JP5496214B2 - 炭素繊維束の製造方法 - Google Patents

炭素繊維束の製造方法 Download PDF

Info

Publication number
JP5496214B2
JP5496214B2 JP2011533481A JP2011533481A JP5496214B2 JP 5496214 B2 JP5496214 B2 JP 5496214B2 JP 2011533481 A JP2011533481 A JP 2011533481A JP 2011533481 A JP2011533481 A JP 2011533481A JP 5496214 B2 JP5496214 B2 JP 5496214B2
Authority
JP
Japan
Prior art keywords
fiber bundle
pitch
roll
carbonization
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011533481A
Other languages
English (en)
Other versions
JPWO2012014892A1 (ja
Inventor
靖人 所
知之 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2011533481A priority Critical patent/JP5496214B2/ja
Publication of JPWO2012014892A1 publication Critical patent/JPWO2012014892A1/ja
Application granted granted Critical
Publication of JP5496214B2 publication Critical patent/JP5496214B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/14Pulleys, rollers, or rotary bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/16Guides for filamentary materials; Supports therefor formed to maintain a plurality of filaments in spaced relation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/314Carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/38Thread sheet, e.g. sheet of parallel yarns or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)

Description

本発明は、炭素繊維束の製造方法に関するものである。
炭素繊維束は、通常、炭素繊維束の前駆体であるアクリル系繊維束を200〜300℃の酸化性雰囲気の炉(以下、耐炎化炉という)に通過させ、いわゆる耐炎化処理を施してから、順次最高処理温度が500〜800℃の温度の不活性雰囲気炉(以下、前炭素化炉という)、最高処理温度が1000℃を超える温度の不活性雰囲気炉(以下、炭素化炉という)を通過させ、炭素化して製造する。更に、必要に応じて、最高処理温度が2000℃を超える温度の不活性雰囲気炉(以下、黒鉛化炉という)を通過させ黒鉛化をおこなうことにより、高弾性な黒鉛化繊維束を製造することができる。
耐炎化炉では、酸化性雰囲気下で前駆体繊維束を熱処理するが、この際、前駆体繊維束は酸化反応して発熱する。この反応熱が繊維束内部に蓄熱して発火しないように、熱処理温度を200〜300℃と低く設定するため、所定の耐炎化繊維束を得るには長時間の熱処理が求められる。
炭素繊維の需要が増大し生産量を増やそうとすると、同時に多数の繊維束を投入するか、焼成速度を上げることになる。しかし、同時に多数の繊維束を投入し生産能力を増強するには反応熱が繊維束内部に蓄熱して発火しないように、より低い温度で長時間の処理が求められるために限界がある。また、焼成速度を上げて生産能力を増強するには、耐炎化炉内を走行している前駆体繊維束の長さを長くすれば良い。耐炎化炉内を走行している前駆体繊維束の長さを長くするには、前駆体繊維束は一旦耐炎化炉の外部に出た後、耐炎化炉の外部に配設された折り返しロールによって折り返されて耐炎化炉に繰り返し通過させる方法が通常採られる。
耐炎化炉で熱処理の完了した耐炎化繊維束は、繊維束が酸化されないように不活性ガス雰囲気で満たした前炭素化炉において最高処理温度500〜800℃で処理した後、不活性ガス雰囲気で満たした最高処理温度が1000℃をこえる温度で処理をおこなう炭素化炉を連続的に通過させて、炭素繊維束に転化する。炭素繊維束に転化しつつある繊維束は極めて弱く、繊維束内の一部が切れるためにおこる毛羽立ちの発生、甚だしいときには繊維束そのものが糸切れするので、慎重に走行させなければならない。また、この過程は、極めて短時間で炭素繊維束に転化すること、繊維束の昇温速度が品質に大きく影響すること、炭素繊維束への転化の段階で大量の分解物が発生し、繊維束を炉内に繰り返し通過させると分解物で繊維束が汚染され品質低下の原因になることなどから、通常1パスで熱処理を完了させている。炭素繊維の需要が増大し生産量を増やそうとすると、焼成速度を上げるか、同時に多数の繊維束を投入することになる。しかし、焼成速度を上げて生産能力を増強するには炉長が長くなり限界があるため、同時に多数の繊維束を投入すれば良い。
特許文献1には、アクリロニトリル系前駆体繊維の密度上昇に合わせてトウ幅を狭めることにより品質の良い炭素繊維を生産性良くする方法が開示されている。しかし、前記方法では耐炎化工程中に前駆体繊維の走行ピッチが狭くなる場合があるため、繊維束内部の反応熱による蓄熱を除去することができなくなる場合がある。このため耐炎化工程で通常おこなわれている前駆体繊維の密度上昇に合わせて処理温度を上げる方法をおこなうことができない場合があり、耐炎化処理時間が長時間になるので生産性が返って低下することがある。
また、特許文献2には、耐炎化炉から出た多数の耐炎化繊維束を複数の繊維束群に分割し、各繊維束群は水平方向には幅寄せがされ、鉛直方向には繊維束群毎に段を形成されることにより、炭素化炉の耐炎化繊維束の投入口を扁平な形状にすることなく熱効率を上げる方法が開示されている。しかし、前記方法は鉛直方向に複数段に分割された各繊維束群の加熱条件が上下の繊維束郡で異なる場合があるため、炭素繊維束の物性が異なることがあり、品質が安定しない場合がある。
特開2008−19526号公報 特許第3047695号公報
本発明は、繊維束数増加に伴う前炭素化工程および炭素化工程で使用する高温炉(前炭素化炉および炭素化炉)の大型化を解消し、設備費およびエネルギー面で生産性が高く、品質が安定した炭素繊維束の製造方法を提供することを目的とする。
炭素繊維束の製造方法に関する第一の発明は、複数本の前駆体繊維束を横一列に平行に並んだ状態で酸化性ガス雰囲気下、200〜300℃で加熱処理し、耐炎化繊維束とする耐炎化工程と、該耐炎化繊維束を横一列に平行に並んだ状態で不活性ガス雰囲気下、500〜800℃の最高処理温度で加熱処理し、前炭素化処理繊維束とする前炭素化工程と、該前炭素化処理繊維束を横一列に平行に並んだ状態で不活性ガス雰囲気下、1000℃以上の最高処理温度で加熱処理して、炭素繊維束とする炭素化工程とを含む炭素繊維束の製造方法であって、耐炎化工程における繊維束の走行ピッチをP1、前炭素化工程における繊維束の走行ピッチをP2、炭素化工程における繊維束の走行ピッチをP3としたとき、
0.8≦P2/P1≦1.0・・・(1)
0.4≦P3/P1≦0.8・・・(2)
を満たす炭素繊維束の製造方法を提供するものである。
また、前記炭素繊維束の製造方法は、(a)耐炎化工程から得られる耐炎化繊維束、および、前炭素化工程から得られる前炭素化処理繊維束の少なくとも一方の繊維束について、2以上20以下の繊維束ブロック毎に、繊維束ブロック内の繊維束の走行ピッチをより小さくする工程と、(b)工程(a)において繊維束の走行ピッチをより小さくした全ての繊維束ブロックについて、隣り合う繊維束ブロック同士をより接近させる工程とを含むことが好適である。
この工程(a)においては、走行ピッチを小さくするために、溝ロール又はコームガイドを使用することが可能である。
この工程(a)においては、互いに平行に配置された2本のロールを用いて行うことが好ましい。
また、この工程(a)において、走行ピッチを小さくするために、少なくとも互いに平行に配置された2本のロールを使用し、その際、該2本のロールの他にコームガイドを使用するか、又は、該2本のロールのうちの少なくとも一方のロールとして溝ロールを使用することが好ましい。
さらに工程(a)は、互いに平行に配置された2本のロールを用いて行い、その際、該2本のロールの軸方向と直交する面に対する、該2本のロールの間を走行する各繊維束ブロック内の繊維束の最大傾き角を、0.1°より大きく、3.0°より小さくすることが好ましい。
また、前記工程(a)の互いに平行に配置された2本のロール間の距離が750mm以上あることが好ましい。
さらに工程(b)を、第1のロール対の間に配された角度調整可能な複数の第2のロール対を用いて行い、ただし、第1および第2のロール対はいずれも、互いに平行に配置された2本のロールからなり、第1のロール対を構成する2本のロールの軸と直交する面に対する、第2のロール対の間を走行する全ての繊維束ブロックの傾き角のうちの最大傾き角を20°より小さくすることが好適である。
炭素繊維束の製造方法に関する第二の発明は、多数の前駆体繊維束を横一列に並んだ状態で、耐炎化炉において、酸化性ガス雰囲気下、200〜300℃で加熱処理し、耐炎化繊維束とする耐炎化工程と、該耐炎化繊維束を横一列に並んだ状態で、前炭素化炉において、不活性ガス雰囲気下、500〜800℃の最高処理温度で加熱処理し、前炭素化処理繊維束とする前炭素化工程と、該前炭素化処理繊維束を横一列に並んだ状態で、炭素化炉において、不活性ガス雰囲気下、1000℃以上の最高処理温度で加熱処理して、炭素繊維束とする炭素化工程とを含む炭素繊維束の製造方法であって、
該前炭素化炉の加熱処理部の入口における繊維束の走行ピッチをP11、該前炭素化炉の加熱処理部の出口における繊維束の走行ピッチをP12としたとき、
0.40≦(P12/P11)≦0.90・・・(3)
を満足する炭素繊維束の製造方法である。
また、該前炭素化炉の加熱処理部を走行する繊維束の走行ピッチの変更を、該前炭素化炉の入口側と出口側とに1本ずつ配置された互いに平行な2本のロールを用いて行い、該2本のロールの軸方向と直交する面に対する、該2本のロールの間を走行する横一列に並んだ多数の繊維束の傾き角度のうちの最大傾き角度を、0.1°より大きく、3.0°より小さくすることが好ましい。
さらに、該炭素化炉の加熱処理部の入口における繊維束の走行ピッチをP13、該炭素化炉の加熱処理部の出口における繊維束の走行ピッチをP14としたとき、
0.40≦(P14/P13)≦0.90・・・(4)
を満足することが好ましい。
この際、該炭素化炉の加熱処理部を走行する繊維束の走行ピッチの変更を、該炭素化炉の入口側と出口側とに1本ずつ配置された互いに平行な2本のロールを用いて行い、この2本のロールの軸方向と直交する面に対する、この2本のロールの間を走行する横一列に並んだ多数の繊維束の傾き角度のうちの最大傾き角度を、0.1°より大きく、3.0°より小さくすることがさらに好適である。
炭素繊維束の製造方法における第三の発明は、多数の炭素繊維前駆体繊維束を横一列に並んだ状態で、耐炎化炉において、酸化性ガス雰囲気下、200〜300℃で加熱処理し、耐炎化繊維束とする耐炎化工程と、該耐炎化繊維束を横一列に並んだ状態で、前炭素化炉において、不活性ガス雰囲気下、500〜800℃の最高処理温度で加熱処理し、前炭素化処理繊維束とする前炭素化工程と、該前炭素化処理繊維束を横一列に並んだ状態で、炭素化炉において、不活性ガス雰囲気下、1000℃以上の最高処理温度で加熱処理して、炭素繊維束とする炭素化工程とを含む炭素繊維束の製造方法であって、該炭素化炉の加熱処理部の入口における繊維束の走行ピッチをP13、該炭素化炉の加熱処理部の出口における繊維束の走行ピッチをP14としたとき、
0.40≦(P14/P13)≦0.90・・・(4)
を満足する炭素繊維束の製造方法である。
また、該炭素化炉の加熱処理部を走行する繊維束の走行ピッチの変更を、該炭素化炉の入口側と出口側とに1本ずつ配置された互いに平行2本のロールを用いて行い、該2本のロールの軸方向と直交する面に対する、該2本のロールの間を走行する横一列に並んだ多数の繊維束の傾き角度のうちの最大傾き角度を、0.1°より大きく、3.0°より小さくすることが好ましい。
本発明では、繊維束数増加に伴う前炭素化工程および炭素化工程で使用する高温炉(前炭素化炉および炭素化炉)の大型化を解消し、設備費およびエネルギー面で生産性が高く、品質の安定した炭素繊維束の製造方法を提供することができる。
第一の発明に関する炭素繊維束の製造方法の一実施形態に用いることのできる装置の概略平面図である。 第一の発明に関する工程(a)および(b)に用いることのできる装置の部分概略平面図である(図1に記載の繊維束ブロックの一部を図示)。 第一の発明に関する工程(a)および(b)に用いることのできる装置の部分概略側面図である。 第一の発明に関する工程(a)の一実施形態を説明するための図(図3のA矢視図)である。 第一の発明に関する2本の溝ロールで繊維束の走行ピッチを変更する方法に用いることのできる装置の概略平面図である。 第二の発明及び第三の発明に関する炭素繊維束の製造方法の一実施形態に用いることのできる装置の概略平面図である。 第二の発明及び第三の発明に関する炭素繊維束の製造方法の一実施形態に用いることのできる装置の概略側面図である。 第二の発明及び第三の発明に関する前炭素化炉加熱処理部並びに炭素化炉加熱処理部の入口および出口における繊維束の走行ピッチの算出方法を説明するための図である。 繊維束の走行ピッチを変更する方法の一実施形態を説明するための図である。
本発明者は、前記課題を解決するための合理的手段を研究した結果、耐炎化工程と前炭素化工程との間、および前炭素化工程と炭素化工程との間の少なくとも一方において、繊維束の走行ピッチを変更することにより前記課題を解決できることを見出し、第一の発明に到達した。
すなわち、前駆体繊維束が酸化反応によって発熱している耐炎化工程では、糸切れ時、糸切れした繊維束が隣接繊維束と重なって発火する場合があるため、糸切れ繊維束が隣接繊維束に重ならない走行ピッチとし、繊維束をロール(例えば、図2のフラットロール21)の軸方向に等間隔に並べる配列が好ましい。一方、不活性雰囲気で処理をおこなう前炭素化工程および炭素化工程では糸切れ繊維束が隣接繊維束と重なっても良く、耐炎化工程より繊維束の走行ピッチを狭くすることができる。ただし、前炭素化工程では耐炎化繊維から炭素化繊維への転化の段階で大量の分解物が発生し、前記分解物が繊維束内に残ると品質面に影響を及ぼすことがあるため繊維束の走行ピッチを極端に狭めることはできない。一方、炭素化工程では分解物の発生が少ないため前炭素化工程より更に走行ピッチを狭めても品質面、操業面、装置の構造上のいずれにも影響しないことが判明した。
第一の発明に係る炭素繊維束の製造方法は、以下の工程を有する。
複数本の前駆体繊維束を横一列に平行に並んだ状態で酸化性ガス雰囲気下、200〜300℃で加熱処理し、耐炎化繊維束とする耐炎化工程。
前記耐炎化繊維束を横一列に平行に並んだ状態で不活性ガス雰囲気下、500〜800℃の最高処理温度で加熱処理し、前炭素化処理繊維束とする前炭素化工程。
前記前炭素化処理繊維束を横一列に平行に並んだ状態で不活性ガス雰囲気下、1000℃以上の最高処理温度で加熱処理して、炭素繊維束とする炭素化工程。
また、第一の発明の炭素繊維束の製造方法は、耐炎化工程における繊維束の走行ピッチをP1、前炭素化工程における繊維束の走行ピッチをP2、炭素化工程における繊維束の走行ピッチをP3としたとき、以下の式を満たす。
0.8≦P2/P1≦1.0・・・(1)
0.4≦P3/P1≦0.8・・・(2)
なお、これらの工程を通して、繊維束の本数は変化しない。
以下、図1〜5を参照して第一の発明の実施形態を詳細に説明するが、本発明はこの実施形態に限定されない。
まず、100本〜2000本程度の前駆体繊維束を横一列にシート状に並べてシート状前駆体繊維束(11)とし、耐炎化炉(1)で耐炎化して、耐炎化繊維束(12)を作製する。なお、横一列に並べた多数の繊維束は平面を形成しており、これらの繊維束をシート状の繊維束と称する。
具体的に説明すると、例えば、図1に示すように、まず、クリールスタンドに掛けられたチーズ(不図示)から解舒された複数本の前駆体繊維束を、ガイド(不図示)により等間隔かつ平行に同一平面を構成するように並べて、シート状前駆体繊維束(11)を形成する。ガイドは前駆体繊維束の等間隔及び平行状態が維持できるよう適宜配置する。ガイドの種類は、ロールの表面に等間隔に溝を刻印した溝ロール、等間隔にピンを配置したガイド等がある。
前記複数本の前駆体繊維束としては、アクリル系前駆体繊維束、ピッチ系前駆体繊維束などを用いることができる。前駆体繊維束の直径、本数などは、製造する炭素繊維束の直径や生産性に応じて適宜設定することができる。シート状前駆体繊維束(11)における前駆体繊維束の耐炎化炉内走行ピッチ(P1)は、耐炎化炉(1)の外に設けられたガイド(不図示)により前駆体繊維束を等間隔に並べた時のピッチであり、耐炎化炉(1)の入側に設置されたロール(不図示)上で隣合う前駆耐繊維束の幅方向の中心間距離を測定した値の平均値で表される。入側に設置されたロールが溝ロールであれば溝のピッチが耐炎化炉内走行ピッチ(P1)となる。前炭素化炉内走行ピッチ(P2)、および炭素化炉内走行ピッチ(P3)も同様に、前炭素化炉(2)および炭素化炉(3)の入側に設置されたロール(不図示)上で測定した値の平均値でそれぞれ表される。また、耐炎化炉内の繊維束の走行ピッチ(P1)は、生産性および蓄熱防止の観点から4mm以上20mm以下であることが好ましい。なお、例えば繊維束の走行ピッチが4mmの場合、隣り合う繊維束の幅方向(図1では、紙面上下方向)の中心間の間隔(距離)が4mmであることを意味する。
次に、シート状前駆体繊維束(11)を耐炎化炉(1)に投入する。これらシート状前駆体繊維束(11)は、酸化性ガス雰囲気にされた耐炎化炉(1)内で耐炎化処理されつつ走行した後、一旦耐炎化炉(1)の外部に出る。次いで、耐炎化炉(1)の外部に配設された折り返しロール群(不図示)の最初のロールによって折り返される。その後、耐炎化炉(1)内を再び通過して耐炎化処理される。以後、折り返しロール群の間で繰り返し耐炎化処理される。これにより、シート状耐炎化繊維束(12)が得られる。酸化性ガス雰囲気としては酸化性を有する雰囲気であれば良く、通常、経済性の観点から空気が使用される。
耐炎化炉(1)の加熱処理温度としては、蓄熱防止の観点から200℃以上300℃以下であることが好ましい。耐炎化処理時間としては、生産性及び蓄熱防止の観点から20分以上120分以下であることが好ましい。また、シート状前駆体繊維束(11)の搬送速度としては、生産性の観点から3m/分以上20m/分以下であることが好ましい。
これまで繊維束走行ピッチの変更は図5に示すような2本の溝ロールを使用して行っていた。このため、第一の発明の炭素繊維の製造方法においても、例えば、耐炎化工程から得られる耐炎化繊維束および前炭素化工程から得られる前炭素化処理繊維束の少なくとも一方の繊維束について、繊維束走行ピッチの変更を図5に示すような2本の溝ロール26および27を使用して1段階で行うことができる。
しかし第一の発明では、繊維束の走行ピッチを変更する際には、工程(a)と(b)とからなる2段階の走行ピッチ変更方法を行うことが好ましい。この方法を用いることにより、撚りが発生することを容易に防ぎ、良好な品質の炭素繊維を容易に製造することができる。
なお、工程(a)は互いに平行に配置された2本のロールを用いて行うことが好ましい。また、工程(a)において、走行ピッチを小さくするために、溝ロール又はコームガイドを使用することができる。例えば、上記2本のロールのうちの少なくとも一方のロール(例えば、図2のロール(21))として、溝ロールを用いることができる。また、上記2本のロールの他にコームガイドを用いることもできる。
以下に耐炎化工程から得られる耐炎化繊維束を例に、この2段階の走行ピッチ変更方法の一例を説明する。
図1および2に示すような耐炎化炉(1)と前炭素化炉(2)との間に配置した、繊維束走行方向(図2の矢印の方向)と垂直に配置した複数のロールと、角度調整可能な複数のロール対とからなるロール群(4)により、耐炎化工程から得られるシート状耐炎化繊維束(12)の繊維束の走行ピッチの変更を行うことができる。より具体的には、ロール群(4)は、工程(a)を行うための互いに平行に配置された2本のロール(21および22)からなる工程(a)用ロール対と、工程(b)を行うための第1のロール対および工程(b)を行うための角度調整可能な複数の第2のロール対とからなることができる。工程(b)用の第1および第2のロール対はいずれも、互いに平行に配置された2本のロールからなり、図2では、第1のロール対はロール(22)および(25)からなり、第2のロール対はロール(23)および(24)からなる。なお、1本のロールを、工程(a)用ロール対および工程(b)用の第1のロール対に兼用することもできる。図2では、ロール22を工程(a)用ロール対および工程(b)用の第1のロール対に兼用している。工程(a)に用いる横一列に並んだ多数の繊維束の走行方向(図2では、矢印の方向)に対して垂直、かつこれらの繊維束が形成する同一平面に対して平行に、工程(a)用ロール対を構成する2本のロール(21および22)をそれぞれ配置することができる。
なお、工程(a)用ロール対の間の距離は、繊維束に撚りが発生することを防止する観点から750mm以上であることが好ましく、繊維束同士の接触、作業性の観点から20000mm以下であることが好ましい。
工程(b)用の第1のロール対を構成する2本のロール(22および25)はそれぞれ、工程(a)用ロール対を構成する2本のロール(21および22)に対して平行に配置することができる。工程(b)用の第2のロール対を構成する2本のロール(23および24)はそれぞれ、この2本のロール間を走行する繊維束の走行方向に対して垂直、かつこの2本のロール間を走行する繊維束が形成する同一平面に対して平行に配置することができる。工程(b)用の第2のロール対の個数は、繊維束ブロック数に応じて決めることができる。工程(a)では、横一列に並んだ多数の繊維束を2つ以上のまとまりに分けて、そのまとまり毎に走行ピッチを変更するが、繊維束ブロックとは、そのまとまりのことを意味する。図2では、3つの繊維束ブロックが表されており、B1、B2およびB3がそれぞれ1つの繊維束ブロックを表す。なお、繊維束走行ピッチは、前炭素化炉の生産性と、分解物による品質への影響を考慮して、上述した耐炎化工程における繊維束の走行ピッチ(P1)、前炭素化工程における繊維束の走行ピッチ(P2)とが、0.8≦P2/P1≦1.0となるようにする。
繊維束走行ピッチの変更方法の一例を図2〜4を用いてより具体的に説明する(図2〜4では、図1に示した5つの繊維束ブロックのうちの3つについて図示する)。なお、図4は、図3のA矢視図を表す。
まず、図2および図4に示すように耐炎化処理後のシート状繊維束31を2つ以上の繊維束ブロック(B1〜B3)に分割し、ブロック内の耐炎化繊維束の走行ピッチを変更する。すなわち、分割前のシート状繊維束31を2つ以上の繊維束ブロック毎に、繊維束ブロック内の耐炎化繊維束の走行ピッチをより小さく変更する(工程a)。例えば、図1では、シート状繊維束を5つの繊維束ブロックに分割しているため、5つの繊維束ブロックそれぞれについて、その繊維束ブロック内の繊維束の走行ピッチをより小さく変更する。なお、耐炎化処理後のシート状耐炎化繊維束(12)のうち、分割前のシート状繊維束群を特に符号31で表す。この時、図4に示すようにブロック内の繊維束走行ピッチの変更、即ち工程(a)を互いに平行に配置された2本のロール(21および22)を用いて行い、その際、この2本のロールの軸と直交する面に対する、この2本のロールの間を走行する各繊維束ブロック内(図2では、B1、B2およびB3それぞれの繊維束ブロック内)の繊維束(例えば符号32)の最大傾き角を、0.1°より大きく、3.0°より小さくすることが好ましい。最大傾き角は典型的には各繊維束ブロック内の端に位置する繊維束での傾き角度となる。なお、各繊維束ブロック内の端に位置する繊維束は2本あるが、これらの傾き角は同じであっても良いし、異なっていても良い。具体的には、例えば図4の繊維束ブロックB1の両端に位置する2つの繊維束(そのうちの1つは符号32)の傾き角は同じであっても良いし、異なっていても良い。なお、B2およびB3についても同様のことが言える。各繊維束ブロックにおいて、両端に位置する2つの繊維束の傾き角が同じ場合は、その角度がその繊維束ブロック内の繊維束の最大傾き角となり、異なる場合は、これらの傾き角のうちの大きい角度が最大傾き角となる。また、各繊維束ブロック(図4ではB1〜B3それぞれ)について定義される最大傾き角は互いに同一の値(角度)であっても良いし、異なる値であっても良い。
このように、各繊維束ブロックについて最大傾き角が定義されるが、以降、それらの最大傾き角をθ1と総称する。なお、端に位置する繊維束は1つの繊維束ブロックにつき2本存在し、例えば、図1では、各繊維束ブロックの端に位置する2つの繊維束の傾き角が同じ値(角度)であるため、θ1が10箇所(5(繊維束ブロック数)×2(両端))存在する。なお、図4では、図1の10個のθ1のうちの1つを図示している。
これらの傾き角(θ1)がいずれも0.1°より大きい場合には、ロール(21)とロール(22)との距離が長くなることを容易に防ぎ、炭素繊維製造プロセスの長さが長くなることを容易に防ぐことができる。また、これらの傾き角(θ1)がいずれも3.0°より小さい場合には、撚りが発生することを容易に防ぐことができる。これらのθ1の角度はいずれも、0.3°より大きく、2.5°より小さくすることが更に好ましい。
なお、図4に示すような、等間隔かつ平行に同一平面を構成するように並べられた繊維束から構成される繊維束ブロック内の全ての繊維束について、工程(a)用ロール対を構成する2本のロールの軸と直行する面に対する傾き角を考えると以下のようにすることができる。即ち、繊維束ブロック内の両端に位置する繊維束の傾き角の角度を最も大きくし、繊維束ブロック内の中心に向かうほど繊維束の傾き角の角度を小さくすることができる。この場合、この2本のロールの軸方向と直交する面に対する、この2本のロールの間を走行する各繊維束ブロック内の全ての繊維束の傾き角において、それらの傾き角のうちの最も大きい角度を、0.1°より大きく、3.0°より小さくすることが好ましく、0.3°より大きく、2.5°より小さくすることがより好ましい。
この時、2本のロール(21および22)は、図3に示すように、2本のロール間を走行するシート状耐炎化繊維束(12)が鉛直方向に走行するように配置することがスペースを有効利用できるので好ましい。また、ロール(21)をフラットロール(21)とし、ロール(22)を、繊維束の走行ピッチを制御可能な溝ロール(22)で行うことが好ましい。溝ロール(22)の他に、繊維束の走行ピッチを制御可能なガイドとフラットロールとを組合せた構成とすることもできる。
繊維束ブロックの数は、分割前のシート状繊維束(31)の全幅、繊維束走行ピッチの変更量などによって変化するが、後述する繊維束ブロックの位置変更(工程b)をおこなう角度調整可能な第2のロール対(23および24)の本数が増え装置費用が高くなることを防ぐため繊維束ブロックの数は、2以上20以下にすることが好ましく、4以上10以下にすることがより好ましい。
以下に、工程(b)の方法、すなわち、全ての繊維束ブロックについて、隣り合う繊維束ブロック同士がより接近するように各繊維束ブロックのシート幅方向(図1の紙面上下方向)における位置を変更する方法、より具体的には、工程(a)において繊維束の走行ピッチがより小さくなった繊維束ブロック同士がより接近するように配置された角度調整可能な複数のロール対を用いて、繊維束ブロック同士間の間隔を変更して再配列する方法を図2および3を用いて説明する。繊維束ブロック同士をより接近させる際には、全ての繊維束の走行ピッチが、繊維束ブロック内の繊維束走行ピッチと同じになるように繊維束ブロック同士を接近させる。工程(b)における全ての繊維束ブロックとは、工程(a)の繊維束ブロック全体を指し、図1のように5つの繊維束ブロックがある場合は、その5つの繊維束ブロックを意味する。すなわち、図1の場合では、工程(b)により5つの繊維束ブロックの隣り合う繊維束ブロック同士をより接近させる。なお、図4に示すように、工程(a)により、溝ロール(22)上で繊維束ブロック(B1〜B3)内の繊維束の走行ピッチは狭くなり、繊維束ブロック間には隙間ができている。即ち繊維束ブロック内の隣り合う繊維束間の間隔より、隣り合う繊維束ブロック間の間隔の方が広い状態となる。この状態から、工程(b)により、繊維束ブロック(B1〜B3)の隙間を狭めて、全ての繊維束の走行ピッチが、繊維束ブロック内の繊維束走行ピッチと同じになるように角度調整可能なロール(23、24)を調整する。言い換えると、工程(b)用の第1のロール対の間に配された角度調整可能な複数の第2のロール対(ロール(23)およびロール(24)から構成される)を用いて、隣り合う繊維束ブロック(B1〜B3)同士の隙間を狭めて、全ての繊維束の走行ピッチが同じになるように調整する。この時、各繊維束ブロック(B1〜B3)の角度変更量は、その繊維束ブロックが、シート中の全ての繊維束ブロック(図2では、B1〜B3)において、どの位置(両端、中央部等)に存在するかにより変化するが、各繊維束ブロック(B1〜B3)内の各繊維束は横一列に平行に並んだ状態で走行する。フラットロール(21)と平行に設置したフラットロール(25)においてシート状耐炎化繊維束(12)の全ての繊維束の走行ピッチが前炭素化炉内に適した走行ピッチ(P2)となる。この時、第1のロール対を構成する2本のロール(22および25)の軸と直交する面に対する、シート状繊維束の繊維束ブロック(図2では、B1)が、第2のロール対の間(ロール23とロール24との間)を走行するときの最大傾き角を20°より小さくすることが好ましい。傾き角は典型的にはシート状耐炎化繊維束の端に位置する繊維束ブロックで最大となる。なお、シート状耐炎化繊維束の端に位置する繊維束ブロックは2ブロックあるが、これらの傾き角は同じであっても良いし、異なっていても良い。端に位置する2つの繊維束ブロックの傾き角が同じ場合は、その角度が最大傾き角度となり、異なる場合は、これらの傾き角のうちの大きい角度が最大傾き角となる。
以降、この最大傾き角をθ2と称する。なお、端に位置する繊維束ブロックは1つのシート状繊維束につき2つ存在し、図1ではこれらの傾き角が同一となる。このため、図1においては、θ2は5つの繊維束ブロックのうちの紙面上下方向の両端の2つの繊維束ブロックに対して定義され、θ2が2箇所存在する。また、図2では、図1の2つのθ2のうちの1つ、具体的には、角度調整可能なフラットロール(23および24)の間を走行するシート状繊維束の両端に位置する繊維束ブロック(B1)の走行方向の傾き角を図示している。
この傾き角(θ2)が20°より小さい場合には、撚りが発生することを容易に防ぐことができる。また、θ2の角度は、16°より小さいことが更に好ましい。
なお、図2に示すように、等間隔かつ平行に同一平面を構成するように並べられた繊維束を用いて工程(a)を行い、続いて工程(b)を行う場合では、第1のロール対を構成する2本のロール(22、25)の軸に直交する面に対する、第2のロール対の間を走行するシート状繊維束中の全ての繊維束ブロックの傾き角を考えると以下のようにすることができる。即ち、両端に位置する繊維束ブロック(例えば、図2のB1)の傾き角を最も大きくし、中心部に向かうほどその傾き角を小さくすることができる。このような場合では、2本のロール(22、25)の軸に直交する面に対する、第2のロール対間を走行する全ての繊維束ブロックの傾き角において、それらの傾き角のうちの最も大きい角度を20°より小さくすることが好ましく、16°より小さくすることがより好ましい。
また、上述したように工程(a)および(b)からなる2段階の走行ピッチ変更方法は、耐炎化工程から得られる耐炎化繊維束の他に、前炭素化工程から得られる前炭素化処理繊維束についても用いることができる。このため、便宜的に、ロール群(4)を用いる耐炎化工程から得られる耐炎化繊維束の走行ピッチ変更におけるθ1およびθ2を、それぞれθ1−1およびθ2−1と呼び、ロール群(5)を用いる前炭素化工程から得られる前炭素化処理繊維束の走行ピッチ変更におけるθ1およびθ2を、それぞれθ1−2およびθ2−2と呼ぶ。
シート状耐炎化繊維束(12)は、必要に応じて、上述した2段階の走行ピッチ変更方法(図1に示すロール群(4)を用いる)により繊維束走行ピッチを変更された後、前炭素化炉(2)の繊維束投入口から前炭素化炉(2)に投入される。
前炭素化炉(2)内は不活性ガス雰囲気にされている。不活性ガスとしては窒素、アルゴン等が使用できるが、通常、経済性の観点から窒素を使用する。必要に応じて走行ピッチが変更されたシート状耐炎化繊維束(12)は、前炭素化炉(2)内を前炭素化処理されつつ走行した後、前炭素化炉(2)を出て、シート状前炭素化処理繊維束(13)となる。
前炭素化工程の加熱処理における最高処理温度は、500〜800℃とする。前炭素化炉(2)内の加熱処理温度としては、炭素繊維としての強度発現性の観点から、500℃以上800℃以下であることが好ましい。また、前炭素化処理時間としては、生産性及び炭素繊維としての強度発現性の観点から0.6分以上3.0分以下あることが好ましい。
次に、シート状前炭素化繊維束(13)の繊維束走行ピッチを必要に応じて、前述のシート状耐炎化繊維束(12)のときと同様に、例えば、図1〜4に示す2段階の走行ピッチ変更方法を用いて変更する。その際、工程(a)における走行ピッチを小さくする手段や工程(a)用ロール対の間の距離は、前述の繊維束(12)の場合と同様にすることができる。また、2段階の走行ピッチ変更方法を採用する場合は、工程(a)および(b)におけるθ1−2およびθ2−2の好ましい角度範囲は、前述のシート状耐炎化繊維束の繊維束走行ピッチを変更した際のθ1−1およびθ2−1とそれぞれ同様であり、図1に示すロール群4の代わりに同様の構成のロール群5を用いる。以降、この2つのロール群を区別するため、ロール群(4)を構成するロール(21〜25)を、便宜的にロール(21−1〜25−1)と呼び、ロール群(5)を構成するロール(21〜25)を便宜的にロール(21−2〜25−2)と呼ぶ。
なお、工程(a)および(b)における繊維束ブロックとは、耐炎化工程から得られる耐炎化繊維束について走行ピッチを変更する際には、耐炎化工程から得られる耐炎化繊維束を2つ以上に分割した際の繊維束ブロックを指し、前炭素化工程から得られる前炭素化処理繊維束について走行ピッチを変更する際には、前炭素化工程から得られる前炭素化処理繊維束を2つ以上に分割した際の繊維束ブロックを指す。例えば、図1において、ロール群(4)を用いて耐炎化工程から得られる耐炎化繊維束の走行ピッチを変更する際の工程(a)および(b)における繊維束ブロックとは、ロール群(4)における5つの繊維束ブロックを指す。同様に図1において、ロール群(5)を用いて前炭素化工程から得られる前炭素化処理繊維束の走行ピッチを変更する際の工程(a)および(b)における繊維束ブロックとは、ロール群(5)における5つの繊維束ブロックを指す。
繊維束走行ピッチは、炭素化炉の生産性、作業性を考慮して耐炎化工程における繊維束の走行ピッチをP1、炭素化工程における繊維束の走行ピッチをP3としたとき、0.4≦P3/P1≦0.8の範囲内になるようにする。
シート状前炭素化繊維束(13)は、必要に応じて、図1に示すロール群(5)または図5に示す2本の溝ロールにより繊維束走行ピッチを変更された後、炭素化炉(3)の繊維束投入口から炭素化炉(3)に投入される。
炭素化炉(3)内は不活性ガス雰囲気にされている。必要に応じて走行ピッチを変更されたシート状前炭素化繊維束(13)は、炭素化炉(3)内を炭素化処理されつつ走行した後、炭素化炉(3)を出て、シート状炭素化繊維束(14)となる。
炭素化工程の加熱処理温度における最高処理温度は1000℃以上とする。炭素化炉(3)内の加熱処理温度としては、強度発現性の観点から1200℃以上1800℃以下であることが好ましい。炭素化処理時間としては、生産性及び強度発現性の観点から0.6分以上3.0分以下であることが好ましい。
炭素化炉(3)で熱処理の完了したシート状炭素化繊維束(14)は、必要に応じて繊維束が酸化されないように炉内を2000℃をこえる不活性ガス雰囲気で満たした黒鉛化炉を連続的に通過させて、黒鉛化繊維束に転化することができる。
このようにして得られた炭素化もしくは黒鉛化繊維束は、従来公知の電解液中で電解酸化処理を施したり、気相または液相での酸化処理を施したりすることによって、複合材料における炭素もしくは黒鉛繊維とマトリックス樹脂との親和性や接着性を向上させることができる。さらに、必要に応じて従来公知の方法によりサイジング剤を付与することができる。また、耐炎化処理中の繊維束の張力を制御するためのゴデッドロールを設置するなど、必要に応じて従来公知の方法を使用することができる。
さらに、本発明者は、前記課題を解決するための合理的手段を研究した結果、前炭素化炉加熱処理部内および炭素化炉加熱処理部内の少なくとも一方で繊維束の走行ピッチを変更することにより前記課題を解決できることを見出し、第二の発明及び第三の発明に到達した。第二及び第三の発明により、炭素繊維の製造プロセスにおいて品質を損なうことなく生産性に優れた炭素繊維束の製造方法を提供することができる。
繊維束が酸化反応によって発熱している耐炎化工程では、糸切れ時、糸切れした繊維束が隣接する繊維束と重なって蓄熱し、ついには発火することがあるため、糸切れ繊維束が隣接する繊維束に重なりにくいように、繊維束をロール(例えば、図6のロール111)の軸方向に等間隔に並べる配列が好ましい。
一方、不活性ガス雰囲気下で処理をおこなう前炭素化工程および炭素化工程では糸切れ繊維束がたとえ隣接する繊維束と重なっても蓄熱し、発火することが無く、耐炎化工程より繊維束の走行ピッチを狭くすることができる。ただし、前炭素化工程では、耐炎化繊維から炭素化繊維への転化の段階で大量の分解物が発生し、前記分解物が繊維束内に残ると品質面に影響を及ぼすことがあるため、繊維束の走行ピッチを極端に狭めることができない。
一方、炭素化工程では、分解物の発生が少ないため、炭素化処理中に配列を変更、より具体的には、前炭素化工程より更に走行ピッチを狭めても品質面、操業面、装置の構造上のいずれにも影響しないことが判明した。
第二及び第三の発明に係る炭素繊維束の製造方法は、以下の工程を有する。
多数の炭素繊維前駆体繊維束を横一列に並んだ状態で、耐炎化炉において、酸化性ガス雰囲気下、200〜300℃で加熱処理し、耐炎化繊維束とする耐炎化工程。
前記耐炎化繊維束を横一列に並んだ状態で、前炭素化炉において、不活性ガス雰囲気下、500〜800℃の最高処理温度で加熱処理し、前炭素化処理繊維束とする前炭素化工程。
前記前炭素化処理繊維束を横一列に並んだ状態で、炭素化炉において、不活性ガス雰囲気下、1000℃以上の最高処理温度で加熱処理して、炭素繊維束とする炭素化工程。
また、第二及び第三の発明の炭素繊維束の製造方法は、上述した通り、前炭素化炉加熱処理部内および炭素化炉加熱処理部内の少なくとも一方で繊維束の走行ピッチを変更することができ、その際、以下の式(3)および式(4)の少なくとも一方を満たす。各炉における加熱処理部とは、各炉のうち、各炉内を走行する繊維束の加熱処理を行う部分を指し、図6中51a〜54aで表される。
なお、前炭素化炉の加熱処理部の入口における繊維束の走行ピッチをP11、前炭素化炉の加熱処理部の出口における繊維束の走行ピッチをP12、
炭素化炉の加熱処理部の入口における繊維束の走行ピッチをP13、炭素化炉の加熱処理部の出口における繊維束の走行ピッチをP14とする。
0.40≦(P12/P11)≦0.90・・・(3)
0.40≦(P14/P13)≦0.90・・・(4)
なお、これらの工程を通して、繊維束の本数は変化しない。
以下、図6〜9を参照して第二及び第三の発明の実施形態を詳細に説明するが、本発明はこの実施形態に限定されない。
まず、複数本(例えば、100本〜200本程度)の前駆体繊維束を横一列にシート状に並べてシート状前駆体繊維束とし、耐炎化炉(51)の加熱処理部(51a)で加熱処理することにより耐炎化して、耐炎化繊維束を作製する。なお、横一列に並べた多数の繊維束は平面を形成しており、これらの繊維束をシート状の繊維束と称する。
具体的に説明すると、例えば、図6に示すように、まず、クリールスタンドに掛けられたチーズ(不図示)から解除された複数本の前駆体繊維束を、ガイド(不図示)により等間隔かつ平行に同一平面を構成するように並べて、シート状前駆体繊維束を形成する。ガイドは前駆体繊維束の等間隔及び平行状態が維持できるよう適宜配置する。ガイドの種類は、ロールの表面に等間隔に溝を刻印した溝ロール、等間隔にピンを配置したガイド等がある。
前記複数本の前駆体繊維束としては、アクリル系炭素繊維前駆体繊維束、ピッチ系炭素繊維前駆体繊維束などを用いることができる。前駆体繊維束の直径、本数などは、製造する炭素繊維の直径や生産性に応じて適宜設定することができる。
シート状前駆体繊維束における各前駆体繊維束の走行位置は、耐炎化炉(51)の外部に設置したロール(111、112、119)により制御することができる。
シート状前駆体繊維束における各前駆体繊維束の走行ピッチは、前駆体繊維を等間隔に並べた時のピッチであり、例えば、耐炎化炉(51)の入口側に設置されたロール(111)上、および耐炎化炉(51)の出口側に設置されたロール(112)上で測定することができる。また、入口側ロール(111)および出口側ロール(112)での繊維束の走行ピッチは、測定した値の平均値で表される。
例えば、耐炎化炉(51)の入口側および出口側に設置されたロールが溝ロールであれば、その溝のピッチが、耐炎化炉の入口側のロール(111)および出口側のロール(112)における繊維束の走行ピッチとなる。
図6では、耐炎化工程において繊維束の走行ピッチは変更していないため、耐炎化炉(51)の入口側ロール(111)での走行ピッチと、出口側ロール(112)での走行ピッチとは同じである。
以下、各炉の入口側ロールおよび出口側ロールにおける繊維束の走行ピッチは、同様の方法で測定する。
また、耐炎化炉内、より具体的には、耐炎化炉の加熱処理部内での繊維束走行ピッチは、生産性及び蓄熱防止の観点から4mm以上20mm以下であることが好ましく、一定の走行ピッチを保つことが好ましい。なお、例えば繊維束の走行ピッチが4mmの場合、隣り合う繊維束の幅方向(図6では、紙面上下方向)の中心間の間隔(距離)が4mmであることを意味する。耐炎化炉の加熱処理部内での繊維束走行ピッチは、耐炎化炉の入口側ロール(111)および出口側ロール(112)での繊維束走行ピッチから幾何学計算により算出することができる。
次に、シート状前駆体繊維束を耐炎化炉(51)に投入する。これらシート状前駆体繊維束は、酸化性雰囲気にされた耐炎化炉加熱処理部(51a)内で耐炎化処理されつつ走行した後、一旦耐炎化炉(51)の外部に出る。次いで、耐炎化炉(51)の外部に配設された折り返しロール群(119)の最初のロールによって折り返される。その後、耐炎化炉加熱処理部(51a)内を再び通過して耐炎化処理される。以後、折り返しロール群(119)の間で繰り返し耐炎化処理される。これにより、シート状耐炎化繊維束が得られる。酸化性ガス雰囲気としては、酸化性を有する雰囲気であれば良く、通常、経済性の観点から空気が使用される。
図6および7では、耐炎化炉1台分を図示しているが、本発明では、数台の耐炎化炉を連続して設置し、前駆体繊維の耐炎化処理進行状態に対応して、これらの耐炎化炉加熱処理部の処理温度を徐々に高くしていく方法が好ましい。この時、これらの耐炎化炉加熱処理部の温度としては、蓄熱防止の観点から200℃以上300℃以下とする。耐炎化処理時間としては、生産性及び蓄熱防止の観点から20分以上120分以下であることが好ましい。また、搬送速度としては、生産性の観点から3m/分以上20m/分以下であることが好ましい。
なお、複数台(n台)の耐炎化炉を連続して設置した場合、耐炎化炉の入口側ロールとは、シート状前駆体繊維束が最初に通過する1台目の耐炎化炉の入口側ロールを意味し、耐炎化炉の出口側ロールとは、シート状前駆体繊維束が最後に通過するn台目の耐炎化炉の出口側ロールを意味する。
本発明に係る製造方法では、図9に示すように互いに平行な2本のロール(120および121)を用いて、各炉内で(耐炎化炉内では、繊維束の走行ピッチを変更せず一定のピッチとすることが好ましいが)繊維束の走行ピッチを変更することができる。その際、この2本のロールの軸方向と直交する面に対する、この2本のロールの間を走行する横一列に並んだ多数の繊維束の傾き角度のうちの最大傾き角度をθで表す。
典型的には、最大傾き角度は、横一列に並んだ多数の繊維束のうち端に位置する繊維束での傾き角度となり、繊維束の中心に向かうほど繊維束の傾き角度は小さくなる。なお、図9に示すように、多数の繊維束のうち端に位置する繊維束は2本あるが、これらの傾き角度は同じであっても良いし、異なっていても良い。両端に位置する2つの繊維束の傾き角度が同じ場合は、その角度が最大傾き角度θとなり、異なる場合は、これらの傾き角度のうちの大きい方の角度が最大傾き角度θとなる。図9は、両端に位置する2つの繊維束の傾き角度が同じ場合であり、一方の最大傾き角度θが図示されている。
以降、前炭素化工程における最大傾き角度θをθ11と呼び、炭素化工程における最大傾き角度θをθ13と呼ぶ。
耐炎化処理したシート状耐炎化繊維束の走行ピッチの変更には、この2本のロール(20および21)として、前炭素化炉(52)の前後(入口側と出口側と)に1本ずつ配置した互いに平行な前炭素化炉入口側ロール(113)と前炭素化炉出口側ロール(114)を用いることができる。これにより前炭素化炉(2)内で繊維束走行ピッチの変更を行うことができ、その際、最大傾き角度θ11は、0.1°<θ11<3.0°の範囲内にすることが好ましく、0.3°<θ11<2.5°の範囲とすることが更に好ましい。
最大傾き角度が0.1°より大きい場合にはロール(113)とロール(114)との間の距離が長くなることを容易に防ぎ、前炭素化炉の長さが長くなることを容易に防ぐことができる。最大傾き角度が3.0°より小さい場合には撚りが発生することを容易に防ぐことができる。
上記2本のロール(113および114)はそれぞれ、耐炎化工程より得られる横一列に並んだ多数の耐炎化繊維束の走行方向に対して垂直、かつこれらの繊維束が形成する平面に対して平行に配置することができる。
走行ピッチの変更に用いることのできるロール(111〜118)は、典型的には、図6に示すように各炉の外部に設置されるが、各炉の内部で、かつ各炉の加熱処理部の外部に設置することもできる。
繊維束走行ピッチを変更する際は、前炭素化炉の生産性と分解物による品質への影響を考慮して、前炭素化炉加熱処理部(52a)の入口における繊維束の走行ピッチをP11、前炭素化炉加熱処理部(52a)の出口における繊維束の走行ピッチをP12としたとき、0.40≦(P12/P11)≦0.90の範囲内となるようにする。好ましくは0.50≦(P12/P11)≦0.85の範囲とする。
なお、図8に示すように、前炭素化炉加熱処理部の入口及び出口における繊維束の走行ピッチ(P11及びP12)は、上述した方法で測定した前炭素化炉の入口側および出口側に設置したロール(113及び114)上での繊維束の走行ピッチ(p1及びp2)から、以下の式(5)および(6)を用いた幾何学計算により算出することができる。
P11=p1−{a×(p1−p2)/(a+b+c)} ・・・(5)
P12=p1−{(a+b)×(p1−p2)/(a+b+c)} ・・・(6)
なお、式5および6中の符号は以下のものを表す。
P11:前炭素化炉加熱処理部の入口における繊維束の走行ピッチ、
P12:前炭素化炉加熱処理部の出口における繊維束の走行ピッチ、
p1:前炭素化炉の入口側に設置したロール上での繊維束の走行ピッチ、
p2:前炭素化炉の出口側に設置したロール上での繊維束の走行ピッチ、
a:前炭素化炉の入口側に設置したロール上(p1測定地点)から前炭素化炉加熱処理部の入口までの距離、
b:前炭素化炉加熱処理部の入口から出口までの距離、
c:前炭素化炉加熱処理部の出口から前炭素化炉の出口側に設置したロール上(p2測定地点)までの距離。
繊維束走行ピッチの変更方法としては、前炭素化炉入口側ロール(113)と前炭素化炉出口側ロール(114)を溝ロールとする方法、コームガイドとフラットロールを組合せる方法等公知の技術を用いることができる。
シート状耐炎化繊維束は、前炭素化炉入口側ロール(113)で必要に応じて再配列された後、前炭素化炉(52)の繊維束投入口から前炭素化炉(52)に投入される。前炭素化炉(52)内は不活性ガス雰囲気にされている。不活性ガスとしては、窒素、アルゴン等が使用できるが、通常、経済性の観点から窒素を使用する。シート状耐炎化繊維束は、前炭素化炉加熱処理部(52a)内を前炭素化処理されつつ、必要に応じて走行ピッチを狭めながら走行した後、前炭素化炉(52)を出て、前炭素化炉出口側ロール(114)で必要に応じて走行ピッチを変更した状態で再配列されたシート状前炭素化繊維束となる。
前炭素化炉加熱処理部(52a)は、温度調整可能な複数のブロック(区画)からなることができる。加熱処理部(52a)の温度は、耐炎化炉での最高処理温度設定より高い温度から徐々に高くしていくことが好ましく、最高処理温度は、炭素繊維としての強度発現性の観点から500℃以上800℃以下とする。また、前炭素化処理時間としては、生産性及び炭素繊維としての強度発現性の観点から0.6分以上3分以下であることが好ましい。
次に、図9に示す2本のロール(120および121)として、炭素化炉(53)の前後(入口側と出口側と)に1本ずつ配置した互いに平行な炭素化炉入口側ロール(115)と炭素化炉出口側ロール(116)を用いることにより、炭素化炉内(53)でシート状前炭素化繊維束の走行ピッチの変更を行うことができる。この2本のロール(115および116)はそれぞれ、前炭素化工程より得られる横一列に並んだ多数の前炭素化繊維束の走行方向に対して垂直、かつこれらの繊維束が形成する平面に対して平行に配置することができる。
繊維束走行ピッチを変更する際は、炭素化炉の生産性と分解物による品質への影響を考慮して、炭素化炉加熱処理部(53a)の入口における繊維束の走行ピッチをP13、炭素化炉加熱処理部(53a)の出口における繊維束の走行ピッチをP14としたとき0.40≦(P14/P13)≦0.90の範囲内となるようにする。更に好ましくは0.50≦(P14/P13)≦0.85の範囲である。
炭素化炉加熱処理部(53a)の入口および出口における繊維束の走行ピッチ(P13およびP14)は、上述したP11およびP12と同様の計算式を用いて算出することができる。その際、図8に示すように、p1、p2およびa〜cはそれぞれ、p3、p4およびd〜fに対応する。
なお、2本のロール(115および116)の軸方向と直交する面に対する、この2本のロールの間を走行する横一列に並んだ多数の繊維束の傾き角度のうちの最大傾き角度θ13を、0.1°<θ13<3.0°の範囲内にすることが好ましい。最大傾き角度が0.1°より大きい場合には、ロール(115)と(116)との間の距離が長くなることを容易に防ぎ、炭素化炉の長さが長くなることを容易に防ぐことができる。最大傾き角度が3.0より小さい場合には撚りが発生することを容易に防ぐことができる。さらに、最大傾き角度θ13は、0.3°<θ13<2.5°の範囲とするが更に好ましい。
炭素化炉内を走行する繊維束の走行ピッチの変更方法は、前述の前炭素化炉内での方法と同様の方法を用いることができる。
シート状前炭素化繊維束は、炭素化炉入口側ロール(115)で必要に応じて再配列された後、炭素化炉(53)の繊維束投入口から炭素化炉(53)に投入される。炭素化炉(53)内は不活性ガス雰囲気にされている。シート状前炭素化繊維束は、炭素化炉加熱処理部(53a)内を炭素化処理されつつ、必要に応じて走行ピッチを狭めながら走行した後、炭素化炉(53)を出て、炭素化炉出口側ロール(116)で必要に応じて走行ピッチを変更した状態で再配列されたシート状炭素化繊維束となる。
なお、炭素化炉加熱処理部は温度調整可能な複数のブロックからなることができる。加熱処理部(53a)の温度は、前炭素化炉の最高処理温度より高い温度から徐々に高くしていくことが好ましく、最高処理温度は、1000℃以上とする。炭素化炉加熱処理部(53a)内の温度としては、強度発現性の観点から1200℃以上1800℃以下であることが好ましい。炭素化処理時間としては、生産性及び強度発現性の観点から0.6分以上3分以下であることが好ましい。
炭素化炉(53)で熱処理の完了したシート状炭素化繊維束は、必要に応じて繊維束が酸化されないように炉内を、2000℃をこえる不活性ガス雰囲気で満たした黒鉛化炉(54)、より具体的には黒鉛化炉加熱処理部(54a)を連続的に通過させて、黒鉛化繊維束に転化することができる。
なお、シート状炭素化繊維束における各炭素化繊維束の走行位置は、黒鉛化炉(54)の外部に設置したロール(117および118)により制御することができる。図6では、黒鉛化工程において繊維束の走行ピッチは変更していないため、黒鉛化炉(54)の入口側ロール(117)での走行ピッチと、出口側ロール(118)での走行ピッチとは同じである。
このようにして得られた炭素化もしくは黒鉛化繊維束は、従来公知の電解液中で電解酸化処理を施したり、気相又は液相での酸化処理を施したりすることによって、複合材料における炭素繊維もしくは黒鉛化繊維とマトリックス樹脂との親和性や接着性を向上させることができる。さらに、必要に応じて従来公知の方法によりサイジング剤を付与することができる。また、加熱処理中の繊維束の張力を制御するためのゴデッドロールを設置するなど、必要に応じて従来公知の方法を使用することができる。
以下に第一の発明を実施例によりさらに具体的に説明するが、第一の発明の炭素繊維束の製造方法はこれらによって限定されるものではない。
(実施例1)
実施例1では、図1に示す構成を有する装置を用いて炭素繊維を製造した。なお、繊維束ブロック数は、図1と異なる。また、実施例1〜12及び比較例1〜3において、図2から図4に示されるロール(21)およびロール(22)の軸と直交する面に対する、この2本のロールの間を走行する各繊維束ブロック内の両端に位置する繊維束の傾き角は同一角度とし、この角度を最大傾き角(θ1)とする。さらに、実施例1〜12及び比較例1〜3において、ロール(22)およびロール(25)の軸と直交する面に対する、角度調整可能なロール間(23〜24)を走行するシート状繊維束の両端に位置する繊維束ブロックの傾き角は同一角度とし、この角度を最大傾き角(θ2)とする。
・耐炎化工程
単糸繊度が0.8dTex、フィラメント数24000のアクリル系前駆体繊維束100本を溝付きガイドロール上に10mmピッチ(P1:10mm)で等間隔に並べたシート状前駆体繊維束(11)を230〜270℃の熱風が循環している耐炎化炉(1)の左右に設置されたロール群によって耐炎化炉内を繰り返し通過させて、50分間の耐炎化処理を行い、シート状耐炎化繊維束(12)とした。
・走行ピッチ変更工程−1
(工程a)
耐炎化炉(1)を出て横一列に平行して走行する100本の繊維束を8ブロックに分割し、互いに平行に配置された2本のロール(フラットロール(21−1)および溝ロール(22−1))を用いて8つの繊維束ブロック毎に、繊維束ブロック内の繊維束走行ピッチを9mmに変更した。なお、溝ロール(22−1)は、9mmピッチで等間隔に溝が刻印されており、フラットロール(21−1)と溝ロール(22−1)との距離は1mになるように配置した。この時、フラットロール(21−1)および溝ロール(22−1)の軸と直交する面に対する、この2本のロールの間を走行する各繊維束ブロック内の両端に位置する繊維束の傾き角(θ1−1)は、いずれも0.4度であった。
(工程b)
前記各繊維束ブロック内の繊維束走行ピッチを9mmに変更した8つの繊維束ブロックについて、図2および3に示したロール配置によって、隣り合う繊維束ブロック間の間隔を狭めて、全ての繊維束の走行ピッチが9mmになるように変更した。より具体的には、第1のロール対(溝ロール(22−1)およびフラットロール(25−1))の間に配された角度調整可能な複数の第2のロール対(フラットロール(23−1)とフラットロール(24−1))を用いて、隣り合う繊維束ブロック同士をより接近させた。なお、第1のロール対および第2のロール対をそれぞれ構成する2本のロールは、互いに平行に配置した。また、フラットロール(23−1)とフラットロール(24−1)との距離はいずれも1mになるように配置した。
この時、溝ロール(22−1)およびフラットロール(25−1)の軸と直交する面に対する、角度調整可能なフラットロール間(23−1〜24−1)を走行する8つに分割されたシート状繊維束の両端に位置する繊維束ブロックの傾き角(θ2−1)はいずれも3.0度であった。
以上の走行ピッチ工程(工程aおよびb)により、繊維束走行ピッチを10mm(P1)から9mm(P2)に変更した横一列に平行して走行する100本の繊維束(走行ピッチ9mmのシート状耐炎化糸繊維束(12))が得られた。
・前炭素化工程
次いで、前記走行ピッチ9mmのシート状耐炎化繊維束(12)を窒素で充満された実質的加熱部が300〜600℃の温度分布を有する前炭素化炉(2)に導入して2分間の熱処理を行い、シート状前炭素化繊維束(13)とした。
・走行ピッチ変更工程−2
前炭素化炉(2)を出て横一列に平行して走行するシート状前炭素化繊維束(13)の繊維束走行ピッチを前述の繊維束走行ピッチ変更方法と同様の方法を用いて9mm(P2)から5mm(P3)に変更した。この際、上述した工程(a)および(b)を、ロール(21−1〜25−1)からなるロール群(4)の代わりに同様の構成のロール(21−2〜25−2)からなるロール群(5)を用いて繊維束の走行ピッチの変更を行った。この時、フラットロール(21−2)と溝ロール(22−2)との距離を1mになるように配置した。このとき、フラットロール(21−2)および溝ロール(22−2)の軸と直交する面に対する、この2本のロールの間を走行する各繊維束ブロック内の両端に位置する繊維束の傾き角(θ1−2)はいずれも1.4度であった。また、フラットロール(23−2)とフラットロール(24−2))との距離をいずれも1mになるように配置した。このとき、溝ロール(22−2)およびフラットロール(25−2)の軸と直交する面に対する、角度調整可能なフラットロール(23−2)および(24−2)間を走行する8つの繊維束ブロックからなるシート状繊維束の両端に位置する繊維束ブロックの傾き角(θ2−2)はいずれも11度であった。
以上より、繊維束走行ピッチ(P3)が5mmの横一列に平行して走行する100本の繊維束(走行ピッチ5mmのシート状前炭素化繊維束(13))が得られた。
・炭素化工程
次いで、この繊維束走行ピッチを5mm(P3)としたシート状前炭素化繊維束(13)を窒素で充満された実質的加熱部が1000〜1500℃の温度分布を有する炭素化炉(3)に導入して2分間の熱処理を行い、横一列に平行して走行する100本の繊維束(シート状炭素化繊維束(14))とした。さらに電解酸化表面処理、サイジング処理を施し、炭素繊維束とした。前記炭素繊維束は品質が良好なものであった。
なお、表1に示す炭素繊維束の生産性及び品質は以下の基準に基づき判定した。
・生産性
○:P3/P1≦0.8、すなわち炭素化炉3の幅を耐炎化炉1の幅に対して20%以上削減できたもの。
×:0.8<P3/P1、すなわち炭素化炉3の幅を耐炎化炉1の幅に対して20%未満しか削減できなかったもの。
・品質
○:炭素繊維の品位に優れ全く問題がない。
△:炭素繊維の品位が多少劣るが問題がない。
×:炭素繊維の品位上問題となる。
(実施例2)
走行ピッチ変更工程−1および−2の繊維束ブロック数を5ブロックに変更し、θ1−1をいずれも0.6度に変更し、θ1−2をいずれも2.3度に変更した。それら以外は実施例1と同様にして、炭素繊維束を作製した。得られた炭素繊維束は品質が良好なものであった。
(実施例3)
フラットロール(23−1)とフラットロール(24−1)との距離をいずれも0.75mに変更し、θ2−1をいずれも4度に変更した。また、フラットロール(23−2)とフラットロール(24−2)との距離をいずれも0.75mに変更し、θ2−2をいずれも15度に変更した。それら以外は実施例1と同様にして、炭素繊維束を作製した。得られた炭素繊維束は品質が良好なものであった。
(実施例4)
走行ピッチ変更工程−1および−2の繊維束ブロック数を4ブロックに変更し、θ1−1をいずれも0.7度に変更した。フラットロール(23−1)とフラットロール(24−1)との距離をいずれも0.5mに変更し、θ2−1をいずれも6度に変更した。また、前炭素化炉(2)を出て横一列に平行して走行するシート状前炭素化繊維束(13)の変更後の走行ピッチ、すなわち炭素化工程における走行ピッチ(P3)を、7mmに変更した。さらに、フラットロール(23−2)とフラットロール(24−2)との距離をいずれも0.5mに変更した。それら以外は実施例1と同様にして、炭素繊維束を作製した。得られた炭素繊維束は品質が良好なものであった。
(実施例5)
走行ピッチ変更工程−1の繊維束ブロック数を5ブロックに変更し、シート状耐炎化繊維束(12)の変更後の走行ピッチ、即ち前炭素化工程における繊維束の走行ピッチ(P2)を8mmに変更した。また、θ1−1をいずれも1.1度に変更し、θ2−1をいずれも6度に変更した。さらに、炭素化工程における繊維束の走行ピッチ(P3)を8mmに変更し、実施例5では、走行ピッチ変更工程−2は行わずに、前炭素化工程から得られたシート状前炭素化繊維束(13)をそのままの走行ピッチで炭素化工程に供給した。それら以外は実施例1と同様にして、炭素繊維束を作製した。得られた炭素繊維束は品質が良好なものであった。
(実施例6)
前炭素化工程における繊維束の走行ピッチ(P2)を10mmに変更し、実施例6では、走行ピッチ変更工程−1は行わずに、耐炎化工程から得られたシート状耐炎化繊維束(12)をそのままの走行ピッチで前炭素化工程に供給した。
また、走行ピッチ変更工程−2における、前炭素化炉(2)を出て横一列に平行して走行するシート状前炭素化繊維束(13)を分割するブロック数を5ブロックに変更し、θ1−2をいずれも1.7度に変更し、θ2−2をいずれも9度に変更した。さらに、炭素化工程における繊維束の走行ピッチ(P3)を7mmに変更した。それら以外は実施例1と同様にして、炭素繊維束を作製した。得られた炭素繊維束は品質が良好なものであった。
(比較例1)
シート状耐炎化繊維束(12)の変更後の走行ピッチ、即ち前炭素化工程における繊維束の走行ピッチ(P2)を7mmに変更した。また、θ1−1をいずれも1.1度に変更し、θ2−1をいずれも9度に変更した。さらに、炭素化工程における繊維束の走行ピッチ(P3)を7mmに変更し、比較例1では、走行ピッチ変更工程−2は行わずに、前炭素化工程から得られたシート状前炭素化繊維束(13)をそのままの走行ピッチで炭素化工程に供給した。それら以外は実施例1と同様にして、炭素繊維束を作製した。なお、比較例1の条件では、シート状耐炎化繊維束(12)の繊維束走行ピッチ変更時(走行ピッチ変更工程−1の際)に溝ロール(22−1)において単糸切れが発生し、良好な品質の炭素繊維束を得ることができなかった。
(比較例2)
シート状前炭素化繊維束(13)の変更後の走行ピッチ、即ち炭素化工程における繊維束の走行ピッチ(P3)を3mmに変更した。また、θ1−2をいずれも2.1度、θ2−2をいずれも17度に変更した。それら以外は実施例1と同様にして、炭素繊維束を作製した。なお、比較例2の条件では、シート状前炭素化繊維束(13)の繊維束走行ピッチ変更時(走行ピッチ変更工程−2の際)に溝ロール(22−2)において単糸切れが発生し、良好な品質の炭素繊維束を得ることができなかった。
(比較例3)
繊維束走行ピッチを変更せずに(走行ピッチ変更工程−1および−2を行わずに、耐炎化工程から得られたシート状耐炎化繊維束(12)をそのままの走行ピッチで前炭素化工程に供給し、この前炭素化工程から得られたシート状前炭素化繊維束(13)をそのままの走行ピッチで炭素化工程に供給した)、前炭素化炉および炭素化炉に、耐炎化炉と同じ幅の物を使用した点以外は、実施例1と同様の条件で炭素繊維束の製造を行った。比較例3の条件では、炭素繊維束の品質が良好なものが得られるが、必要以上に幅の広い炭素化炉で炭素化をおこなうため、実施例に比べ生産性が低下した。
(実施例7)
走行ピッチ変更工程−1および2の代わりに、以下の走行ピッチ変更工程−3および4をそれぞれ行った以外は実施例1と同様にして、炭素繊維束を作製した。
・走行ピッチ変更工程−3
耐炎化炉(1)を出て横一列に平行して走行する100本の繊維束の走行ピッチ(P1:10mm)を図5に示すような2本の溝ロール(10mmピッチおよび9mmピッチでそれぞれ等間隔に溝が刻印された2本の溝ロール)を用いて9mm(P2)に変更した。なお、この2本の溝ロール間の距離は1mとした。これにより、横一列に平行して走行する走行ピッチ9mmの100本の繊維束(走行ピッチ9mmのシート状耐炎化糸繊維束)が得られた。
・走行ピッチ変更工程−4
前炭素化炉(2)を出て横一列に平行して走行するシート状前炭素化繊維束を上記2本の溝ロールを用いた走行ピッチ変更方法と同様の方法を用いて繊維束走行ピッチを9mm(P2)から5mm(P3)に変更した。このとき、2本の溝ロール(9mmピッチおよび5mmピッチでそれぞれ等間隔に溝が刻印された2本の溝ロール)間の距離は4mであった。これにより、繊維束走行ピッチ(P3)が5mmの横一列に平行して走行する100本の繊維束(走行ピッチ5mmのシート状前炭素化繊維束)が得られた。
実施例7の条件では、繊維束走行ピッチ変更時に溝ロール(図5でいう符号27の溝ロール)において若干撚りが発生し、実施例1から6と比較すると、炭素繊維束の品質はやや低下したが、比較例に対しては良好な品質であった。
(実施例8)
走行ピッチ変更工程−1および−2の繊維束ブロック数を3ブロックに変更し、θ1−1をいずれも1.0度に変更した。また、θ1−2をいずれも3.8度に変更した。それら以外は実施例1と同様にして、炭素繊維束を作製した。なお、実施例8の条件では、繊維束走行ピッチ変更時(走行ピッチ変更工程−2の際)に溝ロール(22−2)において若干撚りが発生し、実施例1から6と比較すると、炭素繊維束の品質はやや低下したが、比較例に対しては良好な品質であった。
(実施例9)
フラットロール(23−1)とフラットロール(24−1)との距離をいずれも0.5mに変更し、θ2−1をいずれも6度に変更した。また、フラットロール(23−2)とフラットロール(24−2)との距離をいずれも0.5mに変更し、θ2−2をいずれも22度に変更した。それら以外は実施例1と同様にして、炭素繊維束を作製した。なお、実施例9の条件では繊維束走行ピッチ変更時(走行ピッチ変更工程−2の際)にフラットロール(23−2および24−2)において若干撚りが発生し、実施例1から6と比較すると炭素繊維束の品質はやや低下したが、比較例に対しては良好な品質であった。
(実施例10)
アクリル系前駆体繊維束の本数を600本に変更した。また、走行ピッチ変更工程−1の互いに平行に配置された2本のロール(フラットロール(21−1)および溝ロール(22−1))との距離を9mに変更し、θ1−1を0.2°に変更、また、フラットロール(23−1)とフラットロール(24−1)との距離は実施例1と同様の1mとしてθ2−1は17°に変更した。さらに走行ピッチ変更工程−2のフラットロール(21−2)と溝ロール(22−2)との距離を9mに変更しθ1−2を1.0°、フラットロール(23−2)とフラットロール(24−2)との距離を5mに変更しθ2−2を13°に変更した。それら以外は実施例1と同様にして炭素繊維束を作製した。得られた炭素繊維束は品質が良好なものであった。
(実施例11)
アクリル系前駆体繊維束の本数を600本に変更した。また、走行ピッチ変更工程−1の互いに平行に配置された2本のロール(フラットロール(21−1)および溝ロール(22−1))との距離を12mに変更し、θ1−1を0.2°に変更、また、フラットロール(23−1)とフラットロール(24−1)との距離は実施例1と同様の1mとしてθ2−1は17°に変更した。さらに走行ピッチ変更工程−2のフラットロール(21−2)と溝ロール(22−2)との距離を12mに変更しθ1−2を0.7°、フラットロール(23−2)とフラットロール(24−2)との距離を5mに変更しθ2−2を13°に変更した。それら以外は実施例1と同様にして炭素繊維束を作製した。得られた炭素繊維束は品質が良好なものであった。
(実施例12)
アクリル系前駆体繊維束の本数を600本に変更した。また、走行ピッチ変更工程−1の互いに平行に配置された2本のロール(フラットロール(21−1)および溝ロール(22−1))との距離を15mに変更し、θ1−1を0.1°に変更、また、フラットロール(23−1)とフラットロール(24−1)との距離は実施例1と同様の1mとしてθ2−1は17°に変更した。さらに走行ピッチ変更工程−2のフラットロール(21−2)と溝ロール(22−2)との距離を15mに変更しθ1−2を0.6°、フラットロール(23−2)とフラットロール(24−2)との距離を5mに変更しθ2−2を13°に変更した。それら以外は実施例1と同様にして炭素繊維束を作製した。得られた炭素繊維束は品質が良好なものであった。
以上の実施例、比較例における評価結果を表1に示す。
Figure 0005496214
以下に第二の発明及び第三の発明を実施例によりさらに具体的に説明するが、本発明の炭素繊維束の製造方法はこれらによって限定されるものではない。なお、実施例13〜20及び比較例4〜7において、図6から図8に示す前炭素化炉入口側ロール(113)および出口側ロール(114)の軸と直交する面に対する、この2本のロールの間を走行するシート状繊維束の両端に位置する繊維束の傾き角度は互いに同じ角度とし、この角度を最大傾き角度(θ11)とする。さらに、実施例13〜20及び比較例4〜7において、図6から図8に示す炭素化炉入口側ロール(115)および出口側ロール(116)の軸と直交する面に対する、この2本のロールの間を走行するシート状繊維束の両端に位置する繊維束の傾き角度は互いに同じ角度とし、この角度を最大傾き角度(θ13)とする。
(実施例13)
単糸繊度が0.8dTex、フィラメント数24000のアクリル系前駆体繊維束50本を溝付きロール(111)上に10mmピッチで等間隔に並べたシート状前駆体繊維束を230〜270℃の熱風が循環している耐炎化炉(51)の左右に設置された折返しロール群(119)によってジグザグに走行して50分間の耐炎化処理を行い、シート状耐炎化繊維束とした。なお、耐炎化炉内では、繊維束の走行ピッチの変更は行わなかった。
耐炎化炉(51)を出て横一列に平行して走行するシート状耐炎化繊維束を10mmピッチで等間隔に溝が刻印された前炭素化炉入口側ロール(113)と8mmピッチで等間隔に溝が刻印された前炭素化炉出口側ロール(114)により前炭素化炉(2)内で走行ピッチを変更しながら窒素で充満された前炭素化炉加熱処理部(52a)が300〜600℃の温度分布を有する前炭素化炉(52)内で2分間の熱処理を行い、シート状前炭素化繊維束とした。
なお、幾何学計算により算出した前炭素化炉加熱処理部(52a)の入口における繊維束の走行ピッチP11は、9.9mmであり、出口における繊維束の走行ピッチP12は、8.1mmであった。計算に用いたパラメータを表2に示す。
この時、前炭素化炉入口側ロール(113)の軸方向と直交する面に対する、シート状前炭素繊維束の両端に位置する繊維束の傾き角度θ11は0.7度であった。
次いで、シート状前炭素化繊維束を窒素で充満された炭素化炉加熱処理部(53a)が1000〜1500℃の温度分布を有する炭素化炉(53)に導入して2分間の熱処理を行い、シート状炭素化繊維束とした。なお、炭素化炉内では繊維束の走行ピッチの変更は行わず、繊維束は8mmピッチにて繊維束を走行させた。さらに電解酸化表面処理、サイジング処理を施し、炭素繊維束とした。この炭素繊維束は品質が良好なものであり、生産性も良好であった。なお、炭素繊維束の品質および生産性は以下の基準に基づき判定した。
・生産性
○:炭素化炉の生産性が走行ピッチを変更しない場合に対して10%以上向上。
×:炭素化炉の生産性の走行ピッチを変更しない場合に対する向上が10%未満。
・品質
○:炭素繊維の品位に優れ全く問題がない。
△:炭素繊維の品位が多少劣るが問題がない。
×:炭素繊維の品位上問題となる。
(実施例14)
シート状耐炎化繊維束を10mmピッチで等間隔に溝が刻印された前炭素化炉入口側ロール(113)と6mmピッチで等間隔に溝が刻印された前炭素化炉出口側ロール(114)を用いて前炭素化炉内(2)で走行ピッチを変更する条件とした以外は実施例13と同様の条件で炭素繊維束の製作をおこなった。なお、耐炎化炉内および炭素化炉内では、繊維束の走行ピッチの変更は行わず、それぞれ10mmピッチおよび6mmピッチにて繊維束を走行させた。
幾何学計算により算出した前炭素化炉加熱処理部(52a)の入口における繊維束の走行ピッチP11は、9.8mmであり、出口における繊維束の走行ピッチP12は、6.2mmであった。また、前炭素化炉入口側ロール(113)の軸方向と直交する面に対する、シート状前炭素繊維束の両端に位置する繊維束の傾き角度θ11は1.3度であった。得られた炭素繊維束は品質が良好なものであり、生産性も良好であった。
(実施例15)
シート状耐炎化繊維束を10mmピッチで等間隔に溝が刻印された前炭素化炉入口側ロール(113)と4mmピッチで等間隔に溝が刻印された前炭素化炉出口側ロール(114)を用いて前炭素化炉内(52)で走行ピッチを変更する条件とした以外は実施例13と同様の条件で炭素繊維束の製作をおこなった。なお、耐炎化炉内および炭素化炉内では、繊維束の走行ピッチの変更は行わず、それぞれ10mmピッチおよび4mmピッチにて繊維束を走行させた。
幾何学計算により算出した前炭素化炉加熱処理部(52a)の入口における繊維束の走行ピッチP11は、9.7mmであり、出口における繊維束の走行ピッチP12は、4.3mmであった。また、前炭素化炉入口側ロール(113)の軸方向と直交する面に対する、シート状前炭素繊維束の両端に位置する繊維束の傾き角度θ11は2.0度であった。得られた炭素繊維束は品質が良好なものであり、生産性も良好であった。
(実施例16)
シート状耐炎化繊維束を10mmピッチで等間隔に溝が刻印された前炭素化炉入口側ロール(113)と5mmピッチで等間隔に溝が刻印された前炭素化炉出口側ロール(114)を用いて前炭素化炉(52)内で走行ピッチを変更する条件とした以外は実施例13と同様の条件で炭素繊維束の製作をおこなった。なお、耐炎化炉内および炭素化炉内では、繊維束の走行ピッチの変更は行わず、それぞれ10mmピッチおよび5mmピッチにて繊維束を走行させた。
幾何学計算により算出した前炭素化炉加熱処理部(52a)の入口における繊維束の走行ピッチP11は、9.5mmであり、出口における繊維束の走行ピッチP12は、5.5mmであった。また、前炭素化炉入口側ロール(113)の軸方向と直交する面に対する、シート状前炭素繊維束の両端に位置する繊維束の傾き角度θ11は3.1度であった。
得られた炭素繊維束の生産性は良好であるのに対し、一部の繊維束に撚りの発生により品位の低下傾向は見られたが、問題はないレベルであった。
(比較例4)
シート状耐炎化繊維束を10mmピッチで等間隔に溝が刻印された前炭素化炉入口側ロール(113)と10mmピッチで等間隔に溝が刻印された前炭素化炉出口側ロール(114)を用いて、前炭素化炉内(52)で走行ピッチの変更をおこなわない条件とした以外は実施例13と同様の条件で炭素繊維束の製作をおこなった。なお、耐炎化炉内および炭素化炉内でも繊維束の走行ピッチの変更は行わず、いずれも10mmピッチにて繊維束を走行させた。得られた炭素繊維束は品質が良好なものであったが、炭素化工程での生産性が実施例と比較して不十分であった。
(比較例5)
シート状耐炎化繊維束を10mmピッチで等間隔に溝が刻印された前炭素化炉入口側ロール(113)と3mmピッチで等間隔に溝が刻印された前炭素化炉出口側ロール(114)を用いて、前炭素化炉内(52)で走行ピッチを変更する条件とした以外は実施例13と同様の条件で炭素繊維束の製作をおこなった。なお、耐炎化炉内および炭素化炉内では、繊維束の走行ピッチの変更は行わず、それぞれ10mmピッチおよび3mmピッチにて繊維束を走行させた。
幾何学計算により算出した前炭素化炉加熱処理部(52a)の入口における繊維束の走行ピッチP11は、9.7mmであり、出口における繊維束の走行ピッチP12は、3.4mmであった。また、この時、前炭素化炉入口側ロール(113)の軸方向と直交する面に対する、シート状前炭素繊維束の両端に位置する繊維束の傾き角度θ11は2.3度であった。
この条件では、前炭素化加熱処理時に発生した分解ガスによると思われる融着現象の発生、及び前炭素化炉出口側ロールでの隣り合う繊維束による合糸の発生により良好な品質の炭素繊維束を得ることができなかった。
(実施例17)
単糸繊度が0.8dTex、フィラメント数24000のアクリル系前駆体繊維束50本を溝付きロール(111)上に10mmピッチで等間隔に並べたシート状前駆体繊維束を230〜270℃の熱風が循環している耐炎化炉(51)の左右に設置された折返しロール群(119)によってジグザグに走行して50分間の耐炎化処理を行い、シート状耐炎化繊維束とした。なお、耐炎化炉内では、繊維束の走行ピッチの変更は行わなかった。
耐炎化炉(51)を出て横一列に平行して走行するシート状耐炎化繊維束の走行ピッチを変更しない条件で、10mmピッチのまま走行させ、窒素で充満された前炭素化炉加熱処理部(52a)が300〜600℃の温度分布を有する前炭素化炉(52)内で2分間の熱処理を行い、シート状前炭素化繊維束とした。
次いで、前炭素化炉(52)を出て横一列に平行して走行するシート状前炭素化繊維束を10mmピッチで等間隔に溝が刻印された炭素化炉入口側ロール(115)と6mmピッチで等間隔に溝が刻印された炭素化炉出口側ロール(116)により炭素化炉(53)内で走行ピッチを変更しながら窒素で充満された炭素化炉加熱処理部(53a)が1000〜1500℃の温度分布を有する炭素化炉(53)内で2分間の熱処理を行い、シート状炭素化繊維束とした。
幾何学計算により算出した炭素化炉加熱処理部(53a)の入口における繊維束の走行ピッチP13は、9.8mmであり、出口における繊維束の走行ピッチP14は、6.2mmであった。計算に用いたパラメータを表3に示す。
また、この時、炭素化炉入口側ロール(115)の軸方向と直交する面に対する、シート状炭素化繊維束の両端に位置する繊維束の傾き角度θ13は1.3度であった。
続いて、シート状炭素化繊維束を窒素で充満された黒鉛化炉加熱処理部(54a)が1500〜2500℃の温度分布を有する黒鉛化炉(54)に導入して2分間の熱処理を行い、シート状黒鉛化繊維束とした。なお、黒鉛化炉内では、繊維束の走行ピッチは変更せず、6mmピッチにて繊維束を走行させた。さらに電解酸化表面処理、サイジング処理を施し、黒鉛化繊維束とした。この黒鉛化繊維束は品質が良好なものであり、生産性も良好であった。なお、黒鉛化繊維束の品質および生産性は以下の基準に基づき判定した。
・生産性
○:黒鉛化炉の生産性が走行ピッチを変更しない場合に対して10%以上向上。
×:黒鉛化炉の生産性の走行ピッチを変更しない場合に対する向上が10%未満。
・品質
○:黒鉛繊維の品位に優れ全く問題がない。
△:黒鉛繊維の品位が多少劣るが問題がない。
×:黒鉛繊維の品位上問題となる。
(実施例18)
実施例13と同様の条件で製作したシート状前炭素化繊維束を8mmピッチで等間隔に溝が刻印された炭素化炉入口側ロール(115)と5mmピッチで等間隔に溝が刻印された炭素化炉出口側ロール(116)を用いて炭素化炉内(3)で走行ピッチを変更する条件とした以外は実施例17と同様の条件で黒鉛化繊維束の製作をおこなった。なお、耐炎化炉内、および黒鉛化炉内では、繊維束の走行ピッチの変更は行わず、耐炎化炉内では、10mmピッチ、黒鉛化炉内では、5mmピッチにて繊維束を走行させた。
幾何学計算により算出した炭素化炉加熱処理部(53a)の入口における繊維束の走行ピッチP13は、7.9mmであり、出口における繊維束の走行ピッチP14は、5.2mmであった。また、この時、炭素化炉入口側ロール(115)の軸方向と直交する面に対する、シート状炭素化繊維束の両端に位置する繊維束の傾き角度θ13は1.0度であった。得られた黒鉛化繊維束は品質が良好なものであり、生産性も良好であった。
(実施例19)
実施例14と同様の条件で製作したシート状前炭素化繊維束を6mmピッチで等間隔に溝が刻印された炭素化炉入口側ロール(115)と4mmピッチで等間隔に溝が刻印された炭素化炉出口側ロール(116)を用いて炭素化炉内(53)で走行ピッチを変更する条件とした以外は実施例17と同様の条件で黒鉛化繊維束の製作をおこなった。なお、耐炎化炉内、および黒鉛化炉内では、繊維束の走行ピッチの変更は行わず、耐炎化炉内では、10mmピッチ、黒鉛化炉内では、4mmピッチにて繊維束を走行させた。
幾何学計算により算出した炭素化炉加熱処理部(53a)の入口における繊維束の走行ピッチP13は、5.9mmであり、出口における繊維束の走行ピッチP14は、4.1mmであった。また、この時、炭素化炉入口側ロール(115)の軸方向と直交する面に対する、シート状炭素化繊維束の両端に位置する繊維束の傾き角度θ13は0.7度であった。得られた黒鉛化繊維束は品質が良好なものであり、生産性も良好であった。
(実施例20)
シート状前炭素化繊維束を10mmピッチで等間隔に溝が刻印された炭素化炉入口側ロール(115)と5mmピッチで等間隔に溝が刻印された炭素化炉出口側ロール(116)を用いて、炭素化炉(3)内で走行ピッチを変更する条件とした以外は実施例17と同様の条件で黒鉛化繊維束の製作をおこなった。なお、耐炎化炉内、前炭素化炉内および黒鉛化炉内では、繊維束の走行ピッチの変更は行わず、耐炎化炉内および前炭素化炉内では、10mmピッチ、黒鉛化炉内では、5mmピッチにて繊維束を走行させた。
幾何学計算により算出した炭素化炉加熱処理部(53a)の入口における繊維束の走行ピッチP13は、9.5mmであり、出口における繊維束の走行ピッチP14は、5.5mmであった。また、この時、炭素化炉入口側ロール(115)の軸方向と直交する面に対する、シート状前炭素繊維束の両端に位置する繊維束の傾き角度θ13は3.1度であった。得られた黒鉛化繊維束の生産性は良好であるのに対し、一部の繊維束に撚りの発生により品位の低下が見られたが、問題のないレベルであった。
(比較例6)
シート状前炭素化繊維束を10mmピッチで等間隔に溝が刻印された炭素化炉入口側ロール(115)と10mmピッチで等間隔に溝が刻印された炭素化炉出口側ロール(116)を用いて、炭素化炉内(53)で走行ピッチの変更をおこなわない条件とした以外は実施例17と同様の条件で黒鉛化繊維束の製作をおこなった。なお、耐炎化炉内、前炭素化炉内および黒鉛化炉内でも繊維束の走行ピッチの変更は行わず、いずれも10mmピッチにて繊維束を走行させた。得られた黒鉛化繊維束は品質が良好なものであったが、炭素化工程での生産性が実施例と比較して不十分であった。
(比較例7)
シート状前炭素化繊維束を10mmピッチで等間隔に溝が刻印された炭素化炉入口側ロール(115)と3mmピッチで等間隔に溝が刻印された炭素化炉出口側ロール(116)を用いて、炭素化炉内(53)で走行ピッチを変更する条件とした以外は実施例17と同様の条件で黒鉛化繊維束の製作をおこなった。なお、耐炎化炉内、前炭素化炉内および黒鉛化炉内では繊維束の走行ピッチの変更は行わず、耐炎化炉内および前炭素化炉内では10mmピッチ、黒鉛化炉内では3mmピッチにて繊維束を走行させた。
幾何学計算により算出した炭素化炉加熱処理部(53a)の入口における繊維束の走行ピッチP13は、9.7mmであり、出口における繊維束の走行ピッチP14は、3.4mmであった。また、この時、炭素化炉入口側ロール(115)の軸方向と直交する面に対する、シート状炭素繊維束の両端に位置する繊維束の傾き角度θ13は2.3度であった。
この条件では、炭素化炉出口側ロールでの隣り合う繊維束による合糸の発生により良好な品質の炭素繊維束を得ることができなかった。以上の実施例、比較例における評価結果を表2、3に示す。
Figure 0005496214
Figure 0005496214
1 耐炎化炉
2 前炭素化炉
3 炭素化炉
4 ロール群
5 ロール群
11 シート状前駆体繊維束
12 シート状耐炎化糸繊維束
13 シート状前炭素化糸繊維束
14 シート状炭素繊維束
21 フラットロール
22 溝ロール
23 角度調整可能なフラットロール
24 角度調整可能なフラットロール
25 フラットロール
26 溝ロール
27 溝ロール
31 分割前のシート状繊維束群
32 繊維束ブロック内の最端繊維束
B1〜B3 繊維束ブロック
θ1 フラットロール(21)および溝ロール(22)の軸と直交する面に対する各ブロック内の繊維束の最大傾き角
θ2 溝ロール(22)およびフラットロール(25)の軸と直交する面に対する、角度調整可能なフラットロール(23〜24)の間を走行するシート状繊維束内の繊維束ブロックの走行方向の最大傾き角
51 耐炎化炉
51a 耐炎化炉加熱処理部
52 前炭素化炉
52a 前炭素化炉加熱処理部
53 炭素化炉
53a 炭素化炉加熱処理部
54 黒鉛化炉
54a 黒鉛化炉加熱処理部
111 耐炎化炉入口側ロール
112 耐炎化炉出口側ロール
113 前炭素化炉入口側ロール
114 前炭素化炉出口側ロール
115 炭素化炉入口側ロール
116 炭素化炉出口側ロール
117 黒鉛化炉入口側ロール
118 黒鉛化炉出口側ロール
119 折返しロール

Claims (14)

  1. 複数本の前駆体繊維束を横一列に平行に並んだ状態で酸化性ガス雰囲気下、200〜300℃で加熱処理し、耐炎化繊維束とする耐炎化工程と、
    該耐炎化繊維束を横一列に平行に並んだ状態で不活性ガス雰囲気下、500〜800℃の最高処理温度で加熱処理し、前炭素化処理繊維束とする前炭素化工程と、
    該前炭素化処理繊維束を横一列に平行に並んだ状態で不活性ガス雰囲気下、1000℃以上の最高処理温度で加熱処理して、炭素繊維束とする炭素化工程とを含む炭素繊維束の製造方法であって、
    耐炎化工程における繊維束の走行ピッチをP1、前炭素化工程における繊維束の走行ピッチをP2、炭素化工程における繊維束の走行ピッチをP3としたとき、
    0.8≦P2/P1≦1.0・・・(1)
    0.4≦P3/P1≦0.8・・・(2)
    を満たす炭素繊維束の製造方法。
  2. (a)耐炎化工程から得られる耐炎化繊維束、および、前炭素化工程から得られる前炭素化処理繊維束の少なくとも一方の繊維束について、2以上20以下の繊維束ブロック毎に、繊維束ブロック内の繊維束の走行ピッチをより小さくする工程と、
    (b)工程(a)において繊維束の走行ピッチをより小さくした全ての繊維束ブロックについて、隣り合う繊維束ブロック同士をより接近させる工程と、
    を含む請求項1記載の炭素繊維束の製造方法。
  3. 前記工程(a)において、走行ピッチを小さくするために、溝ロール又はコームガイドを使用する請求項2に記載の炭素繊維束の製造方法。
  4. 工程(a)を、互いに平行に配置された2本のロールを用いて行う請求項2に記載の炭素繊維束の製造方法。
  5. 前記工程(a)において、走行ピッチを小さくするために、少なくとも互いに平行に配置された2本のロールを使用し、
    その際、該2本のロールの他にコームガイドを使用するか、
    又は、該2本のロールのうちの少なくとも一方のロールとして溝ロールを使用する請求項2に記載の炭素繊維束の製造方法。
  6. 工程(a)を、互いに平行に配置された2本のロールを用いて行い、その際、該2本のロールの軸方向と直交する面に対する、該2本のロールの間を走行する各繊維束ブロック内の繊維束の最大傾き角を、0.1°より大きく、3.0°より小さくする請求項2に記載の炭素繊維束の製造方法。
  7. 前記工程(a)で用いる互いに平行に配置された2本のロール間の距離が750mm以上である請求項4から6のいずれか一項に記載の炭素繊維束の製造方法。
  8. 工程(b)を、第1のロール対の間に配された角度調整可能な複数の第2のロール対を用いて行い、ただし、第1および第2のロール対はいずれも、互いに平行に配置された2本のロールからなり、第1のロール対を構成する2本のロールの軸と直交する面に対する、第2のロール対の間を走行する全ての繊維束ブロックの傾き角のうちの最大傾き角を20°より小さくする請求項2から7のいずれか一項に記載の炭素繊維束の製造方法。
  9. 多数の炭素繊維前駆体繊維束を横一列に並んだ状態で、耐炎化炉において、酸化性ガス雰囲気下、200〜300℃で加熱処理し、耐炎化繊維束とする耐炎化工程と、
    該耐炎化繊維束を横一列に並んだ状態で、前炭素化炉において、不活性ガス雰囲気下、500〜800℃の最高処理温度で加熱処理し、前炭素化処理繊維束とする前炭素化工程と、
    該前炭素化処理繊維束を横一列に並んだ状態で、炭素化炉において、不活性ガス雰囲気下、1000℃以上の最高処理温度で加熱処理して、炭素繊維束とする炭素化工程とを含む炭素繊維束の製造方法であって、
    該前炭素化炉の加熱処理部の入口における繊維束の走行ピッチをP11、該前炭素化炉の加熱処理部の出口における繊維束の走行ピッチをP12としたとき、
    0.40≦(P12/P11)≦0.90・・・(3)
    を満足する炭素繊維束の製造方法。
  10. 該前炭素化炉の加熱処理部を走行する繊維束の走行ピッチの変更を、該前炭素化炉の入口側と出口側とに1本ずつ配置された互いに平行な2本のロールを用いて行い、該2本のロールの軸方向と直交する面に対する、該2本のロールの間を走行する横一列に並んだ多数の繊維束の傾き角度のうちの最大傾き角度を、0.1°より大きく、3.0°より小さくする請求項9に記載の炭素繊維束の製造方法。
  11. 該炭素化炉の加熱処理部の入口における繊維束の走行ピッチをP13、該炭素化炉の加熱処理部の出口における繊維束の走行ピッチをP14としたとき、
    0.40≦(P14/P13)≦0.90・・・(4)
    を満足する請求項9または10に記載の炭素繊維束の製造方法。
  12. 該炭素化炉の加熱処理部を走行する繊維束の走行ピッチの変更を、該炭素化炉の入口側と出口側とに1本ずつ配置された互いに平行な2本のロールを用いて行い、この2本のロールの軸方向と直交する面に対する、この2本のロールの間を走行する横一列に並んだ多数の繊維束の傾き角度のうちの最大傾き角度を、0.1°より大きく、3.0°より小さくする請求項11に記載の炭素繊維束の製造方法。
  13. 多数の炭素繊維前駆体繊維束を横一列に並んだ状態で、耐炎化炉において、酸化性ガス雰囲気下、200〜300℃で加熱処理し、耐炎化繊維束とする耐炎化工程と、
    該耐炎化繊維束を横一列に並んだ状態で、前炭素化炉において、不活性ガス雰囲気下、500〜800℃の最高処理温度で加熱処理し、前炭素化処理繊維束とする前炭素化工程と、
    該前炭素化処理繊維束を横一列に並んだ状態で、炭素化炉において、不活性ガス雰囲気下、1000℃以上の最高処理温度で加熱処理して、炭素繊維束とする炭素化工程とを含む炭素繊維束の製造方法であって、
    該炭素化炉の加熱処理部の入口における繊維束の走行ピッチをP13、該炭素化炉の加熱処理部の出口における繊維束の走行ピッチをP14としたとき、
    0.40≦(P14/P13)≦0.90・・・(4)
    を満足する炭素繊維束の製造方法。
  14. 該炭素化炉の加熱処理部を走行する繊維束の走行ピッチの変更を、該炭素化炉の入口側と出口側とに1本ずつ配置された互いに平行な2本のロールを用いて行い、該2本のロールの軸方向と直交する面に対する、該2本のロールの間を走行する横一列に並んだ多数の繊維束の傾き角度のうちの最大傾き角度を、0.1°より大きく、3.0°より小さくする請求項13に記載の炭素繊維束の製造方法。
JP2011533481A 2010-07-27 2011-07-26 炭素繊維束の製造方法 Active JP5496214B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011533481A JP5496214B2 (ja) 2010-07-27 2011-07-26 炭素繊維束の製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010167911 2010-07-27
JP2010167911 2010-07-27
JP2011069896 2011-03-28
JP2011069896 2011-03-28
JP2011533481A JP5496214B2 (ja) 2010-07-27 2011-07-26 炭素繊維束の製造方法
PCT/JP2011/066965 WO2012014892A1 (ja) 2010-07-27 2011-07-26 炭素繊維束の製造方法

Publications (2)

Publication Number Publication Date
JPWO2012014892A1 JPWO2012014892A1 (ja) 2013-09-12
JP5496214B2 true JP5496214B2 (ja) 2014-05-21

Family

ID=45530099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011533481A Active JP5496214B2 (ja) 2010-07-27 2011-07-26 炭素繊維束の製造方法

Country Status (9)

Country Link
US (1) US9157172B2 (ja)
EP (1) EP2599903B1 (ja)
JP (1) JP5496214B2 (ja)
KR (1) KR101363675B1 (ja)
CN (1) CN103025935B (ja)
ES (1) ES2532576T3 (ja)
PT (1) PT2599903E (ja)
TW (1) TWI518219B (ja)
WO (1) WO2012014892A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593869B1 (ko) * 2012-06-27 2016-02-12 미쯔비시 레이온 가부시끼가이샤 탄소 섬유속 제조용 탄소화로 및 탄소 섬유속의 제조 방법
DE102013206984A1 (de) * 2013-04-18 2014-10-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen von Kohlefasern
KR102586391B1 (ko) * 2018-01-26 2023-10-11 도레이 카부시키가이샤 내염화 섬유 다발 및 탄소섬유 다발의 제조 방법
CN112279005B (zh) * 2020-09-01 2022-09-09 武汉凌云光电科技有限责任公司 自动排列光纤的治具及其方法
CN113737316A (zh) * 2021-10-14 2021-12-03 西安康本材料有限公司 一种单槽多丝碳纤维生产工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127778B1 (ja) * 1969-10-10 1976-08-14
JPS5953719A (ja) * 1982-09-21 1984-03-28 Mitsubishi Rayon Co Ltd 炭素繊維の製造法
JP2003055843A (ja) * 2001-06-04 2003-02-26 Toray Ind Inc 炭素繊維の製造法
CN201245730Y (zh) * 2008-08-22 2009-05-27 吉林市吉研高科技纤维有限责任公司 碳纤维的丝束展宽定位装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112029A (ja) 1985-11-09 1987-05-23 Toyoda Gosei Co Ltd ホ−ンスイツチ検査機
JPH0347695A (ja) 1989-07-17 1991-02-28 Kawasaki Steel Corp 超高張力鋼用フラックス入りワイヤ
JP3047695B2 (ja) 1993-08-27 2000-05-29 東レ株式会社 炭素繊維の製造方法
JP5081409B2 (ja) 2006-07-12 2012-11-28 三菱レイヨン株式会社 炭素繊維の製造方法
CN101112980A (zh) * 2007-06-27 2008-01-30 东华大学 一种用聚丙烯腈(pan)制备纳米碳纤维的方法
CN101260575B (zh) * 2008-04-17 2010-06-02 东华大学 碳纤维前驱体聚丙烯腈纤维的预氧化方法
US8603429B2 (en) * 2008-04-18 2013-12-10 Mitsubishi Rayon Co., Ltd. Production system and production method for carbon fiber thread

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127778B1 (ja) * 1969-10-10 1976-08-14
JPS5953719A (ja) * 1982-09-21 1984-03-28 Mitsubishi Rayon Co Ltd 炭素繊維の製造法
JP2003055843A (ja) * 2001-06-04 2003-02-26 Toray Ind Inc 炭素繊維の製造法
CN201245730Y (zh) * 2008-08-22 2009-05-27 吉林市吉研高科技纤维有限责任公司 碳纤维的丝束展宽定位装置

Also Published As

Publication number Publication date
ES2532576T3 (es) 2015-03-30
CN103025935B (zh) 2014-11-05
EP2599903A4 (en) 2013-12-18
US20130119572A1 (en) 2013-05-16
JPWO2012014892A1 (ja) 2013-09-12
CN103025935A (zh) 2013-04-03
EP2599903B1 (en) 2015-01-28
KR101363675B1 (ko) 2014-02-14
TW201224232A (en) 2012-06-16
EP2599903A1 (en) 2013-06-05
US9157172B2 (en) 2015-10-13
KR20130020914A (ko) 2013-03-04
PT2599903E (pt) 2015-05-25
WO2012014892A1 (ja) 2012-02-02
TWI518219B (zh) 2016-01-21

Similar Documents

Publication Publication Date Title
JP5496214B2 (ja) 炭素繊維束の製造方法
JP5161604B2 (ja) 炭素繊維の製造方法
JP5556994B2 (ja) 耐炎化繊維の製造方法
JP3047695B2 (ja) 炭素繊維の製造方法
JP5899949B2 (ja) 炭素繊維の製造方法
JP4017772B2 (ja) アクリル系繊維束の連続熱処理方法
JP2007314901A (ja) 炭素繊維の製造方法
JP5081409B2 (ja) 炭素繊維の製造方法
JP5457736B2 (ja) 炭素繊維束の製造方法、および炭素繊維束の製造装置
JP4138362B2 (ja) 炭素繊維の製造装置
JP2001073232A (ja) 炭素繊維束前駆体の耐炎化方法及び耐炎化装置
JP3733688B2 (ja) 炭素繊維の製造方法
JP2001020140A (ja) 炭素繊維前駆体の駆動装置
JP4021972B2 (ja) 炭素繊維の製造方法
JP5573531B2 (ja) 繊維トウのガイドロールユニットと同ガイドロールユニットを備えた湿式紡糸機及び炭素繊維製造装置
JP2008115481A (ja) 耐炎化炉
JP2590638B2 (ja) 耐炎化糸の製造方法およびその装置
JP2011184819A (ja) 熱処理装置、並びに炭素繊維の製造方法
JP2012188783A (ja) 炭素繊維束製造装置
JP4437427B2 (ja) 熱処理炉
JPH09268437A (ja) 炭素繊維の連続製造方法
JP2014214386A (ja) 炭素繊維束の製造方法
JPH0424446B2 (ja)
JPS58214532A (ja) 耐炎化繊維の製造法
JPS6175819A (ja) 耐炎繊維の製造方法および炉

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R151 Written notification of patent or utility model registration

Ref document number: 5496214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250