JP7413985B2 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
JP7413985B2
JP7413985B2 JP2020194163A JP2020194163A JP7413985B2 JP 7413985 B2 JP7413985 B2 JP 7413985B2 JP 2020194163 A JP2020194163 A JP 2020194163A JP 2020194163 A JP2020194163 A JP 2020194163A JP 7413985 B2 JP7413985 B2 JP 7413985B2
Authority
JP
Japan
Prior art keywords
vehicle
satisfied
condition
difference
surrounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020194163A
Other languages
English (en)
Other versions
JP2022082962A (ja
Inventor
栄一郎 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020194163A priority Critical patent/JP7413985B2/ja
Priority to US17/490,187 priority patent/US20220161792A1/en
Priority to CN202111391228.4A priority patent/CN114537382A/zh
Publication of JP2022082962A publication Critical patent/JP2022082962A/ja
Application granted granted Critical
Publication of JP7413985B2 publication Critical patent/JP7413985B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17558Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for collision avoidance or collision mitigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18159Traversing an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/10Number of lanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4045Intention, e.g. lane change or imminent movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4049Relationship among other objects, e.g. converging dynamic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/806Relative heading

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、衝突回避制御を実行するように構成された車両制御装置に関する。
従来より、車両の周囲に存在する物体を検出し、その物体との衝突を回避するための衝突回避制御を実行するように構成された車両制御装置が知られている(例えば、特許文献1を参照。)。なお、衝突回避制御は、プリクラッシュセーフティー制御(Pre Crash Safety Control)とも称呼される場合がある。
以降において、車両は左側通行の道路を走行すると仮定する。特許文献1に記載された装置(以下、「従来装置」と称呼する。)は、車両(自車両)が右折している状況において自車両が物体(対向車両)と衝突する可能性が高いと判定した場合、衝突回避制御を実行する。
特開2018-156253号公報
図14に示す例において、車両(自車両)1401が従来装置を搭載していると仮定する。自車両1401は、矢印ar1に示されるように交差点Isにて右折している。対向車両1402は、現時点では直進しているものの、矢印ar2に示されるように、交差点Isにて右折する予定である。従来装置は、対向車両1402の予測軌跡tr0を演算する。対向車両1402は、現時点では直進しているので、予測軌跡tr0は、対向車両1402が直進するような軌跡になる。従来装置は、自車両1401と予測軌跡tr0との間の距離が所定の閾値未満である場合、自車両1401が対向車両1402と衝突する可能性が高いと判定する。この場合、従来装置は、衝突回避制御を実行する。
図14の例においては、対向車両1402が右折するので、自車両1401が対向車両1402と衝突する可能性が低い。しかし、上述したように、予測軌跡tr0は、対向車両1402が直進するような軌跡であるので、自車両1401と予測軌跡tr0との間の距離が閾値未満となり得る。従って、従来装置は、不要な状況(即ち、対向車両1402との衝突の可能性が低い状況)にて衝突回避制御を実行する可能性がある。
上記の問題は、対向車両が右折を開始した時点でも生じ得る(符号1402’を参照。)。図14に示すように、対向車両1402’がまだ大きく旋回していない状況においては、従来装置は、対向車両1402’がほぼ直進するように、予測軌跡tr0’を演算する。自車両1401と予測軌跡tr0’との間の距離が閾値未満となり易く、従って、従来装置は不要な状況にて衝突回避制御を実行する可能性がある。
本発明は、上記課題を解決するためになされた。即ち、本発明の目的の一つは、対向車両が旋回する(右折又は左折する)可能性が高いか否かを判定し、以て、不要な状況において衝突回避制御が実行される可能性を低減することが可能な車両制御装置を提供することである。
一以上の実施形態における車両制御装置は、
自車両(SV)の前方領域を少なくとも含む前記自車両の周辺領域に存在する物体に関する情報である物体情報を取得するセンサ(15)と、
前記自車両が右折又は左折する状況において、前記物体情報に基いて、前記自車両に向かって移動しており且つ前記自車両と衝突する可能性がある対向車両(OV1)を、制御対象車両として選択し、
前記自車両が前記制御対象車両と衝突する可能性が高いときに成立する所定の実行条件が成立した場合、前記制御対象車両との衝突を回避するための衝突回避制御を実行するように構成された制御ユニット(10)と、
を備える。
前記制御ユニットは、
前記物体情報に基いて、前記自車両に向かって移動しており且つ前記制御対象車両の周囲に存在する少なくとも1つの対向車両(OV2)であって前記制御対象車両が走行している車線とは異なる車線を直進する対向車両を、周辺車両として選択し、
前記制御対象車両の挙動と前記周辺車両の挙動との間において所定の挙動差が存在するときに成立する第1挙動条件が成立するか否かを判定し、
前記第1挙動条件が成立する場合、前記実行条件を、前記第1挙動条件が成立しない場合に比べて遅いタイミングで成立する条件へと変更する
ように構成されている。
更に、前記制御ユニットは、前記制御対象車両と前記周辺車両との間において運動ベクトルに所定の差が存在する場合、又は、前記制御対象車両と前記周辺車両との間において前記運動ベクトルの単位時間当たりの変化量に所定の差が存在する場合、前記挙動差が存在すると判定するように構成されている。
第1挙動条件が成立する場合、制御対象車両の挙動と周辺車両の挙動との間において所定の挙動差が存在するので、制御対象車両が右折又は左折する可能性が高い。従って、自車両が制御対象車両と衝突する可能性が低い。このような状況において、実行条件が、比較的遅いタイミングで成立する条件へと変更される。これにより、実行条件が成立しにくくなる。従って、不要な状況(即ち、制御対象車両との衝突の可能性が低い状況)にて衝突回避制御が実行される可能性を低減できる。
一以上の実施形態において、前記制御ユニットは、
前記制御対象車両と前記周辺車両との間において進行方向に所定の進行方向差が存在する場合、或いは、前記制御対象車両と前記周辺車両との間において移動速度に所定の移動速度差が存在する場合、前記制御対象車両と前記周辺車両との間において運動ベクトルに所定の差が存在すると判定し、
前記制御対象車両と前記周辺車両との間において進行方向の変化量に所定の進行方向変化量差が存在する場合、或いは、前記制御対象車両と前記周辺車両との間において移動速度の変化量に所定の移動速度変化量差が存在する場合、前記制御対象車両と前記周辺車両との間において運動ベクトルの単位時間当たりの変化量に所定の差が存在すると判定する
ように構成されている。
又、一以上の実施形態における車両制御装置は、
自車両(SV)の前方領域を少なくとも含む前記自車両の周辺領域に存在する物体に関する情報である物体情報を取得するセンサ(15)と、
前記自車両が右折又は左折する状況において、前記物体情報に基いて、前記自車両に向かって移動しており且つ前記自車両と衝突する可能性がある対向車両(OV1)を、制御対象車両として選択し、
前記自車両が前記制御対象車両と衝突する可能性が高いときに成立する所定の実行条件が成立した場合、前記制御対象車両との衝突を回避するための衝突回避制御を実行するように構成された制御ユニット(10)と、
を備える。
前記制御ユニットは、
前記物体情報に基いて、前記自車両に向かって移動しており且つ前記制御対象車両の周囲に存在する少なくとも1つの対向車両(OV2)であって前記制御対象車両が走行している車線とは異なる車線を直進する対向車両を、周辺車両として選択し、
前記制御対象車両の挙動と前記周辺車両の挙動との間において所定の挙動差が存在するときに成立する第1挙動条件が成立するか否かを判定し、
前記第1挙動条件が成立する場合、前記実行条件を、前記第1挙動条件が成立しない場合に比べて遅いタイミングで成立する条件へと変更する
ように構成されている。
更に、前記制御ユニットは、
前記制御対象車両の進行方向(Dr1)と前記周辺車両の進行方向(Dr2)との間の差に関する第1条件、
前記制御対象車両の前記進行方向における加速度(a1)と前記周辺車両の前記進行方向における加速度(a2)との間の差に関する第2条件、及び、
前記制御対象車両の前記進行方向における速度(V1)と前記周辺車両の前記進行方向における速度(V2)との間の差に関する第3条件、
の少なくとも1つが成立したとき、前記第1挙動条件が成立したと判定するように構成されている。
更に、前記制御ユニットは、
基準軸と前記制御対象車両の前記進行方向とのなす角度(θs1)と、前記基準軸と前記周辺車両の前記進行方向とのなす角度(θs2)との間の差分の大きさが所定の角度差閾値(θth1)以上であるとき、前記第1条件が成立したと判定し、
前記制御対象車両の前記加速度(a1)が負の値であり、且つ、前記周辺車両の前記加速度(a2)がゼロ以上であるとき、前記第2条件が成立したと判定し、
前記制御対象車両の前記速度(V1)が前記周辺車両の前記速度(V2)よりも小さく、且つ、前記周辺車両の前記速度と前記制御対象車両の前記速度との差が所定の速度差閾値(Vth1)以上であるとき、前記第3条件が成立したと判定する
ように構成されている。
上記の構成によれば、車両制御装置は、制御対象車両と周辺車両との間において、進行方向の差、加速度の差及び速度の差の少なくとも1つを考慮して、第1挙動条件が成立したかを判定できる。
一以上の実施形態において、前記直進する対向車両は、横加速度がゼロである対向車両である。
一以上の実施形態において、前記実行条件は、前記自車両が前記制御対象車両が通過すると予測される軌跡(tr2)に到達するまでに要する時間(Tc)が、時間閾値(Tth2)以下になるときに成立する条件である。前記制御ユニットは、前記第1挙動条件が成立する場合、前記時間閾値を、前記第1挙動条件が成立しない場合に比べて小さく設定するように構成されている。
上記の構成によれば、車両制御装置は、第1挙動条件の成立に応じて、実行条件における時間閾値を変更する。これにより、第1挙動条件が成立する場合、実行条件が、第1挙動条件が成立しない場合に比べて遅いタイミングで成立する条件へと変更される。
一以上の実施形態において、前記衝突回避制御は、前記自車両の車輪に制動力を付与する制動力制御を含む。更に、前記制御ユニットは、前記第1挙動条件が成立する場合、
前記衝突回避制御が開始された時点から前記自車両が停止する時点までの距離である制動距離(df)を演算し、
前記制動距離に基いて、前記時間閾値を、前記自車両が前記軌跡に到達する直前の位置(P1)で停止するような値に設定する
ように構成されている。
上記の構成によれば、第1挙動条件が成立する場合、実行条件が成立するタイミングを、自車両が上記軌跡に到達する直前の位置で停止できるタイミングまで遅らせることができる。自車両の安全性を確保しながら、不要な状況にて衝突回避制御が実行される可能性を低減できる。
一以上の実施形態において、前記制御ユニットは、前記制御対象車両の周囲に存在する複数の対向車両(OV2及びOV3)を前記周辺車両として選択した場合、
前記複数の周辺車両の挙動の間において挙動差が小さいときに成立する第2挙動条件が成立するか否かを判定し、
前記第2挙動条件が成立する場合に、前記第1挙動条件が成立するか否かを判定し、
前記複数の周辺車両の進行方向それぞれと基準軸とがなす角度の差の大きさがそれぞれ所定の角度差閾値(所定の第2角度差閾値)よりも小さく、且つ、前記複数の周辺車両の進行方向における加速度がそれぞれゼロ以上であって前記複数の周辺車両の進行方向における加速度の差の大きさがそれぞれ所定の加速度差閾値(所定の第2加速度差閾値)よりも小さく、且つ、前記複数の周辺車両の進行方向における速度の差の大きさがそれぞれ所定の速度差閾値(所定の第2速度差閾値)よりも小さいとき、前記複数の周辺車両の挙動の間において挙動差が小さいと判定する
ように構成されている。
上記の構成によれば、車両制御装置は、複数の周辺車両の間において挙動差が小さい場合に、第1挙動条件が成立するか否かを判定する。車両制御装置は、制御対象車両が右折又は左折するかどうかを精度良く判定できる。
一以上の実施形態において、上記の制御ユニットは、本明細書に記述される一以上の機能を実行するためにプログラムされたマイクロプロセッサにより実施されてもよい。一以上の実施形態において、上記の制御ユニットは、一以上のアプリケーションに特化された集積回路、即ち、ASIC等により構成されたハードウェアによって、全体的に或いは部分的に実施されてもよい。
上記説明においては、後述する一以上の実施形態に対応する構成要素に対し、実施形態で用いた名称及び/又は符号を括弧書きで添えている。しかしながら、各構成要素は、前記名称及び/又は符号によって規定される実施形態に限定されるものではない。本開示の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される一以上の実施形態についての説明から容易に理解されるであろう。
実施形態に係る車両制御装置の概略構成図である。 周囲センサにより取得される物体情報を説明するための図である。 車両が右折する際に対向車両が存在する状況を示した図である。 対向車両を制御対象車両として設定する処理の流れを説明する図である。 対向車両を制御対象車両として設定する処理の流れを説明する図である。 対向車両を制御対象車両として設定する処理の流れを説明する図である。 車両が右折する際に複数の対向車両が存在する状況を示した図である。 第1挙動条件を説明するための図である。 第1挙動条件を説明するための図である。 車両が右折する際に複数の対向車両が存在する別の状況を示した図である。 衝突回避ECUのCPUが実行する「衝突回避制御実行ルーチン」を示したフローチャートである。 図11のルーチンのステップ1103にてCPUが実行する「閾値設定ルーチン」を示したフローチャートである。 PCS実行条件における第2時間閾値を設定する変形例を説明するための図である。 車両が右折する際に対向車両が存在する状況を示した図である。
(構成)
本実施形態に係る車両制御装置は、図1に示したように、車両SVに適用される。車両制御装置は、衝突回避ECU10、エンジンECU20、ブレーキECU30、及び、メータECU40を備えている。これらのECUは、幾つか又は全部が一つのECUに統合されてもよい。以降において、衝突回避ECU10は、「PCSECU10」と称呼される。
上記のECUは、マイクロコンピュータを主要部として備える電気制御装置(Electric Control Unit)であり、図示しないCAN(Controller Area Network)を介して相互に情報を送信可能及び受信可能に接続されている。
本明細書において、マイクロコンピュータは、CPU、ROM、RAM、不揮発性メモリ及びインターフェースI/F等を含む。例えば、PCSECU10は、CPU101、ROM102、RAM103、不揮発性メモリ104及びインターフェース(I/F)105等を含むマイクロコンピュータを備える。CPUはROMに格納されたインストラクション(プログラム、ルーチン)を実行することにより各種機能を実現するようになっている。
PCSECU10は、以下に列挙するセンサと接続されていて、それらの検出信号又は出力信号を受信するようになっている。なお、各センサは、PCSECU10以外のECUに接続されていてもよい。その場合、PCSECU10は、センサが接続されたECUからCANを介してそのセンサの検出信号又は出力信号を受信する。
車速センサ11は、車両SVの速度(走行速度)Vsを検出し、速度Vsを表す信号を出力する。舵角センサ12は、車両SVの舵角θを検出し、舵角θを表す信号を出力する。ヨーレートセンサ13は、車両SVのヨーレートYrを検出し、ヨーレートYrを表す信号を出力する。
加速度センサ14は、第1加速度センサ14a及び第2加速度センサ14bを備えている。第1加速度センサ14aは、車両SVの前後方向の加速度(前後加速度)である第1加速度axを検出し、第1加速度axを表す信号を出力する。第2加速度センサ14bは、車両SVの横方向の加速度(横加速度)である第2加速度ayを検出し、第2加速度ayを表す信号を出力する。
以降、センサ11乃至14から出力される「車両SVの走行状態を表す情報」は、「走行状態情報」と称呼される場合がある。
周囲センサ15は、車両SVの周辺領域に存在する立体物に関する情報を取得するようになっている。車両SVの周辺領域は、車両SVの前方領域を少なくとも含む。本例において、車両SVの周辺領域は、車両SVの前方領域、車両SVの右側方領域、及び、車両SVの左側側方領域を含む。立体物は、例えば、四輪車両、二輪車両及び歩行者等の移動物、並びに、電柱、樹木及びガードレール等の固定物を表す。以下、これらの立体物は、単に「物体」と称呼される場合がある。周囲センサ15は、物体に関する情報(以下、「物体情報」と称呼する。)を演算して出力する。
図2に示すように、周囲センサ15は、二次元マップ上において、物体情報を取得する。二次元マップは、x軸及びy軸により規定される。x軸の原点及びy軸の原点は、車両SVの前部の車幅方向における中心位置Oである。x軸は、車両SVの前後方向に沿って車両SVの前部の中心位置Oを通るように伸び、前方を正の値として有する座標軸である。y軸は、x軸と直交し、車両SVの左方向を正の値として有する座標軸である。
物体情報は、物体(n)の縦距離Dfx(n)、物体(n)の横位置Dfy(n)、車両SVに対する物体(n)の方位θp、物体(n)の進行方向、物体(n)の相対速度Vfx(n)、及び、物体(n)の種別等を含む。
縦距離Dfx(n)は、x軸方向における、物体(n)と原点Oとの間の符号付き距離である。横位置Dfy(n)は、y軸方向における、物体(n)と原点Oとの間の符号付き距離である。相対速度Vfx(n)は、物体(n)の速度Vnと車両SVの速度Vsとの差(=Vn-Vs)である。物体(n)の速度Vnは、x軸方向における物体(n)の速度である。物体(n)の種別は、物体が移動物及び固定物の何れに該当するかを示す情報である。本例において、物体が移動物である場合、物体(n)の種別は、物体(n)が四輪車両、二輪車両及び歩行者の何れに該当するかを示す情報を更に含む。
再び図1を参照すると、周囲センサ15は、レーダセンサ16、カメラセンサ17、及び、物体検出ECU18を備えている。レーダセンサ16は、レーダ波送受信部と情報処理部とを備えている。レーダ波送受信部は、電磁波(例えば、ミリ波帯の電波、「ミリ波」と称呼する。)を放射し、放射範囲内に存在する物体によって反射されたミリ波(即ち、反射波)を受信する。情報処理部は、送信したミリ波と受信した反射波との位相差、反射波の減衰レベル及びミリ波を送信してから反射波を受信するまでの時間等を含む反射波情報に基いて、物体(n)を検出する。更に、情報処理部は、反射波情報に基いて、物体(n)についての物体情報を取得(演算)する。
カメラセンサ17は、カメラ及び画像処理部を備えている。カメラは、所定のフレームレートで画像データを画像処理部に出力する。画像処理部は、画像データに基いて、物体(n)を検出するとともに、物体(n)についての物体情報を取得(演算)する。なお、画像処理部は、物体(n)の種別を識別(判定)する。画像処理部は、四輪車両、二輪車両及び歩行者等の物体をパターン化したデータをメモリ(例えば、ROM)に予め格納している。画像処理部は、画像データに対してパターンマッチングを行うことにより、物体が四輪車両、二輪車両及び歩行者の何れに該当するかを識別する。
画像処理部は、画像データに基いて、車線を規定する複数の区画線を検出してもよい。当該複数の区画線は、車両SVが走行する走行車線を規定する区画線、及び、対向車線を規定する区画線を含む。画像処理部は、当該複数の区画線のそれぞれの位置を車線情報として取得(演算)してもよい。
物体検出ECU18は、レーダセンサ16によって得られた物体情報と、カメラセンサ17によって得られた物体情報と、を合成することにより、最終的な物体情報を決定する。物体検出ECU18は、物体情報及び車線情報を「車両周辺情報」としてPCSECU10に出力する。
エンジンECU20は、エンジンアクチュエータ21に接続されている。エンジンアクチュエータ21は、火花点火・ガソリン燃料噴射式・内燃機関22のスロットル弁の開度を変更するスロットル弁アクチュエータを含む。エンジンECU20は、エンジンアクチュエータ21を駆動することによって、内燃機関22が発生するトルクを変更することができる。内燃機関22が発生するトルクは、図示しない変速機を介して図示しない駆動輪に伝達される。従って、エンジンECU20は、エンジンアクチュエータ21を制御することによって、駆動力を制御し加速状態(加速度)を変更することができる。
なお、車両SVが、ハイブリッド車両である場合、エンジンECU20は、車両駆動源としての「内燃機関及び電動機」の何れか一方又は両方によって発生する駆動力を制御することができる。更に、車両SVが電気自動車である場合、エンジンECU20は、車両駆動源としての電動機によって発生する駆動力を制御することができる。
ブレーキECU30は、ブレーキアクチュエータ31に接続されている。ブレーキアクチュエータ31は、油圧回路を含む。油圧回路は、マスタシリンダ、制動液が流れる流路、複数の弁、ポンプ及びポンプを駆動するモータ等を含む。ブレーキECU30は、ブレーキアクチュエータ31を制御することによって、ブレーキ機構32に内蔵されたホイールシリンダに供給する油圧を調整する。その油圧により、ホイールシリンダは、車輪に対する摩擦制動力を発生させる。従って、ブレーキECU30は、ブレーキアクチュエータ31を制御することによって、制動力を制御し加速状態(減速度、即ち、負の加速度)を変更することができる。
メータECU40は、ディスプレイ41、スピーカ42、及び、ターンシグナルスイッチ43に接続されている。ディスプレイ41は、運転席の正面に設けられたマルチインフォーメーションディスプレイである。なお、ディスプレイ41として、ヘッドアップディスプレイが採用されてもよい。メータECU40は、PCSECU10からの指示に応じて、ディスプレイ41に注意喚起用のマーク(例えば、ウォーニングランプ)を表示させる。更に、メータECU40は、PCSECU10からの指示に応じて、スピーカ42に「運転者の注意を喚起する警報音」を出力させる。更に、メータECU40は、ターンシグナルスイッチ43からの信号に応じて左又は右のターンシグナルランプ(図示省略)を点滅させる。メータECU40は、左又は右のターンシグナルランプの作動状況をPCSECU10に送信する。
(衝突回避制御の概要)
以降において、車両SVは、他の車両と区別するために「自車両SV」と称呼される。PCSECU10は、衝突回避制御を実行するようになっている。本例の衝突回避制御は、自車両SVが右折する状況において、自車両SVが対向車両と衝突するのを回避する又は自車両SVと対向車両との衝突の被害を軽減する制御である。以降において、当該制御を、単に「PCS制御」と称呼する。
具体的には、PCSECU10は、右のターンシグナルランプの作動状況及び/又は走行状態情報(例えば、舵角θ又はヨーレートYr)に応じて、自車両SVが右折しようとしているか否かを判定する。PCSECU10は、自車両SVが右折しようとしていると判定した場合、車両周辺情報に含まれる物体情報に基いて、自車両SVの周辺領域に存在する物体を認識する。PCSECU10は、認識した物体の中から、自車両SVの前方領域に存在し且つ自車両SVに向かって移動している車両(対向車両)を抽出する。本例において、対向車両は、四輪車両及び二輪車両を含む。
次に、PCSECU10は、抽出した対向車両の中に、PCS制御の対象となる車両(以下、「制御対象車両」と称呼する。)が存在するか否かを判定する。制御対象車両は、自車両SVと衝突する可能性がある対向車両である。
図3の例において、自車両SVが第1走行レーンLn1を走行している。自車両SVは、交差点Is1にて右折しようとしている。更に、第1他車両OV1が、第1走行レーンLn1に対して対向車線である第1対向レーンLo1を走行している。
PCSECU10は、認識した物体の中から第1他車両OV1を対向車両として抽出する。次に、図4に示すように、PCSECU10は、二次元マップ上において、自車両SV及び第1他車両OV1を仮想的に表現する。PCSECU10は、二次元マップ上において、自車両SVの車体を表す第1矩形401を設定する。ROM102には、自車両SVの車体のサイズに関する情報が格納されている。PCSECU10は、この情報に基いて、二次元マップ上において、第1矩形401を設定する。更に、PCSECU10は、二次元マップ上において、第1他車両OV1の車体を表す第2矩形402を設定する。なお、第2矩形402のサイズは、一般的な車両の車体のサイズに則して設定されてよい。
PCSECU10は、第1矩形401の頂点の中で第2矩形402に最も近い頂点(以下、「第1頂点」と称呼する。)401aを特定する。第1頂点401aは、自車両SVの前部の右側コーナー部に相当する。更に、PCSECU10は、第2矩形402の頂点の中で第1矩形401に最も近い頂点(以下、「第2頂点」と称呼する。)402aを特定する。第2頂点402aは、第1他車両OV1の前部の右側コーナー部に相当する。
PCSECU10は、走行状態情報(例えば、速度Vs及び舵角θ等)に基いて、第1頂点401aの第1予測軌跡tr1を二次元マップ上に描く。第1予測軌跡tr1は、第1頂点401aが通過すると予測される軌跡である。
PCSECU10は、物体情報に基いて、第1他車両OV1の進行方向を特定する。そして、PCSECU10は、第1他車両OV1の進行方向に沿って第2頂点402aの第2予測軌跡tr2を二次元マップ上に描く。第2予測軌跡tr2は、第2頂点402aが通過すると予測される軌跡である。
PCSECU10は、第1予測軌跡tr1及び第2予測軌跡tr2を用いて、第1他車両OV1が制御対象車両であるか否かを判定する。本例において、PCSECU10は、以下に述べる条件A1及び条件A2の両方が成立した場合、第1他車両OV1が制御対象車両であると判定する。条件A1及び条件A2は、まとめて「制御対象車両条件」と称呼される場合がある。
・条件A1
条件A1は、自車両SVが第1他車両OV1と衝突する可能性があるか否かを判定するための条件である。PCSECU10は、車速センサ11から自車両SVの現時点の速度Vsを取得する。更に、PCSECU10は、物体情報に基いて第1他車両OV1の現時点の速度V1を演算する。PCSECU10は、自車両SVが速度Vsを維持し、且つ、第1他車両OV1が速度V1を維持するとの仮定の下で、二次元マップ上において以下の処理を実行する。
具体的には、PCSECU10は、時間の経過とともに、第1矩形401を現時点の位置から第1予測軌跡tr1に沿って速度Vsで移動させる。同様に、PCSECU10は、時間の経過とともに、第2矩形402を第2予測軌跡tr2に沿って速度V1で移動させる。第1矩形401の少なくとも一部が第2矩形402と重なる場合、PCSECU10は、自車両SVが第1他車両OV1と衝突する可能性があると判定する。即ち、PCSECU10は、条件A1が成立すると判定する。なお、第1矩形401が第2矩形402と重ならない場合、PCSECU10は、条件A1が成立しないと判定する。
本例においては、図5に示すように、第1矩形401の少なくとも一部が第2矩形402と重なる。従って、PCSECU10は、条件A1が成立すると判定する。
・条件A2
条件A2は、条件A1が成立した場合に判定される条件である。条件A2は、自車両SVが第1他車両OV1の進路(第2予測軌跡tr2)に到達するまでに要する時間Tcが比較的小さいときに成立する。なお、時間Tcは、自車両SVが第1他車両OV1に衝突するまでの余裕時間と言うこともできる。
図6に示すように、PCSECU10は、二次元マップ上において、第1矩形401を自車両SVの現時点の位置に設定するとともに、第2矩形402を第1他車両OV1の現時点の位置に設定する。PCSECU10は、第1予測軌跡tr1と第2予測軌跡tr2とが交差する交差位置Psを求める。そして、PCSECU10は、第1頂点401aの現時点の位置と交差位置Psとの間の距離dsを自車両SVの速度Vsで除算することによって、時間Tcを求める。時間Tcが第1時間閾値Tth1以下である場合、PCSECU10は、条件A2が成立すると判定する。一方、時間Tcが第1時間閾値Tth1以下でない場合、PCSECU10は、条件A2が成立しないと判定する。
本例においては、時間Tcが第1時間閾値Tth1以下であると仮定する。従って、PCSECU10は、条件A2が成立すると判定する。
以上のように、図3の例において、第1他車両OV1に対して条件A1及び条件A2の両方が成立するので、PCSECU10は、第1他車両OV1を制御対象車両として選択(設定)する。
PCSECU10は、第1他車両OV1を制御対象車両として選択した後、制御対象車両について時間Tcを繰り返し演算する。そして、PCSECU10は、所定のPCS実行条件が成立するか否かを判定する。
PCS実行条件は、PCS制御を実行(開始)するか否かを判定するための条件であり、自車両SVが制御対象車両と衝突する可能性が高いときに成立する。具体的には、PCS実行条件は、時間Tcが第2時間閾値Tth2以下であるときに成立する。第2時間閾値Tth2は、PCS制御を開始するタイミングを判定するための閾値である。第2時間閾値Tth2は、第1時間閾値Tth1よりも小さい(Tth2<Tth1)。
時間Tcが第2時間閾値Tth2以下になった場合、PCSECU10は、PCS実行条件が成立したと判定し、PCS制御を実行する。
PCS制御は、車両SVの駆動力を抑制する駆動力抑制制御、車輪に制動力を付与する制動力制御、及び、運転者に対して注意喚起を行う注意喚起制御を含む。具体的には、PCSECU10は、エンジンECU20に対して駆動指示信号を送信する。エンジンECU20は、PCSECU10から駆動指示信号を受信すると、エンジンアクチュエータ21を制御し、それにより、車両SVの実際の加速度が駆動指示信号に含まれる目標加速度AG(例えば、ゼロ)に一致するように車両の駆動力を抑制する。更に、PCSECU10は、ブレーキECU30に対して制動指示信号を送信する。ブレーキECU30は、PCSECU10から制動指示信号を受信すると、ブレーキアクチュエータ31を制御し、それにより、車両SVの実際の加速度が制動指示信号に含まれる目標減速度TGに一致するように車輪に対して制動力を付与する。加えて、PCSECU10は、メータECU40に対して注意喚起指示信号を送信する。メータECU40は、PCSECU10から注意喚起指示信号を受信すると、ディスプレイ41に注意喚起用のマークを表示させるとともに、スピーカ42に警報音を出力させる。
(作動の概要)
上述したように、従来装置は、制御対象車両(対向車両)が右折する場合において、自車両が制御対象車両と衝突する可能性が低いにも関わらず、PCS制御を実行する可能性がある。これを考慮して、本実施形態に係るPCSECU10は、制御対象車両が右折する可能性が高いか否かを、制御対象車両の周辺に存在する対向車両の挙動を用いて判定する。PCSECU10は、制御対象車両が右折する可能性が高いと判定した場合、PCS制御を開始するタイミングを遅らせる。即ち、PCSECU10は、PCS制御を開始するタイミングを判定する閾値(第2時間閾値Tth2)を小さくする。これにより、PCS実行条件が成立しにくくなる。不要な状況(即ち、制御対象車両との衝突の可能性が低い状況)にてPCS制御が実行される可能性を低減できる。
図7の例において、自車両SVが、第1走行レーンLn1を走行しており、交差点Is1にて右折しようとしている。更に、第1他車両OV1及び第2他車両OV2が、第1走行レーンLn1に対する対向車線を走行している。対向車線は、第1対向レーンLo1及び第2対向レーンLo2を含む。第1他車両OV1が第1対向レーンLo1を走行しており、第2他車両OV2が第2対向レーンLo2を走行している。本例において、第1対向レーンLo1は、右折専用レーンである。
PCSECU10は、物体情報に基いて、車両SVの周辺領域に存在する物体を認識する。PCSECU10は、認識された物体の中から、第1他車両OV1及び第2他車両OV2を対向車両として抽出する。PCSECU10は、第1他車両OV1及び第2他車両OV2の中に制御対象車両が存在するか否かを判定する。PCSECU10は、第1他車両OV1及び第2他車両OV2のそれぞれについて制御対象車両条件(条件A1及び条件A2)が成立するか否かを判定する。本例において、第1他車両OV1に対してのみ、制御対象車両条件が成立する。従って、PCSECU10は、第1他車両OV1を制御対象車両として選択する。
なお、複数の他車両OV1及びOV2の両方に対して制御対象車両条件が成立する場合もある。この場合、PCSECU10は、「自車両SVに最も近い対向車両(本例では、第1他車両OV1)」を制御対象車両として選択する。換言すると、PCSECU10は、最も早い段階で自車両SVと衝突すると予想される対向車両を、制御対象車両として選択する。
更に、PCSECU10は、制御対象車両以外の対向車両の中で、以下に述べる条件B1及び条件B2の両方を満たす対向車両を抽出する。PCSECU10は、当該抽出された対向車両を、制御対象車両の周辺を移動する「対向車両(以下、「周辺車両」と称呼する。)」として選択(設定)する。
(条件B1)対向車両が、制御対象車両から所定の距離範囲内に存在する。
(条件B2)対向車両が、制御対象車両の背後に存在しない(即ち、対向車両が制御対象車両と同じレーンを走行していない)。
以降において、条件B1及び条件B2は、まとめて「周辺車両条件」と称呼される場合がある。本例において、第2他車両OV2に対して周辺車両条件が成立する。従って、PCSECU10は、第2他車両OV2を周辺車両として選択する。
以降において、第1他車両OV1を「制御対象車両OV1」と表記し、第2他車両OV2を「周辺車両OV2」と表記する。例えば、制御対象車両OV1が右折する場合、制御対象車両OV1は減速したり、旋回し始めていたりする。一方で、周辺車両OV2は、減速することなく直進している可能性が高い。このように、制御対象車両OV1が右折する場合、制御対象車両OV1の挙動(速度、加速度及び進行方向等)が、周辺車両OV2の挙動と異なる。
上記を考慮して、PCSECU10は、物体情報に基いて、所定の第1挙動条件が成立するか否かを判定する。第1挙動条件は、制御対象車両OV1の挙動と周辺車両OV2の挙動との間において所定の挙動差が存在するか否かを判定するための条件である。本明細書において、「挙動差」とは、制御対象車両OV1と周辺車両OV2との間において運動ベクトル(進行方向及び移動速度)に差があること、又は、制御対象車両OV1と周辺車両OV2との間において運動ベクトルの単位時間当たりの変化量(進行方向の変化及び移動速度の変化)に差があることを意味する。具体的には、第1挙動条件は、以降に述べる条件C1乃至条件C3の少なくとも1つが成立するときに成立する。
条件C1は、予め定められた基準軸と車両の進行方向とのなす角度(以下、「特定角度」と称呼する。)に関する条件である。本例において、基準軸は、自車両SVのx軸である。図8に示すように、制御対象車両OV1の特定角度θs1は、x軸と制御対象車両OV1の進行方向Dr1とのなす角度であり、周辺車両OV2の特定角度θs2は、x軸と周辺車両OV2の進行方向Dr2とのなす角度である。
制御対象車両OV1が右折するために旋回し始めている場合、制御対象車両OV1の特定角度θs1と周辺車両OV2の特定角度θs2との間に差が生じる。従って、本例において、条件C1は、以下の条件である。
・制御対象車両OV1の特定角度θs1と周辺車両OV2の特定角度θs2との間の差分の大きさ(|θs1-θs2|)が所定の第1角度差閾値θth1以上である。
なお、基準軸は、自車両SVのx軸に限定されない。例えば、基準軸は、対向車線の進行方向(対向車線が延びる方向)であってもよい。
条件C2は、車両の加速度に関する条件である。図9に示すように、制御対象車両OV1が交差点Is1にて右折する予定である場合、制御対象車両OV1が交差点Is1に進入する前に減速する可能性が高い。一方で、周辺車両OV2は、定速で走行するか又は加速している可能性が高い。従って、本例において、条件C2は、以下の条件である。
・制御対象車両OV1の加速度a1が負の値であり、且つ、周辺車両OV2の加速度a2がゼロ以上である。
なお、条件C2は、以下の条件であってもよい。
・制御対象車両OV1の加速度a1が負の値であり、周辺車両OV2の加速度a2が制御対象車両OV1の加速度a1よりも大きく、且つ、制御対象車両OV1の加速度a1と周辺車両OV2の加速度a2との差の大きさ(|a1-a2|)が所定の第1加速度差閾値ath1よりも大きい。
条件C3は、車両の速度に関する条件である。図9に示すように、制御対象車両OV1が交差点Is1にて右折する予定である場合、制御対象車両OV1が交差点Is1に進入する前に低速で走行する可能性が高い。一方で、周辺車両OV2は制御対象車両OV1に比べて高い速度で走行する可能性が高い。従って、本例において、条件C3は、以下の条件である。
・制御対象車両OV1の速度V1が周辺車両OV2の速度V2よりも小さく、且つ、速度V2と速度V1との差(V2-V1)が所定の第1速度差閾値Vth1以上である。
第1挙動条件が成立しない(条件C1乃至条件C3の何れも成立しない)場合、制御対象車両OV1が右折する可能性が低い。従って、PCSECU10は、第2時間閾値Tth2を第1値T1(通常の値)に設定する。
一方で、第1挙動条件が成立する場合、制御対象車両OV1が右折する可能性が高い。従って、PCSECU10は、第2時間閾値Tth2を第2値T2に設定する。第2値T2は、第1値T1よりも小さい。
上記の構成によれば、制御対象車両OV1と周辺車両OV2との間において第1挙動条件が成立する場合、PCSECU10は、第2時間閾値Tth2を、第1挙動条件が成立しない場合の値(T1)に比べて小さい値(T2)に設定する。従って、第1挙動条件が成立する場合、PCS実行条件が、第1挙動条件が成立しない場合に比べて遅いタイミングで成立する。即ち、PCS実行条件が成立しにくくなる。従って、PCS制御が実行される可能性を低減できる。
なお、自車両SVが右折している場合、物体情報に自車両SVの旋回成分の誤差が含まれ得る。しかし、制御対象車両OV1の挙動及び周辺車両OV2の挙動の両方に旋回成分の誤差が同じように含まれるので、PCSECU10は、上記の挙動差を検出して、制御対象車両が右折する可能性が高いかを判定することができる。
なお、3台以上の対向車両が存在する場合がある。図10の例において、自車両SVが第1走行レーンLn1を走行しており、自車両SVが交差点Is2にて右折しようとしている。更に、複数の他車両OV1乃至OV3が、第1走行レーンLn1に対する対向車線を走行している。対向車線は、第1対向レーンLo1、第2対向レーンLo2及び第3対向レーンLo3を含む。第1他車両OV1が第1対向レーンLo1を走行しており、第2他車両OV2が第2対向レーンLo2を走行しており、第3他車両OV3が第3対向レーンLo3を走行している。本例において、第1対向レーンLo1は、右折専用レーンである。
本例において、PCSECU10は、第1他車両OV1を制御対象車両として選択し、第2他車両OV2及び第3他車両OV3を周辺車両として選択する。以降において、第1他車両OV1を「制御対象車両OV1」と表記し、第2他車両OV2を「第1周辺車両OV2」と表記し、第3他車両OV3を「第2周辺車両OV3」と表記する。このように複数の周辺車両OV2及びOV3が存在する場合、PCSECU10は、以下のような処理を実行する。
第1周辺車両OV2の挙動と第2周辺車両OV3の挙動とが大きく異なる場合がある。例えば、第2周辺車両OV3が交差点Is2にて左折する場合、第2周辺車両OV3の挙動(進行方向、加速度及び速度等)が、第1周辺車両OV2の挙動と大きく異なる。PCSECU10がこのような第2周辺車両OV3の挙動を用いて第1挙動条件の成立を判定すると、制御対象車両OV1が右折しようとしているかを精度良く判定することができない。
従って、複数の周辺車両OV2及びOV3が存在する場合、PCSECU10は、所定の第2挙動条件が成立するか否かを判定する。第2挙動条件は、複数の周辺車両OV2及びOV3の挙動の間において挙動差が小さいか否か(即ち、複数の周辺車両OV2及びOV3が同じように直線走行しているか否か)を判定するための条件である。第2挙動条件は、以降に述べる条件D1乃至条件D3の全てが成立するときに成立する。
(条件D1)第1周辺車両OV2の特定角度θs2と第2周辺車両OV3の特定角度θs3との間の差の大きさ(|θs2-θs3|)が所定の第2角度差閾値θth2(ゼロに近い値)よりも小さい。
(条件D2)第1周辺車両OV2の進行方向Dr2における加速度a2と第2周辺車両OV3の進行方向Dr3における加速度a3とが共にゼロ以上の値であり、且つ、加速度a2と加速度a3との間の差の大きさ(|a2-a3|)が所定の第2加速度差閾値ath2よりも小さい。
(条件D3)第1周辺車両OV2の進行方向Dr2における速度V2と第2周辺車両OV3の進行方向Dr3における速度V3との間の差の大きさ(|V2-V3|)が所定の第2速度差閾値Vth2よりも小さい。
第2挙動条件が成立しない場合、PCSECU10は、第2時間閾値Tth2を第1値T1に設定する。
一方、第2挙動条件が成立する場合、PCSECU10は、制御対象車両OV1と複数の周辺車両OV2及びOV3のそれぞれとの間において第1挙動条件が成立するか否かを判定する。制御対象車両OV1と第1周辺車両OV2との間において第1挙動条件が成立し、且つ、制御対象車両OV1と第2周辺車両OV3との間において第1挙動条件が成立した場合、PCSECU10は、第2時間閾値Tth2を第2値T2に設定する。
制御対象車両と周辺車両との複数の組み合わせの中の少なくとも1つの組み合わせに関して(即ち、制御対象車両OV1と第1周辺車両OV2との間、及び、制御対象車両OV1と第2周辺車両OV3との間の少なくとも一方で)第1挙動条件が成立しない場合、PCSECU10は、第2時間閾値Tth2を第1値T1に設定する。
上記のように、複数の周辺車両OV2及びOV3が存在する状況において、PCSECU10は、第2挙動条件が成立する場合に、第1挙動条件が成立するか否かを判定する。即ち、PCSECU10は、複数の周辺車両OV2及びOV3の間において挙動差が小さい場合に、第1挙動条件が成立するか否かを判定する。これにより、PCSECU10は、制御対象車両OV1が右折しようとしているかを精度良く判定できる。
(作動)
PCSECU10のCPU101(以下、単に「CPU」と称呼する。)は、図11に示した「衝突回避制御(PCS制御)実行ルーチン」を実行するようになっている。CPUは、右のターンシグナルランプの作動状況及び/又は走行状態情報に基いて自車両SVが右折しようとしていると判定した場合、所定時間が経過する毎に、図11のルーチンを実行する。
なお、CPUは、所定時間が経過するごとに、各種センサ11乃至14から走行状態情報を取得するとともに周囲センサ15から車両周辺情報を取得し、これらの情報をRAM103に格納している。
所定のタイミングになると、CPUは、図11のステップ1100から処理を開始してステップ1101に進み、物体情報に基いて、自車両SVの周辺領域に1つ以上の物体が存在するか否かを判定する。1つ以上の物体が存在しない場合、CPUは、ステップ1101にて「No」と判定してステップ1195に直接進み、本ルーチンを一旦終了する。
これに対し、1つ以上の物体が存在する場合、CPUは、ステップ1101にて「Yes」と判定してステップ1102に進む。CPUは、ステップ1102にて、ステップ1101にて認識された物体の中から対向車両を抽出し、上記のように制御対象車両が存在するか否かを判定する。具体的には、CPUは、抽出された対向車両の中に、前述した制御対象車両条件が成立する対向車両が存在するか否かを判定する。制御対象車両条件が成立する対向車両が存在しない場合、CPUは、ステップ1102にて「No」と判定してステップ1195に直接進み、本ルーチンを一旦終了する。
制御対象車両条件が成立する対向車両が存在する場合、CPUは、その対向車両を制御対象車両として選択する。そして、CPUは、ステップ1102にて「Yes」と判定してステップ1103に進み、図12に示した後述する「閾値設定ルーチン」を実行する。この閾値設定ルーチンにおいて、CPUは、第2時間閾値Tth2を、第1値T1及び第2値T2の何れかの値に設定する。その後、CPUは、ステップ1104に進み、前述したPCS実行条件が成立するか否かを判定する。具体的には、CPUは、時間Tcが第2時間閾値Tth2以下であるか否かを判定する。PCS実行条件が成立しない場合、CPUは、ステップ1104にて「No」と判定してステップ1195に直接進み、本ルーチンを一旦終了する。
これに対し、PCS実行条件が成立する場合、CPUは、ステップ1104にて「Yes」と判定してステップ1105に進み、PCS制御を実行する。その後、CPUは、ステップ1195に進み、本ルーチンを一旦終了する。
次に、CPUが図11のルーチンのステップ1103にて実行する「閾値設定ルーチン」について説明する。CPUは、ステップ1103に進んだ場合、図12に示したルーチンの処理をステップ1200から開始してステップ1201に進む。CPUは、1つ以上の周辺車両が存在するか否かを判定する。具体的には、CPUは、制御対象車両以外の対向車両の中で、周辺車両条件が成立する対向車両が存在するか否かを判定する。周辺車両条件が成立する対向車両が存在しない場合、CPUは、ステップ1201にて「No」と判定してステップ1206に進み、第2時間閾値Tth2を第1値T1に設定する。その後、CPUは、ステップ1295に進んで本ルーチンを終了し、図11のルーチンのステップ1104に進む。
これに対し、周辺車両条件が成立する対向車両が存在する場合、CPUは、その対向車両を周辺車両として選択する。そして、CPUは、ステップ1201にて「Yes」と判定してステップ1202に進み、周辺車両の数が「1」であるか否かを判定する。周辺車両の数が「1」である場合、CPUは、ステップ1202にて「Yes」と判定してステップ1204に進む。そして、CPUは、制御対象車両と周辺車両との間において前述した第1挙動条件が成立するか否かを判定する。具体的には、CPUは、制御対象車両の挙動と周辺車両との挙動との間において条件C1乃至条件C3の少なくとも1つが成立するか否かを判定する。第1挙動条件が成立しない場合、CPUは、ステップ1204にて「No」と判定してステップ1206に進み、第2時間閾値Tth2を第1値T1に設定する。その後、CPUは、ステップ1295に進んで本ルーチンを終了し、図11のルーチンのステップ1104に進む。
第1挙動条件が成立する場合、CPUは、ステップ1204にて「Yes」と判定してステップ1205に進み、第2時間閾値Tth2を第2値T2に設定する。その後、CPUは、ステップ1295に進んで本ルーチンを終了し、図11のルーチンのステップ1104に進む。
一方、ステップ1202にて周辺車両の数が「1」でない場合、CPUは、そのステップ1202にて「No」と判定してステップ1203に進み、複数の周辺車両の間で前述した第2挙動条件が成立するか否かを判定する。具体的には、CPUは、複数の周辺車両の間において条件D1乃至条件D3の全てが成立するか否かを判定する。第2挙動条件が成立しない場合、CPUは、ステップ1203にて「No」と判定してステップ1206に進み、第2時間閾値Tth2を第1値T1に設定する。その後、CPUは、ステップ1295に進んで本ルーチンを終了し、図11のルーチンのステップ1104に進む。
第2挙動条件が成立する場合、CPUは、ステップ1203にて「Yes」と判定してステップ1204に進む。この場合、CPUは、前述のように、制御対象車両と複数の周辺車両のそれぞれとの間において第1挙動条件が成立するか否かを判定する。制御対象車両と複数の周辺車両のそれぞれとの間において第1挙動条件が成立する場合、ステップ1204にて「Yes」と判定してステップ1205に進み、第2時間閾値Tth2を第2値T2に設定する。その後、CPUは、ステップ1295に進んで本ルーチンを終了し、図11のルーチンのステップ1104に進む。
制御対象車両と周辺車両との複数の組み合わせの中の少なくとも1つの組み合わせに関して第1挙動条件が成立しない場合、CPUは、ステップ1204にて「No」と判定してステップ1206に進み、第2時間閾値Tth2を第1値T1に設定する。その後、CPUは、ステップ1295に進んで本ルーチンを終了し、図11のルーチンのステップ1104に進む。
以上説明した車両制御装置は以下の効果を奏する。制御対象車両OV1が交差点Is1にて右折し始めた状況(図8)又は制御対象車両OV1が交差点Is1の手前でまだ直進している状況(図9)においては、制御対象車両OV1の予測軌跡(例えば、図4のtr2を参照。)が、制御対象車両OV1が直進するような軌跡になる。従って、PCS実行条件が成立する可能性がある。上記の構成によれば、このような状況において第1挙動条件が成立する場合、車両制御装置は、PCS実行条件を、第1挙動条件が成立しない場合に比べて遅いタイミングで成立する条件へと変更する。これにより、不要な状況(即ち、制御対象車両OV1との衝突の可能性が低い状況)にてPCS制御が実行される可能性を低減できる。
なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。
(変形例1)
CPUは、図12のルーチンのステップ1205にて、以下のように第2時間閾値Tth2を設定してもよい。CPUは、車両SVの現時点の速度Vsに基いて、公知の手法に従って制動距離dfを演算する。制動距離dfは、PCS制御(制動力制御)が開始された時点から車両SVが停止する時点までの距離である。そして、CPUは、以下の式1に従って、第2時間閾値Tth2を設定する。Mは、所定のマージンである。なお、式1により演算される第2時間閾値Tth2は、第1値T1よりも小さい。
Tth2 ← (df+M)/Vs (1)
図13は、二次元マップ上で演算された第1予測軌跡tr1及び第2予測軌跡tr2を図7に重ねて示した図である。第1予測軌跡tr1上において、交差位置Psから「df+M」だけ離れた位置を「第1位置P1」と称呼する。式1により演算される第2時間閾値Tth2が使用された場合、車両SVの前部の右側コーナー部SVaが第1位置P1に到達したときにPCS制御が開始される。これにより、車両SVは、右側コーナー部SVaが第2予測軌跡tr2に到達する直前の位置(即ち、交差位置PsからマージンMだけ離れた位置)で停止する。このように、CPUは、車両SVが制御対象車両OV1と衝突する直前の位置(P1)で停止するように、第2時間閾値Tth2を設定してもよい。この構成によれば、第1挙動条件が成立する場合、PCS実行条件が成立するタイミングを、自車両SVが第2予測軌跡tr2に到達する直前の位置で停止できるタイミングまで遅らせることができる。自車両SVの安全性を確保しながら、不要な状況にてPCS制御が実行される可能性を低減できる。
(変形例2)
第1挙動条件は、上記の例に限定されない。CPUは、制御対象車両OV1と周辺車両OV2との間において運動ベクトル(進行方向及び移動速度)に所定の差がある場合、又は、制御対象車両OV1と周辺車両OV2との間において運動ベクトルの単位時間当たりの変化量(進行方向の変化及び移動速度の変化)に所定の差がある場合に、挙動差が存在すると判定してもよい。
例えば、条件C1は、制御対象車両OV1の進行方向Dr1と周辺車両OV2の進行方向Dr2との間に差が存在するかを判定する条件である限り、他の条件であってもよい。例えば、PCSECU10は、物体情報に基いて、制御対象車両OV1の横加速度及び周辺車両OV2の横加速度を演算してもよい。条件C1は、以下の条件であってもよい。
・制御対象車両OV1の横加速度が右折方向に対応する値であり、且つ、周辺車両OV2の横加速度がゼロである(即ち、周辺車両OV2が直進している)。
別の例において、PCSECU10は、制御対象車両OV1の進行方向Dr1の履歴から制御対象車両OV1の旋回角度(或いはヨーレート)を演算し、周辺車両OV2の進行方向Dr2の履歴から周辺車両OV2の旋回角度(或いはヨーレート)を演算してもよい。条件C1は、以下の条件であってもよい。
・制御対象車両OV1の旋回角度(或いはヨーレート)と周辺車両OV2の旋回角度(或いはヨーレート)との間の差の大きさが所定の閾値以上である。
なお、図7の例において、PCSECU10は、物体情報に基いて周辺車両OV2が直進しているかを判定してもよい。周辺車両OV2が直進していない(例えば、周辺車両OV2が左折している)場合、PCSECU10は、第1挙動条件を用いて、制御対象車両OV1が右折しようとしているかを精度良く判定できない。従って、周辺車両OV2が左折している場合、PCSECU10は、図12のルーチンのステップ1204にて「No」と判定して、第2時間閾値Tth2を第1値T1に設定してもよい。
(変形例3)
周辺車両条件は、上記の例に限定されない。PCSECU10は、車両周辺情報に含まれる車線情報に基いて、対向車線を規定する複数の区画線の位置を認識する。PCSECU10は、制御対象車両が走行するレーンに隣接するレーンを走行する対向車両を周辺車両として設定してもよい。
(変形例4)
PCS実行条件は、上記の例に限定されない。例えば、PCS実行条件は、距離dsが所定の距離閾値以下のときに成立する条件であってもよい。この構成においても、PCSECU10は、第1挙動条件が成立する場合、PCS実行条件を、第1挙動条件が成立しない場合に比べて遅いタイミングで成立する条件へと変更してもよい。例えば、PCSECU10は、第1挙動条件が成立する場合の距離閾値を、第1挙動条件が成立しない場合に比べて小さく設定してもよい。
(変形例5)
CPUは、図示しないナビゲーションシステムからの情報に基いて、図11のルーチン及び図12のルーチンの実行を開始してもよい。例えば、CPUは、ナビゲーションシステムからの情報に基いて自車両SVが交差点に近づいている又は自車両SVが右折専用レーンを走行していると判定した場合に、図11のルーチン及び図12のルーチンの実行を開始してもよい。
(変形例6)
上記の実施形態では、左側通行の国及び地域における例を説明したが、上記の構成は、右側通行の国及び地域に適用可能である。この場合、PCSECU10は、自車両SVが左折しようとしていると判定した場合において、図11のルーチン及び図12のルーチンを実行する。
10…衝突回避ECU(PCSECU)、20…エンジンECU、30…ブレーキECU、40…メータECU、15…周囲センサ、16…レーダセンサ、17…カメラセンサ、18…物体検出ECU。

Claims (8)

  1. 自車両の前方領域を少なくとも含む前記自車両の周辺領域に存在する物体に関する情報である物体情報を取得するセンサと、
    前記自車両が右折又は左折する状況において、前記物体情報に基いて、前記自車両に向かって移動しており且つ前記自車両と衝突する可能性がある対向車両を、制御対象車両として選択し、
    前記自車両が前記制御対象車両と衝突する可能性が高いときに成立する所定の実行条件が成立した場合、前記制御対象車両との衝突を回避するための衝突回避制御を実行するように構成された制御ユニットと、
    を備え、
    前記制御ユニットは、
    前記物体情報に基いて、前記自車両に向かって移動しており且つ前記制御対象車両の周囲に存在する少なくとも1つの対向車両であって前記制御対象車両が走行している車線とは異なる車線を直進する対向車両を、周辺車両として選択し、
    前記制御対象車両の挙動と前記周辺車両の挙動との間において所定の挙動差が存在するときに成立する第1挙動条件が成立するか否かを判定し、
    前記第1挙動条件が成立する場合、前記実行条件を、前記第1挙動条件が成立しない場合に比べて遅いタイミングで成立する条件へと変更する
    ように構成された、
    車両制御装置において、
    前記制御ユニットは、前記制御対象車両と前記周辺車両との間において運動ベクトルに所定の差が存在する場合、又は、前記制御対象車両と前記周辺車両との間において前記運動ベクトルの単位時間当たりの変化量に所定の差が存在する場合、前記挙動差が存在すると判定するように構成された、
    車両制御装置。
  2. 請求項1に記載の車両制御装置において、
    前記制御ユニットは、
    前記制御対象車両と前記周辺車両との間において進行方向に所定の進行方向差が存在する場合、或いは、前記制御対象車両と前記周辺車両との間において移動速度に所定の移動速度差が存在する場合、前記制御対象車両と前記周辺車両との間において運動ベクトルに所定の差が存在すると判定し、
    前記制御対象車両と前記周辺車両との間において進行方向の変化量に所定の進行方向変化量差が存在する場合、或いは、前記制御対象車両と前記周辺車両との間において移動速度の変化量に所定の移動速度変化量差が存在する場合、前記制御対象車両と前記周辺車両との間において運動ベクトルの単位時間当たりの変化量に所定の差が存在すると判定する
    ように構成された、
    車両制御装置。
  3. 自車両の前方領域を少なくとも含む前記自車両の周辺領域に存在する物体に関する情報である物体情報を取得するセンサと、
    前記自車両が右折又は左折する状況において、前記物体情報に基いて、前記自車両に向かって移動しており且つ前記自車両と衝突する可能性がある対向車両を、制御対象車両として選択し、
    前記自車両が前記制御対象車両と衝突する可能性が高いときに成立する所定の実行条件が成立した場合、前記制御対象車両との衝突を回避するための衝突回避制御を実行するように構成された制御ユニットと、
    を備え、
    前記制御ユニットは、
    前記物体情報に基いて、前記自車両に向かって移動しており且つ前記制御対象車両の周囲に存在する少なくとも1つの対向車両であって前記制御対象車両が走行している車線とは異なる車線を直進する対向車両を、周辺車両として選択し、
    前記制御対象車両の挙動と前記周辺車両の挙動との間において所定の挙動差が存在するときに成立する第1挙動条件が成立するか否かを判定し、
    前記第1挙動条件が成立する場合、前記実行条件を、前記第1挙動条件が成立しない場合に比べて遅いタイミングで成立する条件へと変更する
    ように構成された、
    車両制御装置であって、
    前記制御ユニットは、
    前記制御対象車両の進行方向と前記周辺車両の進行方向との間の差に関する第1条件、
    前記制御対象車両の前記進行方向における加速度と前記周辺車両の前記進行方向における加速度との間の差に関する第2条件、及び、
    前記制御対象車両の前記進行方向における速度と前記周辺車両の前記進行方向における速度との間の差に関する第3条件、
    の少なくとも1つが成立したとき、前記第1挙動条件が成立したと判定する
    ように構成された、
    車両制御装置において、
    前記制御ユニットは、
    基準軸と前記制御対象車両の前記進行方向とのなす角度と、前記基準軸と前記周辺車両の前記進行方向とのなす角度との間の差分の大きさが所定の角度差閾値以上であるとき、前記第1条件が成立したと判定し、
    前記制御対象車両の前記加速度が負の値であり、且つ、前記周辺車両の前記加速度がゼロ以上であるとき、前記第2条件が成立したと判定し、
    前記制御対象車両の前記速度が前記周辺車両の前記速度よりも小さく、且つ、前記周辺車両の前記速度と前記制御対象車両の前記速度との差が所定の速度差閾値以上であるとき、前記第3条件が成立したと判定する
    ように構成された、
    車両制御装置。
  4. 請求項1乃至3の何れか一項に記載の車両制御装置において、
    前記直進する対向車両は、横加速度がゼロである対向車両である、
    車両制御装置。
  5. 請求項1又は請求項3に記載の車両制御装置において、
    前記実行条件は、前記自車両が前記制御対象車両が通過すると予測される軌跡に到達するまでに要する時間が、時間閾値以下になるときに成立する条件であり、
    前記制御ユニットは、前記第1挙動条件が成立する場合、前記時間閾値を、前記第1挙動条件が成立しない場合に比べて小さく設定するように構成された、
    車両制御装置。
  6. 請求項5に記載の車両制御装置において、
    前記衝突回避制御は、前記自車両の車輪に制動力を付与する制動力制御を含み、
    前記制御ユニットは、前記第1挙動条件が成立する場合、
    前記衝突回避制御が開始された時点から前記自車両が停止する時点までの距離である制動距離を演算し、
    前記制動距離に基いて、前記時間閾値を、前記自車両が前記軌跡に到達する直前の位置で停止するような値に設定する
    ように構成された、
    車両制御装置。
  7. 請求項1に記載の車両制御装置において、
    前記制御ユニットは、前記制御対象車両の周囲に存在する複数の対向車両を前記周辺車両として選択した場合、
    前記複数の周辺車両の挙動の間において挙動差が小さいときに成立する第2挙動条件が成立するか否かを判定し、
    前記第2挙動条件が成立する場合に、前記第1挙動条件が成立するか否かを判定し、
    前記複数の周辺車両の進行方向それぞれと基準軸とがなす角度の差の大きさがそれぞれ所定の角度差閾値よりも小さく、且つ、前記複数の周辺車両の進行方向における加速度がそれぞれゼロ以上であって前記複数の周辺車両の進行方向における加速度の差の大きさがそれぞれ所定の加速度差閾値よりも小さく、且つ、前記複数の周辺車両の進行方向における速度の差の大きさがそれぞれ所定の速度差閾値よりも小さいとき、前記複数の周辺車両の挙動の間において挙動差が小さいと判定する
    ように構成された、
    車両制御装置。
  8. 請求項3に記載の車両制御装置において、
    前記制御ユニットは、前記制御対象車両の周囲に存在する複数の対向車両を前記周辺車両として選択した場合、
    前記複数の周辺車両の挙動の間において挙動差が小さいときに成立する第2挙動条件が成立するか否かを判定し、
    前記第2挙動条件が成立する場合に、前記第1挙動条件が成立するか否かを判定し、
    前記複数の周辺車両の進行方向それぞれと前記基準軸とがなす角度の差の大きさがそれぞれ所定の第2角度差閾値よりも小さく、且つ、前記複数の周辺車両の進行方向における加速度がそれぞれゼロ以上であって前記複数の周辺車両の進行方向における加速度の差の大きさがそれぞれ所定の第2加速度差閾値よりも小さく、且つ、前記複数の周辺車両の進行方向における速度の差の大きさがそれぞれ所定の第2速度差閾値よりも小さいとき、前記複数の周辺車両の挙動の間において挙動差が小さいと判定する
    ように構成された、
    車両制御装置。
JP2020194163A 2020-11-24 2020-11-24 車両制御装置 Active JP7413985B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020194163A JP7413985B2 (ja) 2020-11-24 2020-11-24 車両制御装置
US17/490,187 US20220161792A1 (en) 2020-11-24 2021-09-30 Vehicle control apparatus
CN202111391228.4A CN114537382A (zh) 2020-11-24 2021-11-23 车辆控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020194163A JP7413985B2 (ja) 2020-11-24 2020-11-24 車両制御装置

Publications (2)

Publication Number Publication Date
JP2022082962A JP2022082962A (ja) 2022-06-03
JP7413985B2 true JP7413985B2 (ja) 2024-01-16

Family

ID=81657921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020194163A Active JP7413985B2 (ja) 2020-11-24 2020-11-24 車両制御装置

Country Status (3)

Country Link
US (1) US20220161792A1 (ja)
JP (1) JP7413985B2 (ja)
CN (1) CN114537382A (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178194A (ja) 2002-11-26 2004-06-24 Mazda Motor Corp 車両用情報提供装置
JP2005157652A (ja) 2003-11-25 2005-06-16 Nissan Motor Co Ltd 走行支援用車載情報提供装置
JP2016207016A (ja) 2015-04-24 2016-12-08 日産自動車株式会社 走行制御装置およびデータ構造
JP2018156253A (ja) 2017-03-16 2018-10-04 トヨタ自動車株式会社 衝突回避装置
JP2018195289A (ja) 2017-05-18 2018-12-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 車両システム、車両情報処理方法、プログラム、交通システム、インフラシステムおよびインフラ情報処理方法
JP2019014454A (ja) 2017-07-11 2019-01-31 株式会社デンソー 車両における制動支援装置および制動支援制御方法
JP2020142665A (ja) 2019-03-06 2020-09-10 株式会社デンソー 運転支援装置
JP2020175794A (ja) 2019-04-19 2020-10-29 マツダ株式会社 車両制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3592043B2 (ja) * 1997-07-31 2004-11-24 トヨタ自動車株式会社 交差点警報装置
JP6137194B2 (ja) * 2012-11-29 2017-05-31 トヨタ自動車株式会社 運転支援装置及び運転支援方法
CN105246755B (zh) * 2013-05-31 2017-11-21 日立汽车系统株式会社 车辆控制装置
JP6180968B2 (ja) * 2014-03-10 2017-08-16 日立オートモティブシステムズ株式会社 車両制御装置
KR20170046483A (ko) * 2015-10-21 2017-05-02 현대자동차주식회사 자율 비상 제동 장치 및 방법
US9751506B2 (en) * 2015-10-27 2017-09-05 GM Global Technology Operations LLC Algorithms for avoiding automotive crashes at left and right turn intersections
US9688273B2 (en) * 2015-10-27 2017-06-27 GM Global Technology Operations LLC Methods of improving performance of automotive intersection turn assist features
US10232848B2 (en) * 2016-01-29 2019-03-19 Toyota Motor Engineering & Manufacturing North America, Inc. Detection of left turn across path/opposite direction oncoming objects
JP6347262B2 (ja) * 2016-02-12 2018-06-27 マツダ株式会社 車両の制御装置
KR102507937B1 (ko) * 2016-10-07 2023-03-10 주식회사 에이치엘클레무브 차량 제동 보조 장치 및 방법
KR102581779B1 (ko) * 2016-10-11 2023-09-25 주식회사 에이치엘클레무브 교차로충돌방지시스템 및 교차로충돌방지방법
KR20180099288A (ko) * 2017-02-28 2018-09-05 주식회사 만도 교차로 충돌 방지 시스템 및 방법
JP6961964B2 (ja) * 2017-03-16 2021-11-05 トヨタ自動車株式会社 衝突回避装置
CA3064723A1 (en) * 2017-05-24 2018-11-29 Nissan Motor Co., Ltd. Traveling assistance method of traveling assistance device and traveling assistance device
WO2019198223A1 (ja) * 2018-04-13 2019-10-17 三菱電機株式会社 運転支援装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178194A (ja) 2002-11-26 2004-06-24 Mazda Motor Corp 車両用情報提供装置
JP2005157652A (ja) 2003-11-25 2005-06-16 Nissan Motor Co Ltd 走行支援用車載情報提供装置
JP2016207016A (ja) 2015-04-24 2016-12-08 日産自動車株式会社 走行制御装置およびデータ構造
JP2018156253A (ja) 2017-03-16 2018-10-04 トヨタ自動車株式会社 衝突回避装置
JP2018195289A (ja) 2017-05-18 2018-12-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 車両システム、車両情報処理方法、プログラム、交通システム、インフラシステムおよびインフラ情報処理方法
JP2019014454A (ja) 2017-07-11 2019-01-31 株式会社デンソー 車両における制動支援装置および制動支援制御方法
JP2020142665A (ja) 2019-03-06 2020-09-10 株式会社デンソー 運転支援装置
JP2020175794A (ja) 2019-04-19 2020-10-29 マツダ株式会社 車両制御装置

Also Published As

Publication number Publication date
JP2022082962A (ja) 2022-06-03
US20220161792A1 (en) 2022-05-26
CN114537382A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
JP6572880B2 (ja) 運転支援装置
JP6961995B2 (ja) 運転支援装置
CN111845669A (zh) 车辆控制装置
JP7497789B2 (ja) 車両制御装置
JP7343844B2 (ja) 運転支援装置
CN111845670B (zh) 车辆控制装置
JP2020175795A (ja) 車両制御装置
US11938930B2 (en) Vehicle control apparatus
CN117657131A (zh) 车辆控制装置、车辆控制方法及计算机程序产品
CN111591287B (zh) 碰撞前控制装置
JP7468375B2 (ja) 車両制御装置
JP7413985B2 (ja) 車両制御装置
EP4032766A1 (en) Vehicle control apparatus
JP7472816B2 (ja) 注意喚起装置
JP7441405B2 (ja) 走行経路生成システム及び車両運転支援システム
JP7239877B2 (ja) 車両制御装置
JP7262702B2 (ja) 車両制御装置
JP7343840B2 (ja) 車両制御装置
JP7115381B2 (ja) 衝突前制御装置
US20230391333A1 (en) Processing method, processing system, and storage medium
JP7258284B2 (ja) 車両制御装置
JP2023064312A (ja) 車両制御システム
JP2022009030A (ja) 運転支援装置
KR20230138882A (ko) 운전 지원 장치, 운전 지원 방법 및 기억 매체
JP2021128508A (ja) 走行経路生成システム及び車両運転支援システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R151 Written notification of patent or utility model registration

Ref document number: 7413985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151