WO2011016223A1 - 加熱処理装置および半導体デバイスの製造方法 - Google Patents
加熱処理装置および半導体デバイスの製造方法 Download PDFInfo
- Publication number
- WO2011016223A1 WO2011016223A1 PCT/JP2010/004888 JP2010004888W WO2011016223A1 WO 2011016223 A1 WO2011016223 A1 WO 2011016223A1 JP 2010004888 W JP2010004888 W JP 2010004888W WO 2011016223 A1 WO2011016223 A1 WO 2011016223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reflector
- temperature
- heat treatment
- treatment apparatus
- exhaust port
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 108
- 239000004065 semiconductor Substances 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000000034 method Methods 0.000 title claims description 3
- 239000000758 substrate Substances 0.000 claims abstract description 65
- 238000001816 cooling Methods 0.000 claims description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- 238000001514 detection method Methods 0.000 claims description 16
- 238000012544 monitoring process Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 239000002296 pyrolytic carbon Substances 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 238000005422 blasting Methods 0.000 claims description 2
- 238000005524 ceramic coating Methods 0.000 claims description 2
- 238000012993 chemical processing Methods 0.000 claims description 2
- 238000003754 machining Methods 0.000 claims description 2
- 239000003507 refrigerant Substances 0.000 claims description 2
- 238000007743 anodising Methods 0.000 claims 1
- 238000009434 installation Methods 0.000 description 20
- 230000007246 mechanism Effects 0.000 description 18
- 230000004048 modification Effects 0.000 description 18
- 238000012986 modification Methods 0.000 description 18
- 238000000137 annealing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003685 thermal hair damage Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 241000984642 Cura Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66053—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
- H01L29/6606—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/0455—Making n or p doped regions or layers, e.g. using diffusion
- H01L21/046—Making n or p doped regions or layers, e.g. using diffusion using ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67115—Apparatus for thermal treatment mainly by radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
Definitions
- the present invention relates to a heat treatment apparatus and a semiconductor device manufacturing method.
- SiC silicon carbide
- Patent Document 1 As a high-temperature heating device, there is proposed a heat treatment device that has a heating means in the upper part of the vacuum vessel, places the substrate on the lower and upper substrate holder, and performs heat treatment by radiant heat from the heating means (Patent Document 1).
- the heat treatment apparatus of Patent Document 1 when the substrate is heated, the substrate holder is raised, the distance between the heating means and the substrate is shortened, and after the heat treatment, the substrate holder is lowered and processed. As the substrate leaves the heating means, the substrate is cooled. Furthermore, the heat treatment apparatus of Patent Document 1 includes an exhaust port connected to a vacuum pump in order to exhaust the inside of the vacuum vessel to a vacuum atmosphere.
- Patent Document 2 discloses a heat treatment apparatus provided with exhaust means without deteriorating exhaust conductance.
- a rotary pump is connected to one end, and a cryopump is connected to the other end.
- Each of the cryopump and the rotary pump is provided via a heat treatment chamber and a valve.
- a water-cooled baffle is provided between the valve and the heat treatment chamber, and a cryobaffle and a heat shielding plate are provided between the cryopump and the valve.
- an object of the present invention is to provide a heat treatment apparatus that does not cause thermal damage to the vacuum pump without impairing the exhaust conductance.
- a heat treatment apparatus that achieves the above object includes: a vacuum vessel; a substrate stage that holds a placed substrate; a heating unit that heats the substrate; A heat treatment apparatus having an exhaust means for evacuating the interior, A first reflector provided to cover an upper portion of the exhaust port in a state of being separated from the exhaust port of the exhaust unit; A second reflector provided at a position surrounding the periphery of the exhaust port, At least one of the reflector members constituting the second reflector is provided so as to face in a direction from the heating means toward the exhaust port.
- a method of manufacturing a semiconductor device includes a step of performing a heat treatment of a substrate using the above heat treatment apparatus.
- the substrate holder before the temperature of the substrate after the heat treatment is sufficiently lowered, the substrate holder can be lowered and a new substrate can be carried in after being exhausted. It becomes possible to achieve sufficient productivity.
- the substrate can be processed at a high temperature, it is possible to achieve high-quality activation of impurities implanted into silicon carbide (SiC) while maintaining sufficient productivity.
- the accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
- the schematic diagram which shows the state which attached the baffle with a water cooling mechanism to the vacuum vessel.
- the figure which shows the detailed structure of a baffle with a water cooling structure The figure which shows the 1st modification of the installation structure of a reflector. The figure which shows the 1st modification of the installation structure of a reflector. The figure which shows the 1st modification of the installation structure of a reflector. The figure which shows the 1st modification of the installation structure of a reflector. The figure which shows the 1st modification of the installation structure of a reflector. The figure which shows the 2nd modification of the installation structure of a reflector. The figure which shows the 2nd modification of the installation structure of a reflector. The figure which shows the 2nd modification of the installation structure of a reflector. The figure which shows the 3rd modification of the installation structure of a reflector. The figure which shows the 3rd modification of the installation structure of a reflector.
- the figure which shows the 3rd modification of the installation structure of a reflector The figure which shows the structure of the water cooling plate 115 seen from the ef cross section of FIG. 8A.
- FIG. 1 is a view exemplarily showing a configuration of a heat treatment apparatus according to the first embodiment of the present invention.
- a heating unit 102 and a substrate stage 103 are provided inside the vacuum vessel 101 and constitute a heating chamber 104. Further, the vacuum vessel 101 is provided with an exhaust port 111 connected to an exhaust system (exhaust means) and a slit valve 113 that is opened and closed when the substrate is carried in and out, in order to evacuate the inside to a vacuum atmosphere.
- a turbo molecular pump 106 is connected to the exhaust port 111 via a baffle 105 with a water cooling mechanism that functions as a cooling means. The turbomolecular pump 106 is connected to a dry pump (not shown).
- a first reflector first reflector 107)
- a second reflector second reflector
- the vacuum vessel 101 is a housing formed of a material that can withstand high temperatures such as aluminum and stainless steel because it is heated to a high temperature of about 1700 degrees or more from the heating unit 102. Moreover, it is preferable that the surface of these materials is mirror-finished. This is because the temperature inside the heating container can be raised more efficiently by reflecting the heat.
- the vacuum vessel 101 is provided with a water cooling channel (not shown) of a water cooling mechanism in the wall, and the coolant circulates in the water cooling channel (not shown), so that the temperature of the casing of the vacuum vessel 101 excessively rises. Can be prevented.
- the substrate stage 103 is provided with a plurality of lift pin through holes through which the lift pins 110 can be raised or lowered by a drive mechanism (not shown).
- the state shown in FIG. 1 shows a state in which a plurality of lift pins 110 erected on the bottom of the vacuum vessel 101 protrude upward from the substrate stage 103.
- a plurality of lift pins 110 are arranged at positions where the substrate 109 can be supported at the tip.
- the substrate holder unit can be moved up and down by the lifting device 112, and the distance between the substrate stage 103 and the heat radiation surface of the heating unit 102 can be controlled by the operation of the lifting device 112.
- the substrate 109 is heated in a non-contact state by the radiant heat from the heating unit 102 in a state where the substrate 109 is brought close to the heating unit 102 by raising the substrate holder unit.
- an electron impact heating heater, a high frequency induction heating heater, a resistance heating heater, or the like can be used as the configuration of the heating unit 102.
- the heating temperature of the heating unit 102 is controlled to about 2000 ° C., and the substrate 109 is heated.
- the lifting device 112 lowers the substrate holder unit to a position (transport position) for transporting the substrate 109 and replaces the substrate 109 on the lift pins 110.
- the substrate 109 is transferred from the vacuum container 101 by a transfer robot (not shown).
- FIG. 1 shows a state where the substrate holder unit including the substrate stage 103 is moved to the transfer position after the power of the heating unit 102 is turned off.
- FIGS. 2A to 2C are schematic views showing the installation structure of the reflectors (first reflector 107 and second reflector 108) installed around the exhaust port 111.
- FIG. 2A is a schematic cross-sectional view
- FIG. 2B is a view of the ab cross section of FIG. 2A as viewed from above.
- FIG. 2C is a cross-sectional view taken along the line cd of FIG. 2A from the right side.
- the first reflector 107 and the second reflector 108 function to shield heat flowing from the heating unit 102 into the exhaust unit by reflecting radiant heat from the heating unit 102.
- the first reflector 107 includes first reflector members 107 a and 107 b provided so as to cover the upper part of the opening of the exhaust port 111 while being separated from the exhaust port 111.
- the first reflector member 107b is installed in a state of being separated from the opening of the exhaust port 111 by the member 107c, and the first reflector member 107a is in a state of being separated from the first reflector member 107b by the member 107d. is set up.
- the second reflector 108 includes second reflector members 108a, 108b, and 108c provided so as to surround the periphery (outer periphery) of the exhaust port 111 from at least three directions.
- the second reflector member 108a is provided facing the first direction (FIG. 2A) from the heating unit 102 toward the exhaust port 111 in the flow path where the heating unit 102 and the exhaust port 111 communicate with each other.
- the second reflector member 108 b faces a second direction (FIG. 2A) orthogonal to the direction in which the first reflector is disposed and the first direction, and is one of the exhaust port 111 and the vacuum container 101. It is provided between the inner wall surface 290.
- the second reflector member 108 c faces the third direction (FIG. 2A) orthogonal to the direction in which the first reflector is disposed and the first direction, and the other inside of the exhaust port 111 and the vacuum container 101. It is provided between the wall surface 291.
- the heat that enters the exhaust port 111 from the heating chamber 104 can be effectively blocked by the first reflector 107 and the second reflector 108 shown in FIGS.
- the heat entering the exhaust port 111 for example, heat that flows directly into the exhaust port 111 from the heating chamber 104 and heat from the heating chamber 104 are reflected on the inner wall surface of the vacuum vessel 101 and indirectly exhausted. There is heat flowing into 111.
- the vacuum vessel 101 is formed of a metal having high reflectivity such as aluminum, the heat reflected on the inner wall surface of the vacuum vessel 101 repeatedly reflects and flows into the exhaust port 111.
- the second reflector member 108a since the second reflector member 108a is provided in a passage (flow path) where the heating chamber 104 and the exhaust port 111 communicate with each other, the second reflector member 108a directly flows into the exhaust port 111 directly from the heating chamber 104. Heat can be cut off. Furthermore, since the second reflector members 108b and 108c are provided so as to face the inner wall surface of the vacuum vessel 101, the heat reflected by the inner wall surface of the vacuum vessel 101 and indirectly guided to the exhaust port 111 is also effectively blocked. can do.
- the exhaust port 111 is provided so as to be covered by the first reflector members 107a and 107b, it is guided from the upper side of the exhaust port 111 that cannot be blocked by the second reflector members 108a, 108b, and 108c. Heat can also be cut off.
- first reflector members 107a and 107b having high heat absorption and the second reflector members 108a, 108b and 108c having high heat reflectivity. This is because heat is reflected more efficiently by the second reflector members 108a, 108b, and 108c, and the heat is absorbed by the first reflector members 107a and 107b.
- a material that can withstand high temperatures such as carbon and a refractory metal can be used.
- the first reflector members 107a and 107b can be processed to increase heat absorption by processing such as blasting, ceramic coating, and alumite processing. preferable.
- the second reflector members 108a, 108b, and 108c are mirror-finished.
- the first reflector members 107a and 107b have high emissivity and titanium subjected to high temperature resistance blast treatment, and the second reflector members 108a, 108b and 108c have low emissivity and high temperature resistance. It is preferable to use molybdenum, titanium, or the like that has been mirror-finished.
- the second reflector surrounds the exhaust port from three directions.
- the second reflector may surround the exhaust port from four directions.
- the reflector may be provided so as to surround the exhaust port with a single plate.
- FIG. 3 is a schematic diagram showing a state in which the baffle 105 with a water cooling mechanism that functions as a cooling unit is attached to the vacuum vessel 101.
- 4A and 4B show the detailed structure of the baffle 105 with a water cooling structure.
- FIG. 4A is a schematic view of the baffle 105 with a water cooling mechanism as viewed from above.
- 4B is a schematic cross-sectional view of the baffle 105 with a water cooling mechanism in the AA ′ cross section in FIG. 4A.
- the baffle 105 with a water cooling mechanism includes a water cooling plate 201 and a combination of louvers 202a, 202b, 202c, and 202d provided on the top of the water cooling plate 201.
- Louvers 202a, 202b, 202c, 202d are mounted on a water cooling plate 201.
- the louvers 202a, 202b, 202c, and 202d are made of, for example, stainless steel, have a truncated cone shape as a whole, and are manufactured seamlessly with a plate having a thickness of, for example, 1 mm. Radiant heat is reflected by the louvers 202a, 202b, 202c, and 202d so that radiant heat does not flow downstream from the exhaust port 111.
- the louvers 202a, 202b, 202c, and 202d are cooled by the water cooling plate 201 because they are heated by receiving radiant heat. Thereby, the temperature rise of the exhaust port 111 can be suppressed, and the turbo molecular pump 106 is protected.
- the baffle 105 with a water cooling mechanism is preferably subjected to machining or chemical processing on the surface so that the surface emissivity on the heating unit 102 side (heating means side) is 0.02 or more and 0.3 or less. .
- the surface was coated with black alumite treatment, pyrolytic carbon, and pyrolytic carbon so that the surface emissivity on the exhaust means side (turbomolecular pump 106 side) of the baffle 105 was 0.5 or more and 1.0 or less. It is preferable to attach at least one of graphite, glassy carbon, graphite coated with glassy carbon, and the like.
- each louver it is preferable that the emissivities of the front and back surfaces of each louver be 0.3 or more and 0.6 or less, respectively.
- four louvers are used, but the gist of the present invention is not limited to this example, and an optimum number can be designed as appropriate.
- the surface 203 on the heating unit 102 side of the louvers 202a, 202b, 202c, and 202d is mirror-finished so that heat radiation from the heating unit 102 can be reflected.
- Each louver 202a, 202b, 202c, 202d is provided with a predetermined angle 301 so that the exhaust port 111 cannot be optically seen from the heating unit 102, and the angle 301 is a value from 1 degree to 89 degrees. However, in this embodiment, the angle is 45 degrees.
- the water-cooling plate 201 is made of, for example, stainless steel, and a plate portion and a water channel are integrally formed. As shown in FIG. 4A, the water cooling plate 201 has a cross-shaped outer shape, and the water channel 208 provided therein has, for example, a cross-shaped shape in which cooling water can circulate from the IN side to the OUT side. have.
- an indium (In) sheet (not shown) is inserted between the water cooling plate and the louver.
- the entire baffle 105 with the water cooling mechanism can be cooled by the coolant such as the cooling water 207 supplied to the water channel 208.
- the body tube portion 204 (tubular member) of the baffle 105 with a water cooling mechanism can hold the water cooling plate 201 and is integrally formed by cutting out from a stainless steel block. Even if the turbomolecular pump 106 stops suddenly, it has a thick structure that prevents deformation and breakage of the side wall of the trunk tube portion 204 due to the reaction force.
- the turbomolecular pump 106 used in the present embodiment has an exhaust amount of 1300 [L / sec], for example, and the torque applied during a sudden stop is 26000 [N ⁇ m].
- the maximum generated stress is 132 [N / mm 2 ], and a safety factor of 2 or more is achieved.
- the exhaust conductance is slightly reduced, but the ultimate vacuum of the heat treatment apparatus is 1 ⁇ 10E-5 [Pa]. The stand is maintained and the exhaust performance is in a sufficient state.
- the barrel tube portion 204 is not limited to the configuration of cutting out a stainless steel block.
- a carbon sheet (not shown) is formed on the side wall inner surface 205 of the barrel tube portion 204.
- a carbon plate (not shown) or by applying a silicon-based coating treatment to reduce the emissivity of the side wall inner surface 205 to 0.5 or more and 1.0 or less, so that heat flows into the exhaust system. Further prevention is also possible.
- FIGS. 5A to 5C are views showing a first modification of the reflector installation structure.
- 5A is a schematic cross-sectional view
- FIG. 5B is a view of the ab cross-section of FIG. 5A as viewed from above.
- FIG. 5C is a cross-sectional view taken along the line cd in FIG. 5A from the right side.
- the disk-shaped first reflector members 107a and 107b are fixed to the second reflector members 108a, 108b and 108c.
- the attachment state of the first reflector members 107a and 107b will be described with reference to FIG.
- the first reflector member 107a is fixed to the second reflector members 108b and 108c.
- the first reflector member 107b is fixed to the second reflector member 108a.
- FIGS. 7A to 7C are diagrams showing a second modification of the reflector installation structure.
- 7A is a schematic cross-sectional view
- FIG. 7B is a view of the ab cross section of FIG. 7A as viewed from above
- FIG. 7C is a view of the cd cross section of FIG. 7A viewed from the right side.
- rectangular plate-shaped first reflector members 107a and 107b are fixed to the second reflector members 108a, 108b and 108c.
- the first reflector members 107a and 107b are provided with a certain distance between the second reflector members 108b and 108c.
- first reflector members 107 a and 107 b are installed in an inclined state with respect to the opening of the exhaust port 111. Since the first reflector member 107a and the first reflector member 107b are provided with a space in the vertical direction, heat entering from above can be blocked. According to the second modified example, it is preferable to provide the heat absorption region and the reflection region because the radiation heat (light) can be effectively blocked without causing a large deterioration in the exhaust speed.
- FIG. 8A to 8C are views showing a third modification of the reflector installation structure.
- 8A is a schematic cross-sectional view
- FIG. 8B is a view of the ab cross-section of FIG. 8A as viewed from above.
- FIG. 8C is a view of the cd cross section of FIG. 8A viewed from the right side.
- a water cooling plate 115 is provided between the first reflector members 107 a and 107 b, the second reflector members 108 a, 108 b and 108 c and the exhaust port 111.
- FIG. 9 is a view showing the structure of the water-cooled plate 115 as viewed from above the ef section of FIG. 8A. As shown in FIG.
- the water cooling plate 115 is provided with a water supply port 116 and a drainage port 117, and a coolant such as water flows from the water supply port 116, and the coolant is collected from the drainage port 117 through the flow path 801. .
- a coolant such as water flows from the water supply port 116, and the coolant is collected from the drainage port 117 through the flow path 801. .
- the substrate holder can be lowered and exhausted before the temperature of the substrate after the heat treatment is sufficiently lowered, so that a new substrate can be carried in, so that a semiconductor device can be manufactured. It is possible to achieve sufficient productivity.
- FIG. 10 is a diagram showing a configuration example of a heat treatment apparatus according to the second embodiment of the present invention. Except that the thermocouples 210a and 210b and the temperature monitoring unit 211 are provided, the configuration is the same as that of the heat treatment apparatus of FIG.
- the thermocouple 210a (first temperature detection unit) is provided in the water cooling plate 114 and detects the temperature of the water cooling plate 114.
- the thermocouple 210b (second temperature detection unit) is provided in a space between the turbomolecular pump 106 and the baffle 105 with the water cooling mechanism, and controls the temperature in the space region between the turbomolecular pump 106 and the baffle 105 with the water cooling mechanism. Detect.
- the thermocouples 210a and 210b are connected to the temperature monitoring unit 211.
- the temperature monitoring unit 211 can perform temperature control so that the internal temperature of the vacuum vessel 101 is constant.
- the temperature monitoring unit 211 Based on the detection result of the thermocouple 210a, when the temperature of the water cooling plate 114 increases and reaches a predetermined temperature (first detection temperature), the temperature monitoring unit 211 increases the cooling capacity. The flow rate of water flowing through the water cooling plate 114 is increased, and the temperature of the water cooling plate 114 is controlled to be constant. When the temperature between the pump and the water-cooled baffle rises above a certain temperature (second detection temperature) based on the detection result of the thermocouple 210b, the temperature monitoring unit 211 stops power supply to the heating unit 102. Thus, temperature control is performed to prevent further temperature rise.
- the temperature monitoring unit 211 causes the refrigerant supply unit 901 to increase the flow rate of water flowing through the water cooling plate 114. To control the temperature of the water cooling plate to be constant.
- the temperature monitoring unit 211 causes the power supply unit 902 to stop supplying power to the heating unit 102.
- the temperature is controlled to prevent further temperature rise in the vacuum vessel 101.
- the exhaust system was affected.
- heat due to heat radiation is appropriately radiated and absorbed by the baffle 105 with a water cooling mechanism, reducing high-temperature radiant heat reaching the exhaust system, and reducing the exhaust system
- the temperature rise of was able to be suppressed low.
- the temperature of the cooling water supplied to the baffle 105 with a water cooling mechanism is 20 ° C.
- the temperature near the intake port of the turbomolecular pump 106 can be kept at 50 ° C., and the temperature 50 ° C.
- the temperature of the cura pump 106 is significantly lower than 120 ° C., which causes damage.
- the temperature of the cooling water is controlled and supplied to the baffle 105 with a water cooling mechanism using a chiller (temperature monitoring unit), and the reliability of the heat treatment apparatus can be improved.
- the time can be reduced to 3 minutes corresponding to 1/10 of the conventional one. As a result, the processing speed is greatly increased, and mass productivity can be improved.
- FIG. 11 An example is shown in which a p + n junction diode by ion implantation having a cross-sectional shape as shown in FIG. 11 is manufactured by performing annealing using a heat treatment apparatus.
- n epitaxial layer of 5 ⁇ m was sacrificial oxidized and treated with hydrofluoric acid on an n + -type 4H—SiC (0001) substrate having an off angle of 4 °. Thereafter, nitrogen was implanted in multiple stages by an ion implantation apparatus at an implantation temperature of 500 ° C., a depth of 350 nm, and an implantation energy of 3 ⁇ 10 20 / cm 3 in an implantation energy range of 30 keV to 170 keV.
- the SiC substrate thus obtained was used as a substrate sample, and heat treatment was performed using the heat treatment apparatus according to the first or second embodiment of the present invention.
- the substrate sample was placed on the substrate stage 103 with the ion implantation surface facing upward (the heat radiation surface side of the heating unit 102), and the distance between the heat radiation surface of the heating unit 102 and the nitrogen ion implantation surface of the sample was 3 mm.
- the temperature of the heat radiating surface during heating was set to 1900 ° C., and annealing was performed by heating for 1 minute in a reduced pressure atmosphere of 10 ⁇ 4 Pa.
- sacrificial oxidation was performed on each sample subjected to the annealing treatment, cleaning with hydrofluoric acid was performed, and the surface deteriorated layer was removed. Further, after patterning silicon oxide, a mesa was formed by etching the SiC layer with a diameter of 100 ⁇ m and a depth of 1 ⁇ m using a RIE (reactive ion etching) apparatus with a CF 4 + Ar mixed gas.
- RIE reactive ion etching
- FIG. 12 shows the current density-voltage characteristics of the p + n diode after annealing when the annealing temperature is 1700 ° C., 1800 ° C., and 1900 ° C.
- a large leakage current density was measured at an annealing temperature of 1700 ° C. and 1800 ° C. at a forward voltage of 0 V to 2 V. Further, almost no leakage current density value was measured in the reverse voltage region, and only a very small leakage current density value of 10 ⁇ 6 amperes was measured in the forward voltage region. This is presumably because crystal defects due to ion implantation at the pn junction interface have disappeared by the high temperature treatment at an annealing temperature of 1900 ° C.
- a very good p + n junction diode can be manufactured.
- Such a pn junction is used not only for a pn junction diode but also for a field effect transistor (MOS-FET), a junction transistor (J-FET), a MES-FET, and a bipolar transistor (BJT). It becomes possible to improve the characteristics of the semiconductor device using these SiC and to greatly improve the productivity.
- MOS-FET field effect transistor
- J-FET junction transistor
- MES-FET MES-FET
- BJT bipolar transistor
- the substrate can be processed at a high temperature, it is possible to achieve high-quality activation of impurities implanted into silicon carbide (SiC) while maintaining sufficient productivity.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
Abstract
Description
前記排気手段の排気口と離間した状態で、当該排気口の上方を覆うように設けられた第1のリフレクタと、
前記排気口の周囲を囲む位置に設けられた第2のリフレクタと、を備え、
前記第2のリフレクタを構成するリフレクタ部材の少なくとも1つは、前記加熱手段から前記排気口へ向かう方向に面して設けられていることを特徴とする。
以下、図面を参照して本発明の第1実施形態にかかる加熱処理装置を説明する。図1は本発明の第1実施形態にかかる加熱処理装置の構成を例示的に示す図である。真空容器101の内部に、加熱部102と基板ステージ103が設けられており、加熱室104を構成している。また、真空容器101は内部を真空雰囲気に排気するために排気系(排気手段)に接続される排気口111と基板の搬入、搬出時に開閉されるスリットバルブ113とを供えている。排気口111には、冷却手段として機能する水冷機構付きバッフル105を介して、ターボモレキュラポンプ106が接続されている。ターボモレキュラポンプ106はドライポンプ(図示せず)に接続されている。排気口111の周辺には、第1の反射板(第1のリフレクタ107)と、第2の反射板(第2のリフレクタ108)とが設けられている。
図2A-Cは排気口111の周辺に設置されたリフレクタ(第1のリフレクタ107、第2のリフレクタ108)の設置構造を示す模式図である。図2Aは断面模式図であり、図2Bは、図2Aのa-b断面を上方から見た図である。図2Cは、図2Aのc-d断面を右側から図である。第1のリフレクタ107と、第2のリフレクタ108とは加熱部102からの輻射熱を反射することにより、加熱部102から排気手段へ流れ込む熱を遮蔽する働きをする。
図3に、冷却手段として機能する水冷機構付きバッフル105を真空容器101に取り付けた状態を示す模式図を示す。また、図4A、Bに水冷構造付きバッフル105の詳細な構造を示す。図4Aは水冷機構付きバッフル105を上面から見た模式図である。図4Bは、図4AのA-A'断面における水冷機構付きバッフル105の断面模式図である。水冷機構付きバッフル105は、水冷プレート201と、水冷プレート201の上部に設けられたルーバ202a、202b、202c、202dの組み合わせと、により構成される。ルーバ202a、202b、202c、202dは水冷プレート201の上に取り付けられている。ルーバ202a、202b、202c、202dは、例えば、ステンレス製であり、全体として円錐台状の形状を有し、肉厚が、例えば、1mmの板により、継ぎ目無く製作したものである。排気口111より下流には輻射熱が流入しないように、輻射熱をルーバ202a、202b、202c、202dにより反射させている。このとき、ルーバ202a、202b、202c、202dは、輻射熱を受けて加熱されるため水冷プレート201で冷却している。これにより、排気口111の温度上昇を抑制することができ、ターボモレキュラポンプ106を保護している。
図2A-Cで説明したリフレクタの設置構造では、第1のリフレクタ部材107a、107bを第2のリフレクタ部材108a、108b、108cとは別に真空容器101に固定したが、第1のリフレクタ部材107a、107bを第2のリフレクタ部材108b、108cに固定することも可能である。図5A-Cはリフレクタの設置構造の第1の変形例を示す図である。図5Aは断面模式図であり、図5Bは、図5Aのa-b断面を上方から見た図である。図5Cは、図5Aのc-d断面を右側から図である。図5A-Cに示す第1の変形例では、円板状の第1のリフレクタ部材107a、107bが、第2のリフレクタ部材108a、108b、108cに固定されている。
図10は本発明の第2実施形態にかかる加熱処理装置の構成例を示す図である。熱電対210a、210bと温度監視部211を設けた以外は、図1の加熱処理装置と同じ構成である。
図1で説明した加熱処理装置により、基板109に2000℃の加熱処理を行い、冷却待ち時間を5分にして、加熱処理済みの基板109を取り出したところ、排気系への熱的影響が及んでいないことを確認できた。第2実施形態にかかる加熱処理装置でも同様の結果を確認することができた。
Claims (12)
- 真空容器と、載置された基板を保持する基板ステージと、前記基板を加熱するための加熱手段と、前記真空容器の内部を真空にするための排気手段と、を有する加熱処理装置であって、
前記排気手段の排気口と離間した状態で、当該排気口の上方を覆うように設けられた第1のリフレクタと、
前記排気口の周囲を囲む位置に設けられた第2のリフレクタと、を備え、
前記第2のリフレクタを構成するリフレクタ部材の少なくとも1つは、前記加熱手段から前記排気口へ向かう方向に面して設けられていることを特徴とする加熱処理装置。 - 前記第2のリフレクタは、前記排気口の周囲を少なくとも三方向から囲むように設けられているリフレクタ部材を有することを特徴とする請求項1に記載の加熱処理装置。
- 前記第2のリフレクタは、
前記加熱手段によって前記基板が加熱される加熱室と前記排気口とが連通する流路において、前記加熱手段から前記排気口へ向う第1の方向に面して設けられたリフレクタ部材と、
前記排気口と真空容器の一の内部壁面との間に設けられ、前記第1のリフレクタが配置される方向と前記第1の方向と、に直交する第2の方向に面して設けられたリフレクタ部材と、
前記排気口と真空容器の他の内部壁面との間に設けられ、前記第1のリフレクタが配置される方向と前記第1の方向と、に直交する第3の方向に面して設けられたリフレクタ部材と、
を有することを特徴とする請求項1または2に記載の加熱処理装置。 - 前記第2のリフレクタは、鏡面加工を施されたモリブデンまたはチタンにより構成されることを特徴とする請求項1ないし3のいずれか1項に記載の加熱処理装置。
- 前記第1のリフレクタには、ブラスト加工、セラミックスコーテング、およびアルマイト加工の処理のうち少なくともいずれか1つが施されていることを特徴とする請求項1ないし4のいずれか1項に記載の加熱処理装置。
- 水冷プレートと前記水冷プレートの上部に設けられたルーバと、前記水冷プレートを保持するための管状部材と、を有する冷却手段を更に備え、
前記冷却手段が、前記排気手段と前記排気口との間に設けられていることを特徴とする請求項1ないし5のいずれか1項に記載の加熱処理装置。 - 前記冷却手段の加熱手段側の表面輻射率が0.02以上0.3以下になるように当該冷却手段の表面に機械加工処理または化学加工処理が施されていることを特徴とする請求項6に記載の加熱処理装置。
- 前記冷却手段の排気手段側の表面輻射率が0.5以上1.0以下になるように、当該冷却手段の表面に黒色アルマイト処理、パイロリティックカーボン、パイロリティックカーボンをコーティングしたグラファイト、ガラス状カーボン、ガラス状カーボンをコーティングしたグラファイトのうちの少なくともいずれか1つが取りけられていることを特徴とする請求項6または7に記載の加熱処理装置。
- 前記冷却手段の前記水冷プレートに設けられ、当該水冷プレートの温度を検知する第1の温度検知手段と、
前記排気手段と前記冷却手段との間の空間領域に設けられ、当該空間領域の温度を検知する第2の温度検知手段と、
前記第1の温度検知手段と前記第2の温度検知手段とに接続し、前記真空容器の内部温度が一定になるように温度制御を行う温度監視手段と、を更に備えることを特徴とする請求項6に記載の加熱処理装置。 - 前記第1の温度検知手段により検知された温度が予め定められた第1検知温度まで上昇した場合に、前記温度監視手段は、前記水冷プレートに流す水流速度を速くするように冷媒供給手段を制御して、前記水冷プレートの温度を一定に制御することを特徴とする請求項9に記載の加熱処理装置。
- 前記第2の温度検知手段により検知された温度が予め定められた第2検知温度まで上昇した場合に、前記温度監視手段は、前記加熱手段への電力供給を止めるように電力供給手段を制御して、前記真空容器の内部の温度上昇を防ぐように温度制御を行うことを特徴とする請求項9に記載の加熱処理装置。
- 請求項1乃至11のいずれか1項に記載の加熱処理装置を用いて基板の熱処理を行う工程を有することを特徴とする半導体デバイスの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011525784A JP5497765B2 (ja) | 2009-08-04 | 2010-08-03 | 加熱処理装置および半導体デバイスの製造方法 |
CN201080034385.3A CN102473641B (zh) | 2009-08-04 | 2010-08-03 | 热处理设备以及半导体装置制造方法 |
US13/011,565 US9147742B2 (en) | 2009-08-04 | 2011-01-21 | Heat treatment apparatus and semiconductor device manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009181947 | 2009-08-04 | ||
JP2009-181947 | 2009-08-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/011,565 Continuation US9147742B2 (en) | 2009-08-04 | 2011-01-21 | Heat treatment apparatus and semiconductor device manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011016223A1 true WO2011016223A1 (ja) | 2011-02-10 |
Family
ID=43544133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/004888 WO2011016223A1 (ja) | 2009-08-04 | 2010-08-03 | 加熱処理装置および半導体デバイスの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9147742B2 (ja) |
JP (1) | JP5497765B2 (ja) |
CN (1) | CN102473641B (ja) |
WO (1) | WO2011016223A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094200A1 (ja) * | 2011-12-22 | 2013-06-27 | キヤノンアネルバ株式会社 | 基板処理装置 |
KR20150071655A (ko) * | 2013-12-18 | 2015-06-26 | 도쿄엘렉트론가부시키가이샤 | 입자 역류 방지 부재 및 기판 처리 장치 |
JP2020068373A (ja) * | 2018-10-23 | 2020-04-30 | 東京エレクトロン株式会社 | 基板処理装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105027269B (zh) * | 2013-03-15 | 2018-01-12 | 应用材料公司 | 通过聚合物管理提高蚀刻系统的生产率 |
WO2015146161A1 (ja) | 2014-03-24 | 2015-10-01 | キヤノンアネルバ株式会社 | 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62139987A (ja) * | 1985-12-16 | 1987-06-23 | Nec Corp | 真空装置 |
JPS6333811A (ja) * | 1986-07-28 | 1988-02-13 | Matsushita Electric Ind Co Ltd | 気相成長方法 |
JPH0221616A (ja) * | 1988-07-11 | 1990-01-24 | Fuji Photo Film Co Ltd | 半導体デバイスの熱処理装置 |
JPH09199509A (ja) * | 1996-01-17 | 1997-07-31 | Applied Materials Inc | 半導体成膜装置 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5407350A (en) * | 1992-02-13 | 1995-04-18 | Tokyo Electron Limited | Heat-treatment apparatus |
JP3330166B2 (ja) * | 1992-12-04 | 2002-09-30 | 東京エレクトロン株式会社 | 処理装置 |
JP3134137B2 (ja) * | 1993-01-13 | 2001-02-13 | 東京エレクトロン株式会社 | 縦型処理装置 |
US5445521A (en) * | 1993-05-31 | 1995-08-29 | Tokyo Electron Kabushiki Kaisha | Heat treating method and device |
US5513499A (en) * | 1994-04-08 | 1996-05-07 | Ebara Technologies Incorporated | Method and apparatus for cryopump regeneration using turbomolecular pump |
JP2001501693A (ja) * | 1996-03-26 | 2001-02-06 | セース ピュア ガス インコーポレイティッド | クライオポンプ/ゲッターポンプの組み合わせポンプとその再生方法 |
JP3567070B2 (ja) * | 1997-12-27 | 2004-09-15 | 東京エレクトロン株式会社 | 熱処理装置及び熱処理方法 |
JP2000216095A (ja) * | 1999-01-20 | 2000-08-04 | Tokyo Electron Ltd | 枚葉式熱処理装置 |
US6206971B1 (en) * | 1999-03-29 | 2001-03-27 | Applied Materials, Inc. | Integrated temperature controlled exhaust and cold trap assembly |
EP1127954A1 (en) * | 2000-02-24 | 2001-08-29 | Applied Materials, Inc. | Method and apparatus for shielding a device from a semiconductor wafer process chamber |
US6237529B1 (en) * | 2000-03-03 | 2001-05-29 | Eastman Kodak Company | Source for thermal physical vapor deposition of organic electroluminescent layers |
JP2003254285A (ja) * | 2002-02-28 | 2003-09-10 | Boc Edwards Technologies Ltd | ポンプ装置 |
CN1249789C (zh) * | 2002-11-28 | 2006-04-05 | 东京毅力科创株式会社 | 等离子体处理容器内部件 |
US7091453B2 (en) * | 2003-02-27 | 2006-08-15 | Dainippon Screen Mfg. Co., Ltd. | Heat treatment apparatus by means of light irradiation |
CN1303647C (zh) | 2003-09-30 | 2007-03-07 | 佳能株式会社 | 加热方法、加热装置、以及图像显示装置的制造方法 |
WO2006043530A1 (ja) * | 2004-10-19 | 2006-04-27 | Canon Anelva Corporation | 基板加熱処理装置及び基板加熱処理に用いられる基板搬送用トレイ |
US7455720B2 (en) * | 2005-02-16 | 2008-11-25 | Mks Instruments, Inc. | Method and apparatus for preventing products of TiCL4 and NH3 or other feed gas reactions from damaging vacuum pumps in TiN or other deposition systems |
US7506617B2 (en) * | 2007-03-09 | 2009-03-24 | Lochinvar Corporation | Control system for modulating water heater |
WO2008123111A1 (ja) | 2007-03-20 | 2008-10-16 | Canon Anelva Corporation | 基板加熱処理装置及び基板加熱処理方法 |
CN101669016B (zh) * | 2007-05-16 | 2012-01-18 | 佳能安内华股份有限公司 | 加热处理设备 |
JP4288309B2 (ja) * | 2007-09-03 | 2009-07-01 | キヤノンアネルバ株式会社 | 基板熱処理装置及び基板の熱処理方法 |
JP5620090B2 (ja) | 2008-12-15 | 2014-11-05 | キヤノンアネルバ株式会社 | 基板処理装置、熱処理基板の製造方法及び半導体デバイスの製造方法 |
JP5146356B2 (ja) * | 2009-02-24 | 2013-02-20 | 豊田合成株式会社 | 発光装置及びその製造方法 |
JP2010205922A (ja) | 2009-03-03 | 2010-09-16 | Canon Anelva Corp | 基板熱処理装置及び基板の製造方法 |
JP2010251718A (ja) | 2009-03-27 | 2010-11-04 | Canon Anelva Corp | 加熱装置の温度制御方法及び記憶媒体 |
-
2010
- 2010-08-03 JP JP2011525784A patent/JP5497765B2/ja active Active
- 2010-08-03 WO PCT/JP2010/004888 patent/WO2011016223A1/ja active Application Filing
- 2010-08-03 CN CN201080034385.3A patent/CN102473641B/zh active Active
-
2011
- 2011-01-21 US US13/011,565 patent/US9147742B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62139987A (ja) * | 1985-12-16 | 1987-06-23 | Nec Corp | 真空装置 |
JPS6333811A (ja) * | 1986-07-28 | 1988-02-13 | Matsushita Electric Ind Co Ltd | 気相成長方法 |
JPH0221616A (ja) * | 1988-07-11 | 1990-01-24 | Fuji Photo Film Co Ltd | 半導体デバイスの熱処理装置 |
JPH09199509A (ja) * | 1996-01-17 | 1997-07-31 | Applied Materials Inc | 半導体成膜装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094200A1 (ja) * | 2011-12-22 | 2013-06-27 | キヤノンアネルバ株式会社 | 基板処理装置 |
JPWO2013094200A1 (ja) * | 2011-12-22 | 2015-04-27 | キヤノンアネルバ株式会社 | 基板処理装置 |
US9822450B2 (en) | 2011-12-22 | 2017-11-21 | Canon Anelva Corporation | Substrate processing apparatus |
KR20150071655A (ko) * | 2013-12-18 | 2015-06-26 | 도쿄엘렉트론가부시키가이샤 | 입자 역류 방지 부재 및 기판 처리 장치 |
KR102331286B1 (ko) * | 2013-12-18 | 2021-11-24 | 도쿄엘렉트론가부시키가이샤 | 입자 역류 방지 부재 및 기판 처리 장치 |
JP2020068373A (ja) * | 2018-10-23 | 2020-04-30 | 東京エレクトロン株式会社 | 基板処理装置 |
JP7278172B2 (ja) | 2018-10-23 | 2023-05-19 | 東京エレクトロン株式会社 | 基板処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011016223A1 (ja) | 2013-01-10 |
JP5497765B2 (ja) | 2014-05-21 |
CN102473641B (zh) | 2015-04-22 |
CN102473641A (zh) | 2012-05-23 |
US20110117753A1 (en) | 2011-05-19 |
US9147742B2 (en) | 2015-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8090245B2 (en) | Apparatus for heat-treating substrate and method for heat-treating substrate | |
JP5497765B2 (ja) | 加熱処理装置および半導体デバイスの製造方法 | |
JP5620090B2 (ja) | 基板処理装置、熱処理基板の製造方法及び半導体デバイスの製造方法 | |
US9330949B2 (en) | Heat treatment apparatus for heating substrate by irradiating substrate with flash of light | |
KR101049730B1 (ko) | 기판 가열 처리 장치 및 기판 가열 처리에 사용되는 기판반송용 트레이 | |
JP5969506B2 (ja) | 基板熱処理装置 | |
KR200496202Y1 (ko) | 기판을 처리하기 위한 방법 및 장치 | |
JP6588423B2 (ja) | 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム | |
KR102272314B1 (ko) | 열 챔버 어플리케이션들 및 프로세스들을 위한 광 파이프 윈도우 구조 | |
JP2010205922A (ja) | 基板熱処理装置及び基板の製造方法 | |
US8032015B2 (en) | Heating apparatus, heating method, and semiconductor device manufacturing method | |
US8129663B2 (en) | Vacuum heating apparatus | |
US20180254206A1 (en) | Rotor cover | |
US8172950B2 (en) | Substrate processing apparatus and semiconductor device producing method | |
US20080052901A1 (en) | Method, tool, and apparatus for manufacturing a semiconductor device | |
JPS61129834A (ja) | 光照射型熱処理装置 | |
WO2009157484A1 (ja) | アニール装置 | |
KR102462355B1 (ko) | 핀을 가진 회전자 커버 | |
JP2005019725A (ja) | アニール装置及びアニール方法 | |
JP2004311648A (ja) | 基板処理装置 | |
KR102709567B1 (ko) | 초고온 열처리 장치 | |
JP2012142333A (ja) | 基板熱処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080034385.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10806223 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011525784 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10806223 Country of ref document: EP Kind code of ref document: A1 |