023240516A1 (zh) 全球导航卫星系统gnss定位测量方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002423.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948631

Country of ref document: EP

Kind code of ref document: A1