JP6979504B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP6979504B2
JP6979504B2 JP2020192258A JP2020192258A JP6979504B2 JP 6979504 B2 JP6979504 B2 JP 6979504B2 JP 2020192258 A JP2020192258 A JP 2020192258A JP 2020192258 A JP2020192258 A JP 2020192258A JP 6979504 B2 JP6979504 B2 JP 6979504B2
Authority
JP
Japan
Prior art keywords
film
oxide semiconductor
insulating film
transistor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020192258A
Other languages
English (en)
Other versions
JP2021036613A (ja
Inventor
純一 肥塚
健一 岡崎
大輔 黒崎
行徳 島
泰靖 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2021036613A publication Critical patent/JP2021036613A/ja
Priority to JP2021185503A priority Critical patent/JP2022017592A/ja
Application granted granted Critical
Publication of JP6979504B2 publication Critical patent/JP6979504B2/ja
Priority to JP2023151885A priority patent/JP2023169314A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明の一態様は、酸化物半導体膜を有する半導体装置及び該半導体装置を有する表示
装置に関する。または、本発明の一態様は、酸化物半導体膜を有する半導体装置の作製方
法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明
の一態様の技術分野は、物、方法、または、製造方法に関する。または、本発明は、プロ
セス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に
関する。特に、本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、記憶装
置、それらの駆動方法、またはそれらの製造方法に関する。
なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる
装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶
装置は、半導体装置の一態様である。撮像装置、表示装置、液晶表示装置、発光装置、電
気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、及び電子機器は、
半導体装置を有している場合がある。
絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタ(電界効果トラ
ンジスタ(FET)、または薄膜トランジスタ(TFT)ともいう)を構成する技術が注
目されている。該トランジスタは集積回路(IC)や画像表示装置(表示装置)のような
電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコ
ンを代表とする半導体材料が広く知られているが、その他の材料として酸化物半導体が注
目されている。
酸化物半導体を用いたトランジスタに安定した電気特性を付与し、信頼性の高い半導体
装置を得るために、組成の異なる酸化物半導体膜を積層させて、チャネル側にInを多く
含む酸化物半導体膜を用い、バックチャネル側にGa等のスタビライザーを多く含む酸化
物半導体膜を用いる構成の半導体装置が開示されている(例えば、特許文献1参照)。
特開2013−175715号公報
Inを多く含む酸化物半導体膜を用いると、エネルギーバンドギャップ(Eg)が小さ
くなる場合(例えば、Egが3.0eV未満)がある。この場合、Egが大きい酸化物半
導体膜(例えば、Egが3.0eV以上3.5eV以下)よりも、Egが小さい酸化物半
導体膜の方が、光に対する影響が大きくなる。光照射時のマイナス印加時のバイアススト
レス試験(光負GBT(Gate Bias Temperature)ストレス試験)
において、Egが小さい酸化物半導体膜を有するトランジスタにおいては、信頼性が低下
する場合がある。
なお、光負GBTストレス試験は、加速試験の一種であり、光照射時における、長期間
の使用によって起こるトランジスタの特性変化を、短時間で評価することができる。特に
、光負GBTストレス試験前後におけるトランジスタのしきい値電圧の変化量(ΔVth
)は、信頼性を調べるための重要な指標となる。光負GBTストレス試験前後において、
しきい値電圧の変化量(ΔVth)が小さいほど信頼性が高い。
上記問題に鑑み、本発明の一態様においては、Inを多く含む酸化物半導体膜を有する
トランジスタにおいて、電気特性の変動を抑制すると共に、信頼性を向上させることを課
題の1つとする。または、本発明の一態様においては、消費電力が低減された半導体装置
を提供することを課題の1つとする。または、本発明の一態様においては、新規な半導体
装置を提供することを課題の1つとする。または、本発明の一態様においては、新規な半
導体装置の作製方法を提供することを課題の1つとする。または、本発明の一態様におい
ては、新規な表示装置を提供することを課題の1つとする。
なお、上記の課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一
態様は、必ずしも、これらの課題の全てを解決する必要はない。上記以外の課題は、明細
書等の記載から自ずと明らかになるものであり、明細書等の記載から上記以外の課題を抽
出することが可能である。
本発明の一態様は、トランジスタを有する半導体装置であって、トランジスタは、ゲー
ト電極と、ゲート電極上のゲート絶縁膜と、ゲート絶縁膜上の酸化物半導体膜と、酸化物
半導体膜に電気的に接続されるソース電極と、酸化物半導体膜に電気的に接続されるドレ
イン電極と、を有し、酸化物半導体膜は、ゲート電極側の第1の酸化物半導体膜と、第1
の酸化物半導体膜上の第2の酸化物半導体膜と、を有し、第1の酸化物半導体膜は、In
の原子数比がM(Mは、Ti、Ga、Sn、Y、Zr、La、Ce、Nd、またはHfを
表す)の原子数比より多い、第1の領域を有し、第2の酸化物半導体膜は、第1の酸化物
半導体膜よりもInの原子数比が少ない、第2の領域を有し、第2の領域は、第1の領域
よりも薄い部分を有することを特徴とする半導体装置である。
また、本発明の他の一態様は、トランジスタを有する半導体装置であって、トランジス
タは、第1のゲート電極と、第1のゲート電極上の第1のゲート絶縁膜と、第1のゲート
絶縁膜上の酸化物半導体膜と、酸化物半導体膜に電気的に接続されるソース電極と、酸化
物半導体膜に電気的に接続されるドレイン電極と、酸化物半導体膜上の第2のゲート絶縁
膜と、第2のゲート絶縁膜上の第2のゲート電極と、を有し、酸化物半導体膜は、第1の
ゲート電極側の第1の酸化物半導体膜と、第1の酸化物半導体膜上の第2の酸化物半導体
膜と、を有し、第1の酸化物半導体膜は、Inの原子数比がM(Mは、Ti、Ga、Sn
、Y、Zr、La、Ce、Nd、またはHfを表す)の原子数比より多い、第1の領域を
有し、第2の酸化物半導体膜は、第1の酸化物半導体膜よりもInの原子数比が少ない、
第2の領域を有し、第2の領域は、第1の領域よりも薄い部分を有することを特徴とする
半導体装置である。
上記各構成において、酸化物半導体膜は、Inと、Mと、さらにZnを有し、Mは、G
aであると好ましい。また、上記各構成において、酸化物半導体膜は、結晶部を有し、結
晶部は、結晶部のc軸が酸化物半導体膜の被形成面の法線ベクトルに平行である部分を有
すると好ましい。
また、上記各構成において、第1の領域は、第2の領域よりも結晶部の占める割合が高
い部分を有すると好ましい。また、上記各構成において、第1の領域は、第2の領域より
も水素濃度が少ない部分を有すると好ましい。
また、本発明の他の一態様は、上記各構成にいずれか一つに記載の半導体装置と表示素
子とを有する表示装置である。また、本発明の他の一態様は、該表示装置とタッチセンサ
とを有する表示モジュールである。また、本発明の他の一態様は、上記各構成にいずれか
一つに記載の半導体装置、上記表示装置、または上記表示モジュールと、操作キーまたは
バッテリとを有する電子機器である。
また、本発明の他の一態様は、トランジスタを有する半導体装置の作製方法であって、
基板上にゲート電極を形成する工程と、ゲート電極上にゲート絶縁膜を形成する工程と、
ゲート絶縁膜上に第1の酸化物半導体膜を形成する工程と、第1の酸化物半導体膜上に第
2の酸化物半導体膜を形成する工程と、第2の酸化物半導体膜上にソース電極及びドレイ
ン電極を形成する工程と、第2の酸化物半導体膜上に酸化物絶縁膜を形成する工程と、酸
化物絶縁膜上に酸化物導電膜を形成する工程と、酸化物導電膜を介して、酸化物絶縁膜中
に酸素を添加する工程と、酸化物導電膜を除去する工程と、を備え、ソース電極及びドレ
イン電極を形成する工程において、第2の酸化物半導体膜の一部の領域は、第1の酸化物
半導体膜よりも薄くなり、酸化物絶縁膜を形成する工程は、PECVD装置にて180℃
以上350℃以下の温度で実施され、トランジスタの作製工程中において、酸化物絶縁膜
を形成する工程の温度が最も高いことを特徴とする半導体装置の作製方法である。
また、本発明の他の一態様は、トランジスタを有する半導体装置の作製方法であって、
基板上に第1のゲート電極を形成する工程と、第1のゲート電極上に第1のゲート絶縁膜
を形成する工程と、第1のゲート絶縁膜上に第1の酸化物半導体膜を形成する工程と、第
1の酸化物半導体膜上に第2の酸化物半導体膜を形成する工程と、第2の酸化物半導体膜
上にソース電極及びドレイン電極を形成する工程と、第2の酸化物半導体膜上に第2のゲ
ート絶縁膜として機能する、酸化物絶縁膜を形成する工程と、酸化物絶縁膜上に酸化物導
電膜を形成する工程と、酸化物導電膜を介して、酸化物絶縁膜中に酸素を添加する工程と
、酸化物導電膜を除去する工程と、酸化物絶縁膜上に第2のゲート電極を形成する工程と
、を備え、ソース電極及びドレイン電極を形成する工程において、第2の酸化物半導体膜
の一部の領域は、第1の酸化物半導体膜よりも薄くなり、酸化物絶縁膜を形成する工程は
、PECVD装置にて180℃以上350℃以下の温度で実施され、トランジスタの作製
工程中において、酸化物絶縁膜を形成する工程の温度が最も高いことを特徴とする半導体
装置の作製方法である。
上記各構成において、第1の酸化物半導体膜及び第2の酸化物半導体膜は、それぞれ、
酸素と、Inと、Znと、M(Mは、Ti、Ga、Sn、Y、Zr、La、Ce、Nd、
またはHfを表す)と、を有すると好ましい。また、上記各構成において、第1の酸化物
半導体膜及び第2の酸化物半導体膜は、それぞれ、結晶部を有し、結晶部は、結晶部のc
軸が第1の酸化物半導体膜の被形成面の法線ベクトルに平行である部分、または第2の酸
化物半導体膜の被形成面の法線ベクトルに平行である部分を有すると好ましい。
本発明の一態様により、酸化物半導体を有するトランジスタを用いた半導体装置におい
て、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、本発
明の一態様により、消費電力が低減された半導体装置を提供することができる。または、
本発明の一態様により、新規な半導体装置を提供することができる。または、本発明の一
態様においては、新規な半導体装置の作製方法を提供することができる。または、本発明
の一態様により、新規な表示装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の
一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の効果を抽出することが可能である。
半導体装置の一態様を示す上面図及び断面図。 半導体装置の一態様を示す断面図。 半導体装置の作製工程の一例を示す断面図。 半導体装置の作製工程の一例を示す断面図。 半導体装置の作製工程の一例を示す断面図。 半導体装置の作製工程の一例を示す断面図。 半導体装置の作製工程の一例を示す断面図。 表示装置の一態様を示す上面図。 表示装置の一態様を示す断面図。 表示装置の一態様を示す断面図。 表示装置を説明するブロック図及び回路図。 表示モジュールを説明する図。 電子機器を説明する図。 SIMS分析結果を説明する図。 TDS分析結果を説明する図。 TDS分析結果を説明する図。 ESRの測定結果を説明する図。 ESRの測定結果を説明する図。 実施例に係る、トランジスタのID−VG特性を説明する図。 実施例に係る、トランジスタのID−VG特性を説明する図。 実施例に係る、トランジスタのID−VG特性を説明する図。 実施例に係る、トランジスタのゲートBTストレス試験結果。 実施例に係る、トランジスタのゲートBTストレス試験結果。 実施例に係る、トランジスタのID−VG特性を説明する図。 実施例に係る、トランジスタのID−VG特性を説明する図。 実施例に係る、トランジスタのID−VG特性を説明する図。 実施例に係る、トランジスタのVth及びIonの確率分布を説明する図。 実施例に係る、トランジスタのゲートBTストレス試験結果を説明する図。 実施例に係る、トランジスタのゲートBTストレス試験結果を説明する図。 実施例に係る、表示装置の画素部の上面図。 実施例に係る、表示装置の額縁領域を説明する上面図。 実施例に係る、画素部及び保護回路部の断面図。 実施例に係る、保護回路を説明する回路図。 CAAC−OSの断面におけるCs補正高分解能TEM像、およびCAAC−OSの断面模式図。 CAAC−OSの平面におけるCs補正高分解能TEM像。 CAAC−OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図。 CAAC−OSの電子回折パターンを示す図。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。 CAAC−OSおよびnc−OSの成膜モデルを説明する模式図。 InGaZnOの結晶、およびペレットを説明する図。 CAAC−OSの成膜モデルを説明する模式図。
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異
なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態
及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は
、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている
場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を
模式的に示したものであり、図面に示す形状又は値などに限定されない。
また、本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の
混同を避けるために付したものであり、数的に限定するものではないことを付記する。
また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位
置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関
係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明し
た語句に限定されず、状況に応じて適切に言い換えることができる。
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含
む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイ
ン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間
にチャネル領域を有しており、ドレインとチャネル領域とソースとを介して電流を流すこ
とができるものである。なお、本明細書等において、チャネル領域とは、電流が主として
流れる領域をいう。
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路
動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明
細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとす
る。
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するも
の」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するも
の」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない
。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジス
タなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有
する素子などが含まれる。
また、本明細書等において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸
素の含有量が多い膜を指し、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素
の含有量が多い膜を指す。
また、本明細書等において、図面を用いて発明の構成を説明するにあたり、同じものを
指す符号は異なる図面間でも共通して用いる。
また、本明細書等において、「平行」とは、二つの直線が−10°以上10°以下の角
度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。ま
た、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態を
いう。したがって、85°以上95°以下の場合も含まれる。
また、本明細書等において、「膜」という用語と、「層」という用語とは、場合によっ
ては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」
という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例え
ば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある
(実施の形態1)
本実施の形態では、本発明の一態様の半導体装置及び半導体装置の作製方法について、
図1乃至図7を参照して説明する。
<半導体装置の構成例1>
図1(A)は、本発明の一態様の半導体装置であるトランジスタ100の上面図であり
、図1(B)は、図1(A)に示す一点鎖線X1−X2間における切断面の断面図に相当
し、図1(C)は、図1(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相
当する。なお、図1(A)において、煩雑になることを避けるため、トランジスタ100
の構成要素の一部(ゲート絶縁膜として機能する絶縁膜等)を省略して図示している。ま
た、一点鎖線X1−X2方向をチャネル長方向、一点鎖線Y1−Y2方向をチャネル幅方
向と呼称する場合がある。なお、トランジスタの上面図においては、以降の図面において
も図1(A)と同様に、構成要素の一部を省略して図示する場合がある。
トランジスタ100は、基板102上のゲート電極として機能する導電膜104と、基
板102及び導電膜104上の絶縁膜106と、絶縁膜106上の絶縁膜107と、絶縁
膜107上の酸化物半導体膜108と、酸化物半導体膜108に電気的に接続されるソー
ス電極として機能する導電膜112aと、酸化物半導体膜108に電気的に接続されるド
レイン電極として機能する導電膜112bと、を有する。また、トランジスタ100上、
より詳しくは、導電膜112a、112b及び酸化物半導体膜108上には絶縁膜114
、116、及び絶縁膜118が設けられる。絶縁膜114、116、118は、トランジ
スタ100の保護絶縁膜としての機能を有する。
また、酸化物半導体膜108は、ゲート電極として機能する導電膜104側の第1の酸
化物半導体膜108aと、第1の酸化物半導体膜108a上の第2の酸化物半導体膜10
8bと、を有する。また、絶縁膜106及び絶縁膜107は、トランジスタ100のゲー
ト絶縁膜としての機能を有する。
酸化物半導体膜108としては、In−M(Mは、Ti、Ga、Sn、Y、Zr、La
、Ce、Nd、またはHfを表す)酸化物、In−M−Zn酸化物を用いることができる
。とくに、酸化物半導体膜108としては、In−M−Zn酸化物を用いると好ましい。
また、第1の酸化物半導体膜108aは、Inの原子数比がMの原子数比より多い第1
の領域を有する。また、第2の酸化物半導体膜108bは、第1の酸化物半導体膜108
aよりもInの原子数比が少ない第2の領域を有する。また、第2の領域は、第1の領域
よりも薄い部分を有する。
第1の酸化物半導体膜108aにInの原子数比がMの原子数比より多い第1の領域を
有することで、トランジスタ100の電界効果移動度(単に移動度、またはμFEという
場合がある)を高くすることができる。具体的には、トランジスタ100の電界効果移動
度が10cm/Vsを超える、さらに好ましくはトランジスタ100の電界効果移動度
が30cm/Vsを超えることが可能となる。
例えば、上記の電界効果移動度が高いトランジスタを、ゲート信号を生成するゲートド
ライバ(とくに、ゲートドライバが有するシフトレジスタの出力端子に接続されるデマル
チプレクサ)に用いることで、額縁幅の狭い(狭額縁ともいう)半導体装置または表示装
置を提供することができる。
一方で、Inの原子数比がMの原子数比より多い第1の領域を有する第1の酸化物半導
体膜108aとすることで、光照射時にトランジスタ100の電気特性が変動しやすくな
る。しかしながら、本発明の一態様の半導体装置においては、第1の酸化物半導体膜10
8a上に第2の酸化物半導体膜108bが形成されている。また、第2の酸化物半導体膜
108bのチャネル領域近傍の膜厚が第1の酸化物半導体膜108aの膜厚よりも小さい
また、第2の酸化物半導体膜108bは、第1の酸化物半導体膜108aよりもInの
原子数比が少ない第2の領域を有するため、第1の酸化物半導体膜108aよりもEgが
大きくなる。したがって、第1の酸化物半導体膜108aと、第2の酸化物半導体膜10
8bとの積層構造である酸化物半導体膜108は、光負バイアスストレス試験による耐性
が高くなる。
上記構成の酸化物半導体膜とすることで、光照射時における酸化物半導体膜108の光
吸収量を低減させることができる。したがって、光照射時におけるトランジスタ100の
電気特性の変動を抑制することができる。また、本発明の一態様の半導体装置においては
、絶縁膜114または絶縁膜116中に過剰の酸素を含有する構成のため、光照射におけ
るトランジスタ100の電気特性の変動をさらに、抑制することができる。
ここで、酸化物半導体膜108について、図2を用いて詳細に説明する。
図2は、図1(B)に示す、トランジスタ100の酸化物半導体膜108の近傍を拡大
した断面図である。
図2において、第1の酸化物半導体膜108aの膜厚をt1として、第2の酸化物半導
体膜108bの膜厚をt2−1、及びt2−2として、それぞれ示している。第1の酸化
物半導体膜108a上には、第2の酸化物半導体膜108bが設けられているため、導電
膜112a、112bの形成時において、第1の酸化物半導体膜108aがエッチングガ
スまたはエッチング溶液等に曝されることがない。したがって、第1の酸化物半導体膜1
08aにおいては、膜減りがない、または極めて少ない。一方で、第2の酸化物半導体膜
108bにおいては、導電膜112a、112bの形成時において、第2の酸化物半導体
膜108bの導電膜112a、112bと重ならない部分がエッチングされ、凹部が形成
される。すなわち、第2の酸化物半導体膜108bの導電膜112a、112bと重なる
領域の膜厚がt2−1となり、第2の酸化物半導体膜108bの導電膜112a、112
bと重ならない領域の膜厚がt2−2となる。
第1の酸化物半導体膜108aと第2の酸化物半導体膜108bの膜厚の関係は、t2
−1>t1>t2−2となると好ましい。このような膜厚の関係とすることによって、高
い電界効果移動度を有し、且つ光照射時における、しきい値電圧の変化量が少ないトラン
ジスタとすることが可能となる。
また、トランジスタ100が有する酸化物半導体膜108は、酸素欠損が形成されると
キャリアである電子が生じ、ノーマリーオン特性になりやすい。したがって、酸化物半導
体膜108中の酸素欠損、とくに第1の酸化物半導体膜108a中の酸素欠損を減らすこ
とが、安定したトランジスタ特性を得る上でも重要となる。そこで、本発明の一態様のト
ランジスタの構成においては、酸化物半導体膜108上の絶縁膜、ここでは、酸化物半導
体膜108上の絶縁膜114及び/又は絶縁膜116に過剰な酸素を導入することで、絶
縁膜114及び/又は絶縁膜116から酸化物半導体膜108中に酸素を移動させ、酸化
物半導体膜108中、とくに第1の酸化物半導体膜108a中の酸素欠損を補填すること
を特徴とする。
なお、絶縁膜114、116としては、化学量論的組成よりも過剰に酸素を含有する領
域(酸素過剰領域)を有することがより好ましい。別言すると、絶縁膜114、116は
、酸素を放出することが可能な絶縁膜である。なお、絶縁膜114、116に酸素過剰領
域を設けるには、例えば、成膜後の絶縁膜114、116に酸素を導入して、酸素過剰領
域を形成する。酸素の導入方法としては、イオン注入法、イオンドーピング法、プラズマ
イマージョンイオン注入法、プラズマ処理等を用いることができる。
また、第1の酸化物半導体膜108a中の酸素欠損を補填するためには、第2の酸化物
半導体膜108bのチャネル領域近傍の膜厚を薄くした方が好適である。したがって、t
2−2<t1の関係を満たせばよい。例えば、第2の酸化物半導体膜108bのチャネル
領域近傍の膜厚としては、好ましくは1nm以上20nm以下、さらに好ましくは、3n
m以上10nm以下である。
以下に、本実施の形態の半導体装置に含まれるその他の構成要素について、詳細に説明
する。
<基板>
基板102の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度
の耐熱性を有している必要がある。例えば、ガラス基板、セラミック基板、石英基板、サ
ファイア基板等を、基板102として用いてもよい。また、シリコンや炭化シリコンを材
料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体
基板、SOI基板等を適用することも可能であり、これらの基板上に半導体素子が設けら
れたものを、基板102として用いてもよい。なお、基板102として、ガラス基板を用
いる場合、第6世代(1500mm×1850mm)、第7世代(1870mm×220
0mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×280
0mm)、第10世代(2950mm×3400mm)等の大面積基板を用いることで、
大型の表示装置を作製することができる。
また、基板102として、可撓性基板を用い、可撓性基板上に直接、トランジスタ10
0を形成してもよい。または、基板102とトランジスタ100の間に剥離層を設けても
よい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板102より
分離し、他の基板に転載するのに用いることができる。その際、トランジスタ100は耐
熱性の劣る基板や可撓性の基板にも転載できる。
<ゲート電極、ソース電極、及びドレイン電極として機能する導電膜>
ゲート電極として機能する導電膜104、及びソース電極として機能する導電膜112
a、及びドレイン電極として機能する導電膜112bとしては、クロム(Cr)、銅(C
u)、アルミニウム(Al)、金(Au)、銀(Ag)、亜鉛(Zn)、モリブデン(M
o)、タンタル(Ta)、チタン(Ti)、タングステン(W)、マンガン(Mn)、ニ
ッケル(Ni)、鉄(Fe)、コバルト(Co)から選ばれた金属元素、または上述した
金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いてそれぞれ
形成することができる。
また、導電膜104、112a、112bは、単層構造でも、二層以上の積層構造とし
てもよい。例えば、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタ
ン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜
上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上に
タングステン膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積
層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チ
タン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ば
れた一または複数を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、導電膜104、112a、112bには、インジウム錫酸化物、酸化タングステ
ンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタン
を含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物
、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を適用する
こともできる。
また、導電膜104、112a、112bには、Cu−X合金膜(Xは、Mn、Ni、
Cr、Fe、Co、Mo、Ta、またはTi)を適用してもよい。Cu−X合金膜を用い
ることで、ウエットエッチングプロセスで加工できるため、製造コストを抑制することが
可能となる。
<ゲート絶縁膜として機能する絶縁膜>
トランジスタ100のゲート絶縁膜として機能する絶縁膜106、107としては、プ
ラズマ化学気相堆積(PECVD:(Plasma Enhanced Chemica
l Vapor Deposition))法、スパッタリング法等により、酸化シリコ
ン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜
、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化
タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜および酸化ネオジム
膜を一種以上含む絶縁層を、それぞれ用いることができる。なお、絶縁膜106、107
の積層構造とせずに、上述の材料から選択された単層の絶縁膜、または3層以上の絶縁膜
を用いてもよい。
また、絶縁膜106は、酸素の透過を抑制するブロッキング膜としての機能を有する。
例えば、絶縁膜107、114、116及び/または酸化物半導体膜108中に過剰の酸
素を供給する場合において、絶縁膜106は酸素の透過を抑制することができる。
なお、トランジスタ100のチャネル領域として機能する酸化物半導体膜108と接す
る絶縁膜107は、酸化物絶縁膜であることが好ましく、化学量論的組成よりも過剰に酸
素を含有する領域(酸素過剰領域)を有することがより好ましい。別言すると、絶縁膜1
07は、酸素を放出することが可能な絶縁膜である。なお、絶縁膜107に酸素過剰領域
を設けるには、例えば、酸素雰囲気下にて絶縁膜107を形成すればよい。または、成膜
後の絶縁膜107に酸素を導入して、酸素過剰領域を形成してもよい。酸素の導入方法と
しては、イオン注入法、イオンドーピング法、プラズマイマージョンイオン注入法、プラ
ズマ処理等を用いることができる。
また、絶縁膜107として、酸化ハフニウムを用いる場合、以下の効果を奏する。酸化
ハフニウムは、酸化シリコンや酸化窒化シリコンと比べて比誘電率が高い。したがって、
酸化シリコンを用いた場合と比べて、絶縁膜107の膜厚を大きくできるため、トンネル
電流によるリーク電流を小さくすることができる。すなわち、オフ電流の小さいトランジ
スタを実現することができる。さらに、結晶構造を有する酸化ハフニウムは、非晶質構造
を有する酸化ハフニウムと比べて高い比誘電率を備える。したがって、オフ電流の小さい
トランジスタとするためには、結晶構造を有する酸化ハフニウムを用いることが好ましい
。結晶構造の例としては、単斜晶系や立方晶系などが挙げられる。ただし、本発明の一態
様は、これらに限定されない。
なお、本実施の形態では、絶縁膜106として窒化シリコン膜を形成し、絶縁膜107
として酸化シリコン膜を形成する。窒化シリコン膜は、酸化シリコン膜と比較して比誘電
率が高く、酸化シリコン膜と同等の静電容量を得るのに必要な膜厚が大きいため、トラン
ジスタ100のゲート絶縁膜として、窒化シリコン膜を含むことで絶縁膜を厚膜化するこ
とができる。よって、トランジスタ100の絶縁耐圧の低下を抑制、さらには絶縁耐圧を
向上させて、トランジスタ100の静電破壊を抑制することができる。
<酸化物半導体膜>
酸化物半導体膜108としては、先に示す材料を用いることができる。酸化物半導体膜
108がIn−M−Zn酸化物の場合、In−M−Zn酸化物を成膜するために用いるス
パッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好
ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:
Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:3、I
n:M:Zn=3:1:2、In:M:Zn=4:2:4.1が好ましい。また、酸化物
半導体膜108がIn−M−Zn酸化物の場合、スパッタリングターゲットとしては、多
結晶のIn−M−Zn酸化物を含むターゲットを用いると好ましい。多結晶のIn−M−
Zn酸化物を含むターゲットを用いることで、結晶性を有する酸化物半導体膜108を形
成しやすくなる。なお、成膜される酸化物半導体膜108の原子数比はそれぞれ、誤差と
して上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス4
0%の変動を含む。例えば、スパッタリングターゲットとして、原子数比がIn:Ga:
Zn=4:2:4.1を用いる場合、成膜される酸化物半導体膜108の原子数比は、I
n:Ga:Zn=4:2:3近傍となる場合がある。
例えば、第1の酸化物半導体膜108aとしては、上述のIn:M:Zn=2:1:3
、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1等のスパッタリングタ
ーゲットを用いて形成すればよい。また、第2の酸化物半導体膜108bとしては、上述
のIn:M:Zn=1:1:1、In:M:Zn=1:1:1.2等を用いて形成すれば
よい。なお、第2の酸化物半導体膜108bに用いるスパッタリングターゲットの金属元
素の原子数比としては、In≧M、Zn≧Mを満たす必要はなく、In≧M、Zn<Mを
満たす組成でもよい。具体的には、In:M:Zn=1:3:2等が挙げられる。
また、酸化物半導体膜108は、エネルギーギャップが2eV以上、好ましくは2.5
eV以上、より好ましくは3eV以上である。このように、エネルギーギャップの広い酸
化物半導体を用いることで、トランジスタ100のオフ電流を低減することができる。と
くに、第1の酸化物半導体膜108aには、エネルギーギャップが2eV以上、好ましく
は2eV以上3.0eV以下の酸化物半導体膜を用い、第2の酸化物半導体膜108bに
は、エネルギーギャップが2.5eV以上3.5eV以下の酸化物半導体膜を用いると、
好適である。また、第1の酸化物半導体膜108aよりも第2の酸化物半導体膜108b
のエネルギーギャップが大きい方が好ましい。
また、第1の酸化物半導体膜108a、及び第2の酸化物半導体膜108bの厚さは、
それぞれ3nm以上200nm以下、好ましくは3nm以上100nm以下、さらに好ま
しくは3nm以上50nm以下とする。なお、先に記載の膜厚の関係を満たすと好ましい
また、第2の酸化物半導体膜108bとしては、キャリア密度の低い酸化物半導体膜を
用いる。例えば、第2の酸化物半導体膜108bは、キャリア密度が1×1017個/c
以下、好ましくは1×1015個/cm以下、さらに好ましくは1×1013個/
cm以下、より好ましくは1×1011個/cm以下とする。
なお、これらに限られず、必要とするトランジスタの半導体特性及び電気特性(電界効
果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とす
るトランジスタの半導体特性を得るために、第1の酸化物半導体膜108a、及び第2の
酸化物半導体膜108bのキャリア密度や不純物濃度、欠陥密度、金属元素と酸素の原子
数比、原子間距離、密度等を適切なものとすることが好ましい。
なお、第1の酸化物半導体膜108a、及び第2の酸化物半導体膜108bとしては、
それぞれ不純物濃度が低く、欠陥準位密度の低い酸化物半導体膜を用いることで、さらに
優れた電気特性を有するトランジスタを作製することができ好ましい。ここでは、不純物
濃度が低く、欠陥準位密度の低い(酸素欠損の少ない)ことを高純度真性または実質的に
高純度真性とよぶ。高純度真性または実質的に高純度真性である酸化物半導体膜は、キャ
リア発生源が少ないため、キャリア密度を低くすることができる。従って、該酸化物半導
体膜にチャネル領域が形成されるトランジスタは、しきい値電圧がマイナスとなる電気特
性(ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に
高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低く
なる場合がある。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、
オフ電流が著しく小さく、チャネル幅が1×10μmでチャネル長Lが10μmの素子
であっても、ソース電極とドレイン電極間の電圧(ドレイン電圧)が1Vから10Vの範
囲において、オフ電流が、半導体パラメータアナライザの測定限界以下、すなわち1×1
−13A以下という特性を得ることができる。
したがって、上記高純度真性、または実質的に高純度真性の酸化物半導体膜にチャネル
領域が形成されるトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタ
とすることができる。なお、酸化物半導体膜のトラップ準位に捕獲された電荷は、消失す
るまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、
トラップ準位密度の高い酸化物半導体膜にチャネル領域が形成されるトランジスタは、電
気特性が不安定となる場合がある。不純物としては、水素、窒素、アルカリ金属、または
アルカリ土類金属等がある。
酸化物半導体膜に含まれる水素は、金属原子と結合する酸素と反応して水になると共に
、酸素が脱離した格子(または酸素が脱離した部分)に酸素欠損を形成する。該酸素欠損
に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が
金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って
、水素が含まれている酸化物半導体膜を用いたトランジスタはノーマリーオン特性となり
やすい。このため、酸化物半導体膜108は水素ができる限り低減されていることが好ま
しい。具体的には、酸化物半導体膜108において、SIMS分析により得られる水素濃
度を、2×1020atoms/cm以下、好ましくは5×1019atoms/cm
以下、より好ましくは1×1019atoms/cm以下、5×1018atoms
/cm以下、好ましくは1×1018atoms/cm以下、より好ましくは5×1
17atoms/cm以下、さらに好ましくは1×1016atoms/cm以下
とする。
また、第1の酸化物半導体膜108aは、第2の酸化物半導体膜108bよりも水素濃
度が少ない部分を有すると好ましい。第1の酸化物半導体膜108aの方が、第2の酸化
物半導体膜108bよりも水素濃度が少ない部分を有すことにより、信頼性の高い半導体
装置とすることができる。
また、第1酸化物半導体膜108aにおいて、第14族元素の一つであるシリコンや炭
素が含まれると、第1の酸化物半導体膜108aにおいて酸素欠損が増加し、n型化して
しまう。このため、第1の酸化物半導体膜108aにおけるシリコンや炭素の濃度と、第
1の酸化物半導体膜108aとの界面近傍のシリコンや炭素の濃度(SIMS分析により
得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017at
oms/cm以下とする。
また、第1の酸化物半導体膜108aにおいて、SIMS分析により得られるアルカリ
金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましく
は2×1016atoms/cm以下にする。アルカリ金属及びアルカリ土類金属は、
酸化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増
大してしまうことがある。このため、第1の酸化物半導体膜108aのアルカリ金属また
はアルカリ土類金属の濃度を低減することが好ましい。
また、第1の酸化物半導体膜108aに窒素が含まれていると、キャリアである電子が
生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半
導体膜を用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導
体膜において、窒素はできる限り低減されていることが好ましい、例えば、SIMS分析
により得られる窒素濃度は、5×1018atoms/cm以下にすることが好ましい
また、第1の酸化物半導体膜108a、及び第2の酸化物半導体膜108bは、それぞ
れ非単結晶構造でもよい。非単結晶構造は、例えば、後述するCAAC−OS(C Ax
is Aligned Crystalline Oxide Semiconduct
or)、多結晶構造、微結晶構造、または非晶質構造を含む。非単結晶構造において、非
晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。
<トランジスタの保護絶縁膜として機能する絶縁膜>
絶縁膜114、116は、酸化物半導体膜108に酸素を供給する機能を有する。また
、絶縁膜118は、トランジスタ100の保護絶縁膜としての機能を有する。また、絶縁
膜114、116は、酸素を有する。また、絶縁膜114は、酸素を透過することのでき
る絶縁膜である。なお、絶縁膜114は、後に形成する絶縁膜116を形成する際の、酸
化物半導体膜108へのダメージ緩和膜としても機能する。
絶縁膜114としては、厚さが5nm以上150nm以下、好ましくは5nm以上50
nm以下の酸化シリコン、酸化窒化シリコン等を用いることができる。
また、絶縁膜114は、欠陥量が少ないことが好ましく、代表的には、ESR測定によ
り、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度
が3×1017spins/cm以下であることが好ましい。これは、絶縁膜114に
含まれる欠陥密度が多いと、該欠陥に酸素が結合してしまい、絶縁膜114における酸素
の透過量が減少してしまう。
なお、絶縁膜114においては、外部から絶縁膜114に入った酸素が全て絶縁膜11
4の外部に移動せず、絶縁膜114にとどまる酸素もある。また、絶縁膜114に酸素が
入ると共に、絶縁膜114に含まれる酸素が絶縁膜114の外部へ移動することで、絶縁
膜114において酸素の移動が生じる場合もある。絶縁膜114として酸素を透過するこ
とができる酸化物絶縁膜を形成すると、絶縁膜114上に設けられる、絶縁膜116から
脱離する酸素を、絶縁膜114を介して酸化物半導体膜108に移動させることができる
また、絶縁膜114は、窒素酸化物に起因する準位密度が低い酸化物絶縁膜を用いて形
成することができる。なお、当該窒素酸化物に起因する準位密度は、酸化物半導体膜の価
電子帯の上端のエネルギー(Ev_os)と酸化物半導体膜の伝導帯の下端のエネルギー
(Ec_os)の間に形成され得る場合がある。Ev_osとEc_osの間に窒素酸化
物の準位密度が低い上記酸化物絶縁膜として、窒素酸化物の放出量が少ない酸化窒化シリ
コン膜、または窒素酸化物の放出量が少ない酸化窒化アルミニウム膜等を用いることがで
きる。
なお、窒素酸化物の放出量の少ない酸化窒化シリコン膜は、昇温脱離ガス分析法におい
て、窒素酸化物の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニア
の放出量が1×1018個/cm以上5×1019個/cm以下である。なお、アン
モニアの放出量は、膜の表面温度が50℃以上650℃以下、好ましくは50℃以上55
0℃以下の加熱処理による放出量とする。
窒素酸化物(NO、xは0以上2以下、好ましくは1以上2以下)、代表的にはNO
またはNOは、絶縁膜114などに準位を形成する。当該準位は、酸化物半導体膜10
8のエネルギーギャップ内に位置する。そのため、窒素酸化物が、絶縁膜114及び酸化
物半導体膜108の界面に拡散すると、当該準位が絶縁膜114側において電子をトラッ
プする場合がある。この結果、トラップされた電子が、絶縁膜114及び酸化物半導体膜
108界面近傍に留まるため、トランジスタのしきい値電圧をプラス方向にシフトさせて
しまう。
また、窒素酸化物は、加熱処理においてアンモニア及び酸素と反応する。絶縁膜114
に含まれる窒素酸化物は、加熱処理において、絶縁膜116に含まれるアンモニアと反応
するため、絶縁膜114に含まれる窒素酸化物が低減される。このため、絶縁膜114及
び酸化物半導体膜108の界面において、電子がトラップされにくい。
絶縁膜114として、上記酸化物絶縁膜を用いることで、トランジスタのしきい値電圧
のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することが
できる。
なお、トランジスタの作製工程の加熱処理、代表的には300℃以上350℃未満の加
熱処理により、絶縁膜114は、100K以下のESRで測定して得られたスペクトルに
おいてg値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2
.003以下の第2のシグナル、及びg値が1.964以上1.966以下の第3のシグ
ナルが観測される。なお、第1のシグナル及び第2のシグナルのスプリット幅、並びに第
2のシグナル及び第3のシグナルのスプリット幅は、XバンドのESR測定において約5
mTである。また、g値が2.037以上2.039以下の第1のシグナル、g値が2.
001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下
の第3のシグナルのスピンの密度の合計が1×1018spins/cm未満であり、
代表的には1×1017spins/cm以上1×1018spins/cm未満で
ある。
なお、100K以下のESRスペクトルにおいてg値が2.037以上2.039以下
の第1シグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1
.964以上1.966以下の第3のシグナルは、窒素酸化物(NO、xは0以上2以
下、好ましくは1以上2以下)起因のシグナルに相当する。窒素酸化物の代表例としては
、一酸化窒素、二酸化窒素等がある。即ち、g値が2.037以上2.039以下の第1
のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.9
64以上1.966以下の第3のシグナルのスピンの密度の合計が少ないほど、酸化物絶
縁膜に含まれる窒素酸化物の含有量が少ないといえる。
また、上記酸化物絶縁膜は、SIMSで測定される窒素濃度が6×1020atoms
/cm以下である。
基板温度が220℃以上350℃以下であり、シラン及び一酸化二窒素を用いたPEC
VD法を用いて、上記酸化物絶縁膜を形成することで、緻密であり、且つ硬度の高い膜を
形成することができる。
絶縁膜116は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を
用いて形成する。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜は、
加熱により酸素の一部が脱離する。化学量論的組成を満たす酸素よりも多くの酸素を含む
酸化物絶縁膜は、TDS分析にて、酸素原子に換算しての酸素の脱離量が1.0×10
atoms/cm以上、好ましくは3.0×1020atoms/cm以上である
酸化物絶縁膜である。なお、上記TDS分析時における膜の表面温度としては100℃以
上700℃以下、または100℃以上500℃以下の範囲が好ましい。
絶縁膜116としては、厚さが30nm以上500nm以下、好ましくは50nm以上
400nm以下の、酸化シリコン、酸化窒化シリコン等を用いることができる。
また、絶縁膜116は、欠陥量が少ないことが好ましく、代表的には、ESR測定によ
り、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度
が1.5×1018spins/cm未満、さらには1×1018spins/cm
以下であることが好ましい。なお、絶縁膜116は、絶縁膜114と比較して酸化物半導
体膜108から離れているため、絶縁膜114より、欠陥密度が多くともよい。
また、絶縁膜114、116は、同種の材料の絶縁膜を用いることができるため、絶縁
膜114と絶縁膜116の界面が明確に確認できない場合がある。したがって、本実施の
形態においては、絶縁膜114と絶縁膜116の界面は、破線で図示している。なお、本
実施の形態においては、絶縁膜114と絶縁膜116の2層構造について説明したが、こ
れに限定されず、例えば、絶縁膜114の単層構造としてもよい。
絶縁膜118は、窒素を有する。また、絶縁膜118は、窒素及びシリコンを有する。
また、絶縁膜118は、酸素、水素、水、アルカリ金属、アルカリ土類金属等のブロッキ
ングできる機能を有する。絶縁膜118を設けることで、酸化物半導体膜108からの酸
素の外部への拡散と、絶縁膜114、116に含まれる酸素の外部への拡散と、外部から
酸化物半導体膜108への水素、水等の入り込みを防ぐことができる。絶縁膜118とし
ては、例えば、窒化物絶縁膜を用いることができる。該窒化物絶縁膜としては、窒化シリ
コン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウム等がある。なお、酸
素、水素、水、アルカリ金属、アルカリ土類金属等のブロッキング効果を有する窒化物絶
縁膜の代わりに、酸素、水素、水等のブロッキング効果を有する酸化物絶縁膜を設けても
よい。酸素、水素、水等のブロッキング効果を有する酸化物絶縁膜としては、酸化アルミ
ニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、
酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム等がある。
なお、上記記載の、導電膜、絶縁膜、酸化物半導体膜などの様々な膜は、スパッタリン
グ法やPECVD法により形成することができるが、他の方法、例えば、熱CVD(Ch
emical Vapor Deposition)法、またはALD(Atomic
Layer Deposition)法により形成してもよい。熱CVD法の例としてM
OCVD(Metal Organic Chemical Vapor Deposi
tion)法が挙げられる。
熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生
成されることが無いという利点を有する。
熱CVD法は、原料ガスと酸化剤を同時にチャンバー内に送り、チャンバー内を大気圧
または減圧下とし、基板近傍または基板上で反応させて基板上に堆積させることで成膜を
行ってもよい。
また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが
順次チャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行ってもよい。
例えば、それぞれのスイッチングバルブ(高速バルブとも呼ぶ)を切り替えて2種類以上
の原料ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原
料ガスと同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第
2の原料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキ
ャリアガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよ
い。また、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後
、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の層を
成膜し、後から導入される第2の原料ガスと反応して、第2の層が第1の層上に積層され
て薄膜が形成される。このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返
すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順
序を繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり、微
細なFETを作製する場合に適している。
MOCVD法などの熱CVD法は、上記実施形態の導電膜、絶縁膜、酸化物半導体膜、
金属酸化膜などの様々な膜を形成することができ、例えば、In−Ga−ZnO膜を成膜
する場合には、トリメチルインジウム、トリメチルガリウム、及びジメチル亜鉛を用いる
。なお、トリメチルインジウムの化学式は、In(CHである。また、トリメチル
ガリウムの化学式は、Ga(CHである。また、ジメチル亜鉛の化学式は、Zn(
CHである。また、これらの組み合わせに限定されず、トリメチルガリウムに代え
てトリエチルガリウム(化学式Ga(C)を用いることもでき、ジメチル亜鉛
に代えてジエチル亜鉛(化学式Zn(C)を用いることもできる。
例えば、ALDを利用する成膜装置により酸化ハフニウム膜を形成する場合には、溶媒
とハフニウム前駆体化合物を含む液体(ハフニウムアルコキシドや、テトラキスジメチル
アミドハフニウム(TDMAH)などのハフニウムアミド)を気化させた原料ガスと、酸
化剤としてオゾン(O)の2種類のガスを用いる。なお、テトラキスジメチルアミドハ
フニウムの化学式はHf[N(CHである。また、他の材料液としては、テト
ラキス(エチルメチルアミド)ハフニウムなどがある。
例えば、ALDを利用する成膜装置により酸化アルミニウム膜を形成する場合には、溶
媒とアルミニウム前駆体化合物を含む液体(トリメチルアルミニウム(TMA)など)を
気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。なお、トリメチル
アルミニウムの化学式はAl(CHである。また、他の材料液としては、トリス(
ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、アルミニウムトリス(2
,2,6,6−テトラメチル−3,5−ヘプタンジオナート)などがある。
例えば、ALDを利用する成膜装置により酸化シリコン膜を形成する場合には、ヘキサ
クロロジシランを被成膜面に吸着させ、吸着物に含まれる塩素を除去し、酸化性ガス(O
、一酸化二窒素)のラジカルを供給して吸着物と反応させる。
例えば、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WF
ガスとBガスを順次繰り返し導入して初期タングステン膜を形成し、その後、WF
ガスとHガスを同時に導入してタングステン膜を形成する。なお、Bガスに代
えてSiHガスを用いてもよい。
例えば、ALDを利用する成膜装置により酸化物半導体膜、例えばIn−Ga−ZnO
膜を成膜する場合には、In(CHガスとOガスを順次繰り返し導入してIn−
O層を形成し、その後、Ga(CHガスとOガスを順次繰り返し導入してGaO
層を形成し、更にその後Zn(CHとOガスを順次繰り返し導入してZnO層を
形成する。なお、これらの層の順番はこの例に限らない。また、これらのガスを混ぜてI
n−Ga−O層やIn−Zn−O層、Ga−Zn−O層などの混合化合物層を形成しても
良い。なお、Oガスに変えてAr等の不活性ガスでバブリングして得られたHOガス
を用いても良いが、Hを含まないOガスを用いる方が好ましい。また、In(CH
ガスの代わりに、In(Cガスを用いても良い。また、Ga(CH
スの代わりに、Ga(Cガスを用いても良い。また、Zn(CHガスを
用いても良い。
<半導体装置の構成例2>
次に、図1(A)(B)(C)に示すトランジスタ100と異なる構成例について、図
3(A)(B)(C)を用いて説明する。なお、先に説明した機能と同様の機能を有する
場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
図3(A)は、本発明の一態様の半導体装置であるトランジスタ170の上面図であり
、図3(B)は、図3(A)に示す一点鎖線X1−X2間における切断面の断面図に相当
し、図3(C)は、図3(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相
当する。
トランジスタ170は、基板102上の第1のゲート電極として機能する導電膜104
と、基板102及び導電膜104上の絶縁膜106と、絶縁膜106上の絶縁膜107と
、絶縁膜107上の酸化物半導体膜108と、酸化物半導体膜108上の絶縁膜114と
、絶縁膜114上の絶縁膜116と、酸化物半導体膜108に電気的に接続されるソース
電極として機能する導電膜112aと、酸化物半導体膜108に電気的に接続されるドレ
イン電極として機能する112bと、酸化物半導体膜108上の絶縁膜114と、絶縁膜
114上の絶縁膜116と、絶縁膜116上の絶縁膜118と、絶縁膜118上の導電膜
120aと、絶縁膜118上の導電膜120bと、を有する。絶縁膜114、116、1
18は、トランジスタ170の第2のゲート絶縁膜としての機能を有する。また、導電膜
120aは、絶縁膜114、116、118に設けられる開口部142cを介して、導電
膜112bと電気的に接続される。また、トランジスタ170において、導電膜120a
は、例えば、表示装置に用いる画素電極としての機能を有する。また、トランジスタ17
0において、導電膜120bは、第2のゲート電極(バックゲート電極ともいう)として
機能する。
また、図3(C)に示すように導電膜120bは、絶縁膜106、107、114、1
16、118に設けられる開口部142a、142bにおいて、第1のゲート電極として
機能する導電膜104に接続される。よって、導電膜120bと導電膜104とは、同じ
電位が与えられる。
なお、本実施の形態においては、開口部142a、142bを設け、導電膜120bと
導電膜104を接続する構成について例示したが、これに限定されない。例えば、開口部
142aまたは開口部142bのいずれか一方の開口部のみを形成し、導電膜120bと
導電膜104を接続する構成、または開口部142a及び開口部142bを設けずに、導
電膜120bと導電膜104を接続しない構成としてもよい。なお、導電膜120bと導
電膜104を接続しない構成の場合、導電膜120bと導電膜104には、それぞれ異な
る電位を与えることができる。
また、図3(B)に示すように、酸化物半導体膜108は、ゲート電極として機能する
導電膜104と、第2のゲート電極として機能する導電膜120bのそれぞれと対向する
ように位置し、2つのゲート電極として機能する導電膜に挟まれている。第2のゲート電
極として機能する導電膜120bのチャネル長方向の長さ及びチャネル幅方向の長さは、
酸化物半導体膜108のチャネル長方向の長さ及びチャネル幅方向の長さよりもそれぞれ
長く、酸化物半導体膜108の全体は、絶縁膜114、116、118を介して導電膜1
20bに覆われている。また、第2のゲート電極として機能する導電膜120bとゲート
電極として機能する導電膜104とは、絶縁膜106、107、114、116、118
に設けられる開口部142a、142bにおいて接続されるため、酸化物半導体膜108
のチャネル幅方向の側面は、絶縁膜114、116、118を介して第2のゲート電極と
して機能する導電膜120bと対向している。
別言すると、トランジスタ170のチャネル幅方向において、ゲート電極として機能す
る導電膜104及び第2のゲート電極として機能する導電膜120bは、ゲート絶縁膜と
して機能する絶縁膜106、107及び第2のゲート絶縁膜として機能する絶縁膜114
、116、118に設けられる開口部において接続すると共に、ゲート絶縁膜として機能
する絶縁膜106、107及び第2のゲート絶縁膜として機能する絶縁膜114、116
、118を介して酸化物半導体膜108を囲む構成である。
このような構成を有することで、トランジスタ170に含まれる酸化物半導体膜108
を、ゲート電極として機能する導電膜104及び第2のゲート電極として機能する導電膜
120bの電界によって電気的に囲むことができる。トランジスタ170のように、ゲー
ト電極及び第2のゲート電極の電界によって、チャネル領域が形成される酸化物半導体膜
を電気的に囲むトランジスタのデバイス構造をsurrounded channel(
s−channel)構造と呼ぶことができる。
トランジスタ170は、s−channel構造を有するため、ゲート電極として機能
する導電膜104によってチャネルを誘起させるための電界を効果的に酸化物半導体膜1
08に印加することができるため、トランジスタ170の電流駆動能力が向上し、高いオ
ン電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、
トランジスタ170を微細化することが可能となる。また、トランジスタ170は、ゲー
ト電極として機能する導電膜104及び第2のゲート電極として機能する導電膜120b
によって囲まれた構造を有するため、トランジスタ170の機械的強度を高めることがで
きる。
トランジスタ170のその他の構成については、先に示すトランジスタ100と同様で
あり、同様の効果を奏する。
また、本実施の形態に係るトランジスタは、上記の構造のそれぞれを自由に組み合わせ
ることが可能である。例えば、図1に示すトランジスタ100を表示装置の画素のトラン
ジスタに用い、図3に示すトランジスタ170を表示装置のゲートドライバのトランジス
タに用いることができる。
<半導体装置の作製方法1>
次に、本発明の一態様の半導体装置であるトランジスタ100の作製方法について、図
4乃至図6を用いて以下詳細に説明する。なお、図4乃至図6は、半導体装置の作製方法
を説明する断面図である。
なお、トランジスタ100を構成する膜(絶縁膜、酸化物半導体膜、導電膜等)は、ス
パッタリング法、化学気相堆積(CVD)法、真空蒸着法、パルスレーザ堆積(PLD)
法を用いて形成することができる。あるいは、塗布法や印刷法で形成することができる。
成膜方法としては、スパッタリング法、プラズマ化学気相堆積(PECVD)法が代表的
であるが、熱CVD法またはALD(原子層成膜)法でもよい。熱CVD法の例として、
MOCVD(有機金属化学堆積)法が挙げられる。
熱CVD法は、チャンバー内を大気圧または減圧下とし、原料ガスと酸化剤を同時にチ
ャンバー内に送り、基板近傍または基板上で反応させて基板上に堆積させることで成膜を
行う。このように、熱CVD法は、プラズマを発生させない成膜方法であるため、プラズ
マダメージにより欠陥が生成されることが無いという利点を有する。
また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが
順次にチャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行う。例えば
、それぞれのスイッチングバルブ(高速バルブともよぶ。)を切り替えて2種類以上の原
料ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原料ガ
スと同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第2の
原料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキャリ
アガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよい。
また、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第
2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の単原子層
を成膜し、後から導入される第2の原料ガスと反応して、第2の単原子層が第1の単原子
層上に積層されて薄膜が形成される。
このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返すことで、段差被覆
性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順序を繰り返す回数に
よって調節することができるため、精密な膜厚調節が可能であり、微細なトランジスタを
作製する場合に適している。
まず、基板102上に導電膜を形成し、該導電膜をリソグラフィ工程及びエッチング工
程を行い加工して、ゲート電極として機能する導電膜104を形成する。次に、導電膜1
04上にゲート絶縁膜として機能する絶縁膜106、107を形成する(図4(A)参照
)。
ゲート電極として機能する導電膜104は、スパッタリング法、化学気相堆積(CVD
)法、真空蒸着法、パルスレーザ堆積(PLD)法、を用いて形成することができる。ま
たは、塗布法や印刷法で形成することができる。成膜方法としては、スパッタリング法、
プラズマ化学気相堆積(PECVD)法が代表的であるが、先に説明した有機金属化学気
相堆積(MOCVD)法等の熱CVD法、又は原子層堆積(ALD)法を用いてもよい。
本実施の形態では、基板102としてガラス基板を用い、ゲート電極として機能する導
電膜104として厚さ100nmのタングステン膜をスパッタリング法で形成する。
ゲート絶縁膜として機能する絶縁膜106、107は、スパッタリング法、PECVD
法、熱CVD法、真空蒸着法、PLD法等を用いて形成することができる。本実施の形態
では、PECVD法により、絶縁膜106として厚さ400nmの窒化シリコン膜を形成
し、絶縁膜107として厚さ50nmの酸化窒化シリコン膜を形成する。
なお、絶縁膜106としては、窒化シリコン膜の積層構造とすることができる。具体的
には、絶縁膜106を、第1の窒化シリコン膜と、第2の窒化シリコン膜と、第3の窒化
シリコン膜との3層積層構造とすることができる。該3層積層構造の一例としては、以下
のように形成することができる。
第1の窒化シリコン膜としては、例えば、流量200sccmのシラン、流量2000
sccmの窒素、及び流量100sccmのアンモニアガスを原料ガスとしてPE−CV
D装置の反応室に供給し、反応室内の圧力を100Paに制御し、27.12MHzの高
周波電源を用いて2000Wの電力を供給して、厚さが50nmとなるように形成すれば
よい。
第2の窒化シリコン膜としては、流量200sccmのシラン、流量2000sccm
の窒素、及び流量2000sccmのアンモニアガスを原料ガスとしてPECVD装置の
反応室に供給し、反応室内の圧力を100Paに制御し、27.12MHzの高周波電源
を用いて2000Wの電力を供給して、厚さが300nmとなるように形成すればよい。
第3の窒化シリコン膜としては、流量200sccmのシラン、及び流量5000sc
cmの窒素を原料ガスとしてPECVD装置の反応室に供給し、反応室内の圧力を100
Paに制御し、27.12MHzの高周波電源を用いて2000Wの電力を供給して、厚
さが50nmとなるように形成すればよい。
なお、上記第1の窒化シリコン膜、第2の窒化シリコン膜、及び第3の窒化シリコン膜
形成時の基板温度は350℃以下とすることができる。
絶縁膜106を、窒化シリコン膜の3層の積層構造とすることで、例えば、導電膜10
4に銅(Cu)を含む導電膜を用いる場合において、以下の効果を奏する。
第1の窒化シリコン膜は、導電膜104からの銅(Cu)元素の拡散を抑制することが
できる。第2の窒化シリコン膜は、水素を放出する機能を有し、ゲート絶縁膜として機能
する絶縁膜の耐圧を向上させることができる。第3の窒化シリコン膜は、第3の窒化シリ
コン膜からの水素放出が少なく、且つ第2の窒化シリコン膜からの放出される水素の拡散
を抑制することができる。
絶縁膜107としては、後に形成される酸化物半導体膜108(より具体的には、第1
の酸化物半導体膜108a)との界面特性を向上させるため、酸素を含む絶縁膜で形成さ
れると好ましい。
次に、絶縁膜107上に、第1の酸化物半導体膜108aを形成する。その後、第1の
酸化物半導体膜108a上に、第2の酸化物半導体膜108bを形成する(図4(B)参
照)。
本実施の形態では、In−Ga−Zn金属酸化物ターゲット(In:Ga:Zn=3:
1:2(原子数比))を用いて、スパッタリング法により第1の酸化物半導体膜を成膜し
、その後真空中で連続して、In−Ga−Zn金属酸化物ターゲット(In:Ga:Zn
=1:1:1.2(原子数比))を用いて、スパッタリング法により第2の酸化物半導体
膜を成膜することで、積層の酸化物半導体膜を形成する。次に、該先層の酸化物半導体膜
上にリソグラフィ工程によりマスクを形成し、該積層の酸化物半導体膜を所望の領域に加
工することで島状の酸化物半導体膜108を形成する。
なお、スパッタリング法で酸化物半導体膜108を形成する場合、スパッタリングガス
は、希ガス(代表的にはアルゴン)、酸素、希ガス及び酸素の混合ガスを適宜用いる。な
お、混合ガスの場合、希ガスに対して酸素のガス比を高めることが好ましい。また、スパ
ッタリングガスの高純度化も必要である。例えば、スパッタリングガスとして用いる酸素
ガスやアルゴンガスは、露点が−40℃以下、好ましくは−80℃以下、より好ましくは
−100℃以下、より好ましくは−120℃以下にまで高純度化したガスを用いることで
酸化物半導体膜108に水分等が取り込まれることを可能な限り防ぐことができる。
また、スパッタリング法で酸化物半導体膜108を形成する場合、スパッタリング装置
におけるチャンバーは、酸化物半導体膜108にとって不純物となる水等を可能な限り除
去すべくクライオポンプのような吸着式の真空排気ポンプを用いて高真空(1×10−4
Paから5×10−7Pa程度まで)排気することが好ましい。または、ターボ分子ポン
プとコールドトラップを組み合わせて排気系からチャンバー内に気体、特に炭素または水
素を含む気体が逆流しないようにしておくことが好ましい。
次に、絶縁膜107及び酸化物半導体膜108a上にソース電極及びドレイン電極とし
て機能する導電膜112を形成する(図4(C)参照)。
本実施の形態では、導電膜112として、厚さ50nmのタングステン膜と、厚さ40
0nmのアルミニウム膜とが順に積層された積層膜をスパッタリング法により成膜する。
なお、本実施の形態においては、導電膜112の2層の積層構造としたが、これに限定さ
れない。例えば、導電膜112として、厚さ50nmのタングステン膜と、厚さ400n
mのアルミニウム膜と、厚さ100nmのチタン膜とが順に積層された3層の積層構造と
してもよい。
次に、導電膜112上の所望の領域にマスク140a、140bを形成する(図4(D
)参照)。
本実施の形態においては、マスク140a、140bとしては、感光性の樹脂膜を塗布
し、該感光性の樹脂膜をリソグラフィ工程によりパターニングすることで形成する。
次に、導電膜112、及びマスク140a、140b上からエッチングガス138を用
いて、導電膜112及び第2の酸化物半導体膜108bを加工する(図5(A)参照)。
本実施の形態においては、ドライエッチング装置を用い、導電膜112、及び第2の酸
化物半導体膜108bを加工する。ただし、導電膜112の形成方法としては、これに限
定されず、例えば、エッチングガス138に薬液を用いることで、ウエットエッチング装
置を用いて、導電膜112、及び第2の酸化物半導体膜108bを加工してもよい。ただ
し、ウエットエッチング装置を用いて、導電膜112、及び第2の酸化物半導体膜108
bを加工するよりも、ドライエッチング装置を用いて導電膜112、及び第2の酸化物半
導体膜108bを加工した方が、より微細なパターンを形成することができるため、好適
である。
次に、マスク140a、140bを除去することで、第2の酸化物半導体膜108b上
のソース電極として機能する導電膜112aと、第2の酸化物半導体膜108b上のドレ
イン電極として機能する導電膜112bと、が形成される。また、酸化物半導体膜108
は、第1の酸化物半導体膜108aと、第2の酸化物半導体膜108bとの積層構造とな
る(図5(B)参照)。
また、第2の酸化物半導体膜108b、及び導電膜112a、112b上から、薬液を
塗布し、第2の酸化物半導体膜108bの表面(バックチャネル側)を洗浄してもよい。
該洗浄の方法としては、例えば、リン酸等の薬液を用いた洗浄が挙げられる。リン酸等の
薬液を用いて洗浄を行うことで、第2の酸化物半導体膜108bの表面に付着した不純物
(例えば、導電膜112a、112bに含まれる元素等)を除去することができる。なお
、該洗浄は、必ずしも行う必要はなく、場合によっては、洗浄を行わなくてもよい。
また、導電膜112a、112bの形成時、及び/または上記洗浄工程において、第2
の酸化物半導体膜108bは、第1の酸化物半導体膜108aよりも膜厚の薄い第2の領
域が形成される。
次に、酸化物半導体膜108、及び導電膜112a、112b上に絶縁膜114、11
6を形成する(図5(C)参照)。
なお、絶縁膜114を形成した後、大気に曝すことなく、連続的に絶縁膜116を形成
することが好ましい。絶縁膜114を形成後、大気開放せず、原料ガスの流量、圧力、高
周波電力及び基板温度の一以上を調整して、絶縁膜116を連続的に形成することで、絶
縁膜114と絶縁膜116の界面において大気成分由来の不純物濃度を低減することがで
きるとともに、絶縁膜114、116に含まれる酸素を酸化物半導体膜108に移動させ
ることが可能となり、酸化物半導体膜108の酸素欠損量を低減することが可能となる。
例えば、絶縁膜114として、PECVD法を用いて、酸化窒化シリコン膜を形成する
ことができる。この場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体
を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラ
ン、トリシラン、フッ化シラン等がある。酸化性気体としては、一酸化二窒素、二酸化窒
素等がある。また、上記の堆積性気体に対する酸化性気体を20倍より大きく100倍未
満、好ましくは40倍以上80倍以下とし、処理室内の圧力を100Pa未満、好ましく
は50Pa以下とするPECVD法を用いることで、絶縁膜114が、窒素を含み、且つ
欠陥量の少ない絶縁膜となる。
本実施の形態においては、絶縁膜114として、基板102を保持する温度を220℃
とし、流量50sccmのシラン及び流量2000sccmの一酸化二窒素を原料ガスと
し、処理室内の圧力を20Paとし、平行平板電極に供給する高周波電力を13.56M
Hz、100W(電力密度としては1.6×10−2W/cm)とするPECVD法を
用いて、酸化窒化シリコン膜を形成する。
絶縁膜116としては、PECVD装置の真空排気された処理室内に載置された基板を
180℃以上350℃以下に保持し、処理室に原料ガスを導入して処理室内における圧力
を100Pa以上250Pa以下、さらに好ましくは100Pa以上200Pa以下とし
、処理室内に設けられる電極に0.17W/cm以上0.5W/cm以下、さらに好
ましくは0.25W/cm以上0.35W/cm以下の高周波電力を供給する条件に
より、酸化シリコン膜または酸化窒化シリコン膜を形成する。
絶縁膜116の成膜条件として、上記圧力の反応室において上記パワー密度の高周波電
力を供給することで、プラズマ中で原料ガスの分解効率が高まり、酸素ラジカルが増加し
、原料ガスの酸化が進むため、絶縁膜116中における酸素含有量が化学量論的組成より
も多くなる。一方、基板温度が、上記温度で形成された膜では、シリコンと酸素の結合力
が弱いため、後の工程の加熱処理により膜中の酸素の一部が脱離する。この結果、化学量
論的組成を満たす酸素よりも多くの酸素を含み、加熱により酸素の一部が脱離する酸化物
絶縁膜を形成することができる。
また、絶縁膜116を形成する工程は、PECVD装置にて180℃以上350℃以下
の温度で実施され、トランジスタ100の作製工程中において、絶縁膜116を形成する
工程の温度が最も高くなると好ましい。例えば、絶縁膜116を形成する温度を350℃
で実施することで、トランジスタ100を直接フレキシブル基板等への形成が可能となる
なお、絶縁膜116の形成工程において、絶縁膜114が酸化物半導体膜108の保護
膜となる。したがって、酸化物半導体膜108へのダメージを低減しつつ、パワー密度の
高い高周波電力を用いて絶縁膜116を形成することができる。
なお、絶縁膜116の成膜条件において、酸化性気体に対するシリコンを含む堆積性気
体の流量を増加することで、絶縁膜116の欠陥量を低減することが可能である。代表的
には、ESR測定により、シリコンのダングリングボンドに由来するg=2.001に現
れる信号のスピン密度が6×1017spins/cm未満、好ましくは3×1017
spins/cm以下、好ましくは1.5×1017spins/cm以下である欠
陥量の少ない酸化物絶縁層を形成することができる。この結果トランジスタの信頼性を高
めることができる。
また、絶縁膜114、116を形成した後、加熱処理を行ってもよい。該加熱処理によ
り、絶縁膜114、116に含まれる窒素酸化物を低減することができる。また、上記加
熱処理により、絶縁膜114、116に含まれる酸素の一部を酸化物半導体膜108に移
動させ、酸化物半導体膜108に含まれる酸素欠損量を低減することができる。
絶縁膜114、116への加熱処理の温度は、代表的には、150℃以上350℃以下
、以下とする。加熱処理は、窒素、酸素、超乾燥空気(水の含有量が20ppm以下、好
ましくは1ppm以下、好ましくは10ppb以下の空気)、または希ガス(アルゴン、
ヘリウム等)の雰囲気下で行えばよい。なお、上記窒素、酸素、超乾燥空気、または希ガ
スに水素、水等が含まれないことが好ましい。該加熱処理には、電気炉、RTA装置等を
用いることができる。
本実施の形態では、窒素雰囲気で、350℃、1時間の加熱処理を行う。なお、トラン
ジスタ100を形成する工程において、絶縁膜116を形成する温度が最も高くなればよ
く、絶縁膜116の形成する温度と同等の温度の加熱処理を異なる工程で行ってもよい。
次に、絶縁膜116上に酸化物導電膜131を形成する(図5(D)参照)。
酸化物導電膜131は、酸素と、金属(インジウム、亜鉛、チタン、アルミニウム、タ
ングステン、タンタル、またはモリブデンの中から選ばれる少なくとも1以上)と、を有
する。
酸化物導電膜131の一例としては、酸化窒化タンタル膜、酸化チタン膜、インジウム
錫酸化物(以下ITOともいう)膜、酸化アルミニウム膜、酸化物半導体膜(例えば、I
GZO膜(In:Ga:Zn=1:4:5(原子数比))等)を用いることができる。ま
た、酸化物導電膜131としては、スパッタリング法を用いて形成することができる。ま
た、酸化物導電膜131の厚さとしては、1nm以上20nm以下、または2nm以上1
0nm以下とすると好ましい。本実施の形態では、酸化物導電膜131として、厚さ5n
mの酸化シリコンを添加したインジウム錫酸化物(以下ITSOと呼ぶ)を用いる。
次に、酸化物導電膜131を介して絶縁膜114、116及び酸化物半導体膜108に
酸素139を添加する(図6(A)参照)。
酸化物導電膜131を介して絶縁膜114、116及び酸化物半導体膜108に酸素1
39を添加する方法としては、イオンドーピング法、イオン注入法、プラズマ処理法等が
ある。また、酸素139を添加する際に、基板側にバイアスを印加することで効果的に酸
素139を絶縁膜114、116及び酸化物半導体膜108に添加することができる。上
記バイアスとしては、例えば、電力密度を1W/cm以上5W/cm以下とすればよ
い。絶縁膜116上に酸化物導電膜131を設けて酸素を添加することで、酸化物導電膜
131が絶縁膜116から酸素が脱離することを抑制する保護膜として機能する。このた
め、絶縁膜114、116及び酸化物半導体膜108により多くの酸素を添加することが
できる。
次に、エッチャント142により、酸化物導電膜131を除去する(図6(B)参照)
酸化物導電膜131の除去方法としては、ドライエッチング法、ウエットエッチング法
、またはドライエッチング法とウエットエッチング法を組み合わせる方法等が挙げられる
。なお、ドライエッチング法の場合には、エッチャント142は、エッチングガスであり
、ウエットエッチング法の場合には、エッチャント142は、薬液である。本実施の形態
においては、ウエットエッチング法を用いて、酸化物導電膜131を除去する。
次に、絶縁膜116上に絶縁膜118を形成する(図6(C)参照)。
なお、絶縁膜118の形成前、または絶縁膜118の形成後に加熱処理を行って、絶縁
膜114、116に含まれる過剰酸素を酸化物半導体膜108中に拡散させ、酸化物半導
体膜108中の酸素欠損を補填することができる。あるいは、絶縁膜118を加熱成膜と
することで、絶縁膜114、116に含まれる過剰酸素を酸化物半導体膜108中に拡散
させ、酸化物半導体膜108中の酸素欠損を補填することができる。
絶縁膜118をPECVD法で形成する場合、基板温度は180℃以上350℃以下に
することで、緻密な膜を形成できるため好ましい。
例えば、絶縁膜118としてPECVD法により窒化シリコン膜を形成する場合、シリ
コンを含む堆積性気体、窒素、及びアンモニアを原料ガスとして用いることが好ましい。
窒素と比較して少量のアンモニアを用いることで、プラズマ中でアンモニアが解離し、活
性種が発生する。該活性種が、シリコンを含む堆積性気体に含まれるシリコン及び水素の
結合、及び窒素の三重結合を切断する。この結果、シリコン及び窒素の結合が促進され、
シリコン及び水素の結合が少なく、欠陥が少なく、緻密な窒化シリコン膜を形成すること
ができる。一方、窒素に対するアンモニアの量が多いと、シリコンを含む堆積性気体及び
窒素の分解が進まず、シリコン及び水素結合が残存してしまい、欠陥が増大した、且つ粗
な窒化シリコン膜が形成されてしまう。これらのため、原料ガスにおいて、アンモニアに
対する窒素の流量比を5以上50以下、10以上50以下とすることが好ましい。
本実施の形態においては、絶縁膜118として、PECVD装置を用いて、シラン、窒
素、及びアンモニアの原料ガスから、厚さ50nmの窒化シリコン膜を形成する。流量は
、シランが50sccm、窒素が5000sccmであり、アンモニアが100sccm
である。処理室の圧力を100Pa、基板温度を350℃とし、27.12MHzの高周
波電源を用いて1000Wの高周波電力を平行平板電極に供給する。PECVD装置は電
極面積が6000cmである平行平板型のPECVD装置であり、供給した電力を単位
面積あたりの電力(電力密度)に換算すると1.7×10−1W/cmである。
以上の工程で図1に示すトランジスタ100を形成することができる。
<半導体装置の作製方法2>
次に、本発明の一態様であるトランジスタ170の作製方法について、図7を用いて以
下詳細に説明する。なお、図7は、半導体装置の作製方法を説明する断面図である。また
、図7(A)(C)(E)(G)は、トランジスタ170の作製途中のチャネル長方向の
断面図であり、図7(B)(D)(F)(H)は、トランジスタ170の作製途中のチャ
ネル幅方向の断面図である。
まず、先に示すトランジスタ100の作製方法と同様の工程(図4乃至図6に示す工程
)を行い、基板102上に導電膜104、絶縁膜106、107、酸化物半導体膜108
、導電膜112a、112b、及び絶縁膜114、116、118を形成する(図7(A
)(B)参照)。
次に、絶縁膜118上にリソグラフィ工程によりマスクを形成し、絶縁膜114、11
6、118の所望の領域に開口部142cを形成する。また、絶縁膜118上にリソグラ
フィ工程によりマスクを形成し、絶縁膜106、107、114、116、118の所望
の領域に開口部142a、142bを形成する。なお、開口部142cは、導電膜112
bに達するように形成される。また、開口部142a、142bは、それぞれ導電膜10
4に達するように形成される(図7(C)(D)参照)。
なお、開口部142a、142bと開口部142cは、同じ工程で形成してもよく、異
なる工程で形成してもよい。開口部142a、142bと開口部142cを同じ工程で形
成する場合、例えば、グレートーンマスクまたはハーフトーンマスクを用いて形成するこ
とができる。また、開口部142a、142bを複数回に分けて形成してもよい。例えば
、絶縁膜106、107を加工し、その後、絶縁膜114、116、118を加工する。
次に、開口部142a、142b、142cを覆うように絶縁膜118上に導電膜12
0を形成する(図7(E)(F)参照)。
導電膜120としては、例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中
から選ばれた一種を含む材料を用いることができる。とくに、導電膜120としては、酸
化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物
、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウ
ム錫酸化物(ITO)、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸
化物(ITSO)などの透光性を有する導電性材料を用いることができる。また、導電膜
120としては、例えば、スパッタリング法を用いて形成することができる。本実施の形
態においては、膜厚110nmのITSO膜をスパッタリング法で形成する。
次に、導電膜120上にリソグラフィ工程によりマスクを形成し、導電膜112を所望
の形状に加工することで、導電膜120a、120bを形成する(図7(G)(H)参照
)。
導電膜120a、120bの形成方法については、ドライエッチング法、ウエットエッ
チング法、またはドライエッチング法とウエットエッチング法を組み合わせる方法等が挙
げられる。本実施の形態においては、ウエットエッチング法を用いて、導電膜120を導
電膜120a、120bへと加工する。
以上の工程で図3に示すトランジスタ170を作製することができる。
以上、本実施の形態で示す構成、方法は、他の実施の形態で示す構成、方法と適宜組み
合わせて用いることができる。
(実施の形態2)
本実施の形態では、本発明の一態様の半導体装置に含まれる酸化物半導体の構造につい
て、詳細に説明を行う。
<酸化物半導体の構造>
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体とに分けら
れる。非単結晶酸化物半導体としては、CAAC−OS(C Axis Aligned
Crystalline Oxide Semiconductor)、多結晶酸化物
半導体、nc−OS(nanocrystalline Oxide Semicond
uctor)、擬似非晶質酸化物半導体(a−like OS:amorphous l
ike Oxide Semiconductor)、非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物
半導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−
OS、多結晶酸化物半導体、nc−OSなどがある。
非晶質構造の定義としては、一般に、準安定状態で固定化していないこと、等方的であ
って不均質構造を持たないことなどが知られている。また、結合角度が柔軟であり、短距
離秩序性は有するが、長距離秩序性を有さない構造と言い換えることもできる。
逆の見方をすると、本質的に安定な酸化物半導体の場合、完全な非晶質(comple
tely amorphous)酸化物半導体と呼ぶことはできない。また、等方的でな
い(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化
物半導体と呼ぶことはできない。ただし、a−like OSは、微小な領域において周
期構造を有するものの、鬆(ボイドともいう。)を有し、不安定な構造である。そのため
、物性的には非晶質酸化物半導体に近いといえる。
<CAAC−OS>
まずは、CAAC−OSについて説明する。
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物
半導体の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Micr
oscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高
分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一
方、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーと
もいう。)を明確に確認することができない。そのため、CAAC−OSは、結晶粒界に
起因する電子移動度の低下が起こりにくいといえる。
以下では、TEMによって観察したCAAC−OSについて説明する。図34(A)に
、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。
高分解能TEM像の観察には、球面収差補正(Spherical Aberratio
n Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を
、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、
日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって行う
ことができる。
図34(A)の領域(1)を拡大したCs補正高分解能TEM像を図34(B)に示す
。図34(B)より、ペレットにおいて、金属原子が層状に配列していることを確認でき
る。金属原子の各層の配列は、CAAC−OSの膜を形成する面(被形成面ともいう。)
または上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
図34(B)に示すように、CAAC−OSは特徴的な原子配列を有する。図34(C
)は、特徴的な原子配列を、補助線で示したものである。図34(B)および図34(C
)より、ペレット一つの大きさは1nm以上のものや、3nm以上のものがあり、ペレッ
トとペレットとの傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。
したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともでき
る。また、CAAC−OSを、CANC(C−Axis Aligned nanocr
ystals)を有する酸化物半導体と呼ぶこともできる。
ここで、Cs補正高分解能TEM像をもとに、基板5120上のCAAC−OSのペレ
ット5100の配置を模式的に示すと、レンガまたはブロックが積み重なったような構造
となる(図34(D)参照。)。図34(C)で観察されたペレットとペレットとの間で
傾きが生じている箇所は、図34(D)に示す領域5161に相当する。
また、図35(A)に、試料面と略垂直な方向から観察したCAAC−OSの平面のC
s補正高分解能TEM像を示す。図35(A)の領域(1)、領域(2)および領域(3
)を拡大したCs補正高分解能TEM像を、それぞれ図35(B)、図35(C)および
図35(D)に示す。図35(B)、図35(C)および図35(D)より、ペレットは
、金属原子が三角形状、四角形状または六角形状に配列していることを確認できる。しか
しながら、異なるペレット間で、金属原子の配列に規則性は見られない。
次に、X線回折(XRD:X−Ray Diffraction)によって解析したC
AAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−O
Sに対し、out−of−plane法による構造解析を行うと、図36(A)に示すよ
うに回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGa
ZnOの結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向
性を有し、c軸が被形成面または上面に略垂直な方向を向いていることが確認できる。
なお、CAAC−OSのout−of−plane法による構造解析では、2θが31
°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°
近傍のピークは、CAAC−OS中の一部に、c軸配向性を有さない結晶が含まれること
を示している。より好ましいCAAC−OSは、out−of−plane法による構造
解析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
一方、CAAC−OSに対し、c軸に略垂直な方向からX線を入射させるin−pla
ne法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、I
nGaZnOの結晶の(110)面に帰属される。CAAC−OSの場合は、2θを5
6°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析
(φスキャン)を行っても、図36(B)に示すように明瞭なピークは現れない。これに
対し、InGaZnOの単結晶酸化物半導体であれば、2θを56°近傍に固定してφ
スキャンした場合、図36(C)に示すように(110)面と等価な結晶面に帰属される
ピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは
、a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGa
ZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nm
の電子線を入射させると、図37(A)に示すような回折パターン(制限視野透過電子回
折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnO
の結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても
、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に
略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプロー
ブ径が300nmの電子線を入射させたときの回折パターンを図37(B)に示す。図3
7(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても
、CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる
。なお、図37(B)における第1リングは、InGaZnOの結晶の(010)面お
よび(100)面などに起因すると考えられる。また、図37(B)における第2リング
は(110)面などに起因すると考えられる。
上述したように、CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の
結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、逆の見方をす
るとCAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金
属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸
素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列
を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、
二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列
を乱し、結晶性を低下させる要因となる。
酸化物半導体が不純物や欠陥を有する場合、光や熱などによって特性が変動する場合が
ある。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャ
リア発生源となる場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップと
なる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
不純物および酸素欠損の少ないCAAC−OSは、キャリア密度の低い酸化物半導体で
ある。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体
と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、安定な特性
を有する酸化物半導体であるといえる。
<nc−OS>
次に、nc−OSについて説明する。
nc−OSは、高分解能TEM像において、結晶部を確認することのできる領域と、明
確な結晶部を確認することのできない領域と、を有する。nc−OSに含まれる結晶部は
、1nm以上10nm以下、または1nm以上の大きさであることが多い。なお、結晶部
の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体
と呼ぶことがある。nc−OSは、例えば、高分解能TEM像では、結晶粒界を明確に確
認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと起源を同
じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと呼ぶ場合が
ある。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上
3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペ
レット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。し
たがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導
体と区別が付かない場合がある。例えば、nc−OSに対し、ペレットよりも大きい径の
X線を用いた場合、out−of−plane法による解析では、結晶面を示すピークは
検出されない。また、nc−OSに対し、ペレットよりも大きいプローブ径(例えば50
nm以上)の電子線を用いる電子回折を行うと、ハローパターンのような回折パターンが
観測される。一方、nc−OSに対し、ペレットの大きさと近いかペレットより小さいプ
ローブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、
nc−OSに対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高
い領域が観測される場合がある。さらに、リング状の領域内に複数のスポットが観測され
る場合がある。
このように、ペレット(ナノ結晶)間では結晶方位が規則性を有さないことから、nc
−OSを、RANC(Random Aligned nanocrystals)を有
する酸化物半導体、またはNANC(Non−Aligned nanocrystal
s)を有する酸化物半導体と呼ぶこともできる。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため
、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くな
る。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのた
め、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
<a−like OS>
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物
半導体である。
a−like OSは、高分解能TEM像において鬆が観察される場合がある。また、
高分解能TEM像において、明確に結晶部を確認することのできる領域と、結晶部を確認
することのできない領域と、を有する。
鬆を有するため、a−like OSは、不安定な構造である。以下では、a−lik
e OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すた
め、電子照射による構造の変化を示す。
電子照射を行う試料として、a−like OS(試料Aと表記する。)、nc−OS
(試料Bと表記する。)およびCAAC−OS(試料Cと表記する。)を準備する。いず
れの試料もIn−Ga−Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試
料は、いずれも結晶部を有することがわかる。
なお、どの部分を一つの結晶部と見なすかの判定は、以下のように行えばよい。例えば
、InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層
を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。こ
れらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度
であり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞
の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と
見なすことができる。なお、格子縞は、InGaZnOの結晶のa−b面に対応する。
図38は、各試料の結晶部(22箇所から45箇所)の平均の大きさを調査した例であ
る。ただし、上述した格子縞の長さを結晶部の大きさとしている。図38より、a−li
ke OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体
的には、図38中に(1)で示すように、TEMによる観察初期においては1.2nm程
度の大きさだった結晶部(初期核ともいう。)が、累積照射量が4.2×10/n
においては2.6nm程度の大きさまで成長していることがわかる。一方、nc−O
SおよびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×10
/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、
図38中の(2)および(3)で示すように、電子の累積照射量によらず、nc−OSお
よびCAAC−OSの結晶部の大きさは、それぞれ1.4nm程度および2.1nm程度
であることがわかる。
このように、a−like OSは、電子照射によって結晶部の成長が見られる場合が
ある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとん
ど見られないことがわかる。即ち、a−like OSは、nc−OSおよびCAAC−
OSと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a−like OSは、nc−OSおよびCAAC−OSと比
べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結
晶の密度の78.6%以上92.3%未満となる。また、nc−OSの密度およびCAA
C−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結
晶の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、
菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmとなる。よ
って、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体におい
て、a−like OSの密度は5.0g/cm以上5.9g/cm未満となる。ま
た、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において
、nc−OSの密度およびCAAC−OSの密度は5.9g/cm以上6.3g/cm
未満となる。
なお、同じ組成の単結晶が存在しない場合がある。その場合、任意の割合で組成の異な
る単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積も
ることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わ
せる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少な
い種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。
なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS
、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
<成膜モデル>
以下では、CAAC−OSおよびnc−OSの成膜モデルの一例について説明する。
図39(A)は、スパッタリング法によりCAAC−OSが成膜される様子を示した成
膜室内の模式図である。
ターゲット5130は、バッキングプレートに接着されている。バッキングプレートを
介してターゲット5130と向かい合う位置には、複数のマグネットが配置される。該複
数のマグネットによって磁場が生じている。マグネットの配置や構成などについては、上
述した成膜室の記載を参照する。マグネットの磁場を利用して成膜速度を高めるスパッタ
リング法は、マグネトロンスパッタリング法と呼ばれる。
ターゲット5130は、多結晶構造を有し、いずれかの結晶粒には劈開面が含まれる。
一例として、In−Ga−Zn酸化物を有するターゲット5130の劈開面について説
明する。図40(A)に、ターゲット5130に含まれるInGaZnOの結晶の構造
を示す。なお、図40(A)は、c軸を上向きとし、b軸に平行な方向からInGaZn
の結晶を観察した場合の構造である。
図40(A)より、近接する二つのGa−Zn−O層において、それぞれの層における
酸素原子同士が近距離に配置されていることがわかる。そして、酸素原子が負の電荷を有
することにより、近接する二つのGa−Zn−O層は互いに反発する。その結果、InG
aZnOの結晶は、近接する二つのGa−Zn−O層の間に劈開面を有する。
基板5120は、ターゲット5130と向かい合うように配置しており、その距離d(
ターゲット−基板間距離(T−S間距離)ともいう。)は0.01m以上1m以下、好ま
しくは0.02m以上0.5m以下とする。成膜室内は、ほとんどが成膜ガス(例えば、
酸素、アルゴン、または酸素を5体積%以上の割合で含む混合ガス)で満たされ、0.0
1Pa以上100Pa以下、好ましくは0.1Pa以上10Pa以下に制御される。ここ
で、ターゲット5130に一定以上の電圧を印加することで、放電が始まり、プラズマが
確認される。なお、ターゲット5130の近傍には磁場によって、高密度プラズマ領域が
形成される。高密度プラズマ領域では、成膜ガスがイオン化することで、イオン5101
が生じる。イオン5101は、例えば、酸素の陽イオン(O)やアルゴンの陽イオン(
Ar)などである。
イオン5101は、電界によってターゲット5130側に加速され、やがてターゲット
5130と衝突する。このとき、劈開面から平板状またはペレット状のスパッタ粒子であ
るペレット5100aおよびペレット5100bが剥離し、叩き出される。なお、ペレッ
ト5100aおよびペレット5100bは、イオン5101の衝突の衝撃によって、構造
に歪みが生じる場合がある。
ペレット5100aは、三角形、例えば正三角形の平面を有する平板状またはペレット
状のスパッタ粒子である。また、ペレット5100bは、六角形、例えば正六角形の平面
を有する平板状またはペレット状のスパッタ粒子である。なお、ペレット5100aおよ
びペレット5100bなどの平板状またはペレット状のスパッタ粒子を総称してペレット
5100と呼ぶ。ペレット5100の平面の形状は、三角形、六角形に限定されない、例
えば、三角形が複数個合わさった形状となる場合がある。例えば、三角形(例えば、正三
角形)が2個合わさった四角形(例えば、ひし形)となる場合もある。
ペレット5100は、成膜ガスの種類などに応じて厚さが決定する。理由は後述するが
、ペレット5100の厚さは、均一にすることが好ましい。また、スパッタ粒子は厚みの
ないペレット状である方が、厚みのあるサイコロ状であるよりも好ましい。例えば、ペレ
ット5100は、厚さを0.4nm以上1nm以下、好ましくは0.6nm以上0.8n
m以下とする。また、例えば、ペレット5100は、幅を1nm以上とする。ペレット5
100は、上述の図38中の(1)で説明した初期核に相当する。例えば、In−Ga−
Zn酸化物を有するターゲット5130にイオン5101を衝突させる場合、図40(B
)に示すように、Ga−Zn−O層、In−O層およびGa−Zn−O層の3層を有する
ペレット5100が飛び出してくる。なお、図40(C)は、ペレット5100をc軸に
平行な方向から観察した場合の構造である。したがって、ペレット5100は、二つのG
a−Zn−O層(パン)と、In−O層(具)と、を有するナノサイズのサンドイッチ構
造と呼ぶこともできる。
ペレット5100は、プラズマを通過する際に電荷を受け取ることで、側面が負または
正に帯電する場合がある。ペレット5100は、側面に酸素原子を有し、当該酸素原子が
負に帯電する可能性がある。このように、側面が同じ極性の電荷を帯びることにより、電
荷同士の反発が起こり、平板状の形状を維持することが可能となる。なお、CAAC−O
Sが、In−Ga−Zn酸化物である場合、インジウム原子と結合した酸素原子が負に帯
電する可能性がある。または、インジウム原子、ガリウム原子または亜鉛原子と結合した
酸素原子が負に帯電する可能性がある。また、ペレット5100は、プラズマを通過する
際にインジウム原子、ガリウム原子、亜鉛原子および酸素原子などと結合することで成長
する場合がある。これは、上述の図38中の(2)と(1)の大きさの違いに相当する。
ここで、基板5120が室温程度である場合、ペレット5100がこれ以上成長しないた
めnc−OSとなる(図39(B)参照。)。成膜可能な温度が室温程度であることから
、基板5120が大面積である場合でもnc−OSの成膜は可能である。なお、ペレット
5100をプラズマ中で成長させるためには、スパッタリング法における成膜電力を高く
することが有効である。成膜電力を高くすることで、ペレット5100の構造を安定にす
ることができる。
図39(A)および図39(B)に示すように、例えば、ペレット5100は、プラズ
マ中を凧のように飛翔し、ひらひらと基板5120上まで舞い上がっていく。ペレット5
100は電荷を帯びているため、ほかのペレット5100が既に堆積している領域が近づ
くと、斥力が生じる。ここで、基板5120の上面では、基板5120の上面に平行な向
きの磁場(水平磁場ともいう。)が生じている。また、基板5120およびターゲット5
130間には、電位差が与えられているため、基板5120からターゲット5130に向
けて電流が流れている。したがって、ペレット5100は、基板5120の上面において
、磁場および電流の作用によって、力(ローレンツ力)を受ける。このことは、フレミン
グの左手の法則によって理解できる。
ペレット5100は、原子一つと比べると質量が大きい。そのため、基板5120の上
面を移動するためには何らかの力を外部から印加することが重要となる。その力の一つが
磁場および電流の作用で生じる力である可能性がある。なお、ペレット5100に与える
力を大きくするためには、基板5120の上面において、基板5120の上面に平行な向
きの磁場が10G以上、好ましくは20G以上、さらに好ましくは30G以上、より好ま
しくは50G以上となる領域を設けるとよい。または、基板5120の上面において、基
板5120の上面に平行な向きの磁場が、基板5120の上面に垂直な向きの磁場の1.
5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上、より好ましくは5倍以上と
なる領域を設けるとよい。
このとき、マグネットユニットまたは/および基板5120が相対的に移動すること、
または回転することによって、基板5120の上面における水平磁場の向きは変化し続け
る。したがって、基板5120の上面において、ペレット5100は、様々な方向への力
を受け、様々な方向へ移動することができる。
また、図39(A)に示すように基板5120が加熱されている場合、ペレット510
0と基板5120との間で摩擦などによる抵抗が小さい状態となっている。その結果、ペ
レット5100は、基板5120の上面を滑空するように移動する。ペレット5100の
移動は、平板面を基板5120に向けた状態で起こる。その後、既に堆積しているほかの
ペレット5100の側面まで到達すると、側面同士が結合する。このとき、ペレット51
00の側面にある酸素原子が脱離する。脱離した酸素原子によって、CAAC−OS中の
酸素欠損が埋まる場合があるため、欠陥準位密度の低いCAAC−OSとなる。なお、基
板5120の上面の温度は、例えば、100℃以上500℃未満、150℃以上450℃
未満、170℃以上400℃未満、または170℃以上350℃以下とすればよい。即ち
、基板5120が大面積である場合でもCAAC−OSの成膜は可能である。
また、ペレット5100が基板5120上で加熱されることにより、原子が再配列し、
イオン5101の衝突で生じた構造の歪みが緩和される。歪みの緩和されたペレット51
00は、ほぼ単結晶となる。ペレット5100がほぼ単結晶となることにより、ペレット
5100同士が結合した後に加熱されたとしても、ペレット5100自体の伸縮はほとん
ど起こり得ない。したがって、ペレット5100間の隙間が広がることで結晶粒界などの
欠陥を形成し、クレバス化することがない。
また、CAAC−OSは、単結晶酸化物半導体が一枚板のようになっているのではなく
、ペレット5100(ナノ結晶)の集合体がレンガまたはブロックが積み重なったような
配列をしている。また、その間には結晶粒界を有さない。そのため、成膜時の加熱、成膜
後の加熱または曲げなどで、CAAC−OSに縮みなどの変形が生じた場合でも、局部応
力を緩和する、または歪みを逃がすことが可能である。したがって、可とう性を有する半
導体装置に適した構造である。なお、nc−OSは、ペレット5100(ナノ結晶)の集
合体が無秩序に積み重なったような配列となる。
ターゲットをイオンでスパッタした際に、ペレットだけでなく、酸化亜鉛などが飛び出
す場合がある。酸化亜鉛はペレットよりも軽量であるため、先に基板5120の上面に到
達する。そして、0.1nm以上10nm以下、0.2nm以上5nm以下、または0.
5nm以上2nm以下の酸化亜鉛層5102を形成する。図41に断面模式図を示す。
図41(A)に示すように、酸化亜鉛層5102上にはペレット5105aと、ペレッ
ト5105bと、が堆積する。ここで、ペレット5105aとペレット5105bとは、
互いに側面が接するように配置している。また、ペレット5105cは、ペレット510
5b上に堆積した後、ペレット5105b上を滑るように移動する。また、ペレット51
05aの別の側面において、酸化亜鉛とともにターゲットから飛び出した複数の粒子51
03が基板5120の加熱により結晶化し、領域5105a1を形成する。なお、複数の
粒子5103は、酸素、亜鉛、インジウムおよびガリウムなどを含む可能性がある。
そして、図41(B)に示すように、領域5105a1は、ペレット5105aと同化
し、ペレット5105a2となる。また、ペレット5105cは、その側面がペレット5
105bの別の側面と接するように配置する。
次に、図41(C)に示すように、さらにペレット5105dがペレット5105a2
上およびペレット5105b上に堆積した後、ペレット5105a2上およびペレット5
105b上を滑るように移動する。また、ペレット5105cの別の側面に向けて、さら
にペレット5105eが酸化亜鉛層5102上を滑るように移動する。
そして、図41(D)に示すように、ペレット5105dは、その側面がペレット51
05a2の側面と接するように配置する。また、ペレット5105dは、その側面がペレ
ット5105cの別の側面と接するように配置する。また、ペレット5105dの別の側
面において、酸化亜鉛とともにターゲットから飛び出した複数の粒子5103が基板51
20の加熱により結晶化し、領域5105d1を形成する。
以上のように、堆積したペレット同士が接するように配置し、ペレットの側面において
結晶成長が起こることで、基板5120上にCAAC−OSが形成される。したがって、
CAAC−OSは、nc−OSよりも一つ一つのペレットが大きくなる。これは、上述の
図38中の(3)と(2)の大きさの違いに相当する。
また、ペレット5100の隙間が極めて小さくなることで、あたかも一つの大きなペレ
ットが形成される場合がある。大きなペレットは、単結晶構造を有する。例えば、大きな
ペレットの大きさが、上面から見て10nm以上200nm以下、15nm以上100n
m以下、または20nm以上50nm以下となる場合がある。したがって、トランジスタ
のチャネル形成領域が、大きなペレットよりも小さい場合、チャネル形成領域として単結
晶構造を有する領域を用いることができる。また、ペレットが大きくなることで、トラン
ジスタのチャネル形成領域、ソース領域およびドレイン領域として単結晶構造を有する領
域を用いることができる場合がある。
このように、トランジスタのチャネル形成領域などが、単結晶構造を有する領域に形成
されることによって、トランジスタの周波数特性を高くすることができる場合がある。
以上のようなモデルにより、ペレット5100が基板5120上に堆積していくと考え
られる。したがって、エピタキシャル成長とは異なり、被形成面が結晶構造を有さない場
合においても、CAAC−OSの成膜が可能であることがわかる。例えば、基板5120
の上面(被形成面)の構造が非晶質構造(例えば非晶質酸化シリコン)であっても、CA
AC−OSを成膜することは可能である。
また、CAAC−OSは、被形成面である基板5120の上面に凹凸がある場合でも、
その形状に沿ってペレット5100が配列することがわかる。例えば、基板5120の上
面が原子レベルで平坦な場合、ペレット5100はab面と平行な平面である平板面を下
に向けて並置するため、厚さが均一で平坦、かつ高い結晶性を有する層が形成される。そ
して、当該層がn段(nは自然数。)積み重なることで、CAAC−OSを得ることがで
きる。
一方、基板5120の上面が凹凸を有する場合でも、CAAC−OSは、ペレット51
00が凸面に沿って並置した層がn段(nは自然数。)積み重なった構造となる。基板5
120が凹凸を有するため、CAAC−OSは、ペレット5100間に隙間が生じやすい
場合がある。ただし、ペレット5100間で分子間力が働き、凹凸があってもペレット間
の隙間はなるべく小さくなるように配列する。したがって、凹凸があっても高い結晶性を
有するCAAC−OSとすることができる。
したがって、CAAC−OSは、レーザ結晶化が不要であり、大面積のガラス基板など
であっても均一な成膜が可能である。
このようなモデルによってCAAC−OSが成膜されるため、スパッタ粒子が厚みのな
いペレット状である方が好ましい。なお、スパッタ粒子が厚みのあるサイコロ状である場
合、基板5120上に向ける面が一定とならず、厚さや結晶の配向を均一にできない場合
がある。
以上に示した成膜モデルにより、非晶質構造を有する被形成面上であっても、高い結晶
性を有するCAAC−OSを得ることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いること
ができる。
(実施の形態3)
本実施の形態においては、先の実施の形態で例示したトランジスタを有する表示装置の
一例について、図8乃至図10を用いて以下説明を行う。
図8は、表示装置の一例を示す上面図である。図8示す表示装置700は、第1の基板
701上に設けられた画素部702と、第1の基板701に設けられたソースドライバ回
路部704及びゲートドライバ回路部706と、画素部702、ソースドライバ回路部7
04、及びゲートドライバ回路部706を囲むように配置されるシール材712と、第1
の基板701に対向するように設けられる第2の基板705と、を有する。なお、第1の
基板701と第2の基板705は、シール材712によって封止されている。すなわち、
画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706は、第1
の基板701とシール材712と第2の基板705によって封止されている。なお、図8
には図示しないが、第1の基板701と第2の基板705の間には表示素子が設けられる
また、表示装置700は、第1の基板701上のシール材712によって囲まれている
領域とは異なる領域に、画素部702、ソースドライバ回路部704及びゲートドライバ
回路部706とそれぞれ電気的に接続されるFPC端子部708(FPC:Flexib
le printed circuit)が設けられる。また、FPC端子部708には
、FPC716が接続され、FPC716によって画素部702、ソースドライバ回路部
704、及びゲートドライバ回路部706に各種信号等が供給される。また、画素部70
2、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部70
8には、信号線710が各々接続されている。FPC716により供給される各種信号等
は、信号線710を介して、画素部702、ソースドライバ回路部704、ゲートドライ
バ回路部706、及びFPC端子部708に与えられる。
また、表示装置700にゲートドライバ回路部706を複数設けてもよい。また、表示
装置700としては、ソースドライバ回路部704、及びゲートドライバ回路部706を
画素部702と同じ第1の基板701に形成している例を示しているが、この構成に限定
されない。例えば、ゲートドライバ回路部706のみを第1の基板701に形成しても良
い、またはソースドライバ回路部704のみを第1の基板701に形成しても良い。この
場合、ソースドライバ回路またはゲートドライバ回路等が形成された基板(例えば、単結
晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を、第1の基板701に実装す
る構成としても良い。なお、別途形成した駆動回路基板の接続方法は、特に限定されるも
のではなく、COG(Chip On Glass)方法、ワイヤボンディング方法など
を用いることができる。
また、表示装置700が有する画素部702、ソースドライバ回路部704及びゲート
ドライバ回路部706は、複数のトランジスタを有しており、本発明の一態様の半導体装
置であるトランジスタを適用することができる。
また、表示装置700は、様々な素子を有することが出来る。該素子の一例としては、
液晶素子、EL(エレクトロルミネッセンス)素子(有機物及び無機物を含むEL素子、
有機EL素子、無機EL素子)、LED(白色LED、赤色LED、緑色LED、青色L
EDなど)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、電子
インク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイ
(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素
子、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッ
ター)、MIRASOL(登録商標)、IMOD(インターフェアレンス・モジュレーシ
ョン)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、エレ
クトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブを用い
た表示素子などの少なくとも一つを有している。これらの他にも、電気的または磁気的作
用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有していても
よい。EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放
出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED
)又はSED方式平面型ディスプレイ(SED:Surface−conduction
Electron−emitter Display)などがある。液晶素子を用いた
表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶デ
ィスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレ
イ)などがある。電子インク又は電気泳動素子を用いた表示装置の一例としては、電子ペ
ーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現す
る場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにす
ればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有する
ようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設け
ることも可能である。これにより、さらに、消費電力を低減することができる。
なお、表示装置700における表示方式は、プログレッシブ方式やインターレース方式
等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、R
GB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、Rの画素とGの
画素とBの画素とW(白)の画素の四画素から構成されてもよい。または、ペンタイル配
列のように、RGBのうちの2色分で一つの色要素を構成し、色要素によって、異なる2
色を選択して構成してもよい。またはRGBに、イエロー、シアン、マゼンタ等を一色以
上追加してもよい。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよ
い。ただし、開示する発明はカラー表示の表示装置に限定されるものではなく、モノクロ
表示の表示装置に適用することもできる。
また、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色光(
W)を用いて表示装置をフルカラー表示させるために、着色層(カラーフィルタともいう
。)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B)
、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで、
着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層を
有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない領
域における白色光を直接表示に利用しても構わない。一部に着色層を有さない領域を配置
することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2割
から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発光
素子を用いてフルカラー表示する場合、R、G、B、Y、ホワイト(W)を、それぞれの
発光色を有する素子から発光させても構わない。自発光素子を用いることで、着色層を用
いた場合よりも、さらに消費電力を低減できる場合がある。
本実施の形態においては、表示素子として液晶素子及びEL素子を用いる構成について
、図9及び図10を用いて説明する。なお、図9は、図8に示す一点鎖線Q−Rにおける
断面図であり、表示素子として液晶素子を用いた構成である。また、図10は、図8に示
す一点鎖線Q−Rにおける断面図であり、表示素子としてEL素子を用いた構成である。
まず、図9及び図10に示す共通部分について最初に説明し、次に異なる部分について
以下説明する。
<表示装置の共通部分に関する説明>
図9及び図10に示す表示装置700は、引き回し配線部711と、画素部702と、
ソースドライバ回路部704と、FPC端子部708と、を有する。また、引き回し配線
部711は、信号線710を有する。また、画素部702は、トランジスタ750及び容
量素子790を有する。また、ソースドライバ回路部704は、トランジスタ752を有
する。
トランジスタ750及びトランジスタ752は、先に示すトランジスタを用いることが
できる。
本実施の形態で用いるトランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物
半導体膜を有する。該トランジスタは、オフ状態における電流値(オフ電流値)を低くす
ることができる。よって、画像信号等の電気信号の保持時間を長くすることができ、電源
オン状態では書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なく
することができるため、消費電力を抑制する効果を奏する。
また、本実施の形態で用いるトランジスタは、比較的高い電界効果移動度が得られるた
め、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを液晶表
示装置に用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するド
ライバトランジスタを同一基板上に形成することができる。すなわち、別途駆動回路とし
て、シリコンウェハ等により形成された半導体装置を用いる必要がないため、半導体装置
の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトラン
ジスタを用いることで、高画質な画像を提供することができる。
容量素子790は、一対の電極間に誘電体を有する構造である。より詳しくは、容量素
子790の一方の電極としては、トランジスタ750のゲート電極として機能する導電膜
と同一工程で形成された導電膜を用い、容量素子790の他方の電極としては、トランジ
スタ750のソース電極及びドレイン電極として機能する導電膜を用いる。また、一対の
電極間に挟持される誘電体としては、トランジスタ750のゲート絶縁膜として機能する
絶縁膜を用いる。
また、図9及び図10において、トランジスタ750、トランジスタ752、及び容量
素子790上に、絶縁膜764、766、768、酸化物半導体膜767、及び平坦化絶
縁膜770が設けられている。
絶縁膜764、766、768としては、それぞれ先の実施の形態に示す絶縁膜114
、116、118と、同様の材料及び作製方法により形成することができる。また、酸化
物半導体膜767としては、先の実施の形態に示す酸化物半導体膜108と同様の材料及
び作製方法により形成することができる。また、平坦化絶縁膜770としては、ポリイミ
ド樹脂、アクリル樹脂、ポリイミドアミド樹脂、ベンゾシクロブテン樹脂、ポリアミド樹
脂、エポキシ樹脂等の耐熱性を有する有機材料を用いることができる。なお、これらの材
料で形成される絶縁膜を複数積層させることで、平坦化絶縁膜770を形成してもよい。
また、平坦化絶縁膜770を設けない構成としてもよい。
また、信号線710は、トランジスタ750、752のソース電極及びドレイン電極と
して機能する導電膜と同じ工程で形成される。なお、信号線710は、トランジスタ75
0、752のソース電極及びドレイン電極と異なる工程で形成された導電膜、例えばゲー
ト電極として機能する導電膜としてもよい。信号線710として、例えば、銅元素を含む
材料を用いた場合、配線抵抗に起因する信号遅延等が少なく、大画面での表示が可能とな
る。
また、FPC端子部708は、接続電極760、異方性導電膜780、及びFPC71
6を有する。なお、接続電極760は、トランジスタ750、752のソース電極及びド
レイン電極として機能する導電膜と同じ工程で形成される。また、接続電極760は、F
PC716が有する端子と異方性導電膜780を介して、電気的に接続される。
また、第1の基板701及び第2の基板705としては、例えばガラス基板を用いるこ
とができる。また、第1の基板701及び第2の基板705として、可撓性を有する基板
を用いてもよい。該可撓性を有する基板としては、例えばプラスチック基板等が挙げられ
る。
また、第1の基板701と第2の基板705の間には、構造体778が設けられる。構
造体778は、絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、
第1の基板701と第2の基板705の間の距離(セルギャップ)を制御するために設け
られる。なお、構造体778として、球状のスペーサを用いていても良い。また、本実施
の形態においては、構造体778を第1の基板701側に設ける構成について例示したが
、これに限定されない。例えば、第2の基板705側に構造体778を設ける構成、また
は第1の基板701及び第2の基板705双方に構造体778を設ける構成としてもよい
また、第2の基板705側には、ブラックマトリクスとして機能する遮光膜738と、
カラーフィルタとして機能する着色膜736と、遮光膜738及び着色膜736に接する
絶縁膜734が設けられる。
<表示素子として液晶素子を用いる表示装置の構成例>
図9に示す表示装置700は、液晶素子775を有する。液晶素子775は、導電膜7
72、導電膜774、及び液晶層776を有する。導電膜774は、第2の基板705側
に設けられ、対向電極としての機能を有する。図9に示す表示装置700は、導電膜77
2と導電膜774に印加される電圧によって、液晶層776の配向状態が変わることによ
って光の透過、非透過が制御され画像を表示することができる。
また、導電膜772は、トランジスタ750が有するソース電極及びドレイン電極とし
て機能する導電膜に接続される。導電膜772は、平坦化絶縁膜770上に形成され画素
電極、すなわち表示素子の一方の電極として機能する。また、導電膜772は、反射電極
としての機能を有する。図9に示す表示装置700は、外光を利用し導電膜772で光を
反射して着色膜736を介して表示する、所謂反射型のカラー液晶表示装置である。
導電膜772としては、可視光において透光性のある導電膜、または可視光において反
射性のある導電膜を用いることができる。可視光において透光性のある導電膜としては、
例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種を含む材
料を用いるとよい。可視光において反射性のある導電膜としては、例えば、アルミニウム
、または銀を含む材料を用いるとよい。本実施の形態においては、導電膜772として、
可視光において、反射性のある導電膜を用いる。
また、導電膜772として、可視光において反射性のある導電膜を用いる場合、該導電
膜を積層構造としてもよい。例えば、下層に膜厚100nmのアルミニウム膜を形成し、
上層に厚さ30nmの銀合金膜(例えば、銀、パラジウム、及び銅を含む合金膜)を形成
する。上述の構造とすることで、以下の優れた効果を奏する。
(1)下地膜と導電膜772との密着性を向上させることができる。(2)薬液によっ
てアルミニウム膜と、銀合金膜とを一括してエッチングすることが可能である。(3)導
電膜772の断面形状を良好な形状(例えば、テーパー形状)とすることができる。(3
)の理由としては、アルミニウム膜は、銀合金膜よりも薬液によるエッチング速度が遅い
、または上層の銀合金膜のエッチング後、下層のアルミニウム膜が露出した場合に、銀合
金膜よりも卑な金属、別言するとイオン化傾向の高い金属であるアルミニウムから電子を
引き抜くため、銀合金膜のエッチングが抑制され、下層のアルミニウム膜のエッチングの
進行が速くなるためである。
また、図9に示す表示装置700においては、画素部702の平坦化絶縁膜770の一
部に凹凸が設けられている。該凹凸は、例えば、平坦化絶縁膜770を有機樹脂膜等で形
成し、該有機樹脂膜の表面に凹凸を設けることで形成することができる。また、反射電極
として機能する導電膜772は、上記凹凸に沿って形成される。したがって、外光が導電
膜772に入射した場合において、導電膜772の表面で光を乱反射することが可能とな
り、視認性を向上させることができる。
なお、図9に示す表示装置700は、反射型のカラー液晶表示装置について例示したが
、これに限定されない、例えば、導電膜772を可視光において、透光性のある導電膜を
用いることで透過型のカラー液晶表示装置としてもよい。透過型のカラー液晶表示装置の
場合、平坦化絶縁膜770に設けられる凹凸については、設けない構成としてもよい。
なお、図9において図示しないが、導電膜772、774の液晶層776と接する側に
、それぞれ配向膜を設ける構成としてもよい。また、図9において図示しないが、偏光部
材、位相差部材、反射防止部材などの光学部材(光学基板)などは適宜設けてもよい。例
えば、偏光基板及び位相差基板による円偏光を用いてもよい。また、光源としてバックラ
イト、サイドライトなどを用いてもよい。
表示素子として液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液
晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これら
の液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイ
ラルネマチック相、等方相等を示す。
また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよ
い。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリ
ック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発
現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組
成物を用いて液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、
応答速度が短く、光学的等方性である。また、ブルー相を示す液晶とカイラル剤とを含む
液晶組成物は、配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくて
もよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破
壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができ
る。
また、表示素子として液晶素子を用いる場合、TN(Twisted Nematic
)モード、IPS(In−Plane−Switching)モード、FFS(Frin
ge Field Switching)モード、ASM(Axially Symme
tric aligned Micro−cell)モード、OCB(Optical
Compensated Birefringence)モード、FLC(Ferroe
lectric Liquid Crystal)モード、AFLC(AntiFerr
oelectric Liquid Crystal)モードなどを用いることができる
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用し
た透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが
、例えば、MVA(Multi−Domain Vertical Alignment
)モード、PVA(Patterned Vertical Alignment)モー
ド、ASVモードなどを用いることができる。
<表示素子として発光素子を用いる表示装置>
図10に示す表示装置700は、発光素子782を有する。発光素子782は、導電膜
784、EL層786、及び導電膜788を有する。図10に示す表示装置700は、発
光素子782が有するEL層786が発光することによって、画像を表示することができ
る。
また、導電膜784は、トランジスタ750が有するソース電極及びドレイン電極とし
て機能する導電膜に接続される。導電膜784は、平坦化絶縁膜770上に形成され画素
電極、すなわち表示素子の一方の電極として機能する。導電膜784としては、可視光に
おいて透光性のある導電膜、または可視光において反射性のある導電膜を用いることがで
きる。可視光において透光性のある導電膜としては、例えば、インジウム(In)、亜鉛
(Zn)、錫(Sn)の中から選ばれた一種を含む材料を用いるとよい。可視光において
反射性のある導電膜としては、例えば、アルミニウム、または銀を含む材料を用いるとよ
い。
また、図10に示す表示装置700には、平坦化絶縁膜770及び導電膜784上に絶
縁膜730が設けられる。絶縁膜730は、導電膜784の一部を覆う。なお、発光素子
782はトップエミッション構造である。したがって、導電膜788は透光性を有し、E
L層786が発する光を透過する。なお、本実施の形態においては、トップエミッション
構造について、例示するが、これに限定されない。例えば、導電膜784側に光を射出す
るボトムエミッション構造や、導電膜784及び導電膜788の双方に光を射出するデュ
アルエミッション構造にも適用することができる。
また、発光素子782と重なる位置に、着色膜736が設けられ、絶縁膜730と重な
る位置、引き回し配線部711、及びソースドライバ回路部704に遮光膜738が設け
られている。また、着色膜736及び遮光膜738は、絶縁膜734で覆われている。ま
た、発光素子782と絶縁膜734の間は封止膜732で充填されている。なお、図10
に示す表示装置700においては、着色膜736を設ける構成について例示したが、これ
に限定されない。例えば、EL層786を塗り分けにより形成する場合においては、着色
膜736を設けない構成としてもよい。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いること
ができる。
(実施の形態4)
本実施の形態では、本発明の一態様の半導体装置を有する表示装置について、図11を
用いて説明を行う。
図11(A)に示す表示装置は、表示素子の画素を有する領域(以下、画素部502と
いう)と、画素部502の外側に配置され、画素を駆動するための回路を有する回路部(
以下、駆動回路部504という)と、素子の保護機能を有する回路(以下、保護回路50
6という)と、端子部507と、を有する。なお、保護回路506は、設けない構成とし
てもよい。
駆動回路部504の一部、または全部は、画素部502と同一基板上に形成されている
ことが望ましい。これにより、部品数や端子数を減らすことが出来る。駆動回路部504
の一部、または全部が、画素部502と同一基板上に形成されていない場合には、駆動回
路部504の一部、または全部は、COGやTAB(Tape Automated B
onding)によって、実装することができる。
画素部502は、X行(Xは2以上の自然数)Y列(Yは2以上の自然数)に配置され
た複数の表示素子を駆動するための回路(以下、画素回路501という)を有し、駆動回
路部504は、画素を選択する信号(走査信号)を出力する回路(以下、ゲートドライバ
504aという)、画素の表示素子を駆動するための信号(データ信号)を供給するため
の回路(以下、ソースドライバ504b)などの駆動回路を有する。
ゲートドライバ504aは、シフトレジスタ等を有する。ゲートドライバ504aは、
端子部507を介して、シフトレジスタを駆動するための信号が入力され、信号を出力す
る。例えば、ゲートドライバ504aは、スタートパルス信号、クロック信号等が入力さ
れ、パルス信号を出力する。ゲートドライバ504aは、走査信号が与えられる配線(以
下、走査線GL_1乃至GL_Xという)の電位を制御する機能を有する。なお、ゲート
ドライバ504aを複数設け、複数のゲートドライバ504aにより、走査線GL_1乃
至GL_Xを分割して制御してもよい。または、ゲートドライバ504aは、初期化信号
を供給することができる機能を有する。ただし、これに限定されず、ゲートドライバ50
4aは、別の信号を供給することも可能である。
ソースドライバ504bは、シフトレジスタ等を有する。ソースドライバ504bは、
端子部507を介して、シフトレジスタを駆動するための信号の他、データ信号の元とな
る信号(画像信号)が入力される。ソースドライバ504bは、画像信号を元に画素回路
501に書き込むデータ信号を生成する機能を有する。また、ソースドライバ504bは
、スタートパルス、クロック信号等が入力されて得られるパルス信号に従って、データ信
号の出力を制御する機能を有する。また、ソースドライバ504bは、データ信号が与え
られる配線(以下、データ線DL_1乃至DL_Yという)の電位を制御する機能を有す
る。または、ソースドライバ504bは、初期化信号を供給することができる機能を有す
る。ただし、これに限定されず、ソースドライバ504bは、別の信号を供給することも
可能である。
ソースドライバ504bは、例えば複数のアナログスイッチなどを用いて構成される。
ソースドライバ504bは、複数のアナログスイッチを順次オン状態にすることにより、
画像信号を時分割した信号をデータ信号として出力できる。また、シフトレジスタなどを
用いてソースドライバ504bを構成してもよい。
複数の画素回路501のそれぞれは、走査信号が与えられる複数の走査線GLの一つを
介してパルス信号が入力され、データ信号が与えられる複数のデータ線DLの一つを介し
てデータ信号が入力される。また。複数の画素回路501のそれぞれは、ゲートドライバ
504aによりデータ信号のデータの書き込み及び保持が制御される。例えば、m行n列
目の画素回路501は、走査線GL_m(mはX以下の自然数)を介してゲートドライバ
504aからパルス信号が入力され、走査線GL_mの電位に応じてデータ線DL_n(
nはY以下の自然数)を介してソースドライバ504bからデータ信号が入力される。
図11(A)に示す保護回路506は、例えば、ゲートドライバ504aと画素回路5
01の間の配線である走査線GLに接続される。または、保護回路506は、ソースドラ
イバ504bと画素回路501の間の配線であるデータ線DLに接続される。または、保
護回路506は、ゲートドライバ504aと端子部507との間の配線に接続することが
できる。または、保護回路506は、ソースドライバ504bと端子部507との間の配
線に接続することができる。なお、端子部507は、外部の回路から表示装置に電源及び
制御信号、及び画像信号を入力するための端子が設けられた部分をいう。
保護回路506は、自身が接続する配線に一定の範囲外の電位が与えられたときに、該
配線と別の配線とを導通状態にする回路である。
図11(A)に示すように、画素部502と駆動回路部504にそれぞれ保護回路50
6を設けることにより、ESD(Electro Static Discharge:
静電気放電)などにより発生する過電流に対する表示装置の耐性を高めることができる。
ただし、保護回路506の構成はこれに限定されず、例えば、ゲートドライバ504aに
保護回路506を接続した構成、またはソースドライバ504bに保護回路506を接続
した構成とすることもできる。あるいは、端子部507に保護回路506を接続した構成
とすることもできる。
また、図11(A)においては、ゲートドライバ504aとソースドライバ504bに
よって駆動回路部504を形成している例を示しているが、この構成に限定されない。例
えば、ゲートドライバ504aのみを形成し、別途用意されたソースドライバ回路が形成
された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を実
装する構成としても良い。
また、図11(A)に示す複数の画素回路501は、例えば、図11(B)に示す構成
とすることができる。
図11(B)に示す画素回路501は、液晶素子570と、トランジスタ550と、容
量素子560と、を有する。トランジスタ550に先の実施の形態に示すトランジスタを
適用することができる。
液晶素子570の一対の電極の一方の電位は、画素回路501の仕様に応じて適宜設定
される。液晶素子570は、書き込まれるデータにより配向状態が設定される。なお、複
数の画素回路501のそれぞれが有する液晶素子570の一対の電極の一方に共通の電位
(コモン電位)を与えてもよい。また、各行の画素回路501の液晶素子570の一対の
電極の一方に異なる電位を与えてもよい。
例えば、液晶素子570を備える表示装置の駆動方法としては、TNモード、STNモ
ード、VAモード、ASM(Axially Symmetric Aligned M
icro−cell)モード、OCB(Optically Compensated
Birefringence)モード、FLC(Ferroelectric Liqu
id Crystal)モード、AFLC(AntiFerroelectric Li
quid Crystal)モード、MVAモード、PVA(Patterned Ve
rtical Alignment)モード、IPSモード、FFSモード、又はTBA
(Transverse Bend Alignment)モードなどを用いてもよい。
また、表示装置の駆動方法としては、上述した駆動方法の他、ECB(Electric
ally Controlled Birefringence)モード、PDLC(P
olymer Dispersed Liquid Crystal)モード、PNLC
(Polymer Network Liquid Crystal)モード、ゲストホ
ストモードなどがある。ただし、これに限定されず、液晶素子及びその駆動方式として様
々なものを用いることができる。
m行n列目の画素回路501において、トランジスタ550のソース電極またはドレイ
ン電極の一方は、データ線DL_nに電気的に接続され、他方は液晶素子570の一対の
電極の他方に電気的に接続される。また、トランジスタ550のゲート電極は、走査線G
L_mに電気的に接続される。トランジスタ550は、オン状態またはオフ状態になるこ
とにより、データ信号のデータの書き込みを制御する機能を有する。
容量素子560の一対の電極の一方は、電位が供給される配線(以下、電位供給線VL
)に電気的に接続され、他方は、液晶素子570の一対の電極の他方に電気的に接続され
る。なお、電位供給線VLの電位の値は、画素回路501の仕様に応じて適宜設定される
。容量素子560は、書き込まれたデータを保持する保持容量としての機能を有する。
例えば、図11(B)の画素回路501を有する表示装置では、例えば、図11(A)
に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ
550をオン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路501は、トランジスタ550がオフ状態になることで
保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
また、図11(A)に示す複数の画素回路501は、例えば、図11(C)に示す構成
とすることができる。
また、図11(C)に示す画素回路501は、トランジスタ552、554と、容量素
子562と、発光素子572と、を有する。トランジスタ552及びトランジスタ554
のいずれか一方または双方に先の実施の形態に示すトランジスタを適用することができる
トランジスタ552のソース電極及びドレイン電極の一方は、データ信号が与えられる
配線(以下、信号線DL_nという)に電気的に接続される。さらに、トランジスタ55
2のゲート電極は、ゲート信号が与えられる配線(以下、走査線GL_mという)に電気
的に接続される。
トランジスタ552は、オン状態またはオフ状態になることにより、データ信号のデー
タの書き込みを制御する機能を有する。
容量素子562の一対の電極の一方は、電位が与えられる配線(以下、電位供給線VL
_aという)に電気的に接続され、他方は、トランジスタ552のソース電極及びドレイ
ン電極の他方に電気的に接続される。
容量素子562は、書き込まれたデータを保持する保持容量としての機能を有する。
トランジスタ554のソース電極及びドレイン電極の一方は、電位供給線VL_aに電
気的に接続される。さらに、トランジスタ554のゲート電極は、トランジスタ552の
ソース電極及びドレイン電極の他方に電気的に接続される。
発光素子572のアノード及びカソードの一方は、電位供給線VL_bに電気的に接続
され、他方は、トランジスタ554のソース電極及びドレイン電極の他方に電気的に接続
される。
発光素子572としては、例えば有機エレクトロルミネセンス素子(有機EL素子とも
いう)などを用いることができる。ただし、発光素子572としては、これに限定されず
、無機材料からなる無機EL素子を用いても良い。
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与
えられ、他方には、低電源電位VSSが与えられる。
図11(C)の画素回路501を有する表示装置では、例えば、図11(A)に示すゲ
ートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ552を
オン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路501は、トランジスタ552がオフ状態になることで
保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ554の
ソース電極とドレイン電極の間に流れる電流量が制御され、発光素子572は、流れる電
流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いること
ができる。
(実施の形態5)
本実施の形態では、本発明の一態様の半導体装置を有する表示モジュール及び電子機器
について、図12及び図13を用いて説明を行う。
図12に示す表示モジュール8000は、上部カバー8001と下部カバー8002と
の間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続され
た表示パネル8006、バックライト8007、フレーム8009、プリント基板801
0、バッテリ8011を有する。
本発明の一態様の半導体装置は、例えば、表示パネル8006に用いることができる。
上部カバー8001及び下部カバー8002は、タッチパネル8004及び表示パネル
8006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル8004は、抵抗膜方式または静電容量方式のタッチパネルを表示パネル
8006に重畳して用いることができる。また、表示パネル8006の対向基板(封止基
板)に、タッチパネル機能を持たせるようにすることも可能である。また、表示パネル8
006の各画素内に光センサを設け、光学式のタッチパネルとすることも可能である。
バックライト8007は、光源8008を有する。なお、図12において、バックライ
ト8007上に光源8008を配置する構成について例示したが、これに限定さない。例
えば、バックライト8007の端部に光源8008を配置し、さらに光拡散板を用いる構
成としてもよい。なお、有機EL素子等の自発光型の発光素子を用いる場合、または反射
型パネル等の場合においては、バックライト8007を設けない構成としてもよい。
フレーム8009は、表示パネル8006の保護機能の他、プリント基板8010の動
作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレ
ーム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号及びクロック信号を出力するための信
号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であって
も良いし、別途設けたバッテリ8011による電源であってもよい。バッテリ8011は
、商用電源を用いる場合には、省略可能である。
また、表示モジュール8000は、偏光板、位相差板、プリズムシートなどの部材を追
加して設けてもよい。
図13(A)乃至図13(G)は、電子機器を示す図である。これらの電子機器は、筐
体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、又
は操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、
加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電
場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する
機能を含むもの)、マイクロフォン9008、等を有することができる。
図13(A)乃至図13(G)に示す電子機器は、様々な機能を有することができる。
例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッ
チパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(
プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々な
コンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信ま
たは受信を行う機能、記録媒体に記録されているプログラムまたはデータを読み出して表
示部に表示する機能、等を有することができる。なお、図13(A)乃至図13(G)に
示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有すること
ができる。また、図13(A)乃至図13(G)には図示していないが、電子機器には、
複数の表示部を有する構成としてもよい。また、該電子機器にカメラ等を設け、静止画を
撮影する機能、動画を撮影する機能、撮影した画像を記録媒体(外部またはカメラに内蔵
)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図13(A)乃至図13(G)に示す電子機器の詳細について、以下説明を行う。
図13(A)は、携帯情報端末9100を示す斜視図である。携帯情報端末9100が
有する表示部9001は、可撓性を有する。そのため、湾曲した筐体9000の湾曲面に
沿って表示部9001を組み込むことが可能である。また、表示部9001はタッチセン
サを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表
示部9001に表示されたアイコンに触れることで、アプリケーションを起動することが
できる。
図13(B)は、携帯情報端末9101を示す斜視図である。携帯情報端末9101は
、例えば電話機、手帳又は情報閲覧装置等から選ばれた一つ又は複数の機能を有する。具
体的には、スマートフォンとして用いることができる。なお、携帯情報端末9101は、
スピーカ9003、接続端子9006、センサ9007等を省略して図示しているが、図
13(A)に示す携帯情報端末9100と同様の位置に設けることができる。また、携帯
情報端末9101は、文字や画像情報をその複数の面に表示することができる。例えば、
3つの操作ボタン9050(操作アイコンまたは単にアイコンともいう)を表示部900
1の一の面に表示することができる。また、破線の矩形で示す情報9051を表示部90
01の他の面に表示することができる。なお、情報9051の一例としては、電子メール
やSNS(ソーシャル・ネットワーキング・サービス)や電話などの着信を知らせる表示
、電子メールやSNSなどの題名、電子メールやSNSなどの送信者名、日時、時刻、バ
ッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている
位置に、情報9051の代わりに、操作ボタン9050などを表示してもよい。
図13(C)は、携帯情報端末9102を示す斜視図である。携帯情報端末9102は
、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、
情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば、携
帯情報端末9102の使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状
態で、その表示(ここでは情報9053)を確認することができる。具体的には、着信し
た電話の発信者の電話番号又は氏名等を、携帯情報端末9102の上方から観察できる位
置に表示する。使用者は、携帯情報端末9102をポケットから取り出すことなく、表示
を確認し、電話を受けるか否かを判断できる。
図13(D)は、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末
9200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信
、コンピュータゲームなどの種々のアプリケーションを実行することができる。また、表
示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うこと
ができる。また、携帯情報端末9200は、通信規格された近距離無線通信を実行するこ
とが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハン
ズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006を
有し、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。ま
た接続端子9006を介して充電を行うこともできる。なお、充電動作は接続端子900
6を介さずに無線給電により行ってもよい。
図13(E)(F)(G)は、折り畳み可能な携帯情報端末9201を示す斜視図であ
る。また、図13(E)が携帯情報端末9201を展開した状態の斜視図であり、図13
(F)が携帯情報端末9201を展開した状態または折り畳んだ状態の一方から他方に変
化する途中の状態の斜視図であり、図13(G)が携帯情報端末9201を折り畳んだ状
態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開し
た状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末92
01が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000
に支持されている。ヒンジ9055を介して2つの筐体9000間を屈曲させることによ
り、携帯情報端末9201を展開した状態から折りたたんだ状態に可逆的に変形させるこ
とができる。例えば、携帯情報端末9201は、曲率半径1mm以上150mm以下で曲
げることができる。
本実施の形態において述べた電子機器は、何らかの情報を表示するための表示部を有す
ることを特徴とする。ただし、本発明の一態様の半導体装置は、表示部を有さない電子機
器にも適用することができる。また、本実施の形態において述べた電子機器の表示部にお
いては、可撓性を有し、湾曲した表示面に沿って表示を行うことができる構成、または折
り畳み可能な表示部の構成について例示したが、これに限定されず、可撓性を有さず、平
面部に表示を行う構成としてもよい。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いること
ができる。
本実施例においては、試料A1乃至A3の分析用サンプルを作製し、該分析用サンプル
のSIMS分析を行った。
まず、本実施例で作製した分析用サンプルについて、以下説明を行う。
(試料A1乃至試料A3)
まず、厚さ0.7mmのガラス基板上に、厚さ100nmの酸化物半導体膜を形成した
。なお、試料A1、試料A2、及び試料A3は、それぞれ酸化物半導体膜の組成が異なる
試料A1の酸化物半導体膜としては、基板温度を170℃とし、流量100sccmの
アルゴンガスと、流量100sccmの酸素ガスをチャンバー内に導入し、圧力を0.6
Paとし、多結晶の金属酸化物スパッタリングターゲット多結晶の金属酸化物スパッタリ
ングターゲット(In:Ga:Zn=1:1:1.2[原子数比])に2500WのAC
電力を投入して成膜した。
試料A2の酸化物半導体膜としては、基板温度を170℃とし、流量100sccmの
アルゴンガスと、流量100sccmの酸素ガスをチャンバー内に導入し、圧力を0.6
Paとし、多結晶の金属酸化物スパッタリングターゲット(In:Ga:Zn=3:1:
2[原子数比])に2500WのAC電力を投入して成膜した。
試料A3の酸化物半導体膜としては、基板温度を170℃とし、流量100sccmの
アルゴンガスと、流量100sccmの酸素ガスをチャンバー内に導入し、圧力を0.6
Paとし、多結晶の金属酸化物スパッタリングターゲット(In:Ga:Zn=4:2:
4.1[原子数比])に2500WのAC電力を投入して成膜した。
次に、熱処理を行った。該熱処理としては、窒素雰囲気下で450℃ 1時間の熱処理
を行い、続けて窒素と酸素の混合ガス雰囲気下で450℃ 1時間の熱処理とした。なお
、本実施例においては、酸化物半導体膜中の水素濃度を低減させるために、450℃で各
試料を熱処理したが、実際のトランジスタを作製する工程においては、350℃以下で熱
処理する方が好適である。
以上の工程で、本実施例の試料A1乃至試料A3を作製した。
次に、上記作製した試料A1乃至試料A3の酸化物半導体膜中の水素濃度を測定するた
めに、SIMS分析を行った。試料A1乃至A3の分析結果を図14に示す。なお、図1
4において、縦軸が水素濃度(atoms/cm)を、横軸が深さ(nm)を、それぞ
れ表す。
図14に示す結果より、試料A1の酸化物半導体膜中の水素濃度は、6.33×10
atoms/cmであった。また、試料A2の酸化物半導体膜中の水素濃度は、8.
64×1018atoms/cmであった。また、試料A3の酸化物半導体膜中の水素
濃度は、1.46×1019atoms/cmであった。なお、ここでの酸化物半導体
膜中の水素濃度としては、膜厚50nmでの数値とした。
例えば、試料A2の酸化物半導体膜上に、試料A1の酸化物半導体膜を形成することで
、IGZO膜(In:Ga:Zn=3:1:2)\IGZO膜(In:Ga:Zn=1:
1:1.2)の構造となる。または、試料A3の酸化物半導体膜上に、試料A1の酸化物
半導体膜を形成することで、IGZO膜(In:Ga:Zn=4:2:4.1)\IGZ
O膜(In:Ga:Zn=1:1:1.2)の構造となる。
このように、本発明の一態様の半導体装置は、酸化物半導体膜を積層構造とし、下層の
酸化物半導体膜よりも上層の酸化物半導体膜の水素濃度が高くなるように形成すると好ま
しい。また、下層の酸化物半導体膜が、Inの原子数比がGaの原子数比より多く、下層
の酸化物半導体膜よりも上層の酸化物半導体膜のInの原子数比が少ない。このような組
成の酸化物半導体膜の積層構造とすることで、高い電界効果移動度を有し、且つ高い信頼
性の半導体装置とすることができる。
本実施例に示す構成は、他の実施の形態または他の実施例と適宜組み合わせて用いても
よい。
本実施例においては、本発明の一態様の半導体装置が有する絶縁膜の水素及び水の放出
量について、TDSを用いて評価した。また、本発明の一態様の半導体装置が有する絶縁
膜のキャリアトラップとなる欠陥について、ESRを用いて評価した。本実施例において
は、以下に示す試料B1乃至試料B4、試料C1乃至試料C4を作製した。
まず、試料B1乃至試料B4の詳細について説明する。
<試料B1>
試料B1は、ガラス基板上に、厚さ100nmの窒化シリコン膜が形成された構造であ
る。
試料B1の窒化シリコン膜の成膜条件としては、基板温度を350℃とし、流量200
sccmのシランガスと、流量2000sccmの窒素ガスと、流量100sccmのア
ンモニアガスとをチャンバー内に導入し、圧力を100Paとし、PECVD装置内に設
置された平行平板の電極間に2000WのRF電力を供給して成膜した。
<試料B2>
試料B2は、ガラス基板上に厚さ100nmの窒化シリコン膜が形成された構造である
試料B2の窒化シリコン膜の成膜条件としては、アンモニアガスの流量を2000sc
cmとして、窒化シリコン膜を成膜した。なお、アンモニアガスの流量以外の条件につい
ては、試料B1と同じとした。
<試料B3>
試料B3は、ガラス基板上に厚さ200nmの酸化窒化シリコン膜が形成された構造で
ある。
試料B3の酸化窒化シリコン膜の成膜条件としては、基板温度を350℃とし、流量2
0sccmのシランガスと、流量3000sccmの一酸化二窒素ガスとをチャンバー内
に導入し、圧力を40Paとし、PECVD装置内に設置された平行平板の電極間に10
00WのRF電力を供給して成膜した。
<試料B4>
試料B4は、ガラス基板上に厚さ200nmの酸化窒化シリコン膜が形成された構造で
ある。
試料B4の酸化窒化シリコン膜の成膜条件としては、RF電力を100Wとして、酸化
窒化シリコン膜を成膜した。なお、RF電力以外の条件については、試料B3と同じとし
た。
<TDS測定>
次に、上記作製した試料B1乃至試料B4のTDS測定を行った。TDS測定において
は、50℃から550℃まで各試料を加熱し、各試料中の絶縁膜に含まれる気体の放出量
について評価した。試料B1及び試料B2においては、窒化シリコン膜に含まれる水素の
放出量について評価した。なお、水素の放出量としては、質量電荷比(M/z)が2に相
当するガスの放出量を測定した。また、試料B3及び試料B4においては、酸化窒化シリ
コン膜に含まれるHOの放出量について評価した。なお、HOの放出量としては、質
量電荷比(M/z)が18に相当するガスの放出量を測定した。
図15(A)に、試料B1のTDS測定結果を、図15(B)に試料B2のTDS測定
結果を、図16(A)に試料B3のTDS測定結果を、図16(B)に試料B4のTDS
測定結果を、それぞれ示す。なお、図15(A)(B)及び図16(A)(B)において
、縦軸が強度(任意単位)を、横軸が基板温度(℃)、それぞれ表す。
図15(A)(B)に示す結果より、アンモニアガスの流量を低減することで、水素の
放出量の少ない窒化シリコン膜を成膜できることが分かった。
図16(A)(B)に示す結果より、RF電力を増大させることで、水の放出量の少な
い酸化窒化シリコン膜を成膜できることが分かった。
次に、試料C1乃至試料C4の詳細について説明する。
<試料C1>
試料C1は、ガラス基板上に厚さ100nmの窒化シリコン膜が形成された構造である
試料C1の窒化シリコン膜の成膜条件としては、基板温度を350℃とし、流量200
sccmのシランガスと、流量2000sccmの窒素ガスと、流量100sccmのア
ンモニアガスをチャンバー内に導入し、圧力を100Paとし、PECVD装置内に設置
された平行平板の電極間に2000WのRF電力を供給して成膜した。
<試料C2>
試料C2は、ガラス基板上に厚さ100nmの窒化シリコン膜が形成された構造である
試料C2の窒化シリコン膜の成膜条件としては、基板温度を280℃とし、流量100
sccmのシランガスと、流量1000sccmの窒素ガスと、流量50sccmのアン
モニアガスをチャンバー内に導入し、圧力を100Paとし、PECVD装置内に設置さ
れた平行平板の電極間に750WのRF電力を供給して成膜した。
<試料C3>
試料C3は、ガラス基板上に厚さ100nmの酸化窒化シリコン膜が形成された構造で
ある。
酸化窒化シリコン膜の成膜条件としては、基板温度を280℃とし、流量50sccm
のシランガスと、流量1250sccmの一酸化二窒素ガスとをチャンバー内に導入し、
圧力を20Paとし、PECVD装置内に設置された平行平板の電極間に750WのRF
電力を供給して成膜した。
<試料C4>
試料C4は、ガラス基板上に厚さ100nmの酸化窒化シリコン膜が形成された構造で
ある。
試料C4としては、試料C3の酸化窒化シリコン膜の成膜条件において、RF電力を2
50Wとして、酸化窒化シリコン膜を成膜した。なお、RF電力以外の条件について、試
料C3と同じとした。
<ESR測定>
次に、上記作製した試料C1乃至試料C4のESR測定を行った。ESR測定は、所定
の温度で、マイクロ波の吸収の起こる磁場の値(H)から、式g=hν/βH、を用
いてg値というパラメータが得られる。なお、νはマイクロ波の周波数である。hはプラ
ンク定数であり、βはボーア磁子であり、どちらも定数である。
試料C1及び試料C2においては、下記の条件でESR測定を行った。測定温度を室温
(25℃)とし、9.2GHzの高周波電力(マイクロ波パワー)を0.1mWとし、磁
場の向きは作製した試料の膜表面と平行とした。なお、窒化シリコン膜に含まれるK−c
enterに起因するシグナルのスピン密度の検出下限は1.5×1016spins/
cmであった。
試料C3及び試料C4においては、下記の条件でESR測定を行った。測定温度を室温
(25℃)とし、9.2GHzの高周波電力(マイクロ波パワー)を0.005mWとし
、磁場の向きは作製した試料の膜表面と平行とした。なお、酸化窒化シリコン膜に含まれ
るE’−centerに起因するシグナルのスピン密度の検出下限は1.5×1016
pins/cmであった。
図17は、試料C1及び試料C2のESRの測定により得られたESRスペクトルであ
る。図18は、試料C3及び試料C4のESRの測定により得られたESRスペクトルで
ある。
図17に示すように、試料C2と比較して、試料C1の方が、K−centerに起因
するシグナルの強度が小さいことが分かる。K−centerは、図17に示すような、
シリコンのダングリングボンドによる欠陥である。このことから、成膜条件において、よ
り高い温度で、且つ高いRF電力を供給することで、シリコンのダングリングボンドの少
ない、窒化シリコン膜を成膜できることが分かった。
図18に示すように、試料C4と比較して、試料C3の方が、E’−centerに起
因するシグナルの強度が小さいことが分かる。E’−centerは、図18に示すよう
な、シリコンのダングリングボンドによる欠陥である。このことから、成膜条件において
、より高いRF電力を供給することで、シリコンのダングリングボンドの少ない、酸化窒
化シリコン膜を成膜できることが分かった。
本実施例に示す構成は、他の実施の形態または他の実施例と適宜組み合わせて用いても
よい。
本実施例においては、図3に示すトランジスタ170に相当するトランジスタを作製し
、該トランジスタのID−VG特性の評価を行った。本実施例においては、以下に示す試
料D1乃至試料D3を作製し評価を行った。なお、試料D1及び試料D2は比較例である
トランジスタを有する試料であり、試料D3は本発明の一態様のトランジスタを有する試
料である。また、試料D1乃至試料D3は、それぞれチャネル長L=2μm、チャネル幅
W=50μmのトランジスタと、チャネル長L=3μm、チャネル幅W=50μmのトラ
ンジスタと、チャネル長L=6μm、チャネル幅W=50μmとの合計3種類のトランジ
スタが形成された構造である。
本実施例で作製した試料について、以下説明を行う。なお、以下の説明において、図3
に示すトランジスタ170に付記した符号を用いて説明する。
<試料D1の作製方法>
まず、基板102上に導電膜104を形成した。基板102としては、ガラス基板を用
いた。また、導電膜104としては、厚さ100nmのタングステン膜を、スパッタリン
グ装置を用いて形成した。
次に、基板102及び導電膜104上に絶縁膜106、107を形成した。絶縁膜10
6としては、厚さ400nmの窒化シリコン膜を、PECVD装置を用いて形成した。ま
た、絶縁膜107としては、厚さ50nmの酸化窒化シリコン膜を、PECVD装置を用
いて形成した。
絶縁膜106の成膜条件としては、基板温度を350℃とし、流量200sccmのシ
ランガスと、流量2000sccmの窒素ガスと、流量100sccmのアンモニアガス
をチャンバー内に導入し、圧力を100Paとし、PECVD装置内に設置された平行平
板の電極間に2000WのRF電力を供給して、厚さ50nmの窒化シリコン膜を成膜し
、次に、アンモニアガスの流量を2000sccmに変更して、厚さ300nmの窒化シ
リコン膜を成膜し、次に、アンモニアガスの流量を100sccmに変更して、厚さ50
nmの窒化シリコン膜を成膜した。
また、絶縁膜107の成膜条件としては、基板温度を350℃とし、流量20sccm
のシランガスと、流量3000sccmの一酸化二窒素ガスをチャンバー内に導入し、圧
力を40Paとし、PECVD装置内に設置された平行平板の電極間に100WのRF電
力を供給して成膜した。
次に、絶縁膜107上に酸化物半導体膜108を形成した。酸化物半導体膜108とし
ては、スパッタリング装置を用いて、単層のIGZO膜を形成した。また、酸化物半導体
膜108として、厚さ35nmのIGZO膜を形成した。なお、酸化物半導体膜108の
成膜条件としては、基板温度を170℃とし、流量100sccmのアルゴンガスと、流
量100sccmの酸素ガスをチャンバー内に導入し、圧力を0.6Paとし、多結晶の
金属酸化物スパッタリングターゲット(In:Ga:Zn=1:1:1.2[原子数比]
)に2500WのAC電力を投入して成膜した。
次に、第1の熱処理を行った。該第1の熱処理としては、窒素雰囲気下で450℃1時
間の熱処理を行い、続けて窒素と酸素の混合ガス雰囲気下で450℃1時間の熱処理とし
た。
次に、絶縁膜107及び酸化物半導体膜108上に導電膜112a、112bを形成し
た。導電膜112a、112bとしては、厚さ50nmのタングステン膜と、厚さ400
nmのアルミニウム膜と、厚さ100nmのチタン膜とを、スパッタリング装置を用いて
真空中で連続して形成した。
次に、絶縁膜107、酸化物半導体膜108、及び導電膜112a、112b上に絶縁
膜114及び絶縁膜116を形成した。絶縁膜114としては、厚さ50nmの酸化窒化
シリコン膜を、PECVD装置を用いて形成した。また、絶縁膜116としては、厚さ4
00nmの酸化窒化シリコン膜を、PECVD装置を用いて形成した。なお、絶縁膜11
4及び絶縁膜116としては、PECVD装置により真空中で連続して形成した。
絶縁膜114の成膜条件としては、基板温度を220℃とし、流量50sccmのシラ
ンガスと、流量2000sccmの一酸化二窒素ガスをチャンバー内に導入し、圧力を2
0Paとし、PECVD装置内に設置された平行平板の電極間に100WのRF電力を供
給して成膜した。また、絶縁膜116の成膜条件としては、基板温度を220℃とし、流
量160sccmのシランガスと、流量4000sccmの一酸化二窒素ガスをチャンバ
ー内に導入し、圧力を200Paとし、PECVD装置内に設置された平行平板の電極間
に1500WのRF電力を供給して成膜した。
次に、第2の熱処理を行った。該第2の熱処理としては、窒素ガス雰囲気下で350℃
1時間とした。
次に、以下の2つの工程を行った。
(1、ITSO膜形成工程)
絶縁膜116上に、厚さ5nmのITSO膜を、スパッタリング装置を用いて形成した
該ITSO膜の成膜条件としては、基板温度を室温とし、流量72sccmのアルゴンガ
スと、流量5sccmの酸素ガスをチャンバー内に導入し、圧力を0.15Paとし、ス
パッタリング装置内に設置された金属酸化物ターゲット(In:SnO:SiO
=85:10:5[重量%])に1000WのDC電力を供給して成膜した。
(2、酸素添加処理工程)
次に、ITSO膜を介して、酸化物半導体膜108、及び絶縁膜114、116に酸素
添加処理を行った。該酸素添加処理としては、アッシング装置を用い、基板温度を40℃
とし、流量250sccmの酸素ガスをチャンバー内に導入し、圧力を15Paとし、基
板側にバイアスが印加されるように、アッシング装置内に設置された平行平板の電極間に
4500WのRF電力を600sec供給して行った。
次に、基板温度を350℃とし、175Paの窒素雰囲気で熱処理をした後、ITSO
膜上に絶縁膜118を形成した。絶縁膜118としては、厚さ100nmの窒化シリコン
膜を、PECVD装置を用いて形成した。
次に、導電膜112bに達する開口部142c及び、導電膜104に達する開口部14
2a、142bを形成した。開口部142a、142b、142cとしては、ドライエッ
チング装置を用いて形成した。
次に、開口部142a、142b、142cを覆うように絶縁膜118上に導電膜を形
成し、該導電膜を加工することで導電膜120a、120bを形成した。導電膜120a
、120bとしては、厚さ100nmのITSO膜を、スパッタリング装置を用いて形成
した。ITSO膜に用いたターゲットの組成としては、先に示すITSO膜形成工程で用
いた組成と同様とした。
次に、第3の熱処理を行った。該第3の熱処理としては、窒素ガス雰囲気下で250℃
1時間とした。
以上の工程で本実施例の試料D1を作製した。なお、試料D1のプロセスにおける最高
温度は450℃であった。
<試料D2の作製方法>
試料D2は、先に示す試料D1と比較し、以下の工程が異なる。それ以外の工程につい
ては、試料D1と同様とした。
試料D2において、第1の熱処理を行わなかった。
また、試料D2の(2、酸素添加処理工程)において、酸素添加の処理時間を120s
ecとした。次に、ITSO膜を除去し、絶縁膜116を露出させた。また、ITSO膜
の除去方法としては、ウエットエッチング装置を用い、濃度5%のシュウ酸水溶液を用い
て、300secのエッチングを行った後、濃度0.5%のフッ化水素酸を用いて、15
secのエッチングを行った。
次に、熱処理を行わずに、絶縁膜116上に絶縁膜118を形成した。
以上の工程で本実施例の試料D2を作製した。なお、試料D2のプロセスにおける最高
温度は350℃であった。
<試料D3の作製方法>
試料D3は、先に示す試料D1と比較し、以下の工程が異なる。それ以外の工程につい
ては、試料D1と同様とした。
試料D3において、酸化物半導体膜108は、ゲート電極として機能する導電膜104
側の第1の酸化物半導体膜108aと、第1の酸化物半導体膜108a上の第2の酸化物
半導体膜108bとを、積層して形成した。また、第1の酸化物半導体膜108aとして
、厚さ10nmのIGZO膜を形成し、第2の酸化物半導体膜108bとして、厚さ15
nmのIGZO膜を形成した。
なお、第1の酸化物半導体膜108aの成膜条件としては、基板温度を170℃とし、
流量100sccmのアルゴンガスと、流量100sccmの酸素ガスをチャンバー内に
導入し、圧力を0.6Paとし、多結晶の金属酸化物スパッタリングターゲット(In:
Ga:Zn=4:2:4.1[原子数比])に2500WのAC電力を投入して成膜した
また、第2の酸化物半導体膜108bの成膜条件としては、基板温度を170℃とし、
流量100sccmのアルゴンガスと、流量100sccmの酸素ガスをチャンバー内に
導入し、圧力を0.6Paとし、多結晶の金属酸化物スパッタリングターゲット(In:
Ga:Zn=1:1:1.2[原子数比])に2500WのAC電力を投入して成膜した
また、試料D3としては、第1の熱処理を行わなかった。
また、試料D3の(2、酸素添加処理工程)において、酸素添加の処理時間を120s
ecとした。次に、ITSO膜を除去し、絶縁膜116を露出させた。また、ITSO膜
の除去方法としては、ウエットエッチング装置を用い、濃度5%のシュウ酸水溶液を用い
て、300secのエッチングを行った後、濃度0.5%のフッ化水素酸を用いて、15
secのエッチングを行った。
次に、熱処理を行わずに、絶縁膜116上に絶縁膜118を形成した。
以上の工程で本実施例の試料D3を作製した。なお、試料D3のプロセスにおける最高
温度は350℃であった。
次に、上記作製した試料D1乃至試料D3のID−VG特性を測定した。試料D1乃至
試料D3のID−VG特性結果を、図19乃至図21に示す。なお、図19は、試料D1
のID−VG特性結果であり、図20は、試料D2のID−VG特性結果であり、図21
は、試料D3のID−VG特性結果である。また、図19乃至図21において、縦軸がI
D(A)を、横軸がVG(V)を、それぞれ表す。また、図19乃至図21において、(
A)は、チャネル長L=2μm、チャネル幅W=50μmのトランジスタのID−VG特
性結果であり、(B)は、チャネル長L=3μm、チャネル幅W=50μmのトランジス
タのID−VG特性結果であり、(C)は、チャネル長L=6μm、チャネル幅W=50
μmのトランジスタのID−VG特性結果である。
また、トランジスタ170の第1のゲート電極として機能する導電膜104に印加する
電圧(以下、ゲート電圧(VG)ともいう。)、及び第2のゲート電極として機能する導
電膜120bに印加する電圧(VBG)としては、−15Vから+20Vまで0.25V
のステップで印加した。また、ソース電極として機能する導電膜112aに印加する電圧
(以下、ソース電圧(VS)ともいう。)を0V(commom)とし、ドレイン電極と
して機能する導電膜112bに印加する電圧(以下、ドレイン電圧(VD)ともいう。)
を1Vまたは10Vとした。
図19乃至図21に示す結果から、プロセスにおける最高温度を450℃から350℃
に低下させても、トランジスタのID−VG特性に大きな差がないことが確認できた。ま
た、試料D2と比較し試料D3は、酸化物半導体膜を積層構造とすることで、電気特性の
ばらつき低下が見られる。また、試料D3は、オン電流が向上し、及びS値(subth
reshold swing value)が低い。このように、本発明の一態様の半導
体装置は、優れた電気特性を有することが確認された。
次に、上記作製した試料D1乃至試料D3の信頼性評価を行った。信頼性評価としては
、バイアス−熱ストレス試験(以下、GBT試験と呼ぶ。)を用いた。
本実施例でのGBT試験条件としては、ゲート電圧(VG)を±30V、とし、ドレイ
ン電圧(VD)とソース電圧(VS)を0V(COMMON)とし、ストレス温度を60
℃とし、ストレス印加時間を1時間とし、測定環境をダーク環境及び光照射環境(白色L
EDにて約10000lxの光を照射)の2つの環境で、それぞれ行った。すなわち、ト
ランジスタのソース電極とドレイン電極を同電位とし、ゲート電極にはソース電極及びド
レイン電極とは異なる電位を一定時間(ここでは1時間)印加した。また、ゲート電極に
与える電位がソース電極及びドレイン電極の電位よりも高い場合をプラスストレスとし、
ゲート電極に与える電位がソース電極及びドレイン電極の電位よりも低い場合をマイナス
ストレスとした。したがって、測定環境と合わせて、プラスGBTストレス(ダーク)、
マイナスGBTストレス(ダーク)、プラスGBTストレス(光照射)、及びマイナスG
BTストレス(光照射)の合計4条件にて信頼性評価を実施した。
試料D1乃至試料D3のGBT試験結果を図22に示す。図22において、縦軸がトラ
ンジスタのしきい値電圧の変化量(ΔVth)及びシフト値の変化量(ΔShift)を
、横軸が各試料名、プロセス条件等を、それぞれ示す。なお、Shift値とは、トラン
ジスタのドレイン電流(ID)−ゲート電圧(VG)特性における、対数で表されるドレ
イン電流(ID)の最大の傾きの接線と1×10−12Aの軸との交点のゲート電圧(V
G)である。また、ΔShiftとは、Shift値の変化量である。
図22に示す結果から、試料D2は、試料D1と比較するとしきい値電圧の変化量(Δ
Vth)が3倍程度であった。一方、本発明の一態様の試料D3は、GBT試験における
、しきい値電圧の変化量(ΔVth)が、試料D1の2倍程度であった。プロセスにおけ
る最高温度を450℃から350℃に低下させても、酸化物半導体膜を積層構造とするこ
とで、信頼性の低下を抑制できることが確認できた。
続いて、試料D1乃至試料D3について、プラスゲートBTストレス試験(Dark
+GBT)とマイナスゲートBTストレス試験(Dark −GBT)とを交互に繰り返
した時の、しきい値電圧の変化量を測定した。測定方法としては、まずトランジスタのI
D−VG特性を測定した(initial)。その後プラスゲートBTストレス試験、マ
イナスゲートBTストレス試験をそれぞれ交互に2回ずつ行った。各ゲートBTストレス
試験は、ストレス温度を60℃、ストレス時間を3600秒とした。また、ここでは、チ
ャネル長L=6μm、チャネル幅W=50μmのトランジスタについて測定した。
図23に試料D1乃至試料D3における、ストレス試験前(initial)と、各ゲ
ートBTストレス試験後のそれぞれのしきい値電圧を示す。図23において、縦軸はドレ
イン電圧が10Vのときのしきい値電圧(Vth)を示し、横軸はストレス試験名称を示
す。また、図23は、ストレス試験前(initial)、プラスゲートBTストレス試
験後(+GBT)、マイナスゲートBTストレス試験後(−GBT)、プラスゲートBT
ストレス試験後(+GBT)、マイナスゲートBTストレス試験後(−GBT)の順に交
互にGBT試験を行った結果である。
ここで、プラスゲートBTストレス試験とマイナスゲートBTストレス試験とを交互に
行ったとき、しきい値電圧の値が交互に増減を繰り返す場合、ゲート電極への電圧印加に
伴うトラップ準位へのキャリアのトラップ及びデトラップに起因する、しきい値電圧の変
動であることが推測される。一方、しきい値電圧の変化が一方向に偏りを有する場合(例
えば徐々に増大、または減少する傾向がある場合)、トラップ準位へトラップされたキャ
リアが固定電荷として振る舞うことによるしきい値電圧の変動であることが推測される。
図23に示す結果から、各ゲートBTストレス試験後のトランジスタのしきい値電圧は
、試料D2と比較して、本発明の一態様の試料D3は、しきい値電圧の変化量が少ないこ
とがわかる。
以上より、本発明の一態様は、試料D3のトランジスタのように、プロセス温度を低く
しても、酸化物半導体膜を積層構造とすることで、信頼性の向上と、電気特性のばらつき
の抑制と、オン電流の向上と、低いS値と、が満たされた優れた電気特性を有することが
示された。
以上、本実施例に示す構成は、他の実施の形態、または実施例と適宜組み合わせて用い
ることができる。
本実施例においては、図3に示すトランジスタ170に相当するトランジスタを作製し
、該トランジスタのID−VG特性の評価を行った。本実施例においては、以下に示す試
料E1及び試料E2を作製し評価を行った。なお、試料E1は比較例であるトランジスタ
を有する試料であり、試料E2は本発明の一態様のトランジスタを有する試料である。ま
た、試料E1及び試料E2は、それぞれチャネル長L=2μm、チャネル幅W=50μm
のトランジスタと、チャネル長L=3μm、チャネル幅W=50μmのトランジスタと、
チャネル長L=6μm、チャネル幅W=50μmとの合計3種類のトランジスタが形成さ
れた構造である。また、上記3種類のトランジスタを、それぞれ、3つの基板のいずれか
一つの基板内に40個ずつ形成した。
本実施例で作製した試料について、以下説明を行う。なお、以下の説明において、図3
に示すトランジスタ170に付記した符号を用いて説明する。
<試料E1の作製方法>
まず、基板102上に導電膜104を形成した。基板102としては、ガラス基板を用
いた。なお、ガラス基板の大きさとしては、600mm×720mm、厚さ0.7mmと
した。また、導電膜104としては、厚さ100nmのタングステン膜を、スパッタリン
グ装置を用いて形成した。
次に、基板102及び導電膜104上に絶縁膜106、107を形成した。絶縁膜10
6としては、厚さ400nmの窒化シリコン膜を、PECVD装置を用いて形成した。ま
た、絶縁膜107としては、厚さ50nmの酸化窒化シリコン膜を、PECVD装置を用
いて形成した。
絶縁膜106の成膜条件としては、基板温度を350℃とし、流量200sccmのシ
ランガスと、流量2000sccmの窒素ガスと、流量100sccmのアンモニアガス
をチャンバー内に導入し、圧力を100Paとし、PECVD装置内に設置された平行平
板の電極間に2000WのRF電力を供給して、厚さ50nmの窒化シリコン膜を成膜し
、次に、アンモニアガスの流量を2000sccmに変更して、厚さ300nmの窒化シ
リコン膜を成膜し、次に、アンモニアガスの流量を100sccmに変更して、厚さ50
nmの窒化シリコン膜を成膜した。
また、絶縁膜107の成膜条件としては、基板温度を350℃とし、流量20sccm
のシランガスと、流量3000sccmの一酸化二窒素ガスをチャンバー内に導入し、圧
力を40Paとし、PECVD装置内に設置された平行平板の電極間に100WのRF電
力を供給して成膜した。
次に、絶縁膜107上に酸化物半導体膜108を形成した。酸化物半導体膜108は、
ゲート電極として機能する導電膜104側の第1の酸化物半導体膜108aと、第1の酸
化物半導体膜108a上の第2の酸化物半導体膜108bとを、積層して形成した。また
、第1の酸化物半導体膜108aとして、厚さ10nmのIGZO膜を形成し、第2の酸
化物半導体膜108bとして、厚さ15nmのIGZO膜を形成した。
なお、第1の酸化物半導体膜108aの成膜条件としては、基板温度を170℃とし、
流量140sccmのアルゴンガスと、流量60sccmの酸素ガスをチャンバー内に導
入し、圧力を0.6Paとし、多結晶の金属酸化物スパッタリングターゲット(In:G
a:Zn=4:2:4.1[原子数比])に2500WのAC電力を投入して成膜した。
また、第2の酸化物半導体膜108bの成膜条件としては、基板温度を170℃とし、
流量100sccmのアルゴンガスと、流量100sccmの酸素ガスをチャンバー内に
導入し、圧力を0.6Paとし、多結晶の金属酸化物スパッタリングターゲット(In:
Ga:Zn=1:1:1.2[原子数比])に2500WのAC電力を投入して成膜した
次に、第1の熱処理を行った。該第1の熱処理としては、窒素雰囲気下で450℃1時
間の熱処理を行い、続けて窒素と酸素の混合ガス雰囲気下で450℃1時間の熱処理とし
た。
次に、絶縁膜107及び酸化物半導体膜108上に導電膜112a、112bを形成し
た。導電膜112a、112bとしては、厚さ50nmのタングステン膜と、厚さ400
nmのアルミニウム膜と、厚さ100nmのチタン膜とを、スパッタリング装置を用いて
真空中で連続して形成した。
次に、絶縁膜107、酸化物半導体膜108、及び導電膜112a、112b上に絶縁
膜114及び絶縁膜116を形成した。絶縁膜114としては、厚さ50nmの酸化窒化
シリコン膜を、PECVD装置を用いて形成した。また、絶縁膜116としては、厚さ4
00nmの酸化窒化シリコン膜を、PECVD装置を用いて形成した。なお、絶縁膜11
4及び絶縁膜116としては、PECVD装置により真空中で連続して形成した。
絶縁膜114の成膜条件としては、基板温度を220℃とし、流量50sccmのシラ
ンガスと、流量2000sccmの一酸化二窒素ガスをチャンバー内に導入し、圧力を2
0Paとし、PECVD装置内に設置された平行平板の電極間に100WのRF電力を供
給して成膜した。また、絶縁膜116の成膜条件としては、基板温度を220℃とし、流
量160sccmのシランガスと、流量4000sccmの一酸化二窒素ガスをチャンバ
ー内に導入し、圧力を200Paとし、PECVD装置内に設置された平行平板の電極間
に1500WのRF電力を供給して成膜した。
次に、第2の熱処理を行った。該第2の熱処理としては、窒素ガス雰囲気下で350℃
1時間とした。
次に、以下の3つの工程を行った。
(1、ITSO膜形成工程)
絶縁膜116上に、厚さ5nmのITSO膜を、スパッタリング装置を用いて形成した
。該ITSO膜の成膜条件としては、基板温度を室温とし、流量72sccmのアルゴン
ガスと、流量5sccmの酸素ガスをチャンバー内に導入し、圧力を0.15Paとし、
スパッタリング装置内に設置された金属酸化物ターゲット(In:SnO:Si
=85:10:5[重量%])に1000WのDC電力を供給して成膜した。
(2、酸素添加処理工程)
次に、ITSO膜を介して、酸化物半導体膜108、及び絶縁膜114、116に酸素
添加処理を行った。該酸素添加処理としては、アッシング装置を用い、基板温度を40℃
とし、流量250sccmの酸素ガスをチャンバー内に導入し、圧力を15Paとし、基
板側にバイアスが印加されるように、アッシング装置内に設置された平行平板の電極間に
4500WのRF電力を120sec供給して行った。
(3、ITSO膜除去工程)
次に、ITSO膜を除去し、絶縁膜116を露出させた。また、ITSO膜の除去方法
としては、ウエットエッチング装置を用い、濃度5%のシュウ酸水溶液を用いて、300
secのエッチングを行った後、濃度0.5%のフッ化水素酸を用いて、15secのエ
ッチングを行った。
次に、絶縁膜116上に絶縁膜118を形成した。絶縁膜118としては、厚さ100
nmの窒化シリコン膜を、PECVD装置を用いて形成した。なお、絶縁膜118の成膜
時のPECVD装置における、基板温度を350℃とした。
次に、導電膜112bに達する開口部142c及び、導電膜104に達する開口部14
2a、142bを形成した。開口部142a、142b、142cとしては、ドライエッ
チング装置を用いて形成した。
次に、開口部142a、142b、142cを覆うように絶縁膜118上に導電膜を形
成し、該導電膜を加工することで導電膜120a、120bを形成した。導電膜120a
、120bとしては、厚さ100nmのITSO膜を、スパッタリング装置を用いて形成
した。ITSO膜に用いたターゲットの組成としては、先に示すITSO膜形成工程で用
いた組成と同様とした。
次に、第3の熱処理を行った。該第3の熱処理としては、窒素ガス雰囲気下で250℃
1時間とした。
以上の工程で本実施例の試料E1を作製した。なお、試料E1のプロセスにおける最高
温度は450℃であった。
<試料E2の作製方法>
試料E2は、先に示す試料E1と比較し、以下の工程が異なる。それ以外の工程につい
ては、試料E1と同様とした。
試料E2において、第1の熱処理を行わなかった。
以上の工程で本実施例の試料E2を作製した。なお、試料E2のプロセスにおける最高
温度は350℃であった。
次に、上記作製した試料E1及び試料E2のID−VG特性を測定した。試料E1及び
試料E2のID−VG特性結果を、図24及び図25に示す。なお、図24は、試料E1
のID−VG特性結果であり、図25は、試料E2のID−VG特性結果である。また、
図24及び図25において、第1縦軸がID(A)を、第2縦軸がμFE(cm/Vs
)を、横軸がVG(V)を、それぞれ表す。また、図24及び図25において、(A)は
、チャネル長L=2μm、チャネル幅W=50μmのトランジスタのID−VG特性結果
であり、(B)は、チャネル長L=3μm、チャネル幅W=50μmのトランジスタのI
D−VG特性結果であり、(C)は、チャネル長L=6μm、チャネル幅W=50μmの
トランジスタのID−VG特性結果である。また、図24及び図25において、それぞれ
合計10個のトランジスタ特性を重ねて表示している。
また、トランジスタ170の第1のゲート電極として機能する導電膜104に印加する
電圧(以下、ゲート電圧(VG)ともいう。)、及び第2のゲート電極として機能する導
電膜120bに印加する電圧(VBG)としては、−15Vから+20Vまで0.25V
のステップで印加した。なお、チャネル長L=2μm、チャネル幅W=50μmのトラン
ジスタのみ、導電膜104及び導電膜120bに印加する電圧を−15Vから+15Vと
した。また、ソース電極として機能する導電膜112aに印加する電圧(以下、ソース電
圧(VS)ともいう。)を0V(common)とし、ドレイン電極として機能する導電
膜112bに印加する電圧(以下、ドレイン電圧(VD)ともいう。)を0.1Vまたは
20Vとした。なお、電界効果移動度(μFE)については、VD=20Vの結果を示し
ている。
図24及び図25に示す結果から、プロセスにおける最高温度を450℃から350℃
に低下させても、トランジスタのID−VG特性に大きな差がないことが確認できた。
次に、試料E1及び試料E2のチャネル長L=3μm、チャネル幅W=50μmのトラ
ンジスタの基板面内(600mm×720mm)での、ばらつきを評価した。
まず、試料E1及び試料E2のチャネル長L=3μm、チャネル幅W=50μmのトラ
ンジスタのID−VG特性を評価した。試料E1及び試料E2のID−VG特性結果を、
図26(A)(B)に示す。なお、図26(A)は、試料E1のID−VG特性結果であ
り、図26(B)は、試料E2のID−VG特性結果である。また、図26(A)(B)
において、縦軸がID(A)を、横軸がVG(V)を、それぞれ表す。また、図26(A
)(B)において、それぞれ合計40個のトランジスタ特性を重ねて表示している。なお
、図26(A)(B)に示すID−VG特性は、図24及び図25に示すID−VG特性
と測定条件が異なる。具体的には、図26(A)(B)に示すID−VG特性の測定条件
としては、ゲート電圧(VG)及び(VBG)としては、−15Vから+20Vまで0.
25Vのステップで導電膜104及び導電膜120bに印加した。また、ソース電圧(V
S)を0V(common)とし、ドレイン電圧(VD)を10Vとした。
次に、図26(A)(B)に示す試料E1及び試料E2のトランジスタのしきい値電圧
(Vth)と、オン電流(Ion)と、のばらつきを比較した結果を図27(A)(B)
に示す。なお、図27(A)は、基板面内(600mm×720mm)でのVthの確率
分布を説明する図であり、図27(B)は、基板面内(600mm×720mm)でのI
onの確率分布を説明する図である。なお、図27(B)において、Ionは、VG=2
0Vでの値とした。
図26及び図27に示す結果より、試料E2は、試料E1と比較し、若干Ionの低下
が確認されるものの、基板面内でのばらつきが少ない良好なトランジスタ特性であること
が確認された。
次に、上記作製した試料E1及び試料E2の信頼性評価を行った。信頼性評価としては
、GBT試験を用いた。
本実施例でのGBT試験条件としては、ゲート電圧(VG)を±30V、とし、ドレイ
ン電圧(VD)とソース電圧(VS)を0V(COMMON)とし、ストレス温度を60
℃とし、ストレス印加時間を1時間とし、測定環境をダーク環境及び光照射環境(白色L
EDにて約10000lxの光を照射)の2つの環境で、それぞれ行った。すなわち、ト
ランジスタのソース電極とドレイン電極を同電位とし、ゲート電極にはソース電極及びド
レイン電極とは異なる電位を一定時間(ここでは1時間)印加した。また、ゲート電極に
与える電位がソース電極及びドレイン電極の電位よりも高い場合をプラスストレスとし、
ゲート電極に与える電位がソース電極及びドレイン電極の電位よりも低い場合をマイナス
ストレスとした。したがって、測定環境と合わせて、プラスGBTストレス(ダーク)、
マイナスGBTストレス(ダーク)、プラスGBTストレス(光照射)、及びマイナスG
BTストレス(光照射)の合計4条件にて信頼性評価を実施した。なお、プラスGBTス
トレス(ダーク)をPBTS(Positive Bias Temperature
Stress)とし、マイナスGBTストレス(ダーク)を、NBTS(Nagativ
e Bias Temperature Stress)とし、プラスGBTストレス(
光照射)をPBITS(Positive Bias Illuminations T
emperature Stress)とし、マイナスGBTストレス(光照射)をNB
ITS(Nagative Bias Illuminations Temperat
ure Stress)として、以下記載する場合がある。
試料E1及び試料E2のGBT試験結果を図28に示す。図28において、縦軸がトラ
ンジスタのしきい値電圧の変化量(ΔVth)及びシフト値の変化量(ΔShift)を
、横軸が各試料名、プロセス条件等を、それぞれ示す。
図28に示す結果から、試料E2は、試料E1と比較するとしきい値電圧の変化量(Δ
Vth)が若干大きいが、GBTのマイナス変動が1V以下、プラス変動が2V以下であ
ることが確認できた。
続いて、試料E1及び試料E2について、PBTSとNBTSとを交互に繰り返した時
の、しきい値電圧の変化量を測定した。測定方法としては、まずトランジスタのID−V
G特性を測定した(initial)。その後PBTS、NBTSをそれぞれ交互に2回
ずつ行った。各GBTストレス試験は、ストレス温度を60℃、ストレス時間を3600
秒とした。また、ここでは、チャネル長L=6μm、チャネル幅W=50μmのトランジ
スタについて測定した。
試料E1におけるストレス試験前(initial)と、各GBTストレス試験後のし
きい値電圧を図29(A)に、試料E2における、ストレス試験前(initial)と
、各GBTストレス試験後のしきい値電圧を図29(B)に、それぞれ示す。なお、図2
9(A)(B)において、縦軸はドレイン電圧が10Vのときのしきい値電圧(Vth)
を示し、横軸はストレス試験名称を示す。また、図29(A)(B)は、ストレス試験前
(initial)、PBTS、NBTS、PBTS、NBTSの順に交互にGBT試験
を行った結果である。
図29(A)(B)に示す結果から、試料E2のトランジスタのしきい値電圧の変化量
は、試料E1のトランジスタのしきい値電圧の変化量よりも大きいが、±4V以内の変化
量であることが確認された。
以上より、本発明の一態様は、試料E2のトランジスタのように、プロセス温度を低く
しても、酸化物半導体膜を積層構造とすることで、信頼性の向上と、電気特性のばらつき
の抑制と、オン電流の向上と、低いS値と、が満たされた優れた電気特性を有することが
示された。
以上、本実施例に示す構成は、他の実施の形態、または実施例と適宜組み合わせて用い
ることができる。
本実施例においては、図1に示すトランジスタ100、及び図3に示すトランジスタ1
70に相当するトランジスタを作製し、該トランジスタを有する表示装置を作製した。
まず、本実施例で作製した表示装置の仕様を表1に示す。
Figure 0006979504
次に、本実施例で作製した表示装置の画素部の上面図を図30(A)(B)に示す。な
お、図30(A)は、プロセスの最小加工寸法を2μmとした場合の画素部840Aの上
面図であり、図30(B)は、プロセスの最小加工寸法を3.5μmとした場合の画素部
840Bの上面図である。なお、図30(A)(B)において、それぞれ、画素3つ分を
表している。
また、本実施例で作製した表示装置のゲートドライバ部の上面図を図31(A)(B)
に示す。なお、図31(A)は、プロセスの最小加工寸法を2μmとした場合の上面図で
あり、図31(B)は、プロセスの最小加工寸法を3.5μmとした場合の上面図である
。なお、図31(A)において、領域800は額縁幅を、領域801はダミー画素部を、
領域802は保護回路部を、領域803はゲートドライバ回路部を、領域804は分断の
ためのマージン領域を、それぞれ表している。また、図31(B)において、領域850
は額縁幅を、領域851はダミー画素部を、領域852は保護回路部を、領域853はゲ
ートドライバ回路部を、領域854は分断のためのマージン領域を、それぞれ表している
また、本実施例においては、図31(A)に示す、領域800を0.7mmとし、領域
801を0.05mmとし、領域802を0.08mmとし、領域803を0.41mm
とし、領域804を0.16mmとした。また、本実施例においては、図31(B)に示
す、領域850を0.8mmとし、領域851を0.05mmとし、領域852を0.0
7mmとし、領域853を0.55mmとし、領域854を0.13mmとした。
なお、本実施例においては、図31(A)(B)に示すように、保護回路部(領域80
2または領域852)を設ける構成を例示したが、これに限定されず、保護回路部を設け
なくても良い。この場合、保護回路部を省略することが可能となるため、さらに額縁幅を
縮小することが可能となる。例えば、図31(A)に示す領域800を0.6mmと、図
31(B)に示す領域850を0.7mmと、それぞれ縮小することができる。
このように、本発明の一態様のトランジスタは、電界効果移動度が高く、且つ信頼性が
高いため、ゲートドライバ回路を内蔵し、且つ額縁幅(ここでは、領域800及び領域8
50の幅)を、1mm以下、好ましくは0.8mm以下、さらに好ましくは0.6mm以
下とすることができる。したがって、狭額縁での表示装置を作製することができる。
また、図30(A)に示す、一点鎖線M1−N1間の切断面に相当する断面図を図32
(A)に、図31(A)に示す、一点鎖線M2−N2間の切断面に相当する断面図を図3
2(B)に、それぞれ示す。
図32(A)に示す画素部840Aは、基板902上の導電膜904aと、基板902
及び導電膜904上の絶縁膜906と、絶縁膜906上の絶縁膜907と、絶縁膜907
上の酸化物半導体膜908と、絶縁膜907上の酸化物半導体膜909と、酸化物半導体
膜908に電気的に接続されソース電極として機能する導電膜912aと、酸化物半導体
膜908に電気的に接続されドレイン電極として機能する導電膜912bと、絶縁膜90
7、及び酸化物半導体膜908、909上の絶縁膜914と、絶縁膜914上の絶縁膜9
16と、絶縁膜916、及び酸化物半導体膜909上の絶縁膜918と、絶縁膜918上
の画素電極として機能する導電膜920aと、絶縁膜918及び導電膜920a上の絶縁
膜924と、を有する。
なお、酸化物半導体膜908は、第1の酸化物半導体膜908aと、第2の酸化物半導
体膜908bと、を有する。また、酸化物半導体膜909は、第1の酸化物半導体膜90
9aと、第2の酸化物半導体膜909bと、を有する。
また、絶縁膜918は、絶縁膜914、916に設けられる開口部を覆うように形成さ
れ、酸化物半導体膜909と接している。また、画素電極として機能する導電膜920は
、絶縁膜914、916、918に設けられる開口部を覆うように形成され、ドレイン電
極として機能する導電膜912bと電気的に接続されている。
なお、図32(A)(B)においては、液晶素子、対向基板側の素子等については省略
している。
また、図32(B)に示す保護回路部として機能する領域802は、基板902上の導
電膜904bと、基板902上の導電膜904cと、導電膜904b、904c上の絶縁
膜906と、絶縁膜906上の絶縁膜907と、絶縁膜907上の酸化物半導体膜910
と、酸化物半導体膜910に電気的に接続される導電膜912cと、酸化物半導体膜91
0に電気的に接続される導電膜912dと、絶縁膜907上の導電膜912eと、絶縁膜
907、酸化物半導体膜910、及び導電膜912c、912d、912e上の絶縁膜9
14と、絶縁膜914上の絶縁膜916と、絶縁膜907、916上の絶縁膜918と、
絶縁膜918上に設けられ、且つ酸化物半導体膜910と重なる導電膜920bと、絶縁
膜918及び導電膜912e上の導電膜920cと、絶縁膜918、及び導電膜920b
、920c上の絶縁膜924と、を有する。
なお、導電膜904aと、導電膜904bと、導電膜904cとは、同じ導電膜を加工
する工程を経て形成した。また、酸化物半導体膜908と、酸化物半導体膜909と、酸
化物半導体膜910とは、同じ酸化物半導体膜を加工する工程を経て形成した。また、導
電膜912aと、導電膜912bと、導電膜912cと、導電膜912d、と導電膜91
2eとは同じ導電膜を加工する工程を経て形成した。また、導電膜920aと、導電膜9
20bと、導電膜920cとは、同じ導電膜を加工する工程を経て形成した。
なお、図31(A)に示すゲートドライバ回路部として機能する領域803に用いるト
ランジスタ構造としては、図3に示すトランジスタ170と同様の構成のトランジスタを
用いることができる。
基板902としては、ガラス基板を用いた。また、導電膜904a、904b、904
cとしては、厚さ200nmのタングステン膜をスパッタリング装置にて形成した。また
、絶縁膜906としては、厚さ400nmの窒化シリコン膜をPECVD装置にて形成し
た。また、絶縁膜907としては、厚さ50nmの酸化窒化シリコン膜をPECVD装置
にて形成した。
また、第1の酸化物半導体膜908a、909a、910aとしては、厚さ10nmの
IGZO膜(In:Ga:Zn=3:1:2[原子数比])をスパッタリング装置にて形
成した。また、第2の酸化物半導体膜908b、909b、910bとしては、厚さ15
nmのIGZO膜(In:Ga:Zn=1:1:1.2[原子数比])をスパッタリング
装置にて形成した。
また、導電膜912a、912b、912c、912d、912eとしては、厚さ50
nmのタングステン膜と、厚さ400nmのアルミニウム膜と、厚さ100nmのチタン
膜との積層膜を、スパッタリング装置にて形成した。
また、絶縁膜914としては、厚さ50nmの酸化窒化シリコン膜を、PECVD装置
にて形成した。また、絶縁膜916としては、厚さ400nmの酸化窒化シリコン膜を、
PECVD装置にて形成した。また、絶縁膜918としては、厚さ100nmの窒化シリ
コン膜を、PECVD装置を用いて形成した。
また、導電膜920a、920b、920cとしては、厚さ100nmのITSO膜を
、スパッタリング装置にて形成した。
また、図32(B)に示す保護回路部として機能する領域802には、所謂ダイオード
接続されたトランジスタが設けられている。図32(B)に示す保護回路部として機能す
る領域802に設けることのできる、保護回路の回路図の一例を図33に示す。
図33に示す保護回路870は、ゲート線として機能する第1の配線861と、低電位
電源線として機能する第2の配線862と、高電位電源線として機能する第3の配線86
3と、トランジスタ871と、トランジスタ872と、を有する。なお、トランジスタ8
71、及びトランジスタ872は、2つのゲート電極を有する、所謂デュアルゲート構造
のトランジスタである。なお、該2つのゲート電極には、同じ電位が与えられる。
また、トランジスタ871のゲートは、トランジスタ871のソースまたはドレインの
一方、及び第1の配線861と電気的に接続される。また、トランジスタ871のソース
またはドレインの一方は、トランジスタ872のソースまたはドレインの一方と電気的に
接続される。また、トランジスタ871のソースまたはドレインの他方は、第2の配線8
62と電気的に接続される。また、トランジスタ872のソースまたはドレインの他方は
、トランジスタ872のゲート及び第3の配線863と電気的に接続される。
図33に示す保護回路870を、本実施例に示すように、領域801と領域803との
間、すなわち領域802に設けることで、表示装置の信頼性を向上させることができる。
ただし、本発明の一態様の表示装置は、これに限定されず、例えば、保護回路870を設
けない構成としてもよい。この場合、表示装置の額縁幅をさらに小さくすることができる
以上、本実施例に示す構成は、他の実施の形態、または実施例と適宜組み合わせて用い
ることができる。
100 トランジスタ
102 基板
104 導電膜
106 絶縁膜
107 絶縁膜
108 酸化物半導体膜
108a 酸化物半導体膜
108b 酸化物半導体膜
112 導電膜
112a 導電膜
112b 導電膜
114 絶縁膜
116 絶縁膜
118 絶縁膜
120 導電膜
120a 導電膜
120b 導電膜
131 酸化物導電膜
138 エッチングガス
139 酸素
140a マスク
140b マスク
142 エッチャント
142a 開口部
142b 開口部
142c 開口部
170 トランジスタ
501 画素回路
502 画素部
504 駆動回路部
504a ゲートドライバ
504b ソースドライバ
506 保護回路
507 端子部
550 トランジスタ
552 トランジスタ
554 トランジスタ
560 容量素子
562 容量素子
570 液晶素子
572 発光素子
700 表示装置
701 基板
702 画素部
704 ソースドライバ回路部
705 基板
706 ゲートドライバ回路部
708 FPC端子部
710 信号線
711 配線部
712 シール材
716 FPC
730 絶縁膜
732 封止膜
734 絶縁膜
736 着色膜
738 遮光膜
750 トランジスタ
752 トランジスタ
760 接続電極
764 絶縁膜
766 絶縁膜
767 酸化物半導体膜
768 絶縁膜
770 平坦化絶縁膜
772 導電膜
774 導電膜
775 液晶素子
776 液晶層
778 構造体
780 異方性導電膜
782 発光素子
784 導電膜
786 EL層
788 導電膜
790 容量素子
800 領域
801 領域
802 領域
803 領域
804 領域
840A 画素部
840B 画素部
850 領域
851 領域
852 領域
853 領域
854 領域
861 配線
862 配線
863 配線
870 保護回路
871 トランジスタ
872 トランジスタ
902 基板
904 導電膜
904a 導電膜
904b 導電膜
904c 導電膜
906 絶縁膜
907 絶縁膜
908 酸化物半導体膜
908a 酸化物半導体膜
908b 酸化物半導体膜
909 酸化物半導体膜
909a 酸化物半導体膜
909b 酸化物半導体膜
910 酸化物半導体膜
910a 酸化物半導体膜
910b 酸化物半導体膜
912a 導電膜
912b 導電膜
912c 導電膜
912d 導電膜
912e 導電膜
914 絶縁膜
916 絶縁膜
918 絶縁膜
920 導電膜
920a 導電膜
920b 導電膜
920c 導電膜
924 絶縁膜
5100 ペレット
5100a ペレット
5100b ペレット
5101 イオン
5102 酸化亜鉛層
5103 粒子
5105a ペレット
5105a1 領域
5105a2 ペレット
5105b ペレット
5105c ペレット
5105d ペレット
5105d1 領域
5105e ペレット
5120 基板
5130 ターゲット
5161 領域
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチパネル
8005 FPC
8006 表示パネル
8007 バックライト
8008 光源
8009 フレーム
8010 プリント基板
8011 バッテリ
9000 筐体
9001 表示部
9003 スピーカ
9005 操作キー
9006 接続端子
9007 センサ
9008 マイクロフォン
9050 操作ボタン
9051 情報
9052 情報
9053 情報
9054 情報
9055 ヒンジ
9100 携帯情報端末
9101 携帯情報端末
9102 携帯情報端末
9200 携帯情報端末
9201 携帯情報端末

Claims (1)

  1. 酸化物半導体膜を形成し、
    前記酸化物半導体膜上にゲート絶縁膜となる酸化物絶縁膜を形成し、
    前記酸化物絶縁膜上に酸化物導電膜を形成し、前記酸化物絶縁膜中に酸素を添加した後、前記酸化物導電膜を除去し、
    前記酸化物絶縁膜上にゲート電極を形成する、半導体装置の作製方法。
JP2020192258A 2014-07-15 2020-11-19 半導体装置の作製方法 Active JP6979504B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021185503A JP2022017592A (ja) 2014-07-15 2021-11-15 半導体装置、及び、半導体装置の作製方法
JP2023151885A JP2023169314A (ja) 2014-07-15 2023-09-20 半導体装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014144659 2014-07-15
JP2014144659 2014-07-15
JP2015010055 2015-01-22
JP2015010055 2015-01-22
JP2019127433A JP6799116B2 (ja) 2014-07-15 2019-07-09 半導体装置の作製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019127433A Division JP6799116B2 (ja) 2014-07-15 2019-07-09 半導体装置の作製方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021185503A Division JP2022017592A (ja) 2014-07-15 2021-11-15 半導体装置、及び、半導体装置の作製方法

Publications (2)

Publication Number Publication Date
JP2021036613A JP2021036613A (ja) 2021-03-04
JP6979504B2 true JP6979504B2 (ja) 2021-12-15

Family

ID=55075274

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2015140129A Active JP6555953B2 (ja) 2014-07-15 2015-07-14 半導体装置の作製方法
JP2019127433A Active JP6799116B2 (ja) 2014-07-15 2019-07-09 半導体装置の作製方法
JP2020192258A Active JP6979504B2 (ja) 2014-07-15 2020-11-19 半導体装置の作製方法
JP2021185503A Withdrawn JP2022017592A (ja) 2014-07-15 2021-11-15 半導体装置、及び、半導体装置の作製方法
JP2023151885A Pending JP2023169314A (ja) 2014-07-15 2023-09-20 半導体装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015140129A Active JP6555953B2 (ja) 2014-07-15 2015-07-14 半導体装置の作製方法
JP2019127433A Active JP6799116B2 (ja) 2014-07-15 2019-07-09 半導体装置の作製方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021185503A Withdrawn JP2022017592A (ja) 2014-07-15 2021-11-15 半導体装置、及び、半導体装置の作製方法
JP2023151885A Pending JP2023169314A (ja) 2014-07-15 2023-09-20 半導体装置

Country Status (7)

Country Link
US (3) US9496412B2 (ja)
JP (5) JP6555953B2 (ja)
KR (2) KR20220069118A (ja)
CN (2) CN106537604B (ja)
DE (1) DE112015003266T5 (ja)
TW (2) TW201943084A (ja)
WO (1) WO2016009310A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220069118A (ko) * 2014-07-15 2022-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
JP6676316B2 (ja) 2014-09-12 2020-04-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
CN104360768B (zh) * 2014-11-10 2018-02-13 京东方科技集团股份有限公司 触摸显示模组和电子显示产品
US20160155803A1 (en) * 2014-11-28 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device, Method for Manufacturing the Semiconductor Device, and Display Device Including the Semiconductor Device
DE112016000607T5 (de) 2015-02-04 2017-11-16 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung, Verfahren zum Herstellen der Halbleitervorrichtung oder Anzeigevorrichtung, die die Halbleitervorrichtung umfasst
KR102585396B1 (ko) 2015-02-12 2023-10-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
US9818880B2 (en) 2015-02-12 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
DE112016001033T5 (de) 2015-03-03 2017-12-21 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung, Verfahren zum Herstellen derselben oder Anzeigevorrichtung mit derselben
US10008609B2 (en) 2015-03-17 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
KR20160114511A (ko) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10002970B2 (en) 2015-04-30 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of the same, or display device including the same
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
KR102527306B1 (ko) * 2016-01-18 2023-04-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 금속 산화물막, 반도체 장치, 및 표시 장치
KR102628719B1 (ko) * 2016-02-12 2024-01-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
WO2017149428A1 (en) * 2016-03-04 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and display device including the semiconductor device
KR20180123028A (ko) 2016-03-11 2018-11-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장비, 상기 반도체 장치의 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
KR102455711B1 (ko) * 2016-12-02 2022-10-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN106684037B (zh) * 2017-03-22 2019-09-24 深圳市华星光电半导体显示技术有限公司 优化4m制程的tft阵列制备方法
WO2019080060A1 (zh) * 2017-10-26 2019-05-02 深圳市柔宇科技有限公司 感光电路、感光电路制备方法及显示装置
KR102487324B1 (ko) * 2017-11-24 2023-01-10 엘지디스플레이 주식회사 수소 차단층을 갖는 박막 트랜지스터, 그 제조방법 및 이를 포함하는 표시장치
JP7397789B2 (ja) * 2018-03-23 2023-12-13 株式会社半導体エネルギー研究所 半導体装置の作製方法

Family Cites Families (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
EP0820644B1 (en) 1995-08-03 2005-08-24 Koninklijke Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
CN100505313C (zh) * 1999-12-10 2009-06-24 株式会社半导体能源研究所 半导体器件及其制造方法
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
CN102856390B (zh) 2004-03-12 2015-11-25 独立行政法人科学技术振兴机构 包含薄膜晶体管的lcd或有机el显示器的转换组件
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7868326B2 (en) 2004-11-10 2011-01-11 Canon Kabushiki Kaisha Field effect transistor
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
EP2453480A2 (en) 2004-11-10 2012-05-16 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
EP1810335B1 (en) 2004-11-10 2020-05-27 Canon Kabushiki Kaisha Light-emitting device
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI562380B (en) 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
CN101667544B (zh) 2005-11-15 2012-09-05 株式会社半导体能源研究所 半导体器件及其制造方法
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
CN101663762B (zh) 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP2009117407A (ja) * 2007-11-01 2009-05-28 Sony Corp 半導体装置の製造方法
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
JP4555358B2 (ja) 2008-03-24 2010-09-29 富士フイルム株式会社 薄膜電界効果型トランジスタおよび表示装置
KR100941850B1 (ko) 2008-04-03 2010-02-11 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
WO2009157573A1 (en) 2008-06-27 2009-12-30 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, semiconductor device and electronic device
KR100963027B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR100963026B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
JP5345456B2 (ja) 2008-08-14 2013-11-20 富士フイルム株式会社 薄膜電界効果型トランジスタ
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
TWI496295B (zh) * 2008-10-31 2015-08-11 Semiconductor Energy Lab 半導體裝置及其製造方法
JP5606682B2 (ja) 2009-01-29 2014-10-15 富士フイルム株式会社 薄膜トランジスタ、多結晶酸化物半導体薄膜の製造方法、及び薄膜トランジスタの製造方法
US8704216B2 (en) * 2009-02-27 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP4571221B1 (ja) 2009-06-22 2010-10-27 富士フイルム株式会社 Igzo系酸化物材料及びigzo系酸化物材料の製造方法
JP4415062B1 (ja) 2009-06-22 2010-02-17 富士フイルム株式会社 薄膜トランジスタ及び薄膜トランジスタの製造方法
JP2011187506A (ja) 2010-03-04 2011-09-22 Sony Corp 薄膜トランジスタおよびその製造方法、並びに表示装置
KR101435970B1 (ko) * 2010-03-26 2014-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치를 제작하는 방법
CN102859703B (zh) * 2010-04-23 2015-12-02 株式会社半导体能源研究所 半导体装置的制造方法
CN106057907B (zh) * 2010-04-23 2019-10-22 株式会社半导体能源研究所 半导体装置的制造方法
JP2012160679A (ja) 2011-02-03 2012-08-23 Sony Corp 薄膜トランジスタ、表示装置および電子機器
US20130137232A1 (en) * 2011-11-30 2013-05-30 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
US8748240B2 (en) * 2011-12-22 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI580047B (zh) 2011-12-23 2017-04-21 半導體能源研究所股份有限公司 半導體裝置
TWI581431B (zh) 2012-01-26 2017-05-01 半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
KR102101167B1 (ko) * 2012-02-03 2020-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US20130207111A1 (en) * 2012-02-09 2013-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including semiconductor device, electronic device including semiconductor device, and method for manufacturing semiconductor device
SG10201610711UA (en) * 2012-04-13 2017-02-27 Semiconductor Energy Lab Co Ltd Semiconductor device
KR102295737B1 (ko) * 2012-05-10 2021-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 디바이스
US20130300456A1 (en) * 2012-05-10 2013-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor chip and semiconductor device
KR102243843B1 (ko) * 2012-08-03 2021-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체 적층막 및 반도체 장치
KR102099261B1 (ko) 2012-08-10 2020-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
TWI821777B (zh) 2012-09-24 2023-11-11 日商半導體能源研究所股份有限公司 半導體裝置
JP2014082388A (ja) 2012-10-17 2014-05-08 Semiconductor Energy Lab Co Ltd 半導体装置
KR102094568B1 (ko) 2012-10-17 2020-03-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그의 제작 방법
JP6300489B2 (ja) * 2012-10-24 2018-03-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102279459B1 (ko) * 2012-10-24 2021-07-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
TWI782259B (zh) * 2012-10-24 2022-11-01 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
US9263531B2 (en) * 2012-11-28 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, film formation method thereof, and semiconductor device
US9246011B2 (en) * 2012-11-30 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9564535B2 (en) 2014-02-28 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
TWI666776B (zh) 2014-06-20 2019-07-21 日商半導體能源研究所股份有限公司 半導體裝置以及包括該半導體裝置的顯示裝置
KR20220069118A (ko) * 2014-07-15 2022-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
WO2016108122A1 (en) * 2014-12-29 2016-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device having semiconductor device

Also Published As

Publication number Publication date
US10164075B2 (en) 2018-12-25
KR102399893B1 (ko) 2022-05-20
JP6555953B2 (ja) 2019-08-07
CN112038410A (zh) 2020-12-04
DE112015003266T5 (de) 2017-04-13
JP2022017592A (ja) 2022-01-25
KR20220069118A (ko) 2022-05-26
JP6799116B2 (ja) 2020-12-09
US9496412B2 (en) 2016-11-15
US20170047435A1 (en) 2017-02-16
TW201603286A (zh) 2016-01-16
CN106537604B (zh) 2020-09-11
JP2016139777A (ja) 2016-08-04
US20180090602A1 (en) 2018-03-29
TWI682550B (zh) 2020-01-11
WO2016009310A1 (en) 2016-01-21
JP2019195094A (ja) 2019-11-07
JP2021036613A (ja) 2021-03-04
CN106537604A (zh) 2017-03-22
JP2023169314A (ja) 2023-11-29
TW201943084A (zh) 2019-11-01
KR20170029600A (ko) 2017-03-15
US20160020329A1 (en) 2016-01-21
US9837512B2 (en) 2017-12-05

Similar Documents

Publication Publication Date Title
JP6979504B2 (ja) 半導体装置の作製方法
JP6866432B2 (ja) 半導体装置
JP6905575B2 (ja) 半導体装置の作製方法
JP6770209B2 (ja) 半導体装置
JP6944003B2 (ja) 半導体装置の作製方法
JP7278354B2 (ja) 半導体装置の作製方法
JP7025575B2 (ja) 半導体装置
JP6818097B2 (ja) トランジスタの作製方法
JP6867792B2 (ja) 半導体装置、表示装置、表示モジュール、及び電子機器
JP2021082820A (ja) 半導体装置
JP2023080358A (ja) 半導体装置
JP2021168390A (ja) 半導体装置
JP2016006867A (ja) 半導体装置、該半導体装置を有する表示装置
JP2016082240A (ja) 半導体装置、該半導体装置の作製方法、及び該半導体装置を有する表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201125

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6979504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150