JP2008115481A - 耐炎化炉 - Google Patents

耐炎化炉 Download PDF

Info

Publication number
JP2008115481A
JP2008115481A JP2006297417A JP2006297417A JP2008115481A JP 2008115481 A JP2008115481 A JP 2008115481A JP 2006297417 A JP2006297417 A JP 2006297417A JP 2006297417 A JP2006297417 A JP 2006297417A JP 2008115481 A JP2008115481 A JP 2008115481A
Authority
JP
Japan
Prior art keywords
carbon fiber
strand
flameproofing
heat treatment
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006297417A
Other languages
English (en)
Other versions
JP2008115481A5 (ja
Inventor
Tatsuya Nakatani
達也 中谷
Eiji Fujioka
英治 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006297417A priority Critical patent/JP2008115481A/ja
Publication of JP2008115481A publication Critical patent/JP2008115481A/ja
Publication of JP2008115481A5 publication Critical patent/JP2008115481A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Abstract

【課題】ポリアクリロニトリル系前駆体などを原料とした優れた品質を有する炭素繊維を製造するための耐炎化炉および炭素繊維の製造方法を提供する。
【解決手段】複数本の炭素繊維前駆体ストランドを耐炎化熱処理する熱処理室と、前記炭素繊維前駆体ストランドが熱処理室内を横方向に折り返しながら通過するように熱処理室の入り側および出側に配置された折り返しローラとを有する耐炎化炉において、前記入り側および出側の折り返しローラーの間にローラーを設けたことを特徴とする耐炎化炉。
【選択図】図1

Description

本発明は、炭素繊維前駆体ストランドを200℃〜300℃程度の空気中で耐炎化する耐炎化炉に関する。
最近の炭素繊維はその優れた比強度、比弾性率からスポーツあるいはレジャー用品から航空宇宙分野、さらには一般産業分野にまで用途が展開されている。さらに、炭素繊維の特性を活かして、製品の軽量化、省エネルギー化を図ることを目的として各産業界は炭素繊維の新しい利用方法に注目し、また、研究を進めている。かかる状況下で近年各ユーザーからは炭素繊維の更なる高性能化、低製造コスト化が要求されている。
従来、耐炎化繊維の前駆体に耐炎化処理を施して耐炎化繊維を得ること、さらにこの耐炎化繊維に炭素化処理を施して炭素繊維を得ることは広く知られている。
炭素繊維の製造工程において、耐炎化繊維前駆体ストランドを耐炎化する方法として、酸化雰囲気中で熱風を循環させ、耐炎糸前駆体繊維ストランドを熱処理する方法がある。この耐炎化熱処理方法において、耐炎糸前駆体繊維ストランドは通常束ねられた形状で耐炎化熱処理装置に入炉する。
この耐炎化炉は、上記ストランドが耐炎化炉内外に出入する複数の耐炎化炉内の熱処理室と耐炎化炉外を区切る仕切盤を有する炉外耐炎化炉、または仕切盤を有せず、耐炎化炉内で折り返しローラー有する炉内型耐炎化炉のいずれでも良く、複数段、折り返しながら耐炎化反応を進める。この耐炎化炉内に入った複数本のストランドは、平行にかつ水平面に並んで複数段のローラーを折り返しながら走行する。
また、炭素繊維前駆体ストランドを生産する段階で繊維間の接着、ローラーの表面傷などにより、著しく炭素繊維の品質が低下する。そのため、高品質および高性能の炭素繊維を生産するためには優れた耐炎化繊維を得る必要がある。
一般に、炭素繊維の前駆体繊維としては、ポリアクリロニトリル(以下PANで略)系繊維が用いられる。このPAN系繊維から炭素繊維を製造する場合、PAN系繊維を所定本数束ねたストランドを200〜300℃程度の酸化性雰囲気下で延伸または収縮を行いながら酸化処理(耐炎化処理)を行った後、1000℃以上の不活性ガス雰囲気中で炭素化して製造する方法が知られている。
耐炎化処理工程における繊維の処理方法は、これを用いて製造する炭素繊維の品質のみならず取り扱い性にも大きく影響を及ぼす。
この耐炎化処理時には、前述したように、熱風を循環させて前駆体繊維を200℃以上で耐炎化する際に前駆体繊維からでたSiを含んだガスが本体循環ラインのヒーター部で400℃以上に熱せられるとSiOが発生する。このSiOがローラー表面へ付着することにより、走行ストランドの単糸表面に傷がつくことから炭素繊維の強度低下の原因となる場合がある。
また、耐炎化炉において、前駆体繊維ストランドは、耐炎化反応により蓄熱し、温度が上昇する。この前駆体繊維ストランドは、そのまま高い温度で炉内外のローラーに1000g/本〜3000g/本の張力で折り返しローラーへ接触する。このような高張力で耐炎化処理する場合、ストランドの繊維間で接着が発生し、複数のローラーを介するほど接着頻度は高くなり、炭素繊維の強度低下の原因となる場合がある。
この接着が次工程の高温炉において強度低下の要因となるために、接着の発生を防止することが優れた品質を有する炭素繊維を製造する上で重要である。
接着発生防止の対策として、耐炎化炉の外側に配置された全てのガイドロール(折返しローラー)に接触する直前のストランドに冷風をあてることによりストランドを冷却させ、接着を抑制し、炭素繊維の品質および性能を向上させる方法が提案されている(例えば、特許文献1参照)。
この提案は、ストランドがローラーに接触する前に炭素繊維前駆体ストランドを冷却させることで接着を抑制させるものであって、ストランドの表面傷を減少させたり、接着頻度を減少させるものではない。
特開2006−176909号公報
本発明の目的は、上記の従来技術の問題点を解消することにあり、ポリアクリロニトリル系前駆体などを原料とした優れた品質を有する炭素繊維を製造するための耐炎化炉および炭素繊維の製造方法を提供することにある。
上記目的を解決するため、本発明は以下の構成を採用する。すなわち、
(1)複数本の炭素繊維前駆体ストランドを耐炎化熱処理する熱処理室と、前記炭素繊維前駆体ストランドが熱処理室内を横方向に折り返しながら通過するように熱処理室の入り側および出側に配置された折り返しローラとを有する耐炎化炉において、前記入り側および出側の折り返しローラーの間にローラーを設けたことを特徴とする耐炎化炉。
(2)前記入り側および出側の折り返しローラーの間隔を10mから50mの範囲に設けた、前記(1)に記載の耐炎化炉。
(3)1から30パスの折り返し数になるように前記入り側および出側に折り返しローラーを配置した、前記(1)または(2)に記載の耐炎化炉。
(4)炭素繊維前駆体繊維ストランドがポリアクリロニトリル系繊維である、前記(1)〜(3)のいずれかに記載の耐炎化炉。
(5)複数本の炭素繊維前駆体ストランドを、前記(1)〜(4)のいずれかに記載の耐炎化炉を用いて耐炎化処理し、その後炭素化処理することを特徴とする炭素繊維の製造方法。
本発明によれば、以下に説明するとおり、炭素繊維前駆体ストランドの表面傷や単糸接着を減少することで強度が発現しやすい品質に優れた炭素繊維を得ることができる。
以下、本発明をさらに詳細に説明する。
本発明の耐炎化炉に使用する原料である炭素繊維前駆体繊維については、ポリアクリロニトリル系前駆体繊維が好ましい。この前駆体繊維を用いることにより、最も高配向、高強度の炭素繊維を得る中間原料として適した耐炎化繊維が得られる。
ポリアクリロニトリル系前駆体繊維は、例えばアクリロニトリルの単独重合体またはアクリロニトリルを95質量%以上含有する単量体を重合した共重合体を含む紡糸溶液を、湿式または乾湿式紡糸法において紡糸、水洗、乾燥、および延伸などの処理を行うことによって得ることができる。共重合する単量体としては、アクリル酸メチル、イタコン酸、メタクリル酸メチル、アクリル酸などが好ましい。
このようにして得られる炭素繊維前駆体ストランドを、本発明の耐炎化炉によって耐炎化して炭素繊維前駆体ストランドを得る。この炭素繊維前駆体ストランドを高温炉で炭素化することによって更なる高性能化、低製造コスト化、また取扱性に優れる高品質化などが可能な炭素繊維が得られる。
次に、図1を参照して本発明を詳細に説明する。
図1は本発明の耐炎化炉の一例を示す概略断面図である。
図1中、1は耐炎化炉で、この耐炎化炉1は、耐炎化繊維前駆体ストランド2が仕切盤3を通して熱処理室4内外に出入する。この熱処理室4内には多数本のストランド2が水平面に並んだパス5を形成して走行している。このパス5を形成しているストランド2は、熱処理室4の両側に備えられた所定組(本例においては2組)の折返しローラー6a、6b、6c、6d、6eによって折り返されて熱処理室4に繰り返し供給され、複数段のパス(本図では5段のパス)を形成している。
折返して水平走行する前駆体ストランド2は、熱処理室4において酸化性雰囲気下で耐炎化処理され、耐炎化処理進行に伴って前駆体ストランドの比重が徐々に増加する。
本発明の耐炎化炉は、前記耐炎化炉において、前駆体繊維ストランド2が炉内から出て折返しローラーと次の折り返しローラーまでの距離(本例では折返しローラー6aと6b、あるいは6bと6c、あるいは6cと6d、あるいは6dと6eのローラー軸心間の距離)を10m〜50mとすることが好ましい。
折り返しローラーの間隔が10m未満の場合では、PAN原糸の除熱効果が大きくなり、耐炎化処理能力が著しく低下するようになる。一方、折り返しローラー間隔が50mを越える場合では、連続で耐炎化処理する時間が長くなるため、PAN原糸の除熱効果が著しく低減し、自己発熱による暴走反応の可能性がある。
しかしながら、折り返しローラーの間隔を10m〜50mの範囲に設置する場合、折り返しローラー間で走行ストランドの懸垂、ストランドの膨らみにより隣接する耐炎糸前駆体ストランドが絡み合う問題が発生する。この問題を解決するために、本発明においては、折り返しローラーと次の折り返しローラーとの間に懸垂防止または隣接する炭素繊維前駆体ストランドの絡み防止のためのローラー7a,7b,7c,7d,7eを設置するものである。このローラーは溝付ローラーであることが好ましい。また、これらのローラーはローラーと次のローラーとの間隔が5mから15mの範囲で設置することが好ましい。懸垂防止用ローラーの設置間隔を5m未満にした場合、ローラー設置本数が増加し、トータルのローラー接触面積が増加するためストランド表面傷、単糸間接着が増加するようになる。また、15mを越えて設置した場合においては、懸垂量が大きくなり、糸揺れが増加する。この糸揺れによって隣接するストランド同士が混線し操業不良につながることがある。また、懸垂防止用ローラーの設置数は1箇所から9箇所の範囲で設置することが好ましい。
なお、懸垂防止用のローラーについては走行ストランドとの接触面積が少ないため、ローラー回転不良による摩擦防止の観点から駆動速度制御型(積極駆動型)にすることが好ましい。
本発明の耐炎化炉によれば、折り返しローラーを介する回数が従来の耐炎化装置と比較して減少する。
例えば、耐炎化炉の炉内または炉外の折り返しローラー間の距離を5mから10mに延長することで折り返しローラーの本数を20本から10本へ減少させることができ、折り返し回数を減少させることができるため、比重1.100g/cmの耐炎化繊維前駆体ストランドが比重1.300g/cmの耐炎化繊維になるまでのローラーとの接触時間または面積が減少するため、ローラーから走行ストランド表面へ直接受ける接触傷またはローラーと走行ストランドとの間に存在するSiOから受けるストランド表面傷が減少される。また、ローラーとの接触が少ないため、高温ローラー接触時に発生する炭素繊維前駆体ストランド間の単糸接着が減少される。
本発明の耐炎化炉によって製造された耐炎化繊維を炭素化処理することにより、炭素繊維の更なる高性能化、低製造コスト化、また取扱性に優れる高品質化などが可能となる。
前記したストランド表面傷は、ローラーと走行ストランドの間に金属成分またはSiOが入り込み、ストランド単糸の表面に1〜2μの傷が付けられる。故に折り返しローラーを介する程ストランド表面傷は増加することになる。
前記耐炎化炉を使用して耐炎化処理を実施する場合、炭素繊維前駆体ストランドの比重が1.100から1.200までの耐炎化進行度が比較的初期の段階では1000g/本から4000g/本、さらには2000g/本から3000g/本に設定することが好ましい。
また、炭素繊維前駆体ストランドの比重が1.100から1.300に至るまでの各パスの平均張力が500g/本〜2500g/本、さらには1000g/本〜1500g/本になるよう設定することが好ましい。
耐炎化炉における各ローラーではローラー駆動回転速度が制御できるように設備化し、耐炎化炉の初期段数張力から最終段数張力まで制御することで炭素繊維前駆体ストランドの接着防止、ストランド表面の傷つき防止、により次工程での操業安定化の効果がある。
このようにして耐炎化処理された炭素繊維前駆体ストランドを炭素化することによりできた炭素繊維は高性能、低製造コスト、また取扱性に優れる高品質炭素繊維の製造が可能となる。
繊維接着にのみ焦点をあてれば、仮に折り返しローラーの初期段階から最終段階にかけ連続的に繊維接着が発生した場合でも、従来型の耐炎化と比べて折り返し回数が少ないため繊維間の接着数が少ない。また、炉外ローラータイプの耐炎化炉では折り返しローラー間の間隔が拡がることで連続的で熱処理する時間が長くなり、耐炎化進行度を早く進めることが可能である。本発明の耐炎化炉では折り返しローラー間の連続的な耐炎化処理時間を設けることができるため、耐炎化炉内の熱処理室と耐炎化炉外を区切る仕切盤から折り返しローラーまでの距離を1000mm〜2000mmの範囲に設けることができる。この間隔をストランドの冷却工程としローラー表面温度を単糸接着しない180℃以下に保つことが可能である。
例えば、従来型の40パス数の折り返しローラーを具備した耐炎化炉で耐炎化処理した炭素繊維前駆体ストランド表面の欠陥が10箇所/mmとする。しかしながら、本発明の10パスの数の折り返しローラーを具備した耐炎化炉において、耐炎化処理した炭素繊維前駆体ストランド表面の欠陥ではローラーへの接触面積が少ないため、2.5箇所/mmに抑えることができる。
複数本の炭素繊維前駆体ストランドを、前記した耐炎化炉を用いて耐炎化処理し、その後窒素雰囲気下などの不活性ガス雰囲気下で例えば5
00〜1500℃の温度で焼成する、いわゆる炭素化処理を行うことにより炭素繊維を得ることができる。さらに、炭素繊維の後加工をし易くし、取扱性を向上させる目的で、炭素繊維のサイジング処理することが好ましい。これらの方法は、従来の公知の方法で行うことができ、サイジング剤は用途に即して適宜組成を変更して使用し、均一付着させた後に乾燥することが好ましい。
このようにして得られた炭素繊維は、高配向、かつ高強度を有し、毛羽や糸切れの少ない炭素繊維である。
なお、図1においては、説明の簡略化を目的としている記載しており、本発明は図1に限定されることはない。本発明の好ましい態様では、折返しローラーのパス数は設定速度、耐炎化熱処理量によって1〜30パスにまで設定変更可能であり、折り返しローラー間の距離については10〜50mの範囲で設定変更可能であり、懸垂防止ローラーについても1〜9個の範囲で設置することができる。
以下、本発明を実施例および比較例によりさらに具体的に説明する。また、各実施例および比較例における前駆体繊維、耐炎化繊維および炭素繊維の諸物性についての評価方法は、前述の方法または以下の方法により実施した。
<温度測定>
市販の熱電対を使用し熱処理室の上部へ2本、下部へ2本、中央1本、合計5本を等間隔に設置した。
<耐炎化繊維前駆体>
試料は1本当たり直径12mmの12000本のポリアクリロニトリル繊維ストランドを使用した。
<耐炎化繊維比重>
アルキメデス法により測定した。試料繊維はオルトジクロロベンゼン中にて脱気処理しJIS K−7112−1980密度勾配管法に基づき測定した。
<繊維接着数>
前駆体繊維ストランドまたは耐炎化 繊維ストランドを3mmの長さに切断し、アセトン10mlの入った100mlビーカーに投入し、超音波振動を10秒間以上付与し、光学顕微鏡にて20倍の倍率で観察することにより、融着箇所をカウントし繊維接着数とした。
<ストランド表面傷のカウント>
電子顕微鏡SEMによる表面観察を実施し1mm当たりのストランド表面傷箇所の個数をカウントする。
<引っ張り強度>
JIS R 7601(1986)に基づいて測定した。
実施例1
アクリロニトリル95質量%、アクリル酸メチル4質量%、およびイタコン酸1質量%を共重合させたアクリル繊維を含有する紡糸原液を湿式紡糸し、水洗、乾燥、延伸、オイリングして繊維直径12.1μmの前駆体繊維を得た。
この前駆体繊維を12000本束ねた総繊度13000dtexのストランド2を、図1に示す炉内温度分布240〜250℃の耐炎化炉1において張力初期張力2500g/本、平均張力1250g/本で耐炎化処理した。
熱処理室4に導入されたストランド2は、水平面に5段並んだ折り返しローラーによる5パスを形成して熱処理室4内を水平走行させながら仕切盤3間のスリットから耐炎化炉内や炉外へ出入りさせた。このスリットと、その直後の耐炎化炉外に設置された折り返しローラーは1500mmの距離で設置した。また、折り返しローラーと次の折り返しローラーとの間隔は20mに設置し、折り返しローラーから10mの箇所に懸垂防止用のローラーを設置した。例えば、このローラー7aはローラー6aの速度とローラー6bの速度の平均で駆動速度が制御されるよう管理されている。ローラー7b、7c、7d,7eについても同様である。
このストランド2は、折返しローラー6aにより折返して熱処理室4に戻した。熱処理室4に戻ったストランド2は、上記1パスの下方に水平面に多数本並んだパスを形成して熱処理室4内を水平走行させた。以下、熱処理室4内外の出入を数回繰返し、ストランド2を耐炎化処理した。
この耐炎化炉において、耐炎化炉導入前の耐炎化繊維前駆体、耐炎化炉外に出た時点の各パス(1パス〜5パス)の前駆体繊維(折返しローラー 6a、6b、6c、6d、6eにおける耐炎化繊維前駆体)、および炭素繊維前駆体ストランドについて、上記諸物性を測定した。
この測定した耐炎化処理の進行に伴う比重の変化、並びに、その時の繊維比重、繊維接着数、ストランド表面の傷、ストランド表面へ付着した粉塵は表1に示すとおりである。
次に、この炭素繊維前駆体ストランドを、炭素化処理を施して炭素繊維を製造した。この製造条件および製造装置は通常のものであった。
本実施例は、その耐炎化処理において、繊維接着数が少ない。また、その耐炎化処理および炭素化処理において毛羽や糸切れの発生が少なく製造装置の運転状態を安定化させることができた。
なお、本実施例の耐炎化繊維を窒素雰囲気1500℃で炭素化して得られた炭素繊維の引張り強度は、530kgf/mmと高いものであった。
比較例1
熱処理室4に導入されたストランド2は、水平面に20段並んだ折り返しローラーによる20パスを形成して熱処理室4内を水平走行させながら仕切盤3間のスリットから耐炎化炉内や炉外へ出入りさせた。このスリットと、その直後の耐炎化炉外に設置された折り返しローラーは500mmの距離で設置した。また、折り返しローラーと折り返しローラーのとの間隔は8mに設置する。なお比較例1では折り返しローラー間の懸垂防止用の駆動制御ローラーは使用しないものとする。設定温度についてはトータルでの熱処理量が同等になるよう耐炎化処理温度を設定する。
そのほかは実施例と同様の条件とした。結果は表2に示すとおりである
本比較例は、その耐炎化処理において、繊維接着数が多い。また、その耐炎化処理および炭素化処理において、毛羽や糸切れの発生が多く、製造装置の運転状態を安定化させることができなかった。
なお、本比較例の耐炎化繊維を窒素雰囲気1500℃で炭素化して得られた炭素繊維の引張り強度は、470kgf/mmと実施例1と比較して低いものであった。
Figure 2008115481
Figure 2008115481
本発明の耐炎化炉の一例を示す概略断面図である。
符号の説明
1:耐炎化炉
2:耐炎化繊維前駆体ストランド
3:仕切盤
4:熱処理室
5:パス
6a、6b、6c、6d、6e:折り返しローラー
7a、7b、7c、7d、7e:懸垂防止用ローラー

Claims (5)

  1. 複数本の炭素繊維前駆体ストランドを耐炎化熱処理する熱処理室と、前記炭素繊維前駆体ストランドが熱処理室内を横方向に折り返しながら通過するように熱処理室の入り側および出側に配置された折り返しローラとを有する耐炎化炉において、前記入り側および出側の折り返しローラーの間にローラーを設けたことを特徴とする耐炎化炉。
  2. 前記入り側および出側の折り返しローラーの間隔を10mから50mの範囲に設けた請求項1に記載の耐炎化炉。
  3. 1から30パスの折り返し数になるように前記入側および出側に折り返しローラーを配置した、請求項1または2に記載の耐炎化炉。
  4. 炭素繊維前駆体繊維ストランドがポリアクリロニトリル系繊維である、請求項1〜3のいずれかに記載の耐炎化炉。
  5. 複数本の炭素繊維前駆体ストランドを、請求項1〜4のいずれかに記載の耐炎化炉を用いて耐炎化処理し、その後炭素化処理することを特徴とする炭素繊維の製造方法。
JP2006297417A 2006-11-01 2006-11-01 耐炎化炉 Withdrawn JP2008115481A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006297417A JP2008115481A (ja) 2006-11-01 2006-11-01 耐炎化炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006297417A JP2008115481A (ja) 2006-11-01 2006-11-01 耐炎化炉

Publications (2)

Publication Number Publication Date
JP2008115481A true JP2008115481A (ja) 2008-05-22
JP2008115481A5 JP2008115481A5 (ja) 2010-06-17

Family

ID=39501661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006297417A Withdrawn JP2008115481A (ja) 2006-11-01 2006-11-01 耐炎化炉

Country Status (1)

Country Link
JP (1) JP2008115481A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146487A1 (ja) * 2018-01-26 2019-08-01 東レ株式会社 耐炎化繊維束および炭素繊維束の製造方法
US11319648B2 (en) 2018-01-26 2022-05-03 Toray Industries, Inc. Stabilized fiber bundle and method of manufacturing carbon fiber bundle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146487A1 (ja) * 2018-01-26 2019-08-01 東レ株式会社 耐炎化繊維束および炭素繊維束の製造方法
CN111601919A (zh) * 2018-01-26 2020-08-28 东丽株式会社 耐火化纤维束和碳纤维束的制造方法
KR20200108416A (ko) * 2018-01-26 2020-09-18 도레이 카부시키가이샤 내염화 섬유 다발 및 탄소섬유 다발의 제조 방법
US11319648B2 (en) 2018-01-26 2022-05-03 Toray Industries, Inc. Stabilized fiber bundle and method of manufacturing carbon fiber bundle
CN111601919B (zh) * 2018-01-26 2022-06-28 东丽株式会社 耐火化纤维束和碳纤维束的制造方法
KR102586391B1 (ko) 2018-01-26 2023-10-11 도레이 카부시키가이샤 내염화 섬유 다발 및 탄소섬유 다발의 제조 방법

Similar Documents

Publication Publication Date Title
JP6119168B2 (ja) 耐炎化繊維束の製造方法、及び、炭素繊維束の製造方法
EP3227479B1 (en) Continuous carbonization process and system for producing carbon fibers
JP2006299439A (ja) 炭素繊維およびその製造方法、並びにアクリロニトリル系前駆体繊維およびその製造方法
JP6520767B2 (ja) 炭素繊維用前駆体繊維束とその製造方法および炭素繊維の製造方法
JP2007247130A (ja) 熱処理炉および炭素繊維の製造方法
JP5297644B2 (ja) 炭素繊維束およびその製造方法
JP5556994B2 (ja) 耐炎化繊維の製造方法
JPWO2013027698A1 (ja) スチーム延伸装置
JP5496214B2 (ja) 炭素繊維束の製造方法
JP2012188781A (ja) 炭素繊維およびその製造方法
JP2008115481A (ja) 耐炎化炉
JP6024858B1 (ja) 合糸糸条束の製造方法および得られた合糸糸条束を用いる炭素繊維の製造方法
JP4801621B2 (ja) 炭素繊維前駆体トウの製造方法
JP5081409B2 (ja) 炭素繊維の製造方法
JP2005060871A (ja) 耐炎化繊維の製造方法及び炭素繊維の製造方法
JP2007314901A (ja) 炭素繊維の製造方法
JP2000160435A (ja) アクリル系繊維束の連続熱処理方法
JP4271019B2 (ja) 炭素繊維の製造方法
JP4565978B2 (ja) 炭素繊維の製造方法
JP2012201997A (ja) 耐炎化炉装置
WO2019146487A1 (ja) 耐炎化繊維束および炭素繊維束の製造方法
JP2001073232A (ja) 炭素繊維束前駆体の耐炎化方法及び耐炎化装置
JP6520787B2 (ja) アクリル系前駆体繊維束の製造方法および炭素繊維の製造方法
JP2006176909A (ja) 耐炎化繊維の製造方法
JP2006152458A (ja) 耐炎化繊維の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A521 Written amendment

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A523

A761 Written withdrawal of application

Effective date: 20101022

Free format text: JAPANESE INTERMEDIATE CODE: A761