JPWO2007029733A1 - 硬化性組成物 - Google Patents

硬化性組成物 Download PDF

Info

Publication number
JPWO2007029733A1
JPWO2007029733A1 JP2007534447A JP2007534447A JPWO2007029733A1 JP WO2007029733 A1 JPWO2007029733 A1 JP WO2007029733A1 JP 2007534447 A JP2007534447 A JP 2007534447A JP 2007534447 A JP2007534447 A JP 2007534447A JP WO2007029733 A1 JPWO2007029733 A1 JP WO2007029733A1
Authority
JP
Japan
Prior art keywords
group
polymer
curable composition
composition according
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007534447A
Other languages
English (en)
Inventor
中川 佳樹
佳樹 中川
紘平 小川
紘平 小川
玉井 仁
仁 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2007029733A1 publication Critical patent/JPWO2007029733A1/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/375Thiols containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1068Crosslinkable materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0625Polyacrylic esters or derivatives thereof

Abstract

本発明は、十分な作業時間を確保しながら、必要時には速硬化させることが可能で、硬化物の耐熱性、耐油性、耐候性、機械物性、接着性等に優れた、架橋性シリル基を末端に有するビニル系重合体を含有する硬化性組成物の提供を目的とする。本発明は、下記(I)及び(II)を含有する硬化性組成物である。架橋性シリル基を平均して少なくとも一個、末端に有するビニル系重合体(I)。光酸発生剤(II)。本発明のビニル系重合体(I)は、(メタ)アクリル系重合体であることが好ましい。

Description

本発明は硬化性組成物に関する。さらに詳しくは、架橋性シリル基を平均して少なくとも一個、末端に有するビニル系重合体(I)、及び、光酸発生剤(II)を含有することを特徴とする硬化性組成物に関する。
架橋性シリル基を末端に有するビニル系重合体からなる硬化性組成物は、一般に室温で、空気中あるいは含有する湿分で硬化するものが知られている。(特許文献1参照)。しかし、これらを用いた硬化性組成物には改善すべき点がある。硬化速度は一般に遅い場合が多く、触媒活性等により硬化速度を早くした場合、可使時間が短くなり、塗工作業が困難になることがある。
同様のビニル系重合体で、(メタ)アクリロイル基等のラジカル重合性基を末端に有するポリマーの活性エネルギー線硬化性組成物が最近報告されている。(特許文献2参照)。しかし、これらを用いた硬化性組成物にも改善すべき点がある。ラジカル重合は酸素阻害を受ける傾向にあるので、硬化物表面が未硬化になることがある。また、硬化に関与する架橋反応自体は極性が低いので、接着性付与には工夫を要する。更に、ポリマー末端に(メタ)アクリロイル基等の官能基を導入するために多くの場合、エステル結合等の比較的弱い結合を介する必要があり、硬化後にこの結合が切断されることによる劣化の懸念がある。
一方、架橋性シリル基が酸によって架橋することは古くから知られており、同様の反応を利用して、架橋性シリル基を有する化合物に、光酸発生剤を添加して活性エネルギー線硬化させることも知られている(特許文献3及び非特許文献1参照)。
多くの場合、光酸発生剤を添加して活性エネルギー線硬化させる架橋性シリル基を有する化合物は低分子量化合物であるが、架橋性シリル基を有する重合体の例も最近報告されている(特許文献4)。この重合体としては、ポリアクリレートのビニル系重合体も示されているが、末端に架橋性シリル基を有するものはなく、基本的にビニル系重合体はフリーラジカル重合により製造されているため、精密な構造制御はされていない。精密な構造制御がされていないと粘度が高くなったり、良好なゴム弾性の発現が困難になる。
末端に架橋性シリル基を有するポリエーテルについて同様の光酸発生剤添加活性エネルギー線硬化の報告がある(特許文献5参照)。しかし、ポリエーテルは、一般に酸及び光に弱い欠点がある。更に、硬化物の耐熱性、耐候性、耐薬品性も高くはない。
上述のように、架橋性シリル基を末端に有するビニル系重合体を使用した光酸発生剤添加活性エネルギー線硬化は未だに報告されておらず、このようなビニル系重合体の光酸発生剤添加活性エネルギー線硬化が実現可能になれば、これまで困難であった用途にも適用でき、広範囲にわたる使用態様が可能となるため、工業的にも実現が望まれている。
特開平09−272714号公報、特開平11−005815号公報、特開平11−043512号公報、特開平11−080571号公報、特開平11−116617号公報、特開平11−130931号公報、特開平12−086999号公報、特開平12−191912号公報、特開2000−038404号公報、特開2000−044626号公報、特開2000−072804号公報 特開2000−072816号公報、特開平12−136211号公報、特開平12−095826号公報、特開2001−055551号公報、特開2000−154205号公報、特開2000−186112号公報 特開2000−1648号公報、特開2000−169755号公報、特開2000−171604号公報、特開2000−298352号公報 特表2001−515533号公報、米国特許6204350号、欧州特許966503号 WO2002/083764 Radiation Curing in Polymer Science and Technology, vol2, Elsevier Applied Science, L ondon, 1993
本発明は、十分な作業時間を確保しながら、必要時には速硬化させることが可能で、硬化物の耐熱性、耐油性、耐候性、機械物性、接着性等に優れた、架橋性シリル基を末端に有するビニル系重合体を含有する硬化性組成物の提供を目的とする。
上記現状に鑑み、本発明者らが鋭意検討した結果、架橋性シリル基を末端に有するビニル系重合体を使用した光酸発生剤添加による光硬化を実現でき、さらに硬化性に優れる上に、優れた物性を有する硬化物を得られることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の2成分:架橋性シリル基を平均して少なくとも一個、末端に有するビニル系重合体(I)、及び、光酸発生剤(II)を含有することを特徴とする硬化性組成物である。
上記ビニル系重合体(I)の架橋性シリル基は下記一般式(1)で表されることが好ましい。
−[Si(R2−b(Y)O]−Si(R3−a(Y)(1)
(式中、RおよびRは、同一若しくは異なって、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R′)SiO−で表されるトリオルガノシロキシ基を示す(式中、R′は炭素数1〜20の1価の炭化水素基を示す。複数のR′は同一であってもよく又は異なっていてもよい)。RまたはRがそれぞれ2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示す。Yが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは0、1、2または3を示す。bは0、1、または2を示す。mは0〜19の整数を示す。ただし、a+mb≧1であることを満足する。)
上記ビニル系重合体(I)の分子量分布が1.8未満であるが好ましい。
上記ビニル系重合体(I)の主鎖が、(メタ)アクリル系重合体であるが好ましく、アクリル系重合体であることがより好ましく、アクリル酸エステル系重合体であることがさらに好ましい。また、上記ビニル系重合体(I)の主鎖はリビングラジカル重合法により製造されたものであることが好ましく、原子移動ラジカル重合法により製造されたものであることがより好ましい。
上記ビニル系重合体(I)の数平均分子量が3000以上であることが好ましい。
上記ビニル系重合体(I)として、主鎖がポリイソブチレン系重合体であるものを使用することができる。
上記ビニル系重合体(I)の、一方の末端にある架橋性シリル基と、前記一方の末端と異なる位置にある架橋性シリル基との間の主鎖構造が、炭素−炭素結合のみからなる、または、炭素−炭素結合および炭素−ケイ素結合のみからなることが好ましい。
上記光酸発生剤(II)が、スルホネートエステル類、オニウム塩類、カルボン酸エステル類からなる群から選択されることが好ましい。
本願の硬化性組成物は、さらに、架橋性シリル基を平均して少なくとも一個、末端に有するポリエーテル系重合体(III)を含有することができる。
上記ポリエーテル系重合体(III)の主鎖が、本質的にポリプロピレンオキシドであることが好ましい。
上記ポリエーテル系重合体(III)の架橋性シリル基が下記一般式(1)で表されることが好ましい。
−[Si(R2−b(Y)O]−Si(R3−a(Y)(1)
(式中、RおよびRは、同一若しくは異なって、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R′)SiO−で表されるトリオルガノシロキシ基を示す(式中、R′は炭素数1〜20の1価の炭化水素基を示す。複数のR′は同一であってもよく又は異なっていてもよい)。RまたはRがそれぞれ2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示す。Yが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは0、1、2または3を示す。bは0、1、または2を示す。mは0〜19の整数を示す。ただし、a+mb≧1であることを満足する。)
本願の硬化性組成物は、さらに、エポキシ化合物および/またはオキセタン化合物(IV)を含有することができる。
上記エポキシ化合物および/またはオキセタン化合物(IV)は芳香環を有さないことが好ましく、分子中に架橋性シリル基を有することが好ましい。
本願の硬化性組成物は、さらに、ラジカル重合性を有する炭素−炭素二重結合を有する化合物を含有することができる。
本願の硬化性組成物は、ラジカル重合性を有する炭素−炭素二重結合を有する化合物を含有することができる。
上記ビニル系重合体(V)は架橋性アクリロイル基を平均して少なくとも一個、末端に有することが好ましい。
上記ビニル系重合体(V)の架橋性アクリロイル基は一般式(3)で表されることが好ましい。
−OC(O)C(R)=CH (3)
(式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
ビニル系重合体(V)の分子量分布は1.8未満であることが好ましい。
ビニル系重合体(V)の主鎖は、(メタ)アクリル系重合体であることが好ましく、アクリル系重合体であることがより好ましく、アクリル酸エステル系重合体であることがさらに好ましい。また、ビニル系重合体(V)の主鎖がリビングラジカル重合法により製造されたものであることが好ましく、原子移動ラジカル重合法により製造されたものであることがさらに好ましい。
ビニル系重合体(V)の数平均分子量は3000以上であることが好ましい。
本願の硬化性組成物は、さらに、分子量1000以下のトリアルコキシシラン化合物あるいはテトラアルコキシシラン化合物を含有することができる。
本願の硬化性組成物には、さらに、錫系化合物を含有することができる。
本願発明は、上記の硬化性組成物を活性エネルギー線を照射して得られる硬化物である。
本願の硬化性組成物は、粘・接着性組成物に使用することができる。
本願の硬化性組成物からなる粘・接着性組成物は、シーラント、接着剤、粘着剤、ポッティング剤、コーティング剤に好適である。
本発明の硬化性組成物は、十分な作業時間を確保しながら、必要時には速硬化させることが可能で、硬化物の耐熱性、耐油性、耐候性、機械物性、接着性等に優れているという効果を有する。
以下に本発明の硬化性組成物について詳述する。
<<ビニル系重合体(I)について>>
<主鎖>
本発明者らは、これまでに様々な架橋性官能基を重合体末端に有するビニル系重合体、その製造法、硬化性組成物、及び用途に関して数々の発明を行ってきた(特開平11−080249、特開平11−080250、特開平11−005815、特開平11−116617、特開平11−116606、特開平11−080571、特開平11−080570、特開平11−130931、特開平11−100433、特開平11−116763、特開平9−272714号、特開平9−272715号等を参照)。本発明のビニル系重合体(I)としては特に限定されないが、上に例示した発明で開示される重合体をすべて好適に用いることができる。
本発明のビニル系重合体の主鎖を構成するビニル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、
(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−tert−ブチル、(メタ)アクリル酸−n−ペンチル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−n−ヘプチル、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸−3−メトキシブチル、(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸パーフルオロエチルメチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸パーフルオロエチルパーフルオロブチルメチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2,2−ジパーフルオロメチルエチル、(メタ)アクリル酸パーフルオロメチルパーフルオロエチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロヘキシルメチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルメチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルメチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等の(メタ)アクリル系モノマー;スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等の芳香族ビニル系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニル系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のアクリロニトリル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン、イソブチレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。これらは、単独で用いても良いし、複数を共重合させても構わない。
ビニル系重合体の主鎖が、(メタ)アクリル系モノマー、イソブチレン系モノマーから選ばれる少なくとも1つのモノマーを主として重合して製造されるものであることが好ましい。ここで「主として」とは、ビニル系重合体を構成するモノマー単位のうち30モル%以上、好ましくは50モル%以上が、上記モノマーであることを意味する。
なかでも、生成物の物性等から、(メタ)アクリル酸系モノマーが好ましい。より好ましくは、アクリル酸エステルモノマー及びメタクリル酸エステルモノマーであり、特に好ましくはアクリル酸エステルモノマーである。一般建築用等の用途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候性、耐熱性等の物性が要求される点から、アクリル酸ブチルモノマーが更に好ましい。一方、自動車用途等の耐油性等が要求される用途においては、アクリル酸エチルを主とした共重合体が更に好ましい。このアクリル酸エチルを主とした重合体は耐油性に優れるが低温特性(耐寒性)にやや劣る傾向があるため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル酸ブチルに置き換えることも可能である。ただし、アクリル酸ブチルの比率を増やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途によってはその比率を80モル%以下にするのが好ましく、60モル%以下にするのがより好ましく、40モル%以下にするのが更に好ましく、30モル%以下にするのがもっと好ましい。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸2−メトキシエチルやアクリル酸2−エトキシエチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は60モル%以下にするのが好ましく、40%以下にするのが更に好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸ブチル/アクリル酸2−メトキシエチル(モル比で40〜50/20〜30/20〜30)の共重合体が挙げられる。また、本発明の組成物を粘着剤用途に使用する場合には、アクリル酸2−エチルヘキシル/アクリル酸ブチルを主とする重合体が好ましい。
なお、本発明のビニル系重合体にエポキシ樹脂/オキセタン樹脂を添加する場合において、その硬化性組成物を硬化させた時の硬化物が透明であるものを得るためには、該ビニル系重合体としてはエポキシ樹脂/オキセタン樹脂と相溶するものが好ましく、アクリル酸ブチルエステルホモポリマーよりも極性が高い重合体または共重合体が好適であり、該ビニル系重合体の主鎖が一般式(ア)で表される繰り返し単位構造を有する重合体または共重合体であることがより好ましい。
−[CH−CR(COOR’)]− (ア)
(式中、Rは水素、又はメチル基、R’は、同一若しくは異なって、アルコキシアルキル基、または炭素数1〜3のアルキル基である。)
アクリル酸ブチルエステルホモポリマーよりも極性が高い重合体または共重合体には、特に限定はないが、アクリル酸ブチルと、アクリル酸ブチルよりも極性が高いモノマーとの共重合体などが挙げられる。ここで、アクリル酸ブチルよりも極性が高いモノマーとしては、例えば、アクリル酸エチル、アクリル酸2−メトキシエチルなどが挙げられる。例えば、アクリル酸エチル/アクリル酸ブチル/アクリル酸2−メトキシエチル(モル比で40〜50/20〜30/20〜30)の共重合体が各種エポキシ樹脂と相溶し易く、透明な硬化物を得易いため、好適である。
他のポリマー、例えば、変成シリコーン樹脂(架橋性シリル基を有するオキシアルキレン重合体)との相溶性を向上させるためにステアリル基やラウリル基等の長鎖のアルキル基を持ったモノマー等を共重合させても良い。特に限定はされないが、例えば、アクリル酸ステアリルやアクリル酸ラウリルを5〜30モル%共重合することで変成シリコーン樹脂との相溶性が非常に良好になる。それぞれのポリマーの分子量によって相溶性が変わるため、この共重合させるモノマーの比率はそれに応じて選択することが好ましい。また、その際には、ブロック共重合させても構わない。少量で効果を発現する場合がある。
官能性シリル基を持ったビニル系重合体を含む硬化性組成物は、貯蔵によりその硬化性が遅くなることが、つまり貯蔵安定性が悪くなることがある。例えば、アクリル酸メチルを共重合することにより、そのような減少を抑制することが可能になる場合がある。また硬化物の強度を向上させたい場合に用いても構わない。この場合にも、共重合させるモノマーの比率は分子量に応じて選択しても、並びに/又はブロック共重合させても構わない。
本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。
本発明のビニル系重合体の分子量分布、すなわち、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、特に限定されない。なお、分子量分布が1.8未満、特に1.3以下が作業性の点から好ましい。本発明でのGPC測定においては、通常、移動相としてクロロホルムを用い、測定はポリスチレンゲルカラムにておこない、数平均分子量等はポリスチレン換算で求めることができる。
本発明におけるビニル系重合体の数平均分子量は特に制限はない。なお、ゲルパーミエーションクロマトグラフィーで測定した場合、500〜1,000,000、特に3,000〜50,000、更に好ましくは、10000以上が作業性、物性上の点から好ましい。また、当然ながら、分子量が小さい程、他の樹脂(各種重合体)と相溶し易く、かつ得られた硬化物は高モジュラス、低伸びの傾向を示し、逆に分子量が大きければその逆の傾向を示す。
<主鎖の合成法>
本発明における、ビニル系重合体の合成法は、限定はされず、フリーラジカル重合でも構わないが、制御ラジカル重合が好ましく、リビングラジカル重合がより好ましく、原子移動ラジカル重合が特に好ましい。以下にこれらについて説明する。なお、イソブチレン系重合体は、リビングカチオン重合が好ましい。
制御ラジカル重合
ラジカル重合法は、重合開始剤としてアゾ系化合物、過酸化物などを用いて、特定の官能基を有するモノマーとビニル系モノマーとを単に共重合させる「一般的なラジカル重合法」と、末端などの制御された位置に特定の官能基を導入することが可能な「制御ラジカル重合法」に分類できる。
「一般的なラジカル重合法」は簡便な方法であるが、この方法では特定の官能基を有するモノマーは確率的にしか重合体中に導入されないので、官能化率の高い重合体を得ようとした場合には、このモノマーをかなり大量に使う必要があり、逆に少量使用ではこの特定の官能基が導入されない重合体の割合が大きくなるという問題点がある。またフリーラジカル重合であるため、分子量分布が広く粘度の高い重合体しか得られないという問題点もある。
「制御ラジカル重合法」は、更に、特定の官能基を有する連鎖移動剤を用いて重合をおこなうことにより末端に官能基を有するビニル系重合体が得られる「連鎖移動剤法」と、重合生長末端が停止反応などを起こさずに生長することによりほぼ設計どおりの分子量の重合体が得られる「リビングラジカル重合法」とに分類することができる。
「連鎖移動剤法」は、官能化率の高い重合体を得ることが可能であるが、開始剤に対してかなり大量の特定の官能基を有する連鎖移動剤が必要であり、処理も含めて経済面で問題がある。また上記の「一般的なラジカル重合法」と同様、フリーラジカル重合であるため分子量分布が広く、粘度の高い重合体しか得られないという問題点もある。
これらの重合法とは異なり、「リビングラジカル重合法」は、重合速度が高く、ラジカル同士のカップリングなどによる停止反応が起こりやすいため制御の難しいとされるラジカル重合でありながら、停止反応が起こりにくく、分子量分布の狭い(Mw/Mnが1.1〜1.5程度)重合体が得られるとともに、モノマーと開始剤の仕込み比によって分子量は自由にコントロールすることができる。
従って「リビングラジカル重合法」は、分子量分布が狭く、粘度が低い重合体を得ることができる上に、特定の官能基を有するモノマーを重合体のほぼ任意の位置に導入することができるため、上記特定の官能基を有するビニル系重合体の製造方法としてはより好ましいものである。
なお、リビング重合とは狭義においては、末端が常に活性を持ち続けて分子鎖が生長していく重合のことをいうが、一般には、末端が不活性化されたものと活性化されたものが平衡状態にありながら生長していく擬リビング重合も含まれる。本発明における定義も後者である。
「リビングラジカル重合法」は近年様々なグループで積極的に研究がなされている。その例としては、たとえばジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)、1994年、116巻、7943頁に示されるようなコバルトポルフィリン錯体を用いるもの、マクロモレキュールズ(Macromolecules)、1994年、27巻、7228頁に示されるようなニトロキシド化合物などのラジカルキャッピング剤を用いるもの、有機ハロゲン化物等を開始剤とし遷移金属錯体を触媒とする「原子移動ラジカル重合」(Atom Transfer Radical Polymerization:ATRP)などがあげられる。
「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒としてビニル系モノマーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有するビニル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法としては例えばMatyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁、マクロモレキュールズ(Macromolecules)1995年、28巻、7901頁,サイエンス(Science)1996年、272巻、866頁、WO96/30421号公報,WO97/18247号公報、WO98/01480号公報,WO98/40415号公報、あるいはSawamotoら、マクロモレキュールズ(Macromolecules)1995年、28巻、1721頁、特開平9−208616号公報、特開平8−41117号公報などが挙げられる。
本発明において、これらのリビングラジカル重合のうちどの方法を使用するかは特に制約はないが、原子移動ラジカル重合法が好ましい。
以下にリビングラジカル重合について詳細に説明していくが、その前に、後に説明するビニル系重合体の製造に用いることができる制御ラジカル重合のうちの一つ、連鎖移動剤を用いた重合について説明する。連鎖移動剤(テロマー)を用いたラジカル重合としては、特に限定されないが、本発明に適した末端構造を有したビニル系重合体を得る方法としては、次の2つの方法が例示される。
特開平4−132706号公報に示されているようなハロゲン化炭化水素を連鎖移動剤として用いてハロゲン末端の重合体を得る方法と、特開昭61−271306号公報、特許2594402号公報、特開昭54−47782号公報に示されているような水酸基含有メルカプタンあるいは水酸基含有ポリスルフィド等を連鎖移動剤として用いて水酸基末端の重合体を得る方法である。
以下に、リビングラジカル重合について説明する。
そのうち、まず、ニトロキシド化合物などのラジカルキャッピング剤を用いる方法について説明する。この重合では一般に安定なニトロキシフリーラジカル(=N−O・)をラジカルキャッピング剤として用いる。このような化合物類としては、限定はされないが、2,2,6,6−置換−1−ピペリジニルオキシラジカルや2,2,5,5−置換−1−ピロリジニルオキシラジカル等、環状ヒドロキシアミンからのニトロキシフリーラジカルが好ましい。置換基としてはメチル基やエチル基等の炭素数4以下のアルキル基が適当である。具体的なニトロキシフリーラジカル化合物としては、限定はされないが、2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル(TEMPO)、2,2,6,6−テトラエチル−1−ピペリジニルオキシラジカル、2,2,6,6−テトラメチル−4−オキソ−1−ピペリジニルオキシラジカル、2,2,5,5−テトラメチル−1−ピロリジニルオキシラジカル、1,1,3,3−テトラメチル−2−イソインドリニルオキシラジカル、N,N−ジ−t−ブチルアミンオキシラジカル等が挙げられる。ニトロキシフリーラジカルの代わりに、ガルビノキシル(galvinoxyl)フリーラジカル等の安定なフリーラジカルを用いても構わない。
上記ラジカルキャッピング剤はラジカル発生剤と併用される。ラジカルキャッピング剤とラジカル発生剤との反応生成物が重合開始剤となって付加重合性モノマーの重合が進行すると考えられる。両者の併用割合は特に限定されるものではないが、ラジカルキャッピング剤1モルに対し、ラジカル発生剤0.1〜10モルが適当である。
ラジカル発生剤としては、種々の化合物を使用することができるが、重合温度条件下で、ラジカルを発生しうるパーオキシドが好ましい。このパーオキシドとしては、限定はされないが、ベンゾイルパーオキシド、ラウロイルパーオキシド等のジアシルパーオキシド類、ジクミルパーオキシド、ジ−t−ブチルパーオキシド等のジアルキルパーオキシド類、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート等のパーオキシカーボネート類、t−ブチルパーオキシオクトエート、t−ブチルパーオキシベンゾエート等のアルキルパーエステル類等がある。特にベンゾイルパーオキシドが好ましい。さらに、パーオキシドの代わりにアゾビスイソブチロニトリルのようなラジカル発生性アゾ化合物等のラジカル発生剤も使用しうる。
Macromolecules 1995,28,P.2993で報告されているように、ラジカルキャッピング剤とラジカル発生剤を併用する代わりに、下図のようなアルコキシアミン化合物を開始剤として用いても構わない。
Figure 2007029733
アルコキシアミン化合物を開始剤として用いる場合、それが上図で示されているような水酸基等の官能基を有するものを用いると、末端に官能基を有する重合体が得られる。これを本発明の方法に利用すると、末端に官能基を有する重合体が得られる。
上記のニトロキシド化合物などのラジカルキャッピング剤を用いる重合で用いられるモノマー、溶媒、重合温度等の重合条件は、限定されないが、次に説明する原子移動ラジカル重合について用いるものと同様で構わない。
原子移動ラジカル重合
次に、本発明のリビングラジカル重合としてより好ましい原子移動ラジカル重合法について説明する。
この原子移動ラジカル重合では、有機ハロゲン化物、特に反応性の高い炭素−ハロゲン結合を有する有機ハロゲン化物(例えば、α位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物)、あるいはハロゲン化スルホニル化合物等が開始剤として用いられる。
具体的に例示するならば、
−CHX、C−C(H)(X)CH、C−C(X)(CH
(ただし、上の化学式中、Cはフェニル基、Xは塩素、臭素、またはヨウ素)
−C(H)(X)−CO、R−C(CH)(X)−CO、R−C(H)(X)−C(O)R、R−C(CH)(X)−C(O)R
(式中、R、Rは水素原子または炭素数1〜20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)
−C−SO
(式中、Rは水素原子または炭素数1〜20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)
等が挙げられる。
原子移動ラジカル重合の開始剤として、重合を開始する官能基以外の官能基を有する有機ハロゲン化物又はハロゲン化スルホニル化合物を用いることもできる。このような場合、一方の主鎖末端に官能基を、他方の主鎖末端に原子移動ラジカル重合の生長末端構造を有するビニル系重合体が製造される。このような官能基としては、アルケニル基、架橋性シリル基、ヒドロキシル基、エポキシ基、アミノ基、アミド基等が挙げられる。
アルケニル基を有する有機ハロゲン化物としては限定されず、例えば、一般式(2)に示す構造を有するものが例示される。
C(X)−R−R−C(R)=CH (2)
(式中、Rは水素、またはメチル基、R、Rは水素、または、炭素数1〜20の1価のアルキル基、アリール基、またはアラルキル基、または他端において相互に連結したもの、Rは、−C(O)O−(エステル基)、−C(O)−(ケト基)、またはo−,m−,p−フェニレン基、Rは直接結合、または炭素数1〜20の2価の有機基で1個以上のエーテル結合を含んでいても良い、Xは塩素、臭素、またはヨウ素)
置換基R、Rの具体例としては、水素、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。RとRは他端において連結して環状骨格を形成していてもよい。
一般式(2)で示される、アルケニル基を有する有機ハロゲン化物の具体例としては、
XCHC(O)O(CHCH=CH、HCC(H)(X)C(O)O(CHCH=CH、(HC)C(X)C(O)O(CHCH=CH、CHCHC(H)(X)C(O)O(CHCH=CH
Figure 2007029733
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0〜20の整数)
XCHC(O)O(CHO(CHCH=CH、HCC(H)(X)C(O)O(CHO(CHCH=CH、(HC)C(X)C(O)O(CHO(CHCH=CH、CHCHC(H)(X)C(O)O(CHO(CHCH=CH
Figure 2007029733
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH−C−(CH−CH=CH、o,m,p−CHC(H)(X)−C−(CH−CH=CH、o,m,p−CHCHC(H)(X)−C−(CH−CH=CH
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0〜20の整数)
o,m,p−XCH−C−(CH−O−(CH−CH=CH、o,m,p−CHC(H)(X)−C−(CH−O−(CH−CH=CH、o,m,p−CHCHC(H)(X)−C−(CH−O−(CHCH=CH
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH−C−O−(CH−CH=CH、o,m,p−CHC(H)(X)−C−O−(CH−CH=CH、o,m,p−CHCHC(H)(X)−C−O−(CH−CH=CH
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0〜20の整数)
o,m,p−XCH−C−O−(CH−O−(CH−CH=CH、o,m,p−CHC(H)(X)−C−O−(CH−O−(CH−CH=CH、o,m,p−CHCHC(H)(X)−C−O−(CH−O−(CH−CH=CH
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは1〜20の整数、mは0〜20の整数)
アルケニル基を有する有機ハロゲン化物としてはさらに一般式(3)で示される化合物が挙げられる。
C=C(R)−R−C(R)(X)−R10−R (3)
(式中、R、R、R、R、Xは上記に同じ、R10は、直接結合、−C(O)O−(エステル基)、−C(O)−(ケト基)、または、o−,m−,p−フェニレン基を表す)
は直接結合、または炭素数1〜20の2価の有機基(1個以上のエーテル結合を含んでいても良い)であるが、直接結合である場合は、ハロゲンの結合している炭素にビニル基が結合しており、ハロゲン化アリル化物である。この場合は、隣接ビニル基によって炭素−ハロゲン結合が活性化されているので、R10としてC(O)O基やフェニレン基等を有する必要は必ずしもなく、直接結合であってもよい。Rが直接結合でない場合は、炭素−ハロゲン結合を活性化するために、R10としてはC(O)O基、C(O)基、フェニレン基が好ましい。
一般式(3)の化合物を具体的に例示するならば、
CH=CHCHX、CH=C(CH)CHX、CH=CHC(H)(X)CH、CH=C(CH)C(H)(X)CH、CH=CHC(X)(CH、CH=CHC(H)(X)C、CH=CHC(H)(X)CH(CH、CH=CHC(H)(X)C、CH=CHC(H)(X)CH、CH=CHCHC(H)(X)−COR、CH=CH(CHC(H)(X)−COR、CH=CH(CHC(H)(X)−COR、CH=CH(CHC(H)(X)−COR、CH=CHCHC(H)(X)−C、CH=CH(CHC(H)(X)−C、CH=CH(CHC(H)(X)−C
(上記の各式において、Xは塩素、臭素、またはヨウ素、Rは炭素数1〜20のアルキル基、アリール基、アラルキル基)
等を挙げることができる。
アルケニル基を有するハロゲン化スルホニル化合物の具体例を挙げるならば、
o−,m−,p−CH=CH−(CH−C−SOX、o−,m−,p−CH=CH−(CH−O−C−SOX、
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0〜20の整数)
等である。
上記架橋性シリル基を有する有機ハロゲン化物としては特に限定されず、例えば一般式(4)に示す構造を有するものが例示される。
C(X)−R−R−C(H)(R)CH−[Si(R112−b(Y)O]−Si(R123−a(Y) (4)
(式中、R、R、R、R、R、Xは上記に同じ、R11、R12は、いずれも炭素数1〜20のアルキル基、アリール基、アラルキル基、または(R’)SiO−(R’は炭素数1〜20の1価の炭化水素基であって、3個のR’は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、R11またはR12が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0,1,2,または3を、また、bは0,1,または2を示す。mは0〜19の整数である。ただし、a+mb≧1であることを満足するものとする)
一般式(4)の化合物を具体的に例示するならば、
XCHC(O)O(CHSi(OCH、CHC(H)(X)C(O)O(CHSi(OCH、(CHC(X)C(O)O(CHSi(OCH、XCHC(O)O(CHSi(CH)(OCH、CHC(H)(X)C(O)O(CHSi(CH)(OCH、(CHC(X)C(O)O(CHSi(CH)(OCH
(上記の各式において、Xは塩素、臭素、ヨウ素、nは0〜20の整数、)
XCHC(O)O(CHO(CHSi(OCH、HCC(H)(X)C(O)O(CHO(CHSi(OCH、(HC)C(X)C(O)O(CHO(CHSi(OCH、CHCHC(H)(X)C(O)O(CHO(CHSi(OCH、XCHC(O)O(CHO(CHSi(CH)(OCH、HCC(H)(X)C(O)O(CHO(CH−Si(CH)(OCH、(HC)C(X)C(O)O(CHO(CH−Si(CH)(OCH、CHCHC(H)(X)C(O)O(CHO(CH−Si(CH)(OCH
(上記の各式において、Xは塩素、臭素、ヨウ素、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH−C−(CHSi(OCH、o,m,p−CHC(H)(X)−C−(CHSi(OCH、o,m,p−CHCHC(H)(X)−C−(CHSi(OCH、o,m,p−XCH−C−(CHSi(OCH、o,m,p−CHC(H)(X)−C−(CHSi(OCH、o,m,p−CHCHC(H)(X)−C−(CHSi(OCH、o,m,p−XCH−C−(CH−O−(CHSi(OCH、o,m,p−CHC(H)(X)−C−(CH−O−(CHSi(OCH、o,m,p−CHCHC(H)(X)−C−(CH−O−(CHSi(OCH、o,m,p−XCH−C−O−(CHSi(OCH、o,m,p−CHC(H)(X)−C−O−(CHSi(OCH、o,m,p−CHCHC(H)(X)−C−O−(CH−Si(OCH、o,m,p−XCH−C−O−(CH−O−(CH−Si(OCH、o,m,p−CHC(H)(X)−C−O−(CH−O−(CHSi(OCH、o,m,p−CHCHC(H)(X)−C−O−(CH−O−(CHSi(OCH
(上記の各式において、Xは塩素、臭素、またはヨウ素)
等が挙げられる。
上記架橋性シリル基を有する有機ハロゲン化物としてはさらに、一般式(5)で示される構造を有するものが例示される。
(R123−a(Y)Si−[OSi(R112−b(Y)−CH−C(H)(R)−R−C(R)(X)−R10−R (5)
(式中、R、R、R、R、R10、R11、R12、a、b、m、X、Yは上記に同じ)
このような化合物を具体的に例示するならば、
(CHO)SiCHCHC(H)(X)C、(CHO)(CH)SiCHCHC(H)(X)C、(CHO)Si(CHC(H)(X)−COR、(CHO)(CH)Si(CHC(H)(X)−COR、(CHO)Si(CHC(H)(X)−COR、(CHO)(CH)Si(CHC(H)(X)−COR、(CHO)Si(CHC(H)(X)−COR、(CHO)(CH)Si(CHC(H)(X)−COR、(CHO)Si(CHC(H)(X)−COR、(CHO)(CH)Si(CHC(H)(X)−COR、(CHO)Si(CHC(H)(X)−C、(CHO)(CH)Si(CHC(H)(X)−C、(CHO)Si(CHC(H)(X)−C、(CHO)(CH)Si(CHC(H)(X)−C
(上記の各式において、Xは塩素、臭素、またはヨウ素、Rは炭素数1〜20のアルキル基、アリール基、アラルキル基)
等が挙げられる。
上記ヒドロキシル基を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物としては特に限定されず、下記のようなものが例示される。
HO−(CH−OC(O)C(H)(R)(X)
(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
上記アミノ基を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物としては特に限定されず、下記のようなものが例示される。
N−(CH−OC(O)C(H)(R)(X)
(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
上記エポキシ基を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物としては特に限定されず、下記のようなものが例示される。
Figure 2007029733
(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
生長末端構造を1分子内に2つ以上有する重合体を得るためには、2つ以上の開始点を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤として用いるのが好ましい。具体的に例示するならば、
Figure 2007029733
Figure 2007029733
(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
等が挙げられる。
この重合において用いられるビニル系モノマーとしては特に制約はなく、既に例示したものをすべて好適に用いることができる。
重合触媒として用いられる遷移金属錯体としては特に限定されないが、好ましくは周期律表第7族、8族、9族、10族、または11族元素を中心金属とする金属錯体である。更に好ましいものとして、0価の銅、1価の銅、2価のルテニウム、2価の鉄又は2価のニッケルの錯体が挙げられる。なかでも、銅の錯体が好ましい。1価の銅化合物を具体的に例示するならば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅等である。銅化合物を用いる場合、触媒活性を高めるために2,2′−ビピリジル及びその誘導体、1,10−フェナントロリン及びその誘導体、テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチルトリス(2−アミノエチル)アミン等のポリアミン等の配位子が添加される。好ましい配位子は、含窒素化合物であり、より好ましい配位子は、キレート型含窒素化合物であり、さらに好ましい配位子は、N,N,N’,N”,N”−ペンタメチルジエチレントリアミンである。また、2価の塩化ルテニウムのトリストリフェニルホスフィン錯体(RuCl(PPh)も触媒として好適である。ルテニウム化合物を触媒として用いる場合は、活性化剤としてアルミニウムアルコキシド類が添加される。更に、2価の鉄のビストリフェニルホスフィン錯体(FeCl(PPh)、2価のニッケルのビストリフェニルホスフィン錯体(NiCl(PPh)、及び、2価のニッケルのビストリブチルホスフィン錯体(NiBr(PBu)も、触媒として好適である。
重合は無溶剤または各種の溶剤中で行なうことができる。溶剤の種類としては、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、メタノール、エタノール、プロパノール、イソプロパノール、n−ブチルアルコール、tert−ブチルアルコール等のアルコール系溶媒、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒等が挙げられ、単独または2種以上を混合して用いることができる。
また、限定はされないが、重合は0℃〜200℃の範囲で行うことができ、好ましくは50〜150℃である。
本発明の原子移動ラジカル重合には、いわゆるリバース原子移動ラジカル重合も含まれる。リバース原子移動ラジカル重合とは、通常の原子移動ラジカル重合触媒がラジカルを発生させた時の高酸化状態、例えば、Cu(I)を触媒として用いた時のCu(II’)に対し、過酸化物等の一般的なラジカル開始剤を作用させ、その結果として原子移動ラジカル重合と同様の平衡状態を生み出す方法である(Macromolecules 1999,32,2872参照)。
<官能基>
架橋性シリル基の数
ビニル系重合体の架橋性シリル基の数は、特に限定されないが、組成物の硬化性、及び硬化物の物性の観点から、分子中に平均して1個以上有することが好ましく、より好ましくは1.2個以上3.5個以下、さらに好ましくは1.4個以上2個以下である。
架橋性シリル基の位置
本発明のビニル系重合体(I)が有する架橋性シリル基は、分子末端に存在する。分子末端に存在することにより、ゴム弾性に大きな影響を与える架橋点間分子量が大きくとれるため、硬化性組成物を硬化させてなる硬化物に良好なゴム的な性質を付与することができる。架橋性シリル基は、分子末端以外にも存在しても良いが、より好ましくは、全ての架橋性官能基を分子鎖末端に有するものである。
上記架橋性シリル基を分子鎖末端に少なくとも1個有するビニル系重合体、中でも(メタ)アクリル系重合体を製造する方法は、特公平3−14068号公報、特公平4−55444号公報、特開平6−211922号公報等に開示されている。しかしながらこれらの方法は上記「連鎖移動剤法」を用いたフリーラジカル重合法であるので、得られる重合体は、架橋性シリル基を比較的高い割合で分子鎖末端に有する一方で、Mw/Mnで表される分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低いビニル系重合体であって、高い割合で分子鎖末端に架橋性シリル基を有するビニル系重合体を得る場合には、上記「リビングラジカル重合法」を用いることが好ましいが、分子量分布の狭い重合体に特定するものではない。
以下にこれらの官能基について説明する。
架橋性シリル基
本発明の架橋性シリル基としては、一般式(1);
−[Si(R2−b(Y)O]−Si(R3−a(Y) (1)
{式中、R、Rは、いずれも炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R’)SiO−(R’は炭素数1〜20の1価の炭化水素基であって、3個のR’は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、RまたはRが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0,1,2,または3を、また、bは0,1,または2を示す。mは0〜19の整数である。ただし、a+mb≧1であることを満足するものとする。}
で表される基があげられる。
加水分解性基としては、たとえば、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などの一般に使用されている基があげられる。これらのうちでは、アルコキシ基、アミド基、アミノオキシ基が好ましいが、加水分解性がマイルドで取り扱い易いという点から、アルコキシ基がとくに好ましい。アルコキシ基の中では炭素数の少ないものの方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基…の順に反応性が低くなり、目的や用途に応じて選択できる。
加水分解性基や水酸基は、1個のケイ素原子に1〜3個の範囲で結合することができ、(a+Σb)は1〜5個の範囲が好ましい。加水分解性基や水酸基が架橋性シリル基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。架橋性シリル基を形成するケイ素原子は1個以上であるが、シロキサン結合などにより連結されたケイ素原子の場合には、20個以下であることが好ましい。とくに、一般式(6)
−Si(R3−a(Y) (6)
(式中、R、Yは前記と同じ、aは1〜3の整数)で表される架橋性シリル基が、入手が容易であるので好ましい。
なお、特に限定はされないが、硬化性を考慮するとaは2以上が好ましい。
このような架橋性シリル基を有するビニル系重合体は珪素原子1つあたり2つの加水分解性基が結合してなる加水分解性珪素基を有する重合体が用いられることが多いが、接着剤の用途等や低温で使用する場合等、特に非常に速い硬化速度を必要とする場合、その硬化速度は充分ではなく、また硬化後の柔軟性を出したい場合には、架橋密度を低下させる必要があり、そのため架橋密度が充分でないためにべたつき(表面タック)があることもあった。その際には、aが3のもの(例えばトリメトキシ官能基)であるのが好ましい。
また、aが3のもの(例えばトリメトキシ官能基)は2のもの(例えばジメトキシ官能基)よりも硬化が速いが、貯蔵安定性や力学物性(伸び等)に関しては2のものの方が優れている場合がある。硬化性と物性バランスをとるために、2のもの(例えばジメトキシ官能基)と3のもの(例えばトリメトキシ官能基)を併用してもよい。
例えば、Yが同一の場合、aが多いほどYの反応性が高くなるため、Yとaを種々選択することにより硬化性や硬化物の機械物性等を制御することが可能であり、目的や用途に応じて選択できる。また、aが1のものは鎖延長剤として架橋性シリル基を有する重合体、具体的にはポリシロキサン系、ポリオキシプロピレン系、ポリイソブチレン系からなる少なくとも1種の重合体と混合して使用できる。硬化前に低粘度、硬化後に高い破断時伸び性、低ブリード性、表面低汚染性、優れた塗料密着性を有する組成物とすることが可能である。
架橋性シリル基の導入法
以下に、本発明のビニル系重合体への架橋性シリル基の導入法について説明するが、これに限定されるものではない。
まず、末端官能基変換により架橋性シリル基、アルケニル基、水酸基を導入する方法について記述する。これらの官能基はお互いに前駆体となりうるので、架橋性シリル基から溯る順序で記述していく。
架橋性シリル基を少なくとも1個有するビニル系重合体の合成方法としては、
(A)アルケニル基を少なくとも1個有するビニル系重合体に架橋性シリル基を有するヒドロシラン化合物を、ヒドロシリル化触媒存在下に付加させる方法
(B)水酸基を少なくとも1個有するビニル系重合体に一分子中に架橋性シリル基とイソシアネート基を有する化合物のような、水酸基と反応し得る基を有する化合物を反応させる方法
(C)ラジカル重合によりビニル系重合体を合成する際に、1分子中に重合性のアルケニル基と架橋性シリル基を併せ持つ化合物を反応させる方法
(D)ラジカル重合によりビニル系重合体を合成する際に、架橋性シリル基を有する連鎖移動剤を用いる方法
(E)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に1分子中に架橋性シリル基と安定なカルバニオンを有する化合物を反応させる方法;などが挙げられる。
(A)の方法で用いるアルケニル基を少なくとも1個有するビニル系重合体は種々の方法で得られる。以下に合成方法を例示するが、これらに限定されるわけではない。
(A−a)ラジカル重合によりビニル系重合体を合成する際に、例えば下記の一般式(9)に挙げられるような一分子中に重合性のアルケニル基と重合性の低いアルケニル基を併せ持つ化合物を第2のモノマーとして反応させる方法。
C=C(R14)−R15−R16−C(R17)=CH (9)
(式中、R14は水素またはメチル基を示し、R15は−C(O)O−、またはo−,m−,p−フェニレン基を示し、R16は直接結合、または炭素数1〜20の2価の有機基を示し、1個以上のエーテル結合を含んでいてもよい。R17は水素、または炭素数1〜20のアルキル基、炭素数6〜20のアリール基または炭素数7〜20のアラルキル基を示す)
なお、一分子中に重合性のアルケニル基と重合性の低いアルケニル基を併せ持つ化合物を反応させる時期に制限はないが、特にリビングラジカル重合で、ゴム的な性質を期待する場合には重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。
(A−b)リビングラジカル重合によりビニル系重合体を合成する際に、重合反応の終期あるいは所定のモノマーの反応終了後に、例えば1,5−ヘキサジエン、1,7−オクタジエン、1,9−デカジエンなどのような重合性の低いアルケニル基を少なくとも2個有する化合物を反応させる方法。
(A−c)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えばアリルトリブチル錫、アリルトリオクチル錫などの有機錫のようなアルケニル基を有する各種の有機金属化合物を反応させてハロゲンを置換する方法。
(A−d)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、一般式(10)に挙げられるようなアルケニル基を有する安定化カルバニオンを反応させてハロゲンを置換する方法。
(R18)(R19)−R20−C(R17)=CH (10)
(式中、R17は上記に同じ、R18、R19はともにカルバニオンCを安定化する電子吸引基であるか、または一方が前記電子吸引基で他方が水素または炭素数1〜10のアルキル基、またはフェニル基を示す。R20は直接結合、または炭素数1〜10の2価の有機基を示し、1個以上のエーテル結合を含んでいてもよい。Mはアルカリ金属イオン、または4級アンモニウムイオンを示す)
18、R19の電子吸引基としては、−COR、−C(O)Rおよび−CNの構造を有するものが特に好ましい。
(A−e)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエノレートアニオンを調製し、しかる後にハロゲンやアセチル基のような脱離基を有するアルケニル基含有化合物、アルケニル基を有するカルボニル化合物、アルケニル基を有するイソシアネート化合物、アルケニル基を有する酸ハロゲン化物等の、アルケニル基を有する求電子化合物と反応させる方法。
(A−f)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば一般式(11)あるいは(12)に示されるようなアルケニル基を有するオキシアニオンあるいはカルボキシレートアニオンを反応させてハロゲンを置換する方法。
C=C(R17)−R21−O (11)
(式中、R17、Mは上記に同じ。R21は炭素数1〜20の2価の有機基で1個以上のエーテル結合を含んでいてもよい)
C=C(R17)−R22−C(O)O (12)
(式中、R17、Mは上記に同じ。R22は直接結合、または炭素数1〜20の2価の有機基で1個以上のエーテル結合を含んでいてもよい)
などが挙げられる。
上述の反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体の合成法は、前述のような有機ハロゲン化物等を開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合法が挙げられるがこれらに限定されるわけではない。
またアルケニル基を少なくとも1個有するビニル系重合体は、水酸基を少なくとも1個有するビニル系重合体から得ることも可能であり、以下に例示する方法が利用できるがこれらに限定されるわけではない。水酸基を少なくとも1個有するビニル系重合体の水酸基に、
(A−g)ナトリウムメトキシドのような塩基を作用させ、塩化アリルのようなアルケニル基含有ハロゲン化物と反応させる方法。
(A−h)アリルイソシアネート等のアルケニル基含有イソシアネート化合物を反応させる方法。
(A−i)(メタ)アクリル酸クロリドのようなアルケニル基含有酸ハロゲン化物をピリジン等の塩基存在下に反応させる方法。
(A−j)アクリル酸等のアルケニル基含有カルボン酸を酸触媒の存在下に反応させる方法;等が挙げられる。
本発明では(A−a)(A−b)のようなアルケニル基を導入する方法にハロゲンが直接関与しない場合には、リビングラジカル重合法を用いてビニル系重合体を合成することが好ましい。制御がより容易である点から(A−b)の方法がさらに好ましい。また、(A−b)の場合、2つのアルケニル基が炭化水素基で結合された化合物を用いることにより、末端のシリル基から他のシリル基まで全て炭素−炭素結合と、炭素−ケイ素結合で形成された重合体を得ることができ、重合体及び硬化物の耐熱性、耐候性、耐薬品性が高まる。
反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲンを変換することによりアルケニル基を導入する場合は、反応性の高い炭素−ハロゲン結合を少なくとも1個有する有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤、遷移金属錯体を触媒としてビニル系モノマーをラジカル重合すること(原子移動ラジカル重合法)により得る、末端に反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体を用いるのが好ましい。制御がより容易である点から(A−f)の方法がさらに好ましい。
また、架橋性シリル基を有するヒドロシラン化合物としては特に制限はないが、代表的なものを示すと、一般式(13)で示される化合物が例示される。
H−[Si(R2−b(Y)O]−Si(R3−a(Y) (13)
{式中、R、Rは、いずれも炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R’)SiO−(R’は炭素数1〜20の1価の炭化水素基であって、3個のR’は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、RまたはRが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0,1,2,または3を、また、bは0,1,または2を示す。mは0〜19の整数である。ただし、a+mb≧1であることを満足するものとする。}
これらヒドロシラン化合物の中でも、特に一般式(14)
H−Si(R3−a(Y) (14)
(式中、R、Yは前記に同じ。aは1〜3の整数。)
で示される架橋性基を有する化合物が入手容易な点から好ましい。
上記の架橋性シリル基を有するヒドロシラン化合物をアルケニル基に付加させる際には、遷移金属触媒が通常用いられる。遷移金属触媒としては、例えば、白金単体、アルミナ、シリカ、カーボンブラック等の担体に白金固体を分散させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体、白金(0)−ジビニルテトラメチルジシロキサン錯体が挙げられる。白金化合物以外の触媒の例としては、RhCl(PPh,RhCl,RuCl,IrCl,FeCl,AlCl,PdCl・HO,NiCl,TiCl等が挙げられる。
(B)および(A−g)〜(A−j)の方法で用いる水酸基を少なくとも1個有するビニル系重合体の製造方法は以下のような方法が例示されるが、これらの方法に限定されるものではない。
(B−a)ラジカル重合によりビニル系重合体を合成する際に、例えば下記の一般式(15)に挙げられるような一分子中に重合性のアルケニル基と水酸基を併せ持つ化合物を第2のモノマーとして反応させる方法。
C=C(R14)−R15−R16−OH (15)
(式中、R14、R15、R16は上記に同じ)
なお、一分子中に重合性のアルケニル基と水酸基を併せ持つ化合物を反応させる時期に制限はないが、特にリビングラジカル重合で、ゴム的な性質を期待する場合には重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。
(B−b)リビングラジカル重合によりビニル系重合体を合成する際に、重合反応の終期あるいは所定のモノマーの反応終了後に、例えば10−ウンデセノール、5−ヘキセノール、アリルアルコールのようなアルケニルアルコールを反応させる方法。
(B−c)例えば特開平5−262808に示される水酸基含有ポリスルフィドのような水酸基含有連鎖移動剤を多量に用いてビニル系モノマーをラジカル重合させる方法。
(B−d)例えば特開平6−239912、特開平8−283310に示されるような過酸化水素あるいは水酸基含有開始剤を用いてビニル系モノマーをラジカル重合させる方法。
(B−e)例えば特開平6−116312に示されるようなアルコール類を過剰に用いてビニル系モノマーをラジカル重合させる方法。
(B−f)例えば特開平4−132706などに示されるような方法で、反応性の高い炭素−ハロゲン結合を少なくとも1個に有するビニル系重合体のハロゲンを加水分解あるいは水酸基含有化合物と反応させることにより、末端に水酸基を導入する方法。
(B−g)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、一般式(16)に挙げられるような水酸基を有する安定化カルバニオンを反応させてハロゲンを置換する方法。
(R18)(R19)−R20−OH (16)
(式中、R18、R19、R20、は上記に同じ)
18、R19の電子吸引基としては、−COR、−C(O)Rおよび−CNの構造を有するものが特に好ましい。
(B−h)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエノレートアニオンを調製し、しかる後にアルデヒド類、又はケトン類を反応させる方法。
(B−i)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば一般式(17)あるいは(18)に示されるような水酸基を有するオキシアニオンあるいはカルボキシレートアニオンを反応させてハロゲンを置換する方法。
HO−R21−O (17)
(式中、R21およびMは前記に同じ)
HO−R22−C(O)O (18)
(式中、R22およびMは前記に同じ)
(B−j)リビングラジカル重合によりビニル系重合体を合成する際に、重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして、一分子中に重合性の低いアルケニル基および水酸基を有する化合物を反応させる方法。
このような化合物としては特に限定されないが、一般式(19)に示される化合物等が挙げられる。
C=C(R14)−R21−OH (19)
(式中、R14およびR21は上述したものと同様である。)
上記一般式(19)に示される化合物としては特に限定されないが、入手が容易であるということから、10−ウンデセノール、5−ヘキセノール、アリルアルコールのようなアルケニルアルコールが好ましい。
等が挙げられる。
本発明では(B−a)〜(B−e)及び(B−j)のような水酸基を導入する方法にハロゲンが直接関与しない場合には、リビングラジカル重合法を用いてビニル系重合体を合成することが好ましい。制御がより容易である点から(B−b)の方法がさらに好ましい。
反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲンを変換することにより水酸基を導入する場合は、有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤、遷移金属錯体を触媒としてビニル系モノマーをラジカル重合すること(原子移動ラジカル重合法)により得る、末端に反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体を用いるのが好ましい。制御がより容易である点から(B−i)の方法がさらに好ましい。
また、一分子中に架橋性シリル基とイソシアネート基のような水酸基と反応し得る基を有する化合物としては、例えばγ−イソシアナートプロピルトリメトキシシラン、γ−イソシアナートプロピルメチルジメトキシシラン、γ−イソシアナートプロピルトリエトキシシラン等が挙げられ、必要により一般に知られているウレタン化反応の触媒を使用できる。
(C)の方法で用いる一分子中に重合性のアルケニル基と架橋性シリル基を併せ持つ化合物としては、例えばトリメトキシシリルプロピル(メタ)アクリレート、メチルジメトキシシリルプロピル(メタ)アクリレートなどのような、下記一般式(20)で示すものが挙げられる。
C=C(R14)−R15−R23−[Si(R2−b(Y)O]−Si(R3−a(Y) (20)
(式中、R、R、R14、R15、Y、a、b、mは上記に同じ。R23は、直接結合、または炭素数1〜20の2価の有機基で1個以上のエーテル結合を含んでいてもよい。)
一分子中に重合性のアルケニル基と架橋性シリル基を併せ持つ化合物を反応させる時期に特に制限はないが、特にリビングラジカル重合で、ゴム的な性質を期待する場合には重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。
(D)の連鎖移動剤法で用いられる、架橋性シリル基を有する連鎖移動剤としては例えば特公平3−14068、特公平4−55444に示される、架橋性シリル基を有するメルカプタン、架橋性シリル基を有するヒドロシランなどが挙げられる。
(E)の方法で用いられる、上述の反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体の合成法は、前述のような有機ハロゲン化物等を開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合法が挙げられるがこれらに限定されるわけではない。一分子中に架橋性シリル基と安定化カルバニオンを併せ持つ化合物としては一般式(21)で示すものが挙げられる。
(R18)(R19)−R24−C(H)(R25)−CH−[Si(R2−b(Y)O]−Si(R3−a(Y) (21)
(式中、R、R、R18、R19、Y、a、b、m、は前記に同じ。R24は直接結合、または炭素数1〜10の2価の有機基で1個以上のエーテル結合を含んでいてもよい、R25は水素、または炭素数1〜10のアルキル基、炭素数6〜10のアリール基または炭素数7〜10のアラルキル基を示す。)
18、R19の電子吸引基としては、−COR、−C(O)Rおよび−CNの構造を有するものが特に好ましい。
<複数のビニル系重合体の使用>
上記したビニル系重合体は一種のみ使用することもでき、2種以上のビニル系重合体を組み合わせて使用することもできる。一種のみ使用する場合は、分子量5,000〜50,000で架橋性シリル基の数が1.2〜3.5個のビニル重合体を使用することが好ましい。2種以上のビニル系重合体を組み合わせる場合は第一の重合体は分子量5,000〜50,000で架橋性シリル基の数が1.2〜3.5個のビニル重合体であって、第2の重合体は架橋性シリル基の数が少ない重合体とすると、高い破断時伸び性、低ブリード性、表面低汚染性、優れた塗料密着性を有する硬化物を得ることができる。また、第2の重合体の分子量をより小さく設定することにより、組成物の粘度を低下させることができる。低分子量成分となる重合体の好ましい分子量は10,000未満、さらには5,000未満であり、好ましい架橋性シリル基の数は1.2未満、さらには1以下である。また、さらに粘度を低下させることができるので分子量分布は1.8未満が好ましい。架橋性官能基を有し分子量分布が1.8以上のビニル系重合体と片末端に架橋性シリル基を有するビニル系重合体を添加すると低粘度化効果が顕著である。
このような低分子量で架橋性シリル基の数が少ない重合体として次のような製法で得られる片末端に架橋性シリル基を有するビニル系重合体を使用することが確実に架橋性シリル基を導入できるので好ましい。
片末端に架橋性シリル基を有するビニル系重合体は、重合体末端に架橋性シリル基を1分子あたりほぼ1個有するものである。前記のリビングラジカル重合法、特に、原子移動ラジカル重合法を用いることが、高い割合で分子鎖末端に架橋性シリル基を有し、分子量分布が1.8未満で分子量分布が狭く、粘度の低いビニル系重合体が得られるので好ましい。
片末端に架橋性シリル基を導入する方法については、例えば、下記に示す方法を使用することができる。なお、末端官能基変換により架橋性シリル基、アルケニル基、水酸基を導入する方法において、これらの官能基はお互いに前駆体となりうるので、架橋性シリル基を導入する方法から溯る順序で記述する。
(1)アルケニル基を分子鎖末端に1分子当たり1個有する重合体に、架橋性シリル基を有するヒドロシラン化合物を、ヒドロシリル化触媒存在下に付加させる方法、
(2)水酸基を分子鎖末端に1分子当たり1個有する重合体に、一分子中に架橋性シリル基とイソシアネート基のような水酸基と反応し得る基を併せ持つ化合物を反応させる方法、
(3)反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、一分子中に架橋性シリル基と安定なカルバニオンを有する化合物を反応させる方法、
などがあげられる。
(1)の方法で用いるアルケニル基を分子鎖末端に1分子当たり1個有する重合体は種々の方法で得られる。以下に製造方法を例示するが、これらに限定されるわけではない。
(1−1)反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、例えばアリルトリブチル錫、アリルトリオクチル錫などの有機錫のようなアルケニル基を有する各種の有機金属化合物を反応させてハロゲンを置換する方法。
(1−2)反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、一般式(10)にあげられるようなアルケニル基を有する安定化カルバニオンを反応させてハロゲンを置換する方法。
(R18)(R19)−R20−C(R17)=CH (10)
(式中、R18、R19はともにカルバニオンCを安定化する電子吸引基であるか、または一方が前記電子吸引基で他方が水素または炭素数1〜10のアルキル基、またはフェニル基を示す。R20は直接結合、または炭素数1〜10の2価の有機基を示し、1個以上のエーテル結合を含んでいてもよい。R17は水素、または炭素数1〜20のアルキル基、炭素数6〜20のアリール基または炭素数7〜20のアラルキル基を示す。Mはアルカリ金属イオン、または4級アンモニウムイオンを示す)
18、R19の電子吸引基としては、−COR、−C(O)Rおよび−CNの構造を有するものが特に好ましい。
(1−3)反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエノレートアニオンを調製し、しかる後にハロゲンやアセチル基のような脱離基を有するアルケニル基含有化合物、アルケニル基を有するカルボニル化合物、アルケニル基を有するイソシアネート化合物、アルケニル基を有する酸ハロゲン化物等の、アルケニル基を有する求電子化合物と反応させる方法。
(1−4)反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、例えば一般式(11)あるいは(12)に示されるようなアルケニル基を有するオキシアニオンあるいはカルボキシレートアニオンを反応させてハロゲンを置換する方法。
C=C(R17)−R21−O (11)
(式中、R17、Mは前記に同じ。R21は炭素数1〜20の2価の有機基で1個以上のエ−テル結合を含んでいてもよい)
C=C(R17)−R22−C(O)O (12)
(式中、R17、Mは前記に同じ。R22は直接結合、または炭素数1〜20の2価の有機基で1個以上のエーテル結合を含んでいてもよい)
などがあげられる。
上述の反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体の合成法は、前述のような有機ハロゲン化物等を開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合法が挙げられるがこれらに限定されるわけではない。
またアルケニル基を分子鎖末端に1分子当たり1個有する重合体は、水酸基を分子鎖末端に少なくとも1個有する重合体から得ることも可能であり、以下に例示する方法が利用できるがこれらに限定されるわけではない。
水酸基を分子鎖末端に少なくとも1個有する重合体の水酸基に、
(1−5)ナトリウムメトキシドのような塩基を作用させ、塩化アリルのようなアルケニル基含有ハロゲン化物と反応させる方法、
(1−6)アリルイソシアネート等のアルケニル基含有イソシアネート化合物を反応させる方法、
(1−7)(メタ)アクリル酸クロリドのようなアルケニル基含有酸ハロゲン化物をピリジン等の塩基存在下に反応させる方法、
(1−8)アクリル酸等のアルケニル基含有カルボン酸を酸触媒の存在下に反応させる方法、
などがあげられる。
反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体のハロゲンを変換することによりアルケニル基を導入する場合は、反応性の高い炭素−ハロゲン結合を1分子当たり1個有する有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤、遷移金属錯体を触媒としてビニル系単量体をラジカル重合(原子移動ラジカル重合)することにより得られる末端に反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体を用いることが好ましい。
また、架橋性シリル基を有するヒドロシラン化合物としては特に制限はないが、代表的なものを示すと、一般式(13)で示される化合物が例示される。
H−[Si(R 2−b)(Y)O]−Si(R 3−a)Y (13)
(式中、R、R、Y、a,b,mは前記に同じ。RまたはRが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。ただし、a+mb≧1であることを満足するものとする。)
これらヒドロシラン化合物の中でも、特に一般式(14)
H−Si(R 3−a)Y (14)
(式中、R、Y、aは前記に同じ)
で示される架橋性シリル基を有する化合物が入手容易な点から好ましい。
上記の架橋性シリル基を有するヒドロシラン化合物をアルケニル基に付加させる際には、遷移金属触媒が通常用いられる。遷移金属触媒としては、例えば、白金単体、アルミナ、シリカ、カーボンブラック等の担体に白金固体を分散させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体、白金(0)−ジビニルテトラメチルジシロキサン錯体が挙げられる。白金化合物以外の触媒の例としては、RhCl(PPh,RhCl,RuCl,IrCl,FeCl,AlCl,PdCl・HO,NiCl,TiCl等があげられる。
片末端に架橋性シリル基を有するビニル系重合体、好ましくは分子量分布が1.8未満の重合体、の使用量としては、ビニル系重合体100重量部に対し、モジュラス、伸びの点から5〜400重量部であることが好ましい。
2種以上のビニル系重合体を組み合わせて使用する第2の態様として、分子量分布が1.8以上のビニル重合体と分子量分布が1.8未満のビニル重合体を組み合わせて使用することもできる。分子量分布が1.8以上のビニル重合体は架橋性ケイ素基を有していてもいなくてもよいが架橋性ケイ素基を有するほうが耐候性や接着強度、破断時強度がより向上するので好ましい。また、組成物の硬化物の引裂き強度の改善が期待できる。第1の重合体として使用する、分子量分布が1.8以上のビニル系重合体や第2の重合体として使用する、分子量分布が1.8未満のビニル系重合体の主鎖としては、すでに述べたビニル系モノマーに起因する重合体を使用することができ、両重合体ともアクリル酸エステル系重合体が好ましい。
分子量分布が1.8以上のビニル系重合体は、通常のビニル重合の方法、例えば、ラジカル反応による溶液重合法により得ることができる。重合は、通常、前記の単量体およびラジカル開始剤や連鎖移動剤等を加えて50〜150℃で反応させることにより行われる。この場合一般的に分子量分布は1.8以上のものが得られる。
前記ラジカル開始剤の例としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、4,4’−アゾビス(4−シアノバレリック)アシッド、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)、アゾビスイソ酪酸アミジン塩酸塩、2,2’−アゾビス(2,4−ジメチルバレロニトリル)などのアゾ系開始剤、過酸化ベンゾイル、過酸化ジ−tert−ブチルなどの有機過酸化物系開始剤があげられるが、重合に使用する溶媒の影響を受けない、爆発等の危険性が低いなどの点から、アゾ系開始剤の使用が好ましい。
連鎖移動剤の例としては、n−ドデシルメルカプタン、tert−ドデシルメルカプタン、ラウリルメルカプタン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプタン類や含ハロゲン化合物等があげられる。
重合は溶剤中で行なってもよい。溶剤の例としては、エーテル類、炭化水素類、エステル類などの非反応性の溶剤が好ましい。
架橋性シリル基を導入する方法としては、例えば、重合性不飽和結合と架橋性シリル基とを併せ持つ化合物を(メタ)アクリル酸エステル単量体単位と共重合させる方法があげられる。重合性不飽和結合と架橋性シリル基とを併せ持つ化合物としては、一般式(26):
CH=C(R28)COOR30−[Si(R 2−b)(Y)O]Si(R 3−a)Y (26)
(式中、R28は前記に同じ。R30は炭素数1〜6の2価のアルキレン基を示す。R,R,Y,a,b,mは前記と同じ。)
または一般式(27):
CH=C(R28)−[Si(R 2−b)(Y)O]Si(R 3−a)Y (27)
(式中、R28,R,R,Y,a,b,mは前記と同じ。)
で表される単量体、例えば、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等のγ−メタクリロキシプロピルポリアルコキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン等のγ−アクリロキシプロピルポリアルコキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン等のビニルアルキルポリアルコキシシランなどがあげられる。また、メルカプト基と架橋性シリル基とを併せ持つ化合物を連鎖移動剤に用いると重合体末端に架橋性シリル基を導入することができる。そのような連鎖移動剤としては、例えば、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプタン類があげられる。
架橋性官能基を有し分子量分布が1.8以上のビニル系重合体は、GPC測定によるポリスチレン換算での数平均分子量が500〜100,000のものが取り扱いの容易さの点から好ましい。さらに1,500〜30,000のものが硬化物の耐候性、作業性が良好であることからより好ましい。

<<ポリイソブチレン系重合体>>
本発明の末端に架橋性シリル基を有するビニル系重合体(I)として、上述のようにポリイソブチレン系重合体も好ましい。
<主鎖>
ポリイソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、イソブチレンと共重合性を有する単量体単位をイソブチレン系重合体中の好ましくは50%以下(重量%、以下同じ)、さらに好ましくは30%以下、とくに好ましくは10%以下の範囲で含有してもよい。このような単量体成分としては、たとえば、炭素数4〜12のオレフィン、ビニルエーテル、芳香族ビニル化合物、ビニルシラン類、アリルシラン類などがあげられる。このような共重合体成分としては、たとえば1ーブテン、2ーブテン、2ーメチルー1ーブテン、3ーメチルー1ーブテン、ペンテン、4ーメチルー1ーペンテン、ヘキセン、ビニルシクロヘキセン、メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル、スチレン、αーメチルスチレン、ジメチルスチレン、モノクロロスチレン、ジクロロスチレン、βーピネン、インデン、ビニルトリクロロシラン、ビニルメチルジクロロシラン、ビニルジメチルクロロシラン、ビニルジメチルメトキシシラン、ビニルトリメチルシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジメチルシラン、1,3−ジビニルー1,1,3,3−テトラメチルジシロキサン、トリビニルメチルシラン、テトラビニルシラン、アリルトリクロロシラン、アリルメチルジクロロシラン、アリルジメチルクロロシラン、アリルジメチルメトキシシラン、アリルトリメチルシラン、ジアリルジクロロシラン、ジアリルジメトキシシラン、ジアリルジメチルシラン、γーメタクリロイルオキシプロピルトリメトキシシラン、γーメタクリロイルオキシプロピルメチルジメトキシシランなどがあげられる。
また、イソブチレンと共重合性を有する単量体として、ビニルシラン類やアリルシラン類を使用すると、ケイ素含有量が増加しシランカップリング剤として作用しうる基が多くなり、得られる組成物の接着性が向上する。水添ポリブタジエン系重合体や他の飽和炭化水素系重合体においても、上記イソブチレン系重合体のばあいと同様に、主成分となる単量体単位の他に他の単量体単位を含有させてもよい。
また、本発明のポリイソブチレン系重合体の主鎖には、本発明の目的が達成される範囲で、ブタジエン、イソプレンなどのポリエン化合物のような重合後二重結合の残るような単量体単位を少量、好ましくは10%以下、さらには5%以下、とくには1%以下の範囲で含有させてもよい。飽和炭化水素系重合体、好ましくはイソブチレン系重合体または水添ポリブタジエン系重合体の数平均分子量は500〜50,000程度であるのが好ましく、とくに1,000〜30,000程度の液状ないし流動性を有するものが取扱いやすいなどの点から好ましい。
<主鎖の合成法>
本発明のポリイソブチレン系重合体の主鎖を合成する方法は限定されないが、分子量や官能基導入の制御のしやすさからリビングカチオン重合が好ましい。
リビングカチオン重合
リビングカチオン重合とは、カチオン重合の問題点である、成長カルベニウムイオンの異性化や連鎖移動反応、停止反応を抑えた重合法で、生長末端が見かけ上失活することなく、重合が進行していく重合のことである。見かけ上というのは、上述したリビングラジカル重合と同様に、末端が不活性化されたものと活性化されたものが平衡状態にありながら生長していくものも含まれる。リビングカチオン重合の報告例としては、東村ら(Macromolecules,17,265,1984)のヨウ化水素とヨウ素を組み合わせた開始剤を用いてビニルエーテルを重合したもの、ケネディら(特開昭62−48704、特開昭64−62308)の、有機カルボン酸やエステル類あるいはエーテル類を開始剤として、ルイス酸と組み合わせて、イソブチレンなどのオレフィン単量体を重合したもの等が挙げられる。
リビングカチオン重合は、限定はされないが、下記一般式32で表わされる化合物の存在下に、カチオン重合性単量体を重合させるものである。
(CR3839X)n40 (32)
(式中Xはハロゲン原子、炭素数1〜6のアルコキシ基またはアシロキシ基から選ばれる置換基、R38、R39はそれぞれ水素原子または炭素数1〜6の1価炭化水素基でR38、R39は同一であっても異なっていても良く、R40は多価芳香族炭化水素基または多価脂肪族炭化水素基であり、nは1〜6の自然数を示す。)
リビングカチオン重合のモノマー
本発明のリビングカチオン重合に用いられるモノマーは特に限定されないが、上記の重合体(II)の主鎖を構成するモノマーを用いることができ、好ましくはイソブチレンである。
リビングカチオン重合の開始剤
上記一般式32で表わされる化合物は開始剤となるものでルイス酸等の存在下炭素陽イオンを生成し、カチオン重合の開始点になると考えられる。本発明で用いられる一般式32の化合物の例としては、次のような化合物等が挙げられる。
(1−クロル−1−メチルエチル)ベンゼン
C(CHCl
1,4−ビス(1−クロル−1−メチルエチル)ベンゼン
1,4−Cl(CHCCC(CHCl
1,3−ビス(1−クロル−1−メチルエチル)ベンゼン
1,3−Cl(CHCCC(CHCl
1,3,5−トリス(1−クロル−1−メチルエチル)ベンゼン
1,3,5−(ClC(CH
1,3−ビス(1−クロル−1−メチルエチル)−5−(tert−ブチル)ベンゼン 1,3−(C(CHCl)-5−(C(CH)C
これらの中でも特に好ましいのはビス(1−クロル−1−メチルエチル)ベンゼン[C(C(CHCl)]である[なおビス(1−クロル−1−メチルエチル)ベンゼンは、ビス(α−クロロイソプロピル)ベンゼン、ビス(2−クロロ−2−プロピル)ベンゼンあるいはジクミルクロライドとも呼ばれる]。これは2官能開始剤であり、これから重合を開始すると両末端が成長末端となる重合体が得られる。
リビングカチオン重合の触媒
リビングカチオン重合に際し、さらにルイス酸触媒を共存させることもできる。このようなルイス酸としてはカチオン重合に使用できるものであれば良く、TiCl、TiBr、BCl、BF、BF・OEt、SnCl、SbCl、SbF、WCl、TaCl、VCl、FeCl、ZnBr、AlCl、AlBr等の金属ハロゲン化物;EtAlCl、EtAlCl等の有機金属ハロゲン化物を好適に使用することができる。中でも触媒としての能力、工業的な入手の容易さを考えた場合、TiCl、BCl、SnClが好ましい。ルイス酸の使用量は、特に限定されないが、使用する単量体の重合特性あるいは重合濃度等を鑑みて設定することができる。通常は一般式32で表される化合物に対して0.1〜100モル当量使用することができ、好ましくは1〜60モル当量の範囲である。
リビングカチオン重合の電子供与体成分
リビングカチオン重合に際しては、さらに必要に応じて電子供与体成分を共存させることもできる。この電子供与体成分は、カチオン重合に際して、成長炭素カチオンを安定化させる効果があるものと考えられており、電子供与体の添加によって分子量分布の狭い構造が制御された重合体が生成する。使用可能な電子供与体成分としては特に限定されないが、例えば、ピリジン類、アミン類、アミド類、スルホキシド類、エステル類、または金属原子に結合した酸素原子を有する金属化合物等を挙げることができる。
リビングカチオン重合の重合条件
リビングカチオン重合は必要に応じて溶剤中で行うことができ、このような溶剤としてはカチオン重合を本質的に阻害しなければ特に制約なくどれでも使用することができる。具体的には、塩化メチル、ジクロロメタン、クロロホルム、塩化エチル、ジクロロエタン、n−プロピルクロライド、n−ブチルクロライド、クロロベンゼン等のハロゲン化炭化水素;ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン等のアルキルベンゼン類;エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の直鎖式脂肪族炭化水素類;2−メチルプロパン、2−メチルブタン、2,3,3−トリメチルペンタン、2,2,5−トリメチルヘキサン等の分岐式脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の環式脂肪族炭化水素類;石油留分を水添精製したパラフィン油等を挙げることができる。これらの中では、トルエン混合溶媒が、環境に対する安全性と重合物性等から好ましい。また、炭素数3〜8の1級及び/又は2級のモノハロゲン化炭化水素も好適に使用できる。この具体例としては、例えば、1−クロロプロパン、1−クロロ−2−メチルプロパン、1−クロロブタン、1−クロロ−2−メチルブタン、1−クロロ−3−メチルブタン、1−クロロ−2,2−ジメチルブタン、1−クロロ−3,3−ジメチルブタン、1−クロロ−2,3−ジメチルブタン、1−クロロペンタン、1−クロロ−2−メチルペンタン、1−クロロ−3−メチルペンタン、1−クロロ−4−メチルペンタン、1−クロロヘキサン、1−クロロ−2−メチルヘキサン、1−クロロ−3−メチルヘキサン、1−クロロ−4−メチルヘキサン、1−クロロ−5−メチルヘキサン、1−クロロヘプタン、1−クロロオクタン、2−クロロプロパン、2−クロロブタン、2−クロロペンタン、2−クロロペンタン、2−クロロヘキサン、2−クロロヘプタン、2−クロロオクタン、クロロベンゼン等が使用でき、これらは1種又は2種以上を組み合わせて使用できる。これらの中でも、重合体の溶解度、分解による無害化の容易さ、コスト等のバランスから、1−クロロブタンが好ましく使用できる。
これらの溶剤は、重合体を構成する単量体の重合特性及び生成する重合体の溶解性等のバランスを考慮して単独又は2種以上を組み合わせて使用される。 溶剤の使用量は、得られる重合体溶液の粘度や除熱の容易さを考慮して、重合体の濃度が1〜50wt%、好ましくは5〜35wt%となるように決定される。
実際の重合を行うに当たっては、各成分を冷却下例えば−100℃以上0℃未満の温度で混合する。エネルギーコストと重合の安定性を釣り合わせるために、特に好ましい温度範囲は−30℃〜−80℃である。
<架橋性シリル基>
架橋性シリル基のポリイソブチレン重合体への導入法を以下に説明する。
以下に架橋性シリル基を有する飽和炭化水素系重合体の製法について説明する。架橋性シリル基を有する飽和炭化水素系重合体のうち、分子鎖末端に架橋性シリル基を有する飽和炭化水素系重合体は、イニファー法と呼ばれる重合法(イニファーと呼ばれる開始剤と連鎖移動剤を兼用する特定の化合物を用いるカチオン重合法)で得られた末端官能型、好ましくは、全末端官能型飽和炭化水素系重合体を用いて製造することができる。架橋性シリル基を有する飽和炭化水素系重合体の製法としては、例えば重合反応により得られる三級炭素−塩素結合を有する重合体の末端の脱ハロゲン化水素反応や、三級炭素−塩素結合を有する重合体の末端とアリルトリメチルシランとの反応等により末端に不飽和基を有するポリイソブチレンを得た後、一般式13;
H−[Si(R2−b(Y)O]−Si(R3−a(Y) (13)
{式中、R、Rは、いずれも炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R’)SiO−(R’は炭素数1〜20の1価の炭化水素基であって、3個のR’は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、RまたはRが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0,1,2,または3を、また、bは0,1,または2を示す。mは0〜19の整数である。ただし、a+mb≧1であることを満足するものとする。}
これらヒドロシラン化合物の中でも、特に一般式(14)
H−Si(R3−a(Y) (14)
(式中、R、Yは前記に同じ。aは1〜3の整数。)
で表されるヒドロシラン化合物を白金触媒を用いて付加させる反応(ヒドロシリル化反応)により得ることができる。ヒドロシラン化合物としては、たとえば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、フェニルジクロロシランのようなハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、メチルジメトキシシラン、フェニルジメトキシシランのようなアルコキシシラン類;メチルジアセトキシシラン、フェニルジアセトキシシランのようなアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランのようなケトキシメートシラン類などがあげられるが、これらに限定されるものではない。これらのうちではとくにハロゲン化シラン類、アルコキシシラン類が好ましい。
このような製造法は、たとえば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号、特許公報第2539445号の各明細書などに記載されている。また、分子鎖内部に架橋性シリル基を有するイソブチレン系重合体は、イソブチレンを含有するモノマー中に、架橋性シリル基を有するビニルシラン類やアリルシラン類を添加し、共重合せしめることにより製造される。
さらに、分子鎖末端に架橋性シリル基を有するイソブチレン系重合体を製造する重合反応の際に、主成分であるイソブチレンモノマー以外に架橋性シリル基を有するビニルシラン類やアリルシラン類などを共重合せしめたのち末端に架橋性シリル基を導入することにより、末端および分子鎖内部に架橋性シリル基を有するイソブチレン系重合体が製造される。
架橋性シリル基を有するビニルシラン類やアリルシラン類としては、たとえば、ビニルトリクロロシラン、ビニルメチルジクロロシラン、ビニルジメチルクロロシラン、ビニルジメチルメトキシシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、アリルトリクロロシラン、アリルメチルジクロロシラン、アリルジメチルクロロシラン、アリルジメチルメトキシシラン、ジアリルジクロロシラン、ジアリルジメトキシシラン、γーメタクリロイルオキシプロピルトリメトキシシラン、γーメタクリロイルオキシプロピルメチルジメトキシシランなどがあげられる。
また本発明において、架橋性シリル基を有する飽和炭化水素系重合体として、架橋性シリル基を有する水添ポリブタジエン重合体を挙げることができる。架橋性シリル基を有する水添ポリブタジエン重合体は、オレフィン基を有する水添ポリブタジエン重合体のヒドロシリル化反応により得ることができる。末端オレフィン基を有する水添ポリブタジエン系重合体は、たとえば、まず、末端ヒドロキシ水添ポリブタジエン系重合体の水酸基を−ONaや−OKなどのオキシメタル基にした後、一般式33:
CH=CH−R41−Y (33)
〔式中、Yは塩素原子、臭素原子、ヨウ素原子などのハロゲン原子、R41は−R42−、−R42−OCO−または−R42−CO−(R42は炭素数1〜20の2価の炭化水素基で、アルキレン基、シクロアルキレン基、アリーレン基、アラルキレン基が好ましい)で示される2価の有機基で、−CH2−、−R43−C−CH−(R43は炭素数1〜10の炭化水素基)より選ばれる2価の基がとくに好ましい〕で示される有機ハロゲン化合物を反応させることにより得ることができる。
末端ヒドロキシ水添ポリブタジエン系重合体の末端水酸基をオキシメタル基にする方法としては、Na、Kのごときアルカリ金属;NaHのごとき金属水素化物;NaOCHのごとき金属アルコキシド;NaOH、KOHなどのアルカリ水酸化物などと反応させる方法があげられる。前記方法では、出発原料として使用した末端ヒドロキシ水添ポリブタジエン系重合体とほぼ同じ分子量をもつ末端オレフィン水添ポリブタジエン系重合体が得られるが、より高分子量の重合体を得たい場合には、一般式33の有機ハロゲン化合物を反応させる前に、塩化メチレン、ビス(クロロメチル)ベンゼン、ビス(クロロメチル)エーテルなどのごとき、1分子中にハロゲンを2個以上含む多価有機ハロゲン化合物と反応させれば分子量を増大させることができ、その後一般式33で示される有機ハロゲン化合物と反応させれば、より高分子量でかつ末端にオレフィン基を有する水添ポリブタジエン系重合体を得ることができる。
前記一般式33で示される有機ハロゲン化合物の具体例としては、たとえばアリルクロライド、アリルブロマイド、ビニル(クロロメチル)ベンゼン、アリル(クロロメチル)ベンゼン、アリル(ブロモメチル)ベンゼン、アリル(クロロメチル)エーテル、アリル(クロロメトキシ)ベンゼン、1ーブテニル(クロロメチル)エーテル、1ーヘキセニル(クロロメトキシ)ベンゼン、アリルオキシ(クロロメチル)ベンゼンなどがあげられるが、それらに限定されるものではない。これらのうちではアリルクロライドが安価であり、しかも容易に反応するので好ましい。

<<架橋性シリル基を有するポリエーテル系重合体(III)>>
本発明においては、架橋性シリル基を有するポリエーテル系重合体(III)を添加することも可能である。
主鎖
ポリエーテル系重合体の主鎖は特に限定されず、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド、ポリフェニレンオキシドなどが挙げられる。このうち、本質的にポリオキシアルキレンであることが好ましく、本質的にポリプロピレンオキシドであることがより好ましく、これは、プロピレンオキシド以外に、エチレンオキシド、ブチレンオキシド、フェニレンオキシドなどを含んでもよい。また、ポリエーテル系重合体は、主鎖中にウレタン結合を含んでいてもよく、含んでいなくてもよい。ここで「主鎖が本質的にポリプロピレンオキシドである」とは、プロピレンオキシド単位が、主鎖を構成する繰り返し単位のうち50%以上、好ましくは70%以上、より好ましくは90%以上を占めることをいう。より低粘度であれば取扱い性が良好になるので、ポリプロピレンオキシド系重合体の分子量分布(Mw/Mn)が1.5以下のものがより好ましい。
分子量
この架橋性官能基を少なくとも一個有するポリエーテル系重合体としては、数平均分子量7500以上のものが好ましいが7500以下でも構わない。特に数平均分子量7500〜25000の有機重合体を使用することがより好ましい。ポリエーテル系重合体の数平均分子量が7500より低い場合は硬化物が硬く、かつ伸びが低いものとなり、数平均分子量が25000を超えると硬化物の柔軟性および伸びは問題ないが、該重合体自体の接着性が著しく低くなってしまい、実用性が低くなる。但し、分子量が低くても、架橋性官能基の個数が少ないと柔軟性および伸びが向上することがあるし、分子量が高くても、架橋性官能基の個数が多いと接着性が向上することがある。数平均分子量は特に8000〜20000が粘度の点から好ましいが、8000以下でも構わないし、20000以上でも構わない。
ポリエーテル系重合体の使用量
ポリエーテル系重合体を添加する場合の使用量は、任意の量で構わないが、架橋性シリル基を少なくとも1個有するビニル系重合体(I)に対し、重量比で100/1〜1/100の範囲が好ましく、100/5〜5/100の範囲にあることがより好ましく、100/10〜10/100の範囲にあることが更に好ましい。各用途、目的に応じて添加量を設定できる。ただし、添加量が多すぎると本発明の効果の1つである優れた耐熱性や耐候性が低下することがある。
上記のポリエーテル系重合体中に一般的なラジカル重合法で製造された(メタ)アクリル系重合体、または高温連続塊状重合体(例えば東亜合成(株)製SGOオリゴマーまたはそれらのシリル化物をあらかじめ混合させたものをビニル系重合体との混合に用いてもよい。
<架橋性シリル基を有するポリエーテル系重合体>
以下に架橋性シリル基を有するポリエーテル系重合体について説明する。
主鎖
架橋性シリル基を有するポリエーテル系重合体の主鎖構造としては、上記したものと同じである。主鎖は直鎖状であっても分枝状であってもよく、あるいは、これらの混合物であってもよい。その中でも特に好ましいのはポリオキシプロピレンジオール、ポリオキシプロピレントリオールやそれらの混合物に起因する主鎖である。また、他の単量体単位等が含まれていてもよいが、上記式に表わされる単量体単位が、重合体中に50重量%以上、好ましくは80重量%以上存在することが好ましい。
なお、主鎖中にウレタン結合、ないしはウレア結合を含んでいてもよく、含んでいなくてもよい。
ポリエーテル系重合体の分子構造は、使用用途や目的とする特性により相違し、特開昭63−112642記載のもの等が使用できる。このようなポリオキシアルキレンは通常の重合方法(苛性アルカリを用いるアニオン重合法)や、セシウム金属触媒、特開昭61−197631号、特開昭61−215622号、特開昭61−215623号および特開昭61−218632号等に例示されるポルフィリン/アルミ錯体触媒、特公昭46−27250号及び特公昭59−15336号等に例示される複合金属シアン化錯体触媒、特開平10−273512に例示されるポリフォスファゼン塩からなる触媒を用いた方法等により得ることができる。
ポルフィリン/アルミ錯体触媒、複合金属シアン化錯体触媒やポリフォスファゼン塩からなる触媒を用いた方法では分子量分布(Mw/Mn)が1.6以下、さらには1.5以下などの小さい値のオキシアルキレン重合体を得ることができ、分子量分布が小さい場合、硬化物の低モジュラスと高伸びを維持して組成物粘度を小さくできるという利点がある。
架橋性シリル基
架橋性シリル基としては、ビニル系重合体と同様に、一般式(1)で表される基を用いることができ、一般式(6)で表される基が好ましい。一般式(1)や一般式(6)で表される基についてした説明は架橋性シリル基を有するポリエーテル系重合体についても同じように適用される。ポリエーテル系重合体中の架橋性シリル基は、架橋性シリル基を有するビニル系重合体中の架橋性シリル基と同じ構造のものでもよいし、異なる構造のものでもよい。
架橋性シリル基とポリエーテル部分の間の結合部は、耐加水分解性を有することから、シリル基のケイ素原子とポリエーテル部分のエーテル酸素原子の間に少なくとも3個の炭素原子が存在するように、トリメチレン、テトラメチレンのようなアルキレン基であることが好ましい。
架橋性シリル基の数と位置
架橋性シリル基の数は組成物の硬化性等の観点から少なくとも1.2個より多く有することが好ましく、1.2個以上4.0以下であることがより好ましく、更に好ましくは1.5〜2.5個以下である。また、ポリエーテル系重合体の架橋性シリル基は、硬化物のゴム弾性の観点から分子鎖の末端にあることが好ましく、より好ましくは重合体の両末端に官能基があることである。
また、平均して1.2個未満の架橋性シリル基を有するポリエーテル重合体を使用することもできる。この場合、高い破断時伸び性、低ブリード性、表面低汚染性、優れた塗料密着性を有する硬化物を得ることができる。また、この重合体の分子量をより小さく設定することにより、組成物の粘度を低下させることができる。架橋性シリル基の個数の下限は少なくとも0.1個以上であることが好ましく、0.3個以上であることがより好ましく、0.5個以上であることが更に好ましい。架橋性シリル基は分子鎖の末端にあることが好ましい。また、このポリエーテル系重合体の架橋性シリル基は、主鎖中の一つの末端にのみ有し、他の末端には有しないものが好ましいが、平均して1.2個以下であれば特に限定されるものではない。平均して1.2個未満の架橋性シリル基を有するポリエーテル重合体を使用して低粘度化を図る場合、好ましい分子量は10,000未満、さらには5,000未満である。
架橋性シリル基の導入法
架橋性シリル基の導入は公知の方法で行なえばよい。すなわち、例えば、以下の方法が挙げられる。例えば複合金属シアン化錯体触媒を用いて得られるオキシアルキレン重合体の場合は特開平3−72527に、ポリフォスファゼン塩と活性水素を触媒として得られるオキシアルキレン重合体の場合は特開平11−60723に記載されている。
(1)末端に水酸基等の官能基を有するオキシアルキレン重合体と、この官能基に対して反応性を示す活性基及び不飽和基を有する有機化合物を反応させるか、もしくは不飽和基含有エポキシ化合物との共重合により、不飽和基含有オキシアルキレン重合体を得る。次いで、得られた反応生成物に架橋性シリル基を有するヒドロシランを作用させてヒドロシリル化する。
(2)(1)法と同様にして得られた不飽和基含有オキシアルキレン重合体にメルカプト基及び架橋性シリル基を有する化合物を反応させる。
(3)末端に水酸基、エポキシ基やイソシアネート基等の官能基(以下、Y官能基という)を有するオキシアルキレン重合体に、このY官能基に対して反応性を示す官能基(以下、Y′官能基という)及び架橋性シリル基を有する化合物を反応させる。
このY′官能基を有するケイ素化合物としては、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、3−アミノ,2−メチルプロピルトリメトキシシラン、N−エチル−3−アミノ,2−メチルプロピルトリメトキシシラン、4−アミノ,3−メチルプロピルトリメトキシシラン、4−アミノ,3−メチルプロピルメチルジメトキシシラン、N―フェニル−3−アミノプロピルトリメトキシシラン、さらには各種アミノ基含有シランとマレイン酸エステルやアクリレート化合物との部分マイケル付加反応物などのようなアミノ基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシランなどのようなメルカプト基含有シラン類;γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのようなエポキシシラン類;ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシランなどのようなビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシランなどのような塩素原子含有シラン類;γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、γ−イソシアネートプロピルトリメトキシシランなどのようなイソシアネート含有シラン類;メチルジメトキシシラン、トリメトキシシラン、メチルジエトキシシラン、トリエトキシシランなどのようなハイドロシラン類などが具体的に例示されうるが、これらに限定されるものではない。
また、架橋性シリル基の数が平均して1.2個以下の重合体を製造する場合、架橋性シリル基を導入する際に、分子内にただ一個の官能基を有するポリエーテル系重合体を用い、その官能基と当量ないしはより少ない量の、架橋性シリル基を有する化合物を反応させることにより、架橋性シリル基を平均して1.2個以下有するポリエーテル系重合体を得る方法と、平均して分子内に一個以上の官能基を有するポリエーテル系重合体を用い、その官能基よりも更に少ない架橋性シリル基を有する化合物を反応させることにより、結果的に架橋性シリル基を平均して1.2個以下有するポリエーテル系重合体を得る方法がある。
架橋性シリル基を有するポリエーテル系重合体の使用量
架橋性シリル基を有するポリエーテル系重合体(III)を使用する場合の使用量は、任意の量で構わないが、架橋性シリル基を少なくとも1個有するビニル系重合体(I)に対し、重量比で100/1〜1/100の範囲が好ましく、100/5〜5/100の範囲にあることがより好ましく、100/10〜10/100の範囲にあることが更に好ましい。各用途、目的に応じて添加量を設定できる。ただし、添加量が多すぎると本発明の効果の1つである優れた耐熱性や耐候性が低下することがある。
平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体を使用する場合その使用量としては、ビニル系重合体100重量部に対し1重量部以上200重量部以下が好ましく、3重量部以上100重量部以下がより好ましく、5重量部以上80重量部以下が更に好ましい。1重量部未満では添加効果が得られにくく、200重量部を超えると硬化物の物性が不安定になる傾向がある。
混合使用する態様として、(1)一般式(1)で表される架橋性シリル基を有するビニル系重合体に、架橋性シリル基を有するポリエーテル系重合体とさらに平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体を添加すること、(2)架橋性シリル基を有するポリエーテル系重合体とさらに片末端に架橋性シリル基を有するビニル系重合体を添加すること、(3)架橋性シリル基を有するポリエーテル系重合体とさらに架橋性官能基を有し分子量分布が1.8以上のビニル系重合体を添加する場合、平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体とさらに片末端に架橋性シリル基を有するビニル系重合体を添加すること、(4)平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体と架橋性官能基を有し分子量分布が1.8以上のビニル系重合体を添加すること等があげられるがこれらに限定されない。
相溶化
ポリエーテル系重合体とビニル系重合体はそのもの同士で相溶する組合せもあり、上述の(メタ)アクリル系重合体の詳細な説明中にその例が示されている。そのもの同士では相溶しないものでも、可塑剤を添加することにより、相溶化させることができる場合がある。

<<エポキシ化合物および/またはオキセタン化合物(IV)>>
本発明の硬化性組成物は、エポキシ化合物および/またはオキセタン化合物(IV)を添加することも可能である。これらの化合物は、光酸発生剤により硬化させることができ、ビニル系重合体とのハイブリッド硬化物になる。
エポキシ化合物は、硬化性組成物の粘度を下げ作業性を改良するとともに、硬化物の強度を向上させる役割を果たす。
エポキシ化合物としては、エポキシ基を有する化合物であればいかなるものであってもよいが、たとえばビスフェノール型のエポキシ樹脂や脂環式エポキシ樹脂があげられる。
ビスフェノール型エポキシ樹脂の具体例として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、水添型ビスフェノールA型エポキシ樹脂、水添型ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、水添型ビスフェノールA型エポキシ樹脂、フッ素化エポキシ樹脂、ポリブタジエンあるいはNBRを含有するゴム変性エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、p−オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m−アミノフェノール型エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、ウレタン結合を有するウレタン変性エポキシ樹脂、各種脂環式エポキシ樹脂、N,N−ジグリシジルアニリン、N,N−ジグリシジル−o−トルイジン、トリグリシジルイソシアヌレート、ポリアルキレングリコールジグリシジルエーテル、グリセリンのような多価アルコールのグリシジルエーテル、ヒダントイン型エポキシ樹脂、石油樹脂などのような不飽和重合体のエポキシ化物などが例示される。
前記水添型とは、ベンゼン環部分をシクロへキシル環に水素還元したものをいう。
また、脂環式エポキシ樹脂としては、シクロヘキセンオキシド基、トリシクロデセンオキシド基、シクロペンテンオキシド基などを有する化合物が代表的であり、具体的には、ビニルシクロヘキセンジエポキシド、ビニルシクロヘキセンモノエポキシド、3,4−エポキシシクロへキシルメチル−3,4−エポキシシクロへキサンカーボキシレート、2−(3,4−エポキシシクロへキシル5,5−スピロ−3,4−エポキシ)シクロヘキサン−m−ジオキサン、ビス(3,4−エポキシシクロヘキシル)アジペート、ビス(3,4−エポキシシクロヘキシルメチレン)アジペートなどがあげられるが、これらに限定されるものではなく、一般に使用されているエポキシ樹脂が使用され得る。これらエポキシ樹脂は単独で用いても良く2種以上併用しても良い。
エポキシ化合物は、光を吸収して硬化を阻害したり、硬化後に着色をするのを避けるため、芳香環を有さないことが好ましい。
これらのエポキシ樹脂の中でもエポキシ基を一分子中に少なくとも2個有するものが、硬化に際し、反応性が高く硬化物が3次元的網目を作りやすいなどの点から好ましい。
また、本発明のビニル系重合体とエポキシ樹脂との混合物を硬化させた時の硬化物として透明なものを得るためには、該エポキシ樹脂はビニル系重合体と相溶することが好ましく、例えば、水添ビスフェノールA型エポキシ樹脂は各種ビニル系重合体と相溶し易く、透明な硬化物を得易い。
ビニル系重合体とエポキシ樹脂の相溶性が良好な組合せの硬化性組成物は、それを硬化させた時に変調構造を取り易く、その結果、透明な硬化物を得易い。更には機械物性も格段に向上することがある。
例えば、主鎖が、アクリル酸ブチルエステルホモポリマーよりも極性が高いビニル系重合体またはビニル系共重合体と、芳香環を有するエポキシ樹脂との組合せや、ビニル系重合体またはビニル系共重合体と、芳香環を有しないエポキシ樹脂との組合せ等の好ましい組合せが挙げられる。
芳香環を有しないエポキシ樹脂の例としては、特に限定はされないが、脂環式エポキシ樹脂が好ましく、グリシジル基が脂環に直接ついていないエポキシ樹脂がより好ましい。
主鎖が、アクリル酸ブチルエステルホモポリマーよりも極性が高いビニル系重合体またはビニル系共重合体としては、これに限定されるものではないが、好ましい例として一般式(ア)で表される、重合体または共重合体が挙げられる。
−[CH−CR(COOR’)]− (ア)
(式中、Rは水素、又はメチル基、R’は、同一若しくは異なって、アルコキシアルキル基、または炭素数1〜3のアルキル基である。)
具体的にはアクリル酸エチル/アクリル酸ブチル/アクリル酸2−メトキシエチル(モル比で40〜50/20〜30/30〜20)の共重合体とビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂等の組合せや、アクリル酸ブチルエステルホモポリマーと水添ビスフェノールA型エポキシ樹脂やヘキサヒドロフタル酸ジグリシジルエステルの組合せ等の好ましい組合せが挙げられるがこれに限定されるものではない。
オキセタン化合物は、硬化性組成物の粘度を下げ作業性を改良するとともに、硬化物の強度を向上させる役割を果たす。
オキセタン化合物にはとくに限定はないが、具体的には3−エチル−3−ヒドロキシメチルオキセタン、3−(メタ)アリルオキシメチル−3−エチルオキセタン、(3−エチル−3−オキセタニルメトキシ)メチルベンゼン、4−フルオロ−〔1−(3−エチル−3−オキセタニルメトキシ)メチル〕ベンゼン、4−メトキシ−〔1−(3−エチル−3−オキセタニルメトキシ)メチル〕ベンゼン、〔1−(3−エチル−3−オキセタニルメトキシ)エチル〕フェニルエーテル、イソブトキシメチル(3−エチル−3−オキセタニルメチル)エーテル、イソボルニルオキシエチル(3−エチル−3−オキセタニルメチル)エーテル、イソボルニル(3−エチル−3−オキセタニルメチル)エーテル、2−エチルヘキシル(3−エチル−3−オキセタニルメチル)エーテル、エチルジエチレングリコール(3−エチル−3−オキセタニルメチル)エーテル、ジシクロペンタジエン(3−エチル−3−オキセタニルメチル)エーテル、ジシクロペンテニルオキシエチル(3−エチル−3−オキセタニルメチル)エーテル、ジシクロペンテニルエチル(3−エチル−3−オキセタニルメチル)エーテル、テトラヒドロフルフリル(3−エチル−3−オキセタニルメチル)エーテル、テトラブロモフェニル(3−エチル−3−オキセタニルメチル)エーテル、2−テトラブロモフェノキシエチル(3−エチル−3−オキセタニルメチル)エーテル、トリブロモフェニル(3−エチル−3−オキセタニルメチル)エーテル、2−トリブロモフェノキシエチル(3−エチル−3−オキセタニルメチル)エーテル、2−ヒドロキシエチル(3−エチル−3−オキセタニルメチル)エーテル、2−ヒドロキシプロピル(3−エチル−3−オキセタニルメチル)エーテル、ブトキシエチル(3−エチル−3−オキセタニルメチル)エーテル、ペンタクロロフェニル(3−エチル−3−オキセタニルメチル)エーテル、ペンタブロモフェニル(3−エチル−3−オキセタニルメチル)エーテル、ボルニル(3−エチル−3−オキセタニルメチル)エーテル、3,7−ビス(3−オキセタニル)−5−オキサ−ノナン、1,4−ビス〔(3−エチル−3−オキセタニルメトシキ)メチル〕ベンゼン、1,2−ビス〔(3−エチル−3−オキセタニルメトキシ)メチル〕エタン、1,2−ビス〔(3−エチル−3−オキセタニルメトキシ)メチル〕プロパン、エチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、ジシクロペンテニルビス(3−エチル−3−オキセタニルメチル)エーテル、トリエチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、テトラエチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、トリシクロデカンジイルジメチレンビス(3−エチル−3−オキセタニルメチル)エーテル、1,4−ビス〔(3−エチル−3−オキセタニルメトキシ)メチル〕ブタン、1,6−ビス〔(3−エチル−3−オキセタニルメトキシ)メチル〕ヘキサン、ポリエチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、EO変性ビスフェノールAビス(3−エチル−3−オキセタニルメチル)エーテル、PO変性ビスフェノールAビス(3−エチル−3−オキセタニルメチル)エーテル、EO変性水添ビスフェノールAビス(3−エチル−3−オキセタニルメチル)エーテル、PO変性水添ビスフェノールAビス(3−エチル−3−オキセタニルメチル)エーテル、EO変性ビスフェノールFビス(3−エチル−3−オキセタニルメチル)エーテル、トリメチロールプロパントリス(3−エチル−3−オキセタニルメチル)エーテル、ペンタエリスリトールトリス(3−エチル−3−オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3−エチル−3−オキセタニルメチル)エーテル、ジペンタエリスリトールヘキサキス(3−エチル−3−オキセタニルメチル)エーテル、ジペンタエリスリトールペンタキス(3−エチル−3−オキセタニルメチル)エーテル、ジペンタエリスリトールテトラキス(3−エチル−3−オキセタニルメチル)エーテル、カプロラクトン変性ジペンタエリスリトールヘキサキス(3−エチル−3−オキセタニルメチル)エーテル、ジトリメチロールプロパンテトラキス(3−エチル−3−オキセタニルメチル)エーテルなどがあげられる。
オキセタン化合物は、光を吸収して硬化を阻害したり、硬化後に着色をするのを避けるため、芳香環を有さないことが好ましい。
エポキシ化合物および/またはオキセタン化合物(IV)の添加量
エポキシ化合物および/またはオキセタン化合物(IV)を添加する場合の添加量としては、架橋性シリル基を少なくとも1個有するビニル系重合体(I)とエポキシ化合物および/またはオキセタン化合物(IV)の混合比にして、重量比で100/1〜1/100の範囲が好ましいが、100/5〜5/100の範囲にあることがより好ましく、100/10〜10/100の範囲にあることが更に好ましいが、その混合比は限定されるものではなく、各用途、目的に応じて設定できる。この硬化性組成物はその特性から、線膨張係数の異なる材料の接着や、ヒートサイクルにより繰り返し変位を受けるような部材の接着に用いる弾性接着剤として用いたり、透明な硬化物になる場合はその特性を活かして、下地が見える用途でのコーティング剤等に用いたりすることが出来る。例えば、この弾性接着剤用途ではエポキシ樹脂の混合比は多過ぎると硬化物が硬くなって剥離強度が低下してしまい、少な過ぎると逆に接着強度や耐水性が低下してしまうので、ビニル系重合体(I)100重量部に対し、通常10〜150重量部程度の範囲、好ましくは20〜100重量部の範囲で使用されるのが良い。

<<光酸発生剤(II)>>
光酸発生剤(II)とは、可視光、紫外線、赤外線、X線、α線、β線、γ線等の活性エネルギー線を照射することにより、架橋性シリル基を架橋させることができる酸性活性物質を放出することができる化合物である。
光酸発生剤により発生する酸のpKaは、限定はされないが、好ましくは、約3未満、さらに好ましくは、約1未満である。
本発明の硬化性組成物に使用できる光酸発生剤としては、公知の光酸発生剤を使用することができる。例えば、特開2000−1648号公報、特表2001−515533号公報、WO2002−83764において好適とされている各種の化合物を挙げることができるが、本発明は特にこれらに限定されるわけではなく、本発明において好ましく使用できる光酸発生剤としては、スルホネートエステル類、オニウム塩類、カルボン酸エステル類が挙げられる。
具体的には以下のとおりである。
本発明においては、スルホン酸誘導体を使用することができる。例えば、ジスルホン類、ジスルホニルジアゾメタン類、ジスルホニルメタン類、スルホニルベンゾイルメタン類、トリフルオロメチルスルホネート誘導体などのイミドスルホネート類、ベンゾインスルホネート類、1−オキシ−2−ヒドロキシ−3−プロピルアルコールのスルホネート類、ピロガロールトリスルホネート類、ベンジルスルホネート類を挙げることができる。
具体的には、ジフェニルジスルホン、ジトシルジスルホン、ビス(フェニルスルホニル)ジアゾメタン、ビス(クロルフェニルスルホニル)ジアゾメタン、ビス(キシリルスルホニル)ジアゾメタン、フェニルスルホニルベンゾイルジアゾメタン、ビス(シクロヘキシルスルホニル)メタン、1、8−ナフタレンジカルボン酸イミドメチルスルホネート、1、8−ナフタレンジカルボン酸イミドトシルスルホネート、1、8−ナフタレンジカルボン酸イミドトリフルオロメチルスルホネート、1、8−ナフタレンジカルボン酸イミドカンファースルホネート、コハク酸イミドフェニルスルホネート、コハク酸イミドトシルスルホネート、コハク酸イミドトリフルオロメチルスルホネート、コハク酸イミドカンファースルフォネート、フタル酸イミドトリフルオロスルホネート、シス−5−ノルボルネン−エンド−2,3−ジカルボン酸イミドトリフルオロメチルスルホネート、ベンゾイントシラート、1、2−ジフェニル−2−ヒドロキシプロピルトシラート、1、2−ジ(4−メチルメルカプトフェニル)−2−ヒドロキシプロピルトシラート、ピロガロールメチルスルホネート、ピロガロールエチルスルホネート、2,6−ジニトロフェニルメチルトシラート、オルト−ニトロフェニルメチルトシラート、パラ−ニトロフェニルトシラートなどを挙げることができる。これらは、1種のみまたは2種以上を組み合わせて使用することができる。
本発明においては、中でもスルホネートエステル類が好ましい。例えば、次の一般構造で示されるスルホン酸エステルを使用することができる。
Figure 2007029733
(R3はアルキルまたはフルオロアルキル基であり、R4は水素またはアルキル基であり、R5およびR6はアルキル基(同じであっても異なってもよい)であるか、または、環状構造の形成に協力する炭化水素含有基(例えばR5およびR6がそれらと結合している炭素と一緒にシクロヘキサン環を形成)である)
本発明においては、カルボン酸エステル類を好ましく使用することができる。例えば、次の構造を有するカルボン酸エステルを使用することができる。
Figure 2007029733
(式中、R7はフルオロアルキル基であって、好ましくは2〜7個の炭素原子を有するペルフルオロアルキル基であり、R8〜R10は、アルキル基(同じであっても異なってもよい)であるか、または環状構造の形成に協力する炭化水素含有基(例えば、R8およびR9が、それらと結合している炭素原子と一緒にシクロヘキサン環を形成)である。) 一般に、スルホン酸エステルおよびカルボン酸エステルは、酸を遊離するために、加熱ステップ(50℃〜100℃)を必要とする。
本発明においては、オニウム塩を好ましく使用することができる。
本発明で使用できるオニウム塩としては、テトラフルオロボレート(BF4−)、ヘキサフルオロホスフェート(PF6−)、ヘキサフルオロアンチモネート(SbF6−)、ヘキサフルオロアルセネート(AsF6−)、ヘキサクロルアンチモネート(SbCl6−)、テトラフェニルボレート、テトラキス(トリフルオロメチルフェニル)ボレート、テトラキス(ペンタフルオロメチルフェニル)ボレート、過塩素酸イオン(ClO4−)、トリフルオロメタンスルフォン酸イオン(CF3SO3−)、フルオロスルフォン酸イオン(FSO3−)、トルエンスルフォン酸イオン、トリニトロベンゼンスルフォン酸アニオン、トリニトロトルエンスルフォン酸アニオン等のアニオンを有するスルホニウム塩またはヨードニウム塩を使用することができる。
スルホニウム塩としては、例えば、トリフェニルスルホニウムヘキサフルオロアシルネート、トリフェニルスルホニウムヘキサヘキサフルオロボレート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオベンジル)ボレート、メチルジフェニルスルホニウムテトラフルオロボレート、メチルジフェニルスルホニウムテトラキス(ペンタフルオロベンジル)ボレート、ジメチルフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニルナフチルスルホニウムヘキサフルオロアルセネート、トリトイルスルホニウムヘキサフルオロホスフェート、アニシルジフェニルスルホニウムヘキサヘキサフルオルアンチモネート、4−ブトキシフェニルジフェニルスルホニウムテトラフルオロボレート、4−ブトキシフェニルジフェニルスルホニウムテトラキス(ペンタフルオロベンジル)ボレート、4−クロロフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、トリス(4−フェノキシフェニル)スルホニウムヘキサフルオロホスフェート、ジ(4−エトキシフェニル)メチルスルホニウムヘキサフルオロアルセネート、4−アセチルフェニルジフェニルスルホニウムテトラフルオロボレート、4−アセチルフェニルジフェニルスルホニウムテトラキス(ペンタフルオロベンジル)ボレート、トリス(4−チオメトキシフェニル)スルホニウムヘキサフルオロホスフェート、ジ(メトキシスルホニルフェニル)メチルスルホニウムヘキサフルオロアンチモネート、ジ(メトキシナフチル)メチルスルホニウムテトラフルオロボレート、ジ(メトキシナフチル)メチルスルホニウムテトラキス(ペンタフルオロベンジル)ボレート、ジ(カルボメトキシフェニル)メチルスルホニウムヘキサフルオロホスフェート、(4−オクチルオキシフェニル)ジフェニルスルホニウムテトラキス(3,5−ビス−トリフルオロメチルフェニル)ボレート、トリス(ドデシルフェニル)スルホニウムテトラキス(3,5−ビス−トリフルオロメチルフェニル)ボレート、4−アセトアミドフェニルジフェニルスルホニウムテトラフルオロボレート、4−アセトアミドフェニルジフェニルスルホニウムテトラキス(ペンタフルオロベンジル)ボレート、ジメチルナフチルスルホニウムヘキサフルオロホスフェート、トリフルオロメチルジフェニルスルホニウムテトラフルオロボレート、トリフルオロメチルジフェニルスルホニウムテトラキス(ペンタフルオロベンジル)ボレート、フェニルメチルベンジルスルホニウムヘキサフルオロホスフェート、10−メチルフェノキサチイニウムヘキサフルオロホスフェート、5−メチルチアントレニウムヘキサフルオロホスフェート、10−フェニル−9,9−ジメチルチオキサンテニウムヘキサフルオロホスフェート、10−フェニル−9−オキソチオキサンテニウムキサンテニウムテトラフルオロボレート、10−フェニル−9−オキソチオキサンテニウムテトラキス(ペンタフルオロベンジル)ボレート、5−メチル−10−オキソチアトレニウムテトラフルオロボレート、5−メチル−10−オキソチアトレニウムテトラキス(ペンタフルオロベンジル)ボレート、および5−メチル−10,10−ジオキソチアトレニウムヘキサフルオロホスフェートなどが挙げられる。これらは、1種のみまたは2種以上を組み合わせて使用することができる。
本発明において使用できるヨードニウム塩としては、(4−n−デシロキシフェニル)フェニルヨードニウムヘキサフルオロアンチモネート、〔4−(2−ヒドロキシ−n−テトラデシロキシ)フェニル〕フェニルヨードニウムヘキサフルオロアンチモネート、〔4−(2−ヒドロキシ−n−テトラデシロキシ)フェニル〕フェニルヨードニウムトリフルオロスルホネート、〔4−(2−ヒドロキシ−n−テトラデシロキシ)フェニル〕フェニルヨードニウムヘキサフルオロホスフェート、〔4−(2−ヒドロキシ−n−テトラデシロキシ)フェニル〕フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4−t−ブチルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(4−t−ブチルフェニル)ヨードニウムヘキサフルオロフォスフェート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロフォスフェート、ビス(ドデシルフェニル)ヨードニウムトリフルオロメチルスルフォネート、ジ(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ジ(ドデシルフェニル)ヨードニウムトリフラート、ジフェニルヨードニウムビスルフェート、4,4’−ジクロロジフェニルヨードニウムビスルフェート、4,4’−ジブロモジフェニルヨードニウムビスルフェート、3,3’−ジニトロジフェニルヨードニウムビスルフェート、4,4’−ジメチルジフェニルヨードニウムビスルフェート、4,4’−ビススクシンイミドジフェニルヨードニウムビスルフェート、3−ニトロジフェニルヨードニウムビスルフェート、4,4’−ジメトキシジフェニルヨードニウムビスルフェート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、(4−オクチルオキシフェニル)フェニルヨードニウムテトラキス(3,5−ビス−トリフルオロメチルフェニル)ボレート、米国特許第5,554,664号に開示されている(トリルクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート(CHI−(SOCF)3、米国特許第5,514,728号に開示されている(CI−B(C、および米国特許第5,340,898号に開示されているものなどが挙げられる。これらは、1種のみまたは2種以上を組み合わせて使用することができる。
その他のオニウム塩としては、芳香族ジアゾニウム塩を使用することができ、例えばp−メトキシベンゼンジアゾニウム・ヘキサフルオロアンチモネートなどを使用することができる。
本発明において使用できる、商業的に入手できるオニウム塩としては、サンエイドSI−60、SI−80、SI−100、SI−60L、SI−80L、SI−100L、SI−L145、SI−L150、SI−L160、SI−L110、SI−L147(以上、三新化学工業(株)製)、UVI−6950、UVI−6970、UVI−6974、UVI−6990(以上、ユニオンカーバイド社製)、アデカオプトマーSP−150、SP−151、SP−170、SP−171、SP−172(以上、旭電化工業(株)製)、Irgacure 261(チバスペシャルティケミカルズ(株)製)、CI−2481、CI−2624、CI−2639、CI−2064(以上、日本曹達(株)製)、CD−1010、CD−1011、CD−1012(以上、サートマー社製)、DS−100、DS−101、DAM−101、DAM−102、DAM−105、DAM−201、DSM−301、NAI−100、NAI−101、NAI−105、NAI−106、SI−100、SI−101、SI−105、SI−106、PI−105、NDI−105、BENZOIN TOSYLATE、MBZ−101、MBZ−301、PYR−100、PYR−200、DNB−101、NB−101、NB−201、BBI−101、BBI−102、BBI−103、BBI−109(以上、ミドリ化学(株)製)、PCI−061T、PCI−062T、PCI−020T、PCI−022T(以上、日本化薬(株)製)、IBPF、IBCF(三和ケミカル(株)製)CD1012(サートマー社製)、IBPF、IBCF(以上、三和ケミカル(株)製)、BBI−101、BBI−102、BBI−103、BBI−109(以上、ミドリ化学(株)製)、UVE1014(ゼネラルエレクトロニクス社製)等を挙げることができる。
また、J. Polymer Science:Part A:polymer Chemistry,Vol.31, 1473-1482(1993), J. Polymer Science:Part A:polymer Chemistry,Vol.31, 1483-1491(1993)において記述されている方法により製造できるジアリールヨードニウム塩を使用することもできる。
本願の硬化性組成物を導電特性が要求される用途に用いる組成物、たとえば、静電気支援塗布可能組成物を調製する場合には、 (4−オクチルオキシフェニル)ジフェニルスルホニウムテトラキス(3,5−ビス−トリフルオロメチルフェニル)ボレート、トリス(ドデシルフェニル)スルホニウムテトラキス(3,5−ビス−トリフルオロメチルフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、(4−オクチルオキシフェニル)フェニルヨードニウムテトラキス(3,5−ビス−トリフルオロメチルフェニル)ボレート、および(トリルクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレートなどなどを使用することが好ましい。このような塩を使用した組成物は、静電気支援塗料に十分な導電性を提供することができ、また、静電吹付、電気吹付、および静電気支援を用いた連続液体適用(たとえば、ロール塗布などによる)などを使用して塗布するのに好適である。このような塩を使用する場合、一般に、さらなる導電性増強剤は必要ではないが、これらの好ましい塩と共に使用してもよい。
本発明の硬化性組成物は光酸発生剤を使用するため、熱過敏性基材を含む用途に好適である。酸の遊離を促進するために、増感剤を補足することもできる。増感剤の添加量は特に限定はされないが、架橋性シリル基を有するビニル系重合体(I)100重量部に対して約0.03〜約0.1重量部が好ましい。本発明に使用できる適当な増感剤の例としては、Radiation Curing in Polymer Science and Technology、第2巻、Fouassier and Rabek編,Elsevier SciencePubhshers LTD,1993の第13章に記載されているものなどがある。2−イソプロピルチオキサントンは、ジ(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネートと一緒に使用するのに特に好ましい増感剤である。
本発明の硬化性組成物における光酸発生剤の含有量は、特に制限はないが、硬化性の点から、架橋性シリル基を平均して少なくとも一個、末端に有するビニル系重合体(I)100重量部に対して0.1〜15重量部であることが好ましく、また、硬化物の物性バランスの点から0.3〜8.0重量部であることがさらに好ましい。
<<ラジカル重合性を有する炭素―炭素二重結合を有する化合物>>
該組成物の粘度が高くなると、あらゆる用途において作業性が著しく低下する。必須成分ではないが、表面硬化性の向上、タフネスの付与あるいは粘度低減による作業性の向上などを目的として、限定はされないが、ラジカル重合性を有する炭素―炭素二重結合を有する化合物、すなわち重合性のモノマーおよび/またはオリゴマーを添加することが好ましい。
前記重合性のモノマーおよび/またはオリゴマーとしては、ラジカル重合性の基を有するモノマーおよび/またはオリゴマー、あるいは、アニオン重合性の基を有するモノマーおよび/またはオリゴマーが、硬化性の点から好ましい。
前記ラジカル重合性の基としては、(メタ)アクリル基などの(メタ)アクリロイル系基、スチレン基、アクリロニトリル基、ビニルエステル基、N−ビニルピロリドン基、アクリルアミド基、共役ジエン基、ビニルケトン基、塩化ビニル基などがあげられる。なかでも、本発明に使用する重合体と類似する(メタ)アクリル基を有するものが好ましい。
前記アニオン重合性の基としては、(メタ)アクリル基などの(メタ)アクリロイル系基、スチレン基、アクリロニトリル基、N−ビニルピロリドン基、アクリルアミド基、共役ジエン基、ビニルケトン基などがあげられる。なかでも、本発明に使用する重合体と類似する(メタ)アクリロイル系基を有するものが好ましい。
前記モノマーの具体例としては、(メタ)アクリレート系モノマー、環状アクリレート、N−ビニルピロリドン、スチレン系モノマー、アクリロニトリル、N−ビニルピロリドン、アクリルアミド系モノマー、共役ジエン系モノマー、ビニルケトン系モノマー、多官能モノマーなどがあげられる。
(メタ)アクリレート系モノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸3−メトキシブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸2−パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチルなどがあげられる。また、下式で示される化合物などもあげることができる。なお、下式において、nは0〜20の整数を示す。
Figure 2007029733
Figure 2007029733
Figure 2007029733
Figure 2007029733
Figure 2007029733
スチレン系モノマーとしてはスチレン、α−メチルスチレンなど、アクリルアミド系モノマーとしてはアクリルアミド、N,N−ジメチルアクリルアミドなど、共役ジエン系モノマーとしてはブタジエン、イソプレンなど、ビニルケトン系モノマーとしてはメチルビニルケトンなどがあげられる。
多官能モノマーとしては、トリメチロールプロパントリアクリレート、ネオペンチルグリコールポリプロポキシジアクリレート、トリメチロールプロパンポリエトキシトリアクリレート、ビスフェノールFポリエトキシジアクリレート、ビスフェノールAポリエトキシジアクリレート、ジペンタエリスリトールポリヘキサノリドヘキサクリレート、トリス(ヒドロキシエチル)イソシアヌレートポリヘキサノリドトリアクリレート、トリシクロデカンジメチロールジアクリレート2−(2−アクリロイルオキシ−1,1−ジメチル)−5−エチル−5−アクリロイルオキシメチル−1,3−ジオキサン、テトラブロモビスフェノールAジエトキシジアクリレート、4,4−ジメルカプトジフェニルサルファイドジメタクリレート、ポリテトラエチレングリコールジアクリレート、1,9−ノナンジオールジアクリレート、ジトリメチロールプロパンテトラアクリレートなどがあげられる。
オリゴマーとしては、ビスフェノールA型エポキシアクリレート樹脂、フェノールノボラック型エポキシアクリレート樹脂、クレゾールノボラック型エポキシアクリレート樹脂などのエポキシアクリレート系樹脂、COOH基変性エポキシアクリレート系樹脂、ポリオール(ポリテトラメチレングリコール、エチレングリコールとアジピン酸のポリエステルジオール、ε−カプロラクトン変性ポリエステルジオール、ポリプロピレングリコール、ポリエチレングリコール、ポリカーボネートジオール、水酸基末端水添ポリイソプレン、水酸基末端ポリブタジエン、水酸基末端ポリイソブチレンなど)と有機イソシアネート(トリレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネートなど)から得られたウレタン樹脂を、水酸基含有(メタ)アクリレート{ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリアクリレートなど}と反応させて得られたウレタンアクリレート系樹脂、前記ポリオールにエステル結合を介して(メタ)アクリル基を導入した樹脂、ポリエステルアクリレート系樹脂、ポリ(メタ)アクリルアクリレート系樹脂(重合性の反応基を有するポリ(メタ)アクリル酸エステル系樹脂)などがあげられる。
また、(メタ)アクリロイル系基を有するモノマーおよび/またはオリゴマーの数平均分子量は、5000以下であることが好ましい。さらに、表面硬化性の向上や、作業性向上のための粘度低減のために、モノマーを用いる場合には、分子量が1000以下であることが、相溶性が良好であるという理由からさらに好ましい。
前記モノマーおよび/またはオリゴマーの使用量としては、ビニル系重合体(I)100部に対して、1〜200部、さらには5〜100部であるのが好ましい。本願の硬化性組成物がさらに成分(III)または成分(IV)を含有する場合は、ビニル系重合体(I)と成分(III)又は成分(IV)との合計100部に対して、1〜200部が好ましく、5〜100部がより好ましい。本願の硬化性組成物がさらに成分(III)及び成分(IV)を含有する場合は、ビニル系重合体(I)と成分(III)と成分(IV)との合計100重量部に対して、1〜200部が好ましく、5〜100部がより好ましい。
前記有機溶剤としては、通常、沸点が50〜180℃のものが、塗工時の作業性、硬化前後の乾燥性に優れることから好ましい。具体的には、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノールなどのアルコール系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルなどのエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤;トルエン、キシレンなどの芳香族系溶剤;ジオキサンなどの環状エーテル系溶剤などがあげられる。これらの溶剤は単独で用いてもよく2種以上を混合して用いてもよい。

<<ビニル系重合体(V)>>
本発明の硬化性組成物に、架橋性アクリロイル基を平均して少なくとも一個、末端に有するビニル系重合体を添加することも可能である。
<ビニル系重合体(V)の官能基導入法>
製造方法には特に限定はないが、例えば前述の方法により反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体を製造し、反応性官能基を(メタ)アクリロイル系基を有する置換基に変換することにより製造することができる。
以下に、反応性官能基を有するビニル系重合体の末端を一般式(1)で表わされる基に変換する方法について説明する。
ビニル系重合体の末端に(メタ)アクリロイル系基を導入する方法には特に限定はないが、例えば以下の方法が挙げられる。
末端にハロゲン基(ハロゲン原子)を有するビニル系重合体と、一般式(2):
+−OC(O)C(R)=CH (2)
(式中、Rは水素原子又は炭素数1〜20の有機基、Mはアルカリ金属イオン又は4
級アンモニウムイオンを表わす)で示される化合物との反応による方法。
末端にハロゲン基を有するビニル系重合体としては、一般式(3):
−CRX (3)
(式中、R、Rは、ビニル系モノマーのエチレン性不飽和基に結合した基、Xは塩素原子、臭素原子又はヨウ素原子を表わす)で示される末端基を有するものが好ましい。
以下に、前記各方法について詳細に説明する。
導入方法は末端にハロゲン基を有するビニル系重合体と、一般式(2)で示される化合物との反応による方法である。
末端にハロゲン基を有するビニル系重合体には特に限定はないが、一般式(3)に示される末端基を有するものが好ましい。
一般式(3)中のR、Rにおけるビニル系モノマーのエチレン性不飽和基に結合した基としては、水素原子、メチル基、カルボニル基、カルボキシレート基、トルイル基、フルオロ基、クロロ基、トリアルコキシシリル基、フェニルスルホン酸基、カルボン酸イミド基、シアノ基等が挙げられる。
末端にハロゲン基を有するビニル系重合体、特に一般式(3)で表わされる末端基を有するビニル系重合体は、前述の有機ハロゲン化物又はハロゲン化スルホニル化合物を開始剤とし、遷移金属錯体を触媒としてビニル系モノマーを重合する方法、あるいはハロゲン化合物を連鎖移動剤としてビニル系モノマーを重合する方法により製造されるが、好ましくは前者である。
一般式(2)で表わされる化合物には特に限定はない。一般式(2)中のRにおける炭素数1〜20の有機基としては、前述と同様のものが例示され、その具体例としても前述と同様のものが例示される。
一般式(2)中のMは、オキシアニオンの対カチオンであり、その種類としては、アルカリ金属イオン、4級アンモニウムイオン等が挙げられる。
前記アルカリ金属イオンとしては、例えばリチウムイオン、ナトリウムイオン、カリウムイオン等が挙げられる。
4級アンモニウムイオンとしては、例えばテトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラベンジルアンモニウムイオン、トリメチルドデシルアンモニウムイオン、テトラブチルアンモニウムイオン、ジメチルピペリジニウムイオン等が挙げられる。これらのうち、好ましいものとしてはアルカリ金属イオンが、より好ましいものとしてはナトリウムイオン、カリウムイオンが挙げられる。
一般式(2)で示される化合物の使用量は、一般式(3)で示される末端基に対して、好ましくは1〜5当量、より好ましくは1.0〜1.2当量である。
前記反応を実施する溶剤には特に限定はないが、求核置換反応であるため極性溶媒が好ましく、例えばテトラヒドロフラン、ジオキサン、ジエチルエーテル、アセトン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホリックトリアミド、アセトニトリル等が好ましく用いられる。
反応温度には特に限定はないが、好ましくは0〜150℃、より好ましくは10〜100℃である。

<光ラジカル性重合開始剤>
上述のラジカル重合性を有する炭素―炭素二重結合を有する化合物を添加した場合、該化合物を光重合させるために、光ラジカル性重合開始剤を添加することが好ましい。
光ラジカル性重合開始剤にはとくに制限はないが、具体例としては、たとえばアセトフェノン、プロピオフェノン、ベンゾフェノン、キサントール、フルオレイン、ベンズアルデヒド、アンスラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、4−メチルアセトフェノン、3−ペンチルアセトフェノン、2,2−ジエトキシアセトフェノン、4−メトキシアセトフェン、3−ブロモアセトフェノン、4−アリルアセトフェノン、p−ジアセチルベンゼン、3−メトキシベンゾフェノン、4−メチルベンゾフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−クロロ−4’−ベンジルベンゾフェノン、3−クロロキサントーン、3,9−ジクロロキサントーン、3−クロロ−8−ノニルキサントーン、ベンゾイル、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ビス(4−ジメチルアミノフェニル)ケトン、ベンジルメトキシケタール、2−クロロチオキサントーンなどがあげられる。
前記光ラジカル性重合開始剤は単独で用いてもよく、他の化合物と組み合わせて用いてもよい。具体的には、ジエタノールメチルアミン、ジメチルエタノールアミン、トリエタノールアミンなどのアミンとの組合せ、さらにこれにジフェニルヨードニウムクロリドなどのヨードニウム塩を組み合わせたもの、メチレンブルーなどの色素およびアミンと組み合わせたものなどがあげられる。
なお、前記光ラジカル性重合開始剤を使用する場合、必要により、ハイドロキノン、ハイドロキノンモノメチルエーテル、ベンゾキノン、パラターシャリーブチルカテコールなどの如き重合禁止剤類を添加することもできる。
また、近赤外光重合開始剤として、近赤外光吸収性陽イオン染料を使用しても構わない。
近赤外光吸収性陽イオン染料としては、650〜1500nmの領域の光エネルギーで励起する、たとえば特開平3−111402号公報、特開平5−194619号公報などに開示されている近赤外光吸収性陽イオン染料−ボレート陰イオン錯体などを用いるのが好ましく、ホウ素系増感剤を併用することがさらに好ましい。
光ラジカル性重合開始剤の添加量は系をわずかに光官能化するだけでよいので、とくに制限はないが、ビニル系重合体(I)100部に対して、0.001〜10部であるのが好ましい。

<<トリアルコキシシラン化合物あるいはテトラアルコキシシラン化合物>>
本発明の硬化性組成物には、限定はされないが、トリアルコキシシラン化合物あるいはテトラアルコキシシラン化合物を添加することが、硬化物物性や貯蔵安定性を改善するために好ましく、特に好ましくはトリアルコキシシラン化合物である。トリアルコキシシラン化合物あるいはテトラアルコキシシラン化合物としては、式R4−nSiY(式中、Yは加水分解可能な基、Rは有機基で官能基を含んでいても含まなくともよい。nは3または4である)で示される加水分解性有機シリコン化合物が挙げられ、その具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリエトキシシラン、メチルトリアセトキシシラン、オルトケイ酸テトラメチル(テトラメトキシシランないしはメチルシリケート)、オルトケイ酸テトラエチル(テトラエトキシシランないしはエチルシリケート)、オルトケイ酸テトラプロピル、オルトケイ酸テトラブチル等のシラン化合物またはこれらの部分加水分解縮合物、γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン等のシランカップリング剤、またはこれらの部分加水分解縮合物等が挙げられる。これらの中から1種または2種以上併用して配合することができる。
トリアルコキシシラン化合物あるいはテトラアルコキシシラン化合物の使用量としては、ビニル系重合体100重量部に対し、0.1〜30重量部、好ましくは0.3〜20重量部、より好ましくは0.5〜10重量部である。
なお、これらのトリアルコキシシラン化合物あるいはテトラアルコキシシラン化合物を添加する際には硬化性組成物を無水の状態にしてから行うのが好ましいが、水分を含んだままの状態で添加しても構わない。

<<硬化性組成物>>
本発明の硬化性組成物においては、目的とする物性に応じて、各種の配合剤を添加しても構わない。

<硬化触媒・硬化剤>
本発明では、光酸発生剤により、架橋性シリル基を有するビニル系重合体は硬化することができるが、これ以外に従来公知の各種縮合触媒を添加しても構わない。但し、これらを添加した一液配合物を作製する場合には、十分に組成物中の水分を除去しておく必要がある。
このような縮合触媒としては、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジエチルヘキサノエート、ジブチル錫ジオクテート、ジブチル錫ジメチルマレート、ジブチル錫ジエチルマレート、ジブチル錫ジブチルマレート、ジブチル錫ジイソオクチルマレート、ジブチル錫ジトリデシルマレート、ジブチル錫ジベンジルマレート、ジブチル錫マレエート、ジオクチル錫ジアセテート、ジオクチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジエチルマレート、ジオクチル錫ジイソオクチルマレート等のジアルキル錫ジカルボキシレート類、例えば、ジブチル錫ジメトキシド、ジブチル錫ジフェノキシド等のジアルキル錫アルコキシド類、例えば、ジブチル錫ジアセチルアセトナート、ジブチル錫ジエチルアセトアセテートなどのジアルキル錫の分子内配位性誘導体類、例えば、ジブチル錫オキシドやジオクチル錫オキシド等のジアルキル錫オキシドと例えば、ジオクチルフタレート、ジイソデシルフタレート、メチルマレエート等のエステル化合物との反応物、例えば、ジブチル錫ビストリエトキシシリケート、ジオクチル錫ビストリエトキシシリケート等のジアルキル錫オキシドとシリケート化合物との反応物、およびこれらジアルキル錫化合物のオキシ誘導体(スタノキサン化合物)等の4価のスズ化合物類;例えば、オクチル酸錫、ナフテン酸錫、ステアリン酸錫、フェルザチック酸スズ等の2価のスズ化合物類、あるいはこれらと後述のラウリルアミン等のアミン系化合物との反応物および混合物;例えば、モノブチル錫トリスオクトエートやモノブチル錫トリイソプロポキシド等のモノブチル錫化合物やモノオクチル錫化合物等のモノアルキル錫類;例えば、テトラブチルチタネート、テトラプロピルチタネート、テトラ(2−エチルヘキシル)チタネート、イソプロポキシチタンビス(エチルアセトアセテート)等のチタン酸エステル類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類;カルボン酸ビスマス、カルボン酸鉄、カルボン酸チタニウム、カルボン酸鉛、カルボン酸バナジウム、カルボン酸ジルコニウム、カルボン酸カルシウム、カルボン酸カリウム、カルボン酸バリウム、カルボン酸マンガン、カルボン酸セリウム、カルボン酸ニッケル、カルボン酸コバルト、カルボン酸亜鉛、カルボン酸アルミニウム等のカルボン酸(2−エチルヘキサン酸、ネオデカン酸、バーサチック酸、オレイン酸、ナフテン酸等)金属塩、あるいはこれらと後述のラウリルアミン等のアミン系化合物との反応物および混合物;ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジブトキシジルコニウムジアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート、チタンテトラアセチルアセトナート等のキレート化合物類;メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、オクチルアミン、2−エチルヘキシルアミン、ノニルアミン、デシルアミン、ラウリルアミン、ペンタデシルアミン、セチルアミン、ステアリルアミン、シクロヘキシルアミン等の脂肪族第一アミン類;ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジアミルアミン、ジオクチルアミン、ジ(2−エチルヘキシル)アミン、ジデシルアミン、ジラウリルアミン、ジセチルアミン、ジステアリルアミン、メチルステアリルアミン、エチルステアリルアミン、ブチルステアリルアミン等の脂肪族第二アミン類;トリアミルアミン、トリヘキシルアミン、トリオクチルアミン等の脂肪族第三アミン類;トリアリルアミン、オレイルアミン、などの脂肪族不飽和アミン類;ラウリルアニリン、ステアリルアニリン、トリフェニルアミン等の芳香族アミン類;および、その他のアミン類として、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、シクロヘキシルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、エチレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジン、2,4,6−トリス(ジメチルアミノメチル)フェノール、モルホリン、N−メチルモルホリン、2−エチル−4−メチルイミダゾール、1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBU)等のアミン系化合物、あるいはこれらのアミン系化合物のカルボン酸等との塩;ラウリルアミンとオクチル酸錫の反応物あるいは混合物のようなアミン系化合物と有機錫化合物との反応物および混合物;過剰のポリアミンと多塩基酸とから得られる低分子量ポリアミド樹脂;過剰のポリアミンとエポキシ化合物との反応生成物;γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリイソプロポキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、N−(β−アミノエチル)アミノプロピルトリメトキシシラン、N−(β−アミノエチル)アミノプロピルメチルジメトキシシラン、N−(β−アミノエチル)アミノプロピルトリエトキシシラン、N−(β−アミノエチル)アミノプロピルメチルジエトキシシラン、N−(β−アミノエチル)アミノプロピルトリイソプロポキシシラン、γ−ウレイドプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−ベンジル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシラン等を挙げることができる。また、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン等のアミノ基を有するシランカップリング剤;等のシラノール縮合触媒、さらにはフェルザチック酸等の脂肪酸や有機酸性リン酸エステル化合物等他の酸性触媒、塩基性触媒等の公知のシラノール縮合触媒等が例示できる。
酸性触媒の有機酸性リン酸エステル化合物としては、(CH3O)2−P(=O)(−OH)、(CH3O)−P(=O)(−OH)2、(C2H5O)2−P(=O)(−OH)、(C2H5O)−P(=O)(−OH)2、(C3H7O)2−P(=O)(−OH)、(C3H7O)−P(=O)(−OH)2、(C4H9O)2−P(=O)(−OH)、(C4H9O)−P(=O)(−OH)2、(C8H17O)2−P(=O)(−OH)、(C8H17O)−P(=O)(−OH)2、(C10H21O)2−P(=O)(−OH)、(C10H21O)−P(=O)(−OH)2、(C13H27O)2−P(=O)(−OH)、(C13H27O)−P(=O)(−OH)2、(C16H33O)2−P(=O)(−OH)、(C16H33O)−P(=O)(−OH)2、(HO−C6H12O)2−P(=O)(−OH)、(HO−C6H12O)−P(=O)(−OH)2、(HO−C8H16O)−P(=O)(−OH)、(HO−C8H16O)−P(=O)(−OH)2、[(CH2OH)(CHOH)O]2−P(=O)(−OH)、[(CH2OH)(CHOH)O]−P(=O)(−OH)2、[(CH2OH)(CHOH)C2H4O]2−P(=O)(−OH)、[(CH2OH)(CHOH)C2H4O]−P(=O)(−OH)2などがあげられるが、例示物質に限定されるものではない。
これら有機酸類とアミンの併用系は、触媒活性が高くなるため、使用量を減少できる観点でより好ましい。有機酸とアミン併用系の中では、酸性リン酸エステルとアミン、有機カルボン酸とアミン、特に有機酸性リン酸エステルとアミン、脂肪族カルボン酸とアミンの併用系は、触媒活性がより高く、速硬化性の観点で好ましい。
これらの触媒は、単独で使用してもよく、2種以上併用してもよい。この縮合触媒の配合量は、架橋性シリル基を有する重合体100部(重量部、以下同じ)に対して0.01〜20部程度が好ましく、0.5〜5部が更に好ましい。シラノール縮合触媒の配合量がこの範囲を下回ると硬化速度が遅くなることがあり、また硬化反応が十分に進行し難くなる場合がある。一方、シラノール縮合触媒の配合量がこの範囲を上回ると硬化時に局部的な発熱や発泡が生じ、良好な硬化物が得られ難くなるほか、ポットライフが短くなり過ぎ、作業性の点からも好ましくない。なお、特に限定はされないが、錫系硬化触媒が硬化性を制御し易い点で好ましい結果を与える。
特に限定はされないが、後述のような1成分系組成物にする際には、硬化速度や組成物の貯蔵安定性などの面から、錫系硬化触媒の場合、4価錫が好ましいが、2価錫と有機アミンの組み合わせや非錫化合物も使用できる。
また、特に限定はされないが、サイディンクボード用シーリング剤等の用途に用いる際には、1成分系、2成分系問わず、硬化物が応力緩和し易いことから、被着体にダメージを与えない、接着界面での剥離が起き難いなどの面から、4価錫が好ましい。
近年、環境問題に焦点が当てられ、錫系触媒が嫌われることもあるが、その様な場合にはカルボン酸ビスマスやカルボン酸チタン等他の非錫系触媒を選択しても良い。
また、本発明の硬化性組成物においては、縮合触媒の活性をより高めるために、アミン系化合物と同様に、上記のアミノ基を有するシランカップリング剤を助触媒として使用することも可能である。このアミノ基含有シランカップリング剤は、加水分解性基が結合したケイ素原子を含む基(以下加水分解性シリル基という)及びアミノ基を有する化合物であり、この加水分解性基として既に例示した基を挙げることができるが、メトキシ基、エトキシ基等が加水分解速度の点から好ましい。加水分解性基の個数は、2個以上、特に3個以上が好ましい。
これらのアミン化合物の配合量は、架橋性シリル基を有する重合体100重量部に対して0.01〜50重量部程度が好ましく、更に0.1〜20重量部がより好ましい。アミン化合物の配合量が0.01重量部未満であると硬化速度が遅くなる場合があり、また硬化反応が充分に進行し難くなる場合がある。一方、アミン化合物の配合量が30重量部を越えると、ポットライフが短くなり過ぎる場合があり、作業性の点から好ましくない。
これらのアミン化合物は、1種類のみで使用しても良いし、2種類以上混合使用しても良い。
更に、アミノ基やシラノール基をもたないケイ素化合物を助触媒として添加しても構わない。これらのケイ素化合物としては、限定はされないが、フェニルトリメトキシシラン、フェニルメチルジメトキシシラン、フェニルジメチルメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリフェニルメトキシシラン等が好ましい。特に、ジフェニルジメトキシシランやジフェニルジエトキシシランは、低コストであり、入手が容易であるために最も好ましい。
このケイ素化合物の配合量は、架橋性シリル基を有する重合体100部に対して0.01〜20部程度が好ましく、0.1〜10部が更に好ましい。ケイ素化合物の配合量がこの範囲を下回ると硬化反応を加速する効果が小さくなる場合がある。一方、ケイ素化合物の配合量がこの範囲を上回ると、硬化物の硬度や引張強度が低下することがある。
なお、硬化触媒・硬化剤の種類や添加量は目的や用途に応じて本発明の硬化性や機械物性等を制御することが可能である。また、架橋性シリル基を有する重合体のシリル基の反応性によっても硬化触媒・硬化剤の種類や添加量を変えることが可能であり、反応性が高い場合は0.01〜1部の少量の範囲で充分硬化させることが可能である。
硬化触媒・硬化剤の種類や添加量は、本発明のビニル系重合体のYの種類とaの数によって選択することが可能であり、目的や用途に応じて本発明の硬化性や機械物性等を制御することが可能である。Yがアルコキシ基である場合、炭素数の少ない方が反応性が高く、またaが多い方が反応性が高いため少量で充分硬化させることが可能である。

<脱水剤>
硬化性組成物は、作製する際の水分等によって、その貯蔵している間に増粘、ゲル化が進み、使用する際の作業性に難が生じたり、また、その増粘、ゲル化が進んだ硬化性組成物を使用することにより、硬化後の硬化物の物性が低下して、本来の目的であるシール性等を損なったりする問題が生じることがある。つまり硬化性組成物の貯蔵安定性が問題となることがある。
この硬化性組成物の貯蔵安定性を改良するには、硬化性組成物に、共沸脱水により含水分量を減らす方法がある。例えば、水に対して極小共沸点を有する揮発性有機化合物を0.1〜10重量部程度添加し、均一に混合した後、50〜90℃程度に加熱し真空ポンプで吸引しながら水−有機化合物の共沸組成物を形骸に取出す方法が挙げられる。水に対して極小共沸点を有する揮発性有機化合物としては塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン等のハロゲン化物;エタノール、アリルアルコール、1−プロパノール、ブタノール等のアルコール類;酢酸エチル、プロピオン酸メチル等のエステル類;メチルエチルケトン、3−メチル−2−ブタノン等のケトン類;エチルエーテル、イソプロピルエーテル等のエーテル類;ベンゼン、トルエン、キシレン、ヘキサン等の炭化水素類等が例示できる。しかしながら、この方法は脱揮操作が入るため、揮発性の他の配合剤に対する工夫が必要となったり、共沸させる揮発性有機化合物の処理、回収等が必要になったりする。そのため、以下の脱水剤を添加する方が好ましいことがある。
上述の様に、本発明の組成物には、貯蔵安定性を改良する目的で組成物中の水分を除去するための脱水剤を添加することができる。脱水剤としては、例えば、5酸化リンや炭酸水素ナトリウム、硫酸ナトリウム(無水ボウ硝)、モレキュラーシーブス等の無機固体等が挙げられる。これらの固体脱水剤でも構わないが、添加後の液性が酸性や塩基性に傾いて逆に縮合し易く貯蔵安定性が悪くなったり、固体を後で取り除くなどの作業性が悪くなったりすることもあるため、後述の、液状の加水分解性のエステル化合物が好ましい。加水分解性のエステル化合物としては、オルトぎ酸トリメチル、オルトぎ酸トリエチル、オルトぎ酸トリプロピル、オルトぎ酸トリブチル等のオルトぎ酸トリアルキルや、オルト酢酸トリメチル、オルト酢酸トリエチル、オルト酢酸トリプロピル、オルト酢酸トリブチル等のオルト酢酸酸トリアルキル等、およびそれらの化合物から成る群から選ばれるものが挙げられる。
脱水剤の使用量としては、限定はされないが、ビニル系重合体100重量部に対し、0.1〜30重量部、好ましくは0.3〜20重量部、より好ましくは0.5〜10重量部である。
なお、これらの脱水剤を添加する際には硬化性組成物を無水の状態にしてから行なうのが好ましいが、水分を含んだままの状態で添加しても構わない。

<接着性付与剤>
本発明の組成物には、アミノシラン系化合物やその他のシランカップリング剤、シランカップリング剤以外の接着性付与剤を添加することができる。接着付与剤を添加すると、外力により目地幅等が変動することによって、シーリング材がサイディングボード等の被着体から剥離する危険性をより低減することができる。また、場合によっては接着性向上の為に用いるプライマーの使用の必要性がなくなり、施工作業の簡略化が期待される。シランカップリング剤の具体例としてはアミノ基や、メルカプト基、エポキシ基、カルボキシル基、ビニル基、イソシアネート基、イソシアヌレート、ハロゲン等の官能基をもったシランカップリング剤が例示でき、その具体例としては、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン等のイソシアネート基含有シラン類;γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリイソプロポキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリイソプロポキシシラン、γ−ウレイドプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−ベンジル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシラン等のアミノ基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプト基含有シラン類;γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;β−カルボキシエチルトリエトキシシラン、β−カルボキシエチルフェニルビス(2−メトキシエトキシ)シラン、N−β−(カルボキシメチル)アミノエチル−γ−アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−アクロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類、ビス(3−トリエトキシシリルプロピル)テトラスルファン等のポリスルファン類等を挙げることができる。また、上記のアミノ基含有シラン類とエポキシ基含有シラン類との反応物、アミノ基含有シラン類とアクロイルオキシ基含有シラン類との反応物、アミノ基含有シラン類とイソシアネート基含有シラン類との反応物も使用できる。また、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、ブロックイソシアネートシラン、シリル化ポリエステル等もシランカップリング剤として用いることができる。また、上記のアミノ基含有シラン類と例えばメチルイソブチルケトン等のケトン化合物との反応によって得られるケチミン化合物等もシランカップリング剤として用いることができる。
本発明に用いるシランカップリング剤は、通常、架橋性シリル基を有する重合体100部に対し、0.1〜20部の範囲で使用される。特に、0.5〜10部の範囲で使用するのが好ましい。本発明の硬化性組成物に添加されるシランカップリング剤の効果は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩ビ、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。また、使用量が架橋性シリル基を有する重合体100部に対し1部程度であれば、硬化物の透明性にほとんど影響しない。
シランカップリング剤以外の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、ポリスチレン−ポリブタジエン−ポリスチレン、ポリスチレン−ポリイソプレン−ポリスチレン、ポリスチレン−ポリイソプレン/ブタジエン共重合体−ポリスチレン、ポリスチレン−ポリエチレン/プロピレン共重合体−ポリスチレン、ポリスチレン−ポリエチレン/ブチレン共重合体−ポリスチレン、ポリスチレン−ポリイソブテン−ポリスチレン等の直鎖状または分岐状のブロック共重合体、アルキルスルフォン酸エステル、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。エポキシ樹脂は上記のアミノ基含有シラン類と反応させて使用することができる。
上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。特に限定はされないが、接着性、特にオイルパンなどの金属被着面に対する接着性を向上させるために、上記接着性付与剤の中でもシランカップリング剤を0.1〜20重量部、併用することが好ましい。
接着性付与剤の種類や添加量は、本発明のビニル系重合体のYの種類とaの数によって選択することが可能であり、目的や用途に応じて本発明の硬化性や機械物性等を制御することが可能である。特に硬化性や伸びに影響するためその選択には注意が必要である。
<可塑剤>
本発明の硬化性組成物には、各種可塑剤を必要に応じて用いても良い。可塑剤を後述する充填材と併用して使用すると硬化物の伸びを大きくできたり、多量の充填材を混合できたりするためより有利となるが、必ずしも添加しなければならないものではない。可塑剤としては特に限定されないが、物性の調整、性状の調節等の目的により、例えば、ジブチルフタレート、ジヘプチルフタレート、ジ(2−エチルヘキシル)フタレート、ジイソデシルフタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;ポリスチレンやポリ−α−メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン−アクリロニトリル、ポリクロロプレン;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル、等の炭化水素系油;プロセスオイル類;ポリエチレングリコール、ポリプロピレングリコール、エチレンオキサイド−プロピレンオキサイド共重合体、ポリテトラメチレングリコール等のポリエーテルポリオール、これらポリエーテルポリオールの水酸基の片末端または両末端もしくは全末端をアルキルエステル基またはアルキルエーテル基などに変換したアルキル誘導体等のポリエーテル類;エポキシ化大豆油、エポキシステアリン酸ベンジル、E−PS等のエポキシ基含有可塑剤類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤類;アクリル系可塑剤を始めとするビニル系モノマーを種々の方法で重合して得られるビニル系重合体類等が挙げられる。
なかでも数平均分子量500〜15,000の重合体である高分子可塑剤は、添加することにより、該硬化性組成物の粘度やスランプ性および該組成物を硬化して得られる硬化物の引張り強度、伸びなどの機械特性が調整できるとともに、重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持し、該硬化物にアルキッド塗料を塗布した場合の乾燥性(塗装性ともいう)を改良できる。なお、限定はされないがこの高分子可塑剤は、官能基を有しても有しなくても構わない。
上記で高分子可塑剤の数平均分子量は、500〜15,000と記載したが、好ましくは800〜10,000であり、より好ましくは1,000〜8,000である。分子量が低すぎると熱や降雨により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、アルキッド塗装性が改善できない。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。
これらの高分子可塑剤の中ではポリエーテル系可塑剤と(メタ)アクリル系重合体可塑剤が高伸び特性あるいは高耐候性の点から好ましい。アクリル系重合体の合成法は、従来からの溶液重合で得られるものや、無溶剤型アクリルポリマー等を挙げることができる。後者のアクリル系可塑剤は溶剤や連鎖移動剤を使用せず高温連続重合法(USP4414370、特開昭59−6207、特公平5−58005、特開平1−313522、USP5010166)にて作製されるため本発明の目的にはより好ましい。その例としては特に限定されないが例えば東亞合成品のARUFON UPシリーズ(UP−1000、UP−1110、UP−2000、UP−2130)(SGOと呼ばれる)等が挙げられる(防水ジャーナル2002年6月号参照)。勿論、他の合成法としてリビングラジカル重合法をも挙げることができる。この方法によれば、その重合体の分子量分布が狭く、低粘度化が可能なことから好ましく、更には原子移動ラジカル重合法がより好ましいが、これに限定されるものではない。
高分子可塑剤の分子量分布は特に限定されないが、粘度の点から狭いことが好ましく、1.8未満が好ましい。1.7以下がより好ましく、1.6以下がなお好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましく、1.3以下が最も好ましい。
なお、粘度の点から言えば、主鎖に分岐構造を有する方が同一分子量では粘度が低くなるので好ましい。上述の高温連続重合法はこの例として挙げられる。
上記高分子可塑剤を含む可塑剤は、単独で使用してもよく、2種以上を併用してもよいが、必ずしも必要とするものではない。また必要によっては高分子可塑剤を用い、物性に悪影響を与えない範囲で低分子可塑剤を更に併用しても良い。また、例えば、本発明のビニル系重合体と架橋性官能基を有する重合体任意成分の一つであるポリエーテル系重合体とを混合した組成物の場合には、混合物の相溶性の点から、フタル酸エステル類、アクリル系重合体が特に好ましい。
なおこれら可塑剤は、重合体製造時に配合することも可能である。
可塑剤を用いる場合の使用量は、限定されないが、架橋性シリル基を有する重合体100重量部に対して5〜150重量部、好ましくは10〜120重量部、さらに好ましくは20〜100重量部である。5重量部未満では可塑剤としての効果が発現しにくく、150重量部を越えると硬化物の機械強度が不足する傾向がある。
<充填材>
本発明の硬化性組成物には、活性エネルギー線による硬化を妨げない範囲で、各種充填材を必要に応じて用いても良い。充填材としては、特に限定されないが、木粉、パルプ、木綿チップ、アスベスト、ガラス繊維、炭素繊維、マイカ、クルミ殻粉、もみ殻粉、グラファイト、ケイソウ土、白土、シリカ(ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、非晶質球形シリカ等)、カーボンブラックのような補強性充填材;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、亜鉛末、炭酸亜鉛およびシラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末など樹脂粉末などの充填材;石綿、ガラス繊維およびガラスフィラメント、炭素繊維、ケブラー繊維、ポリエチレンファイバー等の繊維状充填材等が挙げられる。
これら充填材のうちでは沈降性シリカ、ヒュームドシリカ、結晶性シリカ、溶融シリカ、ドロマイト、カーボンブラック、炭酸カルシウム、酸化チタン、タルクなどが好ましい。
特に、活性エネルギー線による硬化を進行しやすくするために透明性または強度の高い硬化物を得たい場合には、主にヒュームドシリカ、沈降性シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、表面処理微細炭酸カルシウム、結晶性シリカ、溶融シリカ、焼成クレー、クレーおよび活性亜鉛華などから選ばれる充填材を添加できる。これらは透明建築用シーラント、透明DIY接着剤等に好適である。なかでも、比表面積(BET吸着法による)が10m/g以上、通常50〜400m/g、好ましくは100〜300m/g程度の超微粉末状のシリカが好ましい。またその表面が、オルガノシランやオルガノシラザン、ジオルガノシクロポリシロキサン等の有機ケイ素化合物で予め疎水処理されたシリカが更に好ましい。
補強性の高いシリカ系充填材のより具体的な例としては、特に限定されないが、ヒュームドシリカの1つである日本アエロジル社のアエロジルや、沈降法シリカの1つである日本シリカ社工業のNipsil等が挙げられる。平均粒径は1nm以上30μ以下のシリカが使用できる。特にヒュームドシリカについては、一次粒子の平均粒径1nm以上50nm以下のヒュームドシリカを用いると、補強効果が特に高いのでより好ましい。なお、本発明における平均粒径とは、篩い分け法による。具体的には、粉体を各種の目開きの篩(マイクロシーブ等)で分級し、測定に供した粉体の全重量の50重量%が通過した篩の目開きに相当する値(重量平均粒径)で定義されるものである。充填剤で補強された組成物は即固定性に優れ、自動車ガラスグレージング接着に好適である。
透明性はPMMA粉末など樹脂粉末などを充填材に用いることによっても得ることができる。
また、低強度で伸びが大である硬化物を得たい場合には、主に酸化チタン、炭酸カルシウム、タルク、酸化第二鉄、酸化亜鉛およびシラスバルーンなどから選ばれる充填材を添加できる。なお、一般的に、炭酸カルシウムは、比表面積が小さいと、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果が充分でないことがある。比表面積の値が大きいほど、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果はより大きくなる。炭酸カルシウムの形状は立方形非立方形、不定形等各種の形状が使用できる。
更に、炭酸カルシウムは、表面処理剤を用いて表面処理を施してある方がより好ましい。表面処理炭酸カルシウムを用いた場合、表面処理していない炭酸カルシウムを用いた場合に比較して、本発明の組成物の作業性を改善し、該硬化性組成物の接着性と耐候接着性の改善効果がより向上すると考えられる。前記の表面処理剤としては脂肪酸、脂肪酸石鹸、脂肪酸エステル等の有機物や各種界面活性剤、および、シランカップリング剤やチタネートカップリング剤等の各種カップリング剤が用いられている。具体例としては、以下に限定されるものではないが、カプロン酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸等の脂肪酸と、それら脂肪酸のナトリウム、カリウム等の塩、そして、それら脂肪酸のアルキルエステルが挙げられる。界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル硫酸エステルや長鎖アルコール硫酸エステル等と、それらのナトリウム塩、カリウム塩等の硫酸エステル型陰イオン界面活性剤、またアルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、パラフィンスルホン酸、α−オレフィンスルホン酸、アルキルスルホコハク酸等と、それらのナトリウム塩、カリウム塩等のスルホン酸型陰イオン界面活性剤等が挙げられる。この表面処理剤の処理量は、炭酸カルシウムに対して、0.1〜20重量%の範囲で処理するのが好ましく、1〜5重量%の範囲で処理するのがより好ましい。処理量が0.1重量%未満の場合には、作業性、接着性と耐候接着性の改善効果が充分でないことがあり、20重量%を越えると、該硬化性組成物の貯蔵安定性が低下することがある。
特に限定はされないが、炭酸カルシウムを用いる場合、配合物のチクソ性や硬化物の破断強度、破断伸び、接着性と耐候接着性等の改善効果を特に期待する場合には膠質炭酸カルシウムを用いるのが好ましい。
一方、重質炭酸カルシウムは配合物の低粘度化や増量、コストダウン等を目的として添加することがあるが、この重質炭酸カルシウムを用いる場合は必要に応じて下記のようなものを使用することができる。
重質炭酸カルシウムとは、天然のチョーク(白亜)、大理石、石灰石などを機械的に粉砕・加工したものである。粉砕方法については乾式法と湿式法があるが、湿式粉砕品は本発明の硬化性組成物の貯蔵安定性を悪化させることが多いために好ましくないことが多い。重質炭酸カルシウムは、分級により、様々な平均粒子径を有する製品となる。特に限定されないが、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果を期待する場合には、比表面積の値が1.5m/g以上50m/g以下のものが好ましく、2m/g以上50m/g以下が更に好ましく、2.4m/g以上50m/g以下がより好ましく、3m/g以上50m/g以下が特に好ましい。比表面積が1.5m/g未満の場合には、その改善効果が充分でないことがある。もちろん、単に粘度を低下させる場合や増量のみを目的とする場合などはこの限りではない。
なお、比表面積の値とは、測定方法としてJIS K 5101に準じて行なった空気透過法(粉体充填層に対する空気の透過性から比表面積を求める方法。)による測定値をいう。測定機器としては、島津製作所製の比表面積測定器SS−100型を用いるのが好ましい。
これらの充填材は目的や必要に応じて単独で併用してもよく、2種以上を併用してもよい。特に限定はされないが、例えば、必要に応じて比表面積の値が1.5m/g以上の重質炭酸カルシウムと膠質炭酸カルシウムを組み合わせると、配合物の粘度の上昇を程々に抑え、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果が大いに期待できる。
充填材を用いる場合の添加量は、架橋性シリル基を有する重合体100重量部に対して、充填材を5〜1,000重量部の範囲で使用するのが好ましく、20〜500重量部の範囲で使用するのがより好ましく、40〜300重量部の範囲で使用するのが特に好ましい。配合量が5重量部未満の場合には、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果が充分でないことがあり、1,000重量部を越えると該硬化性組成物の作業性が低下することがある。充填材は単独で使用しても良いし、2種以上併用しても良い。
なお、ドロマイト、カーボンブラック、炭酸カルシウム、酸化チタン、タルク等は多量に添加すると本発明の透明性を妨げ、不透明な硬化物となってしまう恐れがあるので注意が必要である。
<微小中空粒子>
また、更に、物性の大きな低下を起こすことなく軽量化、低コスト化を図ることを目的として、微小中空粒子をこれら補強性充填材に併用しても良い。
このような微少中空粒子(以下バルーンという)は、特に限定はされないが、「機能性フィラーの最新技術」(CMC)に記載されているように、直径が1mm以下、好ましくは500μm以下、更に好ましくは200μm以下の無機質あるいは有機質の材料で構成された中空体が挙げられる。特に、真比重が1.0g/cm以下である微少中空体を用いることが好ましく、更には0.5g/cm以下である微少中空体を用いることが好ましい。
前記無機系バルーンとして、珪酸系バルーンと非珪酸系バルーンとが例示でき、珪酸系バルーンには、シラスバルーン、パーライト、ガラス(シリカ)バルーン、フライアッシュバルーン等が、非珪酸系バルーンには、アルミナバルーン、ジルコニアバルーン、カーボンバルーン等が例示できる。これらの無機系バルーンの具体例として、シラスバルーンとしてイヂチ化成製のウインライト、三機工業製のサンキライト、ガラス(シリカ)バルーンとして富士シリシア化学のフジバルーン、日本板硝子製のカルーン、住友スリーエム製のセルスターZ−28、EMERSON&CUMING製のMICRO BALLOON、PITTSBURGE CORNING製のCELAMIC GLASSMODULES、3M製のGLASS BUBBLES、旭硝子製のQ−CEL、太平洋セメント製のE−SPHERES、フライアッシュバルーンとして、PFAMARKETING製のCEROSPHERES、FILLITE U.S.A製のFILLITE、アルミナバルーンとして昭和電工製のBW、ジルコニアバルーンとしてZIRCOA製のHOLLOW ZIRCONIUM SPHEES、カーボンバルーンとして呉羽化学製クレカスフェア、GENERAL TECHNOLOGIES製カーボスフェアが市販されている。
前記有機系バルーンとして、熱硬化性樹脂のバルーンと熱可塑性樹脂のバルーンが例示でき、熱硬化性のバルーンにはフェノールバルーン、エポキシバルーン、尿素バルーンが、熱可塑性バルーンにはサランバルーン、ポリスチレンバルーン、ポリメタクリレートバルーン、ポリビニルアルコールバルーン、スチレン−アクリル系バルーンが例示できる。また、架橋した熱可塑性樹脂のバルーンも使用できる。ここでいうバルーンは、発泡後のバルーンでも良く、発泡剤を含むものを配合後に発泡させてバルーンとしても良い。
これらの有機系バルーンの具体例として、フェノールバルーンとしてユニオンカーバイド製のUCAR及びPHENOLIC MICROBALLOONS、エポキシバルーンとしてEMERSON&CUMING製のECCOSPHERES、尿素バルーンとしてEMERSON&CUMING製のECCOSPHERES VF−O、サランバルーンとしてDOW CHEMICAL製のSARAN MICROSPHERES、日本フィラメント製のエクスパンセル、松本油脂製薬製のマツモトマイクロスフェア、ポリスチレンバルーンとしてARCO POLYMERS製のDYLITE EXPANDABLE POLYSTYRENE、BASF WYANDOTE製の EXPANDABLE POLYSTYRENE BEADS、架橋型スチレン−アクリル酸バルーンには日本合成ゴム製のSX863(P)が、市販されている。
上記バルーンは単独で使用しても良く、2種類以上混合して用いても良い。さらに、これらバルーンの表面を脂肪酸、脂肪酸エステル、ロジン、ロジン酸リグニン、シランカップリング剤、チタンカップリング剤、アルミカップリング剤、ポリプロピレングリコール等で分散性および配合物の作業性を改良するために処理したものも使用することができる。これらの、バルーンは配合物の硬化前では切れ性等の作業性改善、硬化後では柔軟性および伸び・強度を損なうことなく、軽量化させることによるコストダウン、さらには表面のつや消し、スパッタ等意匠性付与等のために使用される。
バルーンの含有量は、特に限定されないが架橋性シリル基を有する重合体100重量部に対して、好ましくは0.1〜50部、更に好ましくは0.1〜30部の範囲で使用できる。この量が0.1部未満では軽量化の効果が小さく50部以上ではこの配合物を硬化させた場合の機械特性のうち、引張強度の低下が認められることがある。またバルーンの比重が0.1以上の場合は3〜50部、更に好ましくは5〜30部が好ましい。
<物性調整剤>
本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。
物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n−プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ−グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本発明の組成物を硬化させた時の硬度を上げたり、硬度を下げ、伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
<シラノール含有化合物>
本発明の硬化性組成物には、硬化物の物性を変える等の必要に応じてシラノール含有化合物を添加しても良い。シラノール含有化合物とは、分子内に1個のシラノール基を有する化合物、及び/又は、水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物のことをいう。これらは一方のみを用いてもよいし、両化合物を同時に用いてもよい。
シラノール含有化合物の一つである分子内に1個のシラノール基を有する化合物は、特に限定されず、下記に示した化合物、
(CHSiOH、(CHCHSiOH、(CHCHCHSiOH、(n−Bu)SiOH、(sec−Bu)SiOH、(t−Bu)SiOH、(t−Bu)Si(CHOH、(C11SiOH、(C13SiOH、(CSiOH、(CSi(CH)OH、(C)Si(CHOH、(CSi(C)OH、CSi(COH、CCHSi(COH、C10Si(CHOH
(ただし、上記式中Cはフェニル基を、C10はナフチル基を示す。)
等のような(R”)SiOH(ただし式中R”は同一または異種の置換もしくは非置換のアルキル基またはアリール基)で表わすことができる化合物、
Figure 2007029733
等のようなシラノール基を含有する環状ポリシロキサン化合物、
Figure 2007029733
(式中、Rは炭素数1〜10の炭化水素基を、nは1〜20の整数を示す。)
等のようなシラノール基を含有する鎖状ポリシロキサン化合物、
Figure 2007029733
(式中、Rは炭素数1〜10の炭化水素基を、nは1〜20の整数を示す。)
等のような主鎖が珪素、炭素からなるポリマー末端にシラノール基が結合した化合物、
Figure 2007029733
(式中、Rは炭素数1〜10の炭化水素基を、nは1〜20の整数を示す。)
等のようなポリシラン主鎖末端にシラノール基が結合した化合物、
Figure 2007029733
(式中、nは1〜20の整数、mは1〜20の整数を示す。)
等のような主鎖が珪素、炭素、酸素からなるポリマー末端にシラノール基が結合した化合物等が例示できる。中でも、入手が容易であり、効果の点から分子量の小さい(CHSiOH等が好ましい。
上記、分子内に1個のシラノール基を有する化合物は、架橋性シリル基を有する重合体の架橋性シリル基あるいは架橋により生成したシロキサン結合と反応することにより、架橋点の数を減少させ、硬化物に柔軟性を与えるとともに表面低タックや耐埃付着性に優れた組成物を与える。
また本発明の成分の1つである、水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物は、特に限定されないが、
N,O−ビス(トリメチルシリル)アセトアミド、N−(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)トリフルオロアセトアミド、N−メチル−N−トリメチルシリルトリフルオロアセトアミド、ビストリメチルシリル尿素、N−(t−ブチルジメチルシリル)N−メチルトリフルオロアセトアミド、(N,N−ジメチルアミノ)トリメチルシラン、(N,N−ジエチルアミノ)トリメチルシラン、ヘキサメチルジシラザン、1,1,3,3−テトラメチルジシラザン、N−(トリメチルシリル)イミダゾール、トリメチルシリルトリフルオロメタンスルフォネート、トリメチルシリルフェノキシド、n−オクタノールのトリメチルシリル化物、2―エチルヘキサノールのトリメチルシリル化物、グリセリンのトリス(トリメチルシリル)化物、トリメチロールプロパンのトリス(トリメチルシリル)化物、ペンタエリスリトールのトリス(トリメチルシリル)化物、ペンタエリスリトールのテトラ(トリメチルシリル)化物、(CHSiNHSi(CH、(CHSiNSi(CH、アリロキシトリメチルシラン、N,O−ビス(トリメチルシリル)アセトアミド、N−(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)トリフルオロアセトアミド、N−メチル−N−トリメチルシリルトリフルオロアセトアミド、ビストリメチルシリル尿素、N−(t−ブチルジメチルシリル)N−メチルトリフルオロアセトアミド、(N,N−ジメチルアミノ)トリメチルシラン、(N,N−ジエチルアミノ)トリメチルシラン、ヘキサメチルジシラザン、1,1,3,3−テトラメチルジシラザン、N−(トリメチルシリル)イミダゾール、トリメチルシリルトリフルオロメタンスルフォネート、トリメチルシリルフェノキシド、n−オクタノールのトリメチルシリル化物、2―エチルヘキサノールのトリメチルシリル化物、グリセリンのトリス(トリメチルシリル)化物、トリメチロールプロパンのトリス(トリメチルシリル)化物、ペンタエリスリトールのトリス(トリメチルシリル)化物、ペンタエリスリトールのテトラ(トリメチルシリル)化物、(CHSiNHSi(CH、(CHSiNSi(CH
Figure 2007029733
等が好適に使用できるが加水分解生成物の含有シラノール基の量からは(CHSiNHSi(CHが特に好ましい。
さらには本発明の成分の1つである、水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物は、特に限定されないが、上記化合物以外に下記一般式(46)で表される化合物が好ましい。
((R58SiO)59 (46)
(式中、R58は上述したものと同様である。nは正数を、R59は活性水素含有化合物から一部あるいは全ての活性水素を除いた基を示す。)
58は、メチル基、エチル基、ビニル基、t−ブチル基、フェニル基が好ましく、さらにメチル基が好ましい。
(R58Si基は、3個のR58が全てメチル基であるトリメチルシリル基が特に好ましい。また、nは1〜5が好ましい。
上記R59の由来となる活性水素含有化合物としては特に限定されないが、例えば、
メタノール、エタノール、n−ブタノール、i−ブタノール、t−ブタノール、n−オクタノール、2−エチルヘキサノール、ベンジルアルコール、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、プロパンジオール、テトラメチレングリコール、ポリテトラメチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等のアルコール類;フェノール、クレゾール、ビスフェノールA、ヒドロキノン等のフェノール類;ギ酸、酢酸、プロピオン酸、ラウリン酸、パルミチン酸、ステアリン酸、ベヘン酸、アクリル酸、メタクリル酸、オレイン酸、リノール酸、リノレン酸、ソルビン酸、シュウ酸、マロン酸、コハク酸、アジピン酸、マレイン酸、安息香酸、フタル酸、テレフタル酸、トリメリット酸等のカルボン酸類;アンモニア;メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、n−ブチルアミン、イミダゾール等のアミン類;アセトアミド、ベンズアミド等の酸アミド類、尿素、N,N’−ジフェニル尿素等の尿素類;アセトン、アセチルアセトン、2,4−ヘプタジオン等のケトン類等が挙げられる。
上記一般式(46)で表される水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物は、例えば上述の活性水素含有化合物等に、トリメチルシリルクロリドやジメチル(t−ブチル)クロリド等のようなシリル化剤とも呼ばれる(R58Si基とともにハロゲン基等の活性水素と反応し得る基を有する化合物を反応させることにより得ることができるが、これらに限定されるものではない(ただし、R58は上述したものと同様である。)。
上記一般式(46)で表される化合物を具体的に例示すると、
アリロキシトリメチルシラン、 N,O−ビス(トリメチルシリル)アセトアミド、N−(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)トリフルオロアセトアミド、N−メチル−N−トリメチルシリルトリフルオロアセトアミド、ビストリメチルシリル尿素、N−(t−ブチルジメチルシリル)N−メチルトリフルオロアセトアミド、(N,N−ジメチルアミノ)トリメチルシラン、(N,N−ジエチルアミノ)トリメチルシラン、ヘキサメチルジシラザン、1,1,3,3−テトラメチルジシラザン、N−(トリメチルシリル)イミダゾール、トリメチルシリルトリフルオロメタンスルフォネート、トリメチルシリルフェノキシド、n−オクタノールのトリメチルシリル化物、2―エチルヘキサノールのトリメチルシリル化物、グリセリンのトリス(トリメチルシリル)化物、トリメチロールプロパンのトリス(トリメチルシリル)化物、ペンタエリスリトールのトリス(トリメチルシリル)化物、ペンタエリスリトールのテトラ(トリメチルシリル)化物、ポリプロピレングリコールのトリメチルシリル化物、ポリプロピレントリオールのトリメチルシリル化物等ポリエーテルポリオールのトリメチルシリル化物、ポリプロピレンテトラオールのトリメチルシリル化物、アクリルポリオールのトリメチルシリル化物等が挙げられるが、これらに限定されない。これらは単独で用いてもよく、2種以上を併用してもよい。
また、一般式(((R60SiO)(R61O)Zで表すことができるような化合物、CHO(CHCH(CH)O)Si(CH
CH=CHCH(CHCH(CH)O)Si(CH
(CHSiO(CHCH(CH)O)Si(CH
(CHSiO(CHCH(CH)O)Si(CH
(式中、R60は同一または異種の置換もしくは非置換の1価の炭化水素基または水素原子、R61は炭素数1〜8の2価の炭化水素基、s、tは正の整数で、sは1〜6、s×tは5以上、Zは1〜6価の有機基)
等も好適に使用できる。これらは単独で用いてもよく、2種以上を併用してもよい。
水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物の中では、貯蔵安定性、耐候性等に悪影響を及ぼさない点で、加水分解後に生成する活性水素化合物はフェノール類、酸アミド類及びアルコール類が好ましく、活性水素化合物が水酸基であるフェノール類およびアルコール類が更に好ましい。
上記の化合物の中では、N,O−ビス(トリメチルシリル)アセトアミド、N−(トリメチルシリル)アセトアミド、トリメチルシリルフェノキシド、n−オクタノールのトリメチルシリル化物、2―エチルヘキサノールのトリメチルシリル化物、グリセリンのトリス(トリメチルシリル)化物、トリメチロールプロパンのトリス(トリメチルシリル)化物、ペンタエリスリトールのトリス(トリメチルシリル)化物、ペンタエリスリトールのテトラ(トリメチルシリル)化物等が好ましい。
この水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物は、貯蔵時、硬化時あるいは硬化後に水分と反応することにより、分子内に1個のシラノール基を有する化合物を生成する。この様にして生成した分子内に1個のシラノール基を有する化合物は、上述のようにビニル系重合体の架橋性シリル基あるいは架橋により生成したシロキサン結合と反応することにより、架橋点の数を減少させ、硬化物に柔軟性を与えているものと推定される。
このシラノール含有化合物の構造は、本発明のビニル系重合体のYの種類とaの数によって選択することが可能であり、目的や用途に応じて本発明の硬化性や機械物性等を制御することが可能である。
シラノール含有化合物は、後述の空気酸化硬化性物質と併用してもよく、併用することにより、硬化物のモジュラスを低いままに保ち、表面へ塗装したアルキッド塗料の硬化性および埃付着性を改善するので好ましい。
シラノール含有化合物の添加量は、硬化物の期待物性に応じて適宜調整可能である。シラノール含有化合物は、架橋性シリル基を有する重合体100重量部に対して0.1〜50重量部、好ましくは0.3〜20重量部、さらに好ましくは0.5〜10重量部添加できる。0.1重量部未満では添加効果が現れず、50重量部を越えると架橋が不十分になり、硬化物の強度やゲル分率が低下しすぎる。
また、シラノール含有化合物を添加する時期は特に限定されず、重合体の製造時に添加してもよく、硬化性組成物の作製時に添加してもよい。
<チクソ性付与剤(垂れ防止剤)>
本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。
チクソ性付与剤(垂れ防止剤)は揺変性付与剤ともいう。チクソ性付与とはカートリッジからビード状に押出したり、ヘラ等により塗布したり、スプレー等により吹付けたりするときのように強い力を加えられる時には流動性を示し、塗布ないしは施工後に硬化するまでの間、流下しない性質を付与するものである。
また、チクソ性付与剤(垂れ防止剤)としては特に限定されないが、例えば、ディスパロン(楠本化成製)に代表されるアマイドワックスや水添ヒマシ油、水添ヒマシ油誘導体類、脂肪酸の誘導体、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類、1,3,5−トリス(トリアルコキシシリルアルキル)イソシアヌレート等の有機系化合物や、脂肪酸や樹脂酸で表面処理した炭酸カルシウムや微粉末シリカ、カーボンブラック等の無機系化合物が挙げられる。
微粉末シリカとは、二酸化ケイ素を主成分とする天然又は人工の無機充填剤を意味する。具体的には、カオリン、クレー、活性白土、ケイ砂、ケイ石、ケイ藻土、無水ケイ酸アルミニウム、含水ケイ酸マグネシウム、タルク、パーライト、ホワイトカーボン、マイカ微粉末、ベントナイト、有機ベントナイト等を例示できる。
なかでも、ケイ素を含む揮発性化合物を気相で反応させることによって作られる超微粒子状無水シリカや有機ベントナイトが好ましい。少なくとも50m/g、更には50〜400m/gの比表面積を有していることが好ましい。また、親水性シリカ、疎水性シリカの何れをも使用することができる。表面処理はあってもなくても構わないが、ケイ素原子に結合した有機置換基としてメチル基のみを有するシラザン、クロロシラン、アルコキシシランもしくはポリシロキサンによりその表面が疎水処理されている疎水性シリカが好ましい。
上記の表面処理剤を具体的に例示すると、ヘキサメチルジシラザン等のようなシラザン類;トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン等のようなハロゲン化シラン類;トリメチルアルコキシシラン、ジメチルジアルコキシシラン、メチルトリアルコキシシラン等のようなアルコキシシラン類(ここで、アルコキシ基としてはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる);環状あるいは直鎖状のポリジメチルシロキサン等のようなシロキサン類等が挙げられ、これらは単独又は2種以上を組み合わせて使用してもよい。これらの中でもシロキサン類(ジメチルシリコーンオイル)によって表面処理を施された疎水性微粉末シリカが揺変性付与効果の面から好ましい。
また、微粉末シリカにジエチレングリコール,トリエチレングリコール,ポリエチレングリコール等のポリエーテル化合物,ポリエーテル化合物と官能性シランの反応生成物等やエチレンオキシド鎖を有する非イオン系界面活性剤を併用するとチクソ性が増す。この非イオン系界面活性剤は1種又は2種以上使用してもよい。
この微粉末シリカの具体例としては、例えば、日本アエロジル製の商品名Aerosil R974、R972、R972V、R972CF、R805、R812、R812S、RY200、RX200、RY200S、#130、#200、#300、R202等や、日本シリカ製の商品名Nipsil SSシリーズ、徳山曹達製の商品名Rheorosil MT−10、MT−30、QS−102、QS−103、Cabot製の商品名Cabosil TS−720、MS−5,MS−7、豊順洋行製のエスベンやオルガナイト等の市販品が挙げられる。
また、有機ベントナイトとは、主にモンモリロナイト鉱石を細かく粉砕した粉末状の物質で、これを各種有機物質で表面処理したものをいう。有機化合物としては脂肪族第1級アミン、脂肪族第4級アミン(これらはいずれも炭素数20以下が好ましい)などが用いられる。この有機ベントナイトの具体例としては、例えば、白石工業製の商品名オルベンD、NewDオルベン、土屋カオリン製の商品名ハードシル、Bergess Pigment製のクレー#30、Southern Clay社#33、米国National Lead製の「ベントン(Bentone)34」(ジメチルオクタデシルアンモニウムベントナイト)等が挙げられる。
チクソ性指標とは、回転粘度計による粘度測定において、回転速度の低速(例えば、0.5〜12rpm)と高速(例えば、2.5〜60rpm)とにおける見掛け粘度の比を意味する(ただし、高速回転の速度と低速回転の速度の比が少なくとも5、更には5〜10の範囲内が好ましい。
これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。
<光硬化性物質>
本発明の硬化性組成物には、必要に応じて光硬化性物質を添加しても良い。光硬化性物質とは、光の作用によって短時間に、分子構造が化学変化をおこし、硬化などの物性的変化を生ずるものである。この光硬化性物質を添加することにより、硬化性組成物を硬化させた際の硬化物表面の粘着性(残留タックともいう)を低減できる。この光硬化性物質は、光をあてることにより硬化し得る物質であるが、代表的な光硬化性物質は、例えば室内の日の当たる位置(窓付近)に1日間、室温で静置することにより硬化させることができる物質である。この種の化合物には、有機単量体、オリゴマー、樹脂あるいはそれらを含む組成物など多くのものが知られており、その種類は特に限定されないが、例えば、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂、エポキシ化合物、ビニルエーテル化合物等が挙げられる。
不飽和アクリル系化合物としては、具体的には、エチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ネオペンチルアルコール等の低分子量アルコール類の(メタ)アクリル酸エステル類(オリゴエステルアクリレート);ビスフェノールA、イソシアヌル酸等の酸あるいは上記低分子量アルコール等をエチレンオキシドやプロピレンオキシドで変性したアルコール類の(メタ)アクリル酸エステル類;主鎖がポリエーテルで末端に水酸基を有するポリエーテルポリオール、主鎖がポリエーテルであるポリオール中でビニル系モノマーをラジカル重合することにより得られるポリマーポリオール、主鎖がポリエステルで末端に水酸基を有するポリエステルポリオール、主鎖がビニル系あるいは(メタ)アクリル系重合体であり、主鎖中に水酸基を有するポリオール等の(メタ)アクリル酸エステル類;主鎖がビニル系あるいは(メタ)アクリル系重合体であり、主鎖中に多官能アクリレートを共重合して得られる(メタ)アクリル酸エステル類;ビスフェノールA型やノボラック型等のエポキシ樹脂と(メタ)アクリル酸を反応させることにより得られるエポキシアクリレート系オリゴマー類;ポリオール、ポリイソシアネートおよび水酸基含有(メタ)アクリレート等を反応させることにより得られる分子鎖中にウレタン結合および(メタ)アクリル基を有するウレタンアクリレート系オリゴマー等が挙げられる。
ポリケイ皮酸ビニル類とは、シンナモイル基を感光基とする感光性樹脂であり、ポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル系誘導体が挙げられる。
アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はアジド化合物を感光剤として加えたゴム感光液のほか「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、93頁〜、106頁から、117頁〜)に詳細な例示があり、これらを単独又は混合し、必要に応じて増感剤を加えて使用することができる。
エポキシ化合物、ビニルエーテル化合物としては、エポキシ基末端またはビニルエーテル基末端ポリイソブチレン等が挙げられる。
上記の光硬化性物質の中では、取り扱い易いという理由で不飽和アクリル系化合物が好ましい。
光硬化性物質は、架橋性シリル基を有する重合体100重量部に対して0.01〜20重量部添加するのが好ましい。0.01重量部未満では効果が小さく、また20重量部を越えると物性への悪影響が出ることがある。なお、ケトン類、ニトロ化合物などの増感剤やアミン類等の促進剤を添加すると、効果が高められる場合がある。

<空気酸化硬化性物質>
本発明の硬化性組成物には、必要に応じて空気酸化硬化性物質を添加しても良い。空気酸化硬化性物質とは、空気中の酸素により架橋硬化できる不飽和基を有する化合物である。この空気酸化硬化性物質を添加することにより、硬化性組成物を硬化させた際の硬化物表面の粘着性(残留タックともいう)を低減できる。本発明における空気酸化硬化性物質は、空気と接触させることにより硬化し得る物質であり、より具体的には、空気中の酸素と反応して硬化する性質を有するものである。代表的な空気酸化硬化性物質は、例えば空気中で室内に1日間静置することにより硬化させることができる。
空気酸化硬化性物質としては、例えば、桐油、アマニ油等の乾性油;これら乾性油を変性して得られる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコーン樹脂、ウレタン樹脂;1,2−ポリブタジエン、1,4−ポリブタジエン、C5〜C8ジエンの重合体や共重合体、更には該重合体や共重合体の各種変性物(マレイン化変性物、ボイル油変性物など)などが具体例として挙げられる。これらのうちでは桐油、ジエン系重合体のうちの液状物(液状ジエン系重合体)やその変性物が特に好ましい。
上記液状ジエン系重合体の具体例としては、ブタジエン、クロロプレン、イソプレン、1,3−ペンタジエン等のジエン系化合物を重合又は共重合させて得られる液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレンなどの単量体とをジエン系化合物が主体となるように共重合させて得られるNBR,SBR等の重合体や更にはそれらの各種変性物(マレイン化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。これら液状ジエン系化合物のうちでは液状ポリブタジエンが好ましい。
空気酸化硬化性物質は、単独で用いてもよく、2種以上を併用してもよい。また空気酸化硬化性物質と同時に酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果を高められる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸コバルト、オクチル酸ジルコニウム等の金属塩やアミン化合物等が例示される。
空気酸化硬化性物質は、前述の光硬化性物質と併用してもよく、さらに前述のシラノール含有化合物を併用することができる。これら2成分の併用または3成分の併用によりその効果を更に発揮し、特に長期に渡って曝露される場合や、塵埃や微粉土砂の多い汚染性の過酷な地域においても顕著な汚染防止効果を発揮することがあるので特に好ましい。
空気酸化硬化性物質は、架橋性シリル基を有する重合体100重量部に対して0.01〜20重量部添加するのが好ましい。0.01重量部未満では効果が小さく、また20重量部を越えると物性への悪影響が出ることがある。

<酸化防止剤>
本発明の硬化性組成物には、必要に応じて酸化防止剤を添加しても良い。酸化防止剤は各種のものが知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー化学発行の「高分子材料の劣化と安定化」(235〜242)等に記載された種々のものが挙げられるが、これらに限定されるわけではない。 例えば、MARK PEP−36、MARK AO−23等のチオエーテル系(以上いずれも旭電化工業製)、Irgafos38、Irgafos168、IrgafosP−EPQ(以上いずれもチバ・スペシャルティ・ケミカルズ製)等のようなリン系酸化防止剤等が挙げられる。なかでも、以下に示したようなヒンダードフェノール系化合物が好ましい。
ヒンダードフェノール系化合物としては、具体的には以下のものが例示できる。2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、モノ(又はジ又はトリ)(αメチルベンジル)フェノール、2,2’−メチレンビス(4エチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,5−ジ−tert−ブチルハイドロキノン、2,5−ジ−tert−アミルハイドロキノン、トリエチレングリコール−ビス−[3−(3−t−ブチル−5−メチル−4ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルフォスフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルホスホン酸エチル)カルシウム、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、2,4−2,4−ビス[(オクチルチオ)メチル]o−クレゾール、N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−オクチルフェニル)−ベンゾトリアゾール、メチル−3−[3−t−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニル]プロピオネート−ポリエチレングリコール(分子量約300)との縮合物、ヒドロキシフェニルベンゾトリアゾール誘導体、2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、2,4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート等が挙げられる。
商品名で言えば、ノクラック200、ノクラックM−17、ノクラックSP、ノクラックSP−N、ノクラックNS−5、ノクラックNS−6、ノクラックNS−30、ノクラック300、ノクラックNS−7、ノクラックDAH(以上いずれも大内新興化学工業製)、MARK AO−30、MARK AO−40、MARK AO−50、MARK AO−60、MARK AO−616、MARK AO−635、MARK AO−658、MARK AO−80、MARK AO−15、MARK AO−18、MARK 328、MARK AO−37(以上いずれも旭電化工業製)、IRGANOX−245、IRGANOX−259、IRGANOX−565、IRGANOX−1010、IRGANOX−1024、IRGANOX−1035、IRGANOX−1076、IRGANOX−1081、IRGANOX−1098、IRGANOX−1222、IRGANOX−1330、IRGANOX−1425WL(以上いずれもチバ・スペシャルティ・ケミカルズ製)、SumilizerGM、SumilizerGA−80(以上いずれも住友化学製)等が例示できるがこれらに限定されるものではない。
酸化防止剤は後述する光安定剤と併用してもよく、併用することによりその効果を更に発揮し、特に耐熱性が向上することがあるため特に好ましい。予め酸化防止剤と光安定剤を混合してあるチヌビンC353、チヌビンB75(以上いずれもチバ・スペシャルティ・ケミカルズ製)などを使用しても良い。
酸化防止剤の使用量は、架橋性シリル基を有する重合体100重量部に対して0.1〜10重量部の範囲であることが好ましい。0.1重量部未満では耐候性を改善の効果が少なく、10重量部超では効果に大差がなく経済的に不利である。

<耐光安定剤>
本発明の硬化性組成物には、必要に応じて耐光安定剤を添加しても良い。耐光安定剤は各種のものが知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー化学発行の「高分子材料の劣化と安定化」(235〜242)等に記載された種々のものが挙げられる。これらに限定されるわけではないが、耐光安定剤の中では、紫外線吸収剤やヒンダードアミン系光安定剤化合物が好ましい。具体的には、チヌビンP、チヌビン234、チヌビン320、チヌビン326、チヌビン327、チヌビン329、チヌビン213(以上いずれもチバ・スペシャルティ・ケミカルズ製)等のようなベンゾトリアゾール系化合物やチヌビン1577等のようなトリアジン系、CHIMASSORB81等のようなベンゾフェノン系、チヌビン120(チバ・スペシャルティ・ケミカルズ製)等のようなベンゾエート系化合物等が例示できる。
また、ヒンダードアミン系化合物も好ましく、そのような化合物を以下に記載する。
コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]、N,N’−ビス(3アミノプロピル)エチレンジアミン−2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、コハク酸−ビス(2,2,6,6−テトラメチル−4−ピペリディニル)エステル等が挙げられる。
商品名で言えば、チヌビン622LD、チヌビン144、CHIMASSORB944LD、CHIMASSORB119FL、Irgafos168、(以上いずれもチバ・スペシャルティ・ケミカルズ製)、MARK LA−52、MARK LA−57、MARK LA−62、MARK LA−67、MARK LA−63、MARK LA−68、MARK LA−82、MARK LA−87、(以上いずれも旭電化工業製)、サノールLS−770、サノールLS−765、サノールLS−292、サノールLS−2626、サノールLS−1114、サノールLS−744、サノールLS−440(以上いずれも三共製)などが例示できるがこれらに限定されるものではない。
耐光安定剤は前述した酸化防止剤と併用してもよく、併用することによりその効果を更に発揮し、特に耐候性が向上することがあるため特に好ましい。組み合わせは特に限定されないが、前述のヒンダードフェノール系酸化防止剤と例えばベンゾトリアゾール系の紫外線吸収剤との組み合わせや前述のヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤化合物との組合せが好ましい。あるいは、前述のヒンダードフェノール系酸化防止剤と例えばベンゾトリアゾール系の紫外線吸収剤とヒンダードアミン系光安定剤化合物との組合せが好ましい。予め光安定剤と酸化防止剤を混合してあるチヌビンC353、チヌビンB75(以上いずれもチバ・スペシャルティ・ケミカルズ製)などを使用しても良い。
ヒンダードアミン系光安定剤は前述した光硬化性物質と併用してもよく、併用することによりその効果を更に発揮し、特に耐候性が向上することがあるため特に好ましい。組み合わせは特に限定されないが、この場合、3級アミン含有のヒンダードアミン系光安定剤が貯蔵中の粘度上昇が少なく貯蔵安定性が良好であるので好ましい。
光安定剤の使用量は、架橋性シリル基を有する重合体100重量部に対して0.1〜10重量部の範囲であることが好ましい。0.1重量部未満では耐候性を改善の効果が少なく、10重量部超では効果に大差がなく経済的に不利である。

<相溶化剤>
本発明の硬化性組成物には、相溶化剤を添加することができる。このような添加物の具体例は、たとえば、特開2001−329025の明細書に記載されている複数のビニル系モノマーの共重合体等が使用できる。
<分子中にα,βジオール構造又はα,γジオール構造を有する化合物>
本発明の硬化性組成物に含有される分子中にα,βジオール構造又はα,γジオール構造を有する化合物を添加しても構わない。α,βジオール構造又はα,γジオール構造を有する化合物としては、一般によく知られたものが利用できる。なお、本明細書中、上記α,βジオール構造は、隣接する炭素原子に2つの水酸基を有する構造を表し、上記α,γジオール構造は、一つおいて隣り合う炭素原子に2つの水酸基を有する構造を表し、また、グリセリン等に代表されるように、α,βジオール構造とα,γジオール構造の両方、ないしは何れかの構造を含むトリオールやテトラオール等のポリオールも含む。
上記分子中にα,βジオール構造又はα,γジオール構造を有する化合物としては特に限定されず、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、2,3−ブタンジオール、ピナコール、2,2−ジメチル−1,3−プロパンジオール、2−メチル−2−ヒドロキシメチル−1,3−プロパンジオール等のジオール類;グリセリン、1,2,6−ヘキサントリオール、1,1,1−トリス(ヒドロキシメチル)プロパン、2,2−ビス(ヒドロキシメチル)ブタノール等のトリオール類;ペンタエリスリトール、D−ソルビトール、D−マンニトール、ジグリセリン、ポリグリセリン等の4価以上のポリオール類;グリセリンモノステアレート、グリセリンモノイソステアレート、グリセリンモノオレエート、グリセリンモノラウレート、グリセリンモノパルミテート、グリセリンモノカプリレート、グリセリンモノアセテート、グリセリンモノベヘネート等のグリセリンモノカルボン酸エステル類;
ジグリセリンモノステアレート、ジグリセリンモノオレエート、ジグリセリンモノラウレート、テトラグリセリンモノステアレート、テトラグリセリンモノオレエート、テトラグリセリンモノラウレート、テトラグリセリンジステアレート、テトラグリセリンジオレエート、テトラグリセリンジラウレート、デカグリセリンモノステアレート、デカグリセリンモノオレエート、デカグリセリンモノラウレート、デカグリセリンジステアレート、デカグリセリンジオレエート、デカグリセリンジラウレート等のポリグリセリンカルボン酸エステル類;ペンタエリスリトールモノステアレート、ペンタエリスリトールモノイソステアレート、ペンタエリスリトールモノオレエート、ペンタエリスリトールモノラウレート等のペンタエリスリトールモノカルボン酸エステル類;ペンタエリスリトールジステアレート、ペンタエリスリトールジオレエート、ペンタエリスリトールジラウレート等のペンタエリスリトールジカルボン酸エステル類;
ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノベヘネート等のソルビタンモノカルボン酸エステル類;ソルビタンジステアレート、ソルビタンジオレエート、ソルビタンジラウレート、ソルビタンジパルミテート、ソルビタンジベヘネート等のソルビタンジカルボン酸エスエル類;グリセリンモノステアリルエーテル、グリセリンモノオレイルエーテル、グリセリンモノラウリルエーテル、グリセリンモノ−2−エチルヘキシルエーテル等のグリセリンモノアルキルエーテル類;ジグリセリンモノステアリルエーテル、ジグリセリンモノオレイルエーテル、ジグリセリンモノラウリルエーテル、テトラグリセリンモノステアリルエーテル、テトラグリセリンモノオレイルエーテル、テトラグリセリンモノラウリルエーテル、テトラグリセリンジステアリルエーテル、テトラグリセリンジオレイルエーテル、テトラグリセリンジラウリルエーテル、デカグリセリンモノステアリルエーテル、デカグリセリンモノオレイルエーテル、デカグリセリンモノラウリルエーテル、デカグリセリンジステアリルエーテル、デカグリセリンジオレイルエーテル、デカグリセリンジラウリルエーテル等のポリグリセリンアルキルエーテル類;
ペンタエリスリトールモノステアリルエーテル、ペンタエリスリトールモノオレイルエーテル、ペンタエリスリトールモノラウリルエーテル等のペンタエリスリトールモノアルキルエーテル類;ペンタエリスリトールジステアリルエーテル、ペンタエリスリトールジオレイルエーテル、ペンタエリスリトールジラウリルエーテル等のペンタエリスリトールジアルキルエーテル類;ソルビタンモノステアリルエーテル、ソルビタンモノオレイルエーテル、ソルビタンモノラウリルエーテル等のソルビタンモノアルキルエーテル類;ソルビタンジステアリルエーテル、ソルビタンジオレイルエーテル、ソルビタンジラウリルエーテル等のソルビタンジアルキルエーテル類等を挙げることができる。
上記化合物の多くは、乳化剤、界面活性剤、分散剤、消泡剤、防曇剤、可溶化剤、増粘剤、滑剤として汎用のものが多く、容易に入手できる。
上記の化合物は、単独で使用してもよいし2種以上併用してもよい。上記の化合物の使用量は、ビニル系重合体(I)100重量部に対し、0.01〜100重量部が好ましい。0.01重量部未満であると、目的とする効果が得られず、100重量部を超えると、硬化物の機械的強度が不足するという問題点を生じるため好ましくない。より好ましくは、0.1〜20重量部である。
<その他の添加剤>
本発明の硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、難燃剤、硬化性調整剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。
このような添加物の具体例は、たとえば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号の各明細書などに記載されている。
本発明の硬化性組成物は、実質的に無溶剤で使用できる。作業性の観点等から溶剤を使用しても構わないが、環境への影響から使用しないことが望ましい。

<<配合物の形態>>
本発明の硬化性組成物は、特に限定はされないが、全ての配合成分を予め配合密封保存した1成分型として調製しても良く、ビニル系重合体(I)と光酸発生剤やその他の硬化剤・硬化触媒を別々にしておき、該配合材を使用前に混合する2成分型として調整しても良い。上述のように、一般的な架橋性シリル基を有する重合体の1成分型は、物理的、化学的に十分な脱水が必要であるが、本発明の組成物の場合は、光酸発生剤は光照射までは硬化触媒として働かないので、厳密な脱水をしなくても良い場合がある。

<<硬化方法>>
本発明の硬化性組成物は、活性エネルギー線の照射により、硬化させることができる。活性エネルギー線源にはとくに限定はないが、光重合開始剤の性質に応じて、たとえば高圧水銀灯、低圧水銀灯、電子線照射装置、ハロゲンランプ、発光ダイオード、半導体レーザーなどによる光および電子線の照射があげられる。

<<用途>>
本発明の硬化性組成物は、限定はされないが、建築用弾性シーリング剤、サイディングボード用シーリング剤、複層ガラス用シーリング剤、車両用シーリング剤等建築用および工業用のシーリング剤、太陽電池裏面封止剤などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、粘着剤、接着剤、弾性接着剤、コンタクト接着剤、タイル用接着剤、反応性ホットメルト接着剤、塗料、粉体塗料、コーティング材、発泡体、缶蓋等のシール材、放熱シート、電気電子用ポッティング剤、フィルム、ガスケット、マリンデッキコーキング、注型材料、各種成形材料、人工大理石、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車や船舶、家電等に使用される防振・制振・防音・免震材料、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤、防水剤等の様々な用途に利用可能である。
更に、本発明の硬化性組成物から得られたゴム弾性を示す成形体は、ガスケット、パッキン類を中心に広く使用することができる。例えば自動車分野ではボディ部品として、気密保持のためのシール材、ガラスの振動防止材、車体部位の防振材、特にウインドシールガスケット、ドアガラス用ガスケットに使用することができる。シャーシ部品として、防振、防音用のエンジンおよびサスペンジョンゴム、特にエンジンマウントラバーに使用することができる。エンジン部品としては、冷却用、燃料供給用、排気制御用などのホース類、エンジンオイル用シール材などに使用することができる。また、排ガス清浄装置部品、ブレーキ部品にも使用できる。家電分野では、パッキン、Oリング、ベルトなどに使用できる。具体的には、照明器具用の飾り類、防水パッキン類、防振ゴム類、防虫パッキン類、クリーナ用の防振・吸音と空気シール材、電気温水器用の防滴カバー、防水パッキン、ヒータ部パッキン、電極部パッキン、安全弁ダイアフラム、酒かん器用のホース類、防水パッキン、電磁弁、スチームオーブンレンジ及びジャー炊飯器用の防水パッキン、給水タンクパッキン、吸水バルブ、水受けパッキン、接続ホース、ベルト、保温ヒータ部パッキン、蒸気吹き出し口シールなど燃焼機器用のオイルパッキン、Oリング、ドレインパッキン、加圧チューブ、送風チューブ、送・吸気パッキン、防振ゴム、給油口パッキン、油量計パッキン、送油管、ダイアフラム弁、送気管など、音響機器用のスピーカーガスケット、スピーカーエッジ、ターンテーブルシート、ベルト、プーリー等が挙げられる。建築分野では、構造用ガスケット(ジッパーガスケット)、空気膜構造屋根材、防水材、定形シーリング材、防振材、防音材、セッティングブロック、摺動材等に使用できる。スポ―ツ分野では、スポーツ床として全天候型舗装材、体育館床等、スポーツシューズとして靴底材、中底材等、球技用ボールとしてゴルフボール等に使用できる。防振ゴム分野では、自動車用防振ゴム、鉄道車両用防振ゴム、航空機用防振ゴム、防舷材等に使用できる。海洋・土木分野では、構造用材料として、ゴム伸縮継手、支承、止水板、防水シート、ラバーダム、弾性舗装、防振パット、防護体等、工事副材料としてゴム型枠、ゴムパッカー、ゴムスカート、スポンジマット、モルタルホース、モルタルストレーナ等、工事補助材料としてゴムシート類、エアホース等、安全対策商品としてゴムブイ、消波材等、環境保全商品としてオイルフェンス、シルトフェンス、防汚材、マリンホース、ドレッジングホース、オイルスキマー等に使用できる。その他、板ゴム、マット、フォーム板等にも使用できる。
なかでも、本発明の硬化性組成物は、粘・接着性組成物として有用であり、特にシーラント、接着剤、粘着剤、ポッティング剤、コーティング剤として有用であり、特に耐候性や耐熱性が要求される用途や透明性が必要な用途にも有用である。また、本発明の硬化性組成物は耐候性と接着性に優れるので、目地埋めなしでの外壁タイル接着用工法に使用できる。更には、線膨張係数の異なる材料の接着や、ヒートサイクルにより繰り返し変位を受けるような部材の接着に用いる弾性接着剤の用途や、透明性を活かして、下地が見える用途でのコーティング剤等の用途、ガラスやポリカ、メタクリル樹脂等の透明材料の貼り合わせに用いる接着剤用途等にも有用である。
以下に、本発明の具体的な実施例を比較例と併せて説明するが、本発明は、下記実施例に限定されるものではない。
下記合成例、実施例および比較例中「部」および「%」は、それぞれ「重量部」および「重量%」を表す。
本発明における重合体の合成例を以下に示した。
下記合成例中、「数平均分子量」および「分子量分布(重量平均分子量と数平均分子量の比)」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。ただし、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(shodex GPC K−804;昭和電工製)、GPC溶媒としてクロロホルムを用いた。

(合成例1)
架橋性シリル基を有するポリ(アクリル酸−n−ブチル/アクリル酸エチル/アクリル酸2−メトキシエチル)共重合体の合成例
窒素雰囲気下、250L反応機にCuBr(1.21kg)、アセトニトリル(10.8kg)、アクリル酸ブチル(7.19kg)、アクリル酸エチル(10.3kg)、アクリル酸2−メトキシエチル(8.47kg)及び2,5−ジブロモアジピン酸ジエチル(3.37kg)を加え、70〜80℃で30分程度撹拌した。これにペンタメチルジエチレントリアミンを加え、反応を開始した。反応開始30分後から2時間かけて、アクリル酸ブチル(28.8kg)、アクリル酸エチル(41.3kg)、アクリル酸2−メトキシエチル(33.9kg)の混合物を連続的に追加した。反応途中ペンタメチルジエチレントリアミンを適宜添加し、内温70℃〜90℃となるようにした。ここまでで使用したペンタメチルジエチレントリアミン総量は243gであった。反応開始から4時間後、80℃で減圧下、加熱攪拌することにより揮発分を除去した。これにアセトニトリル(32.5kg)、1,7−オクタジエン(30.9kg)、ペンタメチルジエチレントリアミン(486g)を添加して4時間撹拌を続けた。混合物を80℃で減圧下、加熱攪拌して揮発分を除去した。
この濃縮物にトルエンを加え、重合体を溶解させた後、ろ過助剤として珪藻土、吸着剤として珪酸アルミ、ハイドロタルサイトを加え、酸素窒素混合ガス雰囲気下(酸素濃度6%)、加熱攪拌した。混合液中の固形分をろ過で除去し、ろ液を内温100℃で減圧下、加熱攪拌して揮発分を除去した。
更にこの濃縮物に吸着剤として珪酸アルミ、ハイドロタルサイト、熱劣化防止剤を加え、減圧下、加熱攪拌した(平均温度約175℃、減圧度10Torr以下)。
更に吸着剤として珪酸アルミ、ハイドロタルサイトを追加し、酸化防止剤を加え、酸素窒素混合ガス雰囲気下( 酸素濃度6%)、加熱攪拌した。
この濃縮物にトルエンを加え、重合体を溶解させた後、混合液中の固形分をろ過で除去し、ろ液を減圧下加熱攪拌して揮発分を除去し、アルケニル基を有する重合体を得た。
このアルケニル基を有する重合体、ジメトキシメチルシラン(アルケニル基に対して2.0モル当量)、オルトギ酸メチル(アルケニル基に対して1.0モル当量)、白金触媒[ビス(1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン)白金錯体触媒のキシレン溶液:以下白金触媒という](白金として重合体1kgに対して10mg)を混合し、窒素雰囲気下、100℃で加熱攪拌した。アルケニル基が消失したことを確認し、反応混合物を濃縮して末端にジメトキシシリル基を有するポリ(アクリル酸−n−ブチル/アクリル酸エチル/アクリル酸2−メトキシエチル)共重合体[P1]を得た。得られた共重合体の数平均分子量は約18000、分子量分布は1.2であった。共重合体1分子当たりに導入された平均のシリル基の数をH NMR分析により求めたところ、約1.9個であった。
(合成例2)
架橋性シリル基を有するポリ(アクリル酸−n−ブチル/アクリル酸エチル/アクリル酸オクタデシル)共重合体の合成例
合成例1と同様の方法で、それぞれ使用する原料を、CuBr(0.8kg)、アセトニトリル(8.9kg)、アクリル酸ブチル(12.5kg)、アクリル酸エチル(3.7kg)、アクリル酸オクタデシル(3.8kg)及び2,5−ジブロモアジピン酸ジエチル(1.6kg)と変更して、末端にジメトキシシリル基を有するポリ(アクリル酸−n−ブチル/アクリル酸エチル/アクリル酸オクタデシル)重合体[P2]を得た。得られた重合体の数平均分子量は約26000、分子量分布は1.2であった。重合体1分子当たりに導入された平均のシリル基の数をH NMR分析により求めたところ、約1.6個であった。
(合成例3)
架橋性シリル基を有するポリ(アクリル酸−n−ブチル)重合体の合成例
合成例1と同様の方法で、それぞれ使用する原料をCuBr(1.09kg)、アセトニトリル(11.4kg)、アクリル酸ブチル(26.0kg)、2,5−ジブロモアジピン酸ジエチル(2.28kg)と変更して、末端にジメトキシシリル基を有するポリ(アクリル酸−n−ブチル)重合体[P3]を得た。得られた重合体の数平均分子量は約26000、分子量分布は1.3であった。重合体1分子当たりに導入された平均のシリル基の数をH NMR分析により求めたところ、約1.8個であった。
(合成例4)
アクリロイル基両末端ポリ(アクリル酸n−ブチル/アクリル酸エチル/2−メトキシエチルアクリレート)の合成例
臭化第一銅を触媒、ペンタメチルジエチレントリアミンを配位子、ジエチル−2,5−ジ
ブロモアジペートを開始剤として、アクリル酸n−ブチル/アクリル酸エチル/2−メト
キシエチルアクリレートをモル数で25/46/29の比率で重合し、数平均分子量16
500、分子量分布1.13の末端臭素基ポリ(アクリル酸n−ブチル/アクリル酸エチ
ル/2−メトキシエチルアクリレート)を得た。
この重合体400gをN,N−ジメチルアセトアミド(400mL)に溶解させ、アクリ
ル酸カリウム10.7gを加え、窒素雰囲気下、70℃で6時間加熱攪拌し、アクリロイ
ル基両末端ポリ(アクリル酸n−ブチル/アクリル酸エチル/2−メトキシエチルアクリ
レート)(以下、重合体〔P4〕という)の混合物を得た。この混合液中のN,N−ジメチ
ルアセトアミドを減圧留去したのち、残渣にトルエンを加えて、不溶分を濾過により除去
した。濾液のトルエンを減圧留去して、重合体〔P4〕を精製した。
精製後のアクリロイル基両末端重合体〔P4〕の数平均分子量は16900、分子量分布は
1.14、平均末端アクリロイル基数は1.8(すなわち、末端へのアクリロイル基の導
入率は90%)であった。
(合成例5)
メタクリロイル基両末端ポリアクリル酸n−ブチルの合成
臭化第一銅を触媒、ペンタメチルジエチレントリアミンを配位子、ジエチル−2,5−ジブロモアジペートを開始剤として、アクリル酸n−ブチルを重合し、数平均分子量22500、分子量分布1.15の末端臭素基ポリ(アクリル酸n−ブチル)を得た。
この重合体300gをN,N−ジメチルアセトアミド(300mL)に溶解させ、メタクリル酸カリウム9.4gを加え、窒素雰囲気下、70℃で3時間加熱攪拌し、アクリロイル基両末端ポリ(アクリル酸n−ブチル)(以下、重合体〔P5〕という)の混合物を得た。
この混合液中のN,N−ジメチルアセトアミドを減圧留去した後、残渣にトルエンを加えて、不溶分をろ過により除去した。濾液のトルエンを減圧留去して、重合体〔P5〕を精製した。
精製後の重合体〔P5〕の数平均分子量は22600、分子量分布は1.14、平均末端メタクリロイル基数は1.7であった。
(実施例1)
末端に架橋性シリル基を有するビニル系重合体(I)として、上記合成例1で得られた「P1」 100部にオプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート、旭電化工業(株)製)1部、Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。
また、得られた組成物を50μmのアプリケーターでアルミニウム基材(エンジニアリングテストサービス社製、フライス加工、JISH4000 A1050P)に塗布しメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い碁盤目密着性試験用サンプルを得た。
(実施例2)
ポリオキシアルキレン重合体を有するMSポリマーSAT350(株式会社カネカ製)30部と、末端に架橋性シリル基を有するビニル系重合体(I)として、上記合成例2で得られた「P2」 70部に、オプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート、旭電化工業(株)製)1部、Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。
(実施例3)
末端に架橋性シリル基を有するビニル系重合体(I)として、上記合成例1で得られた「P1」 90部にセロキサイド2021P(脂環式エポキシ化合物、ダイセル化学工業(株)製)10部、オプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート、旭電化工業(株)製)1.05部、Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。
(実施例4)
末端に架橋性シリル基を有するビニル系重合体(I)として、上記合成例1で得られた「P1」 80部にセロキサイド2021P(脂環式エポキシ化合物、ダイセル化学工業(株)製)20部、オプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート、旭電化工業(株)製)1.1部、Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。
(実施例5)
末端に架橋性シリル基を有するポリイソブチレン系重合体 EP100S((株)カネカ製)100部にオプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート、旭電化工業(株)製)1部、Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。

上記実施例1〜5で得られた硬化性組成物を用いて、ゲル分率、機械物性、硬度および碁盤目密着性試験を、以下のようにして測定した。これらの結果を表1に示す。
Figure 2007029733
(実施例6)
末端に架橋性シリル基を有するビニル系重合体として、上記合成例1で得られた「P1」 70部とエピコート828(ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン社製)30部にオプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート、旭電化工業(株)製)1部、Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。
(実施例7)
実施例6においてエピコート828 30部の代わりにエポライト4000(水添ビスフェノールA型エポキシ樹脂、共栄社製)30部を添加した以外は、実施例6と同様にして硬化物を得た。
(実施例8)
実施例6においてエピコート828 30部の代わりにセロキサイド2021P(脂環式エポキシ化合物、ダイセル化学工業(株)製)30部を添加した以外は、実施例6と同様にして硬化物を得た。
(実施例9)
実施例8において、OXT−101(オキセタンアルコール、東亞合成社製) 1.5部をさらに添加した以外は、実施例8と同様にして硬化物を得た。

上記実施例6〜9で得られた硬化性組成物を用いて、ゲル分率、機械物性、硬度を、以下のようにして測定した。これら結果を表2に示す。
Figure 2007029733
(実施例10)
末端に架橋性シリル基を有するビニル系重合体として、上記合成例1で得られた「P1」 70部と末端にアクリロイル基を有するビニル系重合体として、上記合成例4で得られた「P4」 30部にオプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート、旭電化工業(株)製)0.7部、Darocur1173(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.3部、Irgacure819(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.15部、Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。
(実施例11)
実施例10においてビニル系重合体「P1」 70部を50部に、ビニル系重合体「P4」 30部を50部に、オプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート旭電化工業(株)製)0.7部を0.5部に、Darocur1173(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.3部を0.5部に、Irgacure819(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.15部を0.25部にした以外は、実施例10と同様にして硬化物を得た。
(実施例12)
実施例11においてビニル系重合体「P1」 50部を30部に、ビニル系重合体「P4」 50部を70部に、オプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート旭電化工業(株)製)0.5部を0.3部に、Darocur1173(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.5部を0.7部に、Irgacure819(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.25部を0.35部にした以外は、実施例11と同様にして硬化物を得た。

上記実施例10〜12で得られた硬化性組成物を用いて、ゲル分率、機械物性、硬度を、以下のようにして測定した。これら結果を表3に示す。
Figure 2007029733
(実施例13)
末端に架橋性シリル基を有するビニル系重合体として、上記合成例3で得られた「P3」 100部にオプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート旭電化工業(株)製)1部、Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。
(実施例14)
実施例13においてビニル系重合体「P3」 100部を70部に、オプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート旭電化工業(株)製)1部を0.7部にし、さらにメタクリロイル基を有するビニル系重合体「P5」を30部、Darocur1173(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.3部、Irgacure819(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.15部添加した以外は、実施例13と同様にして硬化物を得た。
(実施例15)
実施例14においてグリシジルメタクリレート(東京化成工業(株)製)10部をさらに添加した以外は、実施例14と同様にして硬化物を得た。
(実施例16)
実施例14においてビニル系重合体「P3」 70部を50部に、ビニル系重合体「P5」 30部を50部に、オプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート旭電化工業(株)製)0.7部を0.5部に、Darocur1173(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.3部を0.5部に、Irgacure819(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.15部を0.25部にした以外は、実施例14と同様にして硬化物を得た。
(実施例17)
実施例16においてビニル系重合体「P3」 50部を30部に、ビニル系重合体「P5」 50部を70部に、オプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート旭電化工業(株)製)0.5部を0.3部に、Darocur1173(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.5部を0.7部に、Irgacure819(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.25部を0.35部にした以外は、実施例16と同様にして硬化物を得た。

上記実施例13〜17で得られた硬化性組成物を用いて、ゲル分率、機械物性、硬度を、以下のようにして測定した。これら結果を表4に示す。
Figure 2007029733
(実施例18)
末端に架橋性シリル基を有するビニル系重合体(I)として、上記合成例1で得られた「P1」 100部に対してオプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート、旭電化工業(株)製)1部、Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部、また密着性改良成分としてA−187(γ-グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング(株)製)2部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。
また、得られた組成物を50μmのアプリケーターでアルミニウム基材(エンジニアリングテストサービス社製、フライス加工、JISH4000 A1050P)に塗布しメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い碁盤目密着性試験用サンプルを得た。
(実施例19)
実施例18において、A−187(γ-グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング(株)製)2部を5部にした以外は、実施例18と同様にして硬化物および碁盤目密着性試験用サンプルを作成した。

上記実施例18〜19で得られた硬化性組成物を用いて、ゲル分率、機械物性、硬度、碁盤目密着性試験を、以下のようにして測定した。これら結果を表5に示す。
Figure 2007029733
(実施例20)
末端に架橋性シリル基を有するビニル系重合体として、上記合成例1で得られた「P1」 70部、Ebecryl3605(部分アクリル化ビスフェノールAタイプエポキシアクリレート、ダイセルサイテック(株)製)30部にオプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート、旭電化工業(株)製)0.7部、Darocur1173(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.3部、Irgacure819(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.15部Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。
(実施例21)
末端に架橋性シリル基を有するビニル系重合体として、上記合成例1で得られた「P1」 30部、Ebecryl3605(部分アクリル化ビスフェノールAタイプエポキシアクリレート、ダイセルサイテック(株)製)70部にオプトマーSP−172(光酸発生剤、トリ(アルキルフェニル)スルホニウムヘキサフルオロアンチモネート、旭電化工業(株)製)0.3部、Darocur1173(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.7部、Irgacure819(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.35部Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。
(比較例1)
Ebecryl3605(部分アクリル化ビスフェノールAタイプエポキシアクリレート、ダイセルサイテック(株)製)100部に、Darocur1173(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)1部、Irgacure819(光ラジカル重合開始剤、チバスペシャルティケミカルズ社製)0.5部Irganox1010〔ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバスペシャリティケミカルズ社製〕1部を加え、充分に混合して硬化性組成物を得た。
次いで、得られた硬化性組成物をメタルハライドランプ(80W/cm、照射距離15cm)に30秒間光照射を行い、約2mm厚のシート状の硬化物を得た。

上記実施例20〜21、比較例1で得られた硬化性組成物を用いて、ゲル分率、機械物性、硬度を以下のようにして測定した。これら結果を表6に示す。
Figure 2007029733
<ゲル分率>
上記実施例及び比較例で得られたシート状の硬化性組成物を、室温でトルエンに24時間浸漬し、浸漬前後の重量変化を測定することにより、ゲル分率を求めた。
<機械物性>
上記実施例及び比較例で得られたシート状の硬化性組成物から、2号ダンベル試験片を打ち抜き、島津製オートグラフを用い、JIS K 7113に準拠して引っ張り試験を行った(測定条件:23℃×55%R.H.、引っ張り速度200mm/min)。
なお、表1〜6において、M50とは、50%モジュラス(50%伸張時の強度)を示し、M100とは、100%モジュラス(100%伸張時の強度)を示す。
<硬度>
上記実施例及び比較例で得られたシート状の硬化性組成物を用い、DuroA硬度計を使用し、23℃×55%R.H.で、硬度(DuroA)を測定した。
<碁盤目密着性試験>
密着性をJIS5400に準拠して碁盤目密着性を測定した。表1および表5において、測定結果は、非剥離碁盤目数/全碁盤目数で分数表示した。

Claims (37)

  1. 架橋性シリル基を平均して少なくとも一個、末端に有するビニル系重合体(I)、及び、光酸発生剤(II)を含有することを特徴とする硬化性組成物。
  2. 架橋性シリル基が一般式(1)で表されることを特徴とする請求項1に記載の硬化性組成物。
    −[Si(R2−b(Y)O]−Si(R3−a(Y)(1)
    (式中、RおよびRは、同一若しくは異なって、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R′)SiO−で表されるトリオルガノシロキシ基を示す(式中、R′は炭素数1〜20の1価の炭化水素基を示す。複数のR′は同一であってもよく又は異なっていてもよい)。RまたはRがそれぞれ2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示す。Yが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは0、1、2または3を示す。bは0、1、または2を示す。mは0〜19の整数を示す。ただし、a+mb≧1であることを満足する。)
  3. ビニル系重合体(I)の分子量分布が1.8未満であることを特徴とする請求項1または2に記載の硬化性組成物。
  4. ビニル系重合体(I)の主鎖が、(メタ)アクリル系重合体であることを特徴とする請求項1〜3のうち何れかに記載の硬化性組成物。
  5. ビニル系重合体(I)の主鎖が、アクリル系重合体であることを特徴とする請求項4に記載の硬化性組成物。
  6. ビニル系重合体(I)の主鎖が、アクリル酸エステル系重合体であることを特徴とする請求項5に記載の硬化性組成物。
  7. ビニル系重合体(I)の主鎖がリビングラジカル重合法により製造されたものであることを特徴とする請求項1〜6のうち何れかに記載の硬化性組成物。
  8. ビニル系重合体(I)の主鎖が原子移動ラジカル重合法により製造されたものであることを特徴とする請求項7記載の硬化性組成物。
  9. ビニル系重合体(I)の数平均分子量が3000以上であることを特徴とする請求項1〜8のうち何れかに記載の硬化性組成物。
  10. ビニル系重合体(I)の主鎖が、ポリイソブチレン系重合体であることを特徴とする請求項1〜3のうち何れかに記載の硬化性組成物。
  11. ビニル系重合体(I)の、一方の末端にある架橋性シリル基と、前記一方の末端と異なる位置にある架橋性シリル基との間の主鎖構造が、炭素−炭素結合のみからなる、または、炭素−炭素結合および炭素−ケイ素結合のみからなる、ことを特徴とする請求項1〜10のうち何れかに記載の硬化性組成物。
  12. 光酸発生剤(II)が、スルホネートエステル類、オニウム塩類、カルボン酸エステル類からなる群から選択されることを特徴とする請求項1〜11のうち何れかに記載の硬化性組成物。
  13. 架橋性シリル基を平均して少なくとも一個、末端に有するポリエーテル系重合体(III)を含有することを特徴とする請求項1〜12の何れかに記載の硬化性組成物。
  14. ポリエーテル系重合体(III)の主鎖が、本質的にポリプロピレンオキシドであることを特徴とする請求項13に記載の硬化性組成物。
  15. ポリエーテル系重合体(III)の架橋性シリル基が一般式(2)で表されることを特徴とする請求項13または14に記載の硬化性組成物。
    −[Si(R2−b(Y)O]−Si(R3−a(Y)(2)
    (式中、RおよびRは、同一若しくは異なって、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R′)SiO−で表されるトリオルガノシロキシ基を示す(式中、R′は炭素数1〜20の1価の炭化水素基を示す。複数のR′は同一であってもよく又は異なっていてもよい)。RまたはRがそれぞれ2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示す。Yが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは0、1、2または3を示す。bは0、1、または2を示す。mは0〜19の整数を示す。ただし、a+mb≧1であることを満足する。)
  16. エポキシ化合物および/またはオキセタン化合物(IV)を含有することを特徴とする請求項1〜15の何れかに記載の硬化性組成物。
  17. エポキシ化合物および/またはオキセタン化合物(IV)が芳香環を有さないことを特徴とする請求項16に記載の硬化性組成物。
  18. エポキシ化合物および/またはオキセタン化合物(IV)が分子中に架橋性シリル基を有することを特徴とする請求項16または17に記載の硬化性組成物。
  19. ラジカル重合性を有する炭素−炭素二重結合を有する化合物を含有することを特徴とする請求項1〜18の何れかに記載の硬化性組成物。
  20. 架橋性アクリロイル基を平均して少なくとも一個、末端に有するビニル系重合体(V)を含有することを特徴とする請求項1〜19の何れかに記載の硬化性組成物。
  21. 架橋性アクリロイル基が一般式(3)で表されることを特徴とする請求項20に記載の硬化性組成物。
    −OC(O)C(R)=CH (3)
    (式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
  22. ビニル系重合体(V)の分子量分布が1.8未満であることを特徴とする請求項20または21に記載の硬化性組成物。
  23. ビニル系重合体(V)の主鎖が、(メタ)アクリル系重合体であることを特徴とする請求項20〜22のうち何れかに記載の硬化性組成物。
  24. ビニル系重合体(V)の主鎖が、アクリル系重合体であることを特徴とする請求項23に記載の硬化性組成物。
  25. ビニル系重合体(V)の主鎖が、アクリル酸エステル系重合体であることを特徴とする請求項24に記載の硬化性組成物。
  26. ビニル系重合体(V)の主鎖がリビングラジカル重合法により製造されたものであることを特徴とする請求項20〜25のうち何れかに記載の硬化性組成物。
  27. ビニル系重合体(V)の主鎖が原子移動ラジカル重合法により製造されたものであることを特徴とする請求項26記載の硬化性組成物。
  28. ビニル系重合体(V)の数平均分子量が3000以上であることを特徴とする請求項20〜27のうち何れかに記載の硬化性組成物。
  29. 分子量1000以下のトリアルコキシシラン化合物あるいはテトラアルコキシシラン化合物を含有することを特徴とする請求項1〜28の何れかに記載の硬化性組成物。
  30. 錫系化合物を含有することを特徴とする請求項1〜29の何れかに記載の硬化性組成物。
  31. 請求項1〜30の何れかに記載の硬化性組成物に活性エネルギー線を照射して得られる硬化物。
  32. 請求項1〜31の何れかに記載の硬化性組成物からなる粘・接着性組成物。
  33. 請求項32記載の粘・接着性組成物からなるシーラント
  34. 請求項32記載の粘・接着性組成物からなる接着剤。
  35. 請求項32記載の粘・接着性組成物からなる粘着剤。
  36. 請求項32記載の粘・接着性組成物からなるポッティング剤。
  37. 請求項32記載の粘・接着性組成物からなるコーティング剤。
JP2007534447A 2005-09-08 2006-09-06 硬化性組成物 Pending JPWO2007029733A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005260113 2005-09-08
JP2005260113 2005-09-08
PCT/JP2006/317639 WO2007029733A1 (ja) 2005-09-08 2006-09-06 硬化性組成物

Publications (1)

Publication Number Publication Date
JPWO2007029733A1 true JPWO2007029733A1 (ja) 2009-03-19

Family

ID=37835852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007534447A Pending JPWO2007029733A1 (ja) 2005-09-08 2006-09-06 硬化性組成物

Country Status (4)

Country Link
US (1) US20090234072A1 (ja)
EP (1) EP1923431A4 (ja)
JP (1) JPWO2007029733A1 (ja)
WO (1) WO2007029733A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075712A1 (ja) * 2005-01-14 2006-07-20 Kaneka Corporation 活性エネルギー線硬化型硬化性組成物および該硬化物
JP2008274119A (ja) * 2007-04-27 2008-11-13 Kaneka Corp 硬化性組成物
JP5139026B2 (ja) * 2007-10-22 2013-02-06 株式会社カネカ ヒドロシリル化反応させて得られることを特徴とする重合体を含有する組成物
US8226203B2 (en) * 2007-11-30 2012-07-24 Canon Kabushiki Kaisha Tape for liquid discharge head and liquid discharge head
JP2009173709A (ja) * 2008-01-22 2009-08-06 Kaneka Corp 硬化性組成物
JP5187973B2 (ja) * 2009-04-30 2013-04-24 日東電工株式会社 光学フィルム用粘着剤組成物、光学フィルム用粘着剤層、粘着型光学フィルムおよび画像表示装置
JP5696345B2 (ja) * 2009-11-27 2015-04-08 エルジー・ケム・リミテッド 粘着剤組成物
JP5620167B2 (ja) * 2010-06-30 2014-11-05 サンスター技研株式会社 フロアコーティング剤組成物
CN103003337B (zh) 2010-07-16 2016-08-17 株式会社钟化 复合成型体及其制法
AU2011289465A1 (en) * 2010-08-13 2013-03-28 Knauf Insulation Gmbh Insulative sealing system and materials therefor
JP2013241479A (ja) * 2010-09-10 2013-12-05 Kaneka Corp 硬化性樹脂組成物
JP5678600B2 (ja) * 2010-11-17 2015-03-04 横浜ゴム株式会社 熱硬化性樹脂組成物
US20120228803A1 (en) * 2011-03-08 2012-09-13 Honeywell International Inc. Methods for fabricating high temperature castable articles and gas turbine engine components
US8641846B2 (en) 2011-08-17 2014-02-04 Dow Global Technologies Llc Method for sealing fenestration openings
US8789338B2 (en) 2011-10-03 2014-07-29 Johns Manville Methods and systems for sealing a wall
JP5465346B1 (ja) * 2013-01-22 2014-04-09 株式会社椿本チエイン 歯付ベルト
JP6235782B2 (ja) * 2013-02-04 2017-11-22 株式会社ブリヂストン 熱硬化性エラストマー組成物、ハードディスクドライブ用ガスケットおよびハードディスクドライブ
WO2015008777A1 (ja) * 2013-07-16 2015-01-22 株式会社カネカ 有機・無機基材被覆用活性エネルギー線硬化性樹脂組成物
JP6273759B2 (ja) * 2013-07-18 2018-02-07 セメダイン株式会社 光硬化性組成物
JP6213717B2 (ja) * 2013-07-23 2017-10-18 株式会社スリーボンド 光硬化性樹脂組成物
TWI674287B (zh) 2013-09-03 2019-10-11 日商東亞合成股份有限公司 硬化性樹脂組成物
WO2016004817A1 (zh) * 2014-07-07 2016-01-14 张家港爱丽塑料有限公司 一种防潮隔音弹性塑料地板及其制备方法
CN107001496B (zh) * 2014-12-24 2019-12-10 Dic株式会社 活性能量射线固化性树脂组合物、涂料、涂膜和薄膜
JP2016121277A (ja) * 2014-12-25 2016-07-07 日東電工株式会社 光硬化性樹脂組成物およびそれを用いた光学材料
JP6682227B2 (ja) * 2015-10-02 2020-04-15 株式会社カネカ 硬化性組成物
JP6763139B2 (ja) * 2015-12-25 2020-09-30 信越化学工業株式会社 無溶剤型シリコーン変性ポリイミド樹脂組成物
JP2017222745A (ja) * 2016-06-14 2017-12-21 信越化学工業株式会社 無溶剤型シリコーン変性ポリイミド樹脂組成物
DE102016111590A1 (de) * 2016-06-24 2017-12-28 Delo Industrie Klebstoffe Gmbh & Co. Kgaa Einkomponentenmasse auf Basis von Alkoxysilanen und Verfahren zum Fügen oder Vergießen von Bauteilen unter Verwendung der Masse
JP2018157285A (ja) * 2017-03-16 2018-10-04 パナソニックIpマネジメント株式会社 スピーカ用振動板およびこれを用いたスピーカ
KR101926813B1 (ko) * 2017-08-21 2018-12-07 (주)세원그리드 수성 지오그리드 보강용 조성물과 이를 이용한 지오그리드의 처리 방법
WO2019210191A1 (en) * 2018-04-26 2019-10-31 Nitto, Inc. Gel gasket
JP2020105267A (ja) * 2018-12-26 2020-07-09 スリーエム イノベイティブ プロパティズ カンパニー 硬化性接着剤、並びにその接着剤を含む層を備える、接着テープ、積層体及び積層ミラーボタン
CN110433528B (zh) * 2019-08-01 2021-04-06 太原理工大学 一种高效多孔柔性吸油材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515533A (ja) * 1997-03-14 2001-09-18 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー 反応性シラン官能性を有する要求に応じて硬化する、湿分硬化性組成物
WO2002083764A1 (fr) * 2001-04-09 2002-10-24 Sekisui Chemical Co., Ltd. Composition photoreactive
JP2003082192A (ja) * 2001-09-17 2003-03-19 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2003113324A (ja) * 2001-07-31 2003-04-18 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2003313397A (ja) * 2002-04-24 2003-11-06 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2004051830A (ja) * 2002-07-22 2004-02-19 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
WO2005003230A1 (ja) * 2003-07-08 2005-01-13 Kaneka Corporation 硬化性組成物

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US693350A (en) * 1901-07-26 1902-02-11 Vegetol Company Package for tooth-powder or like preparations.
ES332250A1 (es) 1965-10-15 1967-07-16 The General Tire & Rubber Company Procedimiento para preparar dioles de eter polioxialcohilenico.
US4207238A (en) 1977-09-01 1980-06-10 The B. F. Goodrich Company Hydroxyl-terminated liquid polymers and process for preparation thereof using a mixture of at least one hydroxyl-containing disulfide and at least one hydroxyl-containing trisulfide
CA1155871A (en) 1980-10-16 1983-10-25 Gencorp Inc. Method for treating polypropylene ether and poly-1,2- butylene ether polyols
US4414370A (en) 1981-01-09 1983-11-08 S. C. Johnson & Son, Inc. Process for continuous bulk copolymerization of vinyl monomers
US4529787A (en) 1982-06-15 1985-07-16 S. C. Johnson & Son, Inc. Bulk polymerization process for preparing high solids and uniform copolymers
JPS59168014A (ja) 1983-03-15 1984-09-21 Kanegafuchi Chem Ind Co Ltd 硬化性弾性組成物
US4546160A (en) 1984-02-29 1985-10-08 S. C. Johnson & Son, Inc. Bulk polymerization process for preparing high solids and uniform copolymers
JPS61133201A (ja) 1984-11-30 1986-06-20 Sunstar Giken Kk 室温硬化性弾性組成物
JPS61197631A (ja) 1985-02-28 1986-09-01 Kanegafuchi Chem Ind Co Ltd 分子量分布の狭いポリアルキレンオキシドの製造方法
JPH0613605B2 (ja) 1985-03-25 1994-02-23 鐘淵化学工業株式会社 分子末端に不飽和基を含有する分子量分布の狭いポリアルキレンオキシド
JPH0613604B2 (ja) 1985-03-22 1994-02-23 鐘淵化学工業株式会社 分子末端に不飽和基を含有するポリアルキレンオキシドの製造法
JPH072838B2 (ja) 1985-03-22 1995-01-18 鐘淵化学工業株式会社 分子末端に不飽和基を含有するポリアルキレンオキシドの製造方法
DE3681757D1 (de) 1985-05-24 1991-11-07 Teroson Gmbh Verfahren zur herstellung von niedermolekularen hydroxyfunktionellen (meth)acrylatpolymeren, deren verwendung zur herstellung von isocyanat-endgruppen enthaltenden prepolymeren sowie daraus hergestellte dicht- und klebstoffe.
CA1338541C (en) 1985-06-20 1996-08-20 Joseph P. Kennedy Living catalysts, complexes and polymers therefrom
JPS636041A (ja) 1986-06-25 1988-01-12 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH07108928B2 (ja) 1986-06-26 1995-11-22 鐘淵化学工業株式会社 硬化性組成物
CA1338520C (en) 1986-08-25 1996-08-13 Joseph P. Kennedy Living polymerization of olefins to end-functionalized polymers
JPH0742376B2 (ja) 1986-10-29 1995-05-10 鐘淵化学工業株式会社 硬化性組成物
US5010166A (en) 1987-03-05 1991-04-23 S. C. Johnson & Son, Inc. Process and apparatus for producing polyol polymers and polyol polymers so produced
JP2512468B2 (ja) 1987-04-13 1996-07-03 鐘淵化学工業株式会社 硬化性樹脂組成物
JPS6422904A (en) 1987-07-17 1989-01-25 Kanegafuchi Chemical Ind Isobutylene polymer
JP2539445B2 (ja) 1987-08-04 1996-10-02 鐘淵化学工業株式会社 イソブチレン系重合体
US4988763A (en) 1988-04-26 1991-01-29 S. C. Johnson & Son, Inc. Catalyzed bulk process for producing cyclic ester-modified acrylic polymers
JP2995568B2 (ja) 1989-05-09 1999-12-27 旭硝子株式会社 ポリアルキレンオキシド誘導体の製造法
JPH03111402A (ja) 1989-09-27 1991-05-13 Showa Denko Kk 近赤外光重合開始剤
EP0438123B1 (en) 1990-01-16 1995-09-13 Showa Denko Kabushiki Kaisha Near infrared polymerization initiator
JPH0469659A (ja) 1990-07-10 1992-03-04 Brother Ind Ltd 感光感圧媒体
JPH04132706A (ja) 1990-09-25 1992-05-07 Nippon Shokubai Co Ltd 水酸基末端テレケリックポリマーの製法
JP2594402B2 (ja) 1991-08-05 1997-03-26 株式会社日本触媒 重合体の製造方法
FR2688790B1 (fr) 1992-03-23 1994-05-13 Rhone Poulenc Chimie Compositions a base de polyorganosiloxanes a groupements fonctionnels reticulables et leur utilisation pour la realisation de revetements anti-adhesifs.
JPH06116312A (ja) 1992-10-05 1994-04-26 Nippon Shokubai Co Ltd 重合体の製造方法
JPH06211922A (ja) 1993-01-20 1994-08-02 Nippon Shokubai Co Ltd 硬化性組成物
JPH06239912A (ja) 1993-02-18 1994-08-30 Nippon Shokubai Co Ltd 重合体の製造方法
US5514728A (en) 1993-07-23 1996-05-07 Minnesota Mining And Manufacturing Company Catalysts and initiators for polymerization
JPH07108928A (ja) 1993-10-13 1995-04-25 Ishikawajima Harima Heavy Ind Co Ltd 台車設備
JP3614468B2 (ja) 1994-08-01 2005-01-26 三井化学株式会社 リビング重合開始剤及びそれを用いる重合方法
US5554664A (en) 1995-03-06 1996-09-10 Minnesota Mining And Manufacturing Company Energy-activatable salts with fluorocarbon anions
US5763548A (en) 1995-03-31 1998-06-09 Carnegie-Mellon University (Co)polymers and a novel polymerization process based on atom (or group) transfer radical polymerization
JPH08283310A (ja) 1995-04-12 1996-10-29 Nippon Shokubai Co Ltd 重合体の製造方法
US5807937A (en) 1995-11-15 1998-09-15 Carnegie Mellon University Processes based on atom (or group) transfer radical polymerization and novel (co) polymers having useful structures and properties
JPH09208616A (ja) 1996-01-31 1997-08-12 Mitsubishi Chem Corp スチレン系重合体の製造方法
JP3806475B2 (ja) * 1996-02-08 2006-08-09 株式会社カネカ 末端に官能基を有する(メタ)アクリル系重合体の 製造方法
JP3806481B2 (ja) 1996-02-08 2006-08-09 株式会社カネカ 末端にアルケニル基を有する(メタ)アクリル系重合体およびその製造方法
US5789487A (en) 1996-07-10 1998-08-04 Carnegie-Mellon University Preparation of novel homo- and copolymers using atom transfer radical polymerization
JP3980724B2 (ja) 1996-11-28 2007-09-26 株式会社カネカ 末端に水酸基を有する(メタ)アクリル系重合体の 製造方法
TW593347B (en) 1997-03-11 2004-06-21 Univ Carnegie Mellon Improvements in atom or group transfer radical polymerization
JP3504103B2 (ja) 1997-03-31 2004-03-08 三井化学株式会社 ポリアルキレンオキシドの製造方法
DE69833747T2 (de) * 1997-04-18 2006-11-16 Kaneka Corp. Polymere, verfahren zu deren herstellung und daraus hergestellte härtbare zusammensetzungen
JP3895460B2 (ja) 1997-04-18 2007-03-22 株式会社カネカ 重合体、該重合体の製造方法、及び、該重合体を用いた硬化性組成物
JPH1180571A (ja) 1997-07-08 1999-03-26 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH1180570A (ja) 1997-07-08 1999-03-26 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
US6274688B1 (en) * 1997-07-28 2001-08-14 Kaneka Corporation Functional groups-terminated vinyl polymers
JP4098890B2 (ja) 1997-07-28 2008-06-11 株式会社カネカ 重合体及び用途
JP3701795B2 (ja) 1997-07-28 2005-10-05 株式会社カネカ 重合体及び用途
JP3842445B2 (ja) 1997-07-28 2006-11-08 株式会社カネカ 硬化性組成物
JP4101366B2 (ja) 1997-07-28 2008-06-18 株式会社カネカ 硬化性組成物
JP4044177B2 (ja) 1997-07-28 2008-02-06 株式会社カネカ 末端に架橋性シリル基を有する(メタ)アクリル系重合 体の製造方法
JP3688897B2 (ja) 1997-07-28 2005-08-31 株式会社カネカ 接着性硬化性組成物
DE69840831D1 (de) * 1997-07-28 2009-06-25 Kaneka Corp Härtbare klebstoffzusammensetzung
JPH1160723A (ja) 1997-08-19 1999-03-05 Mitsui Chem Inc ポリアルキレンオキサイド重合体の製造方法および湿気硬化性組成物
DE69829063T2 (de) * 1997-09-22 2006-03-23 Kaneka Corp. Polymer, verfahren zu dessen herstellung und härtbare zusammensetzung, die dieses polymer enthält
JP4098896B2 (ja) 1997-09-22 2008-06-11 株式会社カネカ 重合体、該重合体の製造方法、ならびに該重合体を用いた硬化性組成物
JP4176900B2 (ja) 1998-02-27 2008-11-05 株式会社カネカ 硬化性組成物
CN1263776C (zh) * 1998-02-27 2006-07-12 钟渊化学工业株式会社 丙烯酰基或甲基丙烯酰基封端的乙烯基聚合物
JP4058808B2 (ja) 1998-06-18 2008-03-12 Jsr株式会社 光硬化性組成物および硬化膜
JP2000086999A (ja) 1998-06-19 2000-03-28 Kanegafuchi Chem Ind Co Ltd 接着剤組成物
JP3751753B2 (ja) 1998-07-23 2006-03-01 株式会社カネカ 末端にアルケニル基を有する重合体の製造方法及び該重合体を用いた硬化性組成物
JP4405619B2 (ja) 1998-07-23 2010-01-27 株式会社カネカ 硬化性組成物
JP4215898B2 (ja) 1998-08-27 2009-01-28 株式会社カネカ 粘着剤組成物
JP2000136211A (ja) 1998-08-27 2000-05-16 Kanegafuchi Chem Ind Co Ltd 水性エマルジョン
JP2000072804A (ja) 1998-08-27 2000-03-07 Kanegafuchi Chem Ind Co Ltd 重合体及び製造方法
JP4015327B2 (ja) 1998-09-02 2007-11-28 株式会社カネカ 重合体、重合体の製造方法及び組成物
CA2342872A1 (en) * 1998-09-02 2000-03-16 Kaneka Corporation Polymer, processes for producing polymer, and composition
JP3974298B2 (ja) 1998-10-08 2007-09-12 株式会社カネカ 重合体及び硬化性組成物
DE69931076T2 (de) * 1998-10-08 2006-12-07 Kaneka Corp. Härtbare zusammensetzungen
US6933350B1 (en) * 1998-10-08 2005-08-23 Kaneka Corporation Polymers having reactive functional groups at terminus and curable compositions comprising the same
JP4723052B2 (ja) 1998-10-08 2011-07-13 株式会社カネカ 硬化性組成物
JP4284728B2 (ja) 1998-12-07 2009-06-24 Jsr株式会社 反射防止膜、反射防止膜を含む積層体および反射防止膜の製造方法
JP2000169755A (ja) 1998-12-07 2000-06-20 Jsr Corp 親水性硬化物、親水性硬化物を含む積層体、親水性硬化物用組成物および親水性硬化物の製造方法
JP2000298352A (ja) 1999-04-14 2000-10-24 Jsr Corp 電子部品用材料およびその使用方法
JP3707975B2 (ja) * 1999-12-21 2005-10-19 積水化学工業株式会社 光架橋性組成物
JP2001329025A (ja) 2000-05-24 2001-11-27 Kanegafuchi Chem Ind Co Ltd ポリエーテル系重合体とビニル系重合体の相溶性を向上させる相溶化剤
US6831130B2 (en) * 2000-05-24 2004-12-14 Kaneka Corporation Composition of crosslinkable polyether, crosslinkable vinyl polymer and compatibilizer
JP2003185861A (ja) * 2001-12-17 2003-07-03 Jsr Corp 光導波路ならびに光導波路の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515533A (ja) * 1997-03-14 2001-09-18 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー 反応性シラン官能性を有する要求に応じて硬化する、湿分硬化性組成物
WO2002083764A1 (fr) * 2001-04-09 2002-10-24 Sekisui Chemical Co., Ltd. Composition photoreactive
JP2003113324A (ja) * 2001-07-31 2003-04-18 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2003082192A (ja) * 2001-09-17 2003-03-19 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2003313397A (ja) * 2002-04-24 2003-11-06 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2004051830A (ja) * 2002-07-22 2004-02-19 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
WO2005003230A1 (ja) * 2003-07-08 2005-01-13 Kaneka Corporation 硬化性組成物

Also Published As

Publication number Publication date
EP1923431A4 (en) 2010-08-04
EP1923431A1 (en) 2008-05-21
WO2007029733A1 (ja) 2007-03-15
US20090234072A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JPWO2007029733A1 (ja) 硬化性組成物
JP4809060B2 (ja) 硬化性組成物
JP4829107B2 (ja) 硬化性組成物
JP4656575B2 (ja) 硬化性組成物
JP5550831B2 (ja) 硬化性組成物
JP5607298B2 (ja) 熱伝導材料
JP4629475B2 (ja) 放熱シート用組成物およびそれを硬化させてなる放熱シート
JPWO2005095485A1 (ja) 硬化性組成物
JP2008274119A (ja) 硬化性組成物
JP2010111870A (ja) 硬化性組成物および複層ガラス用シーリング材
JP4794171B2 (ja) 硬化性組成物
JP2011208073A (ja) 硬化性組成物
JP5048386B2 (ja) 硬化性組成物
JP5015516B2 (ja) 硬化性組成物
JP2010116444A (ja) 硬化性組成物
JP2006225487A (ja) 硬化性組成物
JP2007145880A (ja) 1成分型硬化性組成物
JP4980608B2 (ja) 硬化性組成物
JP2007137955A (ja) 硬化性組成物
JP2006225530A (ja) 硬化性組成物
JP2004083865A (ja) 硬化性組成物
JP2007302749A (ja) 硬化性組成物
JP2004346146A (ja) 硬化性組成物
JPWO2006077887A1 (ja) 硬化性組成物
JPWO2006077886A1 (ja) 硬化性組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120903

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211