RU2537096C2 - Термоэлектрический модуль (варианты) - Google Patents

Термоэлектрический модуль (варианты) Download PDF

Info

Publication number
RU2537096C2
RU2537096C2 RU2013103458/28A RU2013103458A RU2537096C2 RU 2537096 C2 RU2537096 C2 RU 2537096C2 RU 2013103458/28 A RU2013103458/28 A RU 2013103458/28A RU 2013103458 A RU2013103458 A RU 2013103458A RU 2537096 C2 RU2537096 C2 RU 2537096C2
Authority
RU
Russia
Prior art keywords
weight
thermoelectric module
coating
polymer coating
buses
Prior art date
Application number
RU2013103458/28A
Other languages
English (en)
Other versions
RU2013103458A (ru
Inventor
Валерий Иванович Гришин
Татьяна Николаевна Маева
Original Assignee
Открытое Акционерное Общество "Автоштамп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Автоштамп" filed Critical Открытое Акционерное Общество "Автоштамп"
Priority to RU2013103458/28A priority Critical patent/RU2537096C2/ru
Priority to US14/764,059 priority patent/US10475981B2/en
Priority to CN201480006441.0A priority patent/CN105556689B/zh
Priority to PCT/RU2014/000110 priority patent/WO2014116145A1/ru
Priority to KR1020157017989A priority patent/KR101837008B1/ko
Publication of RU2013103458A publication Critical patent/RU2013103458A/ru
Application granted granted Critical
Publication of RU2537096C2 publication Critical patent/RU2537096C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

Изобретение относится к термоэлектрическим устройствам и может быть использовано в устройствах различного назначения, в которых использованы термоэлектрические модули. Сущность: термоэлектрический модуль содержит полупроводниковые ветви 3 и 4 N- и P-типов проводимости, соединенные коммутационными шинами 5 в электрическую цепь, и защитное полимерное покрытие 8. Защитное полимерное покрытие 8 нанесено на соединенные между собой ветви 3, 4 и шины 5. Покрытие получено методом катодного или анодного электроосаждения из полимерной лакокрасочной водной композиции с добавлением синтанола от 1-2% по массе, полиэтиленгликоля 1,5-3% по массе и латекса фторкаучука с содержанием функционального мономера, состоящего из фтора до 70% по массе. Покрытие имеет толщину 5-23 мкм и содержание фтора 1% до 25% по массе. 3 н. и 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к термоэлектрическим устройствам и может быть использовано в устройствах различного назначения, в которых использованы термоэлектрические модули.
Известен термоэлектрический модуль, содержащий полупроводниковые ветви N- и P-типов проводимости, соединенные коммутационными шинами в электрическую цепь, и защитное полимерное покрытие (см. заявки США №2008000511 (A1) от 2008-01-03, №2008041067 (A1) от 2008-02-21).
Недостатком известного термоэлектрического модуля является то, что посредством электроосаждения покрытия на внутренних частях термоэлектрического модуля, а именно на полупроводниковых ветвях N- и P-типов, заключенных в каркас (теплоизоляционная пластина), и шинах нет единого сплошного защитного полимерного покрытия. Это связано со способом изготовления, используемого для получения термоэлектрического модуля, описанного в ближайших аналогах (см. заявки США №2008000511 (A1) от 2008-01-03, №2008041067 (A1) от 2008-02-21). Этот способ включает в себя процесс соединения теплообменных пластин и термоэлектрических элементов термоэлектрического модуля, процесс погружения термоэлектрического модуля в ванну с электроосаждаемой краской. Погружение выполняется после процесса соединения. После нанесения защитного полимерного покрытия происходит термоотверждение в печи. Важный момент заключается в том, что погружение выполняется после процесса соединения всех элементов между собой. Формирование равномерного, сплошного, защитного полимерного покрытия возможно только на внешних элементах термоэлектрического модуля (теплообменных пластинах), а на внутренних элементах термоэлектрического модуля данной конструкции электроосаждению краски препятствует сложная геометрическая форма, где не происходит полной изоляции.
Проявлению указанного недостатка также способствует использование краски на основе эпоксидной смолы, которая не обладает необходимой высокой рассеивающей способностью. Кроме того, полученное защитное полимерное покрытие на основе эпоксидной смолы не эластично, что в процессе эксплуатации термоэлектрического модуля приводит к его растрескиванию, нарушая этим целостность изоляции.
Технический результат, на достижение которого направлено изобретение, заключается в повышении надежности термоэлектрического модуля за счет устранения вышеуказанных недостатков путем полной защиты всех его электропроводящих частей эластичным защитным полимерным покрытием. Например: непрерывная работа до отказа термоэлектрического модуля без герметизации по периметру (без герметизации теплообменных пластин) при влажности W=100% и температуре T=25°C составляет более 36000 часов.
Указанный технический результат в изобретении по первому варианту достигается тем, что в термоэлектрическом модуле, содержащем полупроводниковые ветви N- и P-типов проводимости, соединенные коммутационными шинами в электрическую цепь, и защитное полимерное покрытие, защитное полимерное покрытие нанесено на соединенные между собой ветви и шины по всей их открытой поверхности, при этом в качестве покрытия использована электроосаждаемая полимерная лакокрасочная композиция, модифицированная латексом фторкаучука.
Термоэлектрический модуль может быть выполнен с теплообменными пластинами, приклеенными теплопроводящим эластичным клеем поверх слоя изоляции.
Технический результат в изобретении по второму варианту достигается тем, что в термоэлектрическом модуле, содержащем полупроводниковые ветви N- и P-типов проводимости, соединенные в электрическую цепь коммутационными шинами, соединенными с соответствующими теплообменными пластинами, и защитное полимерное покрытие, теплообменные пластины выполнены из неэлектропроводного материала, а защитное полимерное покрытие нанесено только на соединенные между собой ветви и шины, при этом в качестве покрытия использована электроосаждаемая полимерная лакокрасочная композиция, модифицированная латексом фторкаучука.
Коммутационные шины внешними сторонами могут быть присоединены к теплообменным пластинам по технологии DBC (сращивание Cu с теплообменной пластиной из Al2O3 посредством химической реакции) или приклеены теплопроводящим эластичным клеем.
Технический результат в изобретении по третьему варианту достигается тем, что в термоэлектрическом модуле, содержащем полупроводниковые ветви N- и P-типов проводимости, соединенные в электрическую цепь коммутационными шинами, теплообменные пластины и защитное полимерное покрытие, одна теплообменная пластина выполнена из неэлектропроводного материала и непосредственно соединена с шинами, а другая теплообменная пластина соединена с шинами через покрывающее их и ветви защитное полимерное покрытие, в качестве которого использована электроосаждаемая полимерная лакокрасочная композиция, модифицированная латексом фторкаучука.
Коммутационные шины могут быть присоединены к одной теплообменной пластине по технологии DBC или приклеены теплопроводящим эластичным клеем.
Во всех вариантах изобретения защитное полимерное покрытие толщиной от 5-23 мкм с содержанием фтора от 1% до 25% по массе получено методом катодного или анодного электроосаждения из полимерной лакокрасочной водной композиции с добавлением латекса фторкаучука с содержанием функционального мономера, состоящего из: фтора до 70% по массе, синтанола от 1-2% по массе, полиэтиленгликоля 1,5-3% по массе.
Сущность изобретения поясняется чертежами.
На фиг.1 показан общий вид однокаскадного и многокаскадного термоэлектрического модуля; на фиг.2 показан частично разрезанный (разобранный) термоэлектрический модуль для детального просмотра.
Термоэлектрический модуль (фиг.1) однокаскадный 1 или многокаскадный 2 содержит полупроводниковые ветви (фиг.2) N-типа 3 и Р-типа 4, расположенные параллельно и не касающиеся друг друга, коммутационные шины 5, соединяющие по торцам 6 полупроводниковые ветви 3 и 4 в электрическую цепь. Все полупроводниковые ветви соединены коммутационными шинами, а коммутационные шины 5 внешними сторонами присоединены к теплообменным пластинам 7.
Особенностью всех вариантов термоэлектрического модуля является применение защитного полимерного покрытия 8, в качестве которого использована электроосаждаемая полимерная лакокрасочная композиция, модифицированная латексом фторкаучука.
Особенностью термоэлектрического модуля по первому варианту является возможность его использования без теплообменных пластин 7. В случае необходимости использования теплообменных пластин 7, последние соединяются с коммутационными шинами 5 через предварительно нанесенное защитное полимерное покрытие 8 с использованием теплопроводящего эластичного клея.
Особенностью термоэлектрического модуля по второму варианту является использование теплообменных пластин 7 из неэлектропроводного материала, что позволяет исключить нанесение защитного полимерного покрытия 8 на теплообменные пластины 7 в процессе электроосаждения покрытия из полимерной лакокрасочной водной композиции. Таким образом, во втором варианте защитное полимерное покрытие нанесено только на соединенные между собой ветви и шины термоэлектрического модуля.
Особенностью термоэлектрического модуля по третьему варианту является использование одной (горячей) теплообменной пластины 7 из неэлектропроводного материала, присоединенной к одним коммутационным шинам 5 перед нанесением защитного полимерного покрытия 8 по технологии DBC или теплопроводящим эластичным клеем. Другая (холодная) теплообменная пластина 7 соединена с шинами 5 через покрывающее их и ветви защитное полимерное покрытие, т.е. после его электроосаждения.
Методом нанесения покрытия 8 является катодное или анодное электроосаждение. В качестве материала ветвей Р-типа проводимости используются твердые растворы (Bi2Te3)X (Sb2Te3)1-X и (Bi2Te3)X(SD2Te3)Y(Sb2Se3)1-X-Y. В качестве материала ветвей N-типа проводимости используются твердые растворы (Bi2Se3)X (Bi2Te3)1-X.
Полупроводниковые ветви могут быть разного сечения (круглого, квадратного, прямоугольного и т.д.) и разного размера. Готовые ветви 3 и 4 на торцах защищены антидиффузионным покрытием в виде металла, например Ni и покрытием для пайки в виде сплава олова или золота (Au). Шины 5 сделаны из меди (Cu) и могут быть защищены покрытием в виде металла, например Ni и покрытием для пайки в виде сплава олова или золота (Au). В качестве соединения ветвей 3 и 4 с шинами 5 используются легкоплавкие припои на основе олова (Sn) и другие. Для того чтобы собранный термоэлектрический модуль защитить от агрессивных воздействий внешней среды, коррозии, повышенной влажности, электрического замыкания, предлагается нанести защитное полимерное покрытие методом катодного или анодного электроосаждения.
Для того чтобы адгезия сплошного покрытия к электропроводящим частям термоэлектрического модуля была высокой, необходимо термоэлектрический модуль проверить на отмывку от флюсов тестом ZESTRON® Flux Test или ему подобным. При получении удовлетворительного результата термоэлектрический модуль необходимо обработать растворителями: изопропиловым спиртом T=45-50°C t=3 мин, далее ацетоном Т=25°C t=1 мин, растворами для снятия окисных пленок с материала ветвей и медных шин, которые содержат органические кислоты и комплексообразователи при T=40-45°C, в течение t=2-5 минут, тщательно промыть обессоленной водой в ультразвуковых ваннах 2 раза T=30-35°C, t=1-3 минут. После подготовки электропроводящей поверхности термоэлектрического модуля наносится полимерная лакокрасочная водная композиция с высокой рассеивающей способностью. Эта лакокрасочная композиция позволяет получить равномерные по толщине, тонкие, химически стойкие покрытия на изделиях сложной конфигурации. Она основана на использовании в нужных соотношениях компонентов лакокрасочной системы. В состав этой композиции входят: связующее - эпоксиаминный аддукт, частично модифицированный блокированным толуилендиизоцианатом, нейтрализованный уксусной кислотой в виде водной эмульсии с содержанием нелетучих веществ 36-38%, пигментная паста, стабилизированная указанным аддуктом (пигменты могут быть любые), с содержанием нелетучих веществ 60-64% и модифицированная химически стойкой добавкой латексом фторкаучука (это сополимеры винилиденфторида, гексафторпропилена, тетрафторэтилена и функционального мономера с содержанием фтора 70% по массе, плотностью 1,91 кг/см3), уксусная кислота и вода. Изготовление покрытий на основе водного латекса фторкаучука с концентрацией последнего не менее 60% является альтернативой растворной (то есть на основе органических растворителей, которая является достаточно токсичной) технологии. Полимерная лакокрасочная водная композиция состоит из деминерализованной воды, нужного количества латекса фторкаучука, подкисленного уксусной кислотой, эмульсии пленкообразователя, при этом происходит дополнительная стабилизация частиц латекса фторкаучука аддуктом. При перемешивании добавляют пигментную пасту. Для увеличения способности к смачиванию, стабилизации эмульсии, равномерности окраски (выравнивания), защитноколлоидного действия в лакокрасочную водную композицию вводятся добавки синтанола (оксиэтилированные спирты, представляют собой смесь полиэтиленгликолевых эфиров с различным количеством оксиэтильных групп и величиной радикала R). Неионогенные поверхностно-активные вещества: общая химическая формула CnH(2n+1)O(C2H4O)m, где n - длина углеродной цепи m - степень этоксилирования плотность 0,95 г/см3, и полиэтиленгликоль со средним значением молекулярной массы в пределах 1400-1600. Получаем рабочий раствор с диапазоном параметров: содержание сухого вещества 18-20%, pH 5,2-5,7, электропроводность 1400-1800 мкСм/см. Нанесение покрытия осуществляется при погружении термоэлектрического модуля в ванну электроосаждения, которая оснащена качающейся анодной или катодной штангой, системами перемешивания, фильтрации, ультразвуковой дегазации и термостатирования рабочего раствора при T=28-32°C, системой электродиализной очистки и источником постоянного тока в режиме U=160-250 B. Термоэлектрический модуль, закрепленный в оснастку, является анодом или катодом, а специально опущенные в ванну пластины - противоположным электродом. Процесс образования покрытия на электропроводящей поверхности термоэлектрического модуля заключается в том, что под действием электрического тока водорастворимая пленкообразующая смола теряет свою растворимость, осаждаясь на электропроводящую поверхность термоэлектрического модуля. Участки электропроводящей поверхности термоэлектрического модуля, находящиеся в зоне максимальной плотности тока, окрашиваются в первую очередь; затем, по мере возрастания изолирующего действия осажденного слоя, происходит перераспределение силовых линий электрического поля и смещение области осаждения по поверхности окрашиваемой электропроводящей части термоэлектрического модуля. В результате образуется плотное тонкое электроизоляционное покрытие на всей поверхности электропроводящей части термоэлектрического модуля. Время формирования электроосаждаемого покрытия составляет 60-120 сек. После окраски покрытия промывают путем окунания в ванне с обессоленной водой и термоотверждают в печи при 180-220°C в течение 10-30 минут. Полученное покрытие методом катодного или анодного электроосаждения обеспечивает толщину от 5-23 мкм.
Таким образом, термоэлектрический модуль со сформированным полимерным покрытием на электропроводящих частях методом катодного или анодного электроосаждения получает надежную защиту от:
1) агрессивных воздействий внешней среды: коррозии, повышенной влажности;
2) электрического замыкания;
3) разрушения ветви, как от механического, так и температурного напряжения;
а также имеет преимущество перед другими методами:
1) возможность использовать в крупносерийном производстве;
2) встраиваемость в автоматический процесс;
3) минимальное участие человека в процессе (гарантированное качество полимерного покрытия);
4) простота в использовании;
5) возможность дополнительно усилить герметизацию (для особых условий);
6) минимальные затраты на расходные материалы. Полимерное покрытие наносится только на электропроводящие части, которые действительно необходимо защищать, в отличие от известных методов, приводящих к перерасходу материала, т.к. для того чтобы сделать усиленную герметизацию термоэлектрического модуля (для особых условий), керамика должна быть чистой, без полиимида или поли (замещенного или незамещенного) p-ксилена, так как для совмещения материалов нужны специальные праймеры, у которых будет высокая адгезия как к керамике, так и к герметику (силиконовый, эпоксидный и т.д.). Полиимид или поли (замещенный или незамещенный) p-ксилен не может иметь одинаково хорошую адгезию ко всем герметикам. В варианте усиленной герметизации лишний слой только ухудшает надежность.
Для защиты термоэлектрического модуля метод катодного или анодного электроосаждения имеет большое значение в создании перспективных защитных покрытий как для стандартных, так и для особых условий применения. Он дает возможность повысить надежность герметизации и обеспечит длительный срок эксплуатации термоэлектрического модуля.

Claims (6)

1. Термоэлектрический модуль, содержащий полупроводниковые ветви N- и P-типов проводимости, соединенные коммутационными шинами в электрическую цепь, и защитное полимерное покрытие, нанесенное на соединенные между собой ветви и шины по всей их открытой поверхности, отличающийся тем, что защитное полимерное покрытие получено методом катодного или анодного электроосаждения из полимерной лакокрасочной водной композиции с добавлением синтанола от 1-2% по массе, полиэтиленгликоля 1,5-3% по массе и латекса фторкаучука с содержанием функционального мономера, состоящего из фтора до 70% по массе, для получения покрытия толщиной от 5-23 мкм и с содержанием фтора от 1% до 25% по массе.
2. Термоэлектрический модуль по п.1, отличающийся тем, что выполнен с теплообменными пластинами, приклеенными теплопроводящим эластичным клеем через защитное полимерное покрытие к коммутационным шинам.
3. Термоэлектрический модуль, содержащий полупроводниковые ветви N- и P-типов проводимости, соединенные в электрическую цепь коммутационными шинами, соединенными с соответствующими теплообменными пластинами, и защитное полимерное покрытие, отличающийся тем, что теплообменные пластины выполнены из неэлектропроводного материала, а защитное полимерное покрытие нанесено только на соединенные между собой ветви и шины и получено методом катодного или анодного электроосаждения из полимерной лакокрасочной водной композиции с добавлением синтанола от 1-2% по массе, полиэтиленгликоля 1,5-3% по массе и латекса фторкаучука с содержанием функционального мономера, состоящего из фтора до 70% по массе, для получения покрытия толщиной от 5-23 мкм и с содержанием фтора от 1% до 25% по массе.
4. Термоэлектрический модуль по п.3, отличающийся тем, что коммутационные шины внешними сторонами присоединены к теплообменным пластинам по технологии DBC или приклеены теплопроводящим эластичным клеем.
5. Термоэлектрический модуль, содержащий полупроводниковые ветви N- и P-типов проводимости, соединенные в электрическую цепь коммутационными шинами, теплообменные пластины и защитное полимерное покрытие, отличающийся тем, что одна теплообменная пластина выполнена из неэлектропроводного материала и непосредственно соединена с шинами, а другая теплообменная пластина соединена с шинами через покрывающее их и ветви защитное полимерное покрытие, полученное методом катодного или анодного электроосаждения из полимерной лакокрасочной водной композиции с добавлением синтанола от 1-2% по массе, полиэтиленгликоля 1,5-3% по массе и латекса фторкаучука с содержанием функционального мономера, состоящего из фтора до 70% по массе, для получения покрытия толщиной от 5-23 мкм и с содержанием фтора от 1% до 25% по массе.
6. Термоэлектрический модуль по п.5, отличающийся тем, что коммутационные шины присоединены к одной теплообменной пластине по технологии DBC или приклеены теплопроводящим эластичным клеем.
RU2013103458/28A 2013-01-28 2013-01-28 Термоэлектрический модуль (варианты) RU2537096C2 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2013103458/28A RU2537096C2 (ru) 2013-01-28 2013-01-28 Термоэлектрический модуль (варианты)
US14/764,059 US10475981B2 (en) 2013-01-28 2014-02-20 Thermoelectric module
CN201480006441.0A CN105556689B (zh) 2013-01-28 2014-02-20 热电模块
PCT/RU2014/000110 WO2014116145A1 (ru) 2013-01-28 2014-02-20 Термоэлектрический модуль (варианты)
KR1020157017989A KR101837008B1 (ko) 2013-01-28 2014-02-20 열전모듈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013103458/28A RU2537096C2 (ru) 2013-01-28 2013-01-28 Термоэлектрический модуль (варианты)

Publications (2)

Publication Number Publication Date
RU2013103458A RU2013103458A (ru) 2014-08-10
RU2537096C2 true RU2537096C2 (ru) 2014-12-27

Family

ID=51227844

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013103458/28A RU2537096C2 (ru) 2013-01-28 2013-01-28 Термоэлектрический модуль (варианты)

Country Status (5)

Country Link
US (1) US10475981B2 (ru)
KR (1) KR101837008B1 (ru)
CN (1) CN105556689B (ru)
RU (1) RU2537096C2 (ru)
WO (1) WO2014116145A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10622909B2 (en) * 2017-01-12 2020-04-14 Ford Global Technologies, Llc Power module for inverter switching devices having gate coils shielded from eddy currents
RU2680675C1 (ru) * 2018-03-21 2019-02-25 Общество с ограниченной ответственностью "Компания РМТ" Способ изготовления термоэлектрических микроохладителей (варианты)
JP7091958B2 (ja) 2018-09-11 2022-06-28 株式会社デンソー 射出成形品の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237019A (ja) * 1993-02-10 1994-08-23 Matsushita Electric Works Ltd 電子加熱冷却装置
RU10289U1 (ru) * 1998-12-16 1999-06-16 Специализированное конструкторско-технологическое бюро "Норд" Термоэлектрический охлаждающий модуль
JP2000022224A (ja) * 1998-07-01 2000-01-21 Seiko Instruments Inc 熱電素子及びその製造方法
RU2178221C2 (ru) * 1998-11-25 2002-01-10 Мацусита Электрик Воркс, Лтд. Термоэлектрический модуль (варианты) и способ формирования покрывающей пленки на термоэлектрическом элементе (варианты)
RU41549U1 (ru) * 2004-07-08 2004-10-27 Закрытое акционерное общество "РТМ" Термоэлектрический модуль
RU2437908C1 (ru) * 2010-04-21 2011-12-27 Юрий Валерьевич Герасимов Лакокрасочная композиция с высокой рассеивающей способностью для получения химстойких покрытий методом электроосаждения на катоде
US20120145215A1 (en) * 2010-12-14 2012-06-14 Samsung Electro-Mechanics Co., Ltd. Thermoelectric module and method of sealing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712559B2 (ja) * 2004-02-09 2011-06-29 株式会社トクヤマ メタライズドセラミックス成形体、その製法およびペルチェ素子
JP2008034792A (ja) * 2006-06-28 2008-02-14 Denso Corp 熱電変換装置およびその製造方法
JP2010165843A (ja) * 2009-01-15 2010-07-29 Sumitomo Chemical Co Ltd 熱電変換モジュールの製造方法及び熱電変換モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237019A (ja) * 1993-02-10 1994-08-23 Matsushita Electric Works Ltd 電子加熱冷却装置
JP2000022224A (ja) * 1998-07-01 2000-01-21 Seiko Instruments Inc 熱電素子及びその製造方法
RU2178221C2 (ru) * 1998-11-25 2002-01-10 Мацусита Электрик Воркс, Лтд. Термоэлектрический модуль (варианты) и способ формирования покрывающей пленки на термоэлектрическом элементе (варианты)
RU10289U1 (ru) * 1998-12-16 1999-06-16 Специализированное конструкторско-технологическое бюро "Норд" Термоэлектрический охлаждающий модуль
RU41549U1 (ru) * 2004-07-08 2004-10-27 Закрытое акционерное общество "РТМ" Термоэлектрический модуль
RU2437908C1 (ru) * 2010-04-21 2011-12-27 Юрий Валерьевич Герасимов Лакокрасочная композиция с высокой рассеивающей способностью для получения химстойких покрытий методом электроосаждения на катоде
US20120145215A1 (en) * 2010-12-14 2012-06-14 Samsung Electro-Mechanics Co., Ltd. Thermoelectric module and method of sealing the same

Also Published As

Publication number Publication date
WO2014116145A1 (ru) 2014-07-31
US20160005946A1 (en) 2016-01-07
RU2013103458A (ru) 2014-08-10
US10475981B2 (en) 2019-11-12
CN105556689A (zh) 2016-05-04
CN105556689B (zh) 2018-06-22
KR101837008B1 (ko) 2018-03-09
KR20160002670A (ko) 2016-01-08

Similar Documents

Publication Publication Date Title
RU2537096C2 (ru) Термоэлектрический модуль (варианты)
KR101827663B1 (ko) 열전 모듈용 반도체 브랜치 및 열전 모듈의 제조 방법
DE69132654T2 (de) Verfahren zum Verlöten eines Kupferdrahtes auf einen Silberkontakt einer Silizium-Solarzelle und Verwendung dieses Verfahrens für eine Vielzahl von Silizium-Solarzellen
US5098485A (en) Method of making electrically insulating metallic oxides electrically conductive
KR101190612B1 (ko) 태양전지용 후면 전극 조성물
CN1326158C (zh) 导电性玻璃和使用其的光电变换元件
CN101853711B (zh) 导电性糊剂组合物及其制造方法
DE69231779T2 (de) Herstellungsverfahren von ohmschen Kontakten und photovoltaische Zelle mit ohmschem Kontakt
SE518454C2 (sv) Metod för framställning av en elektrokemisk cell samt elektrokemisk cell
Golgovici et al. Cathodic deposition of components in BiSbTe ternary compounds as thermoelectric films using choline-chloride-based ionic liquids
CN107962317A (zh) 一种水基免清洗型助焊剂
CN101593589A (zh) 宇航级片式厚膜电阻器的制造方法
CN101710493A (zh) 一种石墨散热模组及制造工艺
CN102179380B (zh) 清洗已封口的锂-二硫化铁电池的方法
CN105951067B (zh) 镀锡钢板用无铬钝化剂及其制备方法
RU2516189C2 (ru) Способ нанесения металлического покрытия на токопередающие поверхности разборных контактных соединений
CN106400072B (zh) 一种耐腐蚀铝基复合材料及其制备工艺
US10508255B2 (en) Cleaning composition and cleaning method
TW201317282A (zh) 摻雜態共軛高分子膜之製備及處理方法
EP0395453B1 (en) Electrode for electroviscous fluid
CN102002742B (zh) 一种镀液配方及配制方法及在铝基板上电镀的方法
CN102595771B (zh) 一种具有保护层的纸基印刷电路板及其制备方法
JP5655770B2 (ja) 電子部品及び当該電子部品の製造方法
CN105632672A (zh) 一种电子陶瓷元件表面处理方法和表面处理液
KR101532201B1 (ko) 금속용 내부식성 도료 조성물 및 이를 이용하여 도장한 도장 물품

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20171019