JP6836620B2 - Aeiゼオライトの合成 - Google Patents
Aeiゼオライトの合成 Download PDFInfo
- Publication number
- JP6836620B2 JP6836620B2 JP2019074593A JP2019074593A JP6836620B2 JP 6836620 B2 JP6836620 B2 JP 6836620B2 JP 2019074593 A JP2019074593 A JP 2019074593A JP 2019074593 A JP2019074593 A JP 2019074593A JP 6836620 B2 JP6836620 B2 JP 6836620B2
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- aei
- catalyst
- mother liquor
- synthesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/04—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/78—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
(相対収率)R=(RP)/(RT)
式中、Rは反応物であり、RPは所望の生成物中に組み込まれている反応物R(又はその誘導体)の総重量であり、RTは当該化学工程中に導入された反応物Rの総重量である。ここで、相対収率は、当該反応物を利用するにあたり当該化学工程の効率性を測るよう機能する。「総相対収率」とは、例えば、複数の連続的なゼオライト合成バッチ反応を含む化学工程全体の相対収率を意味する。従って、シリカの総相対収率は、一以上の連続的なバッチ全体で生産されたゼオライトの総量に組み込まれているシリカの総量(廃棄される母液に残存するシリカの量に対しての)であって、当該工程全体に導入されたシリカの総量に対する量を表す。同様に、SDAの総相対収率は、ゼオライト骨格の構築に直接的に使用されたSDAの量一以上の連続的なバッチ全体で(廃棄される母液に残存するSDAの量に対しての)であって、工程に導入されたシリカの量全体に対する量を表す。これら原料の総量は、典型的に、原料の総重量に相当する。
エチルピペリジニウム、及び、2,2,4,6,6−ペンタメチル−2−アゾニアビシクロ[3.2.1]オクタン、などのカチオンを含む。驚くべきことに、これらのSDAは、母液の一部が数回再利用された後でもその効率性を保持する。
ゼオライト結晶を合成すること。好ましくは、一連の連続的なAEIゼオライト合成バッチ反応における母液の再利用により、結果として、シリカの総相対収率が少なくとも約60パーセント、及び/又は構造指向剤の総相対収率が少なくとも約40パーセントである。
ランタン、セリウム、プラセオジム、ネオジム、ユウロピウム、テルビウム、エルビウム、イッテルビウム、及びイッテリウムなどの希土類金属を含まないか又は本質的に含まない。
プラチナ族金属は、アルミナ、アルミノケイ酸塩ゼオライトのようなゼオライト、シリカ、非ゼオライトシリカアルミナ、セリア、ジルコニア、チタニア、又は、セリアとジルコニアの両方を含有する混合酸化物或いは複合酸化物といった高表面積ウォッシュコート成分上で支持されることが可能である。
10.7のSARを有する約36グラムの脱アルミニウムUSYゼオライトが、約
1093グラムの水と混合される。この混合物に、約195グラムのN,N−ジメチル−3,5−ジメチルピペリジニウムテンプレート剤と約427グラムの液体ケイ酸ナトリウム(28.8wt%SiO2)が上記の混合物に、攪拌しながら低速で注入される。次いで、得られた混合物が、密閉されたステンレス鋼の反応器内で200rpmで攪拌しながら145°cまで加熱される。2日間の結晶化の後、得られた結晶化された混合物が別のファンネルに移される。静止状態で、固相沈殿物と上澄み液体層とが数時間後に分離する。清澄な母液のバルクが収集されて、第1の過程の(first pass)母液(ML−P1)に指定される。
SAR10.7の脱アルミニウムUSYゼオライト約35グラムが、約9548グラム水と混合される。この混合物に、約302グラムのN,N−Diエチル−2,6−ジメチルピペリジニウムテンプレート剤と約415グラムの液体ケイ酸ナトリウム(28.8wt%SiO2)が、上記の混合物に攪拌下で注入される。次いで、得られた混合物が、密閉されたステンレス鋼の反応器内で200rpmで攪拌しながら145°cまで加熱される。7日間の結晶化の後、得られた結晶化された混合物が別のファンネルに移される。静止状態で2〜4日後、底部沈殿物と上澄み液体層とは十分に分離する。上澄み液体層は、水性の底部部分と、上部部分に分離された薄い油状の層とを含有する。
混合物を結晶化条件下で反応させて、AEI骨格を有するゼオライト結晶のバッチと後続の母液とを形成すること
を含む、ゼオライト合成方法。
後続の母液もしくはその一部を用いて、AEI骨格を有するゼオライト結晶の一以上の連続的なバッチを合成すること
を更に含む、上記のゼオライト合成方法。
b.混合物を結晶化条件下で反応させ、AEI骨格を有しシリカ/アルミナ比(SAR)が8から50であるゼオライト結晶、及び母液を形成することと
を含み、反応により、結果として、シリカの総相対収率が少なくとも約60パーセントである、上記のゼオライト合成方法。
Claims (9)
- 約3以下の平均アスペクト比(L/D)を有するアルミノケイ酸塩AEIゼオライト結晶を含む組成物であって、
アルミノケイ酸塩AEIゼオライト結晶が、約0.05から約5ミクロンの平均結晶サイズを有する、組成物。 - アルミノケイ酸塩AEIゼオライト結晶が、2以下の平均アスペクト比(L/D)を有する、請求項1に記載の組成物。
- アルミノケイ酸塩AEIゼオライト結晶が、約1から約1.5ミクロンの平均結晶サイズを有する、請求項1に記載の組成物。
- アルミノケイ酸塩AEIゼオライト結晶が、約10から約35のシリカ/アルミナ比を有する、請求項1に記載の組成物。
- アルミノケイ酸塩AEIゼオライト結晶が、約15から約25のシリカ/アルミナ比を有する、請求項1に記載の組成物。
- アルミノケイ酸塩ゼオライトが、合成後に交換された一以上の遷移金属のイオンを含む、請求項1に記載の組成物。
- 遷移金属が、マンガン、鉄、コバルト、ニッケル、およびそれらの混合物からなる群から選択される少なくとも一つの金属を含む、請求項6に記載の組成物。
- 合成後に交換された一以上の遷移金属のイオンが、約0.1から約10重量パーセントの量で存在する、請求項6に記載の組成物。
- アルミノケイ酸塩ゼオライトが、ゼオライトの総重量に基づき約0.5から5重量%の合成後に交換された銅イオンを含有する、請求項1に記載の組成物。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361898155P | 2013-10-31 | 2013-10-31 | |
US61/898,155 | 2013-10-31 | ||
US201361907615P | 2013-11-22 | 2013-11-22 | |
US61/907,615 | 2013-11-22 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016527245A Division JP6513652B2 (ja) | 2013-10-31 | 2014-10-31 | Aeiゼオライトの合成 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019147735A JP2019147735A (ja) | 2019-09-05 |
JP6836620B2 true JP6836620B2 (ja) | 2021-03-03 |
Family
ID=51862476
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016527245A Active JP6513652B2 (ja) | 2013-10-31 | 2014-10-31 | Aeiゼオライトの合成 |
JP2019074593A Active JP6836620B2 (ja) | 2013-10-31 | 2019-04-10 | Aeiゼオライトの合成 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016527245A Active JP6513652B2 (ja) | 2013-10-31 | 2014-10-31 | Aeiゼオライトの合成 |
Country Status (10)
Country | Link |
---|---|
US (2) | US9919296B2 (ja) |
EP (2) | EP3878813A1 (ja) |
JP (2) | JP6513652B2 (ja) |
KR (1) | KR102298258B1 (ja) |
CN (4) | CN112939010B (ja) |
BR (1) | BR112016009688B1 (ja) |
DE (1) | DE102014115865A1 (ja) |
GB (1) | GB2521909B (ja) |
RU (2) | RU2672744C2 (ja) |
WO (1) | WO2015063501A1 (ja) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6513652B2 (ja) * | 2013-10-31 | 2019-05-15 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Aeiゼオライトの合成 |
JP6318990B2 (ja) * | 2014-08-29 | 2018-05-09 | 東ソー株式会社 | Aei型ゼオライトの製造方法 |
WO2016073329A1 (en) | 2014-11-03 | 2016-05-12 | California Institute Of Technology | Producing zeolite ssz-39 using isomeric mixtures of organic structure directing agents |
CN110540215B (zh) | 2014-11-21 | 2024-02-06 | 三菱化学株式会社 | Aei型铝硅酸盐沸石、催化剂和废气处理方法 |
TWI682899B (zh) | 2015-03-15 | 2020-01-21 | 美商沙琛公司 | 用於改良沸石合成的結構定向劑 |
JP2017036204A (ja) | 2015-08-13 | 2017-02-16 | 東ソー株式会社 | Aei型ゼオライトの製造方法 |
MY184911A (en) * | 2015-08-13 | 2021-04-30 | Tosoh Corp | Method for producing aei zeolite |
JP6759833B2 (ja) * | 2015-08-19 | 2020-09-23 | 東ソー株式会社 | Aei型ゼオライトの製造方法 |
US10556802B2 (en) | 2015-09-01 | 2020-02-11 | Tosoh Corporation | Method for producing AEI zeolite |
BR112018009465B1 (pt) | 2015-11-11 | 2022-08-16 | Johnson Matthey Public Limited Company | Método para preparar um zeólito tendo uma cadeia principal aei |
JP6769107B2 (ja) * | 2016-05-19 | 2020-10-14 | 三菱ケミカル株式会社 | Aei型ゼオライトの製造方法 |
WO2017205091A1 (en) * | 2016-05-25 | 2017-11-30 | Uop Llc | High charge density metallophosphate molecular sieves |
EP4001216A1 (en) * | 2016-09-30 | 2022-05-25 | Johnson Matthey Public Limited Company | Synthesis of aei and cu-aei zeolites |
GB2569758B (en) * | 2016-09-30 | 2022-09-21 | Johnson Matthey Plc | High silica AEI zeolite |
CN106717235A (zh) * | 2016-12-26 | 2017-05-31 | 南京林业大学 | 一种酸化土壤的改良方法 |
WO2018236836A1 (en) | 2017-06-19 | 2018-12-27 | Sachem, Inc. | METHOD FOR SYNTHESIZING SSZ-39 USING A MODIFIED REACTION COMPOSITION |
JP6740492B1 (ja) * | 2017-06-19 | 2020-08-12 | セイケム インコーポレイテッド | モルホリニウムベースの第4級アンモニウムカチオン、およびそれとともに作製されるaei型ゼオライト |
CN107285333B (zh) * | 2017-07-26 | 2019-05-10 | 中触媒新材料股份有限公司 | 一种用微波加热快速合成aei分子筛的方法 |
CN109384246B (zh) * | 2017-08-10 | 2021-06-25 | 中触媒新材料股份有限公司 | 一种aei结构分子筛及其制备方法和应用 |
EP3676001A1 (de) | 2017-08-31 | 2020-07-08 | Umicore AG & Co. KG | Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung |
JP2020531240A (ja) | 2017-08-31 | 2020-11-05 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG | 排気ガスを浄化するためのパラジウム/ゼオライト系受動的窒素酸化物吸着剤触媒 |
US20200378286A1 (en) | 2018-01-05 | 2020-12-03 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber |
CN112236230B (zh) | 2018-05-14 | 2024-03-19 | 优美科股份公司及两合公司 | 稳定的小孔沸石 |
JP2021535883A (ja) * | 2018-08-29 | 2021-12-23 | パシフィック インダストリアル デベロップメント コーポレイション | シリカ/アルミナ比(sar)が高いaei型ゼオライトの製造方法 |
US11878293B2 (en) | 2018-09-11 | 2024-01-23 | Basf Corporation | Process for preparing a zeolitic material having framework type AEI |
CN113302156A (zh) * | 2019-01-23 | 2021-08-24 | 巴斯夫欧洲公司 | 包含具有aei骨架类型的沸石的氧化物材料 |
EP3824988A1 (en) | 2019-11-20 | 2021-05-26 | UMICORE AG & Co. KG | Catalyst for reducing nitrogen oxides |
RU2740667C1 (ru) * | 2019-12-13 | 2021-01-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Способ получения высокомодульного цеолита мсм-22 с высокой степенью кристалличности |
CN112010322B (zh) * | 2020-08-20 | 2022-02-15 | 华中科技大学 | 一种分子筛的制备方法及其应用和废水的利用方法 |
CN112028086B (zh) * | 2020-08-25 | 2022-07-12 | 华中科技大学 | 一种纳米Cu-SSZ-13分子筛及其一步合成方法与应用 |
US20230348287A1 (en) | 2021-02-09 | 2023-11-02 | Basf Corporation | Zeolite structure synthesized using mixtures of organic structure directing agents |
WO2023078835A1 (en) | 2021-11-02 | 2023-05-11 | Basf Se | Process for the production of aei-type zeolitic materials having a defined morphology |
WO2024017884A1 (en) | 2022-07-19 | 2024-01-25 | Basf Se | Process for the catalytic activation of n2o |
WO2024052556A1 (en) | 2022-09-09 | 2024-03-14 | Basf Se | A process for the activation of n2o in the presence of a zeolitic material having the aei-type framework structure |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4474778A (en) * | 1983-11-09 | 1984-10-02 | E. R. Squibb & Sons, Inc. | Lactam containing compounds, their pharmaceutical compositions and method of use |
GB8329973D0 (en) * | 1983-11-10 | 1983-12-14 | Exxon Research Engineering Co | Recycled zeolite l preparation |
US4713227A (en) | 1983-12-19 | 1987-12-15 | Mobil Oil Corporation | Method for the synthesis of metallophosphoaluminates |
NO300012B1 (no) * | 1993-08-17 | 1997-03-17 | Polymers Holding As | Mikroporost krystallinsk silikoaluminofosfat, fremgangsmate for fremstilling av dette, samt anvendelse derav |
IL108272A (en) * | 1994-01-05 | 1998-02-22 | Super Industry Ltd | Process for production of zeolites |
US5637287A (en) * | 1996-02-02 | 1997-06-10 | Exxon Research & Engineering Company | Synthesis process for faujasite family zeolites using mother liquor recycle |
JPH1111938A (ja) * | 1997-06-13 | 1999-01-19 | Exxon Res & Eng Co | リサイクルされた母液を利用したホ−ジャサイト系ゼオライトの合成方法 |
US5958370A (en) | 1997-12-11 | 1999-09-28 | Chevron U.S.A. Inc. | Zeolite SSZ-39 |
US20050096214A1 (en) | 2001-03-01 | 2005-05-05 | Janssen Marcel J. | Silicoaluminophosphate molecular sieve |
US6812372B2 (en) | 2001-03-01 | 2004-11-02 | Exxonmobil Chemical Patents Inc. | Silicoaluminophosphate molecular sieve |
JP4337479B2 (ja) * | 2003-09-02 | 2009-09-30 | 三菱化学株式会社 | ゼオライトの製造方法 |
WO2005063622A2 (en) * | 2003-12-23 | 2005-07-14 | Exxonmobil Chemical Patents Inc. | Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins |
EA011395B1 (ru) * | 2003-12-23 | 2009-02-27 | Эксонмобил Кемикэл Пейтентс Инк. | Цеолит типа aei, его синтез и его применение при конверсии оксигенатов в олефины |
US7622624B2 (en) | 2004-04-05 | 2009-11-24 | Exxonmobil Chemical Patents Inc. | Crystalline intergrowth material, its synthesis and its use in the conversion of oxygenates to olefins |
US7090814B2 (en) * | 2004-11-10 | 2006-08-15 | Exxonmobil Chemical Patents Inc. | Method of synthesizing silicoaluminophosphate molecular sieves |
JP5151041B2 (ja) * | 2005-03-03 | 2013-02-27 | 三菱化学株式会社 | アルミノフォスフェート類の合成方法 |
US7459136B2 (en) | 2005-06-24 | 2008-12-02 | Exxonmobile Chemical Patents Inc. | Process for manufacture of silicoaluminophosphate molecular sieves |
EP1899059A1 (en) | 2005-06-27 | 2008-03-19 | ExxonMobil Chemical Patents Inc. | Process for manufacture of silicoaluminophosphate molecular sieves |
US7547812B2 (en) * | 2005-06-30 | 2009-06-16 | Uop Llc | Enhancement of molecular sieve performance |
DE102005059711A1 (de) * | 2005-12-12 | 2007-06-14 | Basf Ag | Formkörper enthaltend ein mikroporöses Material und mindestens ein siliciumhaltiges Bindemittel, Verfahren zu seiner Herstellung und seine Verwendung als Katalysator, insbesondere in einem Verfahren zur kontinuierlichen Synthese von Methylaminen |
US7767871B2 (en) * | 2005-12-22 | 2010-08-03 | Exxonmobil Chemical Patents Inc. | Method of recovering crystalline material and compositions therefrom |
US7947621B2 (en) | 2006-02-27 | 2011-05-24 | Exxonmobil Chemical Patents Inc. | Method of making and process for using molecular sieve catalyst |
US8057782B2 (en) * | 2006-12-27 | 2011-11-15 | Chevron U.S.A. Inc. | Preparation of small pore molecular sieves |
WO2008097481A1 (en) * | 2007-02-06 | 2008-08-14 | Exxonmobil Research And Engineering Company | Method of manufacturing m41s family molecular sieve |
EP3626329B1 (en) | 2007-04-26 | 2021-10-27 | Johnson Matthey Public Limited Company | Exhaust system comprising copper/zsm-34 zeolite scr catalyst and method of converting nitrogen oxides |
US7622417B2 (en) * | 2008-03-21 | 2009-11-24 | Exxonmobil Chemical Patents Inc. | Synthesis and use of AEI structure-type molecular sieves |
KR101294098B1 (ko) * | 2010-03-11 | 2013-08-08 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | NOx의 선택적 촉매 환원을 위한 무질서 분자체 지지체 |
CN102190312A (zh) * | 2010-03-18 | 2011-09-21 | 华东师范大学 | 一种分子筛晶化母液的回收利用方法 |
WO2012075400A1 (en) * | 2010-12-02 | 2012-06-07 | Johnson Matthey Public Limited Company | Zeolite catalyst containing metal |
DE102011121971A1 (de) | 2011-12-21 | 2013-07-11 | Süd-Chemie AG | Verfahren zur Modifikation der Porengröße von Zeolithen |
CN109268110B (zh) | 2012-04-27 | 2021-05-07 | 优美科两合公司 | 用于净化来自内燃机的废气的方法和系统 |
JP6469578B2 (ja) * | 2012-10-19 | 2019-02-13 | ビーエーエスエフ コーポレーション | 混合金属8員環小孔分子ふるい触媒組成物、触媒製品、システム及び方法 |
CN104968431A (zh) * | 2012-11-29 | 2015-10-07 | 巴斯夫欧洲公司 | 包含钯、金和氧化铈的柴油机氧化催化剂 |
RU2675821C2 (ru) | 2013-03-15 | 2018-12-25 | Джонсон Мэтти Паблик Лимитед Компани | Катализатор для обработки выхлопных газов |
JP6278561B2 (ja) * | 2013-07-10 | 2018-02-14 | 国立大学法人広島大学 | 結晶性アルミノシリケート及びその製造方法 |
JP6513652B2 (ja) * | 2013-10-31 | 2019-05-15 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Aeiゼオライトの合成 |
US9764313B2 (en) * | 2014-06-18 | 2017-09-19 | Basf Corporation | Molecular sieve catalyst compositions, catalyst composites, systems, and methods |
-
2014
- 2014-10-31 JP JP2016527245A patent/JP6513652B2/ja active Active
- 2014-10-31 BR BR112016009688-6A patent/BR112016009688B1/pt not_active IP Right Cessation
- 2014-10-31 GB GB1419427.8A patent/GB2521909B/en active Active
- 2014-10-31 WO PCT/GB2014/053242 patent/WO2015063501A1/en active Application Filing
- 2014-10-31 EP EP21165655.8A patent/EP3878813A1/en active Pending
- 2014-10-31 DE DE201410115865 patent/DE102014115865A1/de active Pending
- 2014-10-31 US US14/529,647 patent/US9919296B2/en active Active
- 2014-10-31 CN CN202110107579.1A patent/CN112939010B/zh active Active
- 2014-10-31 CN CN202110107855.4A patent/CN112939011A/zh active Pending
- 2014-10-31 CN CN201810458635.4A patent/CN108439426A/zh active Pending
- 2014-10-31 KR KR1020167014174A patent/KR102298258B1/ko active IP Right Grant
- 2014-10-31 RU RU2016121171A patent/RU2672744C2/ru active
- 2014-10-31 CN CN201410601423.9A patent/CN104591204A/zh active Pending
- 2014-10-31 RU RU2018139094A patent/RU2764725C2/ru active
- 2014-10-31 EP EP14793611.6A patent/EP3063093B1/en active Active
-
2018
- 2018-03-09 US US15/916,933 patent/US10940466B2/en active Active
-
2019
- 2019-04-10 JP JP2019074593A patent/JP6836620B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
CN112939010A (zh) | 2021-06-11 |
US9919296B2 (en) | 2018-03-20 |
GB201419427D0 (en) | 2014-12-17 |
RU2016121171A (ru) | 2017-12-05 |
GB2521909A (en) | 2015-07-08 |
RU2018139094A (ru) | 2019-03-04 |
GB2521909B (en) | 2018-05-09 |
US20150118150A1 (en) | 2015-04-30 |
WO2015063501A1 (en) | 2015-05-07 |
JP2019147735A (ja) | 2019-09-05 |
KR102298258B1 (ko) | 2021-09-07 |
CN112939011A (zh) | 2021-06-11 |
EP3063093B1 (en) | 2021-06-16 |
RU2764725C2 (ru) | 2022-01-19 |
EP3063093A1 (en) | 2016-09-07 |
RU2672744C2 (ru) | 2018-11-19 |
BR112016009688B1 (pt) | 2021-11-16 |
KR20160075758A (ko) | 2016-06-29 |
EP3878813A1 (en) | 2021-09-15 |
CN104591204A (zh) | 2015-05-06 |
DE102014115865A1 (de) | 2015-04-30 |
CN108439426A (zh) | 2018-08-24 |
BR112016009688A2 (ja) | 2017-08-01 |
JP2016538217A (ja) | 2016-12-08 |
CN112939010B (zh) | 2024-01-09 |
US20180193824A1 (en) | 2018-07-12 |
RU2018139094A3 (ja) | 2021-07-29 |
JP6513652B2 (ja) | 2019-05-15 |
US10940466B2 (en) | 2021-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6836620B2 (ja) | Aeiゼオライトの合成 | |
JP6920390B2 (ja) | Aeiゼオライトの合成 | |
US10414665B2 (en) | Synthesis of AFX zeolite | |
JP7076435B2 (ja) | AEI及びCu-AEIゼオライトの合成 | |
JP7304156B2 (ja) | アルミノシリケートaeiゼオライトの調製 | |
JP2019202315A (ja) | Cu−cha含有scr触媒 | |
JP2017504558A (ja) | 高シリカCu−CHAの混合鋳型合成 | |
WO2018064277A1 (en) | High silica aei zeolite | |
GB2556291A (en) | AEI zeolite synthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190508 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200512 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6836620 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |