WO2015146162A1 - 半導体基板の熱処理方法及び熱処理装置 - Google Patents

半導体基板の熱処理方法及び熱処理装置 Download PDF

Info

Publication number
WO2015146162A1
WO2015146162A1 PCT/JP2015/001686 JP2015001686W WO2015146162A1 WO 2015146162 A1 WO2015146162 A1 WO 2015146162A1 JP 2015001686 W JP2015001686 W JP 2015001686W WO 2015146162 A1 WO2015146162 A1 WO 2015146162A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
substrate
heat treatment
gas
chamber
Prior art date
Application number
PCT/JP2015/001686
Other languages
English (en)
French (fr)
Inventor
真果 柴垣
篠田 康子
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2016510039A priority Critical patent/JP6530377B2/ja
Publication of WO2015146162A1 publication Critical patent/WO2015146162A1/ja
Priority to US15/272,484 priority patent/US9991119B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67751Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation

Definitions

  • the present invention relates to a heat treatment method and a heat treatment apparatus for a semiconductor substrate.
  • Angular corners in the trench can cause defective coating when the gate insulating film is coated, and can cause voids when forming the buried electrode in the trench. . Furthermore, the angular corners of the trench may cause dielectric breakdown of the gate insulating film due to electric field concentration, and improvement is demanded.
  • Patent Document 2 there has been proposed a method for reducing the electric field concentration and ensuring the reliability of the gate insulating film by rounding the opening and bottom corners of the trench.
  • a first heat treatment in a temperature range of 1600 ° C. to 1800 ° C. is performed in an Ar gas or SiH 4 gas / inert gas atmosphere, and then a second heat treatment in a hydrogen atmosphere of 1400 ° C. to 1500 ° C. is performed. It is disclosed to round the corners of the trench opening and the bottom of the trench.
  • the first heat treatment in the temperature range of 1600 ° C. to 1800 ° C. is performed in an Ar gas or SiH 4 gas / inert gas atmosphere disclosed in Patent Document 2, and then the temperature is 1400 ° C. to 1500 ° C. in a hydrogen atmosphere.
  • the productivity since the first heat treatment and the second heat treatment are performed, there is a concern that the productivity may be significantly reduced.
  • combustible SiH 4 gas and explosive hydrogen gas are used, a dedicated gas introduction line, gas detector, waste gas treatment equipment and other incidental facilities related to safety are required, which greatly increases costs. There is concern about inviting.
  • the present invention has been made in light of the above problems, and a semiconductor substrate heat treatment method capable of improving the shape of a trench without using a gas having flammability and explosiveness while improving productivity and
  • An object is to provide a heat treatment apparatus.
  • a heat treatment method for performing heat treatment on a semiconductor substrate in which a recess is formed in a treatment chamber in which a gas is sealed at a pressure exceeding a pressure in a molecular flow region is provided.
  • the gas is sealed at a pressure exceeding the pressure in the molecular flow region, the processing chamber for performing heat treatment of the semiconductor substrate, the heating means provided in the processing chamber, and the molecular flow region.
  • a heat treatment apparatus for a semiconductor substrate comprising: a control device that performs the heat treatment on a semiconductor substrate having a recess formed by the heating means in the processing chamber in a state.
  • the corner portion is rounded while controlling the trench width with high productivity and without requiring an expensive incidental facility. be able to.
  • FIG. 1 is a schematic sectional view (No. 1) showing a heat treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view (No. 2) showing the heat treatment apparatus according to the embodiment of the present invention.
  • FIG. 3 is a schematic sectional view (No. 3) showing the heat treatment apparatus according to the embodiment of the present invention.
  • FIG. 4 is a schematic sectional view (No. 1) showing the substrate holder unit and its periphery in the heat treatment apparatus according to the embodiment of the present invention.
  • FIG. 5 is a schematic sectional view (No. 2) showing the substrate holder unit and its periphery in the heat treatment apparatus according to the embodiment of the present invention.
  • FIG. 1 is a schematic sectional view (No. 1) showing a heat treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view (No. 2) showing the heat treatment apparatus according to the embodiment of the present invention.
  • FIG. 3 is a schematic sectional view (No. 3) showing the
  • FIG. 6 is a schematic cross-sectional view showing a heating unit in the heat treatment apparatus according to one embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing an example of a substrate processing system in which a heat treatment apparatus according to an embodiment of the present invention is incorporated.
  • FIG. 8A is a flowchart showing a preliminary preparation of a semiconductor substrate heat treatment method according to an embodiment of the present invention.
  • FIG. 8B is a flowchart illustrating a semiconductor substrate heat treatment method according to an embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing an example of a trench type MOSFET manufactured using the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional view of a semiconductor substrate having a trench before heat treatment used in one embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional view (No. 1) of the trench after the heat treatment used in the embodiment of the present invention.
  • FIG. 12 is a part of a sectional view (No. 2) of the trench after the heat treatment used in the embodiment of the present invention.
  • FIG. 13 is a partial cross-sectional view (No. 1) of the trench after the heat treatment used in the comparative example of the present invention.
  • FIG. 14 is a part of a sectional view (No. 2) of the trench after the heat treatment used in the comparative example of the present invention.
  • FIG. 1 shows the heat treatment apparatus 100 in a state when a semiconductor substrate is carried in or out.
  • FIG. 2 shows the heat treatment apparatus 100 in a state during the heat treatment of the semiconductor substrate.
  • FIG. 3 shows the heat treatment apparatus 100 in a state of cooling the semiconductor substrate.
  • FIG. 4 shows the substrate holder unit A in FIG. 1 and its periphery in an enlarged manner.
  • FIG. 5 shows an enlarged view of the substrate holder unit A and its periphery in FIG.
  • FIG. 6 shows an example of a specific configuration of the heating unit B.
  • the heat treatment apparatus 100 includes a substrate holder unit A that is a substrate holding means, a heating unit B that is a heating means, a shutter device C, and a vacuum that constitutes a processing chamber. Chamber D. Furthermore, the heat treatment apparatus 100 includes a control device 60 that controls the entire operation of the heat treatment apparatus.
  • the substrate holder unit A, the heating unit B, and the shutter device C are provided in a vacuum chamber D that is a processing chamber.
  • the substrate holder unit A includes a substrate stage 1 at the top.
  • the heating unit B is provided above the substrate stage 1 and includes a substrate facing surface 2 that faces the substrate stage 1.
  • substrate opposing surface 2 of the heating unit B is comprised so that heat radiation is possible so that it may mention later.
  • the substrate holder unit A can be moved up and down by the lifting device E.
  • the proximity and separation between the substrate stage 1 and the substrate facing surface 2 of the heating unit B can be controlled by the operation of the lifting device E.
  • the heating unit B is in a non-contact state with the semiconductor substrate 3 when the substrate holder unit A is raised and the semiconductor substrate 3 on the substrate stage 1 and the substrate facing surface 2 are brought close to each other.
  • the semiconductor substrate 3 is heated by radiant heat radiated from the opposing surface 2.
  • the substrate holder unit A shown in FIG. 1 is in a lowered position and is in a state in which the semiconductor substrate 3 can be carried into and out of the vacuum chamber D. Further, the substrate holder unit A shown in FIG. 2 is in the raised position and is in a state during the heat treatment of the semiconductor substrate 3. The substrate holder unit A shown in FIG. 3 is in the lowered position after the heat treatment, and is in a state when the semiconductor substrate 3 is cooled.
  • FIG. 4 is an enlarged view of the substrate holder unit A and its periphery shown in FIG. 1
  • FIG. 5 is an enlarged view of the substrate holder unit A and its periphery shown in FIG.
  • the substrate holder unit A for holding the semiconductor substrate 3 includes a substrate stage 1 at the top, four radiation plates 4 under the substrate stage 1, and under the radiation plate 4. Two reflectors 5 and a cooling panel 6 at the bottom are provided.
  • the substrate stage 1 is a substrate on which a semiconductor substrate 3 to be heat-treated is placed.
  • a concave portion is formed at the center of the upper surface of the substrate stage 1, and this concave portion serves as a substrate placement portion 7 on which the semiconductor substrate 3 is placed.
  • the semiconductor substrate 3 shown in FIG. 4 is lifted and supported by lift pins 8 described later.
  • the substrate holder unit A is raised by the elevating device E and the substrate stage 1 moves upward from the lift pins 8, as shown in FIG. 5, the substrate holder unit A is moved and placed on the substrate platform 7.
  • the semiconductor substrate 3 to be subjected to heat treatment is a semiconductor substrate into which impurities are introduced, for example, by ion implantation.
  • the semiconductor substrate 3 include a SiC substrate and a gallium nitride (GaN) substrate.
  • the semiconductor substrate includes, in addition to the semiconductor substrate itself, a substrate in which a semiconductor film is further formed on the semiconductor substrate and a substrate in which a semiconductor film is formed on a support substrate.
  • a plurality of lift pins 8 erected on the bottom of the vacuum chamber D protrude from the substrate stage 1 through the lift pin through holes 13.
  • the number of lift pins 8 is such that the semiconductor substrate 3 on the substrate platform 7 can be lifted and supported at the tip.
  • the substrate holder unit A rises from the state shown in FIG. 4 and the substrate stage 1 moves upward from the lift pins 8, the semiconductor substrate 3 is transferred onto the substrate platform 7.
  • the semiconductor substrate 3 is subjected to heat treatment by the heating unit B in a state of being placed on the substrate placement portion 7 in this way.
  • the lift pins 8 are preferably made of a material that has a high emissivity, efficiently absorbs radiant heat, and can withstand high heat.
  • the lift pins 8 project onto the substrate stage 1 through the lift pin through holes 13. . Then, the semiconductor substrate 3 on the substrate platform 7 is lifted and supported by the tip of the lift pin 8, and the state shown in FIG.
  • the heating unit B includes a substrate facing surface 2 facing the semiconductor substrate 3 and a heating mechanism 28 for heating the substrate facing surface 2.
  • a heating mechanism 28 of the heating unit B an electron impact heating type heating mechanism, a high frequency induction heating type heating mechanism, a resistance heating type heating mechanism, an infrared heating type heating mechanism, a heating mechanism using a combination thereof, or the like is used. Can do.
  • FIG. 6 is an enlarged cross-sectional view of the heating unit B using the electron impact heating type heating mechanism 28.
  • the heating unit B using the electron impact heating type heating mechanism 28 includes a conductive heated portion 131 provided on the inner wall 103 that constitutes the ceiling in the second chamber 23 of the vacuum chamber D.
  • the water cooling flow path 19 of the water cooling mechanism is provided in the inner wall 103 so that the inner wall 103 is cooled.
  • the conductive heated part 131 has a bottom plate 131a and a peripheral wall 131b, and constitutes a heating container 104 in which each part such as the heating mechanism 28 of the heating unit B is accommodated together with the inner wall 103 serving as an upper lid.
  • An exhaust system 43 (see FIGS. 1 to 3) is connected to the inside of the heating container 104, and the exhaust system 43 can be evacuated independently of the space in the vacuum chamber D excluding the heating container 104. It has become. In the state where the inside of the heating container 104 is exhausted to a predetermined degree of vacuum by the exhaust system 43, the substrate facing surface 2 is heated by the filament 132 described later.
  • the bottom plate 131a and the peripheral wall 131b of the conductive heated portion 131 constituting the heating container 104 are coated with dense carbon such as pyrolytic carbon by a CVD method, for example.
  • dense carbon coating film such as pyrolytic carbon is formed on at least one of the wall surface (inner wall surface) on the heating mechanism 28 side of the bottom plate 131a and the wall surface (outer wall surface) serving as the substrate facing surface 2.
  • a dense carbon coating film such as pyrolytic carbon is formed on at least one of the wall surface (inner wall surface) on the heating mechanism 28 side of the peripheral wall 131b and the wall surface (outer wall surface) on the peripheral wall side of the vacuum chamber D.
  • a dense carbon coating film is formed on the inner wall surface and the outer wall surface of the conductive heated portion 131.
  • the coating film is formed on the outer wall surfaces of the bottom plate 131a and the peripheral wall 131b, respectively, so that the contamination of the semiconductor substrate 3 due to the material of the conductive heated portion 131 and the gas generated from the conductive heated portion 131 can be prevented. It can be prevented or suppressed.
  • the conductive heated portion 131 includes the substrate facing surface 2 on the bottom plate 131a. That is, the substrate facing surface 2 is a surface of the conductive heated portion 131 facing the substrate mounting surface of the substrate stage 1 in parallel to the substrate processing space side. During the heat treatment of the semiconductor substrate 3, the substrate facing surface 2 is heated by thermoelectrons from the filament 132 to become a heat radiating surface, and the semiconductor substrate 3 is heated by heat radiating from the substrate facing surface 2.
  • the shutter device C moves the shutter 17 from the substrate stage 1 when the substrate holder unit A is lowered and the substrate stage 1 and the substrate facing surface 2 of the heating unit B are separated from each other. It can be moved back and forth between the substrate facing surfaces 2.
  • the shutter device C includes a shutter driving device 18 for moving the shutter 17 forward and backward.
  • the shutter 17 is disposed between the substrate stage 1 and the substrate facing surface 2 when the substrate holder unit A is lowered and the substrate stage 1 and the substrate facing surface 2 are separated from each other. To prevent the heat from being irradiated from the substrate facing surface 2 to the substrate stage 1 side.
  • the vacuum chamber D is a housing made of aluminum alloy or the like. In the wall of the vacuum chamber D, a water cooling channel 19 of a water cooling mechanism is provided. By flowing cooling water through the water cooling channel 19, it is possible to prevent the temperature of the housing of the vacuum chamber D from rising excessively.
  • the vacuum chamber D is provided with a loading / unloading slit valve (gate valve) 20 for opening and closing the loading / unloading port when the semiconductor substrate 3 is loaded and unloaded. Further, the vacuum chamber D is provided with an exhaust main valve (gate valve) 50 for opening and closing an exhaust port connected to an exhaust system in order to exhaust the inside to a vacuum atmosphere.
  • the vacuum chamber D includes a lower first chamber 22 and a second chamber 23 connected to the upper side of the first chamber 22.
  • the heating unit B is provided in the second chamber 23 located above with the substrate facing surface 2 facing downward.
  • the 1st chamber 22 has the 1st division 22a which the 2nd chamber 23 continues upwards, and the 2nd division 22b which continues to the side of the 1st division 22a.
  • a shutter device C is provided between the first section 22a and the second section 22b.
  • the substrate holder unit A can be moved up and down between the first compartment 22a and the second chamber 23 of the first chamber 22 by the lifting device E. As shown in FIG. 2, the substrate holder unit A is in a state where the space between the first compartment 22 a and the second chamber 23 of the first chamber 22 is closed by the cooling panel 6 at the raised position where the heat treatment is performed. The stage 1 and the substrate facing surface 2 of the heating unit B are brought close to each other. When the semiconductor substrate 3 is heated in this way, the heat generated in the second chamber 23 is less likely to leak into the first chamber 22 below, and the substrate holder unit A is moved to the first compartment 22a of the first chamber 22 after the heating. Cooling performed by lowering to the position can be performed more quickly.
  • the inner surface of the vacuum chamber D, particularly the inner surface of the second chamber 23, is preferably mirror-finished so that the heating efficiency can be improved.
  • a gas inlet 51 for introducing gas is provided on the side wall of the second compartment 22b of the first chamber 22 of the vacuum chamber D.
  • a gas introduction system 52 that is a gas introduction means is connected to the gas introduction port 51.
  • the gas introduction system 52 includes a gas supply source 54 connected to the gas introduction port 51 via a pipe 53, a purifier 55 sequentially installed in the pipe from the gas introduction port 51 side, a valve 56, and a mass flow controller ( MFC) 57 and a valve 58 are provided.
  • the purifier 55 may or may not be present.
  • the gas supply source 54 supplies an inert gas introduced into the vacuum chamber D.
  • the inert gas include Ar gas.
  • the gas introduced into the vacuum chamber D is not limited to an inert gas, but a gas with low reactivity is preferable, and an inert gas such as Ar gas or krypton (Kr) gas is more preferable.
  • the purifier 55 removes impurities from the inert gas that passes therethrough. Further, the MFC 57 can supply an inert gas into the vacuum chamber D at a predetermined flow rate.
  • the control device 60 has a CPU (not shown) that executes various operations such as calculation, control, and discrimination.
  • the control device 60 has a ROM (not shown) that stores various control programs executed by the CPU.
  • the control device 60 has a RAM (not shown) that temporarily stores data being processed by the CPU, input data, and the like.
  • the control device 60 controls the operation of each part of the heat treatment apparatus 100 and executes the heat treatment of the semiconductor substrate 3.
  • the substrate processing system includes a heat treatment apparatus 100 and a substrate transfer apparatus 240.
  • the substrate processing system includes a load lock chamber 260 in which a processed or unprocessed semiconductor substrate 3 is set, and a substrate placement chamber 280 for storing the processed or unprocessed semiconductor substrate 3.
  • FIG. 7 shows a slit valve Va between the substrate placement chamber 280 and the load lock chamber 260, a slit valve Vb between the load lock chamber 260 and the transfer chamber 241, and the transfer chamber 241 and the vacuum chamber D.
  • a slit valve Vc between them is shown.
  • a transfer robot 242 that is a transfer means for transferring the semiconductor substrate 3 is provided in the transfer chamber 241 of the substrate transfer device 240. Thereby, the semiconductor substrate 3 can be carried in and out of the chamber of each apparatus.
  • a load lock chamber 260 is provided between the transfer chamber 241 which is a substrate transfer chamber and the substrate placement chamber 280.
  • the processed semiconductor substrate 3 is loaded from the transfer chamber 241 by the transfer robot 242 and placed. Further, the unprocessed semiconductor substrate 3 is loaded from the substrate placement chamber 280 and placed in the load lock chamber 260.
  • cassettes 281 to 284 for storing the semiconductor substrate 3 can be mounted.
  • a transfer robot 285, which is a transfer means for transferring the semiconductor substrate 3 is provided in the substrate placement chamber 280.
  • the substrate mounting chamber 280 may be provided with an orientation flat or notch of the semiconductor substrate 3 and an aligner (not shown) for aligning the substrate center.
  • the transfer robot 285 loads the unprocessed semiconductor substrate 3 from any of the cassettes 281 to 284 into the load lock chamber 260. Further, the transfer robot 285 carries the processed semiconductor substrate 3 out of the load lock chamber 260 and stores it in predetermined cassettes 281 to 284.
  • Each of the load lock chamber 260 and the transfer chamber 241 is provided with an exhaust system (not shown) for exhausting the inside of each chamber.
  • Each of the load lock chamber 260 and the transfer chamber 241 is provided with a gas introduction system (not shown) for introducing a gas such as Ar gas into each chamber.
  • the exhaust system 47 and the gas introduction system 52 of the vacuum chamber D are as described above.
  • the control device 60 described above is configured to be able to control exhaust in the chamber by these exhaust systems and gas introduction into the chamber by these gas introduction systems.
  • the control device 60 is configured to be able to control the operations of the transfer robots 242 and 285.
  • FIG. 8A is a flowchart showing a preliminary preparation of the semiconductor substrate heat treatment method according to the present embodiment.
  • FIG. 8B is a flowchart illustrating the semiconductor substrate heat treatment method according to the present embodiment.
  • the semiconductor substrate heat treatment method heats the semiconductor substrate 3 in a vacuum chamber D in a state where Ar gas is sealed at a pressure exceeding the pressure in the molecular flow region.
  • the control device 60 controls exhaust in the vacuum chamber D by the exhaust system 47, introduction of Ar gas into the vacuum chamber D by the gas introduction system 52, and the like.
  • the gas sealed state is not only the state where the gas is not completely introduced into and exhausted from the vacuum chamber D constituting the processing chamber, but the Ar gas on the surface of the semiconductor substrate 3 is released from the silicon. It is only necessary to be maintained to such an extent that can be suppressed. That is, the case where the gas is exhausted to the vacuum chamber D at a very low speed is included. Specifically, it includes a state where about 0.1% of the volume of the vacuum chamber D is exhausted in 5 minutes and a state where it is exhausted at a lower speed than this.
  • preparation Prior to the semiconductor substrate heat treatment method according to the present embodiment, preparation (conditioning) is performed for the purpose of degassing the members in the vacuum chamber D.
  • preparation before heat treatment will be described with reference to FIG. 8A.
  • the load lock chamber 260, the transfer chamber 241 and the vacuum chamber D are evacuated to a high vacuum of 10 ⁇ 3 Pa or less, for example (step S101).
  • the substrate holder unit A is raised to the heating position (step S102), and vacuum heating is performed by the heating unit B (step S103).
  • the heating temperature in the vacuum heating is, for example, 1500 ° C. or higher, specifically, 1900 ° C., for example, as the substrate equivalent temperature.
  • the substrate equivalent temperature is a temperature of the substrate assumed when the substrate is installed in the substrate holder unit.
  • the heating by the heating unit B is stopped to stop the vacuum heating (step S104), the substrate holder unit A is lowered to the transfer position (step S105), and then the exhaust in the vacuum chamber D is stopped (step S106). ).
  • the power of the heating mechanism 28 of the heating unit B may be reduced to reduce the heating temperature.
  • the valves 56 and 58 of the gas introduction system 52 are opened.
  • Ar gas is introduced from the gas inlet 51 into the vacuum chamber D through the pipe 53 (step S107).
  • the Ar gas introduced into the vacuum chamber D is, for example, from 10 to 100 kPa, and 75 kPa is introduced in this embodiment.
  • the valves 56 and 58 are closed to seal the Ar gas in the vacuum chamber D.
  • step S106 and step S107 do not have to be performed in the above order, and may be performed in any order as long as the Ar gas sealing state is finally obtained.
  • the substrate holder unit A is raised to the heat treatment position (step S108), and heating is performed by the heating unit B (step S109).
  • the heating temperature in the sealed state of the Ar gas is, for example, 1500 ° C. or more, specifically, for example, 1900 ° C. as the substrate equivalent temperature.
  • step S110 heating by the heating unit B is stopped, and heating in a sealed state of Ar gas is stopped.
  • the power of the heating mechanism 28 of the heating unit B may be reduced to reduce the heating temperature.
  • the substrate holder unit A is lowered to the transfer position (step S111).
  • step S112 evacuation in the vacuum chamber D is started (step S112).
  • step S112 is not necessarily performed after step S110, and step S110 may be performed after step S112.
  • the vacuum chamber D is evacuated to a predetermined pressure using the dry pump 49 of the exhaust system 47 and the turbo molecule 48 as necessary.
  • the pressure in the vacuum chamber D is set to 10 ⁇ 4 Pa to 10 ⁇ 3 Pa.
  • the partial pressure of H 2 O in the vacuum chamber D is set to 10 ⁇ 5 Pa to 10 ⁇ 4 Pa, for example.
  • the reaction probability between the substrate material of the semiconductor substrate 3 such as SiC and residual moisture can be significantly reduced even at high temperatures, and the etching reaction can be suppressed. it can.
  • high electrical activation can be easily realized for the semiconductor substrate 3 after the heat treatment while ensuring high surface flatness.
  • Ar gas is introduced into the vacuum chamber D and the transfer chamber 241 respectively (step S114).
  • the pressure of Ar gas to be introduced is, for example, 1 kPa to 10 kPa, specifically 1 kPa.
  • the preliminary preparation before performing the semiconductor substrate heat treatment method according to the present embodiment is completed.
  • advance preparation it is not always necessary to perform both heating of vacuum heating and heating in a sealed state of Ar gas.
  • the semiconductor substrate heat treatment method according to the present embodiment is performed.
  • the semiconductor substrate heat treatment method according to the present embodiment will be explained with reference to FIG. 8B.
  • a trench is formed in the semiconductor substrate 3 to be heat-treated.
  • the semiconductor substrate 3 is a SiC film, for example.
  • heat treatment is performed to round the opening and the corner of the trench formed in the semiconductor substrate 3.
  • the vacuum chamber D is baked by the heating unit B as necessary (step S201).
  • the heating temperature in this chamber baking is, for example, 1500 ° C. or higher, specifically, for example, 1900 ° C. as the substrate equivalent temperature.
  • the slit valve Va is opened, and the semiconductor substrate 3 is put into the load lock chamber 260 from the substrate mounting chamber 280 (step S202). Note that one or more semiconductor substrates 3 may be input. After the semiconductor substrate 3 is put into the load lock chamber 260, the slit valve Va is closed.
  • step S203 exhaustion of the load lock chamber 260 is started (step S203), the inside of the load lock chamber 260 is exhausted to, for example, 50 Pa or less, and the exhaust of the load lock chamber 260 is stopped (step S204).
  • Ar gas is introduced into the load lock chamber 260 (step S205).
  • the pressure of Ar gas to be introduced is, for example, 100 Pa to 10 kPa, specifically 1 kPa.
  • heating by the heating unit B is performed as standby heating (step S206).
  • the heating temperature in the standby heating is, for example, 1000 to 2000 ° C., specifically 1200 ° C., for example, as the heat radiation surface temperature of the heating mechanism 28 of the heating unit B.
  • the slit valve Vb is opened, and the semiconductor substrate 3 is taken out from the load lock chamber 260 into the transfer chamber 241 by the transfer robot 242 (step S207). At this time, the inside of the load lock chamber 260 and the inside of the transfer chamber 241 have substantially the same pressure (see step S110 and step S205). After the semiconductor substrate 3 is taken out into the transfer chamber 241, the slit valve Vb is closed.
  • the pressure in the vacuum chamber D is adjusted using the exhaust system 47 or the gas introduction system 52 (step S208).
  • the pressure of Ar gas in the vacuum chamber D is set to, for example, 1 kPa to 100 kPa, specifically 10 kPa.
  • the slit valve 20 (corresponding to the slit valve Vc shown in FIG. 7) is opened, and the semiconductor substrate 3 is transferred from the transfer chamber 241 into the vacuum chamber D (step S209).
  • the semiconductor substrate 3 transported into the vacuum chamber D is placed on the lift pins 8.
  • the inside of the transfer chamber 241 and the inside of the vacuum chamber D are at substantially the same pressure (see step S114 and step S208).
  • the shutter 17 advances between the substrate holder unit A and the substrate facing surface 2.
  • the slit valve 20 (slit valve Vc) is closed.
  • the vacuum chamber D may be evacuated after the semiconductor substrate 3 is transferred into the vacuum chamber D. Thereby, the impurities such as water existing in the vacuum chamber D during the heat treatment can be reduced similarly to the exhaust in the vacuum chamber D performed in step S108 in the preliminary preparation.
  • valves 56 and 58 of the gas introduction system 52 are opened.
  • introduction of Ar gas into the vacuum chamber D is started, and Ar gas from the gas supply source 54 is introduced into the vacuum chamber D through the pipe 53 from the gas inlet 51 (step S210).
  • the flow rate of Ar gas is appropriately controlled to a predetermined flow rate by the MFC 57.
  • Ar gas introduced into the vacuum chamber D is introduced into the vacuum chamber D after impurities are removed by the purifier 55.
  • the valves 56 and 58 are closed when the pressure in the vacuum chamber D reaches a predetermined pressure. Thereby, the introduction of Ar gas into the vacuum chamber D is stopped.
  • the pressure of Ar gas in the vacuum chamber D where the introduction of Ar gas is stopped is, for example, 1 kPa to 100 kPa, and specifically, 10 kPa, for example.
  • Ar gas is sealed in the vacuum chamber D.
  • the pressure of Ar gas in the vacuum chamber D can be appropriately set according to the heat treatment temperature of the semiconductor substrate.
  • the Ar gas pressure can be set to 10 kPa or higher.
  • the shutter 17 is retracted, and the substrate holder unit A is raised by the lifting device E.
  • the substrate holder unit A is further moved up to the heat treatment position.
  • the semiconductor substrate 3 is lifted up, and the substrate stage 1 of the substrate holder unit A and the substrate facing surface 2 of the heating unit B are brought close to each other (step S211). At this time, at least the semiconductor substrate 3 needs to be in a non-contact state with the substrate facing surface 2.
  • the substrate stage 1 can be in contact with the substrate facing surface 2, it is preferable that both the substrate stage 1 and the semiconductor substrate 3 on the substrate stage 1 are not in contact with the substrate facing surface 2.
  • the distance between the substrate facing surface 2 and the semiconductor substrate 3 is preferably 1 to 25 mm, depending on the size of the substrate facing surface 2 and the semiconductor substrate 3, the heat treatment temperature, the output of the heating mechanism 28, and the like.
  • the heat treatment is performed at the heat treatment position closer to the substrate facing surface 2 than the position where the semiconductor substrate 3 is transferred into the vacuum chamber D and placed on the lift pins 8 in this manner. That is, the heat treatment is performed in a state where the semiconductor substrate 3 and the substrate facing surface 2 are brought closer to each other than the state where the semiconductor substrate 3 is transferred and placed in the vacuum chamber D (transfer position). For this reason, it is not necessary to raise the temperature in the vacuum chamber D over a wide range, and heat treatment can be performed with high efficiency.
  • the semiconductor substrate 3 and the substrate facing surface 2 are brought close to each other by raising the substrate holder unit A.
  • the semiconductor substrate 3 and the substrate facing surface 2 can be made relatively close to each other. I can do it.
  • the heat treatment apparatus 100 can be configured such that the substrate facing surface 2 and the semiconductor substrate 3 come close to each other when the heating unit B including the substrate facing surface 2 is lowered.
  • the semiconductor substrate 3 may be preheated to a preheat temperature lower than the heat treatment temperature.
  • the preheating of the semiconductor substrate 3 can be performed by the heating unit B in the state where the substrate stage 1 of the substrate holder unit A and the substrate facing surface 2 of the heating unit B are brought close to each other or before being brought close to each other. .
  • standby heating corresponds to this preheating.
  • the preheating temperature is, for example, 1700 ° C. or lower, specifically 1200 ° C. This temperature is the set temperature of the heating unit B. This is because if the temperature is 1700 ° C. or less, the probability of Si sublimation in the SiC substrate is low.
  • Ar gas may be sealed in the vacuum chamber D by introducing and stopping Ar gas in the vacuum chamber D while the heating mechanism 28 of the heating unit B is heated.
  • the timing for sealing Ar gas in the vacuum chamber D is not limited to a specific timing.
  • the Ar gas may be sealed at any timing as long as the semiconductor substrate 3 can be heat-treated while the Ar gas is sealed, and the sealing should be completed before reaching the heat treatment temperature. .
  • the power of the heating mechanism 28 of the heating unit B is increased and heated to a high temperature.
  • the semiconductor substrate 3 is heat-treated by the radiant heat from the substrate facing surface 2 (step S212).
  • the heat treatment temperature of the semiconductor substrate 3, which is the temperature of the semiconductor substrate 3 during the heat treatment is, for example, 1500 ° C. to 2000 ° C., more specifically 1600 ° C.
  • heating of the heating mechanism 28 is continued until the temperature of the substrate stage 1 measured by the temperature measuring device 16 reaches a predetermined heat treatment temperature. After reaching a predetermined heat treatment temperature, this temperature is maintained until a predetermined heat treatment time elapses.
  • the heat treatment time is, for example, 1 minute to 30 minutes.
  • the semiconductor substrate 3 is heat-treated in a form in which Ar gas is sealed in the vacuum chamber D as described above.
  • the pressure of the sealed Ar gas exceeds the pressure in the molecular flow region, for example, 1 kPa to 100 kPa, and more specifically 10 kPa.
  • the pressure of the sealed Ar gas can be appropriately set according to the heat treatment temperature of the semiconductor substrate 3 as described above. For example, when the heat treatment temperature is 1500 ° C. or higher and 1750 ° C. or lower, the pressure of Ar gas can be set to 10 kPa or higher. For example, when the heat treatment temperature is higher than 1750 ° C. and lower than or equal to 2000 ° C., the Ar gas pressure can be set to 50 kPa or higher.
  • the desorption of Si atoms on the surface of the SiC substrate is suppressed, and only a few layers of Si atoms on the surface of the SiC substrate are desorbed. Further, Si atoms remaining on the SiC surface move on the SiC surface by energy obtained by heating. At this time, the moved Si atoms can take a more stable shape by rounding the opening and bottom corners of the trench.
  • the heat treatment is performed in a state where the semiconductor substrate 3 and the substrate facing surface 2 of the heating unit B are brought closer to each other than the state where the semiconductor substrate 3 is transported and placed in the vacuum chamber D.
  • the trench width in a trench MOSFET using an SiC substrate can suppress the difference in dimensions before etching and after rounding the corners to ⁇ 100 nm or less in the upper part of the trench, that is, near the opening. More preferably, it is required to be suppressed to ⁇ 50 nm or less.
  • the trench width can suppress the dimensional difference between before etching and after the corners are rounded to ⁇ 50 nm or less, more specifically, a dimensional difference of ⁇ 35 nm can be realized. it can.
  • the heating mechanism 28 of the heating unit B is turned off and natural cooling is started.
  • standby heating may be performed by the heating unit B.
  • the substrate holder unit A is lowered to a predetermined preliminary cooling position by the lifting device E, and the temperature is lowered until the temperature of the substrate stage 1 measured by the temperature measuring device 16 reaches a predetermined temperature.
  • Step S213 the substrate holder unit A is further lowered to a predetermined cooling position by the elevating device E as shown in FIG. (Step S213).
  • a shutter 17 having a cooling mechanism is advanced between the substrate stage 1 of the substrate holder unit A lowered to the cooling position and the substrate facing surface 2 of the heating unit B to promote cooling.
  • further cooling is performed at the cooling position until the temperature of the substrate stage 1 measured by the temperature measuring device 16 reaches a predetermined temperature.
  • the substrate holder unit A is lowered to the loading / unloading position. During the descent from the cooling position to the loading / unloading position, the semiconductor substrate 3 is transferred onto the lift pins 8 and is in a state where it can be easily taken out.
  • the pressure in the vacuum chamber D is adjusted using the exhaust system 47 (step S214). Thereby, the pressure of Ar gas in the vacuum chamber D is set to, for example, 100 Pa to 10 kPa, specifically 1 kPa.
  • the slit valve 20 (slit valve Vc) is opened, and the semiconductor substrate 3 is transferred from the vacuum chamber D into the transfer chamber 241 using the transfer robot 242 of the transfer chamber 241 (step S215). After the conveyance, the slit valve 20 (slit valve Vc) is closed. In this way, the semiconductor substrate 3 is manufactured with rounded corners at the opening and bottom of the trench.
  • the semiconductor substrate 3 can be transferred from the vacuum chamber D to the transfer chamber 241 immediately after the heat treatment of the semiconductor substrate 3.
  • the processing time including conveyance of the semiconductor substrate 3 from the inside of the vacuum chamber D can be shortened.
  • the pressures in the two chambers are equal, it is possible to avoid contamination of the semiconductor substrate 3 after the heat treatment due to, for example, rolling up of particles due to the pressure difference between the chambers.
  • step S216 the slit valve Vb is opened, and the semiconductor substrate 3 transferred into the transfer chamber 241 is transferred from the transfer chamber 241 into the load lock chamber 260 (step S216).
  • step S217 when there is a next semiconductor substrate 3 to be heat-treated in the load lock chamber 260 (step S217, YES), the process proceeds to step S207, and the process for the next semiconductor substrate 3 is continued.
  • step S217 when there is no next semiconductor substrate 3 to be heat-treated in the load lock chamber 260 (step S217, NO), the slit valve Vb is closed and the load lock chamber 260 is vented. Thereafter, the slit valve Va is opened, and the heat-treated semiconductor substrate 3 is taken out from the load lock chamber 260 (step S218).
  • step S219, YES when the heat treatment is continuously performed on the semiconductor substrate 3 of the next lot (step S219, YES), the process proceeds to step S202, and the processing of the semiconductor substrate 3 of the next lot is continued.
  • step S219 when the continuous processing of the heat treatment is not performed for the semiconductor substrate 3 of the next lot (step S219, NO), the slit valve Va is closed to complete the processing.
  • the semiconductor substrate 3 is heat-treated in a state where the Ar gas is sealed in the vacuum chamber D, so that the productivity is increased while the dimensional difference of the trench opening is suppressed. Further, there is no need for expensive incidental equipment, and the corners of the trench opening and the bottom can be rounded.
  • the process flow shown in FIGS. 8A and 8B described above is merely an example, and the exhaust in the vacuum chamber D and the Ar into the vacuum chamber for realizing a state in which the Ar gas is sealed in the vacuum chamber D are provided.
  • the mode of gas introduction is not limited to the above-described mode.
  • the load lock chamber 260, the transfer chamber 241, and the exhaust of each vacuum chamber D when the semiconductor substrate 3 to be heat-treated is transferred into the vacuum chamber D and the introduction of Ar gas into each chamber are also included.
  • the invention is not limited to the above-described embodiment.
  • the manner of exhausting each chamber and introducing Ar gas into each chamber when the semiconductor substrate 3 after heat treatment is transferred from the vacuum chamber D into the load lock chamber 260 is also limited to the above-described embodiment. It is not a thing.
  • the sublimated Si will not be exhausted. For this reason, the sublimated Si adheres to the inner wall of the vacuum chamber D.
  • the reflectance of radiation on the inner wall surface changes.
  • the temperature of the semiconductor substrate 3 during the heat treatment may vary due to repeated heat treatment. In such a case, the temperature of the semiconductor substrate 3 is detected by the temperature measuring device 16 or the like, and the output of the heating mechanism 28 is changed by the control device 60 according to the detection result. As a result, the temperature of the semiconductor substrate 3 during the heat treatment can be adjusted, and the reproducibility of the heat treatment can be improved.
  • the above-described heat treatment method of the semiconductor substrate according to the present embodiment can be applied to rounding the opening and bottom corners of a trench when a semiconductor device is manufactured using a semiconductor substrate having a trench.
  • the semiconductor device having a trench into which impurities are implanted can be used for rounding off the opening and bottom corners of the trench when manufacturing a semiconductor device and applying annealing to impurities.
  • specific examples of the semiconductor device manufactured by applying the heat treatment method according to the present embodiment will be described.
  • FIG. 9 shows a trench type MOSFET manufactured using a SiC substrate.
  • an n ⁇ type SiC film (drift layer) 402 is formed on an n + type SiC substrate 401 by an epitaxial growth method.
  • a trench 406 is formed in the drift layer 402 by dry etching using SiO 2 or the like as an etching mask (not shown). After the trench 406 is formed, the etching mask is removed by hydrofluoric acid cleaning or the like.
  • the semiconductor substrate heat treatment method according to the present embodiment is used to round the opening and bottom corners of the trench formed by dry etching.
  • SiO 2 (not shown) is buried in the opened trench 406 to form an implantation suppression layer (not shown) that prevents the impurity from being implanted into unnecessary portions.
  • a p-type impurity for example, aluminum is ion-implanted into the n ⁇ -type SiC film 402 using SiO 2 or the like as a mask (not shown) to form a p-type well layer (impurity region) 403.
  • an n-type impurity for example, phosphorus is ion-implanted into the p-type well layer 403 using SiO 2 or the like as a mask (not shown) to form high-concentration n.
  • An n + type contact layer (impurity region) 404 which is a + type impurity layer is formed.
  • SiO 2 in the implantation mask is removed by hydrofluoric acid treatment or the like.
  • a p-type impurity for example, aluminum is ion-implanted using SiO 2 or the like as a mask (not shown) so as to be adjacent to the outside of the n + -type contact layer 404 of the p-type well layer 403, thereby forming a high concentration p +.
  • a p + type contact layer (impurity region) 405 which is a type impurity layer is formed.
  • heat treatment of the semiconductor substrate is performed to activate the impurities in the impurity regions 403, 404, and 405.
  • an oxidation treatment is performed at about 1100 ° C./30 minutes in an oxygen atmosphere in a vertical furnace to form a sacrificial oxide layer (not shown) of about 50 nm. To do.
  • the sacrificial oxide layer is washed with hydrofluoric acid to expose a clean SiC surface, and then a silicon oxide film 407 serving as a gate insulating film is formed on the side surface of the trench 406.
  • the trench 406 is filled with a polysilicon film.
  • a gate electrode 408 made of polysilicon is formed by patterning the polysilicon film.
  • electrodes, interlayer insulating films, wirings, etc. are formed to manufacture a trench type n-type MOSFET.
  • the bottom surface side of the SiC substrate 401 functions as a drain.
  • the n + -type contact layer 404 formed around the silicon oxide film 407 functions as a source.
  • the channel 409 is formed between the p-type well layer 403 and the silicon oxide film 407 by applying a voltage to the gate electrode 408, and carriers move along the trench 406 in a direction perpendicular to the substrate surface.
  • the impurity is ion-implanted after rounding the corners of the trench opening and the bottom, and the impurities are activated by heat treatment.
  • the trench opening and bottom are squared. You may perform the process which rounds a corner
  • the SiC substrate in which the trench is formed is heat-treated to explain the process of rounding the opening and bottom corners of the trench.
  • the present invention is not limited to this, and a recess is formed.
  • the present invention can also be applied to a semiconductor substrate. Furthermore, if the heat treatment of this embodiment is applied to the semiconductor substrate in which the through hole is formed, the angular corner of the opening of the through hole can be rounded.
  • the gas sealed in the vacuum chamber D is limited to Ar gas as described above. is not.
  • the gas sealed in the vacuum chamber D may be any gas as long as it does not react with the semiconductor substrate material to be heat-treated or has low reactivity, and other inert gas may be used.
  • Example 1 a SiC substrate having an epitaxially grown SiC crystal layer as a surface layer was prepared. Using the SiO 2 mask formed on this SiC surface layer, a trench was formed from SiC by dry etching, and the SiO 2 mask was removed by hydrofluoric acid cleaning.
  • chambers such as the load lock chamber 260, the transfer chamber 241 and the vacuum chamber D as a process chamber were evacuated to a high vacuum of 10 ⁇ 3 Pa or less. Further, the vacuum chamber D was evacuated by the turbo molecular pump 48, and the heating mechanism 28 was heated to 1500 ° C. or more, thereby performing sufficient degassing from the heating mechanism 28, the chamber, the substrate holder unit A, and the like.
  • the turbo molecular pumps of the vacuum chamber D and the transfer chamber 241 are stopped or the exhaust main valve is closed until the Ar gas reaches 1 kPa in the vacuum chamber D and the transfer chamber 241. Injected.
  • the Ar gas introduction valve was closed, and Ar gas was sealed in the vacuum chamber D and the transfer chamber 241.
  • the substrate holder unit A in the vacuum chamber D was lowered to the substrate loading / unloading position with the Ar gas sealed as described above. Subsequently, the shutter 17 was advanced between the substrate holder unit A and the heating unit B, and was heated in advance until the heat radiation surface temperature of the heating mechanism 28 of the heating unit B reached 1200 ° C.
  • the load lock chamber 260 was vented with Ar gas or nitrogen (N 2 ) gas, and the SiC substrate was set in the load lock chamber 260. Subsequently, the inside of the load lock chamber 260 was exhausted to about 10 Pa with a dry pump, and then the exhaust valve was closed. Thereafter, Ar gas was injected into the load lock chamber 260 up to 1 kPa, and the load lock chamber 260 was sealed with Ar gas.
  • the slit valves Vb and Vc between the chambers were opened, and the SiC substrate in the load lock chamber 260 was transferred into the vacuum chamber D via the transfer robot 242 in the transfer chamber 241.
  • the transfer chamber 241 and the vacuum chamber D are at the same pressure, even if the slit valve is opened during transfer, no particles are rolled up or the SiC substrate is not displaced.
  • the slit valves Vb and Vc for loading / unloading of the vacuum chamber D were closed.
  • the substrate holder unit A was lowered to the cooling position and cooled until the temperature of the SiC substrate reached about 1400 ° C. Thereafter, the substrate holder unit A was lowered to the loading / unloading position, and the shutter 17 was advanced between the substrate holder unit A and the heating unit B. During this cooling time, the exhaust system 47 was used to exhaust the pressure in the vacuum chamber D to 1 kPa.
  • the slit valves Vb and Vc were opened, and the SiC substrate was transferred to the load lock chamber 260 via the transfer robot 242 of the transfer chamber 241. Subsequently, the load lock chamber 260 was vented, and the SiC substrate was taken out of the load lock chamber 260. Thus, the heat processing which rounds the corner
  • the cross-section of the SiC substrate trench before and after the heat treatment was subjected to the shape of the corner of the opening and the corner of the bottom, and the width of the top, middle, and bottom of the trench.
  • SEM scanning Electron Microscope
  • the shape of the trench after the treatment according to the present embodiment is rounded at the corners of the trench opening and the bottom, and the top, middle, and bottom of the trench are rounded.
  • the width is 1331 nm, 1199 nm, 1036 nm, the variation in the trench width is small, the shape of the corner of the trench opening and the corner of the bottom are rounded, the variation in the trench width at the top of the trench is ⁇ 35 nm, It can be seen that the trench can be processed with good shape controllability.
  • variety between the tangent of a trench side wall was measured for the width
  • Example 2 In Example 2, a SiC substrate having a trench was prepared as in Example 1.
  • Example 2 is a process in which the retention time at 1600 ° C. of the SiC substrate is 30 minutes as compared with the process of Example 1.
  • the cross section of the trench of the SiC substrate before and after the heat treatment was measured with a scanning electron microscope for the shape of the corners of the trench opening and the corners of the bottom, and the widths of the top, middle and bottom of the trench.
  • the shape of the trench before processing is such that the shape of the corner of the trench opening and the corner of the bottom are square, and the width of the top, middle, and bottom inside the trench is 1366 nm, It was 1286 nm and 1059 nm.
  • the shape of the trench after the processing according to this example is rounded at the corners of the opening and the bottom of the trench, and the top, middle, and bottom of the trench are rounded.
  • the widths are 1394 nm, 1251 nm, and 1076 nm, and the variation of the trench width is small, the shape of the corner of the opening and the corner of the bottom of the trench is rounded, the variation of the trench width at the top of the trench is +28 nm, As can be seen from FIG.
  • Comparative Example 1 a SiC substrate having a trench was prepared as in Example 1.
  • Example 1 Ar gas was flowed without sealing Ar gas, the pressure of Ar gas in the vacuum chamber D was set to 10 kPa, and the SiC substrate was heat-treated at 1600 ° C. for 5 minutes.
  • the cross section of the trench of the SiC substrate before and after the heat treatment was measured with a scanning electron microscope for the shape of the corners of the trench opening and the corners of the bottom, and the widths of the top, middle and bottom of the trench.
  • the shape of the trench before processing is such that the shape of the corner of the trench opening and the corner of the bottom are square, and the widths of the top, middle, and bottom inside the trench are 1366 nm, 1286 nm, and 1059 nm. Met.
  • the shape of the trench after the treatment according to this example was deformed and retreated, and the shape of the bottom corner was greatly rounded.
  • middle part, and a bottom part was 1430 nm, 1334 nm, and 1139 nm, the trench width spread over the whole, and the unevenness
  • Comparative Example 2 In Comparative Example 2, an SiC substrate having a trench was prepared as in Example 1.
  • the SiC substrate was heat-treated at 1600 ° C. for 5 minutes with the Ar gas sealing pressure inside the vacuum chamber D set to 100 Pa.
  • the cross section of the trench of the SiC substrate before and after the heat treatment was measured with a scanning electron microscope for the shape of the corners of the trench opening and the corners of the bottom, and the widths of the top, middle and bottom of the trench.
  • the shape of the trench before processing is such that the shape of the corner of the opening and the corner of the bottom of the trench is angular, and the width of the top, middle, and bottom inside the trench is 1366 nm, 1286 nm, It was 1059 nm.
  • the shape of the trench after the treatment according to the present example is that the corner portion of the trench opening remains square and the shape of the bottom corner portion is rounded, but the upper portion inside the trench.
  • the widths of the intermediate part and the bottom part were 1486 nm, 1303 nm, and 1084 nm, and the trench width was widened and a layer from which Si atoms were removed from the side surface of the trench was observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 生産性を向上させつつ、燃焼性や爆発性を有するようなガスを用いることなく、トレンチの開口部および底部の角張った角部の形状を改善できる半導体基板の熱処理方法を提供する。分子流領域の圧力を超える圧力でガスが封止された状態の処理室内において、凹部が形成された半導体基板に対して熱処理を行う。

Description

半導体基板の熱処理方法及び熱処理装置
 本発明は、半導体基板の熱処理方法及び熱処理装置に関する。
 半導体パワーデバイスのオン抵抗を低減するために、炭化ケイ素(SiC)基板を用いた様々なトレンチ型のFETが提案されている(例えば、特許文献1参照)。このようなトレンチ型のFETにおいて、ドライエッチング装置等により半導体基板をドライエッチング処理してトレンチを形成した際、トレンチの開口部や底部の角部の形状が角張ることが知られている。
 トレンチにおける角張った角部は、ゲート絶縁膜の被覆の際に被覆不良を引き起こし、トレンチへの埋め込み電極を形成する際ボイドの発生を引き起こすことがあるため、半導体デバイスのデバイス特性に大きな影響を及ぼす。更に、トレンチの角張った角部は、電界集中によるゲート絶縁膜の絶縁破壊等を引き起こす可能性があり、改善が求められている。
 そこで、トレンチの開口部や底部の角張った角部に丸みを付けることによって、電界集中を緩和し、ゲート絶縁膜の信頼性を確保するための方法が提案されている(特許文献2参照)。特許文献2には、ArガスまたはSiHガス/不活性ガス雰囲気で1600℃以上1800℃以下の温度範囲の第一熱処理を行い、次に水素雰囲気で1400℃以上1500℃以下の第二熱処理を行うことで、トレンチ開口部やトレンチ底部の角張った角部に丸みを付けることについて開示されている。
特開2013-077761号公報 特開2008-177538号公報
 しかしながら、特許文献2に開示されているArガスまたはSiHガス/不活性ガス雰囲気で1600℃以上1800℃以下の温度範囲の第一熱処理を行い、次に水素雰囲気で1400℃以上1500℃以下の第二熱処理を行うプロセスでは、第一熱処理と第二熱処理を行うため、大幅な生産性の低下を招くことが懸念される。また、燃焼性のSiHガスや、爆発性の水素ガスを用いるため、専用のガス導入ライン、ガス検知器、及び廃ガス処理装置等の安全に関わる付帯設備が必要となり、大幅なコストアップを招くことが懸念される。
 本発明は、上記課題を契機としてなされたものであり、生産性を向上させつつ、燃焼性や爆発性を有するようなガスを用いることなく、トレンチの形状を改善可能な半導体基板の熱処理方法及び熱処理装置を提供することを目的とする。
 本発明の一観点によれば、分子流領域の圧力を超える圧力でガスが封止された状態の処理室内において、凹部が形成された半導体基板に対して熱処理を行う熱処理方法が提供される。
 また、本発明の他の観点によれば、半導体基板の熱処理を行うための処理室と、前記処理室内に設けられた加熱手段と、分子流領域の圧力を超える圧力でガスが封止された状態の前記処理室内において、前記加熱手段により凹部が形成された半導体基板に対して前記熱処理を実行する制御装置とを有することを特徴とする半導体基板の熱処理装置が提供される。
 本発明によれば、トレンチの角部が角張っているトレンチを持つ半導体基板を熱処理することによって、高い生産性で、高価な付帯設備も必要とせず、トレンチ幅を制御しつつ、角部を丸めることができる。
図1は、本発明の一実施形態による熱処理装置を示す概略断面図(その1)である。 図2は、本発明の一実施形態による熱処理装置を示す概略断面図(その2)である。 図3は、本発明の一実施形態による熱処理装置を示す概略断面図(その3)である。 図4は、本発明の一実施形態による熱処理装置における基板ホルダユニット及びその周辺を示す概略断面図(その1)である。 図5は、本発明の一実施形態による熱処理装置における基板ホルダユニット及びその周辺を示す概略断面図(その2)である。 図6は、本発明の一実施形態による熱処理装置における加熱ユニットを示す概略断面図である。 図7は、本発明の一実施形態による熱処理装置が組み込まれた基板処理システムの一例を示す概略断面図である。 図8Aは、本発明の一実施形態による半導体基板の熱処理方法の事前準備を示すフローチャートである。 図8Bは、本発明の一実施形態による半導体基板の熱処理方法を示すフローチャートである。 図9は、本発明の一実施形態による半導体装置の製造方法を用いて製造されるトレンチ型のMOSFETの一例を示す概略断面図である。 図10は、本発明の一実施形態に用いられた熱処理前のトレンチを持つ半導体基板の断面図の一部である。 図11は、本発明の一実施形態に用いられた熱処理後のトレンチの断面図(その1)の一部である。 図12は、本発明の一実施形態に用いられた熱処理後のトレンチの断面図(その2)の一部である。 図13は、本発明の比較例に用いられた熱処理後のトレンチの断面図(その1)の一部である。 図14は、本発明の比較例に用いられた熱処理後のトレンチの断面図(その2)の一部である。
 以下、本発明の実施の形態について図面を用いて説明する。なお、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において適宜変更可能である。また、以下で説明する図面において、同じ機能を有するものは同一の符号を付し、その説明を省略又は簡潔にすることもある。
 (熱処理装置)
 まず、本発明の一実施形態による熱処理装置100について図1乃至図6を用いて説明する。図1は、半導体基板の搬入時又は搬出時の状態の熱処理装置100を示している。図2は、半導体基板の熱処理時の状態の熱処理装置100を示している。図3は、半導体基板の冷却時の状態の熱処理装置100を示している。また、図4は、図1における基板ホルダユニットA及びその周辺を拡大して示している。図5は、図2における基板ホルダユニットA及びその周辺を拡大して示している。図6は、加熱ユニットBの具体的構成の一例を示している。
 図1乃至図3に示すように、本実施形態による熱処理装置100は、基板保持手段である基板ホルダユニットAと、加熱手段である加熱ユニットBと、シャッタ装置Cと、処理室を構成する真空チャンバDとを有している。さらに、熱処理装置100は、熱処理装置の動作全体を制御する制御装置60を有している。基板ホルダユニットA、加熱ユニットB、及びシャッタ装置Cは、処理室内である真空チャンバD内に設けられている。
 基板ホルダユニットAは、最上段に基板ステージ1を備えている。加熱ユニットBは、基板ステージ1の上方に設けられており、基板ステージ1と対向する基板対向面2を備えている。加熱ユニットBの基板対向面2は、後述するように放熱可能に構成されている。基板ホルダユニットAは、昇降装置Eにより昇降可能なものである。基板ステージ1と加熱ユニットBの基板対向面2との近接と離間は、昇降装置Eの動作により制御することが可能である。加熱ユニットBは、図2に示すように、基板ホルダユニットAが上昇し、基板ステージ1上の半導体基板3と基板対向面2が近接されたときに、半導体基板3と非接触状態で、基板対向面2から放熱される輻射熱で半導体基板3を加熱するものとなっている。
 図1に示す基板ホルダユニットAは、下降位置にあり、半導体基板3の真空チャンバD内への搬入及び真空チャンバD内からの搬出が可能な状態である。また、図2に示す基板ホルダユニットAは、上昇位置にあり、半導体基板3の熱処理時の状態である。図3に示す基板ホルダユニットAは、熱処理後の下降位置にあり、半導体基板3の冷却時の状態である。図1に示す基板ホルダユニットA及びその周辺を拡大して示したものが図4であり、図2に示す基板ホルダユニットA及びその周辺を拡大して示したものが図5である。
 図4及び図5に示すように、半導体基板3を保持するための基板ホルダユニットAは、最上部に基板ステージ1、基板ステージ1の下に4枚の輻射板4、輻射板4の下に2枚の反射板5、そして最下部に冷却パネル6を備えたものとなっている。
 基板ステージ1は、熱処理の対象となる半導体基板3が載置されるものである。基板ステージ1の上面中央部には凹部が形成されており、この凹部が、半導体基板3が載置される基板載置部7となっている。図4に示す半導体基板3は、後述するリフトピン8で持ち上げ支持された状態となっている。昇降装置Eにより基板ホルダユニットAが上昇して基板ステージ1がリフトピン8より上方へ移動すると、図5に示すように、基板載置部7上に移し取られて載置されることになる。
 熱処理の対象となる半導体基板3は、例えばイオン注入等により不純物が導入された半導体基板である。具体的には、半導体基板3として、SiC基板、窒化ガリウム(GaN)基板等を挙げることができる。なお、半導体基板とは、半導体基板そのもののほか、半導体基板上にさらに半導体膜が形成されているもの、支持基板上に半導体膜が形成されているものをも含むものである。
 基板ステージ1と冷却パネル6との間には、基板ステージ1側から冷却パネル6側に向かって順に、それぞれ間隔をあけて、4枚の輻射板4と、2枚の反射板5とが設けられている。
 図4においては、リフトピン用貫通孔13を介して、真空チャンバDの底部に立設された複数本のリフトピン8が基板ステージ1上に突出している。リフトピン8は、基板載置部7上の半導体基板3を先端で持ち上げ支持可能な位置と本数となっている。図4に示す状態から基板ホルダユニットAが上昇して基板ステージ1がリフトピン8より上方へ移動すると、半導体基板3は基板載置部7上に移行されることになる。半導体基板3は、こうして基板載置部7上に載置された状態で加熱ユニットBによる熱処理に供されることになる。なお、リフトピン8は、基板ステージ1と同様、輻射率が高く、輻射熱を効率良く吸収し、高熱に耐えられる材料で構成されることが好ましい。
 また、熱処理後等において、基板載置部7上に半導体基板3が載置された状態で基板ホルダユニットAが下降すると、リフトピン8がリフトピン用貫通孔13を介して基板ステージ1上に突出する。すると、基板載置部7上の半導体基板3がリフトピン8の先端で持ち上げ支持され、図4に示す状態となる。
 加熱ユニットBは、半導体基板3に対向する基板対向面2と、基板対向面2を加熱するための加熱機構28とを備えている。加熱ユニットBの加熱機構28としては、電子衝撃加熱方式の加熱機構、高周波誘導加熱方式の加熱機構、抵抗加熱方式の加熱機構、赤外線加熱方式の加熱機構、これらの組合せによる加熱機構等を用いることができる。
 加熱ユニットBの具体的構成の一例を図6に示す。図6は、電子衝撃加熱方式の加熱機構28を用いた加熱ユニットBを拡大して示す断面図である。
 図6に示すように、電子衝撃加熱方式の加熱機構28を用いた加熱ユニットBは、真空チャンバDの第二室23における天井部を構成する内壁103に設けられた導電性被加熱部131を有している。内壁103内には、上述のように水冷機構の水冷用流路19が設けられており、内壁103が冷却されるようになっている。導電性被加熱部131は、底板131a及び周壁131bを有し、上蓋となる内壁103とともに、加熱ユニットBの加熱機構28等の各部が収容される加熱容器104を構成している。
 加熱容器104内は、排気系43(図1乃至図3参照)が接続されており、排気系43により、真空チャンバD内の加熱容器104を除く空間とは別個独立に真空排気することが可能になっている。排気系43により加熱容器104内が所定の真空度に排気された状態で、後述するフィラメント132による基板対向面2の加熱が行われる。
 加熱容器104を構成する導電性被加熱部131の底板131a及び周壁131bは、例えばCVD法による熱分解カーボン等の緻密なカーボンによりコーティングされている。具体的には、底板131aの加熱機構28側の壁面(内壁面)及び基板対向面2となる壁面(外壁面)の少なくとも一方には、熱分解カーボン等の緻密なカーボンのコーティング膜が形成されている。また、周壁131bの加熱機構28側の壁面(内壁面)及び真空チャンバDの周壁側の壁面(外壁面)の少なくとも一方には、熱分解カーボン等の緻密なカーボンのコーティング膜が形成されている。このように、導電性被加熱部131の内壁面及び外壁面には、緻密なカーボンのコーティング膜が形成されている。
 さらに、底板131a及び周壁131bについて、それぞれ外壁面に上記コーティング膜が形成されていることで、導電性被加熱部131の材料や導電性被加熱部131から発生するガスによる半導体基板3の汚染を防止又は抑制することができる。
 導電性被加熱部131は、その底板131aに基板対向面2を備える。すなわち、基板対向面2は、導電性被加熱部131の、基板処理空間の側の面のうち、基板ステージ1の基板載置面と平行に対向する面である。半導体基板3の熱処理に際して、基板対向面2は、フィラメント132からの熱電子により加熱されて放熱面となり、基板対向面2からの放熱により半導体基板3が加熱される。
 シャッタ装置Cは、図1乃至図3に示すように、基板ホルダユニットAが降下し、基板ステージ1と加熱ユニットBの基板対向面2とが離間されたときに、シャッタ17を基板ステージ1と基板対向面2の間に進退させることができるものとなっている。シャッタ装置Cは、シャッタ17を進退させるためのシャッタ駆動装置18を備えている。
 シャッタ17は、図1及び図3に示すように、基板ホルダユニットAが下降し、基板ステージ1と基板対向面2とが離間されているときに、基板ステージ1と基板対向面2との間に進出し、基板対向面2から基板ステージ1側へ熱が照射されるのを遮断する。
 真空チャンバDは、アルミニウム合金等で構成された筐体である。真空チャンバDの壁内には、水冷機構の水冷用流路19が設けられている。水冷用流路19に冷却水を流すことにより、真空チャンバDの筐体の温度が過度に上昇するのを防止することができる。また、真空チャンバDには、半導体基板3の搬入、搬出時に搬入出口を開閉するための搬入出用のスリットバルブ(ゲートバルブ)20が備えられている。また、真空チャンバDには、内部を真空雰囲気に排気するために排気系に接続される排気口を開閉するための排気用のメインバルブ(ゲートバルブ)50が備えられている。
 真空チャンバDは、下側の第一室22と、第一室22の上方に連なった第二室23とを備えている。加熱ユニットBは、上方に位置する第二室23に基板対向面2を下に向けて設けられている。また、第一室22は、第二室23が上方に連なる第一区画22aと、第一区画22aの側方に連なる第二区画22bとを有している。第一区画22aと第二区画22bとの間には、シャッタ装置Cが設けられている。
 また、基板ホルダユニットAは、昇降装置Eにより第一室22の第一区画22aと第二室23との間を昇降可能になっている。基板ホルダユニットAは、熱処理が行われる上昇位置において、図2に示すように、第一室22の第一区画22aと第二室23との間を冷却パネル6部分で塞いだ状態で、基板ステージ1と加熱ユニットBの基板対向面2とを接近させるものとなっている。このようにして半導体基板3の加熱を行うと、第二室23で生じた熱がその下方の第一室22へ漏れにくくなり、加熱後に基板ホルダユニットAを第一室22の第一区画22aへ降下させて行われる冷却をより迅速に行うことができる。また、真空チャンバDの内面、特に第二室23の内面は、加熱効率を向上させることができるよう、鏡面仕上げを施しておくことが好ましい。
 さらに、真空チャンバDの第一室22の第二区画22bの側壁には、ガスを導入するためのガス導入口51が設けられている。ガス導入口51には、ガス導入手段であるガス導入系52が接続されている。ガス導入系52は、ガス導入口51に配管53を介して接続されたガス供給源54と、ガス導入口51側から配管に順次介設されたピュリファイヤー55と、バルブ56と、マスフローコントローラ(MFC)57と、バルブ58とを備えている。ピュリファイヤー55は、あってもなくてもよい。
 ガス供給源54は、真空チャンバD内に導入する不活性ガスを供給するものである。不活性ガスとしては、Arガス等を挙げることができる。なお、真空チャンバD内に導入するガスとしては、不活性ガスに限定されるものではないが、反応性が低いガスが好ましく、Arガスやクリプトン(Kr)ガス等の不活性ガスがより好ましい。また、ピュリファイヤー55は、通過する不活性ガスから不純物を除去するものである。また、MFC57により、所定の流量で不活性ガスを真空チャンバD内に供給することができるようになっている。
 制御装置60は、種々の演算、制御、判別等の処理を実行するCPU(図示せず)を有している。また、制御装置60は、CPUによって実行される様々な制御プログラム等を格納するROM(図示せず)等を有している。また、制御装置60は、CPUが処理中のデータや入力データ等を一時的に格納するRAM(図示せず)等を有している。制御装置60は、熱処理装置100の各部の動作を制御し、半導体基板3の熱処理を実行する。
(基板処理システム)
 上記本実施形態による熱処理装置100を組み込んだ基板処理システムの一例について図7を用いて説明する。
 図7に示すように、基板処理システムは、熱処理装置100と基板搬送装置240とを備えている。また、基板処理システムは、処理済み又は処理前の半導体基板3がセットされるロードロックチャンバ260と、処理済み又は処理前の半導体基板3を収納する基板載置室280とを備えている。
 熱処理装置100の真空チャンバD、基板搬送装置240、及びロードロックチャンバ260は、スリットバルブにより各々の装置のチャンバが相互に隔離可能に接続されている。なお、図7では、後の説明のため、各々の間のスリットバルブを示している。すなわち、図7には、基板載置室280とロードロックチャンバ260との間のスリットバルブVa、ロードロックチャンバ260と搬送チャンバ241との間のスリットバルブVb、搬送チャンバ241と真空チャンバDとの間のスリットバルブVcを示している。
 基板搬送装置240の搬送チャンバ241内には、半導体基板3を搬送するための搬送手段である搬送ロボット242等が設けられている。これにより、各装置のチャンバに対して半導体基板3の搬入及び搬出が可能になっている。
 基板搬送室である搬送チャンバ241と基板載置室280との間には、ロードロックチャンバ260が設けられている。ロードロックチャンバ260内には、処理済みの半導体基板3が搬送ロボット242により搬送チャンバ241から搬入されて載置される。また、ロードロックチャンバ260内には、未処理の半導体基板3が基板載置室280から搬入されて載置される。
 基板載置室280には、半導体基板3を収容するカセット281~284が搭載可能である。基板載置室280内には、半導体基板3を搬送するための搬送手段である搬送ロボット285等が設けられている。また、基板載置室280には、半導体基板3のオリフラやノッチ、及び基板中心をアライメントするためのアライナー(不図示)を設けてもよい。搬送ロボット285は、カセット281~284のいずれかから未処理の半導体基板3をロードロックチャンバ260内に搬入する。また、搬送ロボット285は、処理済みの半導体基板3をロードロックチャンバ260内から搬出し、所定のカセット281~284に収める。
 ロードロックチャンバ260、及び搬送チャンバ241のそれぞれには、各チャンバ内を排気する排気系(不図示)が設けられている。また、ロードロックチャンバ260、及び搬送チャンバ241のそれぞれには、各チャンバ内にArガス等のガスを導入するガス導入系(不図示)が設けられている。なお、真空チャンバDの排気系47及びガス導入系52については上述したとおりである。上述した制御装置60は、これらの排気系によるチャンバ内の排気、及びこれらのガス導入系によるチャンバ内へのガス導入を制御可能に構成されている。また、制御装置60は、搬送ロボット242、285の動作を制御可能に構成されている。
(半導体基板の熱処理方法)
 次に、上記図7に示す基板処理システムにおける熱処理装置100を用いた本実施形態による半導体基板の熱処理方法について図8A及び図8Bを用いて説明する。図8Aは、本実施形態による半導体基板の熱処理方法の事前準備を示すフローチャートである。図8Bは、本実施形態による半導体基板の熱処理方法を示すフローチャートである。
 本実施形態による半導体基板の熱処理方法は、分子流領域の圧力を超える圧力でArガスが封止された状態の真空チャンバD内において、半導体基板3の熱処理を行うものである。なお、半導体基板3の熱処理の実行に際しては、熱処理装置100の各部の動作が制御装置60により制御される。例えば、制御装置60により、排気系47による真空チャンバD内の排気、ガス導入系52による真空チャンバDへのArガスの導入等が制御される。
 なお、ガスが封止された状態は、処理室を構成する真空チャンバD内に対するガスの導入及び排気が完全に行われていない状態のみならず、半導体基板3の表面のArガスがシリコンの放出を抑制できる程度に維持されていればよい。すなわち、真空チャンバDに対して極めて低速にガスの排気が行われている場合をも含むものとする。具体的には、真空チャンバDの容積の0.1%前後が5分で排気されている状態及びこれよりも低速に排気されている状態をも含む。
 本実施形態による半導体基板の熱処理方法の行う前には、真空チャンバD内の部材に対し脱ガス処理を行うこと等を目的として、事前準備(コンディショニング)が行われる。以下、熱処理前の事前準備について図8Aを用いて説明する。
 まず、ロードロックチャンバ260内、搬送チャンバ241内、及び真空チャンバD内を例えば10-3Pa以下の高真空に排気する(ステップS101)。
 次いで、スリットバルブVcを閉鎖した状態で、基板ホルダユニットAを加熱位置まで上昇させ(ステップS102)、加熱ユニットBにより真空加熱を行う(ステップS103)。この真空加熱における加熱温度は、基板相当温度で例えば1500℃以上、具体的には例えば1900℃とする。基板相当温度とは、基板が基板ホルダユニットに設置された場合に想定される基板の温度である。
 次いで、加熱ユニットBによる加熱を停止して真空加熱を停止し(ステップS104)、基板ホルダユニットAを搬送位置まで降下させ(ステップS105)、その後、真空チャンバD内の排気を停止する(ステップS106)。なお、加熱を停止することに代えて、加熱ユニットBの加熱機構28のパワーを低下させて加熱温度を低下させるだけでもよい。
 次いで、ガス導入系52のバルブ56、58を開放する。こうして、配管53を通して、ガス供給源54のArガスをガス導入口51から真空チャンバD内にArガスを導入する(ステップS107)。これにより真空チャンバD内に導入するArガスは、例えば10~100kPaまでであり、本実施形態では75kPaを導入している。Arガスを導入した後、バルブ56、58を閉鎖して真空チャンバD内にArガスを封止する。
 なお、ステップS106とステップS107とは、上記の順に行う必要はなく、どのような順序で行ってもよく、最終的にArガスの封止状態が得られればよい。
 次いで、真空チャンバD内にArが封止された状態で、基板ホルダユニットAを熱処理位置まで上昇させ(ステップS108)、加熱ユニットBにより加熱を行う(ステップS109)。このArガスの封止状態での加熱温度は、基板相当温度で例えば1500℃以上、具体的には例えば1900℃とする。
 次いで、加熱ユニットBによる加熱を停止して、Arガスの封止状態での加熱を停止する(ステップS110)。なお、加熱を停止することに代えて、加熱ユニットBの加熱機構28のパワーを低下させて加熱温度を低下させるだけでもよい。続いて、基板ホルダユニットAを搬送位置まで降下させる(ステップS111)。
 次いで、真空チャンバD内の排気を開始する(ステップS112)。なお、ステップS110の後にステップS112を行う必要は必ずしもなく、ステップS112の後にステップS110を行ってもよい。この真空チャンバD内の排気では、排気系47のドライポンプ49及び必要に応じてターボ分子48を用いて、真空チャンバD内を所定の圧力まで排気する。例えば、真空チャンバD内の圧力を10-4Pa~10-3Paとする。これにより、真空チャンバD内のHOの分圧を例えば10-5Pa~10-4Paとする。このようにHOの分圧を低減しておくことにより、高温下においてもSiC等の半導体基板3の基板材料と残留水分との反応確率を大幅に低減でき、エッチング反応を抑制することができる。この結果、熱処理後の半導体基板3について、高い表面平坦性を確保しつつ、高い電気的活性化を容易に実現することができる。
 次いで、真空チャンバD内の排気を停止する(ステップS113)。
 次いで、真空チャンバD及び搬送チャンバ241内に、それぞれArガスを導入する(ステップS114)。導入するArガスの圧力は、それぞれ、例えば1kPa~10kPa、具体的には1kPaとする。
 こうして、本実施形態による半導体基板の熱処理方法を行う前の事前準備を終了する。なお、事前準備では、真空加熱及びArガスの封止状態での加熱の両加熱を行う必要は必ずしもない。例えば、真空加熱を行う一方、Arガスの封止状態での加熱を行わなくてもよい。
 上記のようにして事前準備を行ったうえで、本実施形態による半導体基板の熱処理方法を行う。以下、本実施形態による半導体基板の熱処理方法について図8Bを用いて説明する。
 熱処理が行われる半導体基板3には、トレンチが形成されている。半導体基板3は、例えばSiC膜である。本実施形態では、半導体基板3に形成されたトレンチの開口部及び底部の角張った角部を丸める熱処理を行う。
 まず、半導体基板3の投入する前に、必要に応じて、加熱ユニットBにより真空チャンバDのチャンバベークを行う(ステップS201)。このチャンバベークにおける加熱温度は、基板相当温度で例えば1500℃以上、具体的には例えば1900℃とする。
 次いで、ロードロックチャンバ260をベントした後、スリットバルブVaを開放して、基板載置室280からロードロックチャンバ260内に半導体基板3を投入する(ステップS202)。なお、投入する半導体基板3は1枚でも複数枚でもよい。ロードロックチャンバ260内に半導体基板3を投入した後、スリットバルブVaを閉鎖する。
 次いで、ロードロックチャンバ260内の排気を開始し(ステップS203)、ロードロックチャンバ260内を例えば50Pa以下まで排気して、ロードロックチャンバ260内の排気を停止する(ステップS204)。
 次いで、ロードロックチャンバ260内にArガスを導入する(ステップS205)。導入するArガスの圧力は、例えば100Pa~10kPaとし、具体的には1kPaとする。
 次いで、スタンバイ加熱として、加熱ユニットBによる加熱を行う(ステップS206)。このスタンバイ加熱における加熱温度は、加熱ユニットBの加熱機構28の放熱面温度で例えば1000~2000℃、具体的には例えば1200℃とする。
 次いで、スリットバルブVbを開放して、搬送ロボット242により、ロードロックチャンバ260内から搬送チャンバ241内へ半導体基板3を取り出す(ステップS207)。このとき、ロードロックチャンバ260内と搬送チャンバ241内とは、互いに同程度の圧力になっている(ステップS110及びステップS205を参照)。搬送チャンバ241内へ半導体基板3を取り出した後、スリットバルブVbを閉鎖する。
 次いで、排気系47又はガス導入系52を用いて真空チャンバD内の圧力の調整を行う(ステップS208)。これにより、真空チャンバD内のArガスの圧力を例えば1kPa~100kPa、具体的には10kPaとする。
 次いで、図1に示すように、スリットバルブ20(図7に示すスリットバルブVcに相当する)を開放して、搬送チャンバ241内から真空チャンバD内に半導体基板3を搬送する(ステップS209)。真空チャンバD内に搬送した半導体基板3は、リフトピン8上に載置する。このとき、搬送チャンバ241内と真空チャンバD内とは、互いに同程度の圧力になっている(ステップS114及びステップS208を参照)。また、シャッタ17は、基板ホルダユニットAと基板対向面2との間に進出している。真空チャンバD内に半導体基板3を搬送した後、スリットバルブ20(スリットバルブVc)を閉鎖する。
 なお、半導体基板3を真空チャンバD内に搬送した後に、真空チャンバD内の排気を行ってもよい。これにより、事前準備におけるステップS108により行われる真空チャンバD内の排気と同様に、熱処理の際に真空チャンバD内に存在する水等の不純物を低減することができる。
 次いで、ガス導入系52のバルブ56、58を開放する。こうして真空チャンバD内へのArガスの導入を開始し、配管53を通して、ガス供給源54のArガスをガス導入口51から真空チャンバD内に導入する(ステップS210)。このとき、MFC57によりArガスの流量を所定の流量に適宜制御する。また、真空チャンバD内に導入されるArガスは、ピュリファイヤー55により不純物が除去されて真空チャンバD内に導入される。
 上記のようにガス導入系52からArガスを導入することにより、真空チャンバD内の圧力が所定の圧力になった時点で、バルブ56、58を閉鎖する。これにより、真空チャンバD内へのArガスの導入を停止する。Arガスの導入を停止する真空チャンバD内のArガスの圧力は、例えば1kPa~100kPaとし、具体的には例えば10kPaとする。こうして、真空チャンバD内にArガスを封止する。ここで、真空チャンバD内の排気を停止した後に真空チャンバD内へのArガスの導入を停止することにより、熱処理前の真空チャンバD内の圧力を容易に調整することができる。
 なお、真空チャンバD内のArガスの圧力は、半導体基板の熱処理温度に応じて適宜設定することができる。より高温な熱処理の場合ほどArガスの圧力をより高圧に設定することにより、半導体基板3の材料の昇華を抑制しつつ、トレンチの角部の丸みを形成することができる。例えば、半導体基板3の熱処理温度が1500℃以上2000℃以下、具体的には1600℃の場合には、Arガスの圧力を10kPa以上に設定することができる。
 真空チャンバD内にArガスを封止した後、シャッタ17を後退させ、昇降装置Eにより基板ホルダユニットAを上昇させる。上昇する基板ホルダユニットAの基板ステージ1における基板載置部7で半導体基板3をすくい取った後、さらに基板ホルダユニットAを熱処理位置まで上昇させる。こうして、図2及び図5に示されるように、半導体基板3をリフトアップして、基板ホルダユニットAの基板ステージ1と、加熱ユニットBの基板対向面2とを近接させる(ステップS211)。このとき、少なくとも半導体基板3は、基板対向面2と非接触状態であることが必要である。基板ステージ1は基板対向面2と接触状態にすることも可能であるが、基板ステージ1と基板ステージ1上の半導体基板3の両者とも基板対向面2とは非接触状態であることが好ましい。基板対向面2と半導体基板3の大きさ、熱処理温度、加熱機構28の出力等にもよるが、基板対向面2と半導体基板3の間隔は1~25mmとすることが好ましい。
 本実施形態では、このように、半導体基板3が真空チャンバD内に搬送されてリフトピン8上に載置された位置よりも基板対向面2に近接させた熱処理位置で熱処理を行う。すなわち、半導体基板3が真空チャンバD内に搬送されて載置された状態(搬送位置)よりも半導体基板3と基板対向面2とを近接させた状態で熱処理を行う。このため、真空チャンバD内を広範囲に温度上昇させる必要がなく、高い効率で熱処理を行うことができる。なお、本実施形態では、基板ホルダユニットAを上昇させることにより、半導体基板3と基板対向面2とを近接させているが、半導体基板3と基板対向面2とを相対的に近接させることができればよい。例えば、基板対向面2を含む加熱ユニットBが下降することにより基板対向面2と半導体基板3とが近接するように熱処理装置100を構成することもできる。
 また、真空チャンバD内にArガスを封止する前に、熱処理の温度を下回る予熱温度に半導体基板3を予熱しておいてもよい。半導体基板3の予熱は、上記のように基板ホルダユニットAの基板ステージ1と加熱ユニットBの基板対向面2とを近接させた状態又は近接させる前の状態で、加熱ユニットBにより行うことができる。上記では、スタンバイ加熱(ステップS206を参照)がこの予熱に相当する。予熱温度は、半導体基板3がSiC基板である場合、例えば1700℃以下、具体的には1200℃とする。なお、この温度は、加熱ユニットBの設定温度である。1700℃以下の温度であれば、SiC基板におけるSiが昇華する確率は低いためである。こうして熱処理の温度を下回る予熱温度に予熱しておくことで、処理時間を短縮することができる。
 また、処理時間を短縮するため、加熱ユニットBの加熱機構28の昇温中に、真空チャンバD内へのArガスの導入及びその停止により真空チャンバD内にArガスを封止してもよい。このように、真空チャンバD内にArガスを封止するタイミングは、特定のタイミングに限定されるものではない。Arガスを封止するタイミングは、Arガスを封止された状態で半導体基板3の熱処理を行うことができるものであればよく、熱処理温度に到達するまでに封止が完了していればよい。
 次いで、上記のようにして真空チャンバD内にArガスが封止された状態で、加熱ユニットBの加熱機構28のパワーを上昇させ高温に加熱する。こうして、基板対向面2からの輻射熱により、半導体基板3を熱処理する(ステップS212)。熱処理時の半導体基板3の温度である半導体基板3の熱処理温度は、例えば1500℃~2000℃、より具体的には1600℃とする。熱処理では、温度測定器16で測定される基板ステージ1の温度が所定の熱処理温度になるまで加熱機構28の加熱を継続する。所定の熱処理温度に達した後、所定の熱処理時間が経過するまでこの温度を保持する。熱処理時間は、例えば1分間~30分間とする。
 本実施形態による半導体基板の熱処理方法では、上述のように、真空チャンバD内にArガスが封止された形態で半導体基板3の熱処理を行う。封止されたArガスの圧力は、分子流領域の圧力を超える圧力、例えば1kPa~100kPaであり、より具体的には10kPaである。また、封止されたArガスの圧力は、上述のように半導体基板3の熱処理温度に応じて適宜設定することができる。例えば、熱処理温度が1500℃以上1750℃以下の場合には、Arガスの圧力を10kPa以上に設定することができる。また、例えば、熱処理温度が1750℃よりも高く2000℃以下の場合には、Arガスの圧力を50kPa以上に設定することができる。
 このように封止されたArガスの圧力が分子流領域の圧力を超える圧力において、Arガスの圧力が高い雰囲気中で熱処理を行うと、SiC基板表面付近において脱離したSi原子とAr原子とが衝突する確率が増加する。この結果、Si原子の蒸気圧をSiC基板表面付近で局所的に上昇させることができる。また、真空チャンバD内にArガスが封止されているため、Arガスの流れがSiC表面で抑制される。このため、加熱によりSiC基板表面から脱離したSi原子が排気されることなく、SiC基板表面付近に留まることになる。この結果、SiC基板表面付近のSi原子の蒸気圧が飽和状態となる。すると、SiC基板表面のSi原子の脱離が抑制され、SiC基板の表面の数層のSi原子のみが脱離するに留まる。さらに、SiC表面に留まっているSi原子は、加熱によりえられたエネルギーによりSiC表面を移動する。このとき、移動したSi原子は、トレンチの開口部及び底部の角張った角部を丸くすることによって、より安定した形状をとることができる。
 さらに、本実施形態では、半導体基板3が真空チャンバD内に搬送されて載置された状態よりも半導体基板3と加熱ユニットBの基板対向面2とを近接させた状態で熱処理を行う。このように半導体基板3と基板対向面2とを近接させた状態で熱処理を行うことによって、Si原子の脱離を最小限に抑えることができ、処理前のトレンチの開口幅を大幅に広げることなく、トレンチの開口部及び底部の角張った角部を丸くすることができる。
 なお、SiC基板を用いたトレンチ型のMOSFETにおけるトレンチ幅は、エッチング前と、角部を丸く処理した後の寸法の差を、トレンチ内部の上部、つまり開口部付近で±100nm以下に抑えることが必要とされ、より好ましくは、±50nm以下に抑えることが求められる。本実施形態では、トレンチ幅は、エッチング前と、角部を丸く処理した後との寸法の差を±50nm以下に抑えることができ、より具体的には-35nmの寸法差を実現することができる。
 上記のようにして半導体基板3の熱処理を行った後、加熱ユニットBの加熱機構28をオフにし、自然冷却を開始する。なお、続けて処理すべき半導体基板3がある場合には、加熱ユニットBによりスタンバイ加熱を行うようにしてもよい。これとともに、昇降装置Eにより基板ホルダユニットAを所定の予備冷却位置まで降下させ、温度測定器16で測定される基板ステージ1の温度が所定の温度になるまで降温させる。
 その後、リフトピン8に半導体基板3を接触させることなく冷却するために、図3に示すように、昇降装置Eにより基板ホルダユニットAを所定の冷却位置までさらに降下させて半導体基板3をリフトダウンする(ステップS213)。これとともに、冷却機構を有するシャッタ17を、冷却位置に下降させた基板ホルダユニットAの基板ステージ1と、加熱ユニットBの基板対向面2との間に進出させ、冷却を促進する。こうして、冷却位置において、温度測定器16で測定される基板ステージ1の温度が所定の温度になるまでさらに冷却する。
 次いで、基板ホルダユニットAを搬入出位置まで降下させる。冷却位置から搬入出位置までの降下の間に、半導体基板3はリフトピン8上に移し取られ、取り出しやすい状態となる。
 基板ホルダユニットAが搬入出位置まで降下した後、排気系47を用いて真空チャンバD内の圧力の調整を行う(ステップS214)。これにより、真空チャンバD内のArガスの圧力を例えば100Pa~10kPaとし、具体的には1kPaとする。
 次いでスリットバルブ20(スリットバルブVc)を開放し、搬送チャンバ241の搬送ロボット242を用いて半導体基板3を真空チャンバD内から搬送チャンバ241内へ搬送する(ステップS215)。搬送後、スリットバルブ20(スリットバルブVc)を閉鎖する。こうして、トレンチの開口部及び底部の角張った角部に丸みをつけた半導体基板3が製造される。
 このように真空チャンバD内及び搬送チャンバ241内の圧力を予め設定することで、半導体基板3の熱処理後、直ちに真空チャンバD内から搬送チャンバ241内に半導体基板3を搬送することができる。これにより、真空チャンバD内からの半導体基板3の搬送を含めた処理時間を短縮することができる。また、この際、両チャンバの圧力が同等であるため、チャンバ間の圧力差に起因するパーティクルの巻き上げ等により熱処理後の半導体基板3が汚染されるのを回避することができる。
 次いで、スリットバルブVbを開放し、搬送チャンバ241内に搬送された半導体基板3を、搬送チャンバ241内からロードロックチャンバ260内に搬送する(ステップS216)。
 次いで、ロードロックチャンバ260内に熱処理すべき次の半導体基板3がある場合(ステップS217、YES)の場合には、ステップS207に移行して次の半導体基板3について処理を継続する。
 一方、ロードロックチャンバ260内に熱処理すべき次の半導体基板3がない場合(ステップS217、NO)、スリットバルブVbを閉鎖してロードロックチャンバ260をベントする。その後、スリットバルブVaを開放して、ロードロックチャンバ260から熱処理後の半導体基板3を取り出す(ステップS218)。
 続いて次ロットの半導体基板3について熱処理の連続処理を行う場合(ステップS219、YES)には、ステップS202に移行して次ロットの半導体基板3について処理を継続する。
 一方、次ロットの半導体基板3について熱処理の連続処理を行わない場合(ステップS219、NO)には、スリットバルブVaを閉鎖して処理を完了する。
 このように、本実施形態によれば、真空チャンバD内にArガスを封止した状態で半導体基板3の熱処理を行うので、トレンチ開口部の寸法差を抑制した状態で、生産性を高くし、高価な付帯設備も必要なく、トレンチの開口部及び底部の角張った角部に丸みをつけることができる。
 なお、上述した図8A及び図8Bに示すプロセスフローは、例示にすぎず、真空チャンバD内にArガスを封止した状態を実現するための真空チャンバD内の排気及び真空チャンバ内へのArガスの導入の態様は、上述した態様に限定されるものではない。また、熱処理すべき半導体基板3を真空チャンバD内へ搬送する際のロードロックチャンバ260、搬送チャンバ241、及び真空チャンバDの各チャンバ内の排気及び各チャンバ内へのArガスの導入の態様も、上述した態様に限定されるものではない。また、熱処理後の半導体基板3を真空チャンバD内からロードロックチャンバ260内に搬送する際の各チャンバ内の排気及び各チャンバ内へのArガスの導入の態様も、上述した態様に限定されるものではない。
 また、上述のように真空チャンバD内にArガスを封止した状態で熱処理を行うと、昇華したSiが排気されないことになる。このため、昇華したSiが真空チャンバDの内壁に付着する。真空チャンバDの内壁にSiが堆積すると、内壁面における輻射の反射率が変化する。このため、加熱ユニットBの加熱機構28の温度が同じであっても、熱処理の際の半導体基板3の温度が、熱処理を繰り返し行うことにより変動することがある。このような場合、温度測定器16等により半導体基板3の温度を検出し、その検出結果に応じて、制御装置60により加熱機構28の出力を変化させる。これにより、熱処理の際の半導体基板3の温度の調整し、熱処理の再現性を向上することが可能となる。
(半導体装置及びその製造方法)
 上述した本実施形態による半導体基板の熱処理方法は、トレンチを有する半導体基板を用いて半導体装置を製造する際のトレンチの開口部及び底部の角張った角部を丸めることに適用することができる。また、不純物を注入したトレンチを有する半導体基板を用いて半導体装置を製造する際のトレンチの開口部及び底部の角張った角部を丸めると共に不純物の活性化アニールに適用することができる。以下、本実施形態による熱処理方法を適用して製造される半導体装置の具体例について説明する。
 図9は、SiC基板を用いて製造されるトレンチ型のMOSFETを示している。図示するように、n型SiC基板401上に、エピタキシャル成長法によりn型SiC膜(ドリフト層)402を形成する。
 次いで、SiO等をエッチングマスク(不図示)として、ドライエッチング法によりドリフト層402にトレンチ406を形成する。トレンチ406を形成した後、フッ酸洗浄等によりエッチングマスクを除去する。
 次いで、本実施形態による半導体基板の熱処理方法を用い、ドライエッチング法により形成したトレンチの開口部及び底部の角張った角部に丸みを付ける。
 次いで、プラズマCVD法等を用い、開口したトレンチ406にSiO(不図示)を埋め込み、不要な部分への不純物の注入を防止する注入抑制層(不図示)を形成する。
 n型SiC膜402に、SiO等をマスク(不図示)として、p型不純物、例えばアルミニウムをイオン注入し、p型ウェル層(不純物領域)403を形成する。
 次いで、注入マスクのSiOをフッ酸処理等により除去した後、p型ウェル層403に、SiO等をマスク(不図示)として、n型不純物、例えば燐をイオン注入し、高濃度のn型不純物層であるn型コンタクト層(不純物領域)404を形成する。
 次いで、注入マスクのSiOをフッ酸処理等により除去する。その後、p型ウェル層403のn型コンタクト層404の外側に隣接される形で、SiO等をマスク(不図示)として、p型不純物、例えばアルミニウムをイオン注入し、高濃度のp型不純物層であるp型コンタクト層(不純物領域)405を形成する。
 次いで、半導体基板の熱処理を行い、各不純物領域403、404、405中の不純物を活性化する。
 次いで、基板表面に形成された変質層を除去するために、例えば、縦型炉にて酸素雰囲気中で1100℃/30分程度の酸化処理を行い、犠牲酸化層(不図示)を約50nm形成する。
 次いで、犠牲酸化層をフッ酸にて洗浄し、清浄なSiC表面を露出させた後、トレンチ406の側面にゲート絶縁膜となるシリコン酸化膜407を形成する。シリコン酸化膜407を形成した後、ポリシリコン膜で、トレンチ406を埋め込む。続いて、このポリシリコン膜をパターニングすることにより、ポリシリコンからなるゲート電極408を形成する。
 次いで、電極、層間絶縁膜、配線等(不図示)を形成してトレンチ型のn型MOSFETが製造される。こうして製造されるトレンチ型のn型MOSFETでは、SiC基板401の底面側がドレインとして機能する。また、シリコン酸化膜407の周囲に形成されたn型コンタクト層404がソースとして機能する。また、チャネル409は、ゲート電極408への電圧印加により、p型ウェル層403とシリコン酸化膜407との間に形成され、キャリアはトレンチ406に沿って基板表面に対して垂直方向に移動する。
 なお、本発明は、上記実施形態に限らず種々の変形が可能である。
 例えば、上記実施形態では、トレンチの開口部及び底部の角張った角部に丸みを付けてから不純物をイオン注入し、熱処理により不純物の活性化を行ったが、トレンチの開口部及び底部の角張った角部に丸みを付ける処理と不純物の活性化とを同時に熱処理で行ってもよい。また、本実施形態ではトレンチが形成されたSiC基板に対して熱処理を行い、トレンチの開口部及び底部の角張った角部を丸くする処理について説明したが、これに限らず、凹部が形成された半導体基板に対しても適用可能である。さらに、スルーホールが形成された半導体基板に本実施形態の熱処理を適用すれば、スルーホールの開口部の角張った角部を丸くできる。
 また、上記実施形態では、真空チャンバD内にArガスを封止する場合を主な例として説明したが、上述のように、真空チャンバD内に封止するガスはArガスに限定されるものではない。真空チャンバD内に封止するガスは、熱処理すべき半導体基板の材料と反応しないか、反応性に乏しいものであればよく、他の不活性ガスを用いてもよい。
(実施例1)
 実施例1では、SiC基板として、エピタキシャル成長したSiC結晶層を表面層として有するものを用意した。このSiC表面層に形成されたSiOマスクを用いてSiCをドライエッチング法によりトレンチを形成し、フッ酸洗浄によりSiOマスクを除去したものを用意した。
 まず、予めロードロックチャンバ260、搬送チャンバ241、プロセスチャンバとしての真空チャンバD等のチャンバを10-3Pa以下の高真空に排気した。さらに、真空チャンバDをターボ分子ポンプ48で排気しつつ、加熱機構28を1500℃以上に加熱することで、加熱機構28、チャンバ、基板ホルダユニットA等から十分な脱ガスを行った。
 脱ガスが完了した後、真空チャンバD及び搬送チャンバ241のターボ分子ポンプを停止させるか排気用のメインバルブを閉じた状態で、真空チャンバD内及び搬送チャンバ241内にArガスを1kPaになるまで注入した。次いで、Arガス導入用バルブを閉鎖して、真空チャンバD内及び搬送チャンバ241内にArガスを封止した。
 上記のようにしてArガスを封止した状態で、真空チャンバDの基板ホルダユニットAを基板の搬入出位置まで降下させた。続いて、シャッタ17を基板ホルダユニットAと加熱ユニットBとの間に進出させ、加熱ユニットBの加熱機構28の放熱面温度が1200℃になるまで予め加熱した。
 次いで、ロードロックチャンバ260をArガス又は窒素(N)ガスでベントし、上記SiC基板をロードロックチャンバ260内にセットした。続いて、ロードロックチャンバ260内を10Pa程度までドライポンプで排気した後、その排気バルブを閉鎖した。その後、ロードロックチャンバ260内にArガスを1kPaまで注入し、ロードロックチャンバ260内をArガスで封止した。
 次いで、チャンバ間のスリットバルブVb、Vcを開放し、搬送チャンバ241の搬送ロボット242を介して、ロードロックチャンバ260内のSiC基板を真空チャンバD内に搬送した。このとき、ロードロックチャンバ260、搬送チャンバ241、及び真空チャンバDが同一圧力になっているため、搬送に際してスリットバルブを開放してもパーティクルの巻き上げや、SiC基板にズレを生じることはなかった。SiC基板の搬送後、真空チャンバDの搬入出用のスリットバルブVb、Vcを閉鎖した。
 次いで、真空チャンバDへArガスを10kPaになるまで導入し、ガス導入バルブを閉じて、Ar封止を行った。基板ホルダユニットAと加熱ユニットBとの間からシャッタ17を後退させ、基板ホルダユニットAを熱処理位置まで上昇させた。続いて、加熱ユニットBの加熱機構28により、SiC基板の温度が1600℃になるまで昇温し、5分間保持した。
 こうしてSiC基板の熱処理が完了した後、冷却位置に基板ホルダユニットAを降下させ、SiC基板の温度が1400℃程度になるまで冷却した。その後、基板ホルダユニットAを搬入出位置まで降下させ、シャッタ17を基板ホルダユニットAと加熱ユニットBとの間に進出させた。この冷却時間の間に排気系47により、真空チャンバDの圧力が1kPaになるように排気した。
 次いで、スリットバルブVb、Vcを開放し、SiC基板を搬送チャンバ241の搬送ロボット242を介してロードロックチャンバ260へ搬送した。続いて、ロードロックチャンバ260をベントし、SiC基板をロードロックチャンバ260から取り出した。このように、SiC基板のトレンチの角を丸める熱処理を行った。
 上記熱処理前後のSiC基板のトレンチの断面を走査型電子顕微鏡(Scanning Electron Microscope、SEM)により、トレンチの開口部の角部と底部の角部の形状及びトレンチ内部の上部、中間部、底部の幅を測定した。図10及び表1に示す通り、処理前トレンチの形状は、トレンチの開口部の角部と底部の角部が角張っており、トレンチ内部の上部、中間部、底部の幅は、1366nm、1286nm、1059nmであった。本実施例による処理後のトレンチの形状を図11及び表1に示すように、トレンチ開口部の角部と底部との角部の形状は丸まっており、トレンチ内部の上部、中間部、底部の幅は、1331nm、1199nm、1036nmであり、トレンチ幅の変動は小さく、トレンチ開口部の角部と底部の角部との形状は丸まっており、トレンチ上部のトレンチ幅の変動は-35nmであり、トレンチを形状制御性よく処理できていることが分かる。なお、トレンチ内部の上部、底部の幅は、トレンチ側壁の接線の間の幅を測定した。
(実施例2)
 実施例2では、実施例1と同様にトレンチを有したSiC基板を用意した。実施例2は、実施例1の処理と比べてSiC基板の1600℃での保持時間を30分とした処理である。
 上記熱処理前後のSiC基板のトレンチの断面を走査型電子顕微鏡により、トレンチ開口部の角部と底部の角部の形状及びトレンチ内部の上部、中間部、底部の幅を測定した。図10及び表1に示す通り、処理前のトレンチの形状は、トレンチ開口部の角部と底部の角部の形状は角張っており、トレンチ内部の上部、中間部、底部の幅は、1366nm、1286nm、1059nmであった。本実施例による処理後のトレンチの形状は図12及び表1に示すように、トレンチの開口部の角部及び底部の角部の形状は丸まっており、トレンチ内部の上部、中間部、底部の幅は、1394nm、1251nm、1076nmであり、トレンチ幅の変動は小さく、トレンチの開口部の角部と底部の角部の形状は丸まっており、トレンチ上部のトレンチ幅の変動は+28nmであり、トレンチを形状制御性よく処理できていることが分かる。
(比較例1)
 比較例1では、実施例1と同様にトレンチを有したSiC基板を用意した。
 実施例1と異なり、Arガス封止を行わずArガスをフローさせて、真空チャンバD内部のArガスの圧力を10kPaとして、SiC基板を1600℃で5分間熱処理した。
 上記熱処理前後のSiC基板のトレンチの断面を走査型電子顕微鏡により、トレンチ開口部の角部と底部の角部の形状及びトレンチ内部の上部、中間部、底部の幅を測定した。図10に示す通り、処理前のトレンチの形状は、トレンチ開口部の角部と底部の角部の形状は角張っており、トレンチ内部の上部、中間部、底部の幅は、1366nm、1286nm、1059nmであった。本実施例による処理後のトレンチの形状を図13及び表1に示すように、トレンチの開口部の角部は変形後退し、底部の角部の形状は大きく丸まっていた。また、トレンチ内部の上部、中間部、底部の幅は、1430nm、1334nm、1139nmであり、トレンチ幅が全体に広がり、底面及び側面に凹凸が発生していた。
(比較例2)
 比較例2では、実施例1と同様にトレンチを有したSiC基板を用意した。
 実施例1と異なり、真空チャンバD内部のArガスの封止圧力を100Paとして、SiC基板を1600℃で5分間熱処理した。
 上記熱処理前後のSiC基板のトレンチの断面を走査型電子顕微鏡により、トレンチ開口部の角部と底部の角部の形状及びトレンチ内部の上部、中間部、底部の幅を測定した。図10に示す通り、処理前のトレンチの形状は、トレンチの開口部の角部と底部の角部の形状は角張っており、トレンチ内部の上部、中間部、底部の幅は、1366nm、1286nm、1059nmであった。本実施例による処理後のトレンチの形状を図14及び表1に示すように、トレンチ開口部の角部は角張っているままであり、底部の角部の形状は丸まっているもののトレンチ内部の上部、中間部、底部の幅は、1486nm、1303nm、1084nmであり、トレンチ幅が全体に広がりトレンチ側面からSi原子の抜けた層が観察された。
Figure JPOXMLDOC01-appb-T000001

Claims (7)

  1.  分子流領域の圧力を超える圧力でガスが封止された状態の処理室内において、凹部が形成された半導体基板に対して熱処理を行うことを特徴とする半導体基板の熱処理方法。
  2.  前記半導体基板に対向して放熱により前記半導体基板を加熱する基板対向面を有する加熱手段を用い、前記半導体基板が前記処理室内に搬送されて載置された第1の状態よりも前記半導体基板と前記基板対向面とを近接させた第2の状態で、前記半導体基板の前記熱処理を行うことを特徴とする請求項1記載の半導体基板の熱処理方法。
  3.  前記熱処理における前記半導体基板の熱処理温度が1500℃以上であり、1750℃以下である場合には、前記処理室内に封止された前記ガスの圧力を10kPa以上に設定し、
     前記熱処理における前記半導体基板の熱処理温度が1750℃よりも高く、2000℃以下である場合には、前記処理室内に封止された前記ガスの圧力を50kPa以上に設定することを特徴とする請求項1記載の半導体基板の熱処理方法。
  4.  前記凹部は、前記半導体基板に形成されたトレンチであることを特徴とする請求項1に記載の半導体基板の熱処理方法。
  5.  前記半導体基板は、SiC基板であることを特徴とする請求項1に記載の半導体基板の熱処理方法。
  6.  半導体基板の熱処理を行うための処理室と、
     前記処理室内に設けられた加熱手段と、
     分子流領域の圧力を超える圧力でガスが封止された状態の前記処理室内において、前記加熱手段により凹部が形成された半導体基板に対して前記熱処理を実行する制御装置と
     を有することを特徴とする熱処理装置。
  7.  前記加熱手段は、前記半導体基板に対向して放熱により前記半導体基板を加熱する基板対向面を有し、
     前記制御装置は、前記半導体基板が前記処理室内に搬送されて載置された第1の状態よりも前記半導体基板と前記基板対向面とを近接させた第2の状態で、前記半導体基板の前記熱処理を実行することを特徴とする請求項6記載の熱処理装置。
     
PCT/JP2015/001686 2014-03-24 2015-03-24 半導体基板の熱処理方法及び熱処理装置 WO2015146162A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016510039A JP6530377B2 (ja) 2014-03-24 2015-03-24 半導体基板の凹部の角部を丸める方法及び装置
US15/272,484 US9991119B2 (en) 2014-03-24 2016-09-22 Heat treatment method and heat treatment apparatus for semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014060584 2014-03-24
JP2014-060584 2014-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/272,484 Continuation US9991119B2 (en) 2014-03-24 2016-09-22 Heat treatment method and heat treatment apparatus for semiconductor substrate

Publications (1)

Publication Number Publication Date
WO2015146162A1 true WO2015146162A1 (ja) 2015-10-01

Family

ID=54194706

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/001684 WO2015146161A1 (ja) 2014-03-24 2015-03-24 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム
PCT/JP2015/001686 WO2015146162A1 (ja) 2014-03-24 2015-03-24 半導体基板の熱処理方法及び熱処理装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001684 WO2015146161A1 (ja) 2014-03-24 2015-03-24 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム

Country Status (3)

Country Link
US (1) US9991119B2 (ja)
JP (3) JP6588423B2 (ja)
WO (2) WO2015146161A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9991119B2 (en) 2014-03-24 2018-06-05 Canon Anelva Corporation Heat treatment method and heat treatment apparatus for semiconductor substrate
JP2022548223A (ja) * 2019-09-10 2022-11-17 コリア エレクトロテクノロジー リサーチ インスティテュート トレンチゲート型SiCMOSFETデバイス及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162918A (ja) * 2015-03-03 2016-09-05 トヨタ自動車株式会社 半導体装置の製造方法
CN104894534B (zh) * 2015-06-26 2017-12-29 京东方科技集团股份有限公司 气相沉积设备
JP6493339B2 (ja) * 2016-08-26 2019-04-03 村田機械株式会社 搬送容器、及び収容物の移載方法
CN109817713B (zh) * 2017-11-22 2022-04-15 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
KR102161247B1 (ko) 2018-12-10 2020-09-29 경기도 베이커리 소재용 효소 처리 콩 분말 제조 및 이를 이용한 마카롱의 제조방법
DE102022002762A1 (de) * 2022-07-29 2024-02-01 centrotherm international AG Reinigungsverfahren zum Reinigen eines Hochtemperaturofens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147118A (ja) * 2007-12-14 2009-07-02 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法
JP2009289987A (ja) * 2008-05-29 2009-12-10 Fuji Electric Device Technology Co Ltd 炭化珪素半導体基板のトレンチ形成方法
WO2013042333A1 (ja) * 2011-09-22 2013-03-28 パナソニック株式会社 炭化珪素半導体素子およびその製造方法
WO2013099063A1 (ja) * 2011-12-27 2013-07-04 キヤノンアネルバ株式会社 基板熱処理装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308029A (ja) * 2000-04-20 2001-11-02 Kobe Steel Ltd 金属配線膜の形成方法
JP4123961B2 (ja) * 2002-03-26 2008-07-23 富士電機デバイステクノロジー株式会社 半導体装置の製造方法
JP4376505B2 (ja) * 2002-10-30 2009-12-02 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
JP3741283B2 (ja) * 2003-03-10 2006-02-01 学校法人関西学院 熱処理装置及びそれを用いた熱処理方法
US7462540B2 (en) * 2004-02-06 2008-12-09 Panasonic Corporation Silicon carbide semiconductor device and process for producing the same
JP2006339396A (ja) * 2005-06-02 2006-12-14 Kwansei Gakuin イオン注入アニール方法、半導体素子の製造方法、及び半導体素子
JP2007335649A (ja) * 2006-06-15 2007-12-27 Mitsubishi Electric Corp 炭化シリコン半導体基板の加熱方法
JP5509520B2 (ja) * 2006-12-21 2014-06-04 富士電機株式会社 炭化珪素半導体装置の製造方法
JP4712731B2 (ja) * 2007-01-25 2011-06-29 株式会社アルバック 搬送ロボット、真空装置
CN101636825A (zh) * 2007-03-20 2010-01-27 佳能安内华股份有限公司 衬底加热设备及衬底加热方法
CN101652835B (zh) * 2007-04-20 2012-03-21 佳能安内华股份有限公司 具有碳化硅基板的半导体器件的退火方法和半导体器件
JP4617364B2 (ja) 2008-02-29 2011-01-26 キヤノンアネルバ株式会社 基板加熱装置及び処理方法
JP5092868B2 (ja) * 2008-04-18 2012-12-05 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP4582816B2 (ja) 2008-06-27 2010-11-17 キヤノンアネルバ株式会社 真空加熱装置
JP5620090B2 (ja) 2008-12-15 2014-11-05 キヤノンアネルバ株式会社 基板処理装置、熱処理基板の製造方法及び半導体デバイスの製造方法
JP5438992B2 (ja) * 2009-02-20 2014-03-12 昭和電工株式会社 炭化珪素半導体装置の製造方法
JP2010205922A (ja) * 2009-03-03 2010-09-16 Canon Anelva Corp 基板熱処理装置及び基板の製造方法
JP5406279B2 (ja) 2009-03-26 2014-02-05 キヤノンアネルバ株式会社 基板処理方法および結晶性炭化ケイ素(SiC)基板の製造方法
JP2010251718A (ja) 2009-03-27 2010-11-04 Canon Anelva Corp 加熱装置の温度制御方法及び記憶媒体
JP5497765B2 (ja) 2009-08-04 2014-05-21 キヤノンアネルバ株式会社 加熱処理装置および半導体デバイスの製造方法
US9431281B2 (en) 2009-12-25 2016-08-30 Canon Anelva Corporation Temperature control method for substrate heat treatment apparatus, semiconductor device manufacturing method, temperature control program for substrate heat treatment apparatus, and recording medium
JP5543601B2 (ja) 2010-08-09 2014-07-09 キヤノンアネルバ株式会社 基板加熱処理装置、基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体
JP5673107B2 (ja) * 2011-01-05 2015-02-18 富士電機株式会社 炭化珪素半導体デバイスの作製方法
JP2012227473A (ja) * 2011-04-22 2012-11-15 Ulvac Japan Ltd 半導体装置の製造方法
JP6017127B2 (ja) 2011-09-30 2016-10-26 株式会社東芝 炭化珪素半導体装置
WO2015146161A1 (ja) 2014-03-24 2015-10-01 キヤノンアネルバ株式会社 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147118A (ja) * 2007-12-14 2009-07-02 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法
JP2009289987A (ja) * 2008-05-29 2009-12-10 Fuji Electric Device Technology Co Ltd 炭化珪素半導体基板のトレンチ形成方法
WO2013042333A1 (ja) * 2011-09-22 2013-03-28 パナソニック株式会社 炭化珪素半導体素子およびその製造方法
WO2013099063A1 (ja) * 2011-12-27 2013-07-04 キヤノンアネルバ株式会社 基板熱処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9991119B2 (en) 2014-03-24 2018-06-05 Canon Anelva Corporation Heat treatment method and heat treatment apparatus for semiconductor substrate
JP2022548223A (ja) * 2019-09-10 2022-11-17 コリア エレクトロテクノロジー リサーチ インスティテュート トレンチゲート型SiCMOSFETデバイス及びその製造方法
JP7389239B2 (ja) 2019-09-10 2023-11-29 コリア エレクトロテクノロジー リサーチ インスティテュート トレンチゲート型SiCMOSFETデバイス及びその製造方法

Also Published As

Publication number Publication date
JP6530377B2 (ja) 2019-06-12
WO2015146161A1 (ja) 2015-10-01
US9991119B2 (en) 2018-06-05
JP6668521B2 (ja) 2020-03-18
JP6588423B2 (ja) 2019-10-09
JPWO2015146161A1 (ja) 2017-04-13
US20170011921A1 (en) 2017-01-12
JP2019091930A (ja) 2019-06-13
JPWO2015146162A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6668521B2 (ja) 半導体基板の熱処理方法及び熱処理装置
US9653318B2 (en) Directional SiO2 etch using plasma pre-treatment and high-temperature etchant deposition
KR100931765B1 (ko) Nh3-nf3 화학물질을 이용하는 산화물 식각
JP5410174B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理システム
US20120285621A1 (en) Semiconductor chamber apparatus for dielectric processing
TWI763653B (zh) 基板處理裝置
US7972979B2 (en) Substrate processing method and substrate processing apparatus
US20170084449A1 (en) Apparatus and method for selective deposition
JP2011508433A (ja) 自然酸化物の成長を低減するためのプラズマクリーンプロセスによるパッシベーション層の形成
US20120220116A1 (en) Dry Chemical Cleaning For Semiconductor Processing
US20080233764A1 (en) Formation of Gate Insulation Film
JP2010267925A (ja) 半導体装置の製造方法及び基板処理装置
KR20110107849A (ko) 가스 도입 개구들을 구비한 기판 지지부
TW200845229A (en) Integrated hydrogen anneal and gate oxidation for improved gate oxide integrity
TW201619431A (zh) 基板處理裝置、半導體裝置的製造方法及程式
JP6005966B2 (ja) 熱処理装置および熱処理方法
JP2010010448A (ja) 真空加熱装置
US11631590B2 (en) Substrate processing method, substrate processing apparatus and cleaning apparatus
TWI700764B (zh) 裝載鎖定裝置中的基板冷卻方法、基板搬運方法及裝載鎖定裝置
JP2010056183A (ja) アニール装置、熱処理方法
KR20080110524A (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
KR20220143082A (ko) 유동성 갭 충전 막을 위한 다단계 프로세스
WO2020085128A1 (ja) シャワーヘッドおよび基板処理装置
US9852903B2 (en) System and method in indium-gallium-arsenide channel height control for sub 7nm FinFET
TW202046426A (zh) 基板處理裝置之控制方法、基板處理裝置及群集系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768089

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016510039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768089

Country of ref document: EP

Kind code of ref document: A1