RU2178221C2 - Термоэлектрический модуль (варианты) и способ формирования покрывающей пленки на термоэлектрическом элементе (варианты) - Google Patents

Термоэлектрический модуль (варианты) и способ формирования покрывающей пленки на термоэлектрическом элементе (варианты) Download PDF

Info

Publication number
RU2178221C2
RU2178221C2 RU99121198/28A RU99121198A RU2178221C2 RU 2178221 C2 RU2178221 C2 RU 2178221C2 RU 99121198/28 A RU99121198/28 A RU 99121198/28A RU 99121198 A RU99121198 A RU 99121198A RU 2178221 C2 RU2178221 C2 RU 2178221C2
Authority
RU
Russia
Prior art keywords
thermoelectric
coating film
electrodes
thermoelectric element
thermoelectric elements
Prior art date
Application number
RU99121198/28A
Other languages
English (en)
Other versions
RU99121198A (ru
Inventor
Казуо Камада
Сунити НАКАЯМА
Original Assignee
Мацусита Электрик Воркс, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мацусита Электрик Воркс, Лтд. filed Critical Мацусита Электрик Воркс, Лтд.
Publication of RU99121198A publication Critical patent/RU99121198A/ru
Application granted granted Critical
Publication of RU2178221C2 publication Critical patent/RU2178221C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Formation Of Insulating Films (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

Использование: в термоэлектрических устройствах. Сущность: термоэлектрический модуль содержит термоэлектрические элементы р-типа и термоэлектрические элементы n-типа, которые расположены в чередующемся порядке и электрически соединены электродами, предусмотренными на верхней стороне и нижней стороне каждого термоэлектрического элемента, пластину теплообменника, которая закреплена на электродах на каждой стороне. Каждый термоэлектрический элемент имеет покрывающую пленку изолирующего материала из полиимида или поли(замещенного или незамещенного р-ксилена) на его сторонах, за исключением сторон, соединенных с электродами. Термоэлектрические элементы расположены с промежутками. Приведены способы формирования пленок. Покрывающая пленка повышает прочность и влагостойкость термоэлектрических элементов, предотвращает образование трещин и разрывов в термоэлектрических элементах даже в случае, когда они подвергаются воздействию удара, нагрузки или температурного напряжения, и защищает термоэлектрические элементы от коррозии в атмосфере высокой влажности с приданием термоэлектрическому модулю повышенной технической надежности. 5 с. и 2 з. п. ф-лы, 12 ил.

Description

Изобретение относится к термоэлектрическому модулю, имеющему большое количество расположенных в нем термоэлектрических элементов, а также к способам формирования покрывающей пленки на термоэлектрическом элементе.
Известен термоэлектрический модуль 1, показанный на фиг. 7, который изготовлен путем вырезания призматических термоэлектрических элементов 3 из слитка термоэлектрического материала, полученного путем выращивания из расплава, например - путем зонной плавки, соединения термоэлектрических элементов 3 с верхними и нижними электродами 4, выполненными из электропроводного материала, пайкой мягким припоем или аналогичным способом, и закрепления пластины 5 теплообменника на каждой наружной стороне электродов 4. Когда термоэлектрический элемент 3 и электрод 4 соединяют мягким припоем, вокруг соединения образуется галтель 7 из мягкого припоя, как показано на фиг. 8. Полученный таким образом термоэлектрический модуль 1 имеет четкую структуру и обладает тем преимуществом, что термоэлектрические элементы 3 проявляют постоянную теплопроводность и постоянную электропроводность. Имея плоскую поверхность на каждой стороне, термоэлектрический модуль 1 пригоден для изготовления устройства панельного типа, имеющего термоэлектрический элемент, соединенный с каждой его стороной.
Известны термоэлектрические модули, содержащие термоэлектрические элементы n-типа и термоэлектрические элементы р-типа, расположенные в чередующемся порядке, электроды, электрически соединяющие верхние и нижние стороны термоэлектрических элементов, пластину теплообменника, закрепленную на каждой наружной стороне электродов, причем каждый термоэлектрический элемент расположен с промежутком относительно соседних термоэлектрических элементов (см. , например, GB 1095744, 29.11.66).
Однако, поскольку термоэлектрические элементы (например, термоэлектрические элементы р-типа и термоэлектрические элементы n-типа) выполнены из хрупких материалов, они имеют тенденцию к развитию трещин и разрывов в случае, когда термоэлектрический модуль подвергается воздействию удара или нагрузки, или в случае, когда к термоэлектрическому элементу прикладывается температурное напряжение. Кроме того, поскольку термоэлектрические элементы имеют низкую влагостойкость, они имеют тенденцию подвергаться воздействию коррозии в атмосфере высокой влажности, что приводит к ухудшению рабочей характеристики.
Задача изобретения заключается в том, чтобы разработать термоэлектрический модуль, который обладает увеличенной прочностью и повышенной влагостойкостью и поэтому проявляет повышенную техническую надежность.
Поставленная задача достигается за счет того, что в термоэлектрическом модуле, содержащем
термоэлектрические элементы р-типа и термоэлектрические элементы n-типа, расположенные в чередующемся порядке,
электроды, электрически соединяющие верхние и нижние стороны термоэлектрических элементов, соответственно,
пластину теплообменника, закрепленную на каждой наружной стороне электродов, соответственно,
причем каждый термоэлектрический элемент имеет покрывающую пленку изолирующего материала на своей поверхности, за исключением зоны соединения термоэлектрического элемента и электродов, и
расположен с промежутком относительно соседних термоэлектрических элементов,
покрывающая пленка является полиимидной пленкой, полученной путем полимеризации при химическом осаждении из паровой фазы.
Поставленная задача достигается также за счет того, что в термоэлектрическом модуле, содержащем
термоэлектрические элементы р-типа и термоэлектрические элементы n-типа, расположенные в чередующемся порядке,
электроды, электрически соединяющие верхние и нижние стороны термоэлектрических элементов, соответственно,
пластину теплообменника, закрепленную на каждой наружной стороне электродов, соответственно,
причем каждый термоэлектрический элемент имеет покрывающую пленку изолирующего материала на своей поверхности, за исключением зоны соединения термоэлектрического элемента и электродов, и
расположен с промежутком относительно соседних термоэлектрических элементов,
покрывающая пленка является пленкой поли(замещенного или незамещенного р-ксилилена), полученной путем полимеризации при химическом осаждении из паровой фазы.
Поставленная задача достигается также за счет того, что в термоэлектрическом модуле, содержащем
термоэлектрические элементы р-типа и термоэлектрические элементы n-типа, расположенные в чередующемся порядке,
электроды, электрически соединяющие верхние и нижние стороны термоэлектрических элементов, соответственно,
пластину теплообменника, закрепленную на каждой наружной стороне электродов, соответственно,
причем каждый термоэлектрический элемент имеет покрывающую пленку изолирующего материала на своей поверхности, за исключением зоны соединения термоэлектрического элемента и электродов, и
расположен с промежутком относительно соседних термоэлектрических элементов, указанная зона включает часть, образованную в непосредственной близости от соединяемого участка зоны.
Изобретение также относится к способу формирования покрывающей пленки на термоэлектрическом элементе, заключающемся в том, что
вводят ангидрид кислоты и диамин в реактор для получения полиамовой кислоты на термоэлектрическом элементе при условии, что ангидрид кислоты испаряется при 160-180oС и диамин испаряется при 150-170oС, а реактор поддерживается при 160-230oС и 1,333 0,001 Па, и
осуществляют дегидратирующую циклизацию для получения полиимидной пленки на указанном термоэлектрическом элементе при условии, что реактор поддерживается при 200-350oС.
В другом варианте осуществления изобретения толщина полиимида находится в диапазоне 1-10 мкм.
Изобретение также относится к способу формирования покрывающей пленки на термоэлектрическом элементе, заключающемуся в том, что
испаряют и пиролизуют ди-р-ксилилен при условии, что температура находится в диапазоне от 120 до 180oС, а давление составляет 13,332 Па или менее,
пиролизуют ди-р-ксилилен для получения монохлоро-р-ксилена при условии, что температура находится в диапазоне от 650 до 730oС, а давление составляет 13,332 Па или менее, и
осуществляют полимеризацию из паровой фазы монохлоро-р-ксилена для получения пленки поли(замещенного или незамещенного р-ксилиена) на термоэлектрическом элементе при условии, что температура составляет 40oС или менее, а давление составляет 6,666 Па.
В другом варианте осуществления изобретения толщина пленки поли(замещенного или незамещенного р-ксилиена) может находиться в диапазоне 1-10 мкм.
Сущность изобретения поясняется на чертежах, где:
Фиг. 1 представляет поперечный разрез примера термоэлектрического модуля в соответствии с изобретением.
Фиг. 2В показывает вид в перспективе примера термоэлектрического модуля в соответствии с изобретением.
Фиг. 2А представляет вид в перспективе термоэлектрического модуля, показанного на фиг. 2В, с которого удалена верхняя пластина теплообменника.
Фиг. 3А и 3В иллюстрируют режим получения термоэлектрических элементов с использованием листовой заготовки и стержневой заготовки, соответственно.
Фиг. 4А и 4В представляют виды в перспективе и вид сверху, соответственно, покрытого термоэлектрического элемента.
Фиг. 5А и 5В изображают поперечные сечения другого покрытого термоэлектрического элемента, причем фиг. 5В представляет увеличенный вид обведенной кружком части, показанной на фиг. 5А.
Фиг. 6 иллюстрирует другой режим получения термоэлектрических элементов с использованием стержневой заготовки.
Фиг. 7 показывает поперечный разрез обычного термоэлектрического модуля.
Фиг. 8 представляет поперечный разрез обычного термоэлектрического модуля, на котором показаны гантели из мягкого припоя.
Работа и предпочтительные варианты осуществления данного изобретения описаны ниже со ссылками на прилагаемые чертежи. В дальнейшем позиция 3 используется для обозначения термоэлектрического элемента безотносительно того, относится он к p-типу или n-типу, а позиции 3а и 3b используются для указания различия между p-типом или n-типом.
На фиг. 1 и 2 показан вариант термоэлектрического модуля в соответствии с изобретением. Фиг. 1 представляет поперечный разрез термоэлектрического модуля 1. Фиг. 2А представляет вид в перспективе примера термоэлектрического модуля 1 без пластины 5 теплообменника и электродов 4 на его верхней стороне, а фиг. 2В - вид в перспективе с пластиной 5 теплообменника и электродами 4 на верхней стороне. Термоэлектрический модуль 1 содержит и термоэлектрические элементы 3b n-типа, выполненные из полупроводников n-типа, термоэлектрические элементы 3а р-типа, выполненные из полупроводников р-типа, которые чередуются через некоторый промежуток в одной и той же плоскости. Большое количество электродов 4 сформировано для покрытия верха и низа каждого термоэлектрического элемента 3, а также для образования перемычки между верхними сторонами или нижними сторонами термоэлектрического элемента 3а р-типа и термоэлектрического элемента 3b n-типа, которые расположены рядом друг с другом так, что все чередующиеся термоэлектрические элементы 3a и 3b электрически соединены последовательно. Пластина 5 теплообменника, выполненная из такого изолирующего материала, как керамика, прикреплена к верхним и нижним сторонам термоэлектрических элементом 3 посредством электродов 4. Термоэлектрические элементы 3 расположены с промежутками между ними так, что можно уменьшить потерю тепла между термоэлектрическими элементами 3, чтобы повысить КПД теплообмена при эксплуатации термоэлектрического модуля 1. Предпочтительно, чтобы промежутки между термоэлектрическими элементами 3 составляли 0,05-1,0 мм.
Термоэлектрический элемент 3, используемый в этом изобретении, можно получить следующим образом. Прежде всего получают листовую заготовку 6 (фиг. 5А) или стержневую заготовку 6 (фиг. 5В) из термоэлектрического материала путем резки слитка термоэлектрического материала или спекания, или экструзии порошкообразного термоэлектрического материала. Материалы элементов р-типа включают Sb2Te3, а материалы элементов n-типа включают Bi2Te3. Листовую заготовку 6 или стержневую заготовку 6 разрезают для получения термоэлектрических призм 3, как показано на фиг. 3. Верх и низ призмы должны быть соединены с соответствующими электродами 4 и будут в дальнейшем иногда именоваться соединяемой стороной или поверхностью (соединяемыми сторонами или поверхностями).
Как показано на фиг. 4, покрывающая пленка 2, выполненная из изолирующего материала, предусмотрена на каждой боковой лицевой поверхности призматического термоэлектрического элемента 3, т. е. на всех сторонах, за исключением соединяемых сторон. Наличие покрывающей пленки 2 вокруг термоэлектрического элемента 3 повышает прочность термоэлектрического элемента 3 настолько, что можно предотвратить образование трещин или разрывов элемента 3 даже в случае, когда он подвергается воздействию нагрузки, удара или температурного напряжения. Покрывающая пленка 2 также вызывает повышенную влагостойкость, так что элемент 3 можно защитить от коррозии в атмосфере высокой влажности, придавая термоэлектрическому модулю 1 повышенную техническую надежность.
На изолирующий материал и способ формирования покрывающей пленки 2 не накладываются конкретные ограничения. В предпочтительном варианте осуществления покрывающая пленка является пленкой, содержащей полиимид или поли(замещенный или незамещенный р-ксилилен) и образованный путем полимеризации при химическом осаждении из паровой фазы (именуемой далее ХОПФ-полимеризацией). Перед образованием покрывающей пленки 2 или после него можно осуществлять разрезание заготовки 6 из термоэлектрического материала на термоэлектрические элементы 3.
Покрытие полиимидом путем ХОПФ-полимеризации осуществляют посредством введения ангидрида кислоты и диамина в реактор, содержащий в качестве подложки термоэлектрический элемент 3 или заготовку 6 из термоэлектрического материала, и поддержания при высокой температуре и пониженном давлении. При использовании, например, пиромеллитового диангидрида в качестве ангидрида кислоты и 4,4'-диаминофенилового простого эфира в качестве диамина, реакция сначала дает полиамовую кислоту -предшественник полиимида, которую подвергают дегидратирующей циклизации для получения полиимида на подложке, как показывает следующая схема реакции:
Figure 00000002

Более подробно, пиромеллитовый диангидрид, испаряющийся при 160-180oС, и 4,4'-диаминофениловый простой эфир, испаряющийся при 150-170oС, вводят в реактор. Реакционную систему поддерживают при 160-230oС и 1,333-0,001 Па в течение 30-120 минут для образования полиамовой кислоты. Затем реакционную систему поддерживают при 200-350oC и атмосферном давлении в течение 1-5 часов для преобразования полиамовой кислоты в полиимид. Сформированная таким образом полиимидная пленка имеет толщину 1-10 мкм.
Благодаря ХОПФ-полимеризации полиимидная пленка обладает, в частности, превосходной теплостойкостью, так что она не отделяется, когда термоэлектрический элемент 3 и электрод 4 соединяют путем пайки мягким припоем. Она также обладает превосходной химической стойкостью, защищая термоэлектрический элемент 3 от ухудшения свойств даже тогда, когда термоэлектрический модуль 1 используют в окислительной атмосфере или коррозийонной атмосфере, и повышая таким образом техническую надежность термоэлектрического элемента 1.
Поли(замещенный или незамещенный р-ксилилен), который промышленность поставляет под торговым наименованием парилен, включает поли(р-ксилилен) и полимер р-ксилилена, имеющий органический или неорганический заместитель, например, галоген (например, хлор), или цианогруппу, обычно - на его бензольном кольце. Например, поли(замещенный или незамещенный р-ксилилен) можно получать путем ХОПФ-полимеризации, как показывает следующая схема реакции:
Figure 00000003

Ди-р-ксилилен, который является димером монохлоро-р-ксилилена, испаряют, а затем пиролизуют для получения монохлоро-р-ксилена - газообразного мономера. Этот мономер подают в реактор, содержащий термоэлектрический элемент 3 или заготовку 6 из термоэлектрического материала в качестве подложки, и дают полимеризоваться на подложке для формирования покрывающей пленки поли(монохлоро-р-ксилилена). Предпочтительными условиями реакции являются: 120-180oС и 13,332 Па или менее - для испарения ди-р-ксилилена, 650-730oС и 13,332 Па или менее - для пиролиза ди-р-ксилилена и 40oС или менее и 6,666 Па или менее - для полимеризации из паровой фазы монохлоро-р-ксилена. Полученная таким образом пленка поли(замещенного или незамещенного р-ксилилена) предпочтительно имеет толщину 1-10 мкм.
Имея малую влагопроницаемость, пленка поли(замещенного или незамещенного р-ксилилена), сформированная путем ХОПФ-полимеризации, придает термохимическому элементу 3 повышенную влагостойкость и весьма эффективна при защите термоэлектрического элемента 3 от коррозии или ухудшения рабочей характеристики.
Как указано выше, изолирующую покрывающую пленку 2 не формируют на соединяемых сторонах термоэлектрического элемента 3, т. е. на нижней и верхней поверхностях термоэлектрического элемента 3, т. е. на нижней и верхней поверхностях, соединенных с соответствующими электродами 4. В предпочтительном варианте осуществления сторон, за исключением соединяемых сторон, участки, находящиеся в непосредственной близости от соединяемых сторон, не снабжены покрывающей пленкой 2. То есть, предпочтительно, чтобы эти участки оставались не покрытыми или чтобы сразу же после образования изолирующей покрывающей пленки 2 на всех поверхностях, отличных от соединяемых сторон, покрывающая пленка была удалена с этих участков. Более конкретно, как показано на фиг. 5А и 5В, участок 0,01-0,5 мм от верхнего конца и участок 0,01-0,5 мм от нижнего конца термоэлектрического элемента 3 предпочтительно не имеют покрывающей пленки 2. Такие термоэлектрические элементы 3 с описанными участками своих боковых лицевых поверхностей, не имеющими покрывающей пленки, можно получать, например, как показано на фиг. 6, при этом покрывающую пленку 2 изолирующего материала формируют на всех поверхностях стержневой заготовки 6 из термоэлектрического материала и удаляют эту покрывающую пленку 2 путем облучения лазерным лучом 9 из лазера 8 с последующим разрезанием в середине зоны, где удалена покрывающая пленка 2. Обработку лазерным лучом можно заменить обработкой на токарном станке и т. д. В том случае поверхности реза служат в качестве соединяемых поверхностей. С участка, находящегося в непосредственной близости от соединяемых поверхностей, покрывающую пленку, образованную на сторонах, отличных от соединяемых поверхностей, удаляют путем лазерной обработки или обработки на станке.
Когда термоэлектрический элемент 3 и электрод 4 соединяют путем пайки мягким припоем, вокруг соединяющего шва образуется галтель 7 из мягкого припоя. В случае, если участок, на котором образуется галтель 7, имеет покрывающую пленку 2, смачиваемость этого участка мягким припоем уменьшается, приводя к снижению прочности соединения между термоэлектрическим элементом 3 и электродом 4. С другой стороны, если этот участок не покрыт покрывающей пленкой 2, как в вышеописанном предпочтительном варианте осуществления, можно сохранить достаточную прочность соединения.
В соответствии с изобретением покрывающая пленка вокруг термоэлектрического элемента дает увеличенную прочность и повышенную влагостойкость термоэлектрического элемента. В результате предотвращается образование трещин и разрывов элемента даже в случае, когда он подвергается воздействию нагрузки, удара или температурного напряжения, и обеспечивается защита от коррозии в атмосфере высокой влажности с приданием термоэлектрическому модулю повышенной технической надежности. Кроме того, поскольку термоэлектрические элементы расположены с промежутками, подавляется потеря тепла между элементами для повышения КПД теплообмена.
Согласно первому предпочтительному варианту осуществления, в котором термоэлектрические элементы являются элементами, вырезанными из заготовки термоэлектрических элементов, а затем покрытыми изолирующим материалом, покрывающая пленка вокруг термоэлектрического элемента не только повышает прочность этого термоэлектрического элемента, но и приводит к повышению влагостойкости. В результате предотвращается образование трещин и разрывов элемента даже в случае, когда он подвергается воздействию нагрузки, удара или температурного напряжения, и обеспечивается защита от коррозии в атмосфере высокой влажности с приданием термоэлектрическому модулю повышенной технической надежности.
Согласно второму предпочтительному варианту осуществления, в котором покрывающая пленка является полиимидной пленкой, полученной путем полимеризации при химическом осаждении из паровой фазы, покрывающая пленка не отделяется при пайке мягким припоем термоэлектрических элементов и электродов. Превосходная по химической стойкости покрывающая пленка предотвращает ухудшение рабочей характеристики термоэлектрических элементов даже в окислительной или коррозионной атмосфере, придавая термоэлектрическому модулю повышенную техническую надежность.
Согласно третьему предпочтительному варианту осуществления, в котором покрывающая пленка является пленкой поли(замещенного или незамещенного р-ксилилена), полученной путем полимеризации при химическом осаждении из паровой фазы, термоэлектрические элементы имеют дополнительно повышенную влагостойкость и защищены от коррозии или ухудшения рабочей характеристики в атмосфере высокой влажности.
Согласно четвертому предпочтительному варианту осуществления, в котором участки, находящиеся в непосредственной близости от электродов сторон каждого термоэлектрического элемента, отличных от сторон, соединяемых с электродами, не имеют покрытия изолирующим материалом, а на участках, где образовались галтели из мягкого припоя, нет покрывающей пленки, и таким образом гарантирована прочность соединения между термоэлектрическими элементами и электродами.

Claims (7)

1. Термоэлектрический модуль, содержащий термоэлектрические элементы p-типа и термоэлектрические элементы n-типа, расположенные в чередующемся порядке, электроды, электрически соединяющие верхние и нижние стороны термоэлектрических элементов соответственно, пластину теплообменника, закрепленную на каждой наружной стороне электродов соответственно, причем каждый термоэлектрический элемент имеет покрывающую пленку изолирующего материала на своей поверхности, за исключением зоны соединения термоэлектрического элемента и электродов, и расположен с промежутком относительно соседних термоэлектрических элементов, в котором покрывающая пленка является полиимидной пленкой, полученной путем полимеризации при химическом осаждении из паровой фазы.
2. Термоэлектрический модуль, содержащий термоэлектрические элементы р-типа и термоэлектрические элементы n-типа, расположенные в чередующемся порядке, электроды, электрически соединяющие верхние и нижние стороны термоэлектрических элементов соответственно, пластину теплообменника, закрепленную на каждой наружной стороне электродов соответственно, причем каждый термоэлектрический элемент имеет покрывающую пленку изолирующего материала на своей поверхности, за исключением зоны соединения термоэлектрического элемента и электродов, и расположен с промежутком относительно соседних термоэлектрических элементов, в котором покрывающая пленка является пленкой поли(замещенного или незамещенного p-ксилилена), полученной путем полимеризации при химическом осаждении из паровой фазы.
3. Термоэлектрический модуль, содержащий термоэлектрические элементы р-типа и термоэлектрические элементы n-типа, расположенные в чередующемся порядке, электроды, электрически соединяющие верхние и нижние стороны термоэлектрических элементов соответственно, пластину теплообменника, закрепленную на каждой наружной стороне электродов соответственно, причем каждый термоэлектрический элемент имеет покрывающую пленку изолирующего материала на своей поверхности, за исключением зоны соединения термоэлектрического элемента и электродов, и расположен с промежутком относительно соседних термоэлектрических элементов, в котором указанная зона включает часть, образованную в непосредственной близости от соединяемого участка зоны.
4. Способ формирования покрывающей пленки на термоэлектрическом элементе, заключающийся в том, что вводят ангидрид кислоты и диамин в реактор для получения полиамовой кислоты на термоэлектрическом элементе при условии, что ангидрид кислоты испаряется при 160-180oС и диамин испаряется при 150-170oС, а реактор поддерживается при 160-230oС и 1,333-0,001 Па, и осуществляют дегидратирующую циклизацию для получения полиимидной пленки на указанном термоэлектрическом элементе при условии, что реактор поддерживается при 200-350oС.
5. Способ формирования покрывающей пленки на термоэлектрическом элементе по п. 4, отличающийся тем, что толщина полиимида находится в диапазоне 1-10 мкм.
6. Способ формирования покрывающей пленки на термоэлектрическом элементе, заключающийся в том, что испаряют и пиролизуют ди-p-ксилилен при условии, что температура находится в диапазоне от 120 до 180oС, а давление составляет 13,332 Па или менее, пиролизуют ди-p-ксилилен для получения монохлоро-p-ксилена при условии, что температура находится в диапазоне от 650 до 730oС, а давление составляет 13,332 Па или менее, и осуществляют полимеризацию из паровой фазы монохлоро-p-ксилена для получения пленки поли(замещенного или незамещенного p-ксилилена) на термоэлектрическом элементе при условии, что температура составляет 40oС или менее, а давление составляет 6,666 Па.
7. Способ формирования покрывающей пленки на термоэлектрическом элементе по п. 6, отличающийся тем, что толщина пленки поли(замещенного или незамещенного p-ксилилена) находится в диапазоне 1-10 мкм.
RU99121198/28A 1998-11-25 1999-09-29 Термоэлектрический модуль (варианты) и способ формирования покрывающей пленки на термоэлектрическом элементе (варианты) RU2178221C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10333898A JP2000164942A (ja) 1998-11-25 1998-11-25 熱電モジュール
JP10-333898 1998-11-25

Publications (2)

Publication Number Publication Date
RU99121198A RU99121198A (ru) 2001-07-10
RU2178221C2 true RU2178221C2 (ru) 2002-01-10

Family

ID=18271198

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99121198/28A RU2178221C2 (ru) 1998-11-25 1999-09-29 Термоэлектрический модуль (варианты) и способ формирования покрывающей пленки на термоэлектрическом элементе (варианты)

Country Status (6)

Country Link
US (1) US6252154B1 (ru)
JP (1) JP2000164942A (ru)
KR (1) KR100345823B1 (ru)
CN (1) CN1243381C (ru)
DE (1) DE19946700B4 (ru)
RU (1) RU2178221C2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006884A1 (fr) * 2004-07-08 2006-01-19 Gennadiy Gusamovich Gromov Module thermoelectrique
RU2515128C1 (ru) * 2012-09-11 2014-05-10 Общество с ограниченной ответственностью "ВИННЕР" Способ изготовления полупроводниковых ветвей для термоэлектрического модуля и термоэлектрический модуль
RU2537096C2 (ru) * 2013-01-28 2014-12-27 Открытое Акционерное Общество "Автоштамп" Термоэлектрический модуль (варианты)
WO2015126272A1 (ru) * 2014-02-24 2015-08-27 Общество С Ограниченной Ответственностью "Рустек" Способ изготовления полупроводниковых ветвей для термоэлектрического модуля и термоэлектрический модуль
RU2568078C2 (ru) * 2010-11-03 2015-11-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Термоэлектрический модуль для термоэлектрического генератора автомобиля
RU2601209C2 (ru) * 2014-11-17 2016-10-27 Александр Григорьевич Григорьянц Способ создания гибкого термоэлектрического модуля

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446957B1 (ko) * 2001-08-16 2004-09-01 전배혁 폴리머 코팅에 의한 드라이 플라워의 보존처리 방법
US7038234B2 (en) * 2001-12-12 2006-05-02 Hi-Z Technology, Inc. Thermoelectric module with Si/SiGe and B4C/B9C super-lattice legs
US6828579B2 (en) * 2001-12-12 2004-12-07 Hi-Z Technology, Inc. Thermoelectric device with Si/SiC superlattice N-legs
KR20030092692A (ko) * 2002-05-30 2003-12-06 이지환 열전소자와 전극이 일체화된 열전재료의 제조 방법
US7510303B2 (en) * 2002-10-28 2009-03-31 Dialight Corporation LED illuminated lamp with thermoelectric heat management
US6964501B2 (en) * 2002-12-24 2005-11-15 Altman Stage Lighting Co., Ltd. Peltier-cooled LED lighting assembly
US20060048809A1 (en) * 2004-09-09 2006-03-09 Onvural O R Thermoelectric devices with controlled current flow and related methods
US20060090787A1 (en) * 2004-10-28 2006-05-04 Onvural O R Thermoelectric alternators and thermoelectric climate control devices with controlled current flow for motor vehicles
JP4274134B2 (ja) * 2005-02-15 2009-06-03 ヤマハ株式会社 熱電モジュールおよびその製造方法
US8039726B2 (en) * 2005-05-26 2011-10-18 General Electric Company Thermal transfer and power generation devices and methods of making the same
US7310953B2 (en) * 2005-11-09 2007-12-25 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
US20070101737A1 (en) 2005-11-09 2007-05-10 Masao Akei Refrigeration system including thermoelectric heat recovery and actuation
EP1949464A4 (en) * 2005-11-17 2011-10-12 Carrier Corp VERSATILE ENERGY CONVERTER
JP2007150035A (ja) * 2005-11-29 2007-06-14 Kyocera Corp 熱電モジュール
US9373770B2 (en) * 2006-09-28 2016-06-21 Rosemount Inc. Industrial thermoelectric generator
KR100883852B1 (ko) * 2007-06-01 2009-02-17 주식회사 제펠 고집적 마이크로 전자 냉각 모듈 및 그 제조 방법
US7871847B2 (en) * 2007-10-05 2011-01-18 Marlow Industries, Inc. System and method for high temperature compact thermoelectric generator (TEG) device construction
DE102009009586A1 (de) 2009-02-19 2010-08-26 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelektrische Vorrichtung
CN101969094B (zh) * 2009-07-27 2012-08-29 中国科学院上海硅酸盐研究所 一种用于热电材料的涂层及其含有该涂层的器件
DE102009046099A1 (de) * 2009-10-28 2011-05-05 Robert Bosch Gmbh Verfahren zum Herstellen eines Seebeckschenkelmoduls und korrespondierendes Seebeckschenkelmodul
WO2011118341A1 (ja) * 2010-03-25 2011-09-29 京セラ株式会社 熱電素子及び熱電モジュール
WO2012037099A2 (en) * 2010-09-13 2012-03-22 Ferrotec (Usa) Corporation Thermoelectric modules and assemblies with stress reducing structure
WO2012056411A1 (en) 2010-10-27 2012-05-03 Basf Se Thermoelectric module and process for production thereof
US9082928B2 (en) 2010-12-09 2015-07-14 Brian Isaac Ashkenazi Next generation thermoelectric device designs and methods of using same
US20130228205A1 (en) * 2011-01-25 2013-09-05 Yury Vernikovskiy Apparatus for reversibly converting thermal energy to electric energy
JP2013012597A (ja) * 2011-05-31 2013-01-17 Imasen Electric Ind Co Ltd 熱交換器
US9444027B2 (en) 2011-10-04 2016-09-13 Infineon Technologies Ag Thermoelectrical device and method for manufacturing same
JP6008293B2 (ja) * 2012-04-09 2016-10-19 パナソニックIpマネジメント株式会社 熱電変換素子および熱電変換モジュール
JP6020239B2 (ja) * 2012-04-27 2016-11-02 東京エレクトロン株式会社 成膜方法及び成膜装置
US9496476B2 (en) 2013-06-11 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion module
JP6022419B2 (ja) * 2013-07-09 2016-11-09 株式会社Kelk 熱電発電モジュール
DE102013214988A1 (de) 2013-07-31 2015-02-05 Behr Gmbh & Co. Kg Thermoelektrisches Modul
CN105474417B (zh) * 2013-09-04 2018-11-23 富士胶片株式会社 热电转换装置
KR102158578B1 (ko) * 2014-01-08 2020-09-22 엘지이노텍 주식회사 열전모듈 및 이를 포함하는 열전환장치
JP6254459B2 (ja) * 2014-02-27 2017-12-27 東京エレクトロン株式会社 重合膜の耐薬品性改善方法、重合膜の成膜方法、成膜装置、および電子製品の製造方法
JP6689701B2 (ja) * 2016-07-27 2020-04-28 小島プレス工業株式会社 熱電変換モジュール及びその製造方法
KR101998220B1 (ko) * 2016-11-09 2019-07-09 중앙대학교 산학협력단 3차원 조립블록형 인-플레인 박막구조를 가지는 열전소자 모듈
CN111403584B (zh) * 2019-12-23 2023-03-10 杭州大和热磁电子有限公司 一种适用于非气密封装的热电模块及其制造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976430A (en) * 1959-04-20 1961-03-21 Tasker Instr Corp Function generator circuits
US3070644A (en) * 1960-02-11 1962-12-25 Gen Electric Thermoelectric generator with encapsulated arms
DE1272408B (de) * 1961-05-22 1968-07-11 North American Aviation Inc Thermoelektrischer Wandler
CH454980A (de) * 1967-04-27 1968-04-30 Bbc Brown Boveri & Cie Thermoelektrischer Generator
US4123308A (en) * 1977-10-19 1978-10-31 Union Carbide Corporation Process for chemically bonding a poly-p-xylylene to a thermosetting resin and article produced thereby
JPS60254677A (ja) * 1984-05-30 1985-12-16 Ricoh Co Ltd ペルチエ効果素子
DE3782983T2 (de) * 1986-07-30 1993-04-08 Hitachi Ltd Verfahren zur herstellung eines polyimidfilms durch chemische ablagerung aus der dampfphase.
JPH02113348U (ru) * 1989-02-23 1990-09-11
DE3926592A1 (de) * 1989-08-11 1991-02-14 Rheydt Kabelwerk Ag Optische faser
JP2833162B2 (ja) * 1990-06-20 1998-12-09 三菱電機株式会社 回路基板への実装方法
EP0495997B1 (en) * 1990-08-09 1998-03-11 Sumitomo Electric Industries, Ltd. Thermocouple
JPH0529666A (ja) * 1991-07-22 1993-02-05 Sumitomo Electric Ind Ltd 被覆熱電対
JP3400479B2 (ja) * 1993-02-10 2003-04-28 松下電工株式会社 電子加熱冷却装置
JP3188070B2 (ja) * 1993-10-07 2001-07-16 三菱重工業株式会社 熱電発電モジュール
JPH07307495A (ja) * 1994-05-12 1995-11-21 Matsushita Electric Ind Co Ltd ペルチェ素子
JPH07322644A (ja) * 1994-05-25 1995-12-08 Mitsubishi Cable Ind Ltd 静電アクチュエーター用電極構造及びその製造方法
JP3151759B2 (ja) 1994-12-22 2001-04-03 モリックス株式会社 熱電半導体針状結晶及び熱電半導体素子の製造方法
JPH08186296A (ja) * 1994-12-28 1996-07-16 Matsushita Electric Ind Co Ltd ペルチェ素子
JP3569836B2 (ja) * 1995-08-14 2004-09-29 小松エレクトロニクス株式会社 熱電装置
JPH09107129A (ja) * 1995-10-09 1997-04-22 Sharp Corp 半導体素子及びその製造方法
US5808233A (en) * 1996-03-11 1998-09-15 Temple University-Of The Commonwealth System Of Higher Education Amorphous-crystalline thermocouple and methods of its manufacture
JPH10313134A (ja) * 1997-05-14 1998-11-24 Kubota Corp 熱電モジュールの製造方法
JPH10144967A (ja) * 1996-11-06 1998-05-29 Nhk Spring Co Ltd 冷却用熱電素子モジュール
JPH10229223A (ja) * 1997-02-17 1998-08-25 Tekunisuko:Kk 熱電素子
JPH1168174A (ja) 1997-08-13 1999-03-09 Seru Appl Kk 熱電半導体チップ及び熱電モジュールの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006884A1 (fr) * 2004-07-08 2006-01-19 Gennadiy Gusamovich Gromov Module thermoelectrique
RU2568078C2 (ru) * 2010-11-03 2015-11-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Термоэлектрический модуль для термоэлектрического генератора автомобиля
US9318683B2 (en) 2010-11-03 2016-04-19 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Thermoelectric module for a thermoelectric generator of a vehicle and vehicle having thermoelectric modules
RU2515128C1 (ru) * 2012-09-11 2014-05-10 Общество с ограниченной ответственностью "ВИННЕР" Способ изготовления полупроводниковых ветвей для термоэлектрического модуля и термоэлектрический модуль
RU2537096C2 (ru) * 2013-01-28 2014-12-27 Открытое Акционерное Общество "Автоштамп" Термоэлектрический модуль (варианты)
WO2015126272A1 (ru) * 2014-02-24 2015-08-27 Общество С Ограниченной Ответственностью "Рустек" Способ изготовления полупроводниковых ветвей для термоэлектрического модуля и термоэлектрический модуль
KR101827663B1 (ko) 2014-02-24 2018-02-08 오브쉬체스트보 에스 오그라니첸노이 오트베트스트벤노스트유 “러스텍” 열전 모듈용 반도체 브랜치 및 열전 모듈의 제조 방법
RU2601209C2 (ru) * 2014-11-17 2016-10-27 Александр Григорьевич Григорьянц Способ создания гибкого термоэлектрического модуля

Also Published As

Publication number Publication date
JP2000164942A (ja) 2000-06-16
DE19946700B4 (de) 2007-12-06
KR100345823B1 (ko) 2002-07-24
KR20000034951A (ko) 2000-06-26
CN1254959A (zh) 2000-05-31
DE19946700A1 (de) 2000-06-15
CN1243381C (zh) 2006-02-22
US6252154B1 (en) 2001-06-26

Similar Documents

Publication Publication Date Title
RU2178221C2 (ru) Термоэлектрический модуль (варианты) и способ формирования покрывающей пленки на термоэлектрическом элементе (варианты)
RU99121198A (ru) Термоэлектрический модуль и способ формирования покрывающей пленки на термоэлектрическом элементе (варианты)
EP0229850B1 (en) Connection terminals between substrates and method of producing the same
US6328201B1 (en) Multilayer wiring substrate and method for producing the same
JPH08510868A (ja) 多層回路基板の隣接回路基板層間の電気的相互接続形成方法
US20030007330A1 (en) Multilayer circuit board and method for manufacturing multilayer circuit board
DE102012102090A1 (de) Thermoelektrisches Generatormodul, Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
US7369589B2 (en) Diode laser subelement and arrangements with such diode laser subelement
JP2009164498A (ja) 熱電モジュール
WO1997045882A1 (fr) Procede de fabrication d'un module thermoelectrique
RU99112481A (ru) Пьезоэлектрический исполнительный элемент с контактированием нового типа и способ изготовления
US20130283611A1 (en) Thermoelectric module
US20180242464A1 (en) Multilayer substrate and method for manufacturing the same
US20210410282A1 (en) Carrier substrate for electrical, more particularly electronic, components, and method for producing a carrier substrate
JP3724262B2 (ja) 熱電素子モジュール
US5254811A (en) Hybrid microchip bonding article
NO313352B1 (no) Piezoelektrisk resonator og komponent med samme
KR102374415B1 (ko) 열전 소자
US20020024138A1 (en) Wiring board for high dense mounting and method of producing the same
US6815874B2 (en) Form-adaptable electrode structure in layer construction
WO2018021173A1 (ja) 熱電変換モジュール
US7161089B2 (en) Electronic component
CN114171317A (zh) 电子组件
JPH0620010B2 (ja) 超電導コイル
JP7439485B2 (ja) 半導体モジュール

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130930