KR101363675B1 - 탄소 섬유 다발의 제조 방법 - Google Patents

탄소 섬유 다발의 제조 방법 Download PDF

Info

Publication number
KR101363675B1
KR101363675B1 KR1020137000333A KR20137000333A KR101363675B1 KR 101363675 B1 KR101363675 B1 KR 101363675B1 KR 1020137000333 A KR1020137000333 A KR 1020137000333A KR 20137000333 A KR20137000333 A KR 20137000333A KR 101363675 B1 KR101363675 B1 KR 101363675B1
Authority
KR
South Korea
Prior art keywords
fiber bundle
roll
furnace
carbonization
pitch
Prior art date
Application number
KR1020137000333A
Other languages
English (en)
Other versions
KR20130020914A (ko
Inventor
야스히또 도꼬로
도모유끼 고따니
Original Assignee
미쯔비시 레이온 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쯔비시 레이온 가부시끼가이샤 filed Critical 미쯔비시 레이온 가부시끼가이샤
Publication of KR20130020914A publication Critical patent/KR20130020914A/ko
Application granted granted Critical
Publication of KR101363675B1 publication Critical patent/KR101363675B1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/14Pulleys, rollers, or rotary bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/16Guides for filamentary materials; Supports therefor formed to maintain a plurality of filaments in spaced relation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/314Carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/38Thread sheet, e.g. sheet of parallel yarns or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)

Abstract

본 발명은 탄소 섬유의 제조 공정에 있어서 품질을 손상시키지 않고 생산성이 우수한 탄소 섬유 다발의 제조 방법을 제공한다. 내염화 공정과 전탄소화 공정과 탄소화 공정을 포함하며, 내염화 공정에서의 섬유 다발의 주행 피치를 P1, 전탄소화 공정에서의 섬유 다발의 주행 피치를 P2, 탄소화 공정에서의 섬유 다발의 주행 피치를 P3으로 하였을 때, 0.8≤P2/P1≤1.0 및 0.4≤P3/P1≤0.8을 만족하거나, 전탄소화로의 가열 처리부의 입구에서의 섬유 다발의 주행 피치를 P11, 상기 전탄소화로의 가열 처리부의 출구에서의 섬유 다발의 주행 피치를 P12로 하였을 때, 0.40≤(P12/P11)≤0.90을 만족하거나, 또는 탄소화로의 가열 처리부의 입구에서의 섬유 다발의 주행 피치를 P13, 상기 탄소화로의 가열 처리부의 출구에서의 섬유 다발의 주행 피치를 P14로 하였을 때, 0.40≤(P14/P13)≤0.90을 만족하는 탄소 섬유 다발의 제조 방법이다.

Description

탄소 섬유 다발의 제조 방법 {METHOD FOR PRODUCING CARBON-FIBER BUNDLES}
본 발명은 탄소 섬유 다발의 제조 방법에 관한 것이다.
탄소 섬유 다발은, 통상, 탄소 섬유 다발의 전구체인 아크릴계 섬유 다발을 200 내지 300℃의 산화성 분위기의 로(이하, 내염화로라고 함)에 통과시켜, 이른바 내염화 처리를 실시하고 나서 순차적으로 최고 처리 온도가 500 내지 800℃인 온도의 불활성 분위기 로(이하, 전탄소화로라고 함), 최고 처리 온도가 1000℃를 초과하는 온도의 불활성 분위기 로(이하, 탄소화로라고 함)를 통과시켜 탄소화하여 제조한다. 또한, 필요에 따라 최고 처리 온도가 2000℃를 초과하는 온도의 불활성 분위기 로(이하, 흑연화로라고 함)를 통과시켜 흑연화를 행함으로써, 고탄성의 흑연화 섬유 다발을 제조할 수 있다.
내염화로에서는 산화성 분위기하에서 전구체 섬유 다발을 열 처리하는데, 이 때 전구체 섬유 다발은 산화 반응하여 발열한다. 이 반응열이 섬유 다발 내부에 축열하여 발화하지 않도록 열 처리 온도를 200 내지 300℃로 낮게 설정하기 때문에, 소정의 내염화 섬유 다발을 얻기 위해서는 장시간의 열 처리가 요구된다.
탄소 섬유의 수요가 증대하여 생산량을 늘리고자 하면, 동시에 다수의 섬유 다발을 투입하거나 소성 속도를 높이게 된다. 그러나, 동시에 다수의 섬유 다발을 투입하여 생산 능력을 증강하기 위해서는 반응열이 섬유 다발 내부에 축열하여 발화하지 않도록 보다 낮은 온도에서 장시간의 처리가 요구되기 때문에 한계가 있다. 또한, 소성 속도를 올려 생산 능력을 증강하기 위해서는, 내염화로 내를 주행하고 있는 전구체 섬유 다발의 길이를 길게 하면 된다. 내염화로 내를 주행하고 있는 전구체 섬유 다발의 길이를 길게 하기 위해서는, 전구체 섬유 다발은 일단 내염화로의 외부로 나온 후, 내염화로의 외부에 배치된 절첩 롤에 의해 절첩되어 내염화로에 반복하여 통과시키는 방법이 통상 채용된다.
내염화로에서 열 처리가 완료된 내염화 섬유 다발은, 섬유 다발이 산화되지 않도록 불활성 가스 분위기로 채운 전탄소화로에 있어서 최고 처리 온도 500 내지 800℃에서 처리한 후, 불활성 가스 분위기로 채운 최고 처리 온도가 1000℃를 초과하는 온도에서 처리를 행하는 탄소화로를 연속적으로 통과시켜 탄소 섬유 다발로 전화한다. 탄소 섬유 다발로 전화되고 있는 섬유 다발은 매우 약하여, 섬유 다발 내의 일부가 끊어지기 때문에 일어나는 보풀 발생, 심할 때에는 섬유 다발 그 자체가 끊어지기 때문에 신중하게 주행시키지 않으면 안된다. 또한, 이 과정은 매우 단시간에 탄소 섬유 다발로 전화하는 것, 섬유 다발의 승온 속도가 품질에 크게 영향을 주는 것, 탄소 섬유 다발에의 전화 단계에서 대량의 분해물이 발생하여, 섬유 다발을 로 내에 반복하여 통과시키면 분해물로 섬유 다발이 오염되어 품질 저하의 원인이 되는 것 등으로부터, 통상 1회의 통과로 열 처리를 완료시키고 있다. 탄소 섬유의 수요가 증대하여 생산량을 늘리고자 하면, 소성 속도를 올리거나, 동시에 다수의 섬유 다발을 투입하게 된다. 그러나, 소성 속도를 올려 생산 능력을 증강하기 위해서는 로 길이가 길어져 한계가 있기 때문에, 동시에 다수의 섬유 다발을 투입하면 된다.
특허문헌 1에는 아크릴로니트릴계 전구체 섬유의 밀도 상승에 맞추어 토우 폭을 좁힘으로써 품질이 좋은 탄소 섬유를 생산성 좋게 하는 방법이 개시되어 있다. 그러나, 상기 방법에서는 내염화 공정 중에 전구체 섬유의 주행 피치가 좁아지는 경우가 있기 때문에, 섬유 다발 내부의 반응열에 의한 축열을 제거할 수 없게 되는 경우가 있다. 이로 인해 내염화 공정에서 통상 행해지고 있는 전구체 섬유의 밀도 상승에 맞추어 처리 온도를 올리는 방법을 행할 수 없는 경우가 있어, 내염화 처리 시간이 장시간이 되므로 생산성이 오히려 저하하는 경우가 있다.
또한, 특허문헌 2에는 내염화로로부터 나온 다수의 내염화 섬유 다발을 복수의 섬유 다발군으로 분할하고, 각 섬유 다발군은 수평 방향으로는 풀링 오버되고, 연직 방향으로는 섬유 다발군마다 단이 형성됨으로써, 탄소화로의 내염화 섬유 다발의 투입구를 편평한 형상으로 하지 않고 열 효율을 올리는 방법이 개시되어 있다. 그러나, 상기 방법은 연직 방향으로 복수단으로 분할된 각 섬유 다발군의 가열 조건이 상하의 섬유 다발군에서 상이한 경우가 있기 때문에, 탄소 섬유 다발의 물성이 상이한 경우가 있어 품질이 안정되지 않는 경우가 있다.
일본 특허 공개 제2008-19526호 공보 일본 특허 제3047695호 공보
본 발명은 섬유 다발수 증가에 따른 전탄소화 공정 및 탄소화 공정에서 사용하는 고온로(전탄소화로 및 탄소화로)의 대형화를 해소하여, 설비비 및 에너지면에서 생산성이 높고, 품질이 안정된 탄소 섬유 다발의 제조 방법을 제공하는 것을 목적으로 한다.
탄소 섬유 다발의 제조 방법에 관한 제1 발명은, 복수개의 전구체 섬유 다발을 가로 일렬로 평행하게 배열한 상태에서 산화성 가스 분위기하에 200 내지 300℃에서 가열 처리하여 내염화 섬유 다발로 하는 내염화 공정과, 상기 내염화 섬유 다발을 가로 일렬로 평행하게 배열한 상태에서 불활성 가스 분위기하에 500 내지 800℃의 최고 처리 온도에서 가열 처리하여 전탄소화 처리 섬유 다발로 하는 전탄소화 공정과, 상기 전탄소화 처리 섬유 다발을 가로 일렬로 평행하게 배열한 상태에서 불활성 가스 분위기하에 1000℃ 이상의 최고 처리 온도에서 가열 처리하여 탄소 섬유 다발로 하는 탄소화 공정을 포함하는 탄소 섬유 다발의 제조 방법이며, 내염화 공정에서의 섬유 다발의 주행 피치를 P1, 전탄소화 공정에서의 섬유 다발의 주행 피치를 P2, 탄소화 공정에서의 섬유 다발의 주행 피치를 P3으로 하였을 때,
0.8≤P2/P1≤1.0 … (1)
0.4≤P3/P1≤0.8 … (2)
를 만족하는 탄소 섬유 다발의 제조 방법을 제공하는 것이다.
또한, 상기 탄소 섬유 다발의 제조 방법은, (a) 내염화 공정으로부터 얻어지는 내염화 섬유 다발 및 전탄소화 공정으로부터 얻어지는 전탄소화 처리 섬유 다발 중 적어도 한쪽의 섬유 다발에 대하여, 2 이상 20 이하의 섬유 다발 블록마다 섬유 다발 블록 내의 섬유 다발의 주행 피치를 보다 작게 하는 공정과, (b) 공정 (a)에 있어서 섬유 다발의 주행 피치를 보다 작게 한 모든 섬유 다발 블록에 대하여, 인접하는 섬유 다발 블록끼리를 보다 접근시키는 공정을 포함하는 것이 바람직하다.
이 공정 (a)에 있어서는, 주행 피치를 작게 하기 위하여 홈 롤 또는 콤 가이드를 사용하는 것이 가능하다.
이 공정 (a)에 있어서는, 서로 평행하게 배치된 2개의 롤을 이용하여 행하는 것이 바람직하다.
또한, 이 공정 (a)에 있어서, 주행 피치를 작게 하기 위하여 적어도 서로 평행하게 배치된 2개의 롤을 사용하고, 그 때 상기 2개의 롤 외에 콤 가이드를 사용하거나, 또는 상기 2개의 롤 중 적어도 한쪽의 롤로서 홈 롤을 사용하는 것이 바람직하다.
또한, 공정 (a)는 서로 평행하게 배치된 2개의 롤을 이용하여 행하며, 그 때 상기 2개의 롤의 축 방향과 직교하는 면에 대한, 상기 2개의 롤의 사이를 주행하는 각 섬유 다발 블록 내의 섬유 다발의 최대 기울기각을 0.1°보다 크고 3.0°보다 작게 하는 것이 바람직하다.
또한, 상기 공정 (a)의 서로 평행하게 배치된 2개의 롤 사이의 거리가 750mm 이상인 것이 바람직하다.
또한, 공정 (b)를 제1 롤쌍 사이에 배치된 각도 조정이 가능한 복수의 제2 롤쌍을 이용하여 행하되, 단, 제1 및 제2 롤쌍은 모두 서로 평행하게 배치된 2개의 롤을 포함하며, 제1 롤쌍을 구성하는 2개의 롤의 축과 직교하는 면에 대한, 제2 롤쌍 사이를 주행하는 모든 섬유 다발 블록의 기울기각 중 최대 기울기각을 20°보다 작게 하는 것이 바람직하다.
탄소 섬유 다발의 제조 방법에 관한 제2 발명은, 다수의 전구체 섬유 다발을 가로 일렬로 배열한 상태에서 내염화로에 있어서 산화성 가스 분위기하에 200 내지 300℃에서 가열 처리하여 내염화 섬유 다발로 하는 내염화 공정과, 상기 내염화 섬유 다발을 가로 일렬로 배열한 상태에서 전탄소화로에 있어서 불활성 가스 분위기하에 500 내지 800℃의 최고 처리 온도에서 가열 처리하여 전탄소화 처리 섬유 다발로 하는 전탄소화 공정과, 상기 전탄소화 처리 섬유 다발을 가로 일렬로 배열한 상태에서 탄소화로에 있어서 불활성 가스 분위기하에 1000℃ 이상의 최고 처리 온도에서 가열 처리하여 탄소 섬유 다발로 하는 탄소화 공정을 포함하는 탄소 섬유 다발의 제조 방법이며,
상기 전탄소화로의 가열 처리부의 입구에서의 섬유 다발의 주행 피치를 P11, 상기 전탄소화로의 가열 처리부의 출구에서의 섬유 다발의 주행 피치를 P12로 하였을 때,
0.40≤(P12/P11)≤0.90 … (3)
을 만족하는 탄소 섬유 다발의 제조 방법이다.
또한, 상기 전탄소화로의 가열 처리부를 주행하는 섬유 다발의 주행 피치의 변경을, 상기 전탄소화로의 입구측과 출구측에 1개씩 배치된 서로 평행한 2개의 롤을 이용하여 행하며, 상기 2개의 롤의 축 방향과 직교하는 면에 대한, 상기 2개의 롤의 사이를 주행하는 가로 일렬로 배열된 다수의 섬유 다발의 기울기 각도 중 최대 기울기 각도를 0.1°보다 크고 3.0°보다 작게 하는 것이 바람직하다.
또한, 상기 탄소화로의 가열 처리부의 입구에서의 섬유 다발의 주행 피치를 P13, 상기 탄소화로의 가열 처리부의 출구에서의 섬유 다발의 주행 피치를 P14로 하였을 때,
0.40≤(P14/P13)≤0.90 … (4)
를 만족하는 것이 바람직하다.
이 때, 상기 탄소화로의 가열 처리부를 주행하는 섬유 다발의 주행 피치의 변경을, 상기 탄소화로의 입구측과 출구측에 1개씩 배치된 서로 평행한 2개의 롤을 이용하여 행하며, 이 2개의 롤의 축 방향과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 가로 일렬로 배열된 다수의 섬유 다발의 기울기 각도 중 최대 기울기 각도를 0.1°보다 크고 3.0°보다 작게 하는 것이 더욱 바람직하다.
탄소 섬유 다발의 제조 방법에서의 제3 발명은, 다수의 탄소 섬유 전구체 섬유 다발을 가로 일렬로 배열한 상태에서 내염화로에 있어서 산화성 가스 분위기하에 200 내지 300℃에서 가열 처리하여 내염화 섬유 다발로 하는 내염화 공정과, 상기 내염화 섬유 다발을 가로 일렬로 배열한 상태에서 전탄소화로에 있어서 불활성 가스 분위기하에 500 내지 800℃의 최고 처리 온도에서 가열 처리하여 전탄소화 처리 섬유 다발로 하는 전탄소화 공정과, 상기 전탄소화 처리 섬유 다발을 가로 일렬로 배열한 상태에서 탄소화로에 있어서 불활성 가스 분위기하에 1000℃ 이상의 최고 처리 온도에서 가열 처리하여 탄소 섬유 다발로 하는 탄소화 공정을 포함하는 탄소 섬유 다발의 제조 방법이며, 상기 탄소화로의 가열 처리부의 입구에서의 섬유 다발의 주행 피치를 P13, 상기 탄소화로의 가열 처리부의 출구에서의 섬유 다발의 주행 피치를 P14로 하였을 때,
0.40≤(P14/P13)≤0.90 … (4)
를 만족하는 탄소 섬유 다발의 제조 방법이다.
또한, 상기 탄소화로의 가열 처리부를 주행하는 섬유 다발의 주행 피치의 변경을, 상기 탄소화로의 입구측과 출구측에 1개씩 배치된 서로 평행한 2개의 롤을 이용하여 행하며, 상기 2개의 롤의 축 방향과 직교하는 면에 대한, 상기 2개의 롤의 사이를 주행하는 가로 일렬로 배열된 다수의 섬유 다발의 기울기 각도 중 최대 기울기 각도를 0.1°보다 크고 3.0°보다 작게 하는 것이 바람직하다.
본 발명에서는 섬유 다발수 증가에 따른 전탄소화 공정 및 탄소화 공정에서 사용하는 고온로(전탄소화로 및 탄소화로)의 대형화를 해소하여, 설비비 및 에너지면에서 생산성이 높고, 품질이 안정된 탄소 섬유 다발의 제조 방법을 제공할 수 있다.
도 1은 제1 발명에 관한 탄소 섬유 다발의 제조 방법의 일 실시 형태에 이용할 수 있는 장치의 개략 평면도이다.
도 2는 제1 발명에 관한 공정 (a) 및 (b)에 이용할 수 있는 장치의 부분 개략 평면도이다(도 1에 기재된 섬유 다발 블록의 일부를 도시).
도 3은 제1 발명에 관한 공정 (a) 및 (b)에 이용할 수 있는 장치의 부분 개략 측면도이다.
도 4는 제1 발명에 관한 공정 (a)의 일 실시 형태를 설명하기 위한 도면(도 3의 A 화살표 방향으로 보았을 때의 도면)이다.
도 5는 제1 발명에 관한 2개의 홈 롤로 섬유 다발의 주행 피치를 변경하는 방법에 이용할 수 있는 장치의 개략 평면도이다.
도 6은 제2 발명 및 제3 발명에 관한 탄소 섬유 다발의 제조 방법의 일 실시 형태에 이용할 수 있는 장치의 개략 평면도이다.
도 7은 제2 발명 및 제3 발명에 관한 탄소 섬유 다발의 제조 방법의 일 실시 형태에 이용할 수 있는 장치의 개략 측면도이다.
도 8은 제2 발명 및 제3 발명에 관한 전탄소화로 가열 처리부 및 탄소화로 가열 처리부의 입구 및 출구에서의 섬유 다발의 주행 피치의 산출 방법을 설명하기 위한 도면이다.
도 9는 섬유 다발의 주행 피치를 변경하는 방법의 일 실시 형태를 설명하기 위한 도면이다.
본 발명자는 상기 과제를 해결하기 위한 합리적 수단을 연구한 결과, 내염화 공정과 전탄소화 공정 사이 및 전탄소화 공정과 탄소화 공정 사이 중 적어도 한쪽에 있어서, 섬유 다발의 주행 피치를 변경함으로써 상기 과제를 해결할 수 있는 것을 발견하고, 제1 발명에 도달하였다.
즉, 전구체 섬유 다발이 산화 반응에 의해 발열하고 있는 내염화 공정에서는, 실이 끊어졌을 때, 실이 끊긴 섬유 다발이 인접 섬유 다발과 겹쳐 발화하는 경우가 있기 때문에, 실이 끊어진 섬유 다발이 인접 섬유 다발에 겹치지 않는 주행 피치로 하고, 섬유 다발을 롤(예를 들면, 도 2의 플랫 롤(21))의 축 방향으로 등간격으로 나란히 하는 배열이 바람직하다. 한편, 불활성 분위기에서 처리를 행하는 전탄소화 공정 및 탄소화 공정에서는 실이 끊어진 섬유 다발이 인접 섬유 다발과 겹쳐도 되어, 내염화 공정보다 섬유 다발의 주행 피치를 좁게 할 수 있다. 단, 전탄소화 공정에서는 내염화 섬유로부터 탄소화 섬유에의 전화 단계에서 대량의 분해물이 발생하여, 상기 분해물이 섬유 다발 내에 남으면 품질면에 영향을 미치는 경우가 있기 때문에 섬유 다발의 주행 피치를 극단적으로 좁게 할 수는 없다. 한편, 탄소화 공정에서는 분해물의 발생이 적기 때문에 전탄소화 공정보다 주행 피치를 더 좁혀도 품질면, 조업면, 장치의 구조상 중 어느 것에도 영향을 주지 않는 것이 판명되었다.
제1 발명에 관한 탄소 섬유 다발의 제조 방법은, 이하의 공정을 갖는다.
복수개의 전구체 섬유 다발을 가로 일렬로 평행하게 배열한 상태에서 산화성 가스 분위기하에 200 내지 300℃에서 가열 처리하여 내염화 섬유 다발로 하는 내염화 공정.
상기 내염화 섬유 다발을 가로 일렬로 평행하게 배열한 상태에서 불활성 가스 분위기하에 500 내지 800℃의 최고 처리 온도에서 가열 처리하여 전탄소화 처리 섬유 다발로 하는 전탄소화 공정.
상기 전탄소화 처리 섬유 다발을 가로 일렬로 평행하게 배열한 상태에서 불활성 가스 분위기하에 1000℃ 이상의 최고 처리 온도에서 가열 처리하여 탄소 섬유 다발로 하는 탄소화 공정.
또한, 제1 발명의 탄소 섬유 다발의 제조 방법은, 내염화 공정에서의 섬유 다발의 주행 피치를 P1, 전탄소화 공정에서의 섬유 다발의 주행 피치를 P2, 탄소화 공정에서의 섬유 다발의 주행 피치를 P3으로 하였을 때, 하기 식을 만족한다.
0.8≤P2/P1≤1.0 … (1)
0.4≤P3/P1≤0.8 … (2)
또한, 이들 공정을 통하여 섬유 다발의 개수는 변화하지 않는다.
이하, 도 1 내지 도 5를 참조하여 제1 발명의 실시 형태를 상세하게 설명하지만, 본 발명은 이 실시 형태에 한정되지 않는다.
우선, 100개 내지 2000개 정도의 전구체 섬유 다발을 가로 일렬로 시트상으로 배열하여 시트상 전구체 섬유 다발(11)로 하고, 내염화로(1)에서 내염화하여 내염화 섬유 다발(12)을 제작한다. 또한, 가로 일렬로 배열한 다수의 섬유 다발은 평면을 형성하고 있으며, 이들 섬유 다발을 시트상 섬유 다발이라고 칭한다.
구체적으로 설명하면, 예를 들면 도 1에 도시한 바와 같이, 우선, 크릴 스탠드에 걸려진 치즈(도시하지 않음)로부터 풀려진 복수개의 전구체 섬유 다발을 가이드(도시하지 않음)에 의해 등간격이면서 평행하게 동일 평면을 구성하도록 배열하여 시트상 전구체 섬유 다발(11)을 형성한다. 가이드는 전구체 섬유 다발의 등간격 및 평행 상태를 유지할 수 있도록 적절하게 배치한다. 가이드의 종류는 롤의 표면에 등간격으로 홈을 각인한 홈 롤, 등간격으로 핀을 배치한 가이드 등이 있다.
상기 복수개의 전구체 섬유 다발로서는 아크릴계 전구체 섬유 다발, 피치계 전구체 섬유 다발 등을 이용할 수 있다. 전구체 섬유 다발의 직경, 개수 등은 제조하는 탄소 섬유 다발의 직경이나 생산성에 따라 적절하게 설정할 수 있다. 시트상 전구체 섬유 다발(11)에서의 전구체 섬유 다발의 내염화로 내 주행 피치(P1)는 내염화로(1)의 외부에 설치된 가이드(도시하지 않음)에 의해 전구체 섬유 다발을 등간격으로 배열하였을 때의 피치이며, 내염화로(1)의 입구측에 설치된 롤(도시하지 않음) 상에서 인접하는 전구 내섬유 다발의 폭 방향의 중심간 거리를 측정한 값의 평균치로 표시된다. 입구측에 설치된 롤이 홈 롤이면 홈의 피치가 내염화로 내 주행 피치(P1)가 된다. 전탄소화로 내 주행 피치(P2) 및 탄소화로 내 주행 피치(P3)도 마찬가지로 전탄소화로(2) 및 탄소화로(3)의 입구측에 설치된 롤(도시하지 않음) 상에서 측정한 값의 평균치로 각각 표시된다. 또한, 내염화로 내의 섬유 다발의 주행 피치(P1)는 생산성 및 축열 방지의 관점에서 4mm 이상 20mm 이하인 것이 바람직하다. 또한, 예를 들면 섬유 다발의 주행 피치가 4mm인 경우, 인접하는 섬유 다발의 폭 방향(도 1에서는 지면 상하 방향)의 중심간 간격(거리)이 4mm인 것을 의미한다.
다음에, 시트상 전구체 섬유 다발(11)을 내염화로(1)에 투입한다. 이들 시트상 전구체 섬유 다발(11)은 산화성 가스 분위기로 된 내염화로(1) 내에서 내염화 처리되면서 주행한 후, 일단 내염화로(1)의 외부로 나온다. 이어서, 내염화로(1)의 외부에 배치된 절첩 롤군(도시하지 않음)의 처음 롤에 의해 절첩된다. 그 후, 내염화로(1) 내를 다시 통과하여 내염화 처리된다. 이후, 절첩 롤군의 사이에서 반복하여 내염화 처리된다. 이에 의해, 시트상 내염화 섬유 다발(12)이 얻어진다. 산화성 가스 분위기로서는 산화성을 갖는 분위기이면 되며, 통상, 경제성의 관점에서 공기가 사용된다.
내염화로(1)의 가열 처리 온도로서는 축열 방지의 관점에서 200℃ 이상 300℃ 이하인 것이 바람직하다. 내염화 처리 시간으로서는 생산성 및 축열 방지의 관점에서 20분 이상 120분 이하인 것이 바람직하다. 또한, 시트상 전구체 섬유 다발(11)의 반송 속도로서는 생산성의 관점에서 3m/분 이상 20m/분 이하인 것이 바람직하다.
이제까지 섬유 다발 주행 피치의 변경은 도 5에 도시한 바와 같은 2개의 홈 롤을 사용하여 행하고 있었다. 이로 인해, 제1 발명의 탄소 섬유의 제조 방법에 있어서도, 예를 들면 내염화 공정으로부터 얻어지는 내염화 섬유 다발 및 전탄소화 공정으로부터 얻어지는 전탄소화 처리 섬유 다발 중 적어도 한쪽의 섬유 다발에 대하여, 섬유 다발 주행 피치의 변경을 도 5에 도시한 바와 같은 2개의 홈 롤(26 및 27)을 사용하여 1단계로 행할 수 있다.
그러나, 제1 발명에서는 섬유 다발의 주행 피치를 변경할 때에는, 공정 (a)와 (b)를 포함하는 2단계의 주행 피치 변경 방법을 행하는 것이 바람직하다. 이 방법을 이용함으로써 꼬임이 발생하는 것을 용이하게 방지하여 양호한 품질의 탄소 섬유를 용이하게 제조할 수 있다.
또한, 공정 (a)는 서로 평행하게 배치된 2개의 롤을 이용하여 행하는 것이 바람직하다. 또한, 공정 (a)에 있어서, 주행 피치를 작게 하기 위하여 홈 롤 또는 콤 가이드를 사용할 수 있다. 예를 들면, 상기 2개의 롤 중 적어도 한쪽의 롤(예를 들면, 도 2의 롤(21))로서 홈 롤을 이용할 수 있다. 또한, 상기 2개의 롤 외에 콤 가이드를 이용할 수도 있다.
이하에 내염화 공정으로부터 얻어지는 내염화 섬유 다발을 예로 들어, 이 2단계의 주행 피치 변경 방법의 일례를 설명한다.
도 1 및 도 2에 도시한 바와 같은 내염화로(1)와 전탄소화로(2) 사이에 배치된, 섬유 다발 주행 방향(도 2의 화살표 방향)과 수직으로 배치된 복수의 롤과, 각도 조정 가능한 복수의 롤쌍을 포함하는 롤군(4)에 의해, 내염화 공정으로부터 얻어지는 시트상 내염화 섬유 다발(12)의 섬유 다발의 주행 피치의 변경을 행할 수 있다. 보다 구체적으로는, 롤군(4)은 공정 (a)를 행하기 위한 서로 평행하게 배치된 2개의 롤(21 및 22)을 포함하는 공정 (a)용 롤쌍과, 공정 (b)를 행하기 위한 제1 롤쌍 및 공정 (b)를 행하기 위한 각도 조정 가능한 복수의 제2 롤쌍을 포함할 수 있다. 공정 (b)용의 제1 및 제2 롤쌍은 모두 서로 평행하게 배치된 2개의 롤을 포함하며, 도 2에서는 제1 롤쌍은 롤(22 및 25)을 포함하고, 제2 롤쌍은 롤(23 및 24)을 포함한다. 또한, 1개의 롤을 공정 (a)용 롤쌍 및 공정 (b)용의 제1 롤쌍에 겸용시킬 수도 있다. 도 2에서는 롤(22)을 공정 (a)용 롤쌍 및 공정 (b)용의 제1 롤쌍에 겸용시키고 있다. 공정 (a)에 이용하는 가로 일렬로 배열된 다수의 섬유 다발의 주행 방향(도 2에서는 화살표 방향)에 대하여 수직이면서, 이들 섬유 다발이 형성하는 동일 평면에 대하여 평행하게 공정 (a)용 롤쌍을 구성하는 2개의 롤(21 및 22)을 각각 배치할 수 있다.
또한, 공정 (a)용 롤쌍 사이의 거리는 섬유 다발에 꼬임이 발생하는 것을 방지하는 관점에서 750mm 이상인 것이 바람직하고, 섬유 다발끼리의 접촉, 작업성의 관점에서 20000mm 이하인 것이 바람직하다.
공정 (b)용의 제1 롤쌍을 구성하는 2개의 롤(22 및 25)은 각각, 공정 (a)용 롤쌍을 구성하는 2개의 롤(21 및 22)에 대하여 평행하게 배치할 수 있다. 공정 (b)용의 제2 롤쌍을 구성하는 2개의 롤(23 및 24)은, 각각 이 2개의 롤 사이를 주행하는 섬유 다발의 주행 방향에 대하여 수직이면서, 이 2개의 롤 사이를 주행하는 섬유 다발이 형성하는 동일 평면에 대하여 평행하게 배치할 수 있다. 공정 (b)용의 제2 롤쌍의 개수는 섬유 다발 블록수에 따라 결정할 수 있다. 공정 (a)에서는 가로 일렬로 배열된 다수의 섬유 다발을 2개 이상의 덩어리로 나누어, 그 덩어리마다 주행 피치를 변경하는데, 섬유 다발 블록이란 그 덩어리를 의미한다. 도 2에서는 3개의 섬유 다발 블록이 도시되어 있으며, 도면 부호 B1, B2 및 B3이 각각 1개의 섬유 다발 블록을 나타낸다. 또한, 섬유 다발 주행 피치는 전탄소화로의 생산성과 분해물에 의한 품질에의 영향을 고려하여, 상술한 내염화 공정에서의 섬유 다발의 주행 피치(P1), 전탄소화 공정에서의 섬유 다발의 주행 피치(P2)가 0.8≤P2/P1≤1.0이 되도록 한다.
섬유 다발 주행 피치의 변경 방법의 일례를 도 2 내지 도 4를 이용하여 보다 구체적으로 설명한다(도 2 내지 도 4에서는, 도 1에 도시한 5개의 섬유 다발 블록 중 3개에 대하여 도시함). 또한, 도 4는 도 3의 A 화살표 방향으로 보았을 때를 도시한다.
우선, 도 2 및 도 4에 도시한 바와 같이 내염화 처리 후의 시트상 섬유 다발(31)을 2개 이상의 섬유 다발 블록(B1 내지 B3)으로 분할하고, 블록 내의 내염화 섬유 다발의 주행 피치를 변경한다. 즉, 분할 전의 시트상 섬유 다발(31)을 2개 이상의 섬유 다발 블록마다 섬유 다발 블록 내의 내염화 섬유 다발의 주행 피치를 보다 작게 변경한다(공정 a). 예를 들면, 도 1에서는 시트상 섬유 다발을 5개의 섬유 다발 블록으로 분할하고 있기 때문에, 5개의 섬유 다발 블록 각각에 대하여 그 섬유 다발 블록 내의 섬유 다발의 주행 피치를 보다 작게 변경한다. 또한, 내염화 처리 후의 시트상 내염화 섬유 다발(12) 중 분할 전의 시트상 섬유 다발군을 특별히 도면 부호 31로 나타낸다. 이 때, 도 4에 도시한 바와 같이 블록 내의 섬유 다발 주행 피치의 변경, 즉 공정 (a)를 서로 평행하게 배치된 2개의 롤(21 및 22)을 이용하여 행하며, 그 때 이 2개의 롤의 축과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 각 섬유 다발 블록 내(도 2에서는 도면 부호 B1, B2 및 B3 각각의 섬유 다발 블록 내)의 섬유 다발(예를 들면 도면 부호 32)의 최대 기울기각을 0.1°보다 크고 3.0°보다 작게 하는 것이 바람직하다. 최대 기울기각은 전형적으로는 각 섬유 다발 블록 내의 끝에 위치하는 섬유 다발에서의 기울기 각도가 된다. 또한, 각 섬유 다발 블록 내의 끝에 위치하는 섬유 다발은 2개인데, 이들 기울기각은 동일할 수도 있고 상이할 수도 있다. 구체적으로는, 예를 들면 도 4의 섬유 다발 블록 B1의 양끝에 위치하는 2개의 섬유 다발(그 중 하나는 도면 부호 32)의 기울기각은 동일할 수도 있고 상이할 수도 있다. 또한, B2 및 B3에 대해서도 마찬가지라고 할 수 있다. 각 섬유 다발 블록에 있어서, 양끝에 위치하는 2개의 섬유 다발의 기울기각이 동일한 경우에는, 그 각도가 그 섬유 다발 블록 내의 섬유 다발의 최대 기울기각이 되며, 상이한 경우에는 이들 기울기각 중 큰 각도가 최대 기울기각이 된다. 또한, 각 섬유 다발 블록(도 4에서는 도면 부호 B1 내지 B3 각각)에 대하여 정의되는 최대 기울기각은 서로 동일한 값(각도)일 수도 있고 상이한 값일 수도 있다.
이와 같이 각 섬유 다발 블록에 대하여 최대 기울기각이 정의되는데, 이후 이들 최대 기울기각을 θ1이라고 총칭한다. 또한, 끝에 위치하는 섬유 다발은 1개의 섬유 다발 블록에 대하여 2개 존재하며, 예를 들면 도 1에서는 각 섬유 다발 블록의 끝에 위치하는 2개의 섬유 다발의 기울기각이 동일한 값(각도)이기 때문에, θ1이 10개소(5(섬유 다발 블록수)×2(양끝)) 존재한다. 또한, 도 4에서는 도 1의 10개의 θ1 중 1개를 도시하고 있다.
이들 기울기각(θ1)이 모두 0.1°보다 큰 경우에는, 롤(21)과 롤(22)의 거리가 길어지는 것을 용이하게 방지하여 탄소 섬유 제조 공정의 길이가 길어지는 것을 용이하게 방지할 수 있다. 또한, 이들 기울기각(θ1)이 모두 3.0°보다 작은 경우에는 꼬임이 발생하는 것을 용이하게 방지할 수 있다. 이들 θ1의 각도는 모두 0.3°보다 크고 2.5°보다 작게 하는 것이 더욱 바람직하다.
또한, 도 4에 도시한 바와 같은 등간격이면서 평행하게 동일 평면을 구성하도록 배열된 섬유 다발로 구성되는 섬유 다발 블록 내의 모든 섬유 다발에 대하여, 공정 (a)용 롤쌍을 구성하는 2개의 롤의 축과 직행하는 면에 대한 기울기각을 고려하면 이하와 같이 할 수 있다. 즉, 섬유 다발 블록 내의 양끝에 위치하는 섬유 다발의 기울기각의 각도를 가장 크게 하고, 섬유 다발 블록 내의 중심을 향할수록 섬유 다발의 기울기각의 각도를 작게 할 수 있다. 이 경우, 이 2개의 롤의 축 방향과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 각 섬유 다발 블록 내의 모든 섬유 다발의 기울기각에 있어서 이들 기울기각 중 가장 큰 각도를 0.1°보다 크고 3.0°보다 작게 하는 것이 바람직하고, 0.3°보다 크고 2.5°보다 작게 하는 것이 보다 바람직하다.
이 때, 2개의 롤(21 및 22)은, 도 3에 도시한 바와 같이 2개의 롤 사이를 주행하는 시트상 내염화 섬유 다발(12)이 연직 방향으로 주행하도록 배치하는 것이 공간을 유효하게 이용할 수 있기 때문에 바람직하다. 또한, 롤(21)을 플랫 롤(21)로 하고, 롤(22)을 섬유 다발의 주행 피치를 제어 가능한 홈 롤(22)로 행하는 것이 바람직하다. 홈 롤(22) 외에 섬유 다발의 주행 피치를 제어 가능한 가이드와 플랫 롤을 조합한 구성으로 할 수도 있다.
섬유 다발 블록의 수는 분할 전의 시트상 섬유 다발(31)의 전체 폭, 섬유 다발 주행 피치의 변경량 등에 따라 변화하지만, 후술하는 섬유 다발 블록의 위치 변경(공정 b)을 행하는 각도 조정 가능한 제2 롤쌍(23 및 24)의 개수가 증가하여 장치 비용이 높아지는 것을 방지하기 위하여 섬유 다발 블록의 수는 2 이상 20 이하로 하는 것이 바람직하고, 4 이상 10 이하로 하는 것이 보다 바람직하다.
이하에, 공정 (b)의 방법, 즉 모든 섬유 다발 블록에 대하여, 인접하는 섬유 다발 블록끼리 보다 접근하도록 각 섬유 다발 블록의 시트 폭 방향(도 1의 지면 상하 방향)에서의 위치를 변경하는 방법, 보다 구체적으로는 공정 (a)에 있어서 섬유 다발의 주행 피치가 보다 작아진 섬유 다발 블록끼리 보다 접근하도록 배치된 각도 조정 가능한 복수의 롤쌍을 이용하여, 섬유 다발 블록끼리 사이의 간격을 변경하여 재배열하는 방법을 도 2 및 도 3을 이용하여 설명한다. 섬유 다발 블록끼리를 보다 접근시킬 때에는, 모든 섬유 다발의 주행 피치가 섬유 다발 블록 내의 섬유 다발 주행 피치와 동일해지도록 섬유 다발 블록끼리를 접근시킨다. 공정 (b)에서의 모든 섬유 다발 블록이란 공정 (a)의 섬유 다발 블록 전체를 가리키며, 도 1과 같이 5개의 섬유 다발 블록이 있는 경우에는, 그 5개의 섬유 다발 블록을 의미한다. 즉, 도 1의 경우에서는 공정 (b)에 의해 5개의 섬유 다발 블록이 인접하는 섬유 다발 블록끼리를 보다 접근시킨다. 또한, 도 4에 도시한 바와 같이, 공정 (a)에 의해 홈 롤(22) 상에서 섬유 다발 블록(B1 내지 B3) 내의 섬유 다발의 주행 피치는 좁아지며, 섬유 다발 블록 사이에는 간극이 형성되어 있다. 즉, 섬유 다발 블록 내의 인접하는 섬유 다발 사이의 간격보다, 인접하는 섬유 다발 블록 사이의 간격 쪽이 넓은 상태가 된다. 이 상태로부터 공정 (b)에 의해 섬유 다발 블록(B1 내지 B3)의 간극을 좁혀 모든 섬유 다발의 주행 피치가 섬유 다발 블록 내의 섬유 다발 주행 피치와 동일해지도록 각도 조정 가능한 롤(23, 24)을 조정한다. 다시 말하면, 공정 (b)용의 제1 롤쌍 사이에 배치된 각도 조정 가능한 복수의 제2 롤쌍(롤(23) 및 롤(24)로 구성됨)을 이용하여 인접하는 섬유 다발 블록(B1 내지 B3)끼리의 간극을 좁혀 모든 섬유 다발의 주행 피치가 동일해지도록 조정한다. 이 때, 각 섬유 다발 블록(B1 내지 B3)의 각도 변경량은, 그 섬유 다발 블록이 시트 중의 모든 섬유 다발 블록(도 2에서는 도면 부호 B1 내지 B3)에 있어서 어느 위치(양끝, 중앙부 등)에 존재하는지에 따라 변화하지만, 각 섬유 다발 블록(B1 내지 B3) 내의 각 섬유 다발은 가로 일렬로 평행하게 배열된 상태에서 주행한다. 플랫 롤(21)과 평행하게 설치된 플랫 롤(25)에 있어서 시트상 내염화 섬유 다발(12)의 모든 섬유 다발의 주행 피치가 전탄소화로 내에 적합한 주행 피치(P2)가 된다. 이 때, 제1 롤쌍을 구성하는 2개의 롤(22 및 25)의 축과 직교하는 면에 대한, 시트상 섬유 다발의 섬유 다발 블록(도 2에서는 도면 부호 B1)이 제2 롤쌍 사이(롤(23)과 롤(24)의 사이)를 주행할 때의 최대 기울기각을 20°보다 작게 하는 것이 바람직하다. 기울기각은 전형적으로는 시트상 내염화 섬유 다발의 끝에 위치하는 섬유 다발 블록에서 최대가 된다. 또한, 시트상 내염화 섬유 다발의 끝에 위치하는 섬유 다발 블록은 2블록인데, 이들 기울기각은 동일할 수도 있고 상이할 수도 있다. 끝에 위치하는 2개의 섬유 다발 블록의 기울기각이 동일한 경우에는 그 각도가 최대 기울기 각도가 되며, 상이한 경우에는 이들 기울기각 중 큰 각도가 최대 기울기각이 된다.
이후, 이 최대 기울기각을 θ2라고 칭한다. 또한, 끝에 위치하는 섬유 다발 블록은 1개의 시트상 섬유 다발에 대하여 2개 존재하며, 도 1에서는 이들 기울기각이 동일해진다. 이로 인해, 도 1에 있어서는 θ2는 5개의 섬유 다발 블록 중 지면 상하 방향의 양끝의 2개의 섬유 다발 블록에 대하여 정의되며, θ2가 2개소 존재한다. 또한, 도 2에서는 도 1의 2개의 θ2 중 1개, 구체적으로는 각도 조정 가능한 플랫 롤(23 및 24)의 사이를 주행하는 시트상 섬유 다발의 양끝에 위치하는 섬유 다발 블록(B1)의 주행 방향의 기울기각을 도시하고 있다.
이 기울기각(θ2)이 20°보다 작은 경우에는 꼬임이 발생하는 것을 용이하게 방지할 수 있다. 또한, θ2의 각도는 16°보다 작은 것이 더욱 바람직하다.
또한, 도 2에 도시한 바와 같이, 등간격이면서 평행하게 동일 평면을 구성하도록 배열된 섬유 다발을 이용하여 공정 (a)를 행하고, 계속해서 공정 (b)를 행하는 경우에는, 제1 롤쌍을 구성하는 2개의 롤(22, 25)의 축에 직교하는 면에 대한, 제2 롤쌍 사이를 주행하는 시트상 섬유 다발 중의 모든 섬유 다발 블록의 기울기각을 고려하면 이하와 같이 할 수 있다. 즉, 양끝에 위치하는 섬유 다발 블록(예를 들면, 도 2의 B1)의 기울기각을 가장 크게 하고, 중심부를 향할수록 그 기울기각을 작게 할 수 있다. 이러한 경우에는 2개의 롤(22, 25)의 축에 직교하는 면에 대한, 제2 롤쌍 사이를 주행하는 모든 섬유 다발 블록의 기울기각에 있어서, 이들 기울기각 중 가장 큰 각도를 20°보다 작게 하는 것이 바람직하고, 16°보다 작게 하는 것이 보다 바람직하다.
또한, 상술한 바와 같이 공정 (a) 및 (b)를 포함하는 2단계의 주행 피치 변경 방법은, 내염화 공정으로부터 얻어지는 내염화 섬유 다발 외에 전탄소화 공정으로부터 얻어지는 전탄소화 처리 섬유 다발에 대해서도 이용할 수 있다. 이로 인해, 편의적으로 롤군(4)을 이용하는 내염화 공정으로부터 얻어지는 내염화 섬유 다발의 주행 피치 변경에서의 θ1 및 θ2를 각각 θ1-1 및 θ2-1로 칭하고, 롤군(5)을 이용하는 전탄소화 공정으로부터 얻어지는 전탄소화 처리 섬유 다발의 주행 피치 변경에서의 θ1 및 θ2를 각각 θ1-2 및 θ2-2로 칭한다.
시트상 내염화 섬유 다발(12)은, 필요에 따라 상술한 2단계의 주행 피치 변경 방법(도 1에 도시하는 롤군(4)을 이용함)에 의해 섬유 다발 주행 피치가 변경된 후, 전탄소화로(2)의 섬유 다발 투입구로부터 전탄소화로(2)에 투입된다.
전탄소화로(2) 내는 불활성 가스 분위기로 되어 있다. 불활성 가스로서는 질소, 아르곤 등을 사용할 수 있지만, 통상, 경제성의 관점에서 질소를 사용한다. 필요에 따라 주행 피치가 변경된 시트상 내염화 섬유 다발(12)은 전탄소화로(2) 내를 전탄소화 처리되면서 주행한 후, 전탄소화로(2)를 나와 시트상 전탄소화 처리 섬유 다발(13)이 된다.
전탄소화 공정의 가열 처리에서의 최고 처리 온도는 500 내지 800℃로 한다. 전탄소화로(2) 내의 가열 처리 온도로서는 탄소 섬유로서의 강도 발현성의 관점에서 500℃ 이상 800℃ 이하인 것이 바람직하다. 또한, 전탄소화 처리 시간으로서는 생산성 및 탄소 섬유로서의 강도 발현성의 관점에서 0.6분 이상 3.0분 이하인 것이 바람직하다.
다음에, 시트상 전탄소화 섬유 다발(13)의 섬유 다발 주행 피치를 필요에 따라 상술한 시트상 내염화 섬유 다발(12)일 때와 마찬가지로, 예를 들면 도 1 내지 도 4에 도시하는 2단계의 주행 피치 변경 방법을 이용하여 변경한다. 그 때, 공정 (a)에서의 주행 피치를 작게 하는 수단이나 공정 (a)용 롤쌍 사이의 거리는, 상술한 섬유 다발(12)의 경우와 마찬가지로 할 수 있다. 또한, 2단계의 주행 피치 변경 방법을 채용하는 경우에는, 공정 (a) 및 (b)에서의 θ1-2 및 θ2-2의 바람직한 각도 범위는, 상술한 시트상 내염화 섬유 다발의 섬유 다발 주행 피치를 변경하였을 때의 θ1-1 및 θ2-1과 각각 마찬가지이며, 도 1에 도시하는 롤군(4) 대신에 마찬가지 구성의 롤군(5)을 이용한다. 이후, 이 2개의 롤군을 구별하기 위하여 롤군(4)을 구성하는 롤(21 내지 25)을 편의적으로 롤(21-1 내지 25-1)이라고 칭하고, 롤군(5)을 구성하는 롤(21 내지 25)을 편의적으로 롤(21-2 내지 25-2)이라고 칭한다.
또한, 공정 (a) 및 (b)에서의 섬유 다발 블록이란, 내염화 공정으로부터 얻어지는 내염화 섬유 다발에 대하여 주행 피치를 변경할 때에는, 내염화 공정으로부터 얻어지는 내염화 섬유 다발을 2개 이상으로 분할하였을 때의 섬유 다발 블록을 가리키며, 전탄소화 공정으로부터 얻어지는 전탄소화 처리 섬유 다발에 대하여 주행 피치를 변경할 때에는, 전탄소화 공정으로부터 얻어지는 전탄소화 처리 섬유 다발을 2개 이상으로 분할하였을 때의 섬유 다발 블록을 가리킨다. 예를 들면, 도 1에 있어서, 롤군(4)을 이용하여 내염화 공정으로부터 얻어지는 내염화 섬유 다발의 주행 피치를 변경할 때의 공정 (a) 및 (b)에서의 섬유 다발 블록이란, 롤군(4)에서의 5개의 섬유 다발 블록을 가리킨다. 마찬가지로, 도 1에 있어서 롤군(5)을 이용하여 전탄소화 공정으로부터 얻어지는 전탄소화 처리 섬유 다발의 주행 피치를 변경할 때의 공정 (a) 및 (b)에서의 섬유 다발 블록이란, 롤군(5)에서의 5개의 섬유 다발 블록을 가리킨다.
섬유 다발 주행 피치는 탄소화로의 생산성, 작업성을 고려하여 내염화 공정에서의 섬유 다발의 주행 피치를 P1, 탄소화 공정에서의 섬유 다발의 주행 피치를 P3으로 하였을 때, 0.4≤P3/P1≤0.8의 범위 내가 되도록 한다.
시트상 전탄소화 섬유 다발(13)은, 필요에 따라 도 1에 도시하는 롤군(5) 또는 도 5에 도시하는 2개의 홈 롤에 의해 섬유 다발 주행 피치가 변경된 후, 탄소화로(3)의 섬유 다발 투입구로부터 탄소화로(3)에 투입된다.
탄소화로(3) 내는 불활성 가스 분위기로 되어 있다. 필요에 따라 주행 피치가 변경된 시트상 전탄소화 섬유 다발(13)은 탄소화로(3) 내를 탄소화 처리되면서 주행한 후, 탄소화로(3)를 나와 시트상 탄소화 섬유 다발(14)이 된다.
탄소화 공정의 가열 처리 온도에서의 최고 처리 온도는 1000℃ 이상으로 한다. 탄소화로(3) 내의 가열 처리 온도로서는 강도 발현성의 관점에서 1200℃ 이상 1800℃ 이하인 것이 바람직하다. 탄소화 처리 시간으로서는 생산성 및 강도 발현성의 관점에서 0.6분 이상 3.0분 이하인 것이 바람직하다.
탄소화로(3)에서 열 처리가 완료된 시트상 탄소화 섬유 다발(14)은, 필요에 따라 섬유 다발이 산화되지 않도록 로 내를 2000℃를 초과하는 불활성 가스 분위기로 채운 흑연화로에 연속적으로 통과시켜 흑연화 섬유 다발로 전화할 수 있다.
이와 같이 하여 얻어진 탄소화 또는 흑연화 섬유 다발은, 종래 공지된 전해액 중에서 전해 산화 처리를 실시하거나, 기상 또는 액상에서의 산화 처리를 실시하거나 함으로써, 복합 재료에서의 탄소 또는 흑연 섬유와 매트릭스 수지의 친화성이나 접착성을 향상시킬 수 있다. 또한, 필요에 따라 종래 공지된 방법에 의해 사이징제를 부여할 수 있다. 또한, 내염화 처리 중의 섬유 다발의 장력을 제어하기 위한 고데트(godet) 롤을 설치하는 등, 필요에 따라 종래 공지된 방법을 사용할 수 있다.
또한, 본 발명자는 상기 과제를 해결하기 위한 합리적 수단을 연구한 결과, 전탄소화로 가열 처리부 내 및 탄소화로 가열 처리부 내 중 적어도 한쪽에서 섬유 다발의 주행 피치를 변경함으로써 상기 과제를 해결할 수 있는 것을 발견하고, 제2 발명 및 제3 발명에 도달하였다. 제2 및 제3 발명에 의해 탄소 섬유의 제조 공정에 있어서 품질을 손상시키지 않고 생산성이 우수한 탄소 섬유 다발의 제조 방법을 제공할 수 있다.
섬유 다발이 산화 반응에 의해 발열하고 있는 내염화 공정에서는, 실이 끊어졌을 때, 실이 끊어진 섬유 다발이 인접하는 섬유 다발과 겹쳐 축열하여, 마침내는 발화하는 경우가 있기 때문에, 실이 끊어진 섬유 다발이 인접하는 섬유 다발에 겹치기 어렵도록 섬유 다발을 롤(예를 들면, 도 6의 롤(111))의 축 방향으로 등간격으로 나란히 하는 배열이 바람직하다.
한편, 불활성 가스 분위기하에서 처리를 행하는 전탄소화 공정 및 탄소화 공정에서는 실이 끊어진 섬유 다발이 설령 인접하는 섬유 다발과 겹쳐도 축열하여 발화하는 경우가 없어, 내염화 공정보다 섬유 다발의 주행 피치를 좁게 할 수 있다. 단, 전탄소화 공정에서는 내염화 섬유로부터 탄소화 섬유에의 전화 단계에서 대량의 분해물이 발생하여, 상기 분해물이 섬유 다발 내에 남으면 품질면에 영향을 미치는 경우가 있기 때문에, 섬유 다발의 주행 피치를 극단적으로 좁게 할 수는 없다.
한편, 탄소화 공정에서는 분해물의 발생이 적기 때문에 탄소화 처리 중에 배열을 변경, 보다 구체적으로는 전탄소화 공정보다 주행 피치를 더 좁혀도 품질면, 조업면, 장치의 구조상 중 어느 것에도 영향을 주지 않는 것이 판명되었다.
제2 및 제3 발명에 관한 탄소 섬유 다발의 제조 방법은, 이하의 공정을 갖는다.
다수의 탄소 섬유 전구체 섬유 다발을 가로 일렬로 배열한 상태에서 내염화로에 있어서 산화성 가스 분위기하에 200 내지 300℃에서 가열 처리하여 내염화 섬유 다발로 하는 내염화 공정.
상기 내염화 섬유 다발을 가로 일렬로 배열한 상태에서 전탄소화로에 있어서 불활성 가스 분위기하에 500 내지 800℃의 최고 처리 온도에서 가열 처리하여 전탄소화 처리 섬유 다발로 하는 전탄소화 공정.
상기 전탄소화 처리 섬유 다발을 가로 일렬로 배열한 상태에서 탄소화로에 있어서 불활성 가스 분위기하에 1000℃ 이상의 최고 처리 온도에서 가열 처리하여 탄소 섬유 다발로 하는 탄소화 공정.
또한, 제2 및 제3 발명의 탄소 섬유 다발의 제조 방법은, 상술한 바와 같이 전탄소화로 가열 처리부 내 및 탄소화로 가열 처리부 내 중 적어도 한쪽에서 섬유 다발의 주행 피치를 변경할 수 있으며, 그 때 하기 식 (3) 및 식 (4) 중 적어도 한쪽을 만족한다. 각 로에서의 가열 처리부란, 각 로 중 각 로 내를 주행하는 섬유 다발의 가열 처리를 행하는 부분을 가리키며, 도 6 중 도면 부호 51a 내지 54a로 표시된다.
또한, 전탄소화로의 가열 처리부의 입구에서의 섬유 다발의 주행 피치를 P11, 전탄소화로의 가열 처리부의 출구에서의 섬유 다발의 주행 피치를 P12, 탄소화로의 가열 처리부의 입구에서의 섬유 다발의 주행 피치를 P13, 탄소화로의 가열 처리부의 출구에서의 섬유 다발의 주행 피치를 P14로 한다.
0.40≤(P12/P11)≤0.90 … (3)
0.40≤(P14/P13)≤0.90 … (4)
또한, 이들 공정을 통하여 섬유 다발의 개수는 변화하지 않는다.
이하, 도 6 내지 도 9를 참조하여 제2 및 제3 발명의 실시 형태를 상세하게 설명하지만, 본 발명은 이 실시 형태에 한정되지 않는다.
우선, 복수개(예를 들면, 100개 내지 200개 정도)의 전구체 섬유 다발을 가로 일렬로 시트상으로 배열하여 시트상 전구체 섬유 다발로 하고, 내염화로(51)의 가열 처리부(51a)에서 가열 처리함으로써 내염화하여 내염화 섬유 다발을 제작한다. 또한, 가로 일렬로 배열한 다수의 섬유 다발은 평면을 형성하고 있으며, 이들 섬유 다발을 시트상 섬유 다발이라고 칭한다.
구체적으로 설명하면, 예를 들면 도 6에 도시한 바와 같이, 우선, 크릴 스탠드에 걸려진 치즈(도시하지 않음)로부터 풀려진 복수개의 전구체 섬유 다발을 가이드(도시하지 않음)에 의해 등간격이면서 평행하게 동일 평면을 구성하도록 배열하여 시트상 전구체 섬유 다발을 형성한다. 가이드는 전구체 섬유 다발의 등간격 및 평행 상태를 유지할 수 있도록 적절하게 배치한다. 가이드의 종류는 롤의 표면에 등간격으로 홈을 각인한 홈 롤, 등간격으로 핀을 배치한 가이드 등이 있다.
상기 복수개의 전구체 섬유 다발로서는 아크릴계 탄소 섬유 전구체 섬유 다발, 피치계 탄소 섬유 전구체 섬유 다발 등을 이용할 수 있다. 전구체 섬유 다발의 직경, 개수 등은 제조하는 탄소 섬유의 직경이나 생산성에 따라 적절하게 설정할 수 있다.
시트상 전구체 섬유 다발에서의 각 전구체 섬유 다발의 주행 위치는, 내염화로(51)의 외부에 설치한 롤(111, 112, 119)에 의해 제어할 수 있다.
시트상 전구체 섬유 다발에서의 각 전구체 섬유 다발의 주행 피치는 전구체 섬유를 등간격으로 배열하였을 때의 피치이며, 예를 들면 내염화로(51)의 입구측에 설치된 롤(111) 상 및 내염화로(51)의 출구측에 설치된 롤(112) 상에서 측정할 수 있다. 또한, 입구측 롤(111) 및 출구측 롤(112)에서의 섬유 다발의 주행 피치는 측정한 값의 평균치로 표시된다.
예를 들면, 내염화로(51)의 입구측 및 출구측에 설치된 롤이 홈 롤이면, 그 홈의 피치가 내염화로의 입구측의 롤(111) 및 출구측의 롤(112)에서의 섬유 다발의 주행 피치가 된다.
도 6에서는 내염화 공정에 있어서 섬유 다발의 주행 피치는 변경되어 있지 않기 때문에, 내염화로(51)의 입구측 롤(111)에서의 주행 피치와 출구측 롤(112)에서의 주행 피치는 동일하다.
이하, 각 로의 입구측 롤 및 출구측 롤에서의 섬유 다발의 주행 피치는 마찬가지의 방법으로 측정한다.
또한, 내염화로 내, 보다 구체적으로는 내염화로의 가열 처리부 내에서의 섬유 다발 주행 피치는 생산성 및 축열 방지의 관점에서 4mm 이상 20mm 이하인 것이 바람직하며, 일정한 주행 피치를 유지하는 것이 바람직하다. 또한, 예를 들면 섬유 다발의 주행 피치가 4mm인 경우, 인접하는 섬유 다발의 폭 방향(도 6에서는 지면 상하 방향)의 중심간 간격(거리)이 4mm인 것을 의미한다. 내염화로의 가열 처리부 내에서의 섬유 다발 주행 피치는, 내염화로의 입구측 롤(111) 및 출구측 롤(112)에서의 섬유 다발 주행 피치로부터 기하학 계산에 의해 산출할 수 있다.
다음에, 시트상 전구체 섬유 다발을 내염화로(51)에 투입한다. 이들 시트상 전구체 섬유 다발은 산화성 분위기로 된 내염화로 가열 처리부(51a) 내에서 내염화 처리되면서 주행한 후, 일단 내염화로(51)의 외부로 나온다. 이어서, 내염화로(51)의 외부에 배치된 절첩 롤군(119)의 처음 롤에 의해 절첩된다. 그 후, 내염화로 가열 처리부(51a) 내를 다시 통과하여 내염화 처리된다. 이후, 절첩 롤군(119)의 사이에서 반복하여 내염화 처리된다. 이에 의해, 시트상 내염화 섬유 다발이 얻어진다. 산화성 가스 분위기로서는 산화성을 갖는 분위기이면 되며, 통상, 경제성의 관점에서 공기가 사용된다.
도 6 및 도 7에서는 내염화로 1대분을 도시하고 있지만, 본 발명에서는 몇대의 내염화로를 연속하여 설치하고, 전구체 섬유의 내염화 처리 진행 상태에 대응하여 이들 내염화로 가열 처리부의 처리 온도를 서서히 높여 가는 방법이 바람직하다. 이 때, 이들 내염화로 가열 처리부의 온도로서는 축열 방지의 관점에서 200℃ 이상 300℃ 이하로 한다. 내염화 처리 시간으로서는 생산성 및 축열 방지의 관점에서 20분 이상 120분 이하인 것이 바람직하다. 또한, 반송 속도로서는 생산성의 관점에서 3m/분 이상 20m/분 이하인 것이 바람직하다.
또한, 복수대(n대)의 내염화로를 연속하여 설치한 경우, 내염화로의 입구측 롤이란 시트상 전구체 섬유 다발이 최초로 통과하는 1대째의 내염화로의 입구측 롤을 의미하며, 내염화로의 출구측 롤이란 시트상 전구체 섬유 다발이 마지막에 통과하는 n대째의 내염화로의 출구측 롤을 의미한다.
본 발명에 관한 제조 방법에서는, 도 9에 도시한 바와 같이 서로 평행한 2개의 롤(120 및 121)을 이용하여, 각 로 내에서(내염화로 내에서는 섬유 다발의 주행 피치를 변경하지 않고 일정한 피치로 하는 것이 바람직하지만) 섬유 다발의 주행 피치를 변경할 수 있다. 그 때, 이 2개의 롤의 축 방향과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 가로 일렬로 배열된 다수의 섬유 다발의 기울기 각도 중 최대 기울기 각도를 θ로 나타낸다.
전형적으로는, 최대 기울기 각도는 가로 일렬로 배열된 다수의 섬유 다발 중 끝에 위치하는 섬유 다발에서의 기울기 각도가 되며, 섬유 다발의 중심을 향할수록 섬유 다발의 기울기 각도는 작아진다. 또한, 도 9에 도시한 바와 같이, 다수의 섬유 다발 중 끝에 위치하는 섬유 다발은 2개인데, 이들 기울기 각도는 동일할 수도 있고 상이할 수도 있다. 양끝에 위치하는 2개의 섬유 다발의 기울기 각도가 동일한 경우에는 그 각도가 최대 기울기 각도 θ가 되고, 상이한 경우에는 이들 기울기 각도 중 큰 쪽의 각도가 최대 기울기 각도 θ가 된다. 도 9는 양끝에 위치하는 2개의 섬유 다발의 기울기 각도가 동일한 경우이며, 한쪽의 최대 기울기 각도 θ가 도시되어 있다.
이후, 전탄소화 공정에서의 최대 기울기 각도 θ를 θ11이라고 칭하고, 탄소화 공정에서의 최대 기울기 각도 θ를 θ13이라고 칭한다.
내염화 처리한 시트상 내염화 섬유 다발의 주행 피치의 변경에는, 이 2개의 롤(20 및 21)로서 전탄소화로(52)의 전후(입구측과 출구측)에 1개씩 배치한 서로 평행한 전탄소화로 입구측 롤(113)과 전탄소화로 출구측 롤(114)을 이용할 수 있다. 이에 의해 전탄소화로(2) 내에서 섬유 다발 주행 피치의 변경을 행할 수 있으며, 그 때, 최대 기울기 각도 θ11은 0.1°<θ11<3.0°의 범위 내로 하는 것이 바람직하고, 0.3°<θ11<2.5°의 범위로 하는 것이 더욱 바람직하다.
최대 기울기 각도가 0.1°보다 큰 경우에는, 롤(113)과 롤(114) 사이의 거리가 길어지는 것을 용이하게 방지하여 전탄소화로의 길이가 길어지는 것을 용이하게 방지할 수 있다. 최대 기울기 각도가 3.0°보다 작은 경우에는 꼬임이 발생하는 것을 용이하게 방지할 수 있다.
상기 2개의 롤(113 및 114)은, 각각 내염화 공정으로부터 얻어지는 가로 일렬로 배열된 다수의 내염화 섬유 다발의 주행 방향에 대하여 수직이면서, 이들 섬유 다발이 형성하는 평면에 대하여 평행하게 배치할 수 있다.
주행 피치의 변경에 이용할 수 있는 롤(111 내지 118)은, 전형적으로는 도 6에 도시한 바와 같이 각 로의 외부에 설치되지만, 각 로의 내부에서 동시에 각 로의 가열 처리부의 외부에 설치할 수도 있다.
섬유 다발 주행 피치를 변경할 때에는 전탄소화로의 생산성과 분해물에 의한 품질에의 영향을 고려하여, 전탄소화로 가열 처리부(52a)의 입구에서의 섬유 다발의 주행 피치를 P11, 전탄소화로 가열 처리부(52a)의 출구에서의 섬유 다발의 주행 피치를 P12로 하였을 때, 0.40≤(P12/P11)≤0.90의 범위 내가 되도록 한다. 바람직하게는 0.50≤(P12/P11)≤0.85의 범위로 한다.
또한, 도 8에 도시한 바와 같이, 전탄소화로 가열 처리부의 입구 및 출구에서의 섬유 다발의 주행 피치(P11 및 P12)는, 상술한 방법으로 측정한 전탄소화로의 입구측 및 출구측에 설치한 롤(113 및 114) 상에서의 섬유 다발의 주행 피치(p1 및 p2)로부터, 하기 식 (5) 및 (6)을 이용한 기하학 계산에 의해 산출할 수 있다.
P11=p1-{a×(p1-p2)/(a+b+c)} … (5)
P12=p1-{(a+b)×(p1-p2)/(a+b+c)} … (6)
또한, 식 (5) 및 (6) 중의 부호는 이하의 것을 나타낸다.
P11: 전탄소화로 가열 처리부의 입구에서의 섬유 다발의 주행 피치
P12: 전탄소화로 가열 처리부의 출구에서의 섬유 다발의 주행 피치
p1: 전탄소화로의 입구측에 설치한 롤 상에서의 섬유 다발의 주행 피치
p2: 전탄소화로의 출구측에 설치한 롤 상에서의 섬유 다발의 주행 피치
a: 전탄소화로의 입구측에 설치한 롤 상(p1 측정 지점)에서부터 전탄소화로 가열 처리부의 입구까지의 거리
b: 전탄소화로 가열 처리부의 입구에서부터 출구까지의 거리
c: 전탄소화로 가열 처리부의 출구에서부터 전탄소화로의 출구측에 설치한 롤 상(p2 측정 지점)까지의 거리
섬유 다발 주행 피치의 변경 방법으로서는 전탄소화로 입구측 롤(113)과 전탄소화로 출구측 롤(114)을 홈 롤로 하는 방법, 콤 가이드와 플랫 롤을 조합하는 방법 등 공지된 기술을 이용할 수 있다.
시트상 내염화 섬유 다발은 전탄소화로 입구측 롤(113)로 필요에 따라 재배열된 후, 전탄소화로(52)의 섬유 다발 투입구로부터 전탄소화로(52)에 투입된다. 전탄소화로(52) 내는 불활성 가스 분위기로 되어 있다. 불활성 가스로서는 질소, 아르곤 등을 사용할 수 있지만, 통상, 경제성의 관점에서 질소를 사용한다. 시트상 내염화 섬유 다발은 전탄소화로 가열 처리부(52a) 내를 전탄소화 처리되면서 필요에 따라 주행 피치를 좁히면서 주행한 후, 전탄소화로(52)를 나와 전탄소화로 출구측 롤(114)로 필요에 따라 주행 피치를 변경한 상태에서 재배열된 시트상 전탄소화 섬유 다발이 된다.
전탄소화로 가열 처리부(52a)는 온도 조정 가능한 복수의 블록(구획)을 포함할 수 있다. 가열 처리부(52a)의 온도는 내염화로에서의 최고 처리 온도 설정보다 높은 온도에서 서서히 높여 가는 것이 바람직하며, 최고 처리 온도는 탄소 섬유로서의 강도 발현성의 관점에서 500℃ 이상 800℃ 이하로 한다. 또한, 전탄소화 처리 시간으로서는 생산성 및 탄소 섬유로서의 강도 발현성의 관점에서 0.6분 이상 3분 이하인 것이 바람직하다.
다음에, 도 9에 도시하는 2개의 롤(120 및 121)로서 탄소화로(53)의 전후(입구측과 출구측)에 1개씩 배치된 서로 평행한 탄소화로 입구측 롤(115)과 탄소화로 출구측 롤(116)을 이용함으로써, 탄소화로 내(53)에서 시트상 전탄소화 섬유 다발의 주행 피치의 변경을 행할 수 있다. 이 2개의 롤(115 및 116)은, 각각 전탄소화 공정으로부터 얻어지는 가로 일렬로 배열된 다수의 전탄소화 섬유 다발의 주행 방향에 대하여 수직이면서, 이들 섬유 다발이 형성하는 평면에 대하여 평행하게 배치할 수 있다.
섬유 다발 주행 피치를 변경할 때에는 탄소화로의 생산성과 분해물에 의한 품질에의 영향을 고려하여, 탄소화로 가열 처리부(53a)의 입구에서의 섬유 다발의 주행 피치를 P13, 탄소화로 가열 처리부(53a)의 출구에서의 섬유 다발의 주행 피치를 P14로 하였을 때 0.40≤(P14/P13)≤0.90의 범위 내가 되도록 한다. 더욱 바람직하게는 0.50≤(P14/P13)≤0.85의 범위이다.
탄소화로 가열 처리부(53a)의 입구 및 출구에서의 섬유 다발의 주행 피치(P13 및 P14)는, 상술한 P11 및 P12와 마찬가지의 계산식을 이용하여 산출할 수 있다. 그 때, 도 8에 도시한 바와 같이 p1, p2 및 a 내지 c는 각각 p3, p4 및 d 내지 f에 대응한다.
또한, 2개의 롤(115 및 116)의 축 방향과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 가로 일렬로 배열된 다수의 섬유 다발의 기울기 각도 중 최대 기울기 각도 θ13을 0.1°<θ13<3.0°의 범위 내로 하는 것이 바람직하다. 최대 기울기 각도가 0.1°보다 큰 경우에는, 롤(115)과 롤(116) 사이의 거리가 길어지는 것을 용이하게 방지하여 탄소화로의 길이가 길어지는 것을 용이하게 방지할 수 있다. 최대 기울기 각도가 3.0보다 작은 경우에는 꼬임이 발생하는 것을 용이하게 방지할 수 있다. 또한, 최대 기울기 각도 θ13은 0.3°<θ13<2.5°의 범위로 하는 것이 더욱 바람직하다.
탄소화로 내를 주행하는 섬유 다발의 주행 피치의 변경 방법은, 상술한 전탄소화로 내에서의 방법과 마찬가지의 방법을 이용할 수 있다.
시트상 전탄소화 섬유 다발은 탄소화로 입구측 롤(115)로 필요에 따라 재배열된 후, 탄소화로(53)의 섬유 다발 투입구로부터 탄소화로(53)에 투입된다. 탄소화로(53) 내는 불활성 가스 분위기로 되어 있다. 시트상 전탄소화 섬유 다발은 탄소화로 가열 처리부(53a) 내를 탄소화 처리되면서 필요에 따라 주행 피치를 좁히면서 주행한 후, 탄소화로(53)를 나와 탄소화로 출구측 롤(116)로 필요에 따라 주행 피치를 변경한 상태에서 재배열된 시트상 탄소화 섬유 다발이 된다.
또한, 탄소화로 가열 처리부는 온도 조정 가능한 복수의 블록을 포함할 수 있다. 가열 처리부(53a)의 온도는 전탄소화로의 최고 처리 온도보다 높은 온도에서부터 서서히 높여 가는 것이 바람직하며, 최고 처리 온도는 1000℃ 이상으로 한다. 탄소화로 가열 처리부(53a) 내의 온도로서는 강도 발현성의 관점에서 1200℃ 이상 1800℃ 이하인 것이 바람직하다. 탄소화 처리 시간으로서는 생산성 및 강도 발현성의 관점에서 0.6분 이상 3분 이하인 것이 바람직하다.
탄소화로(53)에서 열 처리가 완료된 시트상 탄소화 섬유 다발은, 필요에 따라 섬유 다발이 산화되지 않도록 로 내를 2000℃를 초과하는 불활성 가스 분위기로 채운 흑연화로(54), 보다 구체적으로는 흑연화로 가열 처리부(54a)에 연속적으로 통과시켜 흑연화 섬유 다발로 전화할 수 있다.
또한, 시트상 탄소화 섬유 다발에서의 각 탄소화 섬유 다발의 주행 위치는, 흑연화로(54)의 외부에 설치한 롤(117 및 118)에 의해 제어할 수 있다. 도 6에서는 흑연화 공정에 있어서 섬유 다발의 주행 피치는 변경되어 있지 않기 때문에, 흑연화로(54)의 입구측 롤(117)에서의 주행 피치와 출구측 롤(118)에서의 주행 피치는 동일하다.
이와 같이 하여 얻어진 탄소화 또는 흑연화 섬유 다발은, 종래 공지된 전해액 중에서 전해 산화 처리를 실시하거나 기상 또는 액상에서의 산화 처리를 실시하거나 함으로써, 복합 재료에서의 탄소 섬유 또는 흑연화 섬유와 매트릭스 수지의 친화성이나 접착성을 향상시킬 수 있다. 또한, 필요에 따라 종래 공지된 방법에 의해 사이징제를 부여할 수 있다. 또한, 가열 처리 중의 섬유 다발의 장력을 제어하기 위한 고데트 롤을 설치하는 등, 필요에 따라 종래 공지된 방법을 사용할 수 있다.
<실시예>
이하에 제1 발명을 실시예에 의해 더 구체적으로 설명하지만, 제1 발명의 탄소 섬유 다발의 제조 방법은 이들에 의해 한정되는 것은 아니다.
(실시예 1)
실시예 1에서는 도 1에 도시하는 구성을 갖는 장치를 이용하여 탄소 섬유를 제조하였다. 또한, 섬유 다발 블록수는 도 1과 상이하다. 또한, 실시예 1 내지 12 및 비교예 1 내지 3에 있어서, 도 2 내지 도 4에 도시되는 롤(21) 및 롤(22)의 축과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 각 섬유 다발 블록 내의 양끝에 위치하는 섬유 다발의 기울기각은 동일 각도로 하고, 이 각도를 최대 기울기각(θ1)으로 한다. 또한, 실시예 1 내지 12 및 비교예 1 내지 3에 있어서, 롤(22) 및 롤(25)의 축과 직교하는 면에 대한, 각도 조정 가능한 롤 사이(23 내지 24)를 주행하는 시트상 섬유 다발의 양끝에 위치하는 섬유 다발 블록의 기울기각은 동일 각도로 하고, 이 각도를 최대 기울기각(θ2)으로 한다.
ㆍ내염화 공정
단사 섬도가 0.8dTex, 필라멘트수가 24000인 아크릴계 전구체 섬유 다발 100개를 홈을 가진 가이드 롤 상에 10mm 피치(P1: 10mm)로 등간격으로 배열한 시트상 전구체 섬유 다발(11)을 230 내지 270℃의 열풍이 순환하고 있는 내염화로(1)의 좌우에 설치된 롤군에 의해 내염화로 내를 반복하여 통과시켜 50분간 내염화 처리를 행하여 시트상 내염화 섬유 다발(12)로 하였다.
ㆍ주행 피치 변경 공정-1
(공정 a)
내염화로(1)를 나와 가로 일렬로 평행하게 주행하는 100개의 섬유 다발을 8블록으로 분할하고, 서로 평행하게 배치된 2개의 롤(플랫 롤(21-1) 및 홈 롤(22-1))을 이용하여 8개의 섬유 다발 블록마다 섬유 다발 블록 내의 섬유 다발 주행 피치를 9mm로 변경하였다. 또한, 홈 롤(22-1)은 9mm 피치로 등간격으로 홈이 각인되어 있으며, 플랫 롤(21-1)과 홈 롤(22-1)의 거리는 1m가 되도록 배치하였다. 이 때, 플랫 롤(21-1) 및 홈 롤(22-1)의 축과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 각 섬유 다발 블록 내의 양끝에 위치하는 섬유 다발의 기울기각(θ1-1)은 모두 0.4도이었다.
(공정 b)
상기 각 섬유 다발 블록 내의 섬유 다발 주행 피치를 9mm로 변경한 8개의 섬유 다발 블록에 대하여, 도 2 및 도 3에 도시한 롤 배치에 의해 인접하는 섬유 다발 블록 사이의 간격을 좁혀 모든 섬유 다발의 주행 피치가 9mm가 되도록 변경하였다. 보다 구체적으로는, 제1 롤쌍(홈 롤(22-1) 및 플랫 롤(25-1))의 사이에 배치된 각도 조정 가능한 복수의 제2 롤쌍(플랫 롤(23-1)과 플랫 롤(24-1))을 이용하여 인접하는 섬유 다발 블록끼리를 보다 접근시켰다. 또한, 제1 롤쌍 및 제2 롤쌍을 각각 구성하는 2개의 롤은 서로 평행하게 배치하였다. 또한, 플랫 롤(23-1)과 플랫 롤(24-1)의 거리는 모두 1m가 되도록 배치하였다.
이 때, 홈 롤(22-1) 및 플랫 롤(25-1)의 축과 직교하는 면에 대한, 각도 조정 가능한 플랫 롤 사이(23-1 내지 24-1)를 주행하는 8개로 분할된 시트상 섬유 다발의 양끝에 위치하는 섬유 다발 블록의 기울기각(θ2-1)은 모두 3.0도이었다.
이상의 주행 피치 공정(공정 a 및 b)에 의해 섬유 다발 주행 피치를 10mm(P1)로부터 9mm(P2)로 변경한 가로 일렬로 평행하게 주행하는 100개의 섬유 다발(주행 피치 9mm의 시트상 내염화사 섬유 다발(12))이 얻어졌다.
ㆍ전탄소화 공정
이어서, 상기 주행 피치 9mm의 시트상 내염화 섬유 다발(12)을 질소로 채워진 실질적 가열부가 300 내지 600℃의 온도 분포를 갖는 전탄소화로(2)에 도입하여 2분간의 열 처리를 행하여 시트상 전탄소화 섬유 다발(13)로 하였다.
ㆍ주행 피치 변경 공정-2
전탄소화로(2)를 나와 가로 일렬로 평행하게 주행하는 시트상 전탄소화 섬유 다발(13)의 섬유 다발 주행 피치를 상술한 섬유 다발 주행 피치 변경 방법과 마찬가지의 방법을 이용하여 9mm(P2)로부터 5mm(P3)로 변경하였다. 이 때, 상술한 공정 (a) 및 (b)를 롤(21-1 내지 25-1)을 포함하는 롤군(4) 대신에 마찬가지의 구성의 롤(21-2 내지 25-2)을 포함하는 롤군(5)을 이용하여 섬유 다발의 주행 피치의 변경을 행하였다. 이 때, 플랫 롤(21-2)과 홈 롤(22-2)의 거리를 1m가 되도록 배치하였다. 이 때, 플랫 롤(21-2) 및 홈 롤(22-2)의 축과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 각 섬유 다발 블록 내의 양끝에 위치하는 섬유 다발의 기울기각(θ1-2)은 모두 1.4도이었다. 또한, 플랫 롤(23-2)과 플랫 롤(24-2)의 거리를 모두 1m가 되도록 배치하였다. 이 때, 홈 롤(22-2) 및 플랫 롤(25-2)의 축과 직교하는 면에 대한, 각도 조정 가능한 플랫 롤(23-2) 및 (24-2) 사이를 주행하는 8개의 섬유 다발 블록을 포함하는 시트상 섬유 다발의 양끝에 위치하는 섬유 다발 블록의 기울기각(θ2-2)은 모두 11도이었다.
이상으로부터 섬유 다발 주행 피치(P3)가 5mm인 가로 일렬로 평행하게 주행하는 100개의 섬유 다발(주행 피치 5mm의 시트상 전탄소화 섬유 다발(13))이 얻어졌다.
ㆍ탄소화 공정
이어서, 이 섬유 다발 주행 피치를 5mm(P3)로 한 시트상 전탄소화 섬유 다발(13)을 질소로 채워진 실질적 가열부가 1000 내지 1500℃의 온도 분포를 갖는 탄소화로(3)에 도입하여 2분간의 열 처리를 행하여 가로 일렬로 평행하게 주행하는 100개의 섬유 다발(시트상 탄소화 섬유 다발(14))로 하였다. 또한, 전해 산화 표면 처리, 사이징 처리를 실시하여 탄소 섬유 다발로 하였다. 상기 탄소 섬유 다발은 품질이 양호한 것이었다.
또한, 표 1에 나타내는 탄소 섬유 다발의 생산성 및 품질은 이하의 기준에 기초하여 판정하였다.
ㆍ생산성
○: P3/P1≤0.8, 즉 탄소화로(3)의 폭을 내염화로(1)의 폭에 대하여 20% 이상 삭감할 수 있었던 것
×: 0.8<P3/P1, 즉 탄소화로(3)의 폭을 내염화로(1)의 폭에 대하여 20% 미만밖에 삭감할 수 없었던 것
ㆍ품질
○: 탄소 섬유의 품위가 우수하여 전혀 문제가 없음
△: 탄소 섬유의 품위가 다소 떨어지지만 문제가 없음
×: 탄소 섬유의 품위상 문제가 됨
(실시예 2)
주행 피치 변경 공정-1 및 -2의 섬유 다발 블록수를 5블록으로 변경하고, θ1-1을 모두 0.6도로 변경하고, θ1-2를 모두 2.3도로 변경하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이었다.
(실시예 3)
플랫 롤(23-1)과 플랫 롤(24-1)의 거리를 모두 0.75m로 변경하고, θ2-1을 모두 4도로 변경하였다. 또한, 플랫 롤(23-2)과 플랫 롤(24-2)의 거리를 모두 0.75m로 변경하고, θ2-2를 모두 15도로 변경하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이었다.
(실시예 4)
주행 피치 변경 공정-1 및 -2의 섬유 다발 블록수를 4블록으로 변경하고, θ1-1을 모두 0.7도로 변경하였다. 플랫 롤(23-1)과 플랫 롤(24-1)의 거리를 모두 0.5m로 변경하고, θ2-1을 모두 6도로 변경하였다. 또한, 전탄소화로(2)를 나와 가로 일렬로 평행하게 주행하는 시트상 전탄소화 섬유 다발(13)의 변경 후의 주행 피치, 즉 탄소화 공정에서의 주행 피치(P3)를 7mm로 변경하였다. 또한, 플랫 롤(23-2)과 플랫 롤(24-2)의 거리를 모두 0.5m로 변경하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이었다.
(실시예 5)
주행 피치 변경 공정-1의 섬유 다발 블록수를 5블록으로 변경하고, 시트상 내염화 섬유 다발(12)의 변경 후의 주행 피치, 즉 전탄소화 공정에서의 섬유 다발의 주행 피치(P2)를 8mm로 변경하였다. 또한, θ1-1을 모두 1.1도로 변경하고, θ2-1을 모두 6도로 변경하였다. 또한, 탄소화 공정에서의 섬유 다발의 주행 피치(P3)를 8mm로 변경하고, 실시예 5에서는 주행 피치 변경 공정-2는 행하지 않고, 전탄소화 공정으로부터 얻어진 시트상 전탄소화 섬유 다발(13)을 그대로의 주행 피치로 탄소화 공정에 공급하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이었다.
(실시예 6)
전탄소화 공정에서의 섬유 다발의 주행 피치(P2)를 10mm로 변경하고, 실시예 6에서는 주행 피치 변경 공정-1은 행하지 않고, 내염화 공정으로부터 얻어진 시트상 내염화 섬유 다발(12)을 그대로의 주행 피치로 전탄소화 공정에 공급하였다.
또한, 주행 피치 변경 공정-2에서의 전탄소화로(2)를 나와 가로 일렬로 평행하게 주행하는 시트상 전탄소화 섬유 다발(13)을 분할하는 블록수를 5블록으로 변경하고, θ1-2를 모두 1.7도로 변경하고, θ2-2를 모두 9도로 변경하였다. 또한, 탄소화 공정에서의 섬유 다발의 주행 피치(P3)를 7mm로 변경하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이었다.
(비교예 1)
시트상 내염화 섬유 다발(12)의 변경 후의 주행 피치, 즉 전탄소화 공정에서의 섬유 다발의 주행 피치(P2)를 7mm로 변경하였다. 또한, θ1-1을 모두 1.1도로 변경하고, θ2-1을 모두 9도로 변경하였다. 또한, 탄소화 공정에서의 섬유 다발의 주행 피치(P3)를 7mm로 변경하고, 비교예 1에서는 주행 피치 변경 공정-2는 행하지 않고, 전탄소화 공정으로부터 얻어진 시트상 전탄소화 섬유 다발(13)을 그대로의 주행 피치로 탄소화 공정에 공급하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 또한, 비교예 1의 조건에서는 시트상 내염화 섬유 다발(12)의 섬유 다발 주행 피치 변경시(주행 피치 변경 공정-1일 때)에 홈 롤(22-1)에 있어서 단사 끊어짐이 발생하여 양호한 품질의 탄소 섬유 다발을 얻을 수 없었다.
(비교예 2)
시트상 전탄소화 섬유 다발(13)의 변경 후의 주행 피치, 즉 탄소화 공정에서의 섬유 다발의 주행 피치(P3)를 3mm로 변경하였다. 또한, θ1-2를 모두 2.1도, θ2-2를 모두 17도로 변경하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 또한, 비교예 2의 조건에서는 시트상 전탄소화 섬유 다발(13)의 섬유 다발 주행 피치 변경시(주행 피치 변경 공정-2일 때)에 홈 롤(22-2)에 있어서 단사 끊어짐이 발생하여 양호한 품질의 탄소 섬유 다발을 얻을 수 없었다.
(비교예 3)
섬유 다발 주행 피치를 변경하지 않고(주행 피치 변경 공정-1 및 -2를 행하지 않고, 내염화 공정으로부터 얻어진 시트상 내염화 섬유 다발(12)을 그대로의 주행 피치로 전탄소화 공정에 공급하고, 이 전탄소화 공정으로부터 얻어진 시트상 전탄소화 섬유 다발(13)을 그대로의 주행 피치로 탄소화 공정에 공급하였음), 전탄소화로 및 탄소화로에 내염화로와 동일한 폭의 물건을 사용한 점 이외에는, 실시예 1과 마찬가지의 조건에서 탄소 섬유 다발의 제조를 행하였다. 비교예 3의 조건에서는 탄소 섬유 다발의 품질이 양호한 것이 얻어졌지만, 필요 이상으로 폭이 넓은 탄소화로에서 탄소화를 행하기 때문에 실시예에 비하여 생산성이 저하되었다.
(실시예 7)
주행 피치 변경 공정-1 및 2 대신에 이하의 주행 피치 변경 공정-3 및 4를 각각 행한 것 이외에는, 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다.
ㆍ주행 피치 변경 공정-3
내염화로(1)를 나와 가로 일렬로 평행하게 주행하는 100개의 섬유 다발의 주행 피치(P1: 10mm)를 도 5에 도시한 바와 같은 2개의 홈 롤(10mm 피치 및 9mm 피치로 각각 등간격으로 홈이 각인된 2개의 홈 롤)을 이용하여 9mm(P2)로 변경하였다. 또한, 이 2개의 홈 롤 사이의 거리는 1m로 하였다. 이에 의해, 가로 일렬로 평행하게 주행하는 주행 피치 9mm의 100개의 섬유 다발(주행 피치 9mm의 시트상 내염화사 섬유 다발)이 얻어졌다.
ㆍ주행 피치 변경 공정-4
전탄소화로(2)를 나와 가로 일렬로 평행하게 주행하는 시트상 전탄소화 섬유 다발을 상기 2개의 홈 롤을 이용한 주행 피치 변경 방법과 마찬가지의 방법을 이용하여 섬유 다발 주행 피치를 9mm(P2)로부터 5mm(P3)로 변경하였다. 이 때, 2개의 홈 롤(9mm 피치 및 5mm 피치로 각각 등간격으로 홈이 각인된 2개의 홈 롤) 사이의 거리는 4m이었다. 이에 의해, 섬유 다발 주행 피치(P3)가 5mm인 가로 일렬로 평행하게 주행하는 100개의 섬유 다발(주행 피치 5mm의 시트상 전탄소화 섬유 다발)이 얻어졌다.
실시예 7의 조건에서는 섬유 다발 주행 피치 변경시에 홈 롤(도 5에서 말하는 도면 부호 27의 홈 롤)에 있어서 약간 꼬임이 발생하여, 실시예 1 내지 6과 비교하면 탄소 섬유 다발의 품질은 약간 저하되었지만, 비교예에 대해서는 양호한 품질이었다.
(실시예 8)
주행 피치 변경 공정-1 및 -2의 섬유 다발 블록수를 3블록으로 변경하고, θ1-1을 모두 1.0도로 변경하였다. 또한, θ1-2를 모두 3.8도로 변경하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 또한, 실시예 8의 조건에서는 섬유 다발 주행 피치 변경시(주행 피치 변경 공정-2일 때)에 홈 롤(22-2)에 있어서 약간 꼬임이 발생하여, 실시예 1 내지 6과 비교하면 탄소 섬유 다발의 품질은 약간 저하되었지만, 비교예에 대해서는 양호한 품질이었다.
(실시예 9)
플랫 롤(23-1)과 플랫 롤(24-1)의 거리를 모두 0.5m로 변경하고, θ2-1을 모두 6도로 변경하였다. 또한, 플랫 롤(23-2)과 플랫 롤(24-2)의 거리를 모두 0.5m로 변경하고, θ2-2를 모두 22도로 변경하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 또한, 실시예 9의 조건에서는 섬유 다발 주행 피치 변경시(주행 피치 변경 공정-2일 때)에 플랫 롤(23-2 및 24-2)에 있어서 약간 꼬임이 발생하여, 실시예 1 내지 6과 비교하면 탄소 섬유 다발의 품질은 약간 저하되었지만, 비교예에 대해서는 양호한 품질이었다.
(실시예 10)
아크릴계 전구체 섬유 다발의 개수를 600개로 변경하였다. 또한, 주행 피치 변경 공정-1의 서로 평행하게 배치된 2개의 롤(플랫 롤(21-1) 및 홈 롤(22-1))의 거리를 9m로 변경하고 θ1-1을 0.2°로 변경, 또한 플랫 롤(23-1)과 플랫 롤(24-1)의 거리는 실시예 1과 마찬가지의 1m로 하고 θ2-1은 17°로 변경하였다. 또한, 주행 피치 변경 공정-2의 플랫 롤(21-2)과 홈 롤(22-2)의 거리를 9m로 변경하고 θ1-2를 1.0°, 플랫 롤(23-2)과 플랫 롤(24-2)의 거리를 5m로 변경하고 θ2-2를 13°로 변경하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이었다.
(실시예 11)
아크릴계 전구체 섬유 다발의 개수를 600개로 변경하였다. 또한, 주행 피치 변경 공정-1의 서로 평행하게 배치된 2개의 롤(플랫 롤(21-1) 및 홈 롤(22-1))의 거리를 12m로 변경하고 θ1-1을 0.2°로 변경, 또한 플랫 롤(23-1)과 플랫 롤(24-1)의 거리는 실시예 1과 마찬가지의 1m로 하고 θ2-1은 17°로 변경하였다. 또한, 주행 피치 변경 공정-2의 플랫 롤(21-2)과 홈 롤(22-2)의 거리를 12m로 변경하고 θ1-2를 0.7°, 플랫 롤(23-2)과 플랫 롤(24-2)의 거리를 5m로 변경하고 θ2-2를 13°로 변경하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이었다.
(실시예 12)
아크릴계 전구체 섬유 다발의 개수를 600개로 변경하였다. 또한, 주행 피치 변경 공정-1의 서로 평행하게 배치된 2개의 롤(플랫 롤(21-1) 및 홈 롤(22-1))의 거리를 15m로 변경하고 θ1-1을 0.1°로 변경, 또한 플랫 롤(23-1)과 플랫 롤(24-1)의 거리는 실시예 1과 마찬가지의 1m로 하고 θ2-1은 17°로 변경하였다. 또한, 주행 피치 변경 공정-2의 플랫 롤(21-2)과 홈 롤(22-2)의 거리를 15m로 변경하고 θ1-2를 0.6°, 플랫 롤(23-2)과 플랫 롤(24-2)의 거리를 5m로 변경하고 θ2-2를 13°로 변경하였다. 이들 이외에는 실시예 1과 마찬가지로 하여 탄소 섬유 다발을 제작하였다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이었다.
이상의 실시예, 비교예에서의 평가 결과를 표 1에 나타낸다.
Figure 112013001316032-pct00001
이하에 제2 발명 및 제3 발명을 실시예에 의해 더 구체적으로 설명하지만, 본 발명의 탄소 섬유 다발의 제조 방법은 이들에 의해 한정되는 것은 아니다. 또한, 실시예 13 내지 20 및 비교예 4 내지 7에 있어서, 도 6 내지 도 8에 도시하는 전탄소화로 입구측 롤(113) 및 출구측 롤(114)의 축과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 시트상 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도는 서로 동일한 각도로 하고, 이 각도를 최대 기울기 각도(θ11)로 한다. 또한, 실시예 13 내지 20 및 비교예 4 내지 7에 있어서, 도 6 내지 도 8에 도시하는 탄소화로 입구측 롤(115) 및 출구측 롤(116)의 축과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 시트상 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도는 서로 동일한 각도로 하고, 이 각도를 최대 기울기 각도(θ13)로 한다.
(실시예 13)
단사 섬도가 0.8dTex, 필라멘트수가 24000인 아크릴계 전구체 섬유 다발 50개를 홈을 가진 롤(111) 상에 10mm 피치로 등간격으로 배열한 시트상 전구체 섬유 다발을 230 내지 270℃의 열풍이 순환하고 있는 내염화로(51)의 좌우에 설치된 절첩 롤군(119)에 의해 지그재그로 주행하여 50분간의 내염화 처리를 행하여 시트상 내염화 섬유 다발로 하였다. 또한, 내염화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않았다.
내염화로(51)를 나와 가로 일렬로 평행하게 주행하는 시트상 내염화 섬유 다발을 10mm 피치로 등간격으로 홈이 각인된 전탄소화로 입구측 롤(113)과 8mm 피치로 등간격으로 홈이 각인된 전탄소화로 출구측 롤(114)에 의해 전탄소화로(2) 내에서 주행 피치를 변경하면서 질소로 채워진 전탄소화로 가열 처리부(52a)가 300 내지 600℃의 온도 분포를 갖는 전탄소화로(52) 내에서 2분간의 열 처리를 행하여 시트상 전탄소화 섬유 다발로 하였다.
또한, 기하학 계산에 의해 산출한 전탄소화로 가열 처리부(52a)의 입구에서의 섬유 다발의 주행 피치 P11은 9.9mm이고, 출구에서의 섬유 다발의 주행 피치 P12는 8.1mm이었다. 계산에 이용한 매개변수를 표 2에 나타낸다.
이 때, 전탄소화로 입구측 롤(113)의 축 방향과 직교하는 면에 대한, 시트상 전탄소 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도 θ11은 0.7도이었다.
이어서, 시트상 전탄소화 섬유 다발을 질소로 채워진 탄소화로 가열 처리부(53a)가 1000 내지 1500℃의 온도 분포를 갖는 탄소화로(53)에 도입하여 2분간의 열 처리를 행하여 시트상 탄소화 섬유 다발로 하였다. 또한, 탄소화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않고, 섬유 다발은 8mm 피치로 섬유 다발을 주행시켰다. 또한, 전해 산화 표면 처리, 사이징 처리를 실시하여 탄소 섬유 다발로 하였다. 이 탄소 섬유 다발은 품질이 양호한 것이며, 생산성도 양호하였다. 또한, 탄소 섬유 다발의 품질 및 생산성은 이하의 기준에 기초하여 판정하였다.
ㆍ생산성
○: 탄소화로의 생산성이 주행 피치를 변경하지 않는 경우에 대하여 10% 이상 향상
×: 탄소화로의 생산성의 주행 피치를 변경하지 않는 경우에 대한 향상이 10% 미만
ㆍ품질
○: 탄소 섬유의 품위가 우수하여 전혀 문제가 없음
△: 탄소 섬유의 품위가 다소 떨어지지만 문제가 없음
×: 탄소 섬유의 품위상 문제가 됨
(실시예 14)
시트상 내염화 섬유 다발을 10mm 피치로 등간격으로 홈이 각인된 전탄소화로 입구측 롤(113)과 6mm 피치로 등간격으로 홈이 각인된 전탄소화로 출구측 롤(114)을 이용하여 전탄소화로 내(2)에서 주행 피치를 변경하는 조건으로 한 것 이외에는, 실시예 13과 마찬가지의 조건에서 탄소 섬유 다발의 제작을 행하였다. 또한, 내염화로 내 및 탄소화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않고, 각각 10mm 피치 및 6mm 피치로 섬유 다발을 주행시켰다.
기하학 계산에 의해 산출한 전탄소화로 가열 처리부(52a)의 입구에서의 섬유 다발의 주행 피치 P11은 9.8mm이고, 출구에서의 섬유 다발의 주행 피치 P12는 6.2mm이었다. 또한, 전탄소화로 입구측 롤(113)의 축 방향과 직교하는 면에 대한, 시트상 전탄소 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도 θ11은 1.3도이었다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이며, 생산성도 양호하였다.
(실시예 15)
시트상 내염화 섬유 다발을 10mm 피치로 등간격으로 홈이 각인된 전탄소화로 입구측 롤(113)과 4mm 피치로 등간격으로 홈이 각인된 전탄소화로 출구측 롤(114)을 이용하여 전탄소화로 내(52)에서 주행 피치를 변경하는 조건으로 한 것 이외에는, 실시예 13과 마찬가지의 조건에서 탄소 섬유 다발의 제작을 행하였다. 또한, 내염화로 내 및 탄소화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않고, 각각 10mm 피치 및 4mm 피치로 섬유 다발을 주행시켰다.
기하학 계산에 의해 산출한 전탄소화로 가열 처리부(52a)의 입구에서의 섬유 다발의 주행 피치 P11은 9.7mm이고, 출구에서의 섬유 다발의 주행 피치 P12는 4.3mm이었다. 또한, 전탄소화로 입구측 롤(113)의 축 방향과 직교하는 면에 대한, 시트상 전탄소 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도 θ11은 2.0도이었다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이며, 생산성도 양호하였다.
(실시예 16)
시트상 내염화 섬유 다발을 10mm 피치로 등간격으로 홈이 각인된 전탄소화로 입구측 롤(113)과 5mm 피치로 등간격으로 홈이 각인된 전탄소화로 출구측 롤(114)을 이용하여 전탄소화로(52) 내에서 주행 피치를 변경하는 조건으로 한 것 이외에는, 실시예 13과 마찬가지의 조건에서 탄소 섬유 다발의 제작을 행하였다. 또한, 내염화로 내 및 탄소화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않고, 각각 10mm 피치 및 5mm 피치로 섬유 다발을 주행시켰다.
기하학 계산에 의해 산출한 전탄소화로 가열 처리부(52a)의 입구에서의 섬유 다발의 주행 피치 P11은 9.5mm이고, 출구에서의 섬유 다발의 주행 피치 P12는 5.5mm이었다. 또한, 전탄소화로 입구측 롤(113)의 축 방향과 직교하는 면에 대한, 시트상 전탄소 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도 θ11은 3.1도이었다.
얻어진 탄소 섬유 다발의 생산성은 양호한 데 대하여, 일부 섬유 다발에 꼬임 발생에 의해 품위의 저하 경향은 보여졌지만, 문제는 없는 수준이었다.
(비교예 4)
시트상 내염화 섬유 다발을 10mm 피치로 등간격으로 홈이 각인된 전탄소화로 입구측 롤(113)과 10mm 피치로 등간격으로 홈이 각인된 전탄소화로 출구측 롤(114)을 이용하여 전탄소화로 내(52)에서 주행 피치의 변경을 행하지 않는 조건으로 한 것 이외에는, 실시예 13과 마찬가지의 조건에서 탄소 섬유 다발의 제작을 행하였다. 또한, 내염화로 내 및 탄소화로 내에서도 섬유 다발의 주행 피치의 변경은 행하지 않고, 모두 10mm 피치로 섬유 다발을 주행시켰다. 얻어진 탄소 섬유 다발은 품질이 양호한 것이었지만, 탄소화 공정에서의 생산성이 실시예와 비교하여 불충분하였다.
(비교예 5)
시트상 내염화 섬유 다발을 10mm 피치로 등간격으로 홈이 각인된 전탄소화로 입구측 롤(113)과 3mm 피치로 등간격으로 홈이 각인된 전탄소화로 출구측 롤(114)을 이용하여 전탄소화로 내(52)에서 주행 피치를 변경하는 조건으로 한 것 이외에는, 실시예 13과 마찬가지의 조건에서 탄소 섬유 다발의 제작을 행하였다. 또한, 내염화로 내 및 탄소화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않고, 각각 10mm 피치 및 3mm 피치로 섬유 다발을 주행시켰다.
기하학 계산에 의해 산출한 전탄소화로 가열 처리부(52a)의 입구에서의 섬유 다발의 주행 피치 P11은 9.7mm이고, 출구에서의 섬유 다발의 주행 피치 P12는 3.4mm이었다. 또한, 이 때, 전탄소화로 입구측 롤(113)의 축 방향과 직교하는 면에 대한, 시트상 전탄소 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도 θ11은 2.3도이었다.
이 조건에서는 전탄소화 가열 처리시에 발생한 분해 가스에 의한다고 생각되는 융착 현상의 발생 및 전탄소화로 출구측 롤에서의 인접하는 섬유 다발에 의한 합사 발생에 의해 양호한 품질의 탄소 섬유 다발을 얻을 수 없었다.
(실시예 17)
단사 섬도가 0.8dTex, 필라멘트수가 24000인 아크릴계 전구체 섬유 다발 50개를 홈을 가진 롤(111) 상에 10mm 피치로 등간격으로 배열한 시트상 전구체 섬유 다발을 230 내지 270℃의 열풍이 순환하고 있는 내염화로(51)의 좌우에 설치된 절첩 롤군(119)에 의해 지그재그로 주행하여 50분간의 내염화 처리를 행하여 시트상 내염화 섬유 다발로 하였다. 또한, 내염화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않았다.
내염화로(51)를 나와 가로 일렬로 평행하게 주행하는 시트상 내염화 섬유 다발의 주행 피치를 변경하지 않는 조건에서 10mm 피치인 채로 주행시켜, 질소로 채워진 전탄소화로 가열 처리부(52a)가 300 내지 600℃의 온도 분포를 갖는 전탄소화로(52) 내에서 2분간의 열 처리를 행하여 시트상 전탄소화 섬유 다발로 하였다.
이어서, 전탄소화로(52)를 나와 가로 일렬로 평행하게 주행하는 시트상 전탄소화 섬유 다발을 10mm 피치로 등간격으로 홈이 각인된 탄소화로 입구측 롤(115)과 6mm 피치로 등간격으로 홈이 각인된 탄소화로 출구측 롤(116)에 의해 탄소화로(53) 내에서 주행 피치를 변경하면서 질소로 채워진 탄소화로 가열 처리부(53a)가 1000 내지 1500℃의 온도 분포를 갖는 탄소화로(53) 내에서 2분간의 열 처리를 행하여 시트상 탄소화 섬유 다발로 하였다.
기하학 계산에 의해 산출한 탄소화로 가열 처리부(53a)의 입구에서의 섬유 다발의 주행 피치 P13은 9.8mm이고, 출구에서의 섬유 다발의 주행 피치 P14는 6.2mm이었다. 계산에 이용한 매개변수를 표 3에 나타낸다.
또한, 이 때, 탄소화로 입구측 롤(115)의 축 방향과 직교하는 면에 대한, 시트상 탄소화 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도 θ13은 1.3도이었다.
계속해서, 시트상 탄소화 섬유 다발을 질소로 채워진 흑연화로 가열 처리부(54a)가 1500 내지 2500℃의 온도 분포를 갖는 흑연화로(54)에 도입하여 2분간의 열 처리를 행하여 시트상 흑연화 섬유 다발로 하였다. 또한, 흑연화로 내에서는 섬유 다발의 주행 피치는 변경하지 않고, 6mm 피치로 섬유 다발을 주행시켰다. 또한, 전해 산화 표면 처리, 사이징 처리를 실시하여 흑연화 섬유 다발로 하였다. 이 흑연화 섬유 다발은 품질이 양호한 것이며, 생산성도 양호하였다. 또한, 흑연화 섬유 다발의 품질 및 생산성은 이하의 기준에 기초하여 판정하였다.
ㆍ생산성
○: 흑연화로의 생산성이 주행 피치를 변경하지 않는 경우에 대하여 10% 이상 향상
×: 흑연화로의 생산성의 주행 피치를 변경하지 않는 경우에 대한 향상이 10% 미만
ㆍ품질
○: 흑연 섬유의 품위가 우수하여 전혀 문제가 없음
△: 흑연 섬유의 품위가 다소 떨어지지만 문제가 없음
×: 흑연 섬유의 품위상 문제가 됨
(실시예 18)
실시예 13과 마찬가지의 조건에서 제작한 시트상 전탄소화 섬유 다발을 8mm 피치로 등간격으로 홈이 각인된 탄소화로 입구측 롤(115)과 5mm 피치로 등간격으로 홈이 각인된 탄소화로 출구측 롤(116)을 이용하여 탄소화로 내(3)에서 주행 피치를 변경하는 조건으로 한 것 이외에는, 실시예 17과 마찬가지의 조건에서 흑연화 섬유 다발의 제작을 행하였다. 또한, 내염화로 내 및 흑연화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않고, 내염화로 내에서는 10mm 피치, 흑연화로 내에서는 5mm 피치로 섬유 다발을 주행시켰다.
기하학 계산에 의해 산출한 탄소화로 가열 처리부(53a)의 입구에서의 섬유 다발의 주행 피치 P13은 7.9mm이고, 출구에서의 섬유 다발의 주행 피치 P14는 5.2mm이었다. 또한, 이 때, 탄소화로 입구측 롤(115)의 축 방향과 직교하는 면에 대한, 시트상 탄소화 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도 θ13은 1.0도이었다. 얻어진 흑연화 섬유 다발은 품질이 양호한 것이며, 생산성도 양호하였다.
(실시예 19)
실시예 14와 마찬가지의 조건에서 제작한 시트상 전탄소화 섬유 다발을 6mm 피치로 등간격으로 홈이 각인된 탄소화로 입구측 롤(115)과 4mm 피치로 등간격으로 홈이 각인된 탄소화로 출구측 롤(116)을 이용하여 탄소화로 내(53)에서 주행 피치를 변경하는 조건으로 한 것 이외에는, 실시예 17과 마찬가지의 조건에서 흑연화 섬유 다발의 제작을 행하였다. 또한, 내염화로 내 및 흑연화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않고, 내염화로 내에서는 10mm 피치, 흑연화로 내에서는 4mm 피치로 섬유 다발을 주행시켰다.
기하학 계산에 의해 산출한 탄소화로 가열 처리부(53a)의 입구에서의 섬유 다발의 주행 피치 P13은 5.9mm이고, 출구에서의 섬유 다발의 주행 피치 P14는 4.1mm이었다. 또한, 이 때, 탄소화로 입구측 롤(115)의 축 방향과 직교하는 면에 대한, 시트상 탄소화 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도 θ13은 0.7도이었다. 얻어진 흑연화 섬유 다발은 품질이 양호한 것이며, 생산성도 양호하였다.
(실시예 20)
시트상 전탄소화 섬유 다발을 10mm 피치로 등간격으로 홈이 각인된 탄소화로 입구측 롤(115)과 5mm 피치로 등간격으로 홈이 각인된 탄소화로 출구측 롤(116)을 이용하여 탄소화로(3) 내에서 주행 피치를 변경하는 조건으로 한 것 이외에는, 실시예 17과 마찬가지의 조건에서 흑연화 섬유 다발의 제작을 행하였다. 또한, 내염화로 내, 전탄소화로 내 및 흑연화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않고, 내염화로 내 및 전탄소화로 내에서는 10mm 피치, 흑연화로 내에서는 5mm 피치로 섬유 다발을 주행시켰다.
기하학 계산에 의해 산출한 탄소화로 가열 처리부(53a)의 입구에서의 섬유 다발의 주행 피치 P13은 9.5mm이고, 출구에서의 섬유 다발의 주행 피치 P14는 5.5mm이었다. 또한, 이 때, 탄소화로 입구측 롤(115)의 축 방향과 직교하는 면에 대한, 시트상 전탄소 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도 θ13은 3.1도이었다. 얻어진 흑연화 섬유 다발의 생산성은 양호한 데 대하여, 일부 섬유 다발에 꼬임 발생에 의해 품위의 저하가 보여졌지만, 문제가 없는 수준이었다.
(비교예 6)
시트상 전탄소화 섬유 다발을 10mm 피치로 등간격으로 홈이 각인된 탄소화로 입구측 롤(115)과 10mm 피치로 등간격으로 홈이 각인된 탄소화로 출구측 롤(116)을 이용하여 탄소화로 내(53)에서 주행 피치의 변경을 행하지 않는 조건으로 한 것 이외에는, 실시예 17과 마찬가지의 조건에서 흑연화 섬유 다발의 제작을 행하였다. 또한, 내염화로 내, 전탄소화로 내 및 흑연화로 내에서도 섬유 다발의 주행 피치의 변경은 행하지 않고, 모두 10mm 피치로 섬유 다발을 주행시켰다. 얻어진 흑연화 섬유 다발은 품질이 양호한 것이었지만, 탄소화 공정에서의 생산성이 실시예와 비교하여 불충분하였다.
(비교예 7)
시트상 전탄소화 섬유 다발을 10mm 피치로 등간격으로 홈이 각인된 탄소화로 입구측 롤(115)과 3mm 피치로 등간격으로 홈이 각인된 탄소화로 출구측 롤(116)을 이용하여 탄소화로 내(53)에서 주행 피치를 변경하는 조건으로 한 것 이외에는, 실시예 17과 마찬가지의 조건에서 흑연화 섬유 다발의 제작을 행하였다. 또한, 내염화로 내, 전탄소화로 내 및 흑연화로 내에서는 섬유 다발의 주행 피치의 변경은 행하지 않고, 내염화로 내 및 전탄소화로 내에서는 10mm 피치, 흑연화로 내에서는 3mm 피치로 섬유 다발을 주행시켰다.
기하학 계산에 의해 산출한 탄소화로 가열 처리부(53a)의 입구에서의 섬유 다발의 주행 피치 P13은 9.7mm이고, 출구에서의 섬유 다발의 주행 피치 P14는 3.4mm이었다. 또한, 이 때, 탄소화로 입구측 롤(115)의 축 방향과 직교하는 면에 대한, 시트상 탄소 섬유 다발의 양끝에 위치하는 섬유 다발의 기울기 각도 θ13은 2.3도이었다.
이 조건에서는 탄소화로 출구측 롤에서의 인접하는 섬유 다발에 의한 합사 발생에 의해 양호한 품질의 탄소 섬유 다발을 얻을 수 없었다. 이상의 실시예, 비교예에서의 평가 결과를 표 2, 3에 나타낸다.
Figure 112013001316032-pct00002
Figure 112013001316032-pct00003
1: 내염화로
2: 전탄소화로
3: 탄소화로
4: 롤군
5: 롤군
11: 시트상 전구체 섬유 다발
12: 시트상 내염화사 섬유 다발
13: 시트상 전탄소화사 섬유 다발
14: 시트상 탄소 섬유 다발
21: 플랫 롤
22: 홈 롤
23: 각도 조정 가능한 플랫 롤
24: 각도 조정 가능한 플랫 롤
25: 플랫 롤
26: 홈 롤
27: 홈 롤
31: 분할 전의 시트상 섬유 다발군
32: 섬유 다발 블록 내의 최단 섬유 다발
B1 내지 B3: 섬유 다발 블록
θ1: 플랫 롤(21) 및 홈 롤(22)의 축과 직교하는 면에 대한 각 블록 내의 섬유 다발의 최대 기울기각
θ2: 홈 롤(22) 및 플랫 롤(25)의 축과 직교하는 면에 대한, 각도 조정 가능한 플랫 롤(23 및 24)의 사이를 주행하는 시트상 섬유 다발 내의 섬유 다발 블록의 주행 방향의 최대 기울기각
51: 내염화로
51a: 내염화로 가열 처리부
52: 전탄소화로
52a: 전탄소화로 가열 처리부
53: 탄소화로
53a: 탄소화로 가열 처리부
54: 흑연화로
54a: 흑연화로 가열 처리부
111: 내염화로 입구측 롤
112: 내염화로 출구측 롤
113: 전탄소화로 입구측 롤
114: 전탄소화로 출구측 롤
115: 탄소화로 입구측 롤
116: 탄소화로 출구측 롤
117: 흑연화로 입구측 롤
118: 흑연화로 출구측 롤
119: 절첩 롤

Claims (14)

  1. 복수개의 전구체 섬유 다발을 가로 일렬로 평행하게 배열한 상태에서 산화성 가스 분위기하에 200 내지 300℃에서 가열 처리하여 내염화 섬유 다발로 하는 내염화 공정과,
    상기 내염화 섬유 다발을 가로 일렬로 평행하게 배열한 상태에서 불활성 가스 분위기하에 500 내지 800℃의 최고 처리 온도에서 가열 처리하여 전탄소화 처리 섬유 다발로 하는 전탄소화 공정과,
    상기 전탄소화 처리 섬유 다발을 가로 일렬로 평행하게 배열한 상태에서 불활성 가스 분위기하에 1000℃ 이상의 최고 처리 온도에서 가열 처리하여 탄소 섬유 다발로 하는 탄소화 공정을 포함하는 탄소 섬유 다발의 제조 방법이며,
    내염화 공정에서의 섬유 다발의 주행 피치를 P1, 전탄소화 공정에서의 섬유 다발의 주행 피치를 P2, 탄소화 공정에서의 섬유 다발의 주행 피치를 P3으로 하였을 때,
    0.8≤P2/P1≤1.0 … (1)
    0.4≤P3/P1≤0.8 … (2)
    를 만족하는 탄소 섬유 다발의 제조 방법.
  2. 제1항에 있어서, (a) 내염화 공정으로부터 얻어지는 내염화 섬유 다발 및 전탄소화 공정으로부터 얻어지는 전탄소화 처리 섬유 다발 중 적어도 한쪽의 섬유 다발에 대하여, 2 이상 20 이하의 섬유 다발 블록마다 섬유 다발 블록 내의 섬유 다발의 주행 피치를 보다 작게 하는 공정과,
    (b) 공정 (a)에 있어서 섬유 다발의 주행 피치를 보다 작게 한 모든 섬유 다발 블록에 대하여, 인접하는 섬유 다발 블록끼리를 보다 접근시키는 공정
    을 포함하는 탄소 섬유 다발의 제조 방법.
  3. 제2항에 있어서, 상기 공정 (a)에 있어서, 주행 피치를 작게 하기 위하여 홈 롤 또는 콤 가이드를 사용하는 탄소 섬유 다발의 제조 방법.
  4. 제2항에 있어서, 공정 (a)를 서로 평행하게 배치된 2개의 롤을 이용하여 행하는 탄소 섬유 다발의 제조 방법.
  5. 제2항에 있어서, 상기 공정 (a)에 있어서, 주행 피치를 작게 하기 위하여 적어도 서로 평행하게 배치된 2개의 롤을 사용하며,
    그 때, 상기 2개의 롤 외에 콤 가이드를 사용하거나,
    또는, 상기 2개의 롤 중 적어도 한쪽의 롤로서 홈 롤을 사용하는 탄소 섬유 다발의 제조 방법.
  6. 제2항에 있어서, 공정 (a)를 서로 평행하게 배치된 2개의 롤을 이용하여 행하며, 그 때, 상기 2개의 롤의 축 방향과 직교하는 면에 대한, 상기 2개의 롤의 사이를 주행하는 각 섬유 다발 블록 내의 섬유 다발의 최대 기울기각을 0.1°보다 크고 3.0°보다 작게 하는 탄소 섬유 다발의 제조 방법.
  7. 제4항 내지 제6항 중 어느 한 항에 있어서, 상기 공정 (a)에서 이용하는 서로 평행하게 배치된 2개의 롤 사이의 거리가 750mm 이상인 탄소 섬유 다발의 제조 방법.
  8. 제2항 내지 제6항 중 어느 한 항에 있어서, 공정 (b)를 제1 롤쌍 사이에 배치된 각도 조정 가능한 복수의 제2 롤쌍을 이용하여 행하되, 단, 제1 및 제2 롤쌍은 모두 서로 평행하게 배치된 2개의 롤을 포함하며, 제1 롤쌍을 구성하는 2개의 롤의 축과 직교하는 면에 대한, 제2 롤쌍 사이를 주행하는 모든 섬유 다발 블록의 기울기각 중 최대 기울기각을 20°보다 작게 하는 탄소 섬유 다발의 제조 방법.
  9. 다수의 탄소 섬유 전구체 섬유 다발을 가로 일렬로 배열한 상태에서 내염화로에 있어서 산화성 가스 분위기하에 200 내지 300℃에서 가열 처리하여 내염화 섬유 다발로 하는 내염화 공정과,
    상기 내염화 섬유 다발을 가로 일렬로 배열한 상태에서 전탄소화로에 있어서 불활성 가스 분위기하에 500 내지 800℃의 최고 처리 온도에서 가열 처리하여 전탄소화 처리 섬유 다발로 하는 전탄소화 공정과,
    상기 전탄소화 처리 섬유 다발을 가로 일렬로 배열한 상태에서 탄소화로에 있어서 불활성 가스 분위기하에 1000℃ 이상의 최고 처리 온도에서 가열 처리하여 탄소 섬유 다발로 하는 탄소화 공정을 포함하는 탄소 섬유 다발의 제조 방법이며,
    상기 전탄소화로의 가열 처리부의 입구에서의 섬유 다발의 주행 피치를 P11, 상기 전탄소화로의 가열 처리부의 출구에서의 섬유 다발의 주행 피치를 P12로 하였을 때,
    0.40≤(P12/P11)≤0.90 … (3)
    을 만족하는 탄소 섬유 다발의 제조 방법.
  10. 제9항에 있어서, 상기 전탄소화로의 가열 처리부를 주행하는 섬유 다발의 주행 피치의 변경을, 상기 전탄소화로의 입구측과 출구측에 1개씩 배치된 서로 평행한 2개의 롤을 이용하여 행하며, 상기 2개의 롤의 축 방향과 직교하는 면에 대한, 상기 2개의 롤의 사이를 주행하는 가로 일렬로 배열된 다수의 섬유 다발의 기울기 각도 중 최대 기울기 각도를 0.1°보다 크고 3.0°보다 작게 하는 탄소 섬유 다발의 제조 방법.
  11. 제9항 또는 제10항에 있어서, 상기 탄소화로의 가열 처리부의 입구에서의 섬유 다발의 주행 피치를 P13, 상기 탄소화로의 가열 처리부의 출구에서의 섬유 다발의 주행 피치를 P14로 하였을 때,
    0.40≤(P14/P13)≤0.90 … (4)
    를 만족하는 탄소 섬유 다발의 제조 방법.
  12. 제11항에 있어서, 상기 탄소화로의 가열 처리부를 주행하는 섬유 다발의 주행 피치의 변경을, 상기 탄소화로의 입구측과 출구측에 1개씩 배치된 서로 평행한 2개의 롤을 이용하여 행하며, 이 2개의 롤의 축 방향과 직교하는 면에 대한, 이 2개의 롤의 사이를 주행하는 가로 일렬로 배열된 다수의 섬유 다발의 기울기 각도 중 최대 기울기 각도를 0.1°보다 크고 3.0°보다 작게 하는 탄소 섬유 다발의 제조 방법.
  13. 다수의 탄소 섬유 전구체 섬유 다발을 가로 일렬로 배열한 상태에서 내염화로에 있어서 산화성 가스 분위기하에 200 내지 300℃에서 가열 처리하여 내염화 섬유 다발로 하는 내염화 공정과,
    상기 내염화 섬유 다발을 가로 일렬로 배열한 상태에서 전탄소화로에 있어서 불활성 가스 분위기하에 500 내지 800℃의 최고 처리 온도에서 가열 처리하여 전탄소화 처리 섬유 다발로 하는 전탄소화 공정과,
    상기 전탄소화 처리 섬유 다발을 가로 일렬로 배열한 상태에서 탄소화로에 있어서 불활성 가스 분위기하에 1000℃ 이상의 최고 처리 온도에서 가열 처리하여 탄소 섬유 다발로 하는 탄소화 공정을 포함하는 탄소 섬유 다발의 제조 방법이며,
    상기 탄소화로의 가열 처리부의 입구에서의 섬유 다발의 주행 피치를 P13, 상기 탄소화로의 가열 처리부의 출구에서의 섬유 다발의 주행 피치를 P14로 하였을 때,
    0.40≤(P14/P13)≤0.90 … (4)
    를 만족하는 탄소 섬유 다발의 제조 방법.
  14. 제13항에 있어서, 상기 탄소화로의 가열 처리부를 주행하는 섬유 다발의 주행 피치의 변경을, 상기 탄소화로의 입구측과 출구측에 1개씩 배치된 서로 평행한 2개의 롤을 이용하여 행하며, 상기 2개의 롤의 축 방향과 직교하는 면에 대한, 상기 2개의 롤의 사이를 주행하는 가로 일렬로 배열된 다수의 섬유 다발의 기울기 각도 중 최대 기울기 각도를 0.1°보다 크고 3.0°보다 작게 하는 탄소 섬유 다발의 제조 방법.
KR1020137000333A 2010-07-27 2011-07-26 탄소 섬유 다발의 제조 방법 KR101363675B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010167911 2010-07-27
JPJP-P-2010-167911 2010-07-27
JPJP-P-2011-069896 2011-03-28
JP2011069896 2011-03-28
PCT/JP2011/066965 WO2012014892A1 (ja) 2010-07-27 2011-07-26 炭素繊維束の製造方法

Publications (2)

Publication Number Publication Date
KR20130020914A KR20130020914A (ko) 2013-03-04
KR101363675B1 true KR101363675B1 (ko) 2014-02-14

Family

ID=45530099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137000333A KR101363675B1 (ko) 2010-07-27 2011-07-26 탄소 섬유 다발의 제조 방법

Country Status (9)

Country Link
US (1) US9157172B2 (ko)
EP (1) EP2599903B1 (ko)
JP (1) JP5496214B2 (ko)
KR (1) KR101363675B1 (ko)
CN (1) CN103025935B (ko)
ES (1) ES2532576T3 (ko)
PT (1) PT2599903E (ko)
TW (1) TWI518219B (ko)
WO (1) WO2012014892A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593869B1 (ko) * 2012-06-27 2016-02-12 미쯔비시 레이온 가부시끼가이샤 탄소 섬유속 제조용 탄소화로 및 탄소 섬유속의 제조 방법
DE102013206984A1 (de) * 2013-04-18 2014-10-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen von Kohlefasern
KR102586391B1 (ko) * 2018-01-26 2023-10-11 도레이 카부시키가이샤 내염화 섬유 다발 및 탄소섬유 다발의 제조 방법
CN112279005B (zh) * 2020-09-01 2022-09-09 武汉凌云光电科技有限责任公司 自动排列光纤的治具及其方法
CN113737316A (zh) * 2021-10-14 2021-12-03 西安康本材料有限公司 一种单槽多丝碳纤维生产工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1300239A (en) 1969-10-10 1972-12-20 Celanese Corp Heat treatment of filamentary materials
JPS5953719A (ja) * 1982-09-21 1984-03-28 Mitsubishi Rayon Co Ltd 炭素繊維の製造法
JP2003055843A (ja) 2001-06-04 2003-02-26 Toray Ind Inc 炭素繊維の製造法
KR20100133479A (ko) * 2008-04-18 2010-12-21 미츠비시 레이온 가부시키가이샤 탄소 섬유 스레드의 제조 장치 및 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112029A (ja) 1985-11-09 1987-05-23 Toyoda Gosei Co Ltd ホ−ンスイツチ検査機
JPH0347695A (ja) 1989-07-17 1991-02-28 Kawasaki Steel Corp 超高張力鋼用フラックス入りワイヤ
JP3047695B2 (ja) 1993-08-27 2000-05-29 東レ株式会社 炭素繊維の製造方法
JP5081409B2 (ja) 2006-07-12 2012-11-28 三菱レイヨン株式会社 炭素繊維の製造方法
CN101112980A (zh) * 2007-06-27 2008-01-30 东华大学 一种用聚丙烯腈(pan)制备纳米碳纤维的方法
CN101260575B (zh) * 2008-04-17 2010-06-02 东华大学 碳纤维前驱体聚丙烯腈纤维的预氧化方法
CN201245730Y (zh) * 2008-08-22 2009-05-27 吉林市吉研高科技纤维有限责任公司 碳纤维的丝束展宽定位装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1300239A (en) 1969-10-10 1972-12-20 Celanese Corp Heat treatment of filamentary materials
JPS5953719A (ja) * 1982-09-21 1984-03-28 Mitsubishi Rayon Co Ltd 炭素繊維の製造法
JP2003055843A (ja) 2001-06-04 2003-02-26 Toray Ind Inc 炭素繊維の製造法
KR20100133479A (ko) * 2008-04-18 2010-12-21 미츠비시 레이온 가부시키가이샤 탄소 섬유 스레드의 제조 장치 및 제조 방법

Also Published As

Publication number Publication date
ES2532576T3 (es) 2015-03-30
CN103025935B (zh) 2014-11-05
EP2599903A4 (en) 2013-12-18
US20130119572A1 (en) 2013-05-16
JPWO2012014892A1 (ja) 2013-09-12
CN103025935A (zh) 2013-04-03
EP2599903B1 (en) 2015-01-28
TW201224232A (en) 2012-06-16
EP2599903A1 (en) 2013-06-05
US9157172B2 (en) 2015-10-13
JP5496214B2 (ja) 2014-05-21
KR20130020914A (ko) 2013-03-04
PT2599903E (pt) 2015-05-25
WO2012014892A1 (ja) 2012-02-02
TWI518219B (zh) 2016-01-21

Similar Documents

Publication Publication Date Title
KR101363675B1 (ko) 탄소 섬유 다발의 제조 방법
JP5161604B2 (ja) 炭素繊維の製造方法
CN111263834B (zh) 碳纤维束及其制造方法
JP5556994B2 (ja) 耐炎化繊維の製造方法
JP3047695B2 (ja) 炭素繊維の製造方法
JP5899949B2 (ja) 炭素繊維の製造方法
JP4017772B2 (ja) アクリル系繊維束の連続熱処理方法
JP2007314901A (ja) 炭素繊維の製造方法
JPS62257422A (ja) 炭素繊維の製法
JP5457736B2 (ja) 炭素繊維束の製造方法、および炭素繊維束の製造装置
JP3733688B2 (ja) 炭素繊維の製造方法
WO1987002391A1 (en) Process for producing carbon fibers
JP5573531B2 (ja) 繊維トウのガイドロールユニットと同ガイドロールユニットを備えた湿式紡糸機及び炭素繊維製造装置
JP2011184819A (ja) 熱処理装置、並びに炭素繊維の製造方法
JPS62257424A (ja) 高強度高弾性炭素繊維の製法
JP2012188783A (ja) 炭素繊維束製造装置
WO2017082309A1 (ja) 炭素繊維の製造方法及び耐炎化繊維の製造方法
JPH0424446B2 (ko)
JP2010144274A (ja) 炭素繊維の製造方法
JPH09268437A (ja) 炭素繊維の連続製造方法
JPS61258020A (ja) ピツチ系炭素繊維の製造方法
JP2014214386A (ja) 炭素繊維束の製造方法
JPS58214532A (ja) 耐炎化繊維の製造法
KR20150127869A (ko) 탄소섬유의 제조방법
JP2008144307A (ja) 炭素繊維束の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180118

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200115

Year of fee payment: 7