JPWO2010050129A1 - 冷却構造及び電子機器並びに冷却方法 - Google Patents

冷却構造及び電子機器並びに冷却方法 Download PDF

Info

Publication number
JPWO2010050129A1
JPWO2010050129A1 JP2010535636A JP2010535636A JPWO2010050129A1 JP WO2010050129 A1 JPWO2010050129 A1 JP WO2010050129A1 JP 2010535636 A JP2010535636 A JP 2010535636A JP 2010535636 A JP2010535636 A JP 2010535636A JP WO2010050129 A1 JPWO2010050129 A1 JP WO2010050129A1
Authority
JP
Japan
Prior art keywords
liquid
boiling surface
refrigerant
liquid return
phase refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010535636A
Other languages
English (en)
Other versions
JP5757086B2 (ja
Inventor
吉川 実
実 吉川
坂本 仁
仁 坂本
毅哉 橋口
毅哉 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010535636A priority Critical patent/JP5757086B2/ja
Publication of JPWO2010050129A1 publication Critical patent/JPWO2010050129A1/ja
Application granted granted Critical
Publication of JP5757086B2 publication Critical patent/JP5757086B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

冷媒を循環させる動力を必要とすることなく、沸騰面に発生する気泡を浮力以外の作用で持ち去ることにより、沸騰面における熱交換(熱伝達)を効果的に行わせるようにして、効率のよい冷却と共に、小型化・低消費電力化を可能にするメンテナンスフリーの冷却構造を提供すること。気相状態の冷媒Vを液相状態の冷媒Lに相変化させる凝縮室に蒸気管と液戻り管を介して連結されて、ベース板21の沸騰面21aや板状フィン31に接触する液相状態の冷媒を気相状態の冷媒に相変化させる蒸発室11を備えており、蒸発室は、蒸気管の蒸気口25が天井面22aにおける円筒板23の内周面23aに沿う隣接位置に開口する一方、液戻り管の液戻り口26はその反対側の内周面における沸騰面に沿う端縁の隣接位置に形成されて液相状態の冷媒の流入方向が沸騰面と平行になるように形成されている。

Description

この発明は、冷却構造及び冷却方法に係り、詳しくは、蒸発室と凝縮室とを別個に備えて冷媒の相変化による熱交換で目的の被冷却部材を冷却する冷却構造及び冷却方法に関する。
稼動にともなる発熱の生じる各種機器は、その発熱箇所から発する熱の影響を隣接部品などが受けることから冷却装置を搭載する場合がある。例えば、コンピュータ等の電子機器に使用されるLSI(Large Scale Integrated circuit)やIC(Integrated Circuit)は、世代毎に集積度が加速度的に増加しており、これに伴って、発熱量も増加する傾向にある。このLSIやICが高速かつ安定的に動作するためには、動作温度を一定温度以下に制御する必要があることから、そのLSIやICの発熱量に見合った冷却方式が採られる。ところが近年では、コンピュータの速度向上には、LSI内部の演算速度よりも、LSIとメモリーなどの周辺部との間での信号伝達速度の高速化の方がその高速化に寄与する割合が大きくなってきている。この信号伝達速度の高速化は、配線長距離の縮小化が有利であるが、LSIの発熱量に見合った大きさの冷却器を実装することができなくなることから、十分な配線長の縮小化、言い換えると、信号伝達速度の高速化を実現することが難しい。
このため、LSIの冷却方式としては、そのLSIパッケージの上に小さな冷却部を実装するとともに、その冷却部内の冷媒を広い場所の放熱部へとポンプで循環することにより、その冷却部の熱を放熱部へと熱輸送してから周囲空気などに放熱する液冷方式がある。また、冷媒を液体から気体に相変化させて循環させることで、体積膨張による圧力差を利用して凝縮室(放熱部)に熱を輸送するヒートパイプなども実用化されている。この冷媒を相変化させる冷却方式では、ポンプにより冷却水を循環させる冷却方式よりも冷却効率が高い。
特に、ヒートパイプは、ポンプなどの動力を使用しないために、メンテナンスや寿命による交換の必要がなく広く利用されている。このヒートパイプでは、蒸発室内で液相状態の冷媒が蒸発した後に凝縮室で冷却されて熱を放熱することにより、再度、気体から液体に相変化してその蒸発室内へと戻る。なお、この冷媒の循環時に、気体から相変化させた液相状態の冷媒を重力の作用で蒸発室に戻す方法は、熱サイフォン式ヒートパイプや沸騰冷却器と呼ばれている。
その一例としては、特許文献1の図1、特許文献2の図4、特許文献3の図1に記載されている。これら特許文献1〜3に記載の冷却構造では、図12に模式図として図示するように、冷却装置100の蒸発室101内に収容する液相状態の冷媒(以下では、単に液相冷媒ともいう)Lが沸騰面101aに接触して蒸発することにより、気相状態の冷媒(以下では、単に気相冷媒ともいう)Vが発生するとともにその沸騰面101aを冷却する。蒸発室101で発生した気相冷媒Vは、図中に矢印で示すように、浮力によって上昇して、この蒸発室101の上に設けられた蒸気管(蒸気流路)102の中を通って凝縮室105へと移動して冷却されることにより液相冷媒Lに戻る。凝縮室105で放熱して液体に戻った液相冷媒Lは、図中に矢印で示すように、重力で、蒸発室101の上に設けられた液戻り管(液戻り流路)103の中を通って蒸発室101へと還流して循環する。
しかるに、特許文献1〜3に記載の冷却構造では、発熱量の大きなLSIやICの冷却には冷却能力が不足する。というのは、この冷却構造における冷媒の循環時には、蒸気管102の蒸気口102aと液戻り管103の液戻り口103aが蒸発室101の同一方向に存在するために、上方へ向かう蒸気の気相冷媒Vと、滴り落ちる液体の液相冷媒Lとがぶつかり合うことになる。すなわち、浮力の作用により上昇する気相冷媒Vと、重力の作用により下方に降下する液相冷媒Lは、反対方向に移動するために、互いにその移動を妨げることになって、気相冷媒Vが凝縮室105に抜け難くなって蒸発室101の内部圧力を上昇させる。この蒸発室101の内部圧力の上昇は、冷媒の飽和蒸気圧を上げて沸点を上げることになる。この結果、冷却能力が低下することになる。
また、特許文献4の図1には、蒸気管や液戻り管を使用せずに蒸発室と凝縮室を一体化させている冷却構造が記載されている。この冷却構造では、蒸発室内で液相冷媒と気相冷媒とを仕切りで分けていることから、液相冷媒が気相冷媒とぶつかることがなく、結果として、上記の冷却能力の低下要因を回避することができる。
また、特許文献5の図2、図5、図8には、蒸発室と凝縮室を一体化させるとともに、その蒸発室と凝縮室の間に仕切りを設けることにより、上記の冷却能力の低下要因を回避しつつ冷媒を循環させる冷却構造が記載されている。この冷却構造では、蒸発室から蒸気管を介して凝縮室に気相冷媒を送って液相冷媒に相変化させるとともに、その蒸発室の上部側に形成されている凝縮室から蒸発室にその液相冷媒を戻すようになっている。
また、特許文献6の図2、特許文献7の図1、図2には、凝縮室からの液戻り管の液戻り口を蒸発室の液相冷媒内に開口させることにより、上記の冷却能力の低下要因を回避しつつ冷媒を循環させる冷却構造が記載されている。この冷却構造では、蒸発室で蒸発する気相冷媒と接触することなく、凝縮室で冷却された液相冷媒をその蒸発室内に戻すようになっている。この特許文献7の図3には、蒸発室での蒸発効率(冷却効率)向上させるために、冷却フィンを立設することが記載されている。
なお、特許文献4には、蒸発室の沸騰面に接触する液相冷媒が蒸発する際に、その沸騰面の表面に小さな気泡の気相冷媒の核(キャビティ)が形成されることが示唆されている。また、この気相冷媒の核の形成については、特許文献8の図4と図5に一例が記載されている。通常、核沸騰における気泡の発生は、不均一な核生成によるものであり、伝熱面である沸騰面の表面に傷や窪みなどを形成すると、そこに気泡が発生するきっかけとなり、より多くの気泡が発生するために液体から気体への相変化が活発となる。
特開2004−088048号公報(図1) 特許第3964580号公報(図4) 特開2002−168547号公報(図1) 特開2002−026210号公報(図1) 特開昭56−137086号公報(図2、図5、図8) 特開昭61−255042号公報(図2) 特開昭59−217346号公報(図1、図2) 特開2004−056121号公報(図4、図5)
しかしながら、このような冷却構造にあっては、気相冷媒の気泡を発生させる核を沸騰面に形成するだけでは、効率よく熱伝達が促進されない、という問題がある。すなわち、液体が蒸発して気体へと相変化する際には、熱エネルギーが必要となる。このため、沸騰面に気泡を発生させる核をたくさん作れば、それだけ多くの熱エネルギーを気泡発生に使用できるため、冷却性能の向上に有効である。ところが、気泡がその核の形成位置に留まると、新たな気泡が生成されるのを阻害してしまう。
つまり、この気泡の剥離・浮上は、気泡自身の浮力を利用していることから、沸騰面から剥離・上昇する浮力を生じるだけの成長が気泡に必要となって、この結果、気泡が沸騰面に長期に亘って留まることになり、冷却能力の向上が阻害されることになる。
ところで、発熱量が低い場合には、沸騰面に核を形成することが冷却能力の向上に有効であるが、発熱量が大きくなっていくと、核以外の面からも気泡が発生するため、冷却能力の向上に作用する寄与率が小さくなることが、この発明の発明者の研究で判明している。すなわち、発熱量が大きな場合には、沸騰面における核の形成が沸騰型の熱伝達を促進するよりも、その核で形成された沸騰面に留まる影響の方が大きい、ということである。
これに対して、特許文献1〜8のいずれに記載の冷却構造においても、蒸発室の沸騰面に接触する液相冷媒や気相冷媒の流動が考慮されておらず、その沸騰面に留まる気相冷媒の気泡を積極的に除去することができていない。例えば、特許文献5に記載の冷却構造では、蒸発室内に戻る液相冷媒の流動を利用することができず、その液相冷媒は単に蒸発室内に滞留して沸騰面に接触しているだけである。また、特許文献6、7に記載の冷却構造では、蒸発室内に液相冷媒を流入させる液戻り口が沸騰面から離隔していることから、その下部に液相冷媒の滞留が生じ易く、液相冷媒の流入速度を低下させてしまう。また、この特許文献6、7に記載の冷却構造では、蒸発室内の気相冷媒を凝縮室に導く蒸気口が沸騰面中央の上部に開口していることから、液相冷媒と気相冷媒のいずれも液戻り口の反対側に滞留し易く、また、液相冷媒の流れを利用して気相冷媒を凝縮室に案内する流れを促進することができない。このため、これら特許文献に記載の冷却構造では、蒸発室の沸騰面の小面積化を図りつつ冷却能力を向上させることができず、例えば、LSIの周囲の配線長を十分に縮小することができない、という課題があった。
この発明は、上述の事情に鑑みてなされたもので、冷媒を循環させる動力を必要とすることなく、沸騰面に発生する気泡を浮力以外の作用で持ち去ることにより、沸騰面における熱交換(熱伝達)を効果的に行わせるようにして、発熱量の大きな被冷却部材に対する効率のよい冷却と共に、小型化・低消費電力化を可能にするメンテナンスフリーの冷却構造及び冷却方法を提供することを目的とする。
上記課題を解決するために、この発明の構成は、液相状態の冷媒は、被冷却部材から受熱する蒸発室の沸騰面の端縁の隣接位置に開口する液戻り口から該沸騰面と平行方向に流動して該蒸発室内に流入することにより、当該沸騰面の端から接触するとともに流動方向を維持しつつ、該液戻り口の該沸騰面を挟んで反対側に開口する蒸気口に向って流動する一方、気相状態の冷媒は、前記沸騰面に前記液相状態の冷媒が接触することにより相変化して気化し該沸騰面に気泡として付着するとともに、当該沸騰面と平行に流動する該液相状態の冷媒の流動負荷を受けて剥離浮上することを特徴としている。
この発明の構成によれば、液相状態の冷媒は、蒸気口と液戻り口の間で滞留することなく、液戻り口から流入して蒸発室内の沸騰面上をなぞるように反対側の蒸気口方向に流動する。このため、沸騰面に液相状態の冷媒が接触して蒸発することにより発生する気相状態の冷媒の気泡は、直ちに、その沸騰面と平行に流動する液相状態の冷媒の流動負荷により移動されて(持ち去られて)自身の浮力により上昇(浮上)することができる。この気相状態の冷媒は、液戻り口の反対側に配設されて、その流動・浮上の先に開口する蒸気口にスムーズに流入させることができ、凝縮室で液相状態の冷媒に相変化させた後に蒸発室内に流入させることができる。したがって、沸騰面に気相状態の冷媒の気泡が留まって冷却能力を低下させてしまうことなく、また、蒸発室内に液相状態の冷媒の滞留箇所を形成することなく、その液相状態の冷媒を沸騰面に効果的に接触させて被冷却部材を効率よく冷却することができる。この結果、沸騰面の小面積化と共に冷却能力の向上を図ることができる。
この発明の第1実施形態である冷却構造の蒸発室を備える冷却装置の概略構成を示す概念接続図である。 同実施形態の蒸発室の内部構造を示す縦断面斜視図である。 同実施形態の蒸発室の内部構造を示す縦断面図である。 同実施形態のベース板の構造を示す斜視図である。 同実施形態のベース板に一体形成する板状フィンの構成を示す縦断面図である。 この発明の第2実施形態である冷却構造の蒸発室の内部構造を示す縦断面図である。 この発明の第3実施形態である冷却構造の蒸発室の内部構造を示す縦断面図である。 この発明の第4実施形態である冷却構造の蒸発室の内部構造を示す縦断面斜視図である。 同実施形態の蒸発室の内部構造を示す縦断面図である。 この発明の第5実施形態である冷却構造の蒸発室の内部構造を示す横断面図である。 この発明の第6実施形態である冷却構造の蒸発室の構成を示す一部拡大断面図である。 関連技術の冷却構造の蒸発室を備える冷却装置の概略構成を示す一部断面接続図である。
液相状態の冷媒は、被冷却部材から受熱する蒸発室の沸騰面の端縁の隣接位置に開口する液戻り口から該沸騰面と平行方向に流動して該蒸発室内に流入することにより、当該沸騰面の端から接触するとともに流動方向を維持しつつ、該液戻り口の該沸騰面を挟んで反対側に開口する蒸気口に向って流動する一方、気相状態の冷媒は、前記沸騰面に前記液相状態の冷媒が接触することにより相変化して気化し該沸騰面に気泡として付着するとともに、当該沸騰面と平行に流動する該液相状態の冷媒の流動負荷を受けて剥離浮上するように、前記蒸気口は、前記蒸発室の側壁面に沿う上部あるいは該側壁面内の上部に形成される一方、前記液戻り口は、前記蒸発室の側壁面内における前記沸騰面を挟んで前記蒸気口の反対側の該沸騰面の端縁に隣接する位置に形成されているとともに、該液戻り口と凝縮室とを連通させる液戻り流路は、当該液戻り口から前記蒸発室内に流入する前記液相状態の冷媒の流入方向が前記沸騰面と平行になるように形成されており、前記沸騰面には、複数枚の板状フィンが対面間隔以上の板厚に設定されて前記液相冷媒の前記液戻り口からの流入方向と平行になるように立設されている。
以下、図面を参照して、この発明の実施形態について詳細に説明する。
実施形態1
図1乃至図5はこの発明に係る冷却構造の第1実施形態を示す図である。図1は同冷却構造を採用する冷却装置の概略全体構成を示す概念図、図2は同冷却装置における蒸発室の内部構造を示す縦断面斜視図、図3は同蒸発室の内部構造を示す縦断面図、図4は同冷却装置における沸騰面の構造を示す斜視図、図5は同沸騰面の板状フィンの構成を示す縦断面図である。ここで、以下で説明する各部は、これら図面と姿勢の上下方向が一致するように図示している。
図1において、冷却装置10は、データを伝送するネットワークを構築するサーバやクライアント、あるいは、パーソナルコンピュータなどの電子機器等に搭載されて稼動時に発熱するLSIパッケージ110(被冷却部材)の上面に、伝熱効率に優れる熱伝導層111を介して蒸発室11が接する状態に取り付けられている。蒸発室11は、水平の姿勢でLSIパッケージ110に設置されており、上方に位置する凝縮室12に蒸気管(蒸気流路)13と液戻り管(液戻り流路)14とを介して接続されている。なお、熱伝導層111としては、シリコーングリスや放熱シートを用いることができる。
冷却装置10は、蒸発室11内に収容する液相状態の冷媒LをLSIパッケージ110に間接的に接触させて沸騰・蒸発させることにより気相状態の冷媒Vに相変化(気化)させてそのLSIパッケージ110を潜熱で冷却する。一方、気相冷媒Vは、液相冷媒Lに対する比重に応じた浮力(体積膨張による圧力差)で上昇して、その体積膨張により蒸発室11内の圧力を上昇させる。すると、気相冷媒Vは、圧力の低い、言い換えると、温度の低い凝縮室12に移動しようと、蒸発室11から蒸気管13を介して凝縮室12に導入されて液相冷媒Lに相変化(液化)される。一方、液相冷媒Lは、気相冷媒Vなどの気体に対する比重に応じた重力の作用により降下して液戻り管14を介して蒸発室11内に還流・循環する。すなわち、冷却装置10は、このような冷媒の流動による冷却方法を採用することにより、冷媒を循環させる動力を必要とすることのない(電力消費のない)、原則、メンテナンスフリーで利用することができる。
ここで、冷却装置10の凝縮室12は、一般的な構造に作製されている。簡単に説明すると、凝縮室12は、気相冷媒Vを収容する空間を有しており、その外面には表面積を拡張する不図示の放熱フィンが複数形成されているとともに、その放熱フィンにはファン12aの送風が吹き付けられて放熱を促進させている。凝縮室12では、内部に導入されてきた気相冷媒Vの熱を外気中などに放熱(排熱)して冷却することにより、その気相冷媒Vを凝縮して相変化させ液相冷媒Lに戻す。
一方、蒸発室11は、図2及び図3に示すように、LSIパッケージ110に熱伝導層111を介して接することにより収容する液相冷媒Lを沸騰面21aに接触させて熱交換(冷却)する円盤形状のベース板21と、このベース板21と同一径の円盤形状に形成されている天井板22と、ベース板21と天井板22の半径よりも低い高さの円筒形状に形成されてその双方の外周縁に気密に固設されている円筒板23とにより液相冷媒Lの収容空間(チャンバー)を形成している。なお、ベース板21は熱伝導率の高い銅やアルミニウムなどの金属材料で作製するのが好ましく、天井板22や円筒板23は金属以外の樹脂材料等で作製してもよいが、強度等の観点からすると、金属材料で作製するのが好適である。
この蒸発室11は、蒸気管13を連結する蒸気口25が天井板22の下面の天井面(内壁面)22aに開口しており、蒸気口25は、円筒板23の内周面23aに沿う隣接位置に形成されている。蒸気口25は、上方に向って蒸気管13と連通させるように形成されており、蒸気管13の延長方向を気相冷媒Vの上昇方向と一致させている。また、液戻り管14を連結する液戻り口26は、側壁板(内壁面)23に開口しており、蒸発室11の内部空間の中央を中心にして蒸気口25の反対側に位置するとともにベース板21の沸騰面21aに沿ってその端縁の隣接位置に形成されている。液戻り口26は、円筒板23の法線方向である側方に向って液戻り管14と連通するように形成されており、その液戻り管14から流入する液相冷媒Lの流入方向がベース板21の沸騰面21aと平行になるように形成されている。すなわち、蒸気口25と液戻り口26は、沸騰面21aを挟んで反対側に位置するように開口しており、液戻り口26は、その沸騰面21aの端縁に直近する位置関係で開口している。
これにより、蒸発室11内では、次のような冷媒の流動による冷却方法が実施される。すなわち、液相冷媒Lは、液戻り口26の直後から沸騰面21aに沿うように平行方向から流入してその沸騰面21aをなぞるように流動し反対側の蒸気口25に向う。このとき、液戻り口26が下方の沸騰面21aの周縁部に開口するとともに、蒸気口25は上方の天井面22aの周縁部に開口していることから、液相冷媒Lは、円筒板23の内周面23a付近で滞留してしまうことなく、沸騰面21aの全面を有効活用するように接触しつつ蒸発室11内を流動する。このため、流入する液相冷媒Lは、滞留する液相冷媒Lが接触干渉してその流入速度を低下させてしまうことなく、沸騰面21aとの接触位置を平行方向に変化させつつスムーズに流動する。このことから、ベース板21への伝熱により沸騰面21aに接触して蒸発する気相冷媒Vは、気泡の状態でその沸騰面21aの表面に留まることなく、図3中に一点鎖線の矢印で図示するように、流動する液相冷媒Lの流動負荷を受けることにより引き剥がされて移動され(持ち去られ)、自身の浮力で沸騰面21aから浮上する場合よりも遥かに迅速に小さな気泡の状態で上昇する。また、液相冷媒Lも同様に、沸騰面21に接触して温度上昇することから、気相冷媒Vと同じ動きをして蒸発室11内でスムーズに循環することになる。したがって、蒸発した気相冷媒Vの気泡がベース板21の沸騰面21aの表面に留まって拡大することにより、そのベース板21の冷却能力を低下させてしまうことなく、流動する液相冷媒Lがベース板21への伝熱を受け取って蒸発・気化して気泡になることを効果的に繰り返して熱交換(冷却)することができる。
また、ベース板21は、図4にも図示するように、液戻り口26から蒸気口25に向う液相冷媒Lの流動方向と平行になるように並列されている複数枚の板状フィン31が沸騰面21aに立設されている。板状フィン31は、円筒板23よりも低めの高さに設定されており、天井板22の天井面22aとの間に多少の空間を形成するように作製されている。
この板状フィン31は、図5に示すように、その板厚tが側面31aの対面間隔p以上になるように形成されており、ここでは、その板厚tと対面間隔pが同一寸法になるように作製されている。なお、この板状フィン31は、切削切り出し、押し出し成型、あるいは、鍛造などで作製すればよい。
これにより、蒸発室11内では、次のような冷媒の流動による冷却方法が実施される。すなわち、蒸発室11内に流入する液相冷媒Lは、ベース板21の沸騰面21aと共に板状フィン31の側面31aなどの表面にも接触して、冷却効率を向上される。また、液相冷媒Lは、液戻り口26から戻る際の流入圧力はそのままで板状フィン31の間の狭められた流路内を流動することになり、その流動速度を上昇させて蒸気口25に向って流動する。このため、ベース板21の沸騰面21aや板状フィン31の側面31aなどに気泡の状態で発生する気相冷媒Vは、高速で流動する液相冷媒Lと共に移動させて浮力により上昇させることができ、液相冷媒Lの冷却能力を向上させることができる。ここで、板状フィン31の板厚tは、冷却装置10における蒸発室11や凝縮室12のレイアウトと共に、蒸気管13や液戻り管14の断面開口面積(流路抵抗)などに応じて対面間隔tに対する比率をp/t≦1に決定すればよい。なお、板状フィン31は、その厚さtを対面間隔p以上とすることにより、板状フィン31が存在しない場合と比較して、液相冷媒Lの流動速度を2倍以上にすることができる。また、その一方で、ベース板21は、板状フィン31の形成により沸騰面21aの表面積が1/2以下程度に減少するが、板状フィン31の表面積も沸騰面として機能するので、冷却能力が低下することはなく、逆に、液相冷媒Lの流動速度の向上で冷却能力は向上する。
この蒸発室11内に収容する冷媒としては、LSIパッケージ110の動作保証温度を考慮して、その種類や内装圧力を選択設定すればよい。例えば、冷媒としては、数十℃の環境内での飽和蒸気圧が大気圧以下、あるいは大気圧付近である、フルオロカーボンやハイドロフロロエーテルのような低沸点のものを選択して減圧状態で内部に収容することにより、圧力のリークによるリスクを低減することが可能となる。また、その冷媒の収容量は冷却対象となるLSIパッケージ110の発熱量に合わせて、ベース板21の沸騰面21aがドライアウトしないように満たせばよい。このため、蒸発室11におけるベース板21や天井板22と円筒板23との間の接合は、Oリングなどのシール材とネジ止めの併用でも、接着やろう付けなどでもよい。ただし、収容する冷媒の沸点温度を常圧環境のときよりも下げるために、内部を真空引きして利用するので、少なくとも0.1MPa以上の圧力差において、ピンホールなどによるリークが生じない接合の方法を採用する。
一方、この蒸発室11の蒸気管13と液戻り管14は、その流路形状を自在に変形可能で管内を減圧環境にすることのできる、断熱機能を備えていない冷媒用のホース(チューブ材料)を採用して蒸気口25と液戻り口26にそれぞれ連結接続されている。このため、蒸発室11と凝縮室12は、自由な位置関係にレイアウトすることができ、また、蒸気管13と液戻り管14においても外気との間で熱交換を行って放熱させることもできる。
また、この蒸発室11は、液戻り口26の開口面積iと蒸気口25の開口面積oとの関係がi/o=1/2になるように作製されている。ここで、蒸発室11では、蒸気口25から気相冷媒Vが内圧に応じた流量で流出する一方、液戻り口26からは液相冷媒Lが凝縮室12のレイアウトや液戻り管14の断面開口面積などに応じた圧力で流入する。このことから、蒸発室11では、一般的には、液相冷媒Lがベース板21と効果的に熱交換することにより気相冷媒Vの発生量が増大すると内圧が上昇し、その気相冷媒Vの蒸気口25からの流出圧力が液相冷媒Lの液戻り口26からの流入圧力に勝ると、気相冷媒Vが液戻り口26から流出しようとする。
しかるに、液戻り口26は、その開口面積iが蒸気口25の開口面積oの1/2に作製されていることから、その開口量(流入量)を絞って液相冷媒Lの流入圧力を高くすることができる。このため、蒸発室11内では、次のような冷媒の流動による冷却方法が実施される。すなわち、液戻り口26から流入する液相冷媒Lの流入圧力が、蒸気口25から流出する気相冷媒Vの流出圧力よりも余裕のある圧力差を持って高くなり、気相冷媒Vの流出圧力が勝って液戻り口26から流出(逆流)しようとすることを未然に回避しつつ、冷媒を蒸発室11と凝縮室12の間で循環させることができる。なお、蒸気口25の開口面積oや液戻り口26の開口面積iの調整は、蒸気管13と液戻り管14の縦断面積(パイプ径)や、蒸気口25と液戻り口26での管継手の口径によって調整すればよい。
このように、この実施形態によれば、蒸発室11内の円筒板23付近に液相冷媒Vの滞留箇所を形成させることなく、液戻り口26から蒸気口25に向うように液相冷媒Lをスムーズに流動させることができる。このため、蒸発室11内のベース板21の沸騰面21aや板状フィン31の表面に気相冷媒Vの気泡が留まって冷却能力を低下させてしまうことなく、液相冷媒Lを効果的に接触させて熱交換(冷却)させることができる。したがって、この冷却装置10では、ベース板21での冷却効率(熱伝達率)が大きいことからその占有面積を小さくすることができ、発熱量の大きなLSIパッケージ110などであっても効果的に冷却することができる。この結果、LSIパッケージ110からの配線長を短くしてメモリなどを配設することができ、ポンプなどの電力を必要とすることなく、コンピュータの動作速度の向上を図ることができる。
実施形態2
次に、図6はこの発明に係る冷却構造の第2実施形態を示す図である。図6は同冷却構造を採用する冷却装置における蒸発室の内部構造を示す縦断面図である。ここで、この実施形態は、上述の第1実施形態と略同様に構成されていることから、同様な構成には同一の符号を付して特徴部分を説明する(以下で説明する他の実施形態においても同様)。
図6において、冷却装置10の蒸発室41は、ベース板21の沸騰面21aが鉛直になる姿勢でLSIパッケージ110に熱伝導層111を介して接する状態に取り付けられており、天井板22もベース板21に対面する姿勢になって、それぞれの周縁に円筒板23が気密に固設されている。
蒸気管13を連結する蒸気口45は、上述の第1実施形態における蒸気口25に代えて、液戻り口26の反対側で天井板22の天井面22aに隣接する位置の円筒板23に開口するように形成されている。
そして、蒸発室41は、蒸気口45が最上部に位置する一方、液戻り口26が最下部に位置する姿勢で取り付けられている。すなわち、ベース板21、天井板22及び円筒板23で形成される液相冷媒Lの収容空間(チャンバー)は、下方の延長方向に連続するように液戻り管14が液戻り口26に連結される一方、上方の延長方向に連続するように蒸気管13が蒸気口45に連結されている。
これにより、蒸発室41内では、次のような冷媒の流動による冷却方法が実施される。すなわち、ベース板21に隣接する液戻り口26と天井板22側に隣接する蒸気口45は、略鉛直方向に対向する位置関係であることから、気相冷媒Vは、図中に一点鎖線の矢印で図示するように、スムーズに略鉛直方向に上昇して、蒸気口45内に導入されて凝縮室12に案内することができる。また、収容されている液相冷媒Lは、蒸発室41が鉛直姿勢で取り付けられることから、液戻り口26からの流入方向に一致する鉛直方向に、その温度に応じた対流を生じさせて流動することができる。
このように、この実施形態によれば、上述の第1実施形態の作用効果に加えて、気相冷媒Vをよりスムーズに流動させることができ、また、液相冷媒Lも対流を同一方向に生じさせて流動させることができる。したがって、ベース板21での冷却効率をより向上させることができる。
ここで、この実施形態の他の態様としては、図示することは省略するが、蒸発室41を上述の第1実施形態の蒸発室11と同様に水平姿勢で取り付けてもよく、また、その蒸発室11をこの実施形態と同様に鉛直姿勢で取り付けてもよい。この場合にも、略同等の作用効果を得ることができるが、それぞれ気相冷媒Vがよりスムーズに上昇することができるように、それぞれの実施形態の姿勢で取り付けて使用するのが好ましい。
実施形態3
次に、図7はこの発明に係る冷却構造の第3実施形態を示す図である。図7は同冷却構造を採用する冷却装置における蒸発室の内部構造を示す縦断面図である。
図7において、冷却装置10の蒸発室51は、上述の第2実施形態と同様に、LSIパッケージ110にベース板21と天井板22が鉛直姿勢になるように取り付けられている。ベース板21と天井板22のそれぞれの周縁には、上述の第2実施形態における円筒板23に代えて、板状フィン31と同等の高さに作製されている円筒板53が気密に固設されている。
そして、蒸気管13を連結する蒸気口55は、上述の第2実施形態における蒸気口45に代えて、液戻り口26と同様に、液戻り口26の反対側でベース板21の沸騰面21aに隣接する位置の円筒板53に開口するように形成されている。
これにより、蒸発室51内では、次のような冷媒の流動による冷却方法が実施される。すなわち、蒸気口55は、液戻り口26と同様に、ベース板21側で開口していることから、気相冷媒Vは、図中に一点鎖線の矢印で図示するように、真直な鉛直方向に上昇して、上述の第2実施形態における蒸気口45よりもスムーズに蒸気口45内に導入させて凝縮室12に案内することができる。また、蒸発室51内で対流する液相冷媒Lは、上述の実施形態のように板状フィン31と天井板22の間で対流することなく、板状フィン31の間で高速に流動させることができる。
このように、この実施形態によれば、上述の第1、第2実施形態の作用効果に加えて、気相冷媒Vをよりスムーズに流動させることができるとともに、液相冷媒Lを板状フィン31間でより高速に流動させることができる。したがって、ベース板21での冷却効率をより向上させることができる。
ここで、この実施形態の他の態様としては、図示することは省略するが、上述の第1実施形態における蒸発室11内の液相冷媒Lの収容容量を板状フィン31の上部が露出する程度にしても同様の作用効果を得ることができる。
実施形態4
次に、図8及び図9はこの発明に係る冷却構造の第4実施形態を示す図である。図8は同冷却構造を採用する冷却装置における蒸発室の内部構造を示す縦断面斜視図、図9は同冷却装置における蒸発室の内部構造を示す縦断面図である。
図8及び図9において、冷却装置10の蒸発室61は、上述の第1実施形態と同様に、LSIパッケージ110にベース板21が水平姿勢で取り付けられている。このベース板21の周縁には、円筒板23の一端側周縁が気密に固設される一方、その円筒板23の他端側周縁には、上述の第1実施形態における天井板22に代えて、天井板62が気密に固設されている。
天井板62は、円筒板23に固設する周縁側が開口縁になって蒸気口25を最下の流出口とする、所謂、変形の漏斗形状に形成されており、その上下を反転させた姿勢で円筒板23に固設されている。すなわち、天井板62は、ベース板21の沸騰面21aからの天井面62aの離隔間隔が液戻り口26側から蒸気口25に向うほど拡大するテーパ形状に形成されている。
これにより、蒸発室61内では、次のような冷媒の流動による冷却方法が実施される。すなわち、天井板62の天井面62aは、液戻り口26側から蒸気口25に収束するテーパ形状に形成されていることから、液戻り口26から離隔するほど、ベース板21の沸騰面21aや板状フィン31の上方の空間が確保されている。ところで、液相冷媒Lが沸騰面21aや板状フィン31に接触することにより相変化した気相冷媒Vは、液戻り口26から離隔するほど、大量の気泡の状態になって蒸気口25に向って液相冷媒Lと共に流動することになる。そうなると、流動する冷媒は、蒸気口25側ほど液体の状態よりも気体の状態に相変化済みの割合が多くなって、その相変化量が少なくなることにより沸騰面21aや板状フィン31での冷却効率が低下する。しかるに、この蒸発室61では、液相冷媒Lが沸騰面21aや板状フィン31に接触して相変化した気相冷媒Vの気泡は上昇して天井面62aとの間に確保されている空間内に逃げることができる。そして、その気泡になって上昇する気相冷媒Vは、液戻り口26側からでも、図中に二点鎖線の矢印で図示するように、滞留することなく、その天井面62aで蒸気口25に向うようにスムーズに案内させて凝縮室12に導入することができる。したがって、蒸発室61は、蒸気口25側ほど液相冷媒L内の気相冷媒Vの混在率が多くなって冷却効率が低下することはなく、蒸気口25側の沸騰面21aや板状フィン31でも効率よく液相冷媒Lを気相冷媒Vに相変化させて効果的に熱交換(冷却)することができる。
このように、この実施形態によれば、上述の第1実施形態の作用効果に加えて、相変化した気相冷媒Vが液相冷媒L内に混在してしまうことなく、また、天井面付近で滞留してしまうことなく、よりスムーズに蒸気口25に案内して導入することができる。したがって、冷却装置10の冷却効率が低下してしまうことなく、効果的にLSIパッケージ110を冷却することができる。
ここで、この実施形態の他の態様としては、図示することは省略するが、上述の第1実施形態における天井面22aと液体冷媒Lの表面との間に、気相冷媒Vの発生量に応じた空間容積を確保するようにしてもよい。この場合にも、略同様の作用効果を得ることができるが、天井板62のテーパ形状の天井面22aが気相冷媒Vを滞留させることなく蒸気口25側上方に案内してその流動を促進するため、この実施形態の構成を採用するのが好ましい。
実施形態5
次に、図10はこの発明に係る冷却構造の第5実施形態を示す図である。図10は同冷却構造を採用する冷却装置における蒸発室の内部構造を示す横断面図である。
図10において、冷却装置10の蒸発室71は、ベース板21と天井板22の周縁に円筒板73が気密に固設されている。この円筒板73には、ベース板21の沸騰面21aに立設されている複数枚の板状フィン31の間の間隙の延長方向に対応するように、その並列方向に分岐させた液戻り口76が複数開口している。
これにより、蒸発室71内では、次のような冷媒の流動による冷却方法が実施される。すなわち、液戻り口76は、板状フィン31間の間隙のそれぞれに対応するように開口していることから、液相冷媒Lは、その板状フィン31間の間隙にスムーズに流入することができ、その間でより高速に流動させることができる。
このように、この実施形態によれば、上述の実施形態の作用効果に加えて、液相冷媒Lをよりスムーズに板状フィン31間に流入させて高速に流動させることができる。したがって、ベース板21での冷却効率をより向上させることができる。
ここで、この実施形態の他の態様としては、図示することは省略するが、液戻り口76のように分岐させるのではなく、板状フィン31の並列方向に延在する幅の狭い長穴形状で開口する液戻り口を形成してもよい。しかしながら、液戻り口は、蒸気口25よりも小さな面積で開口させる必要があることから、この実施形態のように構成する方が設計・作製の観点からすると有利である。
実施形態6
次に、図11はこの発明に係る冷却構造の第6実施形態を示す図である。図11は同冷却構造を採用する冷却装置における蒸発室の構成を示す一部拡大断面図である。
図11において、冷却装置10の蒸発室11を構成するベース板21は、円筒板23の外部まで延長させた延長部82に小電力で駆動する超音波振動子83が固設されており、その超音波振動子83の駆動で発生する超音波振動が蒸発室11内の沸騰面21aや板状フィン31の表面まで伝播するようになっている。
これにより、蒸発室11内では、次のような冷媒の流動による冷却方法が実施される。すなわち、沸騰面21aと板状フィン31の表面にも超音波振動が発生して、その表面に付着する気相媒体Vの気泡は、液相冷媒Lの流動抵抗による負荷と共にその超音波振動による負荷も加えられて、沸騰面21aと板状フィン31の表面から剥離される。
このように、この実施形態によれば、上述の実施形態の作用効果に加えて、液相冷媒Lの流動負荷に加えて、超音波振動による負荷でも沸騰面21aや板状フィン31の表面に付着する気相媒体Vの気泡を剥離浮上させることができる。したがって、ベース板21での冷却効率をより向上させることができる。
以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。例えば、異なる形式で凝縮室を蒸発室に接続する冷却装置にも適用することができ、また、その蒸発室も円形のチャンバーに限るものではない。
この発明は、パーソナルコンピュータなどの電子機器内の発熱部を冷却する冷却装置に適用するだけでなく、他の冷却装置にも適用することができ、例えば、サーバールームなどの空調関係設備などにも適用することができる。
10 冷却装置
11、41、51、61 蒸発室
12 凝縮室
13 蒸気管(蒸気流路)
14 液戻り管(液戻り流路)
21 ベース板
21a 沸騰面
22、62 天井板
22a、62a 天井面(内壁面)
23、53、73 円筒板
23a 内周面(内壁面)
25、45、55 蒸気口
26、76 液戻り口
31 板状フィン
31a 側面
83 超音波振動子
110 LSIパッケージ(被冷却部材)
L 液相冷媒
p 対面間隔
t 板厚
V 気相冷媒

Claims (21)

  1. 液相状態の冷媒は、被冷却部材から受熱する蒸発室の沸騰面の端縁の隣接位置に開口する液戻り口から該沸騰面と平行方向に流動して該蒸発室内に流入することにより、当該沸騰面の端から接触するとともに流動方向を維持しつつ、該液戻り口の該沸騰面を挟んで反対側に開口する蒸気口に向って流動する一方、
    気相状態の冷媒は、前記沸騰面に前記液相状態の冷媒が接触することにより相変化して気化し該沸騰面に気泡として付着するとともに、当該沸騰面と平行に流動する該液相状態の冷媒の流動負荷を受けて剥離浮上することを特徴とする冷却構造。
  2. 前記蒸気口は、前記蒸発室の側壁面に沿う上部あるいは該側壁面内の上部に形成される一方、
    前記液戻り口は、前記蒸発室の側壁面内における前記沸騰面を挟んで前記蒸気口の反対側の該沸騰面の端縁に隣接する位置に形成されているとともに、
    該液戻り口と凝縮室とを連通させる液戻り流路は、当該液戻り口から前記蒸発室内に流入する前記液相状態の冷媒の流入方向が前記沸騰面と平行になるように形成されていることを特徴とする請求項1記載の冷却構造。
  3. 前記沸騰面には、前記液相状態の冷媒の前記液戻り口からの流入方向と平行に複数枚の板状フィンが立設されており、
    該板状フィンは、当該板状フィンの対面間隔以上の板厚に設定されていることを特徴とする請求項1又は2記載の冷却構造。
  4. 前記沸騰面には、前記液相状態の冷媒の前記液戻り口からの流入方向と平行に複数枚の板状フィンが立設されており、
    前記液戻り口は、該板状フィン間の間隙の並列方向に対応するように開口していることを特徴とする請求項1、2又は3に記載の冷却構造。
  5. 前記蒸発室は、前記沸騰面が鉛直姿勢になるように前記被冷却部材に設置されて、前記蒸気口が最上部に位置するとともに、前記液戻り口が最下部に位置することを特徴とする請求項1乃至4の何れか一に記載の冷却構造。
  6. 前記蒸気口は、前記沸騰面に対向する上部側の天井面に開口しており、
    該天井面は、前記沸騰面から離隔する間隔が前記液戻り口側から前記蒸気口に向って拡大するテーパ状に形成されていることを特徴とする請求項1乃至5の何れか一に記載の冷却構造。
  7. 前記液戻り口の開口面積は、前記蒸気口の開口面積の1/2以下に設定されていることを特徴とする請求項1乃至6のうち何れか一に記載の冷却構造。
  8. 前記沸騰面には、前記液相状態の冷媒の前記液戻り口からの流入方向と平行に複数枚の板状フィンが立設されており、
    該液相状態の冷媒は、少なくとも前記被冷却部材に接する領域の背面側の前記沸騰面に接触するとともに前記板状フィンを浸漬させる程度の容量で前記蒸発室内に収容されていることを特徴とする請求項1乃至7のうち何れか一に記載の冷却構造。
  9. 前記蒸発室の少なくとも前記沸騰面に超音波振動を伝播する超音波振動子が配設されていることを特徴とする請求項1乃至8のうち何れか一に記載の冷却構造。
  10. 前記蒸発室は、数十℃で飽和蒸気圧が大気圧付近となる冷媒を収容して内部を減圧状態にしていることを特徴とする請求項1乃至9のうち何れか一に記載の冷却構造。
  11. 前記液戻り口及び凝縮室を連通させる液戻り流路と、前記蒸気口及び該凝縮室を連通させる蒸気流路との一方あるいは双方は、流路形状を自在に変形可能なホースなどのチューブ材料で作製されていることを特徴とする請求項1乃至10のうち何れか一に記載の冷却構造。
  12. 請求項1乃至11のうち何れか一に記載の冷却構造を採用する沸騰型冷却器を冷却の必要な部材に設置したことを特徴とする電子機器。
  13. 液相状態の冷媒は、被冷却部材から受熱する蒸発室の沸騰面の端縁の隣接位置に開口する液戻り口から該沸騰面と平行方向に流動して該蒸発室内に流入した後に、当該沸騰面の端から接触するとともに流動方向を維持しつつ、該液戻り口の該沸騰面を挟んで反対側に開口する蒸気口に向って流動する一方、
    気相状態の冷媒は、前記沸騰面に前記液相状態の冷媒が接触することにより相変化して気化し該沸騰面に気泡として付着するとともに、当該沸騰面と平行に流動する該液相状態の冷媒の流動負荷を受けて剥離浮上することを特徴とする冷却方法。
  14. 前記沸騰面には、前記液相状態の冷媒の前記液戻り口からの流入方向と平行に複数枚の板状フィンが立設されており、
    該板状フィンは、当該板状フィンの対面間隔以上の板厚に設定されることにより、前記沸騰面と平行に流動する前記液相状態の冷媒の流動速度を向上させることを特徴とする請求項13記載の冷却方法。
  15. 前記沸騰面には、前記液相状態の冷媒の前記液戻り口からの流入方向と平行に複数枚の板状フィンが立設されており、
    該液相状態の冷媒は、該板状フィン間の間隙の並列方向に対応するように開口している前記液戻り口から前記蒸発室内に流入して当該板状フィン間を流動することを特徴とする請求項13又は14記載の冷却方法。
  16. 前記蒸発室は、前記沸騰面が鉛直姿勢になるように前記被冷却部材に設置されて、前記蒸気口が最上部に位置するとともに、前記液戻り口が最下部に位置することにより、
    前記沸騰面と平行に流動する前記液相状態の冷媒は鉛直方向に流動することを特徴とする請求項13、14又は15記載の冷却方法。
  17. 前記蒸発口は、前記沸騰面に対向する上部側の天井面に開口して、該天井面は、前記沸騰面から離隔する間隔が前記液戻り口側から前記蒸気口に向って拡大するテーパ状に形成されることにより、
    前記気相状態の冷媒は、前記液相状態の冷媒内から離脱した後には、当該テーパ状の前記天井面によって前記蒸気口に案内されることを特徴とする請求項13乃至16のいずれか一に記載の冷却方法。
  18. 前記液戻り口の開口面積は、前記蒸気口の開口面積の1/2以下に設定されることにより、
    前記気相状態の冷媒の流入する前記蒸気口と前記液相状態の冷媒の流出する前記液戻り口の間の圧力差で当該冷媒を所定の方向に流動させることを特徴とする請求項13乃至17のうち何れか一に記載の冷却方法。
  19. 前記蒸発室の少なくとも前記沸騰面に超音波振動を伝播する超音波振動子が配設されており、
    前記沸騰面に付着する前記気相状態の冷媒の気泡は、当該超音波振動でも該沸騰面から剥離することを特徴とする請求項13乃至18のうち何れか一に記載の冷却方法。
  20. 前記沸騰面には、前記液相状態の冷媒の前記液戻り口からの流入方向と平行に複数枚の板状フィンが立設されており、
    該液相状態の冷媒は、少なくとも前記被冷却部材に接する領域の背面側の前記沸騰面に接触するとともに前記板状フィンを浸漬させる程度の容量で前記蒸発室内に収容することを特徴とする請求項13乃至19のうち何れか一に記載の冷却方法。
  21. 前記蒸発室は、数十℃で飽和蒸気圧が大気圧付近となる冷媒を収容して内部を減圧状態にすることを特徴とする請求項13乃至20のうち何れか一に記載の冷却方法。
JP2010535636A 2008-10-29 2009-10-07 冷却構造及び電子機器並びに冷却方法 Active JP5757086B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010535636A JP5757086B2 (ja) 2008-10-29 2009-10-07 冷却構造及び電子機器並びに冷却方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008278808 2008-10-29
JP2008278808 2008-10-29
JP2010535636A JP5757086B2 (ja) 2008-10-29 2009-10-07 冷却構造及び電子機器並びに冷却方法
PCT/JP2009/005220 WO2010050129A1 (ja) 2008-10-29 2009-10-07 冷却構造及び電子機器並びに冷却方法

Publications (2)

Publication Number Publication Date
JPWO2010050129A1 true JPWO2010050129A1 (ja) 2012-03-29
JP5757086B2 JP5757086B2 (ja) 2015-07-29

Family

ID=42128502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010535636A Active JP5757086B2 (ja) 2008-10-29 2009-10-07 冷却構造及び電子機器並びに冷却方法

Country Status (3)

Country Link
US (1) US9557117B2 (ja)
JP (1) JP5757086B2 (ja)
WO (1) WO2010050129A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656684B (zh) * 2009-11-27 2015-02-04 丰田自动车株式会社 半导体装置及其制造方法
US9605907B2 (en) * 2010-03-29 2017-03-28 Nec Corporation Phase change cooler and electronic equipment provided with same
US20120097373A1 (en) * 2010-10-25 2012-04-26 Rochester Institute Of Technology Methods for improving pool boiling and apparatuses thereof
TWI407898B (zh) * 2010-10-26 2013-09-01 Inventec Corp 一種液態冷卻流體熱交換室
CN103384808B (zh) * 2011-02-22 2016-12-28 日本电气株式会社 冷却装置及其制造方法
US20140083652A1 (en) * 2011-05-24 2014-03-27 Nec Corporation Sealed casing
JPWO2013018667A1 (ja) * 2011-08-01 2015-03-05 日本電気株式会社 冷却装置及びそれを用いた電子機器
JP5906607B2 (ja) * 2011-08-17 2016-04-20 富士通株式会社 ループヒートパイプ及び該ループヒートパイプを備えた電子機器
JP5961948B2 (ja) * 2011-09-01 2016-08-03 日本電気株式会社 冷却装置およびそれを用いた電子機器
JP2013130332A (ja) * 2011-12-21 2013-07-04 Toshiba Corp 気泡駆動冷却装置
JP6127983B2 (ja) * 2012-01-23 2017-05-17 日本電気株式会社 冷却構造及びそれを用いた電子装置
US9366394B2 (en) * 2012-06-27 2016-06-14 Flextronics Ap, Llc Automotive LED headlight cooling system
JP6171164B2 (ja) * 2012-09-05 2017-08-02 パナソニックIpマネジメント株式会社 冷却装置およびこれを搭載した電気自動車および電子機器
US8941994B2 (en) 2012-09-13 2015-01-27 International Business Machines Corporation Vapor condenser with three-dimensional folded structure
TW201442608A (zh) * 2013-04-19 2014-11-01 Microthermal Technology Corp 相變化散熱裝置及其相變化散熱系統
JPWO2014192279A1 (ja) * 2013-05-29 2017-02-23 日本電気株式会社 冷却装置およびその製造方法
JPWO2015146110A1 (ja) * 2014-03-26 2017-04-13 日本電気株式会社 相変化冷却器および相変化冷却方法
CN108029221B (zh) * 2015-09-14 2019-11-29 三菱电机株式会社 冷却器、电力转换装置及冷却系统
WO2017169969A1 (ja) * 2016-03-31 2017-10-05 日本電気株式会社 冷却装置
WO2017170153A1 (ja) * 2016-03-31 2017-10-05 日本電気株式会社 相変化冷却器、及び電子機器
US9894815B1 (en) * 2016-08-08 2018-02-13 General Electric Company Heat removal assembly for use with a power converter
TWI635248B (zh) * 2016-09-02 2018-09-11 宏碁股份有限公司 蒸發器及其製作方法
US20190178583A1 (en) * 2017-12-13 2019-06-13 Auras Technology Co., Ltd. Thermosyphon-type heat dissipation device
CN109213298A (zh) * 2018-10-10 2019-01-15 郑州云海信息技术有限公司 一种用于服务器的虹吸管散热器
FR3090839B1 (fr) * 2018-12-19 2021-05-14 Valeo Systemes Thermiques Circuit de refroidissement pour composant de véhicule automobile
US20200404805A1 (en) * 2019-06-19 2020-12-24 Baidu Usa Llc Enhanced cooling device
TWI719884B (zh) * 2020-04-13 2021-02-21 萬在工業股份有限公司 重力式高效率散熱裝置
US20220128311A1 (en) * 2020-10-22 2022-04-28 Asia Vital Components Co., Ltd Vapor-phase/liquid-phase fluid heat exchange uni
TWI801017B (zh) * 2021-12-06 2023-05-01 建準電機工業股份有限公司 液冷散熱裝置、具有該液冷散熱裝置的液冷散熱系統及電子裝置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137086A (en) * 1980-03-28 1981-10-26 Mitsubishi Electric Corp Condenser for boiling type cooling apparatus
US4450472A (en) * 1981-03-02 1984-05-22 The Board Of Trustees Of The Leland Stanford Junior University Method and means for improved heat removal in compact semiconductor integrated circuits and similar devices utilizing coolant chambers and microscopic channels
JPS59217346A (ja) * 1983-05-26 1984-12-07 Mitsubishi Electric Corp 沸騰冷却装置
FR2579371B1 (fr) 1985-03-19 1987-09-11 Contardo Spa Procede et dispositif de refroidissement pour diodes et thyristors de puissance, mettant en oeuvre le principe du thermosiphon biphase
JPS61255042A (ja) 1985-05-08 1986-11-12 Nec Corp 半導体装置用ヒ−トシンク
JP3451737B2 (ja) * 1994-09-06 2003-09-29 株式会社デンソー 沸騰冷却装置
JPH08303919A (ja) 1995-05-08 1996-11-22 Hitachi Ltd 電子冷蔵庫
JPH08313178A (ja) * 1995-05-19 1996-11-29 Mitsubishi Alum Co Ltd 熱交換器用蒸発器
US6173761B1 (en) * 1996-05-16 2001-01-16 Kabushiki Kaisha Toshiba Cryogenic heat pipe
JP3964580B2 (ja) * 1999-09-03 2007-08-22 富士通株式会社 冷却ユニット
KR100338810B1 (ko) 1999-11-08 2002-05-31 윤종용 냉각장치
JP4201962B2 (ja) 2000-07-07 2008-12-24 財団法人電力中央研究所 微細化沸騰を利用した冷却方法
JP2002168547A (ja) 2000-11-20 2002-06-14 Global Cooling Bv 熱サイホンによるcpu冷却装置
JP2002340489A (ja) * 2001-05-15 2002-11-27 Hitachi Ltd ループ型ヒートパイプ
US20030205363A1 (en) * 2001-11-09 2003-11-06 International Business Machines Corporation Enhanced air cooling of electronic devices using fluid phase change heat transfer
JP4032954B2 (ja) 2002-07-05 2008-01-16 ソニー株式会社 冷却装置、電子機器装置、音響装置及び冷却装置の製造方法
US6588498B1 (en) 2002-07-18 2003-07-08 Delphi Technologies, Inc. Thermosiphon for electronics cooling with high performance boiling and condensing surfaces
JP2004218887A (ja) * 2003-01-10 2004-08-05 Fujikura Ltd 電子素子の冷却装置
JP2005019905A (ja) 2003-06-30 2005-01-20 Matsushita Electric Ind Co Ltd 冷却装置
US7487643B2 (en) * 2003-07-23 2009-02-10 Sharp Kabushiki Kaisha Loop type thermo syphone, heat radiation system, heat exchange system, and stirling cooling chamber
JP2005147625A (ja) * 2003-11-19 2005-06-09 Fujikura Ltd ループ型ヒートパイプ
US7092254B1 (en) * 2004-08-06 2006-08-15 Apple Computer, Inc. Cooling system for electronic devices utilizing fluid flow and agitation
US20060060331A1 (en) * 2004-08-20 2006-03-23 Ari Glezer Apparatus and method for enhanced heat transfer
CN100590377C (zh) * 2005-02-18 2010-02-17 阳傑科技股份有限公司 热管冷却系统及其热传递连接器
TWI262285B (en) * 2005-06-03 2006-09-21 Foxconn Tech Co Ltd Loop-type heat exchange apparatus
CN100573416C (zh) * 2005-07-15 2009-12-23 富准精密工业(深圳)有限公司 电脑系统及其散热模组
US7686071B2 (en) * 2005-07-30 2010-03-30 Articchoke Enterprises Llc Blade-thru condenser having reeds and heat dissipation system thereof
JP4899997B2 (ja) * 2007-03-30 2012-03-21 日本電気株式会社 サーマルサイフォン式沸騰冷却器
JP5117101B2 (ja) * 2007-05-08 2013-01-09 株式会社東芝 蒸発器およびこれを用いた循環型冷却装置
TWI318679B (en) * 2007-05-16 2009-12-21 Ind Tech Res Inst Heat dissipation system with an plate evaporator
US7882890B2 (en) * 2007-07-13 2011-02-08 International Business Machines Corporation Thermally pumped liquid/gas heat exchanger for cooling heat-generating devices
US9074825B2 (en) * 2007-09-28 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Heatsink apparatus and electronic device having the same
JP2009097757A (ja) * 2007-10-15 2009-05-07 Toshiba Corp ループヒートパイプおよび電子機器
JP4399013B2 (ja) * 2008-02-28 2010-01-13 株式会社東芝 電子機器、およびヒートパイプ
JP2009281721A (ja) * 2008-04-23 2009-12-03 Hitachi Cable Ltd 相変換冷却器及び携帯機器
US20090314472A1 (en) * 2008-06-18 2009-12-24 Chul Ju Kim Evaporator For Loop Heat Pipe System
FR2934709B1 (fr) * 2008-08-01 2010-09-10 Commissariat Energie Atomique Structure d'echange thermique et dispositif de refroidissement comportant une telle structure.
CN101655328A (zh) * 2008-08-19 2010-02-24 何昆耀 平板式回路热导装置及其制造方法

Also Published As

Publication number Publication date
WO2010050129A1 (ja) 2010-05-06
US9557117B2 (en) 2017-01-31
US20110192574A1 (en) 2011-08-11
JP5757086B2 (ja) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5757086B2 (ja) 冷却構造及び電子機器並びに冷却方法
JP5644767B2 (ja) 電子機器装置の熱輸送構造
JP5151362B2 (ja) 冷却装置およびそれを備えた電子機器
US10321609B2 (en) Cooling system and method of cooling electronic device
CN107302839B (zh) 在数据中心中使电子设备冷却的系统和方法
US8713957B2 (en) Thermoelectric-enhanced, vapor-condenser facilitating immersion-cooling of electronic component(s)
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
US7936560B2 (en) Cooling device and electronic equipment including cooling device
US9250024B2 (en) Pump-enhanced, sub-cooling of immersion-cooling fluid
US7327572B2 (en) Heat dissipating device with enhanced boiling/condensation structure
JP6015675B2 (ja) 冷却装置及びそれを用いた電子機器
US10123454B2 (en) Electronic-device cooling system
WO2011145618A1 (ja) 沸騰冷却器
WO2015087530A1 (ja) 冷媒分配装置および冷却装置
JP2007533944A (ja) コンピュータおよび他の電子機器用の熱サイフォンベースの薄型冷却システム
CN103717037A (zh) 冷却系统以及使用了该冷却系统的电子装置
JP5532113B2 (ja) 冷却装置およびそれを備えた電子機器
JPWO2017170153A1 (ja) 相変化冷却器、及び電子機器
JPWO2015146110A1 (ja) 相変化冷却器および相変化冷却方法
JP5874935B2 (ja) 平板型冷却装置及びその使用方法
JP2010080507A (ja) 電子装置
JP6825615B2 (ja) 冷却システムと冷却器および冷却方法
JP5860728B2 (ja) 電子機器の冷却システム
US20230147067A1 (en) Cooling device having a boiling chamber with submerged condensation and method
JP6787988B2 (ja) 冷却装置および冷却装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5757086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150