JPWO2015146161A1 - 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム - Google Patents

半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム Download PDF

Info

Publication number
JPWO2015146161A1
JPWO2015146161A1 JP2016510038A JP2016510038A JPWO2015146161A1 JP WO2015146161 A1 JPWO2015146161 A1 JP WO2015146161A1 JP 2016510038 A JP2016510038 A JP 2016510038A JP 2016510038 A JP2016510038 A JP 2016510038A JP WO2015146161 A1 JPWO2015146161 A1 JP WO2015146161A1
Authority
JP
Japan
Prior art keywords
semiconductor substrate
substrate
heat treatment
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016510038A
Other languages
English (en)
Other versions
JP6588423B2 (ja
Inventor
真果 柴垣
真果 柴垣
篠田 康子
康子 篠田
かおり 真下
かおり 真下
雄大 鈴木
雄大 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Publication of JPWO2015146161A1 publication Critical patent/JPWO2015146161A1/ja
Application granted granted Critical
Publication of JP6588423B2 publication Critical patent/JP6588423B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67751Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

表面にキャップ膜が形成された半導体基板を熱処理する場合に、高温での熱処理であっても半導体基板の表面荒れを抑制することができる半導体基板の熱処理方法及び熱処理装置を提供する。表面にキャップ膜が形成された半導体基板3の熱処理を行う半導体基板の熱処理方法であって、分子流領域の圧力を超える圧力でガスが封止された状態の真空チャンバD内において、半導体基板3の熱処理を行う。

Description

本発明は、半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システムに関する。
半導体パワーデバイス等の半導体デバイスの製造プロセスでは、炭化ケイ素(SiC)基板等の半導体基板に不純物がイオン注入された後に、注入された不純物を活性化するため、活性化アニールと呼ばれる熱処理が行われている。この活性化アニールにおいては、基板表面におけるSi等の基板材料の昇華と、原子の移動が起こる結果、半導体基板に大きな表面荒れが生じることが知られている。
例えばSiC基板の場合、活性化アニール後に、二乗平均粗さの値(RMS値)で6nm以上の大きな表面荒れが生じることが知られている(特許文献1参照)。このような表面荒れは、ゲート絶縁膜の信頼性の低下、チャネル移動度の低下等の一因となり、半導体デバイスのデバイス特性に大きな影響を及ぼす。
そこで、活性化アニール後の半導体基板の表面平坦性を確保するための方法として、SiC層のイオン注入層をカーボン膜で覆った状態で活性化アニールを行うことが提案されている(特許文献2参照)。特許文献2には、1600℃以上の高温でのアニールであっても、イオン注入層の平滑性を維持することができることが記載されている。
国際公開第2008/136126号 特開2005−353771号公報
しかしながら、近年、半導体デバイスの耐圧性を向上するため、活性化アニールとして、より高温でのアニール処理を行うことが要求されている。例えば、SiC基板の場合、1800℃、より好ましくは1850℃程度の活性化アニールの温度が必要とされている。
本願発明者らは、上記のような高温での活性化アニールでは、基板表面にキャップ膜としてカーボン膜が形成されていた場合であっても、Siが昇華してカーボン膜中を通過し、その結果、SiC基板に表面荒れが生じることを発見した。
本発明は、上記課題を契機としてなされたものであり、表面にキャップ膜が形成された半導体基板を熱処理する場合に、高温での熱処理であっても半導体基板の表面荒れを抑制しうる半導体基板の熱処理方法及び熱処理装置を提供することを目的とする。
また、本発明は、上記熱処理方法を用いた半導体基板の製造方法、及び上記熱処理装置を含む基板処理システムを提供することをも目的とする。
本発明の一観点によれば、表面にキャップ膜が形成された半導体基板の熱処理を行う半導体基板の熱処理方法であって、分子流領域の圧力を超える圧力でガスが封止された状態の処理室内において、前記半導体基板の前記熱処理を行うことを特徴とする半導体基板の熱処理方法が提供される。
また、本発明の他の観点によれば、半導体基板の表面にキャップ膜を形成するステップと、上記半導体基板の熱処理方法により、前記キャップ膜が形成された前記半導体基板に対して前記熱処理を行うステップとを有することを特徴とする半導体基板の製造方法が提供される。
また、本発明のさらに他の観点によれば、表面にキャップ膜が形成された半導体基板の熱処理を行うための処理室と、前記処理室内に設けられた加熱手段と、分子流領域の圧力を超える圧力でガスが封止された状態の前記処理室内において、前記加熱手段により前記半導体基板の前記熱処理を実行する制御装置とを有することを特徴とする熱処理装置が提供される。
また、本発明のさらに他の観点によれば、上記熱処理装置と、前記キャップ膜を成膜するキャップ膜成膜装置と、前記半導体基板を前記熱処理装置と前記キャップ膜成膜装置との間で搬送する搬送手段を有する基板搬送室と、を備えることを特徴とする基板処理システムが提供される。
本発明によれば、表面にキャップ膜が形成された半導体基板を熱処理する場合に、高温での熱処理であっても、半導体基板の表面荒れを抑制することができる。
図1は、本発明の一実施形態による熱処理装置を示す概略断面図(その1)である。 図2は、本発明の一実施形態による熱処理装置を示す概略断面図(その2)である。 図3は、本発明の一実施形態による熱処理装置を示す概略断面図(その3)である。 図4は、本発明の一実施形態による熱処理装置における基板ホルダユニット及びその周辺を示す概略断面図(その1)である。 図5は、本発明の一実施形態による熱処理装置における基板ホルダユニット及びその周辺を示す概略断面図(その2)である。 図6は、本発明の一実施形態による熱処理装置における加熱ユニットを示す概略断面図である。 図7は、本発明の一実施形態による熱処理装置が組み込まれた基板処理システムの一例を示す概略図である。 図8Aは、本発明の一実施形態による半導体基板の熱処理方法の事前準備を示すフローチャートである。 図8Bは、本発明の一実施形態による半導体基板の熱処理方法を示すフローチャートである。 図9は、本発明の一実施形態による半導体装置の製造方法を用いて製造されるプレーナー型MOSFETの一例を示す概略断面図である。 図10は、本発明の一実施形態による半導体装置の製造方法を用いて製造されるトレンチ型MOSFETの一例を示す概略断面図である。
以下、本発明の実施の形態について図面を用いて説明する。なお、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において適宜変更可能である。また、以下で説明する図面において、同じ機能を有するものは同一の符号を付し、その説明を省略又は簡潔にすることもある。
(熱処理装置)
まず、本発明の一実施形態による熱処理装置100について図1乃至図6を用いて説明する。図1は、半導体基板の搬入時又は搬出時の状態の熱処理装置100を示している。図2は、半導体基板の熱処理時の状態の熱処理装置100を示している。図3は、半導体基板の冷却時の状態の熱処理装置100を示している。また、図4は、図1における基板ホルダユニットA及びその周辺を拡大して示している。図5は、図2における基板ホルダユニットA及びその周辺を拡大して示している。図6は、加熱ユニットBの具体的構成の一例を示している。
図1乃至図3に示すように、本実施形態による熱処理装置100は、基板保持手段である基板ホルダユニットAと、加熱手段である加熱ユニットBと、シャッタ装置Cと、処理室を構成する真空チャンバDとを有している。さらに、熱処理装置100は、熱処理装置の動作全体を制御する制御装置60を有している。基板ホルダユニットA、加熱ユニットB、及びシャッタ装置Cは、処理室内である真空チャンバD内に設けられている。
基板ホルダユニットAは、最上段に基板ステージ1を備えている。加熱ユニットBは、基板ステージ1の上方に設けられており、基板ステージ1と対向する基板対向面2を備えている。加熱ユニットBの基板対向面2は、後述するように放熱可能に構成されている。基板ホルダユニットAは、昇降装置Eにより昇降可能なものである。基板ステージ1と加熱ユニットBの基板対向面2との近接と離間は、昇降装置Eの動作により制御することが可能である。加熱ユニットBは、図2に示すように、基板ホルダユニットAが上昇し、基板ステージ1上の半導体基板3と基板対向面2が近接されたときに、半導体基板3と非接触状態で、基板対向面2から放熱される輻射熱で半導体基板3を加熱するものとなっている。
図1に示す基板ホルダユニットAは、下降位置にあり、半導体基板3の真空チャンバD内への搬入及び真空チャンバD内からの搬出が可能な状態である。また、図2に示す基板ホルダユニットAは、上昇位置にあり、半導体基板3の熱処理時の状態である。図3に示す基板ホルダユニットAは、熱処理後の下降位置にあり、半導体基板3の冷却時の状態である。図1に示す基板ホルダユニットA及びその周辺を拡大して示したものが図4であり、図2に示す基板ホルダユニットA及びその周辺を拡大して示したものが図5である。
図4及び図5に示すように、半導体基板3を保持するための基板ホルダユニットAは、最上部に基板ステージ1、基板ステージ1の下に4枚の輻射板4、輻射板4の下に2枚の反射板5、そして最下部に冷却パネル6を備えたものとなっている。
基板ステージ1は、熱処理の対象となる半導体基板3が載置されるものである。基板ステージ1の上面中央部には凹部が形成されており、この凹部が、半導体基板3が載置される基板載置部7となっている。図4に示す半導体基板3は、後述するリフトピン8で持ち上げ支持された状態となっている。昇降装置Eにより基板ホルダユニットAが上昇して基板ステージ1がリフトピン8より上方へ移動すると、図5に示すように、基板載置部7上に移し取られて載置されることになる。
基板ステージ1は、輻射率が高く、輻射熱を効率良く吸収し、吸収した熱を効率良く放射することができ、しかも高熱に耐えられる材料で構成されている。具体的には、カーボン又はカーボン被覆材料で構成された板状をなしている。基板ステージ1を構成するカーボンとしては、ガラス状カーボン、グラファイト、熱分解カーボンを挙げることができる。また、カーボン被覆材料としては、セラミックスにこれらのカーボンの1種又は2種以上の被覆を施した材料を挙げることができる。
熱処理の対象となる半導体基板3は、例えばイオン注入等により不純物が導入された半導体基板である。具体的には、半導体基板3として、SiC基板、窒化ガリウム(GaN)基板等を挙げることができる。なお、半導体基板とは、半導体基板そのもののほか、半導体基板上にさらに半導体膜が形成されているもの、支持基板上に半導体膜が形成されているものをも含むものである。
熱処理を行うべき半導体基板3の表面には、半導体基板3を構成するSi等の基板材料の昇華を抑制するためのキャップ膜が形成されている。キャップ膜に必要とされる特性としては、基板界面からのSi等の基板材料の昇華を抑制するバリア性、熱処理の高温に耐えることができる耐熱性、及び半導体基板3への汚染が無い無汚染性又は汚染が少ない低汚染性等を挙げることができる。また、キャップ膜は、熱処理後、半導体基板3の表面から容易に除去することができることが好ましい。このようなキャップ膜としては、例えば、カーボン膜を挙げることができ、そのほか、窒化アルミニウム膜等を挙げることができる。キャップ膜の成膜方法は、特に限定されるものではなく、キャップ膜の成膜方法としては、例えば、スパッタ法、CVD法等をあげることができる。また、熱処理後のキャップ膜の除去方法も、特に限定されるものではなく、キャップ膜の除去方法としては、例えば、プラズマ処理、オゾン処理、熱酸化処理等を挙げることができる。
基板ステージ1の基板載置部7の周囲には、環状壁部9が突設されている。環状壁部9は、図5に示すように、基板ステージ1と加熱ユニットBの基板対向面2とが接近した時に、内側に加熱ユニットBの基板対向面2を受け入れるものである。環状壁部9は、基板ステージ1と同様のカーボン又はカーボン被覆材料で構成されていることが好ましい。または、外周部との断熱性を高め、高温耐性がある低輻射率を持つタンタルカーバイド(TaC)等の金属炭化物を用いることもできる。環状壁部9を設けておくことにより、加熱ユニットBの基板対向面2からの輻射熱が周囲に逃げるのを抑制することができ、基板対向面2による半導体基板3の加熱効率を向上させることができる。
基板ステージ1と冷却パネル6との間には、基板ステージ1側から冷却パネル6側に向かって順に、それぞれ間隔をあけて、4枚の輻射板4と、2枚の反射板5とが設けられている。
輻射板4は、基板ステージ1と同様に、カーボン又はカーボン被覆材料で構成された板状をなすもので、基板ステージ1の下側に間隔をあけて配置されている。この輻射板4は、基板ステージ1の下面と対向して設けられており、半導体基板3の熱処理時に、基板ステージ1の下面から放射される熱を捕らえ、捕らえた熱を基板ステージ1に対して輻射する。これによって基板ステージ1の熱放射による温度低下を抑制することができるので、急速加熱が行いやすくなる。
輻射板4の下側(輻射板4が1枚の場合の当該輻射板4又は輻射板4が複数枚の場合の最下部の輻射板4の下側)には、それぞれ間隔をあけて、2枚の反射板5が設けられている。反射板5は、例えばモリブデン、タングステン等の高融点金属で構成されており、少なくとも輻射板4側の(上面)には鏡面仕上げが施されている。反射板5は、基板ステージ1、輻射板4から放射される熱を反射するものである。
上記反射板5を設ける場合、反射板5の下側(反射板5が1枚の場合の当該反射板5又は反射板5が複数枚の場合の最下部の反射板5の下側)に間隔をあけて冷却パネル6を設けることができる。この冷却パネル6は、例えば水冷機構等の冷却手段で冷却されるパネル体である。このような冷却パネル6を、基板ステージ1、輻射板4及び反射板5の下面に対向して設けることで、半導体基板3の冷却時に、上方に位置するこれらの部材の均一且つ迅速な冷却を促すことができる。
また、半導体基板3の熱処理時には、冷却パネル6で冷却すると、基板ホルダユニットAの温度を一定に制御するができる。これにより、輻射加熱による基板ステージ1の温度の再現性を向上させるのに役立つ。
基板ステージ1、輻射板4及び反射板5は、それぞれ連結ネジ11で冷却パネル6上に支持されている。また、冷却パネル6は、昇降装置Eの昇降軸12の先端部に接続されている。後述するように、昇降装置Eは、冷却パネル6を昇降軸12の軸方向に上下に昇降させるもので、冷却パネル6の上下動に伴い、冷却パネル6の上方に構成されている基板ホルダユニットAが昇降されるものとなっている。
基板ホルダユニットAには、基板ホルダユニットAを構成している基板ステージ1、輻射板4、反射板5及び冷却パネル6を貫通するリフトピン用貫通孔13が複数箇所形成されている。リフトピン用貫通孔13は、基板ステージ1の基板載置部7内を通る位置に形成されている。また、リフトピン用貫通孔13の位置に対応して、真空チャンバDの底部に複数本のリフトピン8が立設されている。
図4においては、リフトピン用貫通孔13を介して、真空チャンバDの底部に立設された複数本のリフトピン8が基板ステージ1上に突出している。リフトピン8は、基板載置部7上の半導体基板3を先端で持ち上げ支持可能な位置と本数となっている。図4に示す状態から基板ホルダユニットAが上昇して基板ステージ1がリフトピン8より上方へ移動すると、半導体基板3は基板載置部7上に移行されることになる。半導体基板3は、こうして基板載置部7上に載置された状態で加熱ユニットBによる熱処理に供されることになる。なお、リフトピン8は、基板ステージ1と同様、輻射率が高く、輻射熱を効率良く吸収し、高熱に耐えられる材料で構成されることが好ましい。
また、熱処理後等において、基板載置部7上に半導体基板3が載置された状態で基板ホルダユニットAが下降すると、リフトピン8がリフトピン用貫通孔13を介して基板ステージ1上に突出する。すると、基板載置部7上の半導体基板3がリフトピン8の先端で持ち上げ支持され、図4に示す状態となる。
基板ステージ1の基板載置部7の中央部直下には、輻射板4、反射板5及び冷却パネル6を貫通して、測定孔14が形成されている。この測定孔14は、昇降軸12の中心に形成された測定孔15と一連に連なっている。この測定孔14、15は、図1乃至図3に示される温度測定器16により、例えば石英製の熱赤外線透過窓を介して基板ステージ1からの放射熱を測定するためのものである。測定孔15には、昇降軸12の下端部で、熱赤外線透過窓を介して温度測定器16が接続されている。温度測定器16としては、放射温度計を用いることができる。
加熱ユニットBは、半導体基板3に対向する基板対向面2と、基板対向面2を加熱するための加熱機構28とを備えている。加熱ユニットBの加熱機構28としては、電子衝撃加熱方式の加熱機構、高周波誘導加熱方式の加熱機構、抵抗加熱方式の加熱機構、赤外線加熱方式の加熱機構、これらの組合せによる加熱機構等を用いることができる。基板対向面2は、耐熱性の黒色表面とすることができ、例えばガラス状カーボン、熱分解カーボン、アモルファスカーボン等のカーボンコーティングにより得ることができる。基板対向面2をこのようなカーボンコーティング面とすると、真空中での脱ガス及びパーティクルの発生を抑制することができる。
加熱ユニットBの具体的構成の一例を図6に示す。図6は、電子衝撃加熱方式の加熱機構28を用いた加熱ユニットBを拡大して示す断面図である。
図6に示すように、電子衝撃加熱方式の加熱機構28を用いた加熱ユニットBは、真空チャンバDの第二室23における天井部を構成する内壁103に設けられた導電性被加熱部131を有している。内壁103内には、上述のように水冷機構の水冷用流路19が設けられており、内壁103が冷却されるようになっている。導電性被加熱部131は、底板131a及び周壁131bを有し、上蓋となる内壁103とともに、加熱ユニットBの加熱機構28等の各部が収容される加熱容器104を構成している。
加熱容器104内は、排気系43(図1乃至図3参照)が接続されており、排気系43により、真空チャンバD内の加熱容器104を除く空間とは別個独立に真空排気することが可能になっている。排気系43により加熱容器104内が所定の真空度に排気された状態で、後述するフィラメント132による基板対向面2の加熱が行われる。
加熱容器104を構成する導電性被加熱部131の底板131a及び周壁131bは、例えばCVD法による熱分解カーボン等の緻密なカーボンによりコーティングされている。具体的には、底板131aの加熱機構28側の壁面(内壁面)及び基板対向面2となる壁面(外壁面)の少なくとも一方には、熱分解カーボン等の緻密なカーボンのコーティング膜が形成されている。また、周壁131bの加熱機構28側の壁面(内壁面)及び真空チャンバDの周壁側の壁面(外壁面)の少なくとも一方には、熱分解カーボン等の緻密なカーボンのコーティング膜が形成されている。このように、導電性被加熱部131の内壁面及び外壁面には、緻密なカーボンのコーティング膜が形成されている。
導電性被加熱部131を構成する材料は、例えば高純度カーボンである。このような材料よりなる導電性被加熱部131をそのまま用いると、後述するように、真空チャンバD内にアルゴン(Ar)ガス等の不活性ガスを封止した際に、不活性ガスが導電性被加熱部131を透過して加熱容器104内に侵入することがある。加熱容器104内に不活性ガスが侵入すると、加熱容器104内の真空度の低下を招き、後述するフィラメント132での放電が発生し、加熱ユニットBの加熱性能が低下する場合がある。また、導電性被加熱部131の材料や導電性被加熱部131から発生するガスにより半導体基板3が汚染される場合がある。
これに対して、本実施形態では、導電性被加熱部131の底板131a及び周壁131bについて、それぞれ内壁面及び外壁面の少なくとも一方には、熱分解カーボン等の緻密なカーボンのコーティング膜が形成されている。すなわち、導電性被加熱部131の内壁面及び外壁面の少なくとも一方には、緻密なカーボンのコーティング膜が形成されている。このようなコーティング膜により、加熱容器104内への不活性ガスの侵入を防止又は抑制して、加熱ユニットBの加熱性能の低下を防止又は抑制することができる。
さらに、底板131a及び周壁131bについて、それぞれ外壁面に上記コーティング膜が形成されていることで、導電性被加熱部131の材料や導電性被加熱部131から発生するガスによる半導体基板3の汚染を防止又は抑制することができる。
なお、熱分解カーボン等の緻密なカーボンのコーティング膜を例に説明しているが、コーティング膜は、これに限定されるものではない。コーティング膜として必要とされる特性としては、熱処理の高温に耐えることができる耐熱性を挙げることができる。さらに、導電性被加熱部131から生じるガスを真空チャンバD内へ放出さないため及び真空チャンバDからのガスを加熱容器104内へ透過さないための不透過性、並びに高温においてもガス放出が少ないことを挙げることができる。このようなコーティング膜の材料としては、例えば、熱分解カーボン等の緻密なカーボンのほか、炭化タンタル(TaC)が好適である。なお、加熱容器104の導電性被加熱部131から生じるガスは、導電性被加熱部131に吸着しているガス、導電性被加熱部131に吸蔵されているガス等である。具体的には、水、窒素、酸素、炭化水素、二酸化炭素等である。
また、コーティング膜は、導電性被加熱部131の底板131a及び周壁131bの内壁面及び外壁面、すなわち導電性被加熱部131の内壁面及び外壁面の少なくとも一方の全面に形成することができるが、これに限定されるものではない。コーティング膜は、導電性被加熱部131の内壁面及び外壁面の少なくとも一方の少なくとも一部に形成されていればよい。コーティング膜は、導電性被加熱部131の内壁面のみの全面若しくは一部、外壁面のみの全面若しくは一部、又は、内壁面及び外壁面の両方の全面若しくは一部に形成することができる。
加熱容器104内では、例えば4本の支柱141を介して、中間ベース板136が水平に内壁103に固定されている。さらに、加熱容器104内では、中間ベース板136の下側に、支柱140を介して複数枚の反射板135が水平に中間ベース板136に固定されている。
さらに、加熱容器104内では、最下部の反射板(フィラメントベース)135の下側に、フィラメント支柱142を介してフィラメント132が最下部の反射板135に固定されている。
支柱140、141、及び中間ベース板136は、例えばモリブデン製である。また、フィラメント支柱142は、例えばタンタル製である。フィラメント132は、例えばタングステン・レニウム製である。また、導電性被加熱部131は、上述のように、例えばグラファイト製である。なお、各部材の材料はこれらに限定されるものではなく、同様の材料特性を有するものを用いることができる。
フィラメント132は、電流導入端子により、電源装置42(図1乃至図3参照)が接続されている。電源装置42は、フィラメント電源42aと、直流電源42bとを有している。フィラメント132は、フィラメント加熱用の交流電源又は直流電源であるフィラメント電源42aに接続されており、フィラメント132と導電性被加熱部131と間には電位差が形成される。なお、図1乃至図3では、フィラメント電源42aとして交流電源を示している。また、フィラメント132は、熱電子を加速するための加速電源としての直流電源42bに接続されている。
導電性被加熱部131は、その底板131aに基板対向面2を備える。すなわち、基板対向面2は、導電性被加熱部131の、基板処理空間の側の面のうち、基板ステージ1の基板載置面と平行に対向する面である。半導体基板3の熱処理に際して、基板対向面2は、フィラメント132からの熱電子により加熱されて放熱面となり、基板対向面2からの放熱により半導体基板3が加熱される。
シャッタ装置Cは、図1乃至図3に示すように、基板ホルダユニットAが降下し、基板ステージ1と加熱ユニットBの基板対向面2とが離間されたときに、シャッタ17を基板ステージ1と基板対向面2の間に進退させることができるものとなっている。シャッタ装置Cは、シャッタ17を進退させるためのシャッタ駆動装置18を備えている。
シャッタ17は、熱隔壁として機能する。シャッタ17は、図1及び図3に示すように、基板ホルダユニットAが下降し、基板ステージ1と基板対向面2とが離間されているときに、基板ステージ1と基板対向面2との間に進出し、基板対向面2から基板ステージ1側へ熱が照射されるのを遮断する。また、基板ホルダユニットAが上昇しているときには、シャッタ駆動装置18で回転移動され、基板ステージ1と基板対向面2との間から図2に示される位置(図1では破線で示す)へ後退される。シャッタ17は、基板ホルダユニットAが上昇した後、再びシャッタ17が邪魔にならない位置まで下降するまでの間、後退位置に維持される。
シャッタ装置Cは、例えば水冷機構等のシャッタ17の冷却手段を有していることが好ましい。シャッタ17の冷却手段により、シャッタ17の進出時に、基板ステージ1及び基板ステージ1上の半導体基板3の冷却を促進することができる。なお、シャッタ17の冷却手段は、半導体基板3の加熱温度領域によっては省略することもできる。
シャッタ17で積極的に基板ステージ1及び基板ステージ1上の半導体基板3を冷却する場合、基板ホルダユニットAの降下位置を任意に選択できるように設定しておくことが好ましい。半導体基板3の熱処理が終了した後、まず、加熱ユニットBの電力をオフにし又は絞り、加熱ユニットBの基板対向面2と基板ステージ1の距離を離し、徐々に冷却する。これにより、急激な冷却による半導体基板3に熱歪みが生じるのを防止する。このとき、熱処理の温度や、処理する基板材料によっては、加熱ユニットBの基板対向面2と基板ステージ1との距離を徐々に広げて行くことで、徐冷することも可能である。
次に、シャッタ17の下面に基板ステージ1を下降し、シャッタ17を閉じて半導体基板3を冷却する。このとき、熱衝撃を低減するために、半導体基板3がリフトピン8に接触しない状態で冷却することができる。その後、さらに基板ホルダユニットAを下降してリフトピン8に半導体基板3を受け渡し、半導体基板3を搬出する際の位置に基板ホルダユニットAを下降することができる。半導体基板3の搬入出の際の基板ホルダユニットAの位置は、図1に示す位置である。
真空チャンバDは、アルミニウム合金等で構成された筐体である。真空チャンバDの壁内には、水冷機構の水冷用流路19が設けられている。水冷用流路19に冷却水を流すことにより、真空チャンバDの筐体の温度が過度に上昇するのを防止することができる。また、真空チャンバDには、半導体基板3の搬入、搬出時に搬入出口を開閉するための搬入出用のスリットバルブ(ゲートバルブ)20が備えられている。また、真空チャンバDには、内部を真空雰囲気に排気するために排気系に接続される排気口を開閉するための排気用のメインバルブ(ゲートバルブ)50が備えられている。
真空チャンバDは、下側の第一室22と、第一室22の上方に連なった第二室23とを備えている。加熱ユニットBは、上方に位置する第二室23に基板対向面2を下に向けて設けられている。また、第一室22は、第二室23が上方に連なる第一区画22aと、第一区画22aの側方に連なる第二区画22bとを有している。第一区画22aと第二区画22bとの間には、シャッタ装置Cが設けられている。
また、基板ホルダユニットAは、昇降装置Eにより第一室22の第一区画22aと第二室23との間を昇降可能になっている。基板ホルダユニットAは、熱処理が行われる上昇位置において、図2に示すように、第一室22の第一区画22aと第二室23との間を冷却パネル6部分で塞いだ状態で、基板ステージ1と加熱ユニットBの基板対向面2とを接近させるものとなっている。このようにして半導体基板3の加熱を行うと、第二室23で生じた熱がその下方の第一室22へ漏れにくくなり、加熱後に基板ホルダユニットAを第一室22の第一区画22aへ降下させて行われる冷却をより迅速に行うことができる。また、真空チャンバDの内面、特に第二室23の内面は、加熱効率を向上させることができるよう、鏡面仕上げを施しておくことが好ましい。
半導体基板3の搬入出用のスリットバルブ20は、第一室22の第一区画22aの側壁に設けられており、その側壁に設けられた搬入出口を開閉するためのものである。第一区画22a内のスリットバルブ20が設けられた内壁部には、加熱ユニットBの基板対向面2を有する導電性被加熱部131に対してスリットバルブ20を遮蔽する板状の遮蔽部材21が設けられている。遮蔽部材21が設けられているため、基板対向面2を有する導電性被加熱部131は、スリットバルブ20から直接見通せない位置に設けられている。
また、排気用のメインバルブ50は、第一室22の第二区画22bの底板に設けられており、その底板に設けられた排気口を開閉するためのものである。真空チャンバDには、メインバルブ50を介して、排気系47が接続されている。排気系47は、高真空排気用のターボ分子ポンプ48と、粗引き用のドライポンプ49とを有している。なお、排気系47は、真空チャンバD内を所望の真空度まで排気することができるものであれば、特に限定されるものではない。また、真空チャンバD内は排気系47により排気され、一方、加熱ユニットBの加熱容器104内は排気系43により排気される。これにより、真空チャンバD内と加熱容器104内とは、互いに独立して排気することが可能になっている。
メインバルブ50は、第一室22の第二区画22bに設けられているため、真空チャンバDの内壁構造により、第二室23内に設けられた加熱ユニットBの基板対向面2を有する導電性被加熱部131から遮蔽されている。このため、基板対向面2を有する導電性被加熱部131は、メインバルブ50から直接見通せない位置に設けられている。また、メインバルブ50は、スリットバルブ20に対して、基板ホルダユニットAを挟んで対向する側に設けられている。
さらに、真空チャンバDの第一室22の第二区画22bの側壁には、ガスを導入するためのガス導入口51が設けられている。ガス導入口51には、ガス導入手段であるガス導入系52が接続されている。ガス導入系52は、ガス導入口51に配管53を介して接続されたガス供給源54と、ガス導入口51側から配管に順次介設されたピュリファイヤー55と、バルブ56と、マスフローコントローラ(MFC)57と、バルブ58とを備えている。ピュリファイヤー55は、あってもなくてもよい。
ガス供給源54は、真空チャンバD内に導入する不活性ガスを供給するものである。不活性ガスとしては、Arガス等を挙げることができる。なお、真空チャンバD内に導入するガスとしては、不活性ガスに限定されるものではないが、反応性が低いガスが好ましく、Arガスやクリプトン(Kr)ガス等の不活性ガスがより好ましい。また、ピュリファイヤー55は、通過する不活性ガスから不純物を除去するものである。また、MFC57により、所定の流量で不活性ガスを真空チャンバD内に供給することができるようになっている。
ガス導入口51も、第一室22の第二区画22bに設けられているため、真空チャンバDの内壁構造により、第二室23内に設けられた加熱ユニットBの基板対向面2を有する導電性被加熱部131から遮蔽されている。このため、基板対向面2を有する導電性被加熱部131は、ガス導入口51からも直接見通せない位置に設けられている。また、ガス導入口51は、スリットバルブ20に対して、基板ホルダユニットAを挟んで対向する側に設けられている。
昇降装置Eは、上端が基板ホルダユニットAの冷却パネル6に接続された昇降軸12と、昇降軸12の下端部分に取り付けられた昇降アーム24と、昇降アーム24が螺合するボールネジ25とを備えている。また、ボールネジ25を正逆両方向に回転させることができる回転駆動装置26と、昇降軸12と真空チャンバD間の摺動部を覆い、真空チャンバD内の気密性を高めるとともに、昇降軸12の上下動に伴って伸縮する蛇腹状カバー27も備えている。この昇降装置Eは、回転駆動装置26でボールネジ25を正又は逆回転させることで、このボールネジ25と螺合している昇降アーム24を上昇又は下降させ、それに伴って昇降軸12を上下にスライドさせて、基板ホルダユニットAを昇降させるものである。
制御装置60は、種々の演算、制御、判別等の処理を実行するCPU(図示せず)を有している。また、制御装置60は、CPUによって実行される様々な制御プログラム等を格納するROM(図示せず)等を有している。また、制御装置60は、CPUが処理中のデータや入力データ等を一時的に格納するRAM(図示せず)等を有している。制御装置60は、熱処理装置100の各部の動作を制御し、半導体基板3の熱処理を実行する。
(基板処理システム)
上記本実施形態による熱処理装置100は、複数の処理装置のチャンバが接続されて構成されるマルチチャンバ型の基板処理システムに組み込んで用いることが可能である。以下、本実施形態による熱処理装置100が組み込まれたマルチチャンバ型の基板処理システムの一例について図7を用いて説明する。図7は、本実施形態による熱処理装置100が組み込まれたマルチチャンバ型の基板処理システムの一例を示している。
図7に示すように、基板処理システムは、上述した熱処理装置100と、キャップ膜を成膜するためのキャップ膜成膜装置であるスパッタ装置200と、キャップ膜を除去するためのアッシング装置又はエッチング装置220とを備えている。また、基板処理システムは、基板搬送装置240を備えている。さらに、基板処理システムは、処理済み又は処理前の半導体基板3がセットされるロードロックチャンバ260と、処理済み又は処理前の半導体基板3を収容する基板載置室280とを備えている。
熱処理装置100の真空チャンバD、スパッタ装置200のスパッタチャンバ201、及びアッシング装置又はエッチング装置220のアッシングチャンバ又はエッチングチャンバ221は、基板搬送装置240の周りに設けられている。こうして、真空チャンバD、スパッタチャンバ201、及びアッシングチャンバ又はエッチングチャンバ221が、搬送チャンバ241を囲うように設けられている。搬送チャンバ241と、真空チャンバD、スパッタチャンバ201及びアッシングチャンバ又はエッチングチャンバ221との間には、それぞれスリットバルブが設けられている。これらスリットバルブにより、各々の装置のチャンバが相互に隔離可能に接続されている。なお、図7では、後の説明のため、各部の間のスリットバルブを示している。すなわち、図7には、基板載置室280とロードロックチャンバ260との間のスリットバルブVa、ロードロックチャンバ260と搬送チャンバ241との間のスリットバルブVb、搬送チャンバ241と真空チャンバDとの間のスリットバルブVc、搬送チャンバ241とスパッタチャンバ201との間のスリットバルブVdを示している。
基板搬送装置240の搬送チャンバ241内には、半導体基板3を搬送するための搬送手段である搬送ロボット242等が設けられている。これにより、各装置のチャンバに対して半導体基板3の搬入及び搬出が可能になっている。
基板搬送室である搬送チャンバ241と基板載置室280との間には、ロードロックチャンバ260が設けられている。ロードロックチャンバ260内には、処理済みの半導体基板3が搬送ロボット242により搬送チャンバ241から搬入されて載置される。また、ロードドックチャンバ260内には、未処理の半導体基板3が基板載置室280から搬入されて載置される。
基板載置室280には、半導体基板3を収容するカセット281〜284が搭載可能である。基板載置室280内には、半導体基板3を搬送するための搬送手段である搬送ロボット285等が設けられている。また、基板載置室280には、半導体基板3のオリフラやノッチ、及び基板中心をアライメントするためのアライナー(不図示)を設けてもよい。搬送ロボット285は、カセット281〜284のいずれかから未処理の半導体基板3をロードロックチャンバ260内に搬入する。また、搬送ロボット285は、処理済みの半導体基板3をロードロックチャンバ260内から搬出し、所定のカセット281〜284に収める。
基板載置室280、ロードロックチャンバ260、搬送チャンバ241、スパッタチャンバ201、及びアッシングチャンバ又はエッチングチャンバ221のそれぞれには、各チャンバ内又は室内を排気する排気系(不図示)が設けられている。また、ロードロックチャンバ260、搬送チャンバ241、スパッタチャンバ201、及びアッシングチャンバ又はエッチングチャンバ221のそれぞれには、各チャンバ内にArガス等のガスを導入するガス導入系(不図示)が設けられている。なお、真空チャンバDの排気系47及びガス導入系52については上述したとおりである。上述した制御装置60は、これらの排気系によるチャンバ内又は室内の排気、及びこれらのガス導入系によるチャンバ内又は室内へのガスの導入を制御可能に構成されている。また、制御装置60は、搬送ロボット242、285の動作を制御可能に構成されている。また、制御装置60は、スパッタ装置200、熱処理装置100、アッシング装置又はエッチング装置220における各種処理時の動作を制御可能に構成されている。
上記基板処理システムでは、半導体基板3に対して、スパッタ装置200におけるキャップ膜の成膜、熱処理装置100における熱処理、及びアッシング装置又はエッチング装置220におけるキャップ膜の除去の各処理を順次行うことが可能になっている。
(半導体基板の熱処理方法)
次に、上記図7に示す基板処理システムにおける熱処理装置100を用いた本実施形態による半導体基板の熱処理方法について図8A及び図8Bを用いて説明する。図8Aは、本実施形態による半導体基板の熱処理方法の事前準備を示すフローチャートである。図8Bは、本実施形態による半導体基板の熱処理方法を示すフローチャートである。
本実施形態による半導体基板の熱処理方法は、分子流領域の圧力を超える圧力でArガスが封止された状態の真空チャンバD内において、半導体基板3の熱処理を行うものである。なお、半導体基板3の熱処理の実行に際しては、熱処理装置100の各部の動作が制御装置60により制御される。例えば、制御装置60により、排気系47による真空チャンバD内の排気、ガス導入系52による真空チャンバDへのArガスの導入等が制御される。
なお、ガスが封止された状態は、処理室を構成する真空チャンバD内に対するガスの導入及び排気が完全に行われていない状態のみならず、半導体基板3の表面のArガスがSiの放出を抑制できる程度に維持されていればよい。すなわち、真空チャンバDに対して極めて低速にガスの排気が行われている場合をも含むものとする。具体的には、真空チャンバDの容積の0.1%前後が5分で排気されている状態及びこれよりも低速に排気されている状態をも含む。
本実施形態による半導体基板の熱処理方法の行う前には、真空チャンバD内の部材に対し脱ガス処理を行うこと等を目的として、事前準備(コンディショニング)が行われる。以下、熱処理前の事前準備について図8Aを用いて説明する。
まず、ロードロックチャンバ260内、搬送チャンバ241内、及び真空チャンバD内を例えば10−3Pa以下の高真空に排気する(ステップS101)。
次いで、スリットバルブVcを閉鎖した状態で、基板ホルダユニットAを加熱位置まで上昇させ(ステップS102)、加熱ユニットBにより真空加熱を行う(ステップS103)。この真空加熱における加熱温度は、基板相当温度で例えば1500℃以上、具体的には例えば1900℃とする。基板相当温度とは、基板が基板ホルダユニットに設置された場合に想定される基板の温度である。
次いで、加熱ユニットBによる加熱を停止して真空加熱を停止し(ステップS104)、基板ホルダユニットAを搬送位置まで降下させ(ステップS105)、その後、真空チャンバD内の排気を停止する(ステップS106)。なお、加熱を停止することに代えて、加熱ユニットBの加熱機構28のパワーを低下させて加熱温度を低下させるだけでもよい。
次いで、ガス導入系52のバルブ56、58を開放する。こうして、配管53を通して、ガス供給源54のArガスをガス導入口51から真空チャンバD内にArガスを導入する(ステップS107)。これにより真空チャンバD内に導入するArガスは、例えば10〜100kPaまでであり、本実施形態では75kPaを導入している。Arガスを導入した後、バルブ56、58を閉鎖して真空チャンバD内にArガスを封止する。
なお、ステップS106とステップS107とは、上記の順に行う必要はなく、どのような順序で行ってもよく、最終的にArガスの封止状態が得られればよい。
次いで、真空チャンバD内にArが封止された状態で、基板ホルダユニットAを熱処理位置まで上昇させ(ステップS108)、加熱ユニットBにより加熱を行う(ステップS109)。このArガスの封止状態での加熱温度は、基板相当温度で例えば1500℃以上、具体的には例えば1900℃とする。
次いで、加熱ユニットBによる加熱を停止して、Arガスの封止状態での加熱を停止する(ステップS110)。なお、加熱を停止することに代えて、加熱ユニットBの加熱機構28のパワーを低下させて加熱温度を低下させるだけでもよい。続いて、基板ホルダユニットAを搬送位置まで降下させる(ステップS111)。
次いで、真空チャンバD内の排気を開始する(ステップS112)。なお、ステップS110の後にステップS112を行う必要は必ずしもなく、ステップS112の後にステップS110を行ってもよい。この真空チャンバD内の排気では、排気系47のドライポンプ49及び必要に応じてターボ分子48を用いて、真空チャンバD内を所定の圧力まで排気する。例えば、真空チャンバD内の圧力を10−4Pa〜10−3Paとする。これにより、真空チャンバD内のHOの分圧を例えば10−5Pa〜10−4Paとする。このようにHOの分圧を低減しておくことにより、高温下においてもSiC等の半導体基板3の基板材料と残留水分との反応確率を大幅に低減でき、エッチング反応を抑制することができる。この結果、熱処理後の半導体基板3について、高い表面平坦性を確保しつつ、高い電気的活性化を容易に実現することができる。
次いで、真空チャンバD内の排気を停止する(ステップS113)。
次いで、真空チャンバD及び搬送チャンバ241内に、それぞれArガスを導入する(ステップS114)。導入するArガスの圧力は、それぞれ例えば10〜100kPa、具体的には50kPaとする。なお、搬送チャンバ241内の排気は、Arガスが例えば10〜100kPaの圧力まで導入された時点で停止する。
こうして、本実施形態による半導体基板の熱処理方法を行う前の事前準備を終了する。なお、事前準備では、真空加熱及びArガスの封止状態での加熱の両加熱を行う必要は必ずしもない。例えば、真空加熱を行う一方、Arガスの封止状態での加熱を行わなくてもよい。
上記にようにして事前準備を行ったうえで、本実施形態による半導体基板の熱処理方法を行う。以下、本実施形態による半導体基板の熱処理方法について図8Bを用いて説明する。
熱処理が行われる半導体基板3には、イオン注入等により不純物が導入されている。また、半導体基板3の表面には、基板材料の昇華を抑制するためのキャップ膜が形成されている。具体的には、半導体基板3は、例えばSiC膜であり、キャップ膜としてカーボン膜がスパッタ法等により形成されている。キャップ膜は、例えば、基板処理システムにおけるスパッタ装置200のスパッタチャンバ201内で形成することができ、また、基板処理システムとは別個のスパッタ装置を用いて形成することもできる。本実施形態による半導体基板の熱処理方法は、半導体基板3中に導入された不純物を活性化する活性化アニールを行うものである。
まず、半導体基板3の投入する前に、必要に応じて、加熱ユニットBにより真空チャンバDのチャンバベークを行う(ステップS201)。このチャンバベークにおける加熱温度は、基板相当温度で例えば1500℃以上、具体的には例えば1900℃とする。
次いで、ロードロックチャンバ260をベントした後、スリットバルブVaを開放して、基板載置室280からロードロックチャンバ260内に半導体基板3を投入する(ステップS202)。なお、投入する半導体基板3は1枚でも複数枚でもよい。ロードロックチャンバ260内に半導体基板3を投入した後、スリットバルブVaを閉鎖する。
次いで、ロードロックチャンバ260内の排気を開始し(ステップS203)、ロードロックチャンバ260内を例えば1kPa以下まで排気して、ロードロックチャンバ260内の排気を停止する(ステップS204)。
次いで、ロードロックチャンバ260内にArガスを導入する(ステップS205)。導入するArガスの圧力は、例えば10〜100kPa、具体的には50kPaとする。
次いで、スタンバイ加熱として、加熱ユニットBによる加熱を行う(ステップS206)。このスタンバイ加熱における加熱温度は、加熱ユニットBの加熱機構28の放熱面温度で例えば1000〜2000℃、具体的には例えば1200℃とする。
次いで、スリットバルブVbを開放して、搬送ロボット242により、ロードロックチャンバ260内から搬送チャンバ241内へ半導体基板3を取り出す(ステップS207)。このとき、ロードロックチャンバ260内と搬送チャンバ241内とは、互いに同程度の圧力になっている(ステップS110及びステップS205を参照)。搬送チャンバ241内へ半導体基板3を取り出した後、スリットバルブVbを閉鎖する。
次いで、排気系47又はガス導入系52を用いて真空チャンバD内の圧力の調整を行う(ステップS208)。これにより、真空チャンバD内のArガスの圧力を例えば10〜100kPa、具体的には50kPaとする。
次いで、図1に示すように、スリットバルブ20(図7に示すスリットバルブVcに相当する)を開放して、搬送チャンバ241内から真空チャンバD内に半導体基板3を搬送する(ステップS209)。真空チャンバD内に搬送した半導体基板3は、リフトピン8上に載置する。このとき、搬送チャンバ241内と真空チャンバD内とは、互いに同程度の圧力になっている(ステップS114及びステップS208を参照)。また、シャッタ17は、基板ホルダユニットAと基板対向面2との間に進出している。真空チャンバD内に半導体基板3を搬送した後、スリットバルブ20(スリットバルブVc)を閉鎖する。
なお、半導体基板3を真空チャンバD内に搬送した後に、真空チャンバD内の排気を行ってもよい。これにより、事前準備におけるステップS108により行われる真空チャンバD内の排気と同様に、熱処理の際に真空チャンバD内に存在する水等の不純物を低減することができる。
次いで、ガス導入系52のバルブ56、58を開放する。こうして真空チャンバD内へのArガスの導入を開始し、配管53を通して、ガス供給源54のArガスをガス導入口51から真空チャンバD内に導入する(ステップS210)。このとき、MFC57によりArガスの流量を所定の流量に適宜制御する。また、真空チャンバD内に導入されるArガスは、ピュリファイヤー55により不純物が除去されて真空チャンバD内に導入される。
上記のようにガス導入系52からArガスを導入することにより、真空チャンバD内の圧力が所定の圧力になった時点で、バルブ56、58を閉鎖する。これにより、真空チャンバD内へのArガスの導入を停止する。Arガスの導入を停止する真空チャンバD内のArガスの圧力は、例えば10kPa〜100kPaとし、具体的には例えば75kPaとする。こうして、真空チャンバD内にArガスを封止する。ここで、真空チャンバD内の排気を停止した後に真空チャンバD内へのArガスの導入を停止することにより、熱処理前の真空チャンバD内の圧力を容易に調整することができる。
なお、真空チャンバD内のArガスの圧力は、半導体基板3の熱処理温度に応じて適宜設定することができる。より高温な熱処理温度の場合ほどArガスの圧力をより高圧に設定することにより、半導体基板3の材料の昇華を確実に抑制することができる。例えば、熱処理温度が1500℃以上であり、1750℃以下である場合、具体的には1750℃の場合には、Arガスの圧力を10kPa以上に設定することができる。また、例えば、熱処理温度が1750℃よりも高く、2000℃以下である場合、具体的には1850℃の場合には、Arガスの圧力を50kPa以上に設定することができる。
真空チャンバD内にArガスを封止した後、シャッタ17を後退させ、昇降装置Eにより基板ホルダユニットAを上昇させる。上昇する基板ホルダユニットAの基板ステージ1における基板載置部7で半導体基板3をすくい取った後、さらに基板ホルダユニットAを熱処理位置まで上昇させる。こうして、図2及び図5に示されるように、基板ホルダユニットAの基板ステージ1と、加熱ユニットBの基板対向面2とを近接させて、半導体基板3をリフトアップする(ステップS211)。このとき、少なくとも半導体基板3は、基板対向面2と非接触状態であることが必要である。基板ステージ1は基板対向面2と接触状態にすることも可能であるが、基板ステージ1と基板ステージ1上の半導体基板3の両者とも基板対向面2とは非接触状態であることが好ましい。基板対向面2と半導体基板3の大きさ、熱処理温度、加熱機構28の出力等にもよるが、基板対向面2と半導体基板3の間隔は1〜25mmとすることが好ましい。
本実施形態では、このように、半導体基板3が真空チャンバD内に搬送されてリフトピン8上に載置された位置よりも基板対向面2に近接させた熱処理位置で熱処理を行う。すなわち、半導体基板3が真空チャンバD内に搬送されて載置された状態(搬送位置)よりも半導体基板3と基板対向面2とを近接させた状態で熱処理を行う。このため、真空チャンバD内を広範囲に温度上昇させる必要がなく、高い効率で熱処理を行うことができる。なお、本実施形態では、基板ホルダユニットAを上昇させることにより、半導体基板3と基板対向面2とを近接させているが、半導体基板3と基板対向面2とを相対的に近接させることができればよい。例えば、基板対向面2を含む加熱ユニットBが下降することにより基板対向面2と半導体基板3とが近接するように熱処理装置100を構成することもできる。
また、真空チャンバD内にArガスを封止する前に、熱処理の温度を下回る予熱温度に半導体基板3を予熱しておいてもよい。半導体基板3の予熱は、上記のように基板ホルダユニットAの基板ステージ1と加熱ユニットBの基板対向面2とを近接させた状態又は近接させる前の状態で、加熱ユニットBにより行うことができる。上記では、スタンバイ加熱(ステップS206を参照)がこの予熱に相当する。予熱温度は、半導体基板3がSiC基板である場合、例えば1700℃以下、具体的には1200℃とする。なお、この温度は、加熱ユニットBの設定温度である。1700℃以下の温度であれば、SiC基板におけるSiが昇華する確率は低いためである。こうして熱処理の温度を下回る予熱温度に予熱しておくことで、処理時間を短縮することができる。
また、処理時間を短縮するため、加熱ユニットBの加熱機構28の昇温中に、真空チャンバD内へのArガスの導入及びその停止により真空チャンバD内にArガスを封止してもよい。このように、真空チャンバD内にArガスを封止するタイミングは、特定のタイミングに限定されるものではない。Arガスを封止するタイミングは、Arガスを封止された状態で半導体基板3の熱処理を行うことができるものであればよく、熱処理温度に到達するまでに封止が完了していればよい。
また、真空チャンバD内の排気を停止するタイミングと真空チャンバD内へのArガスの導入を停止するタイミングとの前後は、特に限定されるものではない。これらのタイミングの前後は、真空チャンバD内にArガスを封止することができるものであればよい。例えば、真空チャンバD内の排気を停止した後に、真空チャンバD内へのArガスの導入を停止してもよい。このように排気停止後にArガスの導入を停止することにより、真空チャンバD内に封止されるArガスの圧力をより確実に所定の値に設定することができる。
次いで、上記のようにして真空チャンバD内にArガスが封止された状態で、加熱ユニットBの加熱機構28のパワーを上昇させ高温に加熱する。こうして、基板対向面2からの輻射熱により、半導体基板3を熱処理する(ステップS212)。熱処理時の半導体基板3の温度である半導体基板3の熱処理温度は、例えば1700〜2000℃、より具体的には1800℃又は1850℃とする。熱処理では、温度測定器16で測定される基板ステージ1の温度が所定の熱処理温度になるまで加熱機構28の加熱を継続する。所定の熱処理温度に達した後、所定の熱処理時間が経過するまでこの温度を保持する。熱処理時間は、例えば1分間〜30分間とする。
このように、本実施形態による半導体基板の熱処理方法では、真空チャンバD内にArガスが封止された状態で、表面にキャップ膜が形成された半導体基板3の熱処理が行われる。真空チャンバD内に封止されたArガスの圧力は、分子流領域の圧力を超える圧力である。
熱処理を行うべき半導体基板3に形成されるキャップ膜は、半導体基板3の材料の昇華を抑制するためのものである。例えば、SiC基板に対しては、キャップ膜として、スパッタ法によりカーボン膜が成膜される。キャップ膜としてのカーボン膜は、膜厚が厚いほど、半導体基板3の材料の昇華を抑制できるため、厚いほうが好ましい。しかしながら、過剰な厚みのキャップ膜はその成膜時間の増加及びアッシング時間の増加から好ましくない。従って、キャップ膜の膜厚としては、5nm〜1000nmの範囲のものが好適に用いられる。なお、ここでキャップ膜成膜には、成膜時の圧力として0.1〜2Paが好適に用いられ、特に0.2Paが好ましい。
一般に、スパッタ法による成膜では、ターゲットに入射したArイオン等のイオンがターゲットに衝突する。この結果、ターゲット材の一部がスパッタ原子として飛び出し、基板に飛来する。このとき、ターゲットに印加されるパワーが所定のエネルギー以上であれば、飛来したスパッタ原子の多くは、スパッタ原子が持つエネルギーにより基板表面上をマイグレーションすることで核成長を起こす。さらに、スパッタ原子は、基板上をマイグレーションし、垂直方向に成長しつつ、膜構造となり、最終的には、膜厚方向に結晶配向を有する柱状の結晶構造の膜が形成される。
スパッタ法により成膜されたカーボン膜も上記の柱状の結晶構造を有している。SiC基板に注入された不純物を十分に活性化するために必要な温度である例えば1800℃以上の温度に上昇させると、SiC基板からのSiの昇華が生じる。このとき、昇華したSi原子の一部は、カーボン膜中の柱状の結晶構造の間をすり抜けてカーボン膜の表面に到達する。
従来、SiC基板に導入された不純物の活性化アニールでは、拡散炉を用いた場合のように、熱処理を行う炉内にArガスを導入しつつ炉内を排気することで、炉内にArガスを流すことが一般的である。このようにArガスを流すと、カーボン膜の柱状構造をすり抜けてカーボン膜の表面に到達したSi原子は、Arガスの流れにより炉外に排気される。また、チャンバ内のArガスの圧力をいくら上昇させても、Arガスの流れにより、Si原子がArガスとともに炉外に排気される。このため、Si原子は、常にカーボン膜の表面付近で飽和状態に至らず、SiC基板の表面からSi原子が昇華し続ける。このようにArガスが流されていると、大気圧下、加圧下及び減圧下といった圧力状態によらず、SiC基板の表面からのSi原子の昇華を抑制することは困難である。この結果、熱処理後にSiC基板の表面平坦性を確保することは困難である。このことは、SiC基板を用いたMOSFETにおける不純物の活性化に必要な熱処理温度である例えば1800℃以上の温度で熱処理を行った場合に顕著となる。
これに対して、本実施形態による半導体基板の熱処理方法では、上述のように、真空チャンバD内にArガスが封止された状態で半導体基板3の熱処理を行う。封止されたArガスの圧力は、分子流領域の圧力を超える圧力である例えば10kPa〜100kPaであり、より具体的には75kPaである。さらには、封止されたArガスの圧力は、上述のように半導体基板3の熱処理温度に応じて適宜設定することができる。例えば、熱処理温度が1500℃以上であり、1750℃以下である場合には、Arガスの圧力を10kPa以上に設定することができる。また、例えば、熱処理温度が1750℃よりも高く、2000℃以下である場合には、Arガスの圧力を50kPa以上に設定することができる。なお、封止されたArガスの圧力は、大気圧未満の圧力であってもよいし、大気圧以上の圧力であってもよい。
このように封止されたArガスの圧力が分子流領域の圧力を超える圧力であって、Arガスの圧力が高い雰囲気中で熱処理を行うと、カーボン膜の表面においてAr原子とSi原子とが衝突する確率が増加する。この結果、Si原子の蒸気圧を、カーボン膜表面付近で局所的に上昇させることができる。さらに、真空チャンバD内にArガスが封止されているため、Arガスの流れがカーボン膜の表面で抑制される。このため、カーボン膜をすり抜けて表面に到達したSi原子が排気されることなく、カーボン膜の表面に留まることになる。この結果、カーボン膜の表面及びカーボン膜中のSi原子の蒸気圧が飽和状態となる。すると、Si原子の昇華が抑制され、SiC基板の表面のSi原子が昇華するにしても、表面の数層のSi原子のみが昇華するに留まる。この結果、例えばSiC基板が1800℃以上の高温での熱処理を経た場合であっても、SiC基板の表面荒れを非常に小さく抑制することができる。
さらに、本実施形態では、半導体基板3が真空チャンバD内に搬送されて載置された状態よりも半導体基板3と加熱ユニットBの基板対向面2とを近接させた状態で熱処理を行う。このように、半導体基板3と基板対向面2とを近接させる状態で熱処理を行うことで、Si原子の昇華がさらに抑制され、SiC基板の表面荒れをさらに小さく抑制することができる。
なお、SiC基板を用いたMOSFETでは、SiC基板の表面荒れとして、二乗平均粗さの値(RMS値)で例えば1.0nm以下である表面荒れが必要とされ、より好ましくは0.5nm以下の表面荒れが求められる。本実施形態によれば、RMS値で0.5nm以下の表面荒れを容易に実現することができ、より具体的には、RMS値で0.19nmの表面荒れを実現することができる。
なお、キャップ膜として、より緻密なカーボン膜を成膜することにより、Si原子がカーボン膜をすり抜ける確率を低減することができる。より緻密なカーボン膜を成膜するには、スパッタ法において、スパッタターゲットに印加する電力を例えば30mW/mm以下の小さなものとする。しかしながら、このような低電力でのスパッタ法による成膜は、成膜の効率が非常に低い。したがって、量産性の観点からは、例えば40mW/mm以上の電力をスパッタターゲットに印加してカーボン膜を成膜することが好ましい。一方で、このような高電力でのスパッタ法による成膜では、上述のように成膜したカーボン膜が柱状構造を有する傾向にある。本実施形態によれば、例えば40mW/mm以上の高電力でのスパッタ法により成膜されたカーボン膜をキャップ膜として用いた場合であっても、SiC基板の表面荒れを抑制することができる。したがって、本実施形態によれば、量産性を損なうことなく、表面荒れを抑制することができる。
また、カーボン膜のスパッタによる成膜を、成膜条件を変更した2段階以上のステップにより行ってもよい。例えば、まず、SiC基板上に、30mW/mm以下の低電力をスパッタターゲットに印加したスパッタ法により、カーボン膜を成膜する。このような成膜条件では、成膜の効率は低いが、より緻密なカーボン膜を成膜することができる。このような成膜条件において成膜される膜厚としては、例えば、2〜20nmが好適である。続いて、30mW/mmを超える電力、より好ましくは40mW/mm以上の電力をスパッタターゲットに印加したスパッタ法により、上記カーボン膜上に、カーボン膜を成膜する。このような成膜条件では、高い成膜効率でカーボン膜を成膜することができる。このような成膜条件において成膜される膜厚としては、例えば、3〜80nmが好適である。
このように成膜条件を変更して成膜条件の異なる複数のカーボン膜を順次成膜することにより、より基板表面に近い側に、より緻密なカーボン膜を成膜する。2層のカーボン膜を成膜する場合、基板表面に接する側の下層のカーボン膜として、その上層のカーボン膜よりも緻密なカーボン膜を成膜する。こうして、カーボン膜の成膜効率を確保して量産性を確保しつつ、熱処理によるSiC膜の表面荒れを抑制することができる。
また、本実施形態による熱処理装置100においては、上述のように、加熱容器104を構成する導電性被加熱部131の内壁面及び外壁面に、耐熱性のコーティング膜が形成されている。このようなコーティング膜が形成されていない導電性被加熱部131を有する加熱ユニットBで熱処理を行うと、封止されているArガスが加熱容器104内に侵入して加熱ユニットBの加熱性能が低下する場合がある。また、導電性被加熱部131の材料や導電性被加熱部131から発生するガスにより半導体基板3が汚染される場合がある。本実施形態では、導電性被加熱部131の内壁面及び外壁面にコーティング膜が形成されていることにより、真空チャンバD内にArガスが封止された状態であっても、加熱ユニットBの加熱性能の低下を防止又は抑制することができる。また、半導体基板3の汚染を防止又は抑制することができる。
上記のようにして半導体基板3の熱処理を行った後、加熱ユニットBの加熱機構28をオフにし、自然冷却を開始する。なお、続けて処理すべき半導体基板3がある場合には、加熱ユニットBによりスタンバイ加熱を行うようにしてもよい。これとともに、昇降装置Eにより基板ホルダユニットAを所定の予備冷却位置まで降下させ、温度測定器16で測定される基板ステージ1の温度が所定の温度になるまで降温させる。
その後、リフトピン8に半導体基板3を接触させることなく冷却するために、図3に示すように、昇降装置Eにより基板ホルダユニットAを所定の冷却位置までさらに降下させて半導体基板3をリフトダウンする(ステップS213)。これとともに、冷却機構を有するシャッタ17を、冷却位置に下降させた基板ホルダユニットAの基板ステージ1と、加熱ユニットBの基板対向面2との間に進出させ、冷却を促進する。こうして、冷却位置において、温度測定器16で測定される基板ステージ1の温度が所定の温度になるまでさらに冷却する。
次いで、基板ホルダユニットAを搬入出位置まで降下させる。冷却位置から搬入出位置までの降下の間に、半導体基板3はリフトピン8上に移し取られ、取り出しやすい状態となる。
基板ホルダユニットAが搬入出位置まで降下した後、排気系47を用いて真空チャンバD内の圧力の調整を行う(ステップS214)。これにより、真空チャンバD内のArガスの圧力を例えば10〜100kPa、具体的には50kPaとする。
次いで、スリットバルブ20(スリットバルブVc)を開放し、搬送チャンバ241の搬送ロボット242で半導体基板3を真空チャンバD内から搬送チャンバ241内へ搬送する(ステップS215)。搬送後、スリットバルブ20(スリットバルブVc)を閉鎖する。こうして、注入された不純物が活性化された半導体基板3が製造される。
なお、真空チャンバD内から搬送チャンバ241内に半導体基板3を搬送する際には、予め、搬送チャンバ241内の圧力を適宜調整しておくことができる。例えば、図7に示すマルチチャンバ型の基板処理システムにおいては、次のように圧力を調整することができる。すなわち、熱処理装置100の真空チャンバD内で半導体基板3の熱処理を行っている間又は熱処理前若しくは熱処理後に、搬送チャンバ241内の圧力と真空チャンバD内の圧力とを同等に設定しておくことができる。具体的には、上記では、真空チャンバD内及び搬送チャンバ241内のいずれも例えば50kPaに設定されている(ステップS214及びステップS110を参照)。このような圧力設定のため、制御装置60は、搬送チャンバ241内へのガスの導入又は搬送チャンバ241内の排気を制御する。
このように真空チャンバD内及び搬送チャンバ241内の圧力を予め設定することで、半導体基板3の熱処理後、直ちに真空チャンバD内から搬送チャンバ241内に半導体基板3を搬送することができる。これにより、真空チャンバD内からの半導体基板3の搬送を含めた処理時間を短縮することができる。また、この際、両チャンバの圧力が同等であるため、チャンバ間の圧力差に起因するパーティクルの巻き上げ等により熱処理後の半導体基板3が汚染されるのを回避することができる。
次いで、スリットバルブVbを開放し、搬送チャンバ241内に搬送された半導体基板3を、搬送チャンバ241内からロードロックチャンバ260内に搬送する(ステップS216)。
次いで、ロードロックチャンバ260内に熱処理すべき次の半導体基板3がある場合(ステップS217、YES)の場合には、ステップS207に移行して次の半導体基板3について処理を継続する。
一方、ロードロックチャンバ260内に熱処理すべき次の半導体基板3がない場合(ステップS217、NO)、スリットバルブVbを閉鎖してロードロックチャンバ260をベントする。その後、スリットバルブVaを開放して、ロードロックチャンバ260から熱処理後の半導体基板3を取り出す(ステップS218)。
続いて次ロットの半導体基板3について熱処理の連続処理を行う場合(ステップS219、YES)には、ステップS202に移行して次ロットの半導体基板3について処理を継続する。
一方、次ロットの半導体基板3について熱処理の連続処理を行わない場合(ステップS219、NO)には、スリットバルブVaを閉鎖して処理を完了する。
なお、熱処理を行った半導体基板3は、アッシング装置又はエッチング装置220のアッシングチャンバ又はエッチングチャンバ221内に搬送してもよい。この場合、アッシングチャンバ又はエッチングチャンバ221内では、半導体基板3の表面に形成されているキャップ膜がプラズマアッシング等のアッシング処理又はプラズマエッチング等のエッチング処理により除去される。
このように、本実施形態によれば、真空チャンバD内にArガスを封止した状態で、半導体基板3の熱処理を行うので、高温での熱処理であっても半導体基板3の表面荒れを抑制することができる。
なお、上述した図8A及び図8Bに示すプロセスフローは、例示にすぎず、真空チャンバD内にArガスを封止した状態を実現するための真空チャンバD内の排気及び真空チャンバ内へのArガスの導入の態様は、上述した態様に限定されるものではない。また、熱処理すべき半導体基板3を真空チャンバD内へ搬送する際のロードロックチャンバ260、搬送チャンバ241、及び真空チャンバDの各チャンバ内の排気及び各チャンバ内へのArガスの導入の態様も、上述した態様に限定されるものではない。また、熱処理後の半導体基板3を真空チャンバD内からロードロックチャンバ260内に搬送する際の各チャンバ内の排気及び各チャンバ内へのArガスの導入の態様も、上述した態様に限定されるものではない。
また、上述のように真空チャンバD内にArガスを封止した状態で熱処理を行うと、昇華したSiが排気されないことになる。このため、昇華したSiが真空チャンバDの内壁に付着する。真空チャンバDの内壁にSiが堆積すると、は内壁面における輻射の反射率が変化する。このため、加熱ユニットBの加熱機構28の温度が同じであっても、熱処理の際の半導体基板3の温度が、熱処理を繰り返し行うことにより変動することがある。このような場合、温度測定器16等により半導体基板3の温度を検出し、その検出結果に応じて、制御装置60により加熱機構28の出力を変化させる。これにより、熱処理の際の半導体基板3の温度の調整し、熱処理の再現性を向上することが可能となる。
(半導体装置及びその製造方法)
上述した本実施形態による半導体基板の熱処理方法は、半導体基板を用いて半導体装置を製造する際の不純物の活性化アニールに適用することができる。以下、本実施形態による熱処理方法を適用して製造される半導体装置の具体例について説明する。
図9は、SiC基板を用いて製造されるプレーナー型MOSFETを示している。図示するように、n型SiC基板301上に、エピタキシャル成長法によりn型SiC膜(ドリフト層)302を形成する。
次いで、n型SiC膜302に、SiO等をマスク(不図示)として、p型不純物、例えばアルミニウムをイオン注入し、p型ウェル層(不純物領域)303を形成する。
次いで注入マスクのSiOをフッ酸処理等により除去した後、p型ウェル層303に、SiO等をマスク(不図示)として、n型不純物、例えば燐をイオン注入し、高濃度のn型不純物層であるn型コンタクト層(不純物領域)304を形成する。
次いで、注入マスクのSiOをフッ酸処理等により除去する。その後、p型ウェル層303のn型コンタクト層304の外側に隣接される形で、SiO等をマスク(不図示)として、p型不純物、例えばアルミニウムをイオン注入し、高濃度のp型不純物層であるp型コンタクト層(不純物領域)305を形成する。
こうして各不純物領域303、304、305を形成した後、注入マスクのSiOをフッ酸処理等により除去し、基板表面にスパッタ法等により、キャップ膜としてカーボン膜を形成する。
次いで、本実施形態による半導体基板の熱処理を行い、各不純物領域303、304、305中の不純物を活性化する。不純物の活性化後、キャップ層として用いたカーボン膜をプラズマ処理等により除去する。
次いで、基板表面に形成された変質層を除去するために、例えば、縦型炉にて酸素雰囲気中で1100℃/30分程度の酸化処理を行い、犠牲酸化層(不図示)を約50nm形成する。
次いで、犠牲酸化層をフッ酸にて洗浄し、清浄なSiC表面を露出させる。その後、ドリフト層302の一部、p型ウェル層303の一部、及びn型コンタクト層304の一部の上に、ゲート絶縁膜となるシリコン酸化膜306を介して、ポリシリコン膜を形成する。続いて、このポリシリコン膜をパターニングすることにより、ポリシリコンからなるゲート307を形成する。
次いで、電極、層間絶縁膜、配線等(不図示)を形成してプレーナー型のn型MOSFETが製造される。こうして製造されるプレーナー型のn型MOSFETでは、SiC基板301の底面側がドレインとして機能する。また、シリコン酸化膜306の周囲に形成されたn型コンタクト層304がソースとして機能する。
図10は、SiC基板を用いて製造されるトレンチ型MOSFETを示している。図示するように、n型SiC基板401上に、エピタキシャル成長法によりn型SiC膜(ドリフト層)402を形成する。
次いで、SiO等をエッチングマスク(不図示)として、ドライエッチング法によりドリフト層402にトレンチ406を形成する。トレンチ406を形成した後、フッ酸洗浄等によりエッチングマスクを除去する。
次いで、プラズマCVD法等を用い、開口したトレンチ406にSiO(不図示)を埋め込み、不要な部分への不純物の注入を防止する注入抑制層(不図示)を形成する。
型SiC膜402に、SiO等をマスク(不図示)として、p型不純物、例えばアルミニウムをイオン注入し、p型ウェル層(不純物領域)403を形成する。
次いで、注入マスクのSiOをフッ酸処理等により除去した後、p型ウェル層403に、SiO等をマスク(不図示)として、n型不純物、例えば燐をイオン注入し、高濃度のn型不純物層であるn型コンタクト層(不純物領域)404を形成する。
次いで、注入マスクのSiOをフッ酸処理等により除去する。その後、p型ウェル層403のn型コンタクト層404の外側に隣接される形で、SiO等をマスク(不図示)として、p型不純物、例えばアルミニウムをイオン注入し、高濃度のp型不純物層であるp型コンタクト層(不純物領域)405を形成する。
こうして各不純物領域403、404、405を形成した後、注入マスク及び注入抑制層のSiOをフッ酸処理等により除去し、基板表面にスパッタ法等により、キャップ膜としてカーボン膜を形成する。
次いで、本実施形態による半導体基板の熱処理を行い、各不純物領域403、404、405中の不純物を活性化する。不純物の活性化後、キャップ層として用いたカーボン膜をプラズマ処理等により除去する。
次いで、基板表面に形成された変質層を除去するために、例えば、縦型炉にて酸素雰囲気中で1100℃/30分程度の酸化処理を行い、犠牲酸化層(不図示)を約50nm形成する。
次いで、犠牲酸化層をフッ酸にて洗浄し、清浄なSiC表面を露出させた後、トレンチ406の側面にゲート絶縁膜となるシリコン酸化膜407を形成する。シリコン酸化膜407を形成した後、ポリシリコン膜で、トレンチ406を埋め込む。続いて、このポリシリコン膜をパターニングすることにより、ポリシリコンからなるゲート電極408を形成する。
次いで、電極、層間絶縁膜、配線等(不図示)を形成してトレンチ型のn型MOSFETが製造される。こうして製造されるトレンチ型のn型MOSFETでは、SiC基板401の底面側がドレインとして機能する。また、シリコン酸化膜407の周囲に形成されたn型コンタクト層404がソースとして機能する。また、チャネル409は、ゲート電極408への電圧印加により、p型ウェル層403とシリコン酸化膜407との間に形成され、キャリアはトレンチ406に沿って基板表面に対して垂直方向に移動する。
なお、本発明は、上記実施形態に限らず種々の変形が可能である。
例えば、上記実施形態では、半導体基板としてSiC基板を用いた場合を主な例として説明したが、本発明は、SiC基板以外の他の半導体基板の熱処理にも適用可能である。他の半導体基板としては、例えばGaN基板等の化合物半導体基板を挙げることができる。他の半導体基板においても、高温での熱処理に際して、半導体基板を構成する材料の昇華が生じ得る。このため、他の半導体基板についても、その表面に上述したキャップ膜を形成し、Arガスを封止した状態において熱処理を行うことにより、半導体基板の材料の昇華を抑制して表面荒れを抑制することができる。
また、上記実施形態では、キャップ膜としてカーボン膜を用いた場合について説明したが、上述のように、キャップ膜はカーボン膜に限定されるものではなく、窒化アルミニウム膜等の他のキャップ膜を用いてもよい。
また、上記実施形態では、真空チャンバD内にArガスを封止する場合を主な例として説明したが、上述のように、真空チャンバD内に封止するガスはArガスに限定されるものではない。真空チャンバD内に封止するガスは、熱処理すべき半導体基板の材料と反応しないか、反応性に乏しいものであればよく、他の不活性ガスを用いてもよい。
(第1の実施例)
第1の実施例では、SiC基板として、エピタキシャル成長したSiC結晶層を表面層として有し、SiC結晶層内に不純物添加領域が形成されたものを用意した。このSiC基板の表面には、ロータリーマグネトロンカソード(RMC)を備えた静止対向型のスパッタ装置を用い、直径12.5インチのカーボンターゲットにて、膜厚400nmのカーボン膜を成膜した。カーボン膜の成膜条件としては、ターゲット温度を室温、スパッタ圧力を0.2Pa、ターゲット/基板間距離を150mm、ターゲットに印加するDCパワー4.5kW(約64mW/mm)にそれぞれ設定した。こうして、熱処理に供する半導体基板として、表面にカーボン膜が形成されたSiC基板を用意した。
まず、予めロードロックチャンバ260、搬送チャンバ241、プロセスチャンバとしての真空チャンバD等のチャンバを10−3Pa以下の高真空に排気した。さらに、真空チャンバDをターボ分子ポンプ48で排気しつつ、加熱機構28を1500℃以上に加熱することで、加熱機構28、チャンバ、基板ホルダユニットA等から十分な脱ガスを行った。
脱ガスが完了した後、真空チャンバD及び搬送チャンバ241のターボ分子ポンプを停止させるか排気用のメインバルブを閉じた状態で、真空チャンバD内及び搬送チャンバ241内にArガスを50kPaになるまで注入した。次いで、Arガス導入用バルブを閉鎖して、真空チャンバD内及び搬送チャンバ241内にArガスを封止した。
上記のようにしてArガスを封止した状態で、真空チャンバDの基板ホルダユニットAを基板の搬入出位置まで降下させた。続いて、シャッタ17を基板ホルダユニットAと加熱ユニットBとの間に進出させ、加熱ユニットBの加熱機構28の放熱面温度が1200℃になるまで予め加熱した。
次いで、ロードロックチャンバ260をArガス又は窒素(N)ガスでベントし、上記SiC基板をロードロックチャンバ260内にセットした。続いて、ロードロックチャンバ260内を10Pa程度までドライポンプで排気した後、その排気バルブを閉鎖した。その後、ロードロックチャンバ260内にArガスを50kPaまで注入し、ロードロックチャンバ260内をArガスで封止した。
次いで、チャンバ間のスリットバルブVb、Vcを開放し、搬送チャンバ241の搬送ロボット242を介して、ロードロックチャンバ260内のSiC基板を真空チャンバD内に搬送した。このとき、ロードロックチャンバ260、搬送チャンバ241、及び真空チャンバDが同一圧力になっているため、搬送に際してスリットバルブを開放してもパーティクルの巻き上げや、SiC基板にズレを生じることはなかった。SiC基板の搬送後、真空チャンバDの搬入出用のスリットバルブVb、Vcを閉鎖した。
次いで、真空チャンバDへArガスを70kPaになるまで導入し、ガス導入バルブを閉じて、Ar封止を行った。基板ホルダユニットAと加熱ユニットBとの間からシャッタ17を後退させ、基板ホルダユニットAを熱処理位置まで上昇させた。続いて、加熱ユニットBの加熱機構28により、SiC基板の温度が1800℃になるまで昇温し、5分間保持した。
こうしてSiC基板の熱処理が完了した後、冷却位置に基板ホルダユニットAを降下させ、SiC基板の温度が1400℃程度になるまで冷却した。その後、基板ホルダユニットAを搬入出位置まで降下させ、シャッタ17を基板ホルダユニットAと加熱ユニットBとの間に進出させた。この冷却時間の間に排気系47により、真空チャンバDの圧力が50kPaになるように排気した。
次いで、スリットバルブVb、Vcを開放し、SiC基板を搬送チャンバ241の搬送ロボット242を介してロードロックチャンバ260へ搬送した。続いて、ロードロックチャンバ260をベントし、SiC基板をロードロックチャンバ260から取り出した。こうして、SiC基板の熱処理を完了した。
上記熱処理後のSiC基板の表面平坦性を原子間力顕微鏡(Atomic Force Microscopy、AFM)により測定した。なお、表面平坦性の測定の前に、プラズマアッシングによりカーボン膜をSiC基板の表面から除去した。その結果、熱処理後のSiC基板の表面のRMS値は0.19nmであり、非常に良好な表面平坦性を得ることができた。なお、熱処理前のSiC基板の表面のRMS値は0.16nmであり、熱処理による表面荒れが小さく抑制されていることが分かる。
(第2の実施例)
第2の実施例では、熱処理に供する半導体基板として、第1の実施例と同様にして、表面にカーボン膜が形成されたSiC基板を用意した。
まず、予めロードロックチャンバ260、搬送チャンバ241、プロセスチャンバとしての真空チャンバD等のチャンバを10−3Pa以下の高真空に排気した。さらに、真空チャンバDをターボ分子ポンプで排気しつつ、加熱機構28を1500℃以上に加熱することで、加熱機構28、チャンバ、基板ホルダユニットA等から十分な脱ガスを行った。
脱ガスが完了した後、真空チャンバD、搬送チャンバ241のターボ分子ポンプにて、真空チャンバD内、搬送チャンバ241内を10−3Pa以下に常時高真空状態に保持させておいた。
次いで、真空チャンバDの基板ホルダユニットAを基板の搬入出位置まで降下させた。続いて、シャッタ17を基板ホルダユニットAと加熱ユニットBとの間に進出させ、加熱ユニットBの加熱機構28の放熱面温度が1200℃になるまで予め加熱した。
次いで、ロードロックチャンバ260をArガス又はNガスでベントし、上記SiC基板をロードロックチャンバ260内にセットした。続いて、ロードロックチャンバ260内を10Pa程度までドライポンプで排気した。その後、スリットバルブVbを開放した。続いて、ターボ分子ポンプにより、ロードロックチャンバ260内及び搬送チャンバ241内を、同一圧力となる10−3Pa以下になるまで排気した。
次いで、チャンバ間のスリットバルブVb、Vcを開放し、搬送ロボット242を介して、ロードロックチャンバ260内のSiC基板を真空チャンバD内に搬送した。SiC基板の搬送後、真空チャンバDの搬入出用のスリットバルブVb、Vcを閉鎖した。
次いで、真空チャンバDの排気用のメインスリットバルブ50を閉鎖した。続いて、Arガス導入用バルブを開放し、真空チャンバD内にArガスを70kPaまで注入した。次いで、Arガス導入用バルブを閉鎖して、真空チャンバD内にArガスを封止した。
次いで、基板ホルダユニットAと加熱ユニットBとの間からシャッタ17を後退させ、基板ホルダを熱処理位置まで上昇させた。続いて、加熱ユニットBの加熱機構28により、SiC基板の温度が1800℃になるまで昇温し、5分間保持した。
こうしてSiC基板の熱処理が完了した後、冷却位置に基板ホルダユニットAを降下させると同時に、真空チャンバD内の排気を開始した。SiC基板の温度が1400℃程度になるまで冷却した後、基板ホルダユニットAを搬入出位置まで降下させ、シャッタ17を基板ホルダユニットAと加熱ユニットBとの間に進出させた。
真空チャンバD内の圧力が10−3Pa以下まで排気されていることを確認した後、スリットバルブVb、Vcを開放し、SiC基板を搬送チャンバ241の搬送ロボット242を介してロードロックチャンバ260へ搬送した。続いて、ロードロックチャンバ260をベントし、SiC基板をロードロックチャンバ260から取り出した。こうして、SiC基板の熱処理を完了した。
上記熱処理後のSiC基板の表面平坦性をAFMにより測定した。なお、表面平坦性の測定の前に、プラズマアッシングによりカーボン膜をSiC基板の表面から除去した。その結果、熱処理後のSiC基板の表面のRMS値は0.19nmであり、非常に良好な表面平坦性を得ることができた。
(第3の実施例)
第3の実施例では、熱処理に供する半導体基板として、第1の実施例と同様にして、表面にカーボン膜が形成されたSiC基板を用意した。
第3の実施例では、第1の実施例と同様なプロセスフローを用い、Arガスの封止圧力を70kPaとし、SiC基板の温度を1850℃として5分間SiC基板を熱処理した。
上記熱処理後のSiC基板の表面平坦性をAFMにより測定した。なお、表面平坦性の測定の前に、プラズマアッシングによりカーボン膜をSiC基板の表面から除去した。その結果、熱処理後のSiC基板の表面のRMS値は0.69nmであり、良好な表面平坦性を得ることができた。
(第4の実施例)
第4の実施例では、熱処理に供する半導体基板として、第1の実施例と同様にして、表面にカーボン膜が形成されたSiC基板を用意した。
第4の実施例では、第2の実施例と同様なプロセスフローを用い、Arガスの封止圧力を70kPaとし、SiC基板の温度を1850℃として5分間SiC基板を熱処理した。
上記熱処理後のSiC基板の表面平坦性をAFMにより測定した。なお、表面平坦性の測定の前に、プラズマアッシングによりカーボン膜をSiC基板の表面から除去した。その結果、熱処理後のSiC基板の表面のRMS値は0.69nmであり、良好な表面平坦性を得ることができた。
(第5の実施例)
第5の実施例では、SiC基板として、エピタキシャル成長したSiC結晶層を表面層として有し、SiC結晶層内に不純物添加領域が形成されたものを用意した。
まず、予めロードロックチャンバ260、搬送チャンバ241、スパッタチャンバ201、真空チャンバD(アニールチャンバ)を10−3Pa以下の高真空に排気した。さらに、真空チャンバDをターボ分子ポンプ48で排気しつつ、加熱機構28を1500℃以上に加熱することで、加熱機構28、チャンバ、基板ホルダユニットA等から十分な脱ガスを行った。
脱ガスが完了した後、真空チャンバD、スパッタチャンバ201及び、搬送チャンバ241のターボ分子ポンプを停止させるか排気用のメインバルブを閉じた状態で、真空チャンバD、スパッタチャンバ201及び、搬送チャンバ241内にArガスを50kPaになるまで注入した。次いで、Arガス導入用バルブを閉鎖して、真空チャンバD、スパッタチャンバ201及び、搬送チャンバ241にArガスを封止した。このとき、Arガス導入と排気の両方の機能を用いて、真空チャンバD、スパッタチャンバ201及び、搬送チャンバ241の圧力を50kPaに調整してもよい。
上記のようにしてArガスを封止した状態で、真空チャンバDの基板ホルダユニットAを基板の搬送位置まで降下させた。続いて、シャッタ17を基板ホルダユニットAと加熱ユニットBとの間に進出させた。
次いで、ロードロックチャンバ260をArガス又はNガスでベントし、上記SiC基板をロードロックチャンバ260内にセットした。続いて、ロードロックチャンバ260を10Pa程度までドライポンプで排気した後、その排気バルブを閉鎖した。その後ロードロックチャンバ260内にArガスを50kPaまで注入し、ロードロックチャンバ260内をArガスで封止した。
次いで、スリットバルブVb、Vdを開放し、搬送チャンバ241の搬送ロボット242を介して、ロードロックチャンバ260内のSiC基板をスパッタチャンバ201に搬送した。SiC基板の搬送後、スリットバルブVb、Vdを閉鎖した。
次いで、スパッタチャンバ201を荒引き排気バルブ(不図示)を開放し、荒引き排気ラインで10Pa程度まで排気した。このとき、パーティクルの巻き上げを防止する目的で、スロー排気のステップを入れてもよい。その後、荒引き排気バルブを閉鎖し、メインバルブ(不図示)を開放し、ターボ分子ポンプ(不図示)にて、到達真空が10−3Pa以下になるようにスパッタチャンバ201を排気した。
次いで、スパッタチャンバ201でキャップ膜を成膜するために、Arガスを導入して、スパッタチャンバ201内の圧力が0.2Paになるように調整した。このとき、ターボ分子ポンプ(不図示)の排気能力が大きすぎる場合は、メインバルブ(不図示)の開度を調節してもよい。ターゲット/基板間距離を150mm、ターゲットに印加するDCパワーを4.5kW(約64mW/mm)に設定して、直径12.5インチのカーボンターゲットにて、ロータリーマグネトロンカソード(RMC)を備えた静止対向型のスパッタ装置を用い、キャップ膜の膜厚が400nmになるように成膜した。キャップ膜の膜厚は、次の真空チャンバDでのアニール処理における温度と時間によっては、5nm〜1000nmとすることもできる。
キャップ膜を所望の膜厚まで成膜した後、Arガスを50kPaまで注入し、スパッタチャンバ201をArガスで封止した。このとき、Arガスを注入する前に、一度スパッタチャンバ201を10−3Pa以下まで排気してもよい。
次いで、スリットバルブVc、Vdを開放し、搬送チャンバ241の搬送ロボット242を介して、スパッタチャンバ201内のSiC基板を真空チャンバDに搬送した。SiC基板の搬送後、スリットバルブVc、Vdを閉鎖した。
次いで、真空チャンバDへArガスを70kPaになるまで導入し、ガス導入バルブを閉じて、Ar封止を行った。このとき、排気ラインとArガス導入ラインの両方を用いて、真空チャンバDの圧力を70kPaになるように調整してもよい。基板ホルダユニットAと加熱ユニットBとの間からシャッタ17を後退させ、基板ホルダユニットAを熱処理位置まで上昇させた。続いて、加熱ユニットBの加熱機構28により、SiC基板の温度が1800℃になるまで昇温し、5分間保持した。このとき、真空チャンバDの圧力を70kPaに調整した後、加熱ユニットBのパワーを上昇させ加熱を行っているが、真空チャンバDの圧力を調整しながら、シャッタ17を後退させ、基板ホルダユニットAを上昇させて加熱機構28の投入パワーを上昇させても、SiC基板の温度が1500℃に達する前に、真空チャンバDの圧力が70kPaに調整されて、Arガス封止が行われていればよい。
こうしてSiC基板の熱処理が完了した後、冷却位置に基板ホルダユニットAを降下させ、SiC基板の温度が1400℃程度になるまで冷却した。その後、基板ホルダユニットAを搬入出位置まで降下させ、シャッタ17を基板ホルダユニットAと加熱ユニットBとの間に進出させた。この冷却時間の間に排気系47により、真空チャンバDの圧力が50kPaになるように排気した。
次いで、スリットバルブVb、Vcを開放し、SiC基板を搬送チャンバ241の搬送ロボット242を介してロードロックチャンバ260へ搬送した。続いて、ロードロックチャンバ260をベントし、SiC基板をロードロックチャンバ260から取り出した。こうして、SiC基板の熱処理を完了した。
上記熱処理後のSiC基板の表面平坦性をAFMにより測定した。なお、表面平坦性の評価の前には、プラズマアッシングによりカーボン膜をSiC基板の表面から除去した。その結果、熱処理後のSiC基板の表面のRMS値は0.19nmであり、非常に良好な表面平坦性を得ることができた。なお、熱処理前のSiC基板の表面のRMS値は0.16nmであり、熱処理による表面荒れが小さく抑制されていることが分かる。
本実施例では、搬送チャンバ241を介してロードロックチャンバ260からスパッタチャンバ201に半導体基板を搬送するときの搬送圧力を50kPaとした。また、搬送チャンバ241を介してスパッタチャンバ201から真空チャンバDに搬送するときの搬送圧力を50kPaとした。また、搬送チャンバ241を介して真空チャンバDからロードロックチャンバ260に搬送するときの搬送圧力を50kPaとした。このように、半導体基板を搬送チャンバ241、スパッタチャンバ201及び真空チャンバDに搬送するときの搬送圧力を50kPaとすることによって、排気にかかる時間を短縮することができる。この結果、スループットを向上させることができる。本実施例では搬送圧力を50kPaとしたが、搬送圧力は、キャップ膜を成膜するときのスパッタチャンバ201内の圧力よりも高く、熱処理するときの真空チャンバD内の圧力以下の圧力であれば、50kPaに限定されない。このような搬送圧力とすることにより、キャップ膜の成膜処理及び熱処理に要する圧力又は要した圧力と搬送圧力との差を小さくすることができるため、排気にかかる時間を短縮することができる。

Claims (12)

  1. 表面にキャップ膜が形成された半導体基板の熱処理を行う半導体基板の熱処理方法であって、
    分子流領域の圧力を超える圧力でガスが封止された状態の処理室内において、前記半導体基板の前記熱処理を行うことを特徴とする半導体基板の熱処理方法。
  2. 前記半導体基板に対向して放熱により前記半導体基板を加熱する基板対向面を有する加熱手段を用い、前記半導体基板が前記処理室内に搬送されて載置された第1の状態よりも前記半導体基板と前記基板対向面とを近接させた第2の状態で、前記半導体基板の前記熱処理を行うことを特徴とする請求項1記載の半導体基板の熱処理方法。
  3. 前記半導体基板の前記熱処理には、前記半導体基板に対向して放熱により前記半導体基板を加熱する基板対向面を有する被加熱部と、前記被加熱部を含む加熱容器と、前記加熱容器内に収容された加熱機構とを有する加熱手段を用い、
    前記被加熱部の内壁面及び外壁面の少なくとも一方の少なくとも一部には、耐熱性のコーティング膜が形成されていることを特徴とする請求項1記載の半導体基板の熱処理方法。
  4. 前記熱処理における前記半導体基板の熱処理温度が1500℃以上であり、1750℃以下である場合には、前記処理室内に封止された前記ガスの圧力を10kPa以上に設定し、
    前記熱処理における前記半導体基板の熱処理温度が1750℃よりも高く、2000℃以下である場合には、前記処理室内に封止された前記ガスの圧力を50kPa以上に設定することを特徴とする請求項1記載の半導体基板の熱処理方法。
  5. 前記キャップ膜は、スパッタターゲットに40mW/mm以上の電力を印加したスパッタ法により成膜され、柱状の結晶構造を有するものであることを特徴とする請求項1記載の半導体基板の熱処理方法。
  6. 前記半導体基板がSiC基板であり、前記キャップ膜がカーボン膜であることを特徴とする請求項1記載の半導体基板の熱処理方法。
  7. 半導体基板の表面にキャップ膜を形成するステップと、
    請求項1記載の半導体基板の熱処理方法により、前記キャップ膜が形成された前記半導体基板に対して前記熱処理を行うステップと
    を有することを特徴とする半導体基板の製造方法。
  8. 表面にキャップ膜が形成された半導体基板の熱処理を行うための処理室と、
    前記処理室内に設けられた加熱手段と、
    分子流領域の圧力を超える圧力でガスが封止された状態の前記処理室内において、前記加熱手段により前記半導体基板の前記熱処理を実行する制御装置と
    を有することを特徴とする熱処理装置。
  9. 前記加熱手段は、前記半導体基板に対向して放熱により前記半導体基板を加熱する基板対向面を有し、
    前記制御装置は、前記半導体基板が前記処理室内に搬送されて載置された第1の状態よりも前記半導体基板と前記基板対向面とを近接させた第2の状態で、前記半導体基板の前記熱処理を実行することを特徴とする請求項8記載の熱処理装置。
  10. 前記加熱手段は、前記半導体基板に対向して放熱により前記半導体基板を加熱する基板対向面を有する被加熱部と、前記被加熱部を含む加熱容器と、前記加熱容器内に収容された加熱機構とを有し、
    前記被加熱部の内壁面及び外壁面の少なくとも一方の少なくとも一部には、耐熱性のコーティング膜が形成されていることを特徴とする請求項8記載の熱処理装置。
  11. 請求項8記載の熱処理装置と、
    前記キャップ膜を成膜するキャップ膜成膜装置と、
    前記半導体基板を前記熱処理装置と前記キャップ膜成膜装置との間で搬送する搬送手段を有する基板搬送室と、
    を備えることを特徴とする基板処理システム。
  12. 前記半導体基板を前記熱処理装置と前記キャップ膜成膜装置との間で搬送するときの搬送圧力は、
    前記キャップ膜を成膜するときの前記キャップ膜成膜装置内の圧力より高く、前記半導体基板を熱処理するときの前記熱処理装置内の圧力以下であることを特徴とする請求項11記載の基板処理システム。
JP2016510038A 2014-03-24 2015-03-24 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム Active JP6588423B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014060584 2014-03-24
JP2014060584 2014-03-24
PCT/JP2015/001684 WO2015146161A1 (ja) 2014-03-24 2015-03-24 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム

Publications (2)

Publication Number Publication Date
JPWO2015146161A1 true JPWO2015146161A1 (ja) 2017-04-13
JP6588423B2 JP6588423B2 (ja) 2019-10-09

Family

ID=54194706

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016510039A Active JP6530377B2 (ja) 2014-03-24 2015-03-24 半導体基板の凹部の角部を丸める方法及び装置
JP2016510038A Active JP6588423B2 (ja) 2014-03-24 2015-03-24 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム
JP2019026752A Active JP6668521B2 (ja) 2014-03-24 2019-02-18 半導体基板の熱処理方法及び熱処理装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016510039A Active JP6530377B2 (ja) 2014-03-24 2015-03-24 半導体基板の凹部の角部を丸める方法及び装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019026752A Active JP6668521B2 (ja) 2014-03-24 2019-02-18 半導体基板の熱処理方法及び熱処理装置

Country Status (3)

Country Link
US (1) US9991119B2 (ja)
JP (3) JP6530377B2 (ja)
WO (2) WO2015146161A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146161A1 (ja) 2014-03-24 2015-10-01 キヤノンアネルバ株式会社 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム
JP2016162918A (ja) * 2015-03-03 2016-09-05 トヨタ自動車株式会社 半導体装置の製造方法
CN104894534B (zh) * 2015-06-26 2017-12-29 京东方科技集团股份有限公司 气相沉积设备
JP6493339B2 (ja) * 2016-08-26 2019-04-03 村田機械株式会社 搬送容器、及び収容物の移載方法
CN109817713B (zh) * 2017-11-22 2022-04-15 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
KR102161247B1 (ko) 2018-12-10 2020-09-29 경기도 베이커리 소재용 효소 처리 콩 분말 제조 및 이를 이용한 마카롱의 제조방법
JP7389239B2 (ja) * 2019-09-10 2023-11-29 コリア エレクトロテクノロジー リサーチ インスティテュート トレンチゲート型SiCMOSFETデバイス及びその製造方法
DE102022002762A1 (de) * 2022-07-29 2024-02-01 centrotherm international AG Reinigungsverfahren zum Reinigen eines Hochtemperaturofens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178946A (ja) * 2007-01-25 2008-08-07 Ulvac Japan Ltd 搬送ロボット、真空装置
WO2008123111A1 (ja) * 2007-03-20 2008-10-16 Canon Anelva Corporation 基板加熱処理装置及び基板加熱処理方法
WO2010095369A1 (ja) * 2009-02-20 2010-08-26 昭和電工株式会社 炭化珪素半導体装置の製造方法
JP2012142484A (ja) * 2011-01-05 2012-07-26 National Institute Of Advanced Industrial & Technology 炭化珪素半導体デバイスの作製方法
JP2012227473A (ja) * 2011-04-22 2012-11-15 Ulvac Japan Ltd 半導体装置の製造方法
WO2013099063A1 (ja) * 2011-12-27 2013-07-04 キヤノンアネルバ株式会社 基板熱処理装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308029A (ja) * 2000-04-20 2001-11-02 Kobe Steel Ltd 金属配線膜の形成方法
JP4123961B2 (ja) * 2002-03-26 2008-07-23 富士電機デバイステクノロジー株式会社 半導体装置の製造方法
JP4376505B2 (ja) * 2002-10-30 2009-12-02 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
JP3741283B2 (ja) * 2003-03-10 2006-02-01 学校法人関西学院 熱処理装置及びそれを用いた熱処理方法
WO2005076327A1 (ja) * 2004-02-06 2005-08-18 Matsushita Electric Industrial Co., Ltd. 炭化珪素半導体素子及びその製造方法
JP2006339396A (ja) * 2005-06-02 2006-12-14 Kwansei Gakuin イオン注入アニール方法、半導体素子の製造方法、及び半導体素子
JP2007335649A (ja) * 2006-06-15 2007-12-27 Mitsubishi Electric Corp 炭化シリコン半導体基板の加熱方法
JP5509520B2 (ja) 2006-12-21 2014-06-04 富士電機株式会社 炭化珪素半導体装置の製造方法
JP5190451B2 (ja) * 2007-04-20 2013-04-24 キヤノンアネルバ株式会社 炭化ケイ素基板を有する半導体デバイスのアニール方法
JP4992695B2 (ja) * 2007-12-14 2012-08-08 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP4617364B2 (ja) 2008-02-29 2011-01-26 キヤノンアネルバ株式会社 基板加熱装置及び処理方法
JP5092868B2 (ja) * 2008-04-18 2012-12-05 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP5589263B2 (ja) * 2008-05-29 2014-09-17 富士電機株式会社 炭化珪素半導体基板のトレンチ形成方法
JP4582816B2 (ja) 2008-06-27 2010-11-17 キヤノンアネルバ株式会社 真空加熱装置
JP5620090B2 (ja) 2008-12-15 2014-11-05 キヤノンアネルバ株式会社 基板処理装置、熱処理基板の製造方法及び半導体デバイスの製造方法
JP2010205922A (ja) * 2009-03-03 2010-09-16 Canon Anelva Corp 基板熱処理装置及び基板の製造方法
JP5406279B2 (ja) 2009-03-26 2014-02-05 キヤノンアネルバ株式会社 基板処理方法および結晶性炭化ケイ素(SiC)基板の製造方法
JP2010251718A (ja) 2009-03-27 2010-11-04 Canon Anelva Corp 加熱装置の温度制御方法及び記憶媒体
WO2011016223A1 (ja) 2009-08-04 2011-02-10 キヤノンアネルバ株式会社 加熱処理装置および半導体デバイスの製造方法
JP5469678B2 (ja) 2009-12-25 2014-04-16 キヤノンアネルバ株式会社 基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体
US8691676B2 (en) 2010-08-09 2014-04-08 Canon Anelva Corporation Substrate heat treating apparatus, temperature control method of substrate heat treating apparatus, manufacturing method of semiconductor device, temperature control program of substrate heat treating apparatus, and recording medium
JP5209152B1 (ja) 2011-09-22 2013-06-12 パナソニック株式会社 炭化珪素半導体素子およびその製造方法
JP6017127B2 (ja) 2011-09-30 2016-10-26 株式会社東芝 炭化珪素半導体装置
WO2015146161A1 (ja) 2014-03-24 2015-10-01 キヤノンアネルバ株式会社 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178946A (ja) * 2007-01-25 2008-08-07 Ulvac Japan Ltd 搬送ロボット、真空装置
WO2008123111A1 (ja) * 2007-03-20 2008-10-16 Canon Anelva Corporation 基板加熱処理装置及び基板加熱処理方法
WO2010095369A1 (ja) * 2009-02-20 2010-08-26 昭和電工株式会社 炭化珪素半導体装置の製造方法
JP2012142484A (ja) * 2011-01-05 2012-07-26 National Institute Of Advanced Industrial & Technology 炭化珪素半導体デバイスの作製方法
JP2012227473A (ja) * 2011-04-22 2012-11-15 Ulvac Japan Ltd 半導体装置の製造方法
WO2013099063A1 (ja) * 2011-12-27 2013-07-04 キヤノンアネルバ株式会社 基板熱処理装置

Also Published As

Publication number Publication date
JP6530377B2 (ja) 2019-06-12
JP6668521B2 (ja) 2020-03-18
WO2015146162A1 (ja) 2015-10-01
JP2019091930A (ja) 2019-06-13
JPWO2015146162A1 (ja) 2017-04-13
US20170011921A1 (en) 2017-01-12
US9991119B2 (en) 2018-06-05
WO2015146161A1 (ja) 2015-10-01
JP6588423B2 (ja) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6588423B2 (ja) 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム
US8090245B2 (en) Apparatus for heat-treating substrate and method for heat-treating substrate
KR0139793B1 (ko) 막형성 방법
JP5511536B2 (ja) 基板処理装置及び半導体装置の製造方法
KR100682163B1 (ko) 하이브리드형 pvd-cvd 시스템
TWI763653B (zh) 基板處理裝置
US7972979B2 (en) Substrate processing method and substrate processing apparatus
US8980767B2 (en) Methods and apparatus for processing a substrate
US20140034846A1 (en) In-vacuum high speed pre-chill and post-heat stations
KR20130118230A (ko) 피가공재 상의 응축을 방지하기 위한 능동형 이슬점 감지 및 로드록 배기
US20100226630A1 (en) Apparatus for heat-treating substrate and substrate manufacturing method
JP6005966B2 (ja) 熱処理装置および熱処理方法
WO2013181093A1 (en) Inert atmospheric pressure pre-chill and post-heat
US10535513B2 (en) Apparatus and methods for backside passivation
JP5478041B2 (ja) アニール装置、熱処理方法
JP6554387B2 (ja) ロードロック装置における基板冷却方法、基板搬送方法、およびロードロック装置
KR101224529B1 (ko) 열처리장치
JP2005259902A (ja) 基板処理装置
KR20200094677A (ko) 기판 처리 장치의 제어 방법, 기판 처리 장치 및 클러스터 시스템
JP2008182194A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20160920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190912

R150 Certificate of patent or registration of utility model

Ref document number: 6588423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250