EP3676001A1 - Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung - Google Patents

Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung

Info

Publication number
EP3676001A1
EP3676001A1 EP18758623.5A EP18758623A EP3676001A1 EP 3676001 A1 EP3676001 A1 EP 3676001A1 EP 18758623 A EP18758623 A EP 18758623A EP 3676001 A1 EP3676001 A1 EP 3676001A1
Authority
EP
European Patent Office
Prior art keywords
zeolite
palladium
platinum
zeolites
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18758623.5A
Other languages
English (en)
French (fr)
Inventor
Christoph Hengst
Michael Lennartz
Frank-Walter Schuetze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Publication of EP3676001A1 publication Critical patent/EP3676001A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/743CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7476MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9468Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • B01J29/52Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
    • B01J29/54Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • B01J29/52Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
    • B01J29/56Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/67Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7407A-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7423MAZ-type, e.g. Mazzite, Omega, ZSM-4 or LZ-202
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7492MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates (APO compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • B01J35/19
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding

Definitions

  • the present invention relates to the use of a palladium and platinum-coated zeolite as a passive nitrogen oxide adsorber for the passive incorporation of nitrogen oxides from the exhaust gas of an internal combustion engine.
  • the exhaust of motor vehicles which are operated with lean-burn internal combustion engines, for example with diesel engines, in addition to carbon monoxide (CO) and nitrogen oxides (NO x ) also contains components resulting from the incomplete combustion of the fuel in the combustion chamber of the cylinder.
  • HC residual hydrocarbons
  • these include particulate emissions, which are also referred to as “diesel soot” or “soot particles”.
  • Diesel soot particulate emissions
  • These are complex agglomerates of predominantly carbon-containing solid particles and an adhering liquid phase, which mostly consists of relatively long-chain hydrocarbon condensates.
  • the liquid phase adhering to the solid components is also referred to as "Soluble Organic Fraction SOP" or "Volatile Organic Fraction VOF”.
  • Wall flow filters made of ceramic materials have proven particularly useful. These are composed of a plurality of parallel channels formed by porous walls. The channels are mutually closed at one of the two ends of the filter to form first channels which are open on the first side of the filter and closed on the second side of the filter, and second channels which are closed on the first side of the filter and are open on the second side of the filter. For example, in the first channels incoming exhaust gas can leave the filter only through the second channels again and must flow through the porous walls between the first and second channels for this purpose. As the exhaust passes through the wall, the particles are retained.
  • particle filters can be provided with catalytically active coatings.
  • EP1820561 Al describes the coating of a diesel particulate filter with a catalyst layer, which facilitates the burning of the filtered soot particles.
  • One known method of removing nitrogen oxides from exhaust gases in the presence of oxygen is the selective catalytic reduction by means of ammonia on a suitable catalyst (SCR process). In this method, the nitrogen oxides to be removed from the exhaust gas are reacted with ammonia as a reducing agent to nitrogen and water.
  • iron and in particular copper-exchanged zeolites can be used as SCR catalysts, see, for example, WO2008 / 106519 A1, WO2008 / 118434 A1 and WO2008 / 132452 A2.
  • SCR catalysts for the conversion of nitrogen oxides with ammonia contain no noble metals, in particular no platinum and no palladium. Namely, in the presence of these metals, the oxidation of ammonia with oxygen to nitrogen oxides would proceed preferentially and the SCR reaction
  • SCR catalysts this does not refer to the N H3-SCR reaction, but to the reduction of nitrogen oxides by means of hydrocarbons, however, the latter reaction is only slightly selective, so that instead of “SCR reaction "true” HC-DeNOx reaction "is called.
  • ammonia used as a reducing agent can be prepared by metering in an ammonia precursor compound, such as, for example, urea,
  • Ammonium carbamate or ammonium formate are made available in the exhaust line and subsequent hydrolysis.
  • SCR catalysts have the disadvantage that they only work from an exhaust gas temperature of about 180 to 200 ° C and thus do not implement nitrogen oxides that are formed in the cold start phase of the engine.
  • nitrogen oxide storage catalysts for which the term "Lean NOx trap" or "LN ⁇ P is common, known ..
  • Their cleaning effect is based on that in a lean phase of operation of the engine, the nitrogen oxides
  • Storage material of the storage catalyst are stored mainly in the form of nitrates and this decomposed in a subsequent rich phase of operation of the engine again and the thus released nitrogen oxides are reacted with the reducing exhaust gas components on the storage catalyst to nitrogen, carbon dioxide and water. This procedure is described for example in SAE SAE 950809.
  • storage materials are in particular oxides, carbonates or
  • Hydroxides of magnesium, calcium, strontium, barium, the alkali metals, the rare earth metals or mixtures thereof in question Due to their basic properties, these compounds are capable of forming nitrates with the acidic nitrogen oxides of the exhaust gas and of storing them in this way. They are deposited to produce a large interaction surface with the exhaust gas in the highest possible dispersion on suitable carrier materials.
  • nitrogen oxide storage catalysts usually contain precious metals such as platinum, palladium and / or rhodium
  • the US2014 / 322112 describes a zoning of the coating of the particulate filter with nitrogen oxide storage catalyst such that a zone, starting from the upstream end of the particulate filter in the
  • Operating phase of the engine stored and released in a subsequent rich operating phase is also referred to as active nitrogen oxide storage.
  • nitrogen oxides are stored in a first temperature range and released again in a second temperature range, wherein the second temperature range at higher
  • Temperatures are the first temperature range.
  • passive nitrogen oxide storage catalysts are used, which are also referred to as PNA (for "passive NOx adsorber").
  • nitrogen oxides in particular at temperatures below 200 ° C., at which an SCR catalytic converter has not yet reached its operating temperature, can be stored and released again as soon as the SCR catalytic converter is ready for operation.
  • a zeolite containing, for example, palladium and another metal, such as iron is known to use as a passive nitrogen oxide storage catalyst.
  • WO2015 / 085303 AI discloses passive nitrogen oxide storage catalysts containing a noble metal and a small pore molecular sieve with a maximum ring size of eight tetrahedral atoms.
  • Modern and future diesel engines are becoming increasingly efficient, as a result of which exhaust gas temperatures are also falling.
  • legislation on nitrogen oxide sales is becoming increasingly stringent.
  • SCR catalysts alone are no longer sufficient to meet the nitrogen oxide limits.
  • technical solutions which ensure that nitrogen oxides formed in the cold start phase of the engine do not escape into the environment.
  • technical solutions must ensure that stored nitrogen oxides are as completely as possible released (desorbed) in the operating window of a downstream SCR catalytic converter.
  • the present invention accordingly relates to the use of a
  • Catalyst comprising a carrier substrate of length L and a coating A comprising a zeolite, palladium and platinum, wherein palladium in amounts of 0.01 to 10 wt .-%, based on the sum of the weights of zeolite, platinum and palladium and calculated as palladium metal, and Platinum in amounts of 0.1 to 10 wt .-%, based on the weight of palladium and calculated as platinum metal present, as a passive nitrogen oxide adsorber which stores nitrogen oxides in a first temperature range and releases again in a second temperature range, wherein the second temperature range is at higher temperatures than the first
  • Zeolites are two- or three-dimensional structures whose smallest structures Si0 4 and Al0 4 tetrahedra can be considered. These tetrahedra combine to form larger structures, with two each connected via a common oxygen atom.
  • rings of different sizes can be formed, for example rings of four, six or even nine tetrahedrally coordinated silicon or aluminum atoms.
  • the different zeolite types are often defined by the largest ring size, because this size determines which guest molecules can and can not penetrate into the zeolite structure. It is common to distinguish large pore zeolites with a maximum ring size of 12, medium pore zeolites with a maximum ring size of 10 and small pore zeolites with a maximum ring size of 8.
  • Zeolites are further subdivided into structure types by the Structure Commission of the International Zeolite Association, each of which has a three-letter code, see, for example, Atlas of Zeolite
  • the use according to the invention comprises a zeolite which may be large pore, medium pore or small pore.
  • the use according to the invention comprises a zeolite whose largest channels are formed by 6 tetrahedrally coordinated atoms and which contains, for example, the structure types AFG, AST, DOH, FAR, FRA, GIU, LIO, LOS, MAR, MEP, MSO, MTN, NON RUT, SGT, SOD, SVV, TOL or UOZ.
  • a zeolite of the structural type AFG isrielite.
  • Structure-type zeolites AST are AIPO-16 and octadecasil.
  • a zeolite of the structural type DOH is
  • a zeolite of the structural type FAR is farneseite.
  • a zeolite of the structural type FRA is Franzinit.
  • a zeolite of the structural type GIU is
  • a zeolite of the structural type LIO is Liottit. Zeolites from
  • Structure type LOS are Losod and Bystrit.
  • a zeolite of the structural type MAR is marinellite.
  • a zeolite of the structural type MEP is melanophlogite.
  • MSO-type zeolites are MCM-61 and Mu-13.
  • Structure-type zeolites MTN are ZSM-39, CF-4, Docecasil-3C and Holdstit.
  • NON-type zeolites are Nonasil, CF-3 and ZSM-51.
  • Structure type RUT zeolites are RUB-10 and Nu-1.
  • a zeolite of the structural type SGT is Sigma-2.
  • Zeolites of the structural type SOD are sodalite, AIPO-20, biculonite, danalite, G,
  • a zeolite of the structural type UOZ is IM-10.
  • the use according to the invention preferably comprises a zeolite whose largest channels are formed by 6 tetrahedrally coordinated atoms and which belongs to the structural type SOD.
  • a zeolite whose largest channels are formed by 8 tetrahedrally coordinated atoms and which are of the structural types ABW, ACO, AEI, AEN, AFN, AFT, AFV, AFX, ANA, APC, APD, ATN, ATT, ATV, AVL, AWO, AWW, BCT, BIK, BRE, CAS, CDO, CHA, GDR, DFT, EAB, EDI, EEI, EPI, ERI, ESV, ETL, GIS, GOO, IFY, IHW, IRN, ITE, ITW, JBW, JNT, JOZ, JSN, JSW, KFI, LEV, -LIT, LTA, LTJ, LTN, MER, MON, MTF, MWF, NPT, NSI, OWE, PAU, PHI, RHO, RTH, RWR, SAS, SAT, SAV, SBN , SIV, THO
  • a zeolite of the structural type ABW is Li-A.
  • a zeolite of the structural type ACO is ACP-1.
  • Zeolites of the structure type AEI are SAPO-18, SIZ-8 and SSZ-39.
  • AEN-type zeolites are AIPO-53, IST-2, JDF-2, MCS-1, Mu-10 and UiO-12-500.
  • a zeolite of the structural type AFT is AIPO-52.
  • Structure-type zeolites AFX are SAPO-56 and SSZ-16.
  • Structure type ANA zeolites are Analcim, AIPO-24, Leucite, Na-B, Pollucite and Wairakite.
  • Structure-type zeolites APC are AIPO-C and AIPO-H3.
  • Structure-type zeolites APD are AIPO-D and APO-CJ3.
  • Structure-type zeolites ATN are MAPO-39 and SAPO-39.
  • Structure-type zeolites ATT are AIPO-33 and RMA-3.
  • An ATV-type zeolite is AIPO-25.
  • a zeolite of the structure type AWO is AIPO-21.
  • An AWW-type zeolite is AIPO-22.
  • Structure-type zeolites BCT are Metavariscite and Svyatoslavit. A zeolite from
  • Structure type BIK is Bikitait.
  • Structure-type zeolites BRE are Brewsterite and CIT-4.
  • a zeolite of the structural type CAS is EU-20b.
  • Structure-type zeolites CDO are CDS-1, MCM-65 and UZM-25. Zeolites from
  • CHA Structural types CHA are AIPO-34, chabazite, DAF-5, Linde-D, Linde-R, LZ-218, Phi, SAPO-34, SAPO-47, SSZ-13, UiO-21, Willherson soonite, ZK-14 and ZYT - 6.
  • zeolites of the structure type DDR are Sigma-1 and ZSM-58.
  • Structure-type zeolites DFT are DAF-2 and ACP-3.
  • EAB-type zeolites are TMA-E and Bellbergite.
  • EDI-type zeolites are Edingtonite, K-F, Linde F and Zeolite N.
  • ERI-type zeolites are erionite, AIPO-17, Linde T, LZ-220, SAPO-17 and ZSM-34.
  • a zeolite of the structural type ESV is ERS-7.
  • Structure-type zeolites GIS are gismondine, amicite, garronite, gobbinsite, MAPO-43, Na-Pl, Na-P2 and SAPO-43.
  • Structure type IHW is ITQ-3.
  • ITE-type zeolites are ITQ-3, Mu-14 and SSZ-36.
  • An ITW-type zeolite is ITQ-12.
  • Structure-type zeolites JBW are Na-J and Nepheline.
  • Zeolites of the structural type KFI are ZK-5, P and Q.
  • LEV structural type zeolites are Levyne, Levynit, AIP-35, LZ-132, NU-3, SAPO-35 and ZK-20.
  • a zeolite of the structural type -LIT is Lithosit.
  • LTA-type zeolites are Linde type A, alpha, ITQ-29, LZ-215, N-A, UZM-9, SAPO-42, ZK-21, ZK-22 and ZK-4. Zeolites from
  • Structure type LTN are Linde type N and NaZ-21.
  • MER-type zeolites are Merlinoite, KM, Linde W, and Zeolite W.
  • MTF-type zeolites are MCM-35 and UTM-1.
  • NSI-type zeolites are Nu-6 (2) and EU-20.
  • Zeolites of the structural type OWE are UiO-28 and ACP-2.
  • Zeolites of the structural type PAU are Paulimgit and ECR-18.
  • Zeolites of the structural type PHI are Philippsit, DAF-8, Harmotom, Wellsit and ZK-19.
  • Structure-type zeolites RHO are Rho and LZ-214.
  • Structure-type zeolites RTH are RUB-13, SSZ-36 and SSZ-50.
  • a structural type zeolite RWR is RUB-24.
  • Structural type zeolites are STA-6 and SSZ-73.
  • a zeolite of the structure type SAT is STA-2.
  • Structure-type zeolites SBN are UCSB-89 and SU-46.
  • a zeolite of the structural type SIV is SIZ-7.
  • a zeolite from RUB-24 is RUB-24.
  • Structural type zeolites are STA-6 and SSZ-73.
  • a zeolite of the structure type SAT is STA-2.
  • Structure-type zeolites SBN are UCSB-89 and SU-46.
  • a zeolite of the structural type SIV is SIZ-7.
  • Structure type THO is thomsonite.
  • a zeolite of the structure type UEI is Mu-18.
  • a zeolite of the structural type UFI is UZM-5.
  • a zeolite of the structural type VNI is VPI-9.
  • Structure-type zeolites YUG are Yugawaralit and Sr-Q.
  • ZON-type zeolites are ZAPO-M1 and UiO-7.
  • the use according to the invention preferably comprises a zeolite whose largest channels are formed by 8 tetrahedrally coordinated atoms and which belongs to the structure type ABW, AEI, AFX, CHA, ERI, ESV, KFI, LEV or LTA.
  • zeolites of the structure type AEI is described, for example, in US 2015/118150, that of SSZ-39 in US Pat. No. 5,958,370.
  • Structure-type zeolites AFX are known from WO2016 / 077667 AI.
  • Structure-type zeolites CHA are extensively described in the literature, see for example US 4,544,538 for SSZ-13.
  • ZK-5 which belongs to the structural type KFI is described for example in EP288293 A2.
  • Structure-type zeolites LEV are described, for example, in EP40016 AI, EP255770A2 and EP3009400A1
  • a zeolite of the structural type -CHI is Chiavennite.
  • Structure type LOV is Lovdarit.
  • a zeolite of the structural type NAB is nabesite.
  • NAT-type zeolites include Natrolite, Gonnardite, Mesolite, Metanatrolite, Paranatrolite, Tetranatrolite and Scolecite.
  • a zeolite of the structural type RSN is RUB-17.
  • a zeolite of the structural type STT is SSZ-23. Zeolites from
  • VSV Structural type VSV are Gaultit, VPI-7 and VSV-7.
  • the use according to the invention preferably comprises a zeolite whose largest channels are formed by 9 tetrahedrally coordinated atoms and which belongs to the structural type STT.
  • a particularly suitable zeolite of the structural type STT is SSZ-23.
  • SSZ-23 is described in US Pat. No. 4,859,442 and can be obtained according to the preparation processes specified there.
  • Zeolites belonging to the structure type FER are known from the literature.
  • ZSM-35 is described in US 4,107,196, NU-23 in EP 103981 Al, FU-9 in EP 55529 Al, ISI-6 in US 4,695,440 and ferrierite for example in US 3,933,974, US 4,000,248 and US 4,251,499.
  • ZSM-11 is described in Nature 275, 119-120, 1978, SSZ-46 in US 5,968,474 and TS-2 in BE 1001038.
  • Zeolites belonging to the structure type MTT are known from the literature. Thus, ZSM-23 is described in US 4,076,842, EU-13 in US 4,705,674 and ISI-4 in US 4,657,750. In addition, US 5,314,674 deals with the synthesis of zeolites of the structure type MTT.
  • Zeolites belonging to the structure type MFI are, for example, under the names ZSM-5, ZS-4, AZ-1, FZ-1, LZ-105, NU-4, NU-5, TS-1, TS, USC-4 and ZBH known from the literature.
  • ZSM-5 is described in US 3,702,886 and US 4,139,600.
  • Zeolites belonging to the structure type MWW are known from the literature.
  • SSZ-25 is described in US 4,826,667, MCM-22 in Zeolites 15, Issue 1, 2-8, 1995, ITQ-1 in US 6,077,498 and PSH-3 in US 4,439,409.
  • the use according to the invention preferably comprises a zeolite whose largest channels are formed by 10 tetrahedrally coordinated atoms and which belongs to the structural type FER.
  • Structural types AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, IWR, IWV , IWW, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OSI, -RON, RWY, SAO, SBE, SBS, SBT, SFE, SFO, SOS, SSY, USI or VET.
  • Structure-type zeolites AFI are AIPO-5, SSZ-24 and SAPO-5.
  • Structure-type zeolites AFR are SAPO-40 and AIPO-40.
  • Structure type AFS is MAPO-46.
  • a zeolite of the structure type ASV is ASU-7.
  • Structure-type zeolites ATO are SAPO-31 and AIPO-31.
  • Structure-type zeolites ATS are SSZ-55 and AIPO-36.
  • Zeolites of the structural type BEA are beta and CIT-6.
  • Structure-type zeolites BPH are Linde Q, STA-5 and UZM-4.
  • Structure-type zeolites are ECR-5, Davyn, Microsommit, Tiptopit and Vishnevit.
  • Structure-type zeolites CON are CIT-1, SS-26 and SSZ-33.
  • a zeolite of the structure type DFO is DAF-1. Zeolites from
  • Structure types EMT are EMC-2, CSZ-1, ECR-30, ZSM-20 and ZSM-3.
  • EON structural type zeolites are ECR-1 and TUN-7.
  • a zeolite of the structure type EZT is EMM-3.
  • Structural-type zeolites are faujasite, LZ-210, SAPO-37, CSZ-1, ECR-30, ZSM-20 and ZSM-3.
  • a zeolite of the structural type GME is gmelinite.
  • a zeolite of the structure type GON is GUS-1.
  • Structure-type zeolites IFR are ITQ-4, MCM-58 and SSZ-42.
  • Structure type ISV is ITQ-7.
  • a zeolite of the structure type IWR is ITQ-24.
  • a zeolite of the structure type IWV is ITQ-27.
  • a zeolite of the structure type IWW is ITQ-22.
  • LTL-type zeolites are Linde type L and LZ-212.
  • MAZ-type zeolites are Mazzit, LZ-202, Omega, and ZSM-4.
  • Structure-type zeolites MEI are ZSM-18 and ECR-40.
  • Morphite zeolites MOR are mordenite, LZ-211 and Na-D.
  • Structure type MOZ is ZSM-10.
  • a zeolite of the structural type MSE is MCM-68.
  • MTW-type zeolites are ZSM-12, CZH-5, NU-13, TPZ-12, Theta-3 and VS-12.
  • OFF-type zeolites are Offretit, LZ-217, Linde T and TMA-O.
  • a zeolite of the structural type OSI is UiO-6.
  • a structural type zeolite RWY is UCR-20.
  • a zeolite of the structural type SAO is STA-1.
  • a zeolite of the structural type SFE is SSZ-48.
  • a zeolite of the structural type SFO is SSZ-51.
  • Structure-type zeolites SOS are SU-16 and FJ-17.
  • a zeolite of the structural type SSY is SSZ-60.
  • a zeolite of the structure type USI is IM-6.
  • the use according to the invention preferably comprises a zeolite whose largest channels are formed by 12 tetrahedrally coordinated atoms and which belongs to the structural type BEA or FAU.
  • Zeolites of the structural types BEA and FAU, as well as their preparation are described in detail in the literature.
  • the use according to the invention very particularly preferably comprises a zeolite belonging to the structure type ABW, AEI, AFX, BEA, CHA, ERI, ESV, FAU, FER, KFI, LEV, LTA, MFI, SOD or STT.
  • the use according to the invention very particularly preferably comprises a zeolite belonging to the structure type MWW.
  • the catalyst used in the invention comprises palladium and platinum. Both are preferably present as a cation in the zeolite structure, that is in ion-exchanged form. But they can also be wholly or partly as metal and / or oxide in the zeolite structure and / or on the
  • the palladium is preferably present in amounts of 0.1 to 5 wt .-% and particularly preferably 0.5 to 3 wt .-%, based on the sum of the weights of zeolite, platinum and palladium and calculated as palladium metal, before.
  • Platinum is preferably present in amounts of 1 to 5 wt .-% and most preferably from 0.5 to 1.5 wt .-%, based on the weight of palladium and calculated as platinum metal before.
  • the catalyst used in the invention comprises in one
  • Embodiment other than palladium and platinum no more metal, especially neither copper, nor iron.
  • the catalyst used according to the invention comprises one with 0.5 to 3 wt .-% palladium, based on the sum of the weights of zeolite, platinum and palladium and calculated as palladium metal, and 0.5 to 5 wt. % Platinum, based on the weight of palladium and calculated as platinum metal, occupied, in particular ion-exchanged, zeolites of the structure type ABW, AEI, AFX, BEA, CHA, ERI, ESV, FAU, FER, KFI, LEV, LTA, MFI, SOD or STT.
  • the catalyst used in the invention comprises a support body. This may be a flow-through substrate or a wall-flow filter.
  • a wall-flow filter is a support body comprising channels of length L extending in parallel between a first and a second end of the channel
  • Wall flow filters which are alternately closed either at the first or at the second end and which are separated by porous walls.
  • a flow-through substrate differs from a wall-flow filter in that the channels of length L are open at both ends.
  • Their average pore size when uncoated for example, 5 to 30 microns.
  • the pores of the wall-flow filter are so-called open pores, that is to say they have a connection to the channels. Furthermore, the pores are usually interconnected. This allows, on the one hand, the slight coating of the inner pore surfaces and, on the other hand, an easy passage of the exhaust gas through the porous walls of the wall-flow filter.
  • Flow substrates are known in the art as well as wall flow filters and are available on the market. They consist for example of silicon carbide, aluminum titanate or cordierite.
  • support substrates constructed of corrugated sheets of inert materials may also be used.
  • Suitable inert materials are for example fibrous materials with a
  • fibrous materials are heat-resistant and consist of silicon dioxide, in particular of glass fibers.
  • structured body shaped with body passing channels.
  • a monolithic structured body having a criss-cross corrugation structure is formed.
  • undulating i.e. be arranged flat leaves.
  • Carrier substrates of corrugated sheets can be coated directly with the catalyst according to the invention, but preferably they are first coated with an inert material, for example titanium dioxide, and only then with the catalytic material. Zeolite and the palladium and platinum are present in the inventive use in the form of the coating A on the carrier substrate. In this case, the coating may extend over the entire length L of the carrier substrate or only over a part thereof.
  • an inert material for example titanium dioxide
  • the coating A may be on the surfaces of the input channels, on the surfaces of the output channels and / or in the porous wall between input and output channels.
  • Catalysts used according to the invention in which the zeolite and the palladium and platinum in the form of a coating A on the zeolite and the palladium and platinum in the form of a coating A on the zeolite and the palladium and platinum in the form of a coating A on the zeolite and the palladium and platinum in the form of a coating A on the zeolite and the palladium and platinum in the form of a coating A on the
  • Carrier substrate can be prepared by the skilled worker methods, such as by the usual dip coating or pumping and suction coating process with it
  • Materials can be coordinated so that they are on the porous walls that form the channels of the wall flow filter (on-wall coating).
  • the average particle size of the materials to be coated can also be chosen so that they are in the porous walls that form the channels of the wall flow filter, so that a coating of the inner pore surfaces takes place (in-wall coating).
  • the mean particle size of the materials to be coated must be small enough to penetrate the pores of the material
  • the zeolite and the palladium and platinum are coated over the entire length L of the carrier substrate, with no further catalytically active coating on the carrier substrate.
  • the carrier substrate may also carry one or more further catalytically active coatings.
  • the carrier substrate may comprise a further coating B which is active in oxidation-catalytically.
  • the oxidation-catalytically active coating B comprises, for example, platinum, palladium or platinum and palladium on a carrier material.
  • the mass ratio of platinum to palladium is, for example, 2: 1 to 14: 1.
  • Suitable carrier materials are all those familiar to the person skilled in the art for this purpose. They have a BET surface area of 30 to 250 m 2 / g, preferably from 100 to 200 m 2 / g (determined according to DIN 66132) and are in particular alumina, silica, magnesia, titania, zirconia, and mixtures or mixed oxides of at least two of these materials.
  • the coating A contains only a single zeolite.
  • the coating B is free of platinum and / or palladium-containing zeolites.
  • the coating A contains only a single zeolite and the coating B is free of platinum and / or palladium-containing zeolites.
  • the coating comprising the zeolites and the palladium and platinum (coating A) and the oxidation-catalytically active coating
  • the coatings A and B may also both be coated over the entire length L.
  • the coatings A and B may also both be coated over the entire length L.
  • Coating B directly on the carrier substrate and the coating A on coating B are present.
  • the coating A may also be present directly on the carrier substrate and the coating B on the coating A.
  • a coating extends over the entire length of the support body and the other only over a part thereof.
  • the lower layer is present in an amount of 50 to 250 g / l of carrier substrate and the upper layer in an amount of 50 to 100 g / l of carrier substrate.
  • the carrier substrate is a wall-flow filter
  • the coatings may be on the walls of the input channels, on the walls of the output channels, or in the walls between input and output channels.
  • catalyst substrates used inert materials can be used. These are, for example, silicates, oxides, nitrides or carbides, with particular preference being given to magnesium-aluminum silicates.
  • the extruded carrier substrate comprising the zeolite, as well as palladium and platinum, in embodiments of the present invention may be coated with one or more catalytically active coatings, for example, with the oxidation-catalytically active coating described above.
  • the catalyst is excellently suited for use as a passive nitrogen oxide storage catalyst, i. it is able to store nitrogen oxides at temperatures below 200 ° C and to recycle them at temperatures above 200 ° C.
  • a downstream SCR catalyst it is possible to effectively convert nitrogen oxides over the entire temperature range of the exhaust gas, including cold start temperatures.
  • the catalyst is part of an exhaust system comprising an SCR catalyst.
  • the SCR catalyst can in principle be selected from all catalysts active in the SCR reaction of nitrogen oxides with ammonia,
  • Catalysts of mixed oxide type as well as catalysts based on zeolites, in particular of transition metal-exchanged
  • Zeolites for example with copper, iron or copper and iron
  • SCR catalysts are described, for example, in WO2008 / 106519 A1, WO2008 / 118434 A1 and WO2008 / 132452 A2.
  • zeolites can be used, in particular those of the structure type BEA come into question.
  • iron BEA and copper BEA are of interest.
  • Particularly preferred zeolites belong to the framework types BEA, AEI, CHA, KFI, ERI, LEV, MER or DDR and are particularly preferably exchanged with copper, iron or copper and iron.
  • zeolites also includes molecular sieves, which are sometimes referred to as "zeolite-like" compounds Molecular sieves are preferred if they belong to one of the abovementioned types of skeletons Examples are silica-aluminum-phosphate zeolites, which are known by the term SAPO Aluminum phosphate zeolites known by the term AIPO.
  • zeolites are furthermore those which have a SAR (silica-to-alumina ratio) value of from 2 to 100, in particular from 5 to 50.
  • the zeolites or molecular sieves contain transition metal, in particular in amounts of 1 to 10 wt .-%, in particular 2 to 5 wt .-%, calculated as metal oxide, that is, for example, as Fe 2 C> 3 or CuO.
  • Preferred embodiments of the present invention include SCR catalysts with copper, iron or copper and iron exchanged zeolites or beta-type molecular sieves (BEA), chabazite type (CHA) or Levyne type (LEV). Corresponding zeolites or molecular sieves are
  • an SCR catalyst is between the catalyst, which is a carrier substrate of length L, a zeolite, palladium and platinum includes and the SCR catalyst injector for reducing agent.
  • the injection device can be chosen arbitrarily by the person skilled in the art, suitable devices being able to be taken from the literature (see, for example, T. Mayer, Solid-SCR System Based on Ammonium Carbamate, Dissertation, TU Kaiserslautern, 2005).
  • the ammonia can be introduced via the injection device as such or in the form of a compound in the exhaust stream from which ammonia is formed at ambient conditions.
  • the reducing agent or a precursor thereof is kept in stock in an entrained container which is connected to the injection device.
  • the SCR catalyst is preferably in the form of a coating on a supporting body, which may be a flow-through substrate or a wall-flow filter and may consist, for example, of silicon carbide, aluminum titanate or cordierite.
  • the support body itself may consist of the SCR catalyst and a matrix component as described above, that is, in extruded form.
  • the powder thus obtained is
  • Example 1 is repeated with the difference that in step c) the amount of platinum applied corresponds to 0.1% by weight of the amount of palladium applied in step b).
  • the platinum loading is thus 0.085 g / ft 3 .
  • Example 1 is repeated with the difference that step c) was omitted.
  • Example 3 is repeated with the difference that step c) was omitted.
  • Example 3 is repeated with the difference that step c) was omitted.
  • Example 1 is repeated with the difference that a zeolite of the structure type AEI is used.
  • Example 5 The catalyst obtained according to Example 1 is also coated in a further step by a conventional method also over its entire length with a washcoat containing platinum supported on alumina.
  • the washcoat loading of the second layer is 75 g / L, the platinum loading is 20 g / ft 3 .
  • the catalyst according to Example 5 is combined with a second coated flow-through substrate to form an exhaust system.
  • the second flow-through substrate is exchanged with a zeolite of the structure type chabazite exchanged with 3% by weight of copper (calculated as CuO).
  • the washcoat loading of the second flow substrate is 150 g / L.
  • the catalysts according to Examples 1, 2 and Comparative Example 1, and Example 3 and Comparative Example 2 are subjected to a NOx storage test with subsequent temperature-programmed desorption (TPD). This is done in a suitable model gas reactor by means of a so-called drill core with the dimensions 1 "x 3" (diameter x length) and a cell density of 400 cpsi and a wall thickness of 4.3 mil.
  • TPD temperature-programmed desorption
  • Lean phase a) is characterized in that at a
  • Storage phase b) differs from lean phase a) in that at a space velocity of 30,000 1 / h in addition to the three first-mentioned gases additionally 500 ppm of nitrogen oxide is present.
  • the core is baked for a period of 15 minutes at a temperature of 550 ° C under gas condition a) to give a begin empty level of the catalyst, then cooled to a temperature of 100 ° C.
  • gas condition b) for a period of 40 minutes at a temperature of 100 ° C.
  • gas condition a) is restored, simultaneously the temperature is increased at a rate of 60 K / min (temperature programmed desorption) until a final temperature of 550 ° C has been reached. This final temperature is maintained for an additional 15 minutes.
  • Comparative Example 1 desorbs a portion of the nitrogen oxide at about 200 ° C and a further significant part only between 400 and 500 ° C. Since this temperature range is barely reached in modern exhaust systems, this means that the catalyst according to Comparative Example 1, the stored nitrogen oxide is no longer completely desorbed and thus less storage capacity is available in a new cycle.
  • Example 3 and Comparative Example 2 store nitrogen oxide almost identically at 100 ° C. (storage phase). In contrast desorbed in the desorption of the catalyst of Example 3 at a temperature of about 150 ° C already the largest part of the nitrogen oxide, while the catalyst of Comparative Example 2 desorbs a significant proportion of the stored nitrogen only at about 400 ° C. In a following cycle, therefore, less storage capacity is available in the case of the catalyst of Comparative Example 2.

Abstract

Die vorliegende Erfindung betrifft die Verwendung eines Katalysators als Passiver Stickoxid-Adsorber, der ein Trägersubstrat, einen Zeolithen, Palladium und Platin umfasst, wobei Palladium in Mengen von 0,01 bis 10 Gew.-%, bezogen auf die Summe der Gewichte von Zeolith, Platin und Palladium und berechnet als Palladium-Metall, und Platin in Mengen von 0,1 bis 10 Gew.-%, bezogen auf das Gewicht des Palladiums und berechnet als Platin-Metall, vorliegen, sowie die Verwendung dieses Katalysators in Verbindung mit einem SCR- Katalysator in einem Abgassystem.

Description

VERWENDUNG EINES PALLADIUM-PLATIN-ZEOLITH-BASIERTEN KATALYSATORS ALS PASSIVER STICKOXID-ADSORBER ZUR ABGASREINIGUNG
Die vorliegende Erfindung betrifft die Verwendung eines mit Palladium und Platin belegten Zeolithen als passiver Stickoxid-Adsorber zur passiven Einlagerung von Stickoxiden aus dem Abgas eines Verbrennungsmotors.
Das Abgas von Kraftfahrzeugen, die mit mager betriebenen Verbrennungsmotoren, beispielsweise mit Dieselmotoren, betrieben werden, enthält neben Kohlenmonoxid (CO) und Stickoxiden (NOx) auch Bestandteile, die aus der unvollständigen Verbrennung des Kraftstoffs im Brennraum des Zylinders herrühren. Dazu gehören neben Rest-Kohlenwasserstoffen (HC), die meist ebenfalls überwiegend gasförmig vorliegen, Partikelemissionen, die auch als„Dieselruß" oder„Rußpartikel" bezeichnet werden. Dabei handelt es sich um komplexe Agglomerate aus überwiegend Kohlenstoff- haltigen Feststoff- Teilchen und einer anhaftenden Flüssigphase, die meist mehrheitlich aus längerkettigen Kohlenwasserstoff-Kondensaten besteht. Die auf den festen Bestandteilen anhaftende Flüssigphase wird auch als „Soluble Organic Fraction SOP' oder„Volatile Organic Fraction VOF" bezeichnet.
Zur Reinigung dieser Abgase müssen die genannten Bestandteile möglichst vollständig in unschädliche Verbindungen umgewandelt werden, was nur unter Einsatz geeigneter Katalysatoren möglich ist. Rußpartikel können sehr effektiv mit Hilfe von Partikelfiltern aus dem Abgas entfernt werden. Besonders bewährt haben sich Wandflussfilter aus keramischen Materialien. Diese sind aus einer Vielzahl von parallelen Kanälen aufgebaut, die durch poröse Wände gebildet werden. Die Kanäle sind wechselseitig an einem der beiden Enden des Filters verschlossen, so dass erste Kanäle gebildet werden, die an der ersten Seite des Filters offen und auf der zweiten Seite des Filters verschlossen sind, sowie zweite Kanäle, die an der ersten Seite des Filters verschlossen und auf der zweiten Seite des Filters offen sind . Das beispielsweise in die ersten Kanäle einströmende Abgas kann den Filter nur über die zweiten Kanäle wieder verlassen und muss zu diesem Zweck durch die porösen Wände zwischen den ersten und zweiten Kanälen durchfließen. Beim Durchtritt des Abgases durch die Wand werden die Partikel zurückgehalten.
Es ist bekannt, dass Partikelfilter mit katalytisch aktiven Beschichtungen versehen werden können. So beschreibt beispielsweise die EP1820561 AI die Beschichtung eines Dieselpartikelfilters mit einer Katalysatorschicht, die das Abbrennen der gefilterten Rußpartikel erleichtert. Ein bekanntes Verfahren zur Entfernung von Stickoxiden aus Abgasen in Gegenwart von Sauerstoff ist die selektive katalytische Reduktion mittels Ammoniak an einem geeigneten Katalysator (SCR- Verfahren). Bei diesem Verfahren werden die aus dem Abgas zu entfernenden Stickoxide mit Ammoniak als Reduktionsmittel zu Stickstoff und Wasser umgesetzt.
Als SCR-Katalysatoren können beispielsweise Eisen- und insbesondere Kupfer-ausgetauschte Zeolithe verwendet werden, siehe zum Beispiel WO2008/106519 AI, WO2008/118434 AI und WO2008/132452 A2.
SCR-Katalysatoren für die Umsetzung von Stickoxiden mit Ammoniak enthalten keine Edelmetalle, insbesondere kein Platin und kein Palladium. In Gegenwart dieser Metalle würde nämlich die Oxidation von Ammoniak mit Sauerstoff zu Stickoxiden bevorzugt ablaufen und die SCR-Reaktion
(Umsetzung von Ammoniak mit Stickoxid) ins Hintertreffen geraten. Soweit in der Literatur bisweilen von Platin- bzw. Palladium-ausgetauschten
Zeolithen als„SCR-Katalysatoren" die Rede ist, so bezieht sich dies nicht auf die N H3-SCR-Reaktion, sondern auf die Reduktion von Stickoxiden mittels Kohlenwasserstoffen. Allerdings ist letztgenannte Umsetzung nur wenig selektiv, so dass sie statt„SCR-Reaktion" zutreffender„HC-DeNOx- Reaktion" genannt wird .
Der als Reduktionsmittel verwendete Ammoniak kann durch Eindosierung einer Ammoniakvorläuferverbindung, wie beispielsweise Harnstoff,
Ammoniumcarbamat oder Ammoniumformiat, in den Abgasstrang und anschließende Hydrolyse verfügbar gemacht werden. SCR-Katalysatoren haben den Nachteil, dass sie erst ab einer Abgastemperatur von ca. 180 bis 200°C arbeiten und somit Stickoxide, die in der Kaltstartphase des Motors gebildet werden, nicht umsetzen. Zur Entfernung von Stickoxiden aus dem Abgas sind daneben sogenannte Stickoxid-Speicherkatalysatoren, für die auch der Begriff„Lean NOx Trap" oder„LN~P üblich ist, bekannt. Deren Reinigungswirkung beruht darauf, dass in einer mageren Betriebsphase des Motors die Stickoxide vom
Speichermaterial des Speicherkatalysators vorwiegend in Form von Nitraten gespeichert werden und diese in einer darauf folgenden fetten Betriebsphase des Motors wieder zersetzt und die so freiwerdenden Stickoxide mit den reduzierenden Abgasanteilen am Speicherkatalysator zu Stickstoff, Kohlendioxid und Wasser umgesetzt werden. Diese Arbeitsweise ist beispielsweise in der SAE-Schrift SAE 950809 beschrieben.
Als Speichermaterialien kommen insbesondere Oxide, Carbonate oder
Hydroxide von Magnesium, Calcium, Strontium, Barium, der Alkalimetalle, der Seltenerdmetalle oder Mischungen davon in Frage. Diese Verbindungen sind aufgrund ihrer basischen Eigenschaften in der Lage, mit den sauren Stickoxiden des Abgases Nitrate zu bilden und sie auf diese Weise zu speichern. Sie sind zur Erzeugung einer großen Wechselwirkungsfläche mit dem Abgas in möglichst hoher Dispersion auf geeigneten Trägermaterialien abgeschieden. Stickoxid-Speicherkatalysatoren enthalten darüber hinaus in der Regel Edelmetalle wie Platin, Palladium und/oder Rhodium als
katalytisch aktive Komponenten. Deren Aufgabe ist es einerseits, unter mageren Bedingungen NO zu NO2, sowie CO und HC zu CO2 und H2O zu oxidieren und andererseits während der fetten Betriebsphasen, in denen der Stickoxid-Speicherkatalysator regeneriert wird, freigesetztes NO2 zu
Stickstoff zu reduzieren.
Moderne Stickoxid-Speicherkatalysatoren sind beispielsweise in EP0885650 A2, US2009/320457, WO2012/029050 AI und WO2016/020351 AI beschrieben. Es ist bereits bekannt, Rußpartikelfilter und Stickoxid-Speicherkatalysatoren zu kombinieren. So beschreiben beispielsweise die EP1420 149 A2 und die US2008/141661 Systeme aus einem Dieselpartikelfilter und einem abströmseitig angeordneten Stickoxid-Speicherkatalysator.
Darüber hinaus ist bereits in beispielsweise EP1393069 A2, EP1433519 AI, EP2505803 A2 und US2014/322112 vorgeschlagen worden, Partikelfilter mit Stickoxid-Speicherkatalysatoren zu beschichten.
Die US2014/322112 beschreibt eine Zonierung der Beschichtung des Partikelfilters mit Stickoxid-Speicherkatalysator dergestalt, dass sich eine Zone ausgehend vom anströmseitigen Ende des Partikelfilters in den
Eingangskanälen und eine andere Zone ausgehend vom abströmseitigen Ende des Partikelfilters in den Ausgangskanälen befindet.
Die in der SAE-Schrift SAE 950809 beschriebene Arbeitsweise, bei der Stickoxide von einem Stickoxid-Speicherkatalysator in einer mageren
Betriebsphase des Motors gespeichert und in einer darauf folgenden fetten Betriebsphase wieder freigesetzt werden, wird auch als aktive Stickoxid- Speicherung bezeichnet.
Daneben ist auch ein als passive Stickoxid-Speicherung bekanntes
Verfahren beschrieben worden. Dabei werden Stickoxide in einem ersten Temperaturbereich gespeichert und in einem zweiten Temperaturbereich wieder freigesetzt, wobei der zweite Temperaturbereich bei höheren
Temperaturen liegt als der erste Temperaturbereich. Zur Durchführung dieses Verfahrens werden passive Stickoxid-Speicherkatalysatoren verwendet, die auch als PNA (für„passive NOx-Adsorber") bezeichnet werden.
Mittels passiver Stickoxid-Speicherkatalysatoren können Stickoxide insbesondere bei Temperaturen unter 200°C, bei denen ein SCR-Katalysator seine Betriebstemperatur noch nicht erreicht hat, gespeichert und wieder freigesetzt werden, sobald der SCR-Katalysator betriebsbereit ist. Durch die Zwischenspeicherung der vom Motor emittierten Stickoxide unterhalb von 200°C und deren konzertierter Freisetzung oberhalb von 200°C kann also eine gesteigerte Gesamt-Stickoxid-Umsetzung des Abgasnachbehandlungssystems realisiert werden.
Als passiver Stickoxid-Speicherkatalysator ist auf Ceroxid geträgertes Palladium beschrieben worden, siehe zum Beispiel WO2008/047170 AI und WO2014/184568 AI, das gemäß WO2012/071421 A2 und WO2012/156883 AI auch auf einen Partikelfilter beschichtet werden kann.
Aus WO2012/166868 AI ist bekannt, als passiven Stickoxid-Speicherkatalysator einen Zeolithen zu verwenden, der beispielsweise Palladium und ein weiteres Metall, wie zum Beispiel Eisen, enthält.
Die WO2015/085303 AI offenbart passive Stickoxid-Speicherkatalysatoren, die ein Edelmetall und ein kleinporiges Molekularsieb mit einer maximalen Ringgröße von acht tetraedrischen Atomen enthalten. Moderne und zukünftige Dieselmotoren werden immer effizienter, wodurch auch die Abgastemperaturen sinken. Parallel dazu werden die Gesetzgebungen hinsichtlich des Umsatzes von Stickoxiden kontinuierlich strenger. Dies führt dazu, dass SCR-Katalysatoren alleine nicht mehr ausreichen, um die Stickoxid-Grenzwerte einzuhalten. Es besteht insbesondere weiter Bedarf nach technischen Lösungen, die gewährleisten, dass in der Kaltstartphase des Motors gebildete Stickoxide nicht in die Umwelt entweichen . Des Weiteren müssen technische Lösungen gewährleisten, dass gespeicherte Stickoxide im Betriebsfenster eines abströmseitigen SCR-Katalysators möglichst vollständig wieder freigesetzt (desorbiert) werden.
Es wurde nun gefunden, dass mit Palladium und Platin belegte Zeolithe hervorragende passive Stickoxidadsorbereigenschaften aufweisen.
Die vorliegende Erfindung betrifft demnach die Verwendung eines
Katalysators, der ein Trägersubstrat der Länge L und eine Beschichtung A umfassend einen Zeolithen, Palladium und Platin umfasst, wobei Palladium in Mengen von 0,01 bis 10 Gew.-%, bezogen auf die Summe der Gewichte von Zeolith, Platin und Palladium und berechnet als Palladium-Metall, und Platin in Mengen von 0,1 bis 10 Gew.-%, bezogen auf das Gewicht des Palladiums und berechnet als Platin-Metall vorliegen, als passiver Stickoxid- Adsorber, der Stickoxide in einem ersten Temperaturbereich speichert und in einem zweiten Temperaturbereich wieder freisetzt, wobei der zweite Temperaturbereich bei höheren Temperaturen liegt als der erste
Temperaturbereich.
Zeolithe sind zwei- oder dreidimensionale Strukturen, als deren kleinste Strukturen Si04- und AI04-Tetraeder angesehen werden können. Diese Tetraeder fügen sich zu größeren Strukturen zusammen, wobei jeweils zwei über ein gemeinsames Sauerstoffatom verbunden sind. Dabei können Ringe verschiedener Größe gebildet werden, beispielsweise Ringe aus vier, sechs oder auch neun tetraedrisch koordinierten Silizium- oder Aluminiumatomen. Die verschiedenen Zeolithtypen werden häufig über die größte Ringgröße definiert, weil diese Größe bestimmt, welche Gastmoleküle in die Zeolith- struktur eindringen können und welche nicht. Es ist geläufig, großporige Zeolithe mit einer maximalen Ringgröße von 12, mittelporige Zeolithe mit einer maximalen Ringgröße von 10 und kleinporige Zeolithe mit einer maximalen Ringgröße von 8 zu unterscheiden.
Zeolithe werden des Weiteren von der Strukturkommision der International Zeolite Association in Strukturtypen unterteilt, die jeweils mit einem Code aus drei Buchstaben belegt sind, siehe zum Beispiel Atlas of Zeolite
Framework Types, Elsevier, 5. Auflage, 2001. Die erfindungsgemäße Verwendung umfasst einen Zeolithen, der großporig, mittelporig oder kleinporig sein kann.
In einer Ausführungsform umfasst die erfindungsgemäße Verwendung einen Zeolithen, dessen größte Kanäle von 6 tetraedrisch koordinierten Atomen gebildet werden und der beispielsweise den Strukturtypen AFG, AST, DOH, FAR, FRA, GIU, LIO, LOS, MAR, MEP, MSO, MTN, NON, RUT, SGT, SOD, SVV, TOL oder UOZ angehört. Ein Zeolith vom Strukturtyp AFG ist Afghanit. Zeolithe vom Strukturtyp AST sind AIPO-16 und Octadecasil. Ein Zeolith vom Strukturtyp DOH ist
Docecasil 1H . Ein Zeolith vom Strukturtyp FAR ist Farneseit. Ein Zeolith vom Strukturtyp FRA ist Franzinit. Ein Zeolith vom Strukturtyp GIU ist
Giuseppettit. Ein Zeolith vom Strukturtyp LIO ist Liottit. Zeolithe vom
Strukturtyp LOS sind Losod und Bystrit. Ein Zeolith vom Strukturtyp MAR ist Marinellit. Ein Zeolith vom Strukturtyp MEP ist Melanophlogit. Zeolithe vom Strukturtyp MSO sind MCM-61 und Mu-13. Zeolithe vom Strukturtyp MTN sind ZSM-39, CF-4, Docecasil-3C und Holdstit. Zeolithe vom Strukturtyp NON sind Nonasil, CF-3 und ZSM-51. Zeolithe vom Strukturtyp RUT sind RUB-10 und Nu-1. Ein Zeolith vom Strukturtyp SGT ist Sigma-2. Zeolithe vom Strukturtyp SOD sind Sodalith, AIPO-20, Bicchulit, Danalit, G,
Genthelvit, Hauyn, Herlvin, Nosean, SIZ-9, TMA und Tugtupit. Ein Zeolith vom Strukturtyp UOZ ist IM-10.
Die erfindungsgemäße Verwendung umfasst bevorzugt einen Zeolithen, dessen größte Kanäle von 6 tetraedrisch koordinierten Atomen gebildet werden und der dem Strukturtyp SOD angehört.
Besonders geeignete Zeolithe, die dem Strukturtyp SOD angehören sind literaturbekannt. So ist zum Beispiel die Synthese von AIPO-20 in US
4,310,440 beschrieben.
In einer anderen Ausführungsform umfasst die erfindungsgemäße
Verwendung einen Zeolithen, dessen größte Kanäle von 8 tetraedrisch koordinierten Atomen gebildet werden und der den Strukturtypen ABW, ACO, AEI, AEN, AFN, AFT, AFV, AFX, ANA, APC, APD, ATN, ATT, ATV, AVL, AWO, AWW, BCT, BIK, BRE, CAS, CDO, CHA, DDR, DFT, EAB, EDI, EEI, EPI, ERI, ESV, ETL, GIS, GOO, IFY, IHW, IRN, ITE, ITW, JBW, JNT, JOZ, JSN, JSW, KFI, LEV, -LIT, LTA, LTJ, LTN, MER, MON, MTF, MWF, NPT, NSI, OWE, PAU, PHI, RHO, RTH, RWR, SAS, SAT, SAV, SBN, SIV, THO, TSC, UEI, UFI, VNI, YUG oder ZON angehört.
Ein Zeolith vom Strukturtyp ABW ist Li-A. Ein Zeolith vom Strukturtyp ACO ist ACP-1. Zeolithe vom Strukturtyp AEI sind SAPO-18, SIZ-8 und SSZ-39. Zeolithe vom Strukturtyp AEN sind AIPO-53, IST-2, JDF-2, MCS-1, Mu-10 und UiO-12-500. Ein Zeolith vom Strukturtyp AFT ist AIPO-52. Zeolithe vom Strukturtyp AFX sind SAPO-56 und SSZ-16. Zeolithe vom Strukturtyp ANA sind Analcim, AIPO-24, Leucit, Na-B, Pollucit undf Wairakit. Zeolithe vom Strukturtyp APC sind AIPO-C und AIPO-H3. Zeolithe vom Strukturtyp APD sind AIPO-D und APO-CJ3. Zeolithe vom Strukturtyp ATN sind MAPO-39 und SAPO-39. Zeolithe vom Strukturtyp ATT sind AIPO-33 und RMA-3. Ein Zeolith vom Strukturtyp ATV ist AIPO-25. Ein Zeolith vom Strukturtyp AWO ist AIPO-21. Ein Zeolith vom Strukturtyp AWW ist AIPO-22. Zeolithe vom Strukturtyp BCT sind Metavariscit und Svyatoslavit. Ein Zeolith vom
Strukturtyp BIK ist Bikitait. Zeolithe vom Strukturtyp BRE sind Brewsterit und CIT-4. Ein Zeolith vom Strukturtyp CAS ist EU-20b. Zeolithe vom Strukturtyp CDO sind CDS-1, MCM-65 und UZM-25. Zeolithe vom
Strukturtyp CHA sind AIPO-34, Chabazit, DAF-5, Linde-D, Linde-R, LZ-218, Phi, SAPO-34, SAPO-47, SSZ-13, UiO-21, Willherndersonit, ZK-14 und ZYT- 6. Zeolithe vom Strukturtyp DDR sind Sigma-1 und ZSM-58. Zeolithe vom Strukturtyp DFT sind DAF-2 und ACP-3. Zeolithe vom Strukturtyp EAB sind TMA-E und Bellbergit. Zeolithe vom Strukturtyp EDI sind Edingtonit, K-F, Linde F und Zeolite N . Zeolithe vom Strukturtyp ERI sind Erionit, AIPO-17, Linde T, LZ-220, SAPO-17 und ZSM-34. Ein Zeolith vom Strukturtyp ESV ist ERS-7. Zeolithe vom Strukturtyp GIS sind Gismondin, Amicit, Garronit, Gobbinsit, MAPO-43, Na-Pl, Na-P2 und SAPO-43. Ein Zeolith vom
Strukturtyp IHW ist ITQ-3. Zeolithe vom Strukturtyp ITE sind ITQ-3, Mu-14 und SSZ-36. Ein Zeolith vom Strukturtyp ITW ist ITQ-12. Zeolithe vom Strukturtyp JBW sind Na-J und Nephelin. Zeolithe vom Strukturtyp KFI sind ZK-5, P und Q. Zeolithe vom Strukturtyp LEV sind Levyne, Levynit, AIP-35, LZ-132, NU-3, SAPO-35 und ZK-20. Ein Zeolith vom Strukturtyp -LIT ist Lithosit. Zeolithe vom Strukturtyp LTA sind Linde Typ A, Alpha, ITQ-29, LZ- 215, N-A, UZM-9, SAPO-42, ZK-21, ZK-22 und ZK-4. Zeolithe vom
Strukturtyp LTN sind Linde Typ N und NaZ-21. Zeolithe vom Strukturtyp MER sind Merlinoit, K-M, Linde W und Zeolite W. Zeolithe vom Strukturtyp MTF sind MCM-35 und UTM-1. Zeolithe vom Strukturtyp NSI sind Nu-6(2) und EU-20. Zeolithe vom Strukturtyp OWE sind UiO-28 und ACP-2. Zeolithe vom Strukturtyp PAU sind Paulimgit und ECR-18. Zeolithe vom Strukturtyp PHI sind Philippsit, DAF-8, Harmotom, Wellsit und ZK-19. Zeolithe vom Strukturtyp RHO sind Rho und LZ-214. Zeolithe vom Strukturtyp RTH sind RUB-13, SSZ— 36 und SSZ-50. Ein Zeolith vom Strukturtyp RWR ist RUB- 24. Zeolithe vom Strukturtyp SAS sind STA-6 und SSZ-73. Ein Zeolith vom Strukturtyp SAT ist STA-2. Zeolithe vom Strukturtyp SBN sind UCSB-89 und SU-46. Ein Zeolith vom Strukturtyp SIV ist SIZ-7. Ein Zeolith vom
Strukturtyp THO ist Thomsonit. Ein Zeolith vom Strukturtyp UEI ist Mu-18. Ein Zeolith vom Strukturtyp UFI ist UZM-5. Ein Zeolith vom Strukturtyp VNI ist VPI-9. Zeolithe vom Strukturtyp YUG sind Yugawaralit und Sr-Q. Zeolithe vom Strukturtyp ZON sind ZAPO-M l und UiO-7.
Die erfindungsgemäße Verwendung umfasst bevorzugt einen Zeolithen, dessen größte Kanäle von 8 tetraedrisch koordinierten Atomen gebildet werden und der dem Strukturtyp ABW, AEI, AFX, CHA, ERI, ESV, KFI, LEV oder LTA angehört.
Die Synthese von Zeolithen des Strukturtyps AEI ist beispielsweise in US 2015/118150 beschrieben, die von SSZ-39 in der US 5,958,370. Zeolithe vom Strukturtyp AFX sind aus WO2016/077667 AI bekannt. Zeolithe vom Strukturtyp CHA sind in der Literatur umfangreich beschrieben, siehe zum Beispiel US 4,544,538 für SSZ-13. ZK-5, das dem Strukturtyp KFI angehört ist zum Beispiel in EP288293 A2 beschrieben. Zeolithe vom Strukturtyp LEV sind zum Beispiel in EP40016 AI, EP255770A2 und EP3009400A1
beschrieben. Zeolithe, die dem Strukturtyp LTA angehören sind
beispielsweise als SAPO-42, ZK-4, ZK-21 und ZK-22 literaturbekannt. So ist zum Beispiel die Synthese von ZK-4 beschrieben von Leiggener et al. in Material Syntheses, Springer Vienna, 2008 (Herausgeber, Schubert, Hüsing, Laine), Seiten 21-28). ZK-21 ist in US 3,355,246 und SAPO-42 in
US2014/170062 beschrieben
In einer anderen Ausführungsform umfasst die erfindungsgemäße
Verwendung einen Zeolithen, dessen größte Kanäle von 9 tetraedrisch koordinierten Atomen gebildet werden und der beispielsweise den
Strukturtypen -CHI, LOV, NAB, NAT, RSN, STT oder VSV angehört. Ein Zeolith vom Strukturtyp -CHI ist Chiavennit. Ein Zeolith vom
Strukturtyp LOV ist Lovdarit. Ein Zeolith vom Strukturtyp NAB ist Nabesit. Zeolithe vom Strukturtyp NAT sind Natrolit, Gonnardit, Mesolit, Metanatrolit, Paranatrolit, Tetranatrolite und Scolecit. Ein Zeolith vom Strukturtyp RSN ist RUB-17. Ein Zeolith vom Strukturtyp STT ist SSZ-23. Zeolithe vom
Strukturtyp VSV sind Gaultit, VPI-7 und VSV-7.
Die erfindungsgemäße Verwendung umfasst bevorzugt einen Zeolithen, dessen größte Kanäle von 9 tetraedrisch koordinierten Atomen gebildet werden und der dem Strukturtyp STT angehört. Ein besonders geeigneter Zeolith vom Strukturtyp STT ist SSZ-23. SSZ-23 ist in der US 4,859,442 beschrieben und kann nach den dort angegebenen Herstellungsverfahren erhalten werden.
In einer anderen Ausführungsform umfasst die erfindungsgemäße
Verwendung einen Zeolithen, dessen größte Kanäle von 10 tetraedrisch koordinierten Atomen gebildet werden und der beispielsweise den
Strukturtypen FER, MEL, MFI, MTT, MWW oder SZR angehört.
Zeolithe, die dem Strukturtyp FER angehören sind literaturbekannt. So ist ZSM-35 in US 4,107,196, NU-23 in EP 103981 AI, FU-9 in EP 55529 AI, ISI-6 in US 4,695,440 und Ferrierit zum Beispiel in US 3,933,974, US 4,000,248 und US 4,251,499 beschrieben.
Zeolithe, die dem Strukturtyp MEL angehören sind literaturbekannt. So ist ZSM-11 in Nature 275, 119-120, 1978, SSZ-46 in US 5,968,474 und TS-2 in BE 1001038 beschrieben.
Zeolithe, die dem Strukturtyp MTT angehören sind literaturbekannt. So ist ZSM-23 in US 4,076,842, EU-13 in US 4,705,674 und ISI-4 in US 4,657,750 beschrieben. Daneben befasst sich die US 5,314,674 mit der Synthese von Zeolithen des Strukturtyps MTT.
Zeolithe, die dem Strukturtyp MFI angehören sind zum Beispiel unter den Namen ZSM-5, ZS-4, AZ-1, FZ-1, LZ-105, NU-4, NU-5, TS-1, TS, USC-4 und ZBH literaturbekannt. So ist ZSM-5 zum Beispiel in US 3,702,886 und US 4,139,600 beschrieben. Zeolithe, die dem Strukturtyp MWW angehören sind literaturbekannt. So ist SSZ-25 in US 4,826,667, MCM-22 in Zeolites 15, Issue 1, 2-8,1995, ITQ-1 in US 6,077,498 und PSH-3 in US 4,439,409 beschrieben.
Zeolithe, die dem Strukturtyp SZR angehören sind literaturbekannt. So ist SUZ-4 in J.Chem.Soc, Chem. Commun., 1993, 894-896 beschrieben.
Die erfindungsgemäße Verwendung umfasst bevorzugt einen Zeolithen, dessen größte Kanäle von 10 tetraedrisch koordinierten Atomen gebildet werden und der dem Strukturtyp FER angehört. In einer anderen Ausführungsform umfasst die erfindungsgemäße
Verwendung einen Zeolithen, dessen größte Kanäle von 12 tetraedrisch koordinierten Atomen gebildet werden und der beispielsweise den
Strukturtypen AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, IWR, IWV, IWW, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OSI, -RON, RWY, SAO, SBE, SBS, SBT, SFE, SFO, SOS, SSY, USI oder VET angehört.
Zeolithe vom Strukturtyp AFI sind AIPO-5, SSZ-24 und SAPO-5. Zeolithe vom Strukturtyp AFR sind SAPO-40 und AIPO-40. Ein Zeolith vom
Strukturtyp AFS ist MAPO-46. Ein Zeolith vom Strukturtyp ASV ist ASU-7. Zeolithe vom Strukturtyp ATO sind SAPO-31 und AIPO-31. Zeolithe vom Strukturtyp ATS sind SSZ-55 und AIPO-36. Zeolithe vom Strukturtyp BEA sind Beta und CIT-6. Zeolithe vom Strukturtyp BPH sind Linde Q, STA-5 und UZM-4. Zeolithe vom Strukturtyp CAN sind ECR-5, Davyn, Microsommit, Tiptopit und Vishnevit. Zeolithe vom Strukturtyp CON sind CIT-1, SS-26 und SSZ-33. Ein Zeolithe vom Strukturtyp DFO ist DAF-1. Zeolithe vom
Strukturtyp EMT sind EMC-2, CSZ-1, ECR-30, ZSM-20 und ZSM-3. Zeolithe vom Strukturtyp EON sind ECR-1 und TUN-7. Ein Zeolith vom Strukturtyp EZT ist EMM-3. Zeolithe vom Strukturtyp FAU sind Faujasit, LZ-210, SAPO- 37, CSZ-1, ECR-30, ZSM-20 und ZSM-3. Ein Zeolith vom Strukturtyp GME ist Gmelinit. Ein Zeolith vom Strukturtyp GON ist GUS-1. Zeolithe vom Strukturtyp IFR sind ITQ-4, MCM-58 und SSZ-42. Ein Zeolith vom
Strukturtyp ISV ist ITQ-7. Ein Zeolith vom Strukturtyp IWR ist ITQ-24. Ein Zeolith vom Strukturtyp IWV ist ITQ-27. Ein Zeolith vom Strukturtyp IWW ist ITQ-22. Zeolithe vom Strukturtyp LTL sind Linde Typ L und LZ-212.
Zeolithe vom Strukturtyp MAZ sind Mazzit, LZ-202, Omega und ZSM-4. Zeolithe vom Strukturtyp MEI sind ZSM-18 und ECR-40. Zeolithe vom Strukturtyp MOR sind Mordenit, LZ-211 und Na-D. Ein Zeolith vom
Strukturtyp MOZ ist ZSM-10. Ein Zeolithe vom Strukturtyp MSE ist MCM-68. Zeolithe vom Strukturtyp MTW sind ZSM-12, CZH-5, NU-13, TPZ-12, Theta- 3 und VS-12. Zeolithe vom Strukturtyp OFF sind Offretit, LZ-217, Linde T und TMA-O. Ein Zeolith vom Strukturtyp OSI ist UiO-6. Ein Zeolith vom Strukturtyp RWY ist UCR-20. Ein Zeolith vom Strukturtyp SAO ist STA-1. Ein Zeolith vom Strukturtyp SFE ist SSZ-48. Ein Zeolith vom Strukturtyp SFO ist SSZ-51. Zeolithe vom Strukturtyp SOS sind SU-16 und FJ-17. Ein Zeolith vom Strukturtyp SSY ist SSZ-60. Ein Zeolith vom Strukturtyp USI ist IM-6. Ein Zeolith vom Strukturtyp VET ist VPI-8.
Die erfindungsgemäße Verwendung umfasst bevorzugt einen Zeolithen, dessen größte Kanäle von 12 tetraedrisch koordinierten Atomen gebildet werden und der dem Strukturtyp BEA oder FAU angehört.
Zeolithe der Strukturtypen BEA und FAU, sowie deren Herstellung sind in der Literatur ausführlich beschrieben . Die erfindungsgemäße Verwendung umfasst ganz besonders bevorzugt einen Zeolithen der dem Strukturtyp ABW, AEI, AFX, BEA, CHA, ERI, ESV, FAU, FER, KFI, LEV, LTA, MFI, SOD oder STT angehört.
Weiterhin umfasst die erfindungsgemäße Verwendung ganz besonders bevorzugt einen Zeolithen der dem Strukturtyp MWW angehört.
Der erfindungsgemäß verwendete Katalysator umfasst Palladium und Platin. Beide liegen dabei bevorzugt als Kation in der Zeolithstruktur vor, das heißt in ionenausgetauschter Form. Sie können aber auch ganz oder teilweise als Metall und/oder als Oxid in der Zeolith-Struktur und/oder auf der
Oberfläche der Zeolithstruktur vorliegen. Das Palladium liegt bevorzugt in Mengen von 0,1 bis 5 Gew.-% und besonders bevorzugt 0,5 bis 3 Gew.-%, bezogen auf die Summe der Gewichte von Zeolith, Platin und Palladium und berechnet als Palladium- Metall, vor.
Platin liegt bevorzugt in Mengen von 1 bis 5 Gew.-% und ganz besonders bevorzugt von 0,5 bis 1,5 Gew.-%, bezogen auf das Gewicht des Palladiums und berechnet als Platin-Metall, vor.
Der erfindungsgemäß verwendete Katalysator umfasst in einer
Ausführungsform außer Palladium und Platin kein weiteres Metall, insbesondere weder Kupfer, noch Eisen.
In einer bevorzugten Ausführungsform umfasst der erfindungsgemäß verwendete Katalysator einen mit 0,5 bis 3 Gew.-% Palladium, bezogen auf die Summe der Gewichte von Zeolith, Platin und Palladium und berechnet als Palladium-Metall, und 0,5 bis 5 Gew.-% Platin, bezogen auf das Gewicht des Palladiums und berechnet als Platin-Metall, belegter, insbesondere ionenausgetauschter, Zeolithen vom Strukturtyp ABW, AEI, AFX, BEA, CHA, ERI, ESV, FAU, FER, KFI, LEV, LTA, MFI, SOD oder STT.
Der erfindungsgemäß verwendete Katalysator umfasst einen Tragkörper. Dieser kann ein Durchflusssubstrat oder ein Wandflussfilter sein.
Ein Wandflussfilter ist ein Tragkörper, der Kanäle der Länge L umfasst, die sich parallel zwischen einem ersten und einem zweiten Ende des
Wandflussfilters erstrecken, die abwechselnd entweder am ersten oder am zweiten Ende verschlossen sind und die durch poröse Wände getrennt sind . Ein Durchflusssubstrat unterscheidet sich von einem Wandflussfilter insbesondere darin, dass die Kanäle der Länge L an ihren beiden Enden offen sind.
Wandflussfilter weisen in unbeschichtetem Zustand beispielsweise
Porositäten von 30 bis 80, insbesondere 50 bis 75% auf. Ihre durchschnittliche Porengröße beträgt in unbeschichtetem Zustand beispielsweise 5 bis 30 Mikrometer. In der Regel sind die Poren des Wandflussfilters sogenannte offene Poren, das heißt sie haben eine Verbindung zur den Kanälen. Des Weiteren sind die Poren in der Regel untereinander verbunden. Dies ermöglicht einerseits die leichte Beschichtung der inneren Porenoberflächen und andererseits eine leichte Passage des Abgases durch die porösen Wände des Wandflussfilters.
Durchflusssubstrate sind dem Fachmann ebenso wie Wandflussfilter bekannt und sind am Markt erhältlich. Sie bestehen beispielsweise aus Silicium-Carbid, Aluminium-Titanat oder Cordierit.
Alternativ können auch Trägersubstrate verwendet werden, die aus gewellten Blättern aus inerten Materialien aufgebaut sind . Geeignete inerte Materialien sind zum Beispiel faserförmige Materialien mit einem
durchschnittlichen Faserdurchmesser von 50 bis 250 pm und einer durchschnittlichen Faserlänge von 2 bis 30 mm. Bevorzugt sind
faserförmige Materialien hitzebeständig und bestehen aus Siliziumdioxid, insbesondere aus Glasfasern.
Zur Herstellung solcher Trägersubstrate werden zum Beispiel Blätter aus den genannten Fasermaterialien in bekannter weise gewellt und die einzelnen gewellten Blätter zu einem zylindrischen monolithisch
strukturierten Körper mit den Körper durchziehenden Kanälen geformt. Vorzugsweise wird durch Aufschichten einer Anzahl der gewellten Blätter zu parallelen Schichten mit unterschiedlicher Orientierung der Wellung zwischen den Schichten ein monolithisch strukturierter Körper mit einer kreuzweisen Wellungsstruktur geformt. In einer Ausführungsform können zwischen den gewellten Blättern ungewellte, d .h. flache Blätter angeordnet sein.
Trägersubstrate aus gewellten Blättern können direkt mit dem erfindungsgemäßen Katalysator beschichtet werden, vorzugsweise werden sie aber zunächst mit einem inerten Material, zum Beispiel Titandioxid, und erst dann mit dem katalytischen Material beschichtet. Zeolith und das Palladium und Platin liegen bei der erfindungsgemäßen Verwendung in Form der Beschichtung A auf dem Trägersubstrat vor. Dabei kann sich die Beschichtung über die gesamte Länge L des Trägersubstrates oder nur über einen Teil davon erstrecken.
Im Falle eines Wandflussfilters kann sich die Beschichtung A auf den Oberflächen der Eingangskanäle, auf den Oberflächen der Ausgangskanäle und/oder in der porösen Wand zwischen Ein- und Ausgangskanälen befinden.
Erfindungsgemäße verwendete Katalysatoren, bei denen der Zeolith und das Palladium und Platin in Form einer Beschichtung A auf dem
Trägersubstrat vorliegen, können nach dem Fachmann geläufigen Methoden hergestellt werden, so etwa nach den üblichen Tauchbeschichtungs- verfahren bzw. Pump- und Saug-Beschichtungsverfahren mit sich
anschließender thermischer Nachbehandlung (Kalzination). Dem Fachmann ist bekannt, dass im Falle von Wandflussfiltern deren durchschnittliche Porengröße und die mittlere Teilchengröße der zu beschichtenden
Materialien so aufeinander abgestimmt werden können, dass diese auf den porösen Wänden, die die Kanäle des Wandflussfilters bilden, liegen (auf- Wand-Beschichtung). Die mittlere Teilchengröße der zu beschichtenden Materialien kann aber auch so gewählt werden, dass sich diese in den porösen Wänden, die die Kanäle des Wandflussfilters bilden, befinden, dass also eine Beschichtung der inneren Porenoberflächen erfolgt (in-Wand- Beschichtung). In diesem Fall muss die mittlere Teilchengröße der der zu beschichtenden Materialien klein genug sein, um in die Poren des
Wandflussfilters einzudringen.
In einer Ausführungsform der vorliegenden Erfindung liegen der Zeolith und das Palladium und Platin über die gesamte Länge L des Trägersubstrats beschichtet vor, wobei sich keine weitere katalytisch aktive Beschichtung auf dem Trägersubstrat befindet. In einer anderen Ausführungsform der vorliegenden Erfindung kann das Trägersubstrat aber auch eine oder mehrere weitere katalytisch aktive Beschichtungen tragen. Beispielsweise kann das Trägersubstrat neben einer Beschichtung, die den Zeolithen und das Palladium und Platin umfasst eine weitere Beschichtung B umfassen, die oxidationskatalytisch aktiv ist.
Die oxidationskatalytisch aktive Beschichtung B umfasst beispielsweise Platin, Palladium oder Platin und Palladium auf einem Trägermaterial . Im letztgenannten Fall liegt das Masseverhältnis von Platin zu Palladium beispielsweise bei 2 : 1 bis 14 : 1.
Als Trägermaterial kommen alle dem Fachmann für diesen Zweck geläufigen Materialien in Betracht. Sie weisen eine BET-Oberfläche von 30 bis 250 m2/g, bevorzugt von 100 bis 200 m2/g auf (bestimmt nach DIN 66132) und sind insbesondere Aluminiumoxid, Siliziumoxid, Magnesiumoxid, Titanoxid, Zirkonoxid, sowie Mischungen oder Mischoxide von mindestens zwei dieser Materialien.
Bevorzugt sind Aluminiumoxid, Magnesium/Aluminium-Mischoxide und Aluminium/Silizium-Mischoxide. Sofern Aluminiumoxid verwendet wird, so ist es besonders bevorzugt stabilisiert, beispielsweise mit 1 bis 6 Gew.-%, insbesondere 4 Gew.-%, Lanthanoxid.
Es ist bevorzugt, dass die Beschichtung A nur einen einzigen Zeolithen enthält. Des Weiteren ist es bevorzugt, dass die Beschichtung B frei von Platin und/oder Palladium enthaltenden Zeolithen ist. Insbesondere enthält die Beschichtung A nur einen einzigen Zeolithen und die Beschichtung B ist frei von Platin und/oder Palladium enthaltenden Zeolithen.
Die den Zeolithen und das Palladium und Platin umfassende Beschichtung (Beschichtung A) und die oxidationskatalytisch aktive Beschichtung
(Beschichtung B) können auf dem Trägersubstrat in verschiedener Weise angeordnet sein. Ist das Trägersubstrat ein Durchflusssubstrat so können beispielsweise beide Beschichtungen über die gesamte oder nur über einen Teil der Länge L des Trägersubstrats beschichtet vorliegen. Beispielsweise kann sich Beschichtung A ausgehend von einem Ende des Tragkörpers auf 10 bis 80% seiner Länge L und Beschichtung B ausgehend vom anderen Ende des Tragkörpers 10 bis 80% seine Länge U erstrecken. Es kann in diesem Fall sein, dass L = LA + LB gilt, wobei LA die Länge der Beschichtung A und LB die Länge der Beschichtung B ist. Es kann aber auch L < LA + LB gelten. In diesem Fall überlappen sich die Beschichtungen A und B. Schließlich kann auch L > LA + LB gelten, wenn ein Teil des Tragkörpers frei von Beschichtungen bleibt. Im letztgenannten Fall bleibt zwischen den Beschichtungen A und B ein Spalt, der mindestens 0,5 cm lang ist, also beispielsweise 0,5 bis 1 cm.
Die Beschichtungen A und B können aber auch beide über die gesamte Länge L beschichtet sein. In diesem Fall kann beispielsweise die
Beschichtung B direkt auf dem Trägersubstrat und die Beschichtung A auf Beschichtung B vorliegen. Alternativ kann auch die Beschichtung A direkt auf dem Trägersubstrat und die Beschichtung B auf Beschichtung A vorliegen.
Es ist darüber hinaus möglich, dass sich eine Beschichtung über die gesamte Länge des Tragkörpers erstreckt und die andere nur über einen Teil davon.
In einer bevorzugten Ausführungsform liegt ein mit 0,5 bis 3 Gew.-% Palladium, bezogen auf die Summe der Gewichte von Zeolith, Platin und Palladium und berechnet als Palladium-Metall, und 0,5 bis 5 Gew.-% Platin, bezogen auf das Gewicht des Palladiums und berechnet als Platin-Metall, belegter, insbesondere ionenausgetauschter, Zeolith vom Strukturtyp ABW, AEI, AFX, BEA, CHA, ERI, ESV, FAU, FER, KFI, LEV, LTA, MFI, SOD oder STT direkt auf dem Trägersubstrat über dessen gesamte Länge L und auf dieser Beschichtung liegt eine Platin oder Platin und Palladium im Masseverhältnis von 2 : 1 bis 14: 1 enthaltende Beschichtung ebenfalls über die gesamte Länge L.
Insbesondere liegt dabei die untere Schicht in einer Menge von 50 bis 250 g/l Trägersubstrat und die obere Schicht in einer Menge von 50 bis 100 g/l Trägersubstrat vor.
Ist das Trägersubstrat ein Wandflussfilter, so können sich die
Beschichtungen A und B in analoger Weise wie oben für Durchflusssubstrate beschrieben über die gesamte Länge L des Wandflussfilters oder nur über einen Teil davon erstrecken. Daneben können sich die Beschichtungen auf den Wänden der Eingangskanäle, auf den Wänden der Ausgangskanäle oder in den Wänden zwischen Ein- und Ausgangskanälen liegen. In einer anderen Ausführungsform der vorliegenden Erfindung ist das
Trägersubstrat aus dem Zeolithen, Palladium und Platin, sowie einer Matrixkomponente gebildet.
Trägersubstrate, Durchflusssubstrate ebenso wie Wandflussfilter, die nicht nur aus inertem Material, wie beispielsweise Cordierit bestehen, sondern die daneben auch ein katalytisch aktives Material enthalten, sind dem
Fachmann bekannt. Zu ihrer Herstellung wird eine Mischung aus
beispielsweise 10 bis 95 Gew.-% inerter Matrixkomponente und 5 bis 90 Gew.-% katalytisch aktiven Materials nach an sich bekannten Verfahren extrudiert. Als Matrixkomponenten können dabei alle auch sonst zur
Herstellung von Katalysatorsubstraten verwendeten inerten Materialien verwendet werden. Es handelt sich dabei beispielsweise um Silikate, Oxide, Nitride oder Carbide, wobei insbesondere Magnesium-Aluminium-Silikate bevorzugt sind . Das extrudierte Trägersubstrat, das den Zeolithen, sowie Palladium und Platin umfasst, kann in Ausführungsformen der vorliegenden Erfindung mit einer oder mehreren katalytisch aktiven Beschichtungen beschichtet sein, beispielsweise mit der oben beschriebenen oxidationskatalytisch aktiven Beschichtung.
Der Katalysator eignet sich in hervorragender Weise zur Verwendung als passiver Stickoxidspeicherkatalysator, d.h. er vermag bei Temperaturen von unter 200°C Stickoxide einzuspeichern und diese bei Temperaturen von über 200°C wieder auszuspeichern. Somit ist es in Kombination mit einem abströmseitigen SCR-Katalysator möglich, Stickoxide über den gesamten Temperaturbereich des Abgases, einschließlich der Kaltstarttemperaturen, wirkungsvoll umzusetzen.
Demnach ist in einer Ausführungsform der erfindungsgemäßen Verwendung der Katalysator Bestandteil eines Abgassystems, das einen SCR-Katalysator umfasst.
Der SCR-Katalysator kann prinzipiell ausgewählt sein aus allen in der SCR- Reaktion von Stickoxiden mit Ammoniak aktiven Katalysatoren,
insbesondere aus solchen, die dem Fachmann auf dem Gebiet der
Autoabgaskatalyse als gebräuchlich bekannt sind . Dies schließt
Katalysatoren vom Mischoxid-Typ ebenso ein, wie Katalysatoren auf Basis von Zeolithen, insbesondere von Übergangsmetall-ausgetauschten
Zeolithen, beispielsweise mit Kupfer, Eisen oder Kupfer und Eisen
ausgetauschten Zeolithen. In Ausführungsformen der vorliegenden Erfindung werden SCR-
Katalysatoren, die einen kleinporigen Zeolithen mit einer maximalen
Ringgröße von acht tetraedrischen Atomen und ein Übergangsmetall, beispielsweise Kupfer, Eisen oder Kupfer und Eisen, verwendet. Solche SCR- Katalysatoren sind beispielsweise in WO2008/106519 AI, WO2008/118434 AI und WO2008/132452 A2 beschrieben.
Daneben können aber auch groß- und mittelporige Zeolithe verwendet werden, wobei insbesondere solche vom Strukturtyp BEA in Frage kommen. So sind Eisen-BEA und Kupfer-BEA von Interesse. Besonders bevorzugte Zeolithe gehören den Gerüsttypen BEA, AEI, CHA, KFI, ERI, LEV, MER oder DDR an und sind besonders bevorzugt mit Kupfer, Eisen oder Kupfer und Eisen ausgetauscht.
Unter den Begriff Zeolithe fallen im Rahmen vorliegender Erfindung auch Molsiebe, die bisweilen auch als„zeolithähnliche" Verbindungen bezeichnet werden. Molsiebe sind bevorzugt, wenn sie einem der oben genannten Gerüsttypen angehören. Beispiele sind Silicaaluminiumphosphat-Zeolithe, die unter dem Begriff SAPO bekannt sind und Aluminiumphosphat-Zeolithe, die unter dem Begriff AIPO bekannt sind .
Auch diese sind insbesondere dann bevorzugt, wenn sie mit Kupfer, Eisen oder Kupfer und Eisen ausgetauscht sind . Bevorzugte Zeolithe sind weiterhin solche, die einen SAR (silica-to-alumina ratio)-Wert von 2 bis 100, insbesondere von 5 bis 50, aufweisen.
Die Zeolithe bzw. Molsiebe enthalten Übergangsmetall insbesondere in Mengen von 1 bis 10 Gew.-%, insbesondere 2 bis 5 Gew.-%, berechnet als Metalloxid, also beispielsweise als Fe2C>3 oder CuO.
Bevorzugte Ausführungsformen der vorliegenden Erfindung enthalten als SCR-Katalysatoren mit Kupfer, Eisen oder Kupfer und Eisen ausgetauschte Zeolithe oder Molsiebe vom Beta-Typ (BEA), Chabazit-Typ (CHA) oder vom Levyne-Typ (LEV). Entsprechende Zeolithe oder Molsiebe sind
beispielsweise unter den Bezeichnungen ZSM-5, Beta, SSZ-13, SSZ-62, Nu-3, ZK-20, LZ-132, SAPO-34, SAPO-35, AIPO-34 und AIPO-35 bekannt, siehe etwa US 6,709,644 und US 8,617,474. In einer Ausführungsform der erfindungsgemäßen Verwendung, die einen SCR-Katalysator einschließt, befindet sich zwischen dem Katalysator, der ein Trägersubstrat der Länge L, einen Zeolithen, Palladium und Platin umfasst und dem SCR-Katalysator eine Einspritzeinrichtung für Reduktionsmittel.
Die Einspritzvorrichtung kann vom Fachmann beliebig gewählt werden, wobei geeignete Vorrichtungen der Literatur entnommen werden können (siehe etwa T. Mayer, Feststoff-SCR-System auf Basis von Ammonium- carbamat, Dissertation, TU Kaiserslautern, 2005). Der Ammoniak kann über die Einspritzvorrichtung als solches oder in Form einer Verbindung in den Abgasstrom eingebracht werden, aus der bei den Umgebungsbedingungen Ammoniak gebildet wird . Als solche kommen beispielsweise wässrige Lösungen von Harnstoff oder Ammoniumformiat in Frage, ebenso wie festes Ammoniumcarbamat. In der Regel wird das Reduktionsmittel bzw. ein Vorläufer davon in einem mitgeführten Behälter, der mit der Einspritzvorrichtung verbunden ist, vorrätig gehalten. Der SCR-Katalysator liegt bevorzugt in Form einer Beschichtung auf einem Tragkörper vor, der ein Durchflusssubstrat oder ein Wandflussfilter sein und beispielsweise aus Silicium-Carbid, Aluminium-Titanat oder Cordierit bestehen kann.
Alternativ kann aber auch der Tragkörper selbst aus dem SCR-Katalysator und einer Matrixkomponente wie oben beschrieben bestehen, also in extrudierter Form vorliegen.
Beispiel 1
a) Ein Zeolith vom Typ SSZ-13 (Strukturtyp CHA, SAR = 14) wird mit 2 Gew.-% Palladium (aus kommerziell erhältlichem Palladium-Nitrat) imprägniert ("incipient wetness"). Das so erhaltene Pulver wird
anschließend Stufenweise bei 120 und 350°C getrocknet und bei 500 °C kalziniert. b) Das erhaltene Pd-haltige, kalzinierte Pulver wird in VE-Wasser
suspendiert, mit 8% eines kommerziell erhältlichen Binders auf Böhmit- Basis versetzt und mittels einer Kugelmühle gemahlen. Anschließend wird mit dem so erhaltenen Washcoat ein handelsübliches wabenförmiges Keramiksubstrat (Durchflusssubstrat) über dessen ganze Länge nach einem üblichen Verfahren beschichtet. Die Washcoat-Beladung beträgt 150 g/L, bezogen auf den Pd-haltigen Zeolithen (entspricht 162 g/L inkl . Binder), was einer Palladium-Beladung von 85 g/ft3 Pd entspricht. c) Der gemäß Schritt b) erhaltene Katalysator wird mit einer Pt-Nitrat- Lösung so imprägniert, dass die aufgebrachte Menge an Platin 1 Gew.-% der in Schritt b) aufgetragenen Menge am Palladium entspricht. Die Platin- Beladung beträgt somit 0,85 g/ft3 Pt. Schließlich wird bei 550 °C kalziniert. Beispiel 2
Beispiel 1 wird wiederholt mit dem Unterschied, dass in Schritt c) die aufgebrachte Menge an Platin 0,1 Gew.-% der in Schritt b) aufgetragenen Menge am Palladium entspricht. Die Platin-Beladung beträgt somit 0,085 g/ft3.
Vergleichsbeispiel 1
Beispiel 1 wird wiederholt mit dem Unterschied, dass auf Schritt c) verzichtet wurde. Beispiel 3
Beispiel 1 wird wiederholt mit dem Unterschied, dass ein Zeolith des Strukturtyps BEA (SAR = 10) verwendet wird.
Vergleichsbeispiel 2
Beispiel 3 wird wiederholt mit dem Unterschied, dass auf Schritt c) verzichtet wurde.
Beispiel 4
Beispiel 1 wird wiederholt mit dem Unterschied, dass ein Zeolith des Strukturtyps AEI verwendet wird .
Beispiel 5 Der gemäß Beispiel 1 erhaltene Katalysator wird in einem weiteren Schritt nach einem üblichen Verfahren ebenfalls über seine ganze Länge mit einem Washcoat beschichtet, der Platin geträgert auf Aluminiumoxid enthält. Die Washcoatbeladung der zweiten Schicht beträgt 75 g/L, die Platinbeladung beträgt 20 g/ft3.
Beispiel 6
Der Katalysator gemäß Beispiel 5 wird mit einem zweiten beschichteten Durchflusssubstrat zu einem Abgassystem kombiniert. Dabei ist das zweite Durchflusssubstrat mit einem mit 3 Gew.-% Kupfer (berechnet als CuO) ausgetauschten Zeolithen vom Strukturtyp Chabazit ausgetauscht. Die Washcoatbeladung des zweiten Durchflusssubstrates beträgt 150 g/L.
Vergleichsversuche
Die Katalysatoren gemäß Beispielen 1, 2 und Vergleichsbeispiel 1, sowie Beispiel 3 und Vergleichsbeispiel 2 werden einem NOx-Speichertest mit anschließender Temperatur-programmierter Desorption (TPD) unterzogen. Dies geschieht in einem geeigneten Modellgasreaktor mittels eines sogenannten Bohrkerns mit den Abmessungen 1" x 3" (Durchmesser x Länge) und einer Zelligkeit von 400 cpsi sowie einer Wandstärke von 4,3 mil.
Im Verlauf des Tests werden zwei verschiedene Gaszusammensetzungen angewendet:
a) Magerphase ohne NO und
b) Speicherphase mit NO.
Magerphase a) ist dadurch gekennzeichnet, dass bei einer
Raumgeschwindigkeit von 50.000 1/h die Gase Sauerstoff in 8 Vol.-%, Kohlendioxid in 10 Vol.-% und Wasser in 10 Vol.-% zugegen sind.
Speicherphase b) unterscheidet sich von Magerphase a) dadurch, dass bei einer Raumgeschwindigkeit von 30.000 1/h neben den drei erstgenannten Gasen zusätzlich 500 ppm Stickstoffoxid anwesend ist. Zu Beginn der Messung wird der Bohrkern für eine Dauer von 15 Minuten bei einer Temperatur von 550 °C unter Gasbedingung a) ausgeheizt, um mit einem leeren Füllstand des Katalysators zu beginnen, anschließend auf eine Temperatur von 100 °C gekühlt. Nun wird für eine Dauer von 40 Minuten bei einer Temperatur von 100 °C auf Gasbedingung b) geschaltet. Nach Ablauf dieser 40 min wird wieder auf Gasbedingung a) eingestellt, simultan wird die Temperatur mit einer Rate von 60 K/min gesteigert (Temperaturprogrammierte Desorption), bis eine Endtemperatur von 550 °C erreicht worden ist. Diese Endtemperatur wird für weitere 15 Minuten gehalten.
Die Ergebnisse sind in den Figuren 1 und 2 dargestellt.
Gemäß Figur 1 speichern die Katalysatoren der Beispiele 1, 2 und
Vergleichsbeispiel 1 bei 100°C (Speicherphase) Stickoxid nahezu identisch ein. In der Desorptionsphase zeigt sich, dass der Katalysator des
Vergleichsbeispiels 1 einen Teil des Stickoxids bei etwa 200°C und einen weiteren erheblichen Teil erst zwischen 400 und 500°C desorbiert. Da dieser Temperaturbereich in modernen Abgassystemen kaum mehr erreicht wird, bedeutet dies, dass der Katalysator gemäß Vergleichsbeispiel 1 das eingespeicherte Stickoxid nicht mehr vollständig desorbiert und somit in einem neuen Zyklus weniger Speicherkapazität zur Verfügung steht.
Demgegenüber desorbieren die Katalysatoren der Beispiele 1 und 2 das eingespeicherte Stickoxid schon bei niedrigeren Temperaturen. Damit steht in einem folgenden Zyklus mehr Speicherkapazität zur Verfügung.
Ein analoges Bild zeigt Figur 2. Die Katalysatoren des Beispiels 3 und des Vergleichsbeispiels 2 speichern bei 100°C (Speicherphase) Stickoxid nahezu identisch ein. Dagegen desorbiert in der Desorptionsphase der Katalysator des Beispiels 3 bei einer Temperatur von etwa 150°C bereits den größten Teil des Stickoxids, während der Katalysator des Vergleichsbeispiels 2 einen erheblichen Anteil des gespeicherten Stickoxids erst bei etwa 400°C desorbiert. In einem folgenden Zyklus steht somit im Falle des Katalysators des Vergleichsbeispiels 2 weniger Speicherkapazität zur Verfügung.

Claims

Patentansprüche
1. Verwendung eines Katalysators, der ein Trägersubstrat der Länge L und eine Beschichtung A umfassend einen Zeolithen, Palladium und Platin umfasst, wobei Palladium in Mengen von 0,01 bis 10 Gew.-%, bezogen auf die Summe der Gewichte von Zeolith, Platin und Palladium und berechnet als Palladium-Metall, und Platin in Mengen von 0,1 bis 10 Gew.-%, bezogen auf das Gewicht des Palladiums und berechnet als Platin-Metall, vorliegen als passiver Stickoxid-Adsorber, der Stickoxide in einem ersten
Temperaturbereich speichert und in einem zweiten Temperaturbereich wieder freisetzt, wobei der zweite Temperaturbereich bei höheren
Temperaturen liegt als der erste Temperaturbereich.
2. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass die größten Kanäle des Zeolithen von 6 tetraedrisch koordinierten Atomen gebildet werden und der Zeolith den Strukturtypen AFG, AST, DOH, FAR, FRA, GIU, LIO, LOS, MAR, MEP, MSO, MTN, NON, RUT, SGT, SOD, SVV, TOL oder UOZ angehört.
3. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass die größten Kanäle des Zeolithen von 8 tetraedrisch koordinierten Atomen gebildet werden und der Zeolith den Strukturtypen ABW, ACO, AEI, AEN, AFN, AFT, AFV, AFX, ANA, APC, APD, ATN, ATT, ATV, AVL, AWO, AWW, BCT, BIK, BRE, CAS, CDO, CHA, DDR, DFT, EAB, EDI, EEI, EPI, ERI, ESV, ETL, GIS, GOO, IFY, IHW, IRN, ITE, ITW, JBW, JNT, JOZ, JSN, JSW, KFI, LEV, - LIT, LTA, LTJ, LTN, MER, MON, MTF, MWF, NPT, NSI, OWE, PAU, PHI, RHO, RTH, RWR, SAS, SAT, SAV, SBN, SIV, THO, TSC, UEI, UFI, VNI, YUG oder ZON angehört.
4. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass die größten Kanäle des Zeolithen von 9 tetraedrisch koordinierten Atomen gebildet werden und der Zeolith den Strukturtypen -CHI, LOV, NAB, NAT, RSN, STT oder VSV angehört.
5. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass die größten Kanäle des Zeolithen von 10 tetraedrisch koordinierten Atomen gebildet werden und der Zeolith den Strukturtypen FER, MEL, MFI, MTT, MWW oder SZR angehört.
6. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass die größten Kanäle des Zeolithen von 12 tetraedrisch koordinierten Atomen gebildet werden und der Zeolith den Strukturtypen AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, IWR, IWV, IWW, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OSI, -RON, RWY, SAO, SBE, SBS, SBT, SFE, SFO, SOS, SSY, USI oder VET angehört.
7. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass der Zeolith dem Strukturtyp ABW, AEI, AFX, BEA, CHA, ERI, ESV, FAU, FER, KFI, LEV, LTA, MFI, SOD oder STT angehört.
8. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Palladium und das Platin als Kation in der Zeolith-Struktur vorliegen.
9. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass er einen mit 0,5 bis 3 Gew.-% Palladium, bezogen auf die Summe der Gewichte von Zeolith, Platin und Palladium und berechnet als Palladium-Metall, und 0,5 bis 5 Gew.-% Platin, bezogen auf das Gewicht des Palladiums und berechnet als Platin-Metall, belegten Zeolithen vom Strukturtyp ABW, AEI, AFX, BEA, CHA, ERI, ESV, FAU, FER, KFI, LEV, LTA, MFI, SOD oder STT umfasst.
10. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Trägersubstrat eine weitere katalytisch aktive Beschichtung B trägt, die eine oxidationskatalytisch aktive Beschichtung ist und Platin, Palladium oder Platin und Palladium auf einem Trägermaterial umfasst.
11. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sich ein mit 0,5 bis 3 Gew.-% Palladium, bezogen auf die Summe der Gewichte von Zeolith, Platin und Palladium und berechnet als Palladium-Metall, und 0,5 bis 5 Gew.-% Platin, bezogen auf das Gewicht des Palladiums und berechnet als Platin-Metall, belegter Zeolith vom Strukturtyp ABW, AEI, AFX, BEA, CHA, ERI, ESV, FAU, FER, KFI, LEV, LTA, MFI, SOD oder STT direkt auf dem Trägersubstrat über dessen gesamte Länge L erstreckt und sich auf dieser Beschichtung eine Platin oder Platin und Palladium im Masseverhältnis von 2 : 1 bis 14: 1 enthaltende Beschichtung über die gesamte Länge L befindet.
12. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Katalysator Bestandteil eines
Abgassystems ist, das einen SCR-Katalysator umfasst.
umfasst.
13. Verwendung gemäß Anspruch 12, dadurch gekennzeichnet, dass der
SCR-Katalysator ein Zeolith ist, der dem Gerüsttyp BEA, AEI, CHA, KFI, ERI, LEV, MER oder DDR angehört und der mit Kupfer, Eisen oder Kupfer und Eisen ausgetauscht ist.
EP18758623.5A 2017-08-31 2018-08-24 Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung Withdrawn EP3676001A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17188771 2017-08-31
PCT/EP2018/072869 WO2019042884A1 (de) 2017-08-31 2018-08-24 Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung

Publications (1)

Publication Number Publication Date
EP3676001A1 true EP3676001A1 (de) 2020-07-08

Family

ID=59923221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18758623.5A Withdrawn EP3676001A1 (de) 2017-08-31 2018-08-24 Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung

Country Status (6)

Country Link
US (1) US11161100B2 (de)
EP (1) EP3676001A1 (de)
JP (1) JP2020531241A (de)
KR (1) KR20200047651A (de)
CN (1) CN110740810A (de)
WO (1) WO2019042884A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045550A (ko) 2017-08-31 2020-05-04 우미코레 아게 운트 코 카게 배기 가스 정화용 팔라듐/제올라이트 기반 수동적 질소 산화물 흡착제 촉매
EP3616792A1 (de) * 2018-08-28 2020-03-04 Umicore Ag & Co. Kg Stickoxid-speicherkatalysator
CN114585438A (zh) * 2019-10-21 2022-06-03 巴斯夫公司 再生效率增强的低温NOx吸附剂
KR20220069375A (ko) * 2020-11-20 2022-05-27 현대자동차주식회사 탄화수소 산화용 제올라이트 촉매 및 이의 제조방법
FR3123006B1 (fr) * 2021-05-21 2023-06-02 Ifp Energies Now Synthese d’un catalyseur a base de zeolithe afx contenant du palladium pour l’adsorption des nox

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355246A (en) 1966-07-18 1967-11-28 Mobil Oil Corp Crystalline zeolite zk-21
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
GB1436524A (en) 1974-03-18 1976-05-19 British Petroleum Co Synthesis of zeolites
US3933974A (en) 1975-02-18 1976-01-20 Shell Oil Company Process for the preparation of ferrierite
CA1064890A (en) 1975-06-10 1979-10-23 Mae K. Rubin Crystalline zeolite, synthesis and use thereof
US4139600A (en) 1977-04-22 1979-02-13 Mobil Oil Corporation Synthesis of zeolite ZSM-5
US4107196A (en) 1977-12-07 1978-08-15 Dow Corning Corporation N-tertiarybutyl organosilylamides
NL7812162A (nl) 1978-12-14 1980-06-17 Shell Int Research Werkwijze voor de bereiding van ferrieriet.
EP0040016B1 (de) 1980-05-13 1984-09-12 Imperial Chemical Industries Plc Zeolith Nu-3
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
DE3170195D1 (en) 1980-12-19 1985-05-30 Ici Plc Zeolites
DE3117135A1 (de) 1981-04-30 1982-11-18 Bayer Ag, 5090 Leverkusen Kristallines alumosilicat, verfahren zu dessen herstellung sowie dessen verwendung zur katalytischen umwandlung von methanol und/oder dimethylether in kohlenwasserstoffe
US4544538A (en) 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
JPS5926924A (ja) 1982-07-30 1984-02-13 Res Assoc Petroleum Alternat Dev<Rapad> 結晶性シリケートの製造方法
EP0103981A1 (de) 1982-09-03 1984-03-28 Imperial Chemical Industries Plc Zeolithe
EP0108486B1 (de) 1982-10-05 1988-02-17 Imperial Chemical Industries Plc Herstellung von Zeolithen
DK84884A (da) 1983-03-07 1984-09-08 Res Ass Petroleum Alternat Dev Krystallinsk aluminiumsilicat og fremgangsmaade til fremstilling deraf
US4859442A (en) 1986-01-29 1989-08-22 Chevron Research Company Zeolite SSZ-23
US4826667A (en) 1986-01-29 1989-05-02 Chevron Research Company Zeolite SSZ-25
GB8618773D0 (en) 1986-07-31 1986-09-10 Ici Plc Zeolite synthesis
GB8709507D0 (en) 1987-04-22 1987-05-28 Exxon Chemical Patents Inc Zeolite zk-5
IT1216500B (it) 1988-03-23 1990-03-08 Eniricerche S P A Milano Enich Procedimento per la preparazione di materiali sintetici cristallini porosi costituiti da ossidi di silicio e titanio.
JP2909553B2 (ja) * 1989-10-18 1999-06-23 トヨタ自動車株式会社 排気ガス浄化用触媒及び排気ガスの浄化方法
FR2683519B1 (fr) 1991-11-08 1994-03-04 Elf Aquitaine Ste Nale Procede de synthese d'une zeolithe de type mtt, produits obtenus et leur application en adsorption et catalyse.
US5968474A (en) 1994-09-30 1999-10-19 Chevron U.S.A. Inc. Pure phase titanium-containing zeolite having MEL structure, process for preparing same, and oxidation processes using same as catalyst
ES2105982B1 (es) 1995-11-23 1998-07-01 Consejo Superior Investigacion Zeolita itq-1
DE19726322A1 (de) 1997-06-20 1998-12-24 Degussa Abgasreinigungskatalysator für Verbrennungsmotoren mit zwei katalytisch aktiven Schichten auf einem Tragkörper
US5958370A (en) 1997-12-11 1999-09-28 Chevron U.S.A. Inc. Zeolite SSZ-39
WO2002095398A1 (en) 2001-05-24 2002-11-28 University Of Florida Method and apparatus for detecting environmental smoke exposure
US6709644B2 (en) 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
JP2004162626A (ja) 2002-11-14 2004-06-10 Hitachi Ltd 排ガス浄化装置
DE10261620A1 (de) 2002-12-27 2004-07-29 Volkswagen Ag Partikelfilter mit NOx-Speicherkatalysatorfunktion
JP4835193B2 (ja) 2006-02-20 2011-12-14 マツダ株式会社 ディーゼルパティキュレートフィルタ
GB0620883D0 (en) 2006-10-20 2006-11-29 Johnson Matthey Plc Exhaust system for a lean-burn internal combustion engine
US8800268B2 (en) 2006-12-01 2014-08-12 Basf Corporation Zone coated filter, emission treatment systems and methods
US8580228B2 (en) 2006-12-27 2013-11-12 Chevron U.S.A. Inc. Treatment of cold start engine exhaust
CN101668589B (zh) 2007-02-27 2013-06-12 巴斯福催化剂公司 铜cha沸石催化剂
MY179762A (en) 2007-03-26 2020-11-12 Pq Corp Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
US20100290963A1 (en) 2007-04-26 2010-11-18 Johnson Matthey Public Limited Company Transition metal / zeolite scr catalysts
US20090196812A1 (en) 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
DE102008010388B4 (de) 2008-02-21 2015-04-16 Umicore Ag & Co. Kg Verfahren zur Beschichtung eines Dieselpartikelfilters und damit hergestelltes Dieselpartikelfilter
US8475752B2 (en) 2008-06-27 2013-07-02 Basf Corporation NOx adsorber catalyst with superior low temperature performance
BR112013005103A2 (pt) 2010-09-02 2016-05-03 Basf Se catalisador, método para produzir um catalisador, processo para o tratamento de uma corrente de gás compreendendo óxido de nitrogênio, e, uso do catalisador
US8668877B2 (en) 2010-11-24 2014-03-11 Basf Corporation Diesel oxidation catalyst articles and methods of making and using
US9051858B2 (en) 2011-03-30 2015-06-09 Caterpillar Inc. Compression ignition engine system with diesel particulate filter coated with NOx reduction catalyst and stable method of operation
BR112013029307A2 (pt) 2011-05-13 2017-01-31 Basf Corp filtro para fuligem catalisada, processo para fabricação de um filtro para fuligem catalisada. sistema e método para tratamento dos gases de escapamento de um motor diesel
US20120308439A1 (en) 2011-06-01 2012-12-06 Johnson Matthey Public Limited Company Cold start catalyst and its use in exhaust systems
US9114376B2 (en) * 2011-06-05 2015-08-25 Johnson Matthey Public Limited Company Platinum group metal (PGM) catalyst for treating exhaust gas
GB2513364B (en) 2013-04-24 2019-06-19 Johnson Matthey Plc Positive ignition engine and exhaust system comprising catalysed zone-coated filter substrate
US9211530B2 (en) 2012-12-14 2015-12-15 Uop Llc Low silicon SAPO-42 and method of making
US20160044541A1 (en) 2013-04-05 2016-02-11 Nokia Technologies Oy Relaxed performance requirements for offloading measurements
GB2514177A (en) 2013-05-17 2014-11-19 Johnson Matthey Plc Oxidation catalyst for a compression ignition engine
KR102219718B1 (ko) 2013-06-14 2021-02-23 도소 가부시키가이샤 Lev 형 제올라이트 및 그 제조 방법
JP6513652B2 (ja) 2013-10-31 2019-05-15 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Aeiゼオライトの合成
EP3077085B1 (de) 2013-12-06 2020-02-05 Johnson Matthey Public Limited Company Passiver nox-adsorber mit edelmetall- und kleinporigem molekularsieb
JP6438480B2 (ja) * 2013-12-06 2018-12-12 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 2つの異なる貴金属モレキュラーシーブ触媒を含有する排気ガス触媒
WO2015143225A1 (en) * 2014-03-21 2015-09-24 SDCmaterials, Inc. Compositions for passive nox adsorption (pna) systems
EP2982434A1 (de) 2014-08-05 2016-02-10 Umicore AG & Co. KG Katalysator zur Reduktion von Stickoxiden
US9579603B2 (en) * 2014-08-15 2017-02-28 Johnson Matthey Public Limited Company Zoned catalyst for treating exhaust gas
KR20170083606A (ko) 2014-11-14 2017-07-18 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Afx 제올라이트
KR102444558B1 (ko) * 2014-11-19 2022-09-20 존슨 맛쎄이 퍼블릭 리미티드 컴파니 저온 배출물 제어를 위한 scr과 pna의 조합
GB201504986D0 (en) 2015-02-13 2015-05-06 Johnson Matthey Plc Oxidation catalyst for treating a natural gas emission
BR112017018010A2 (pt) * 2015-02-26 2018-04-10 Johnson Matthey Plc adsorvedor passivo de nox, sistema de escape para motores de combustão interna, e, processo para reduzir nox.
JP2018516739A (ja) * 2015-03-25 2018-06-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 貴金属及びOFFフレームワーク型のモレキュラーシーブを含む受動的NOxアドソーバ
US9657626B2 (en) 2015-05-18 2017-05-23 Ford Global Technologies, Llc Emissions reduction system
EP3337596A1 (de) * 2015-07-02 2018-06-27 Johnson Matthey Public Limited Company Passiver nox-adsorber
WO2017075504A1 (en) 2015-10-30 2017-05-04 SDCmaterials, Inc. Compositions for passive nox adsorption (pna) systems and methods of making and using same
GB2577967B (en) * 2017-03-30 2021-06-09 Johnson Matthey Plc Platinum group metal and base metal on a molecular sieve for PNA-SCR-ASC close-coupled systems

Also Published As

Publication number Publication date
KR20200047651A (ko) 2020-05-07
CN110740810A (zh) 2020-01-31
US20200246784A1 (en) 2020-08-06
US11161100B2 (en) 2021-11-02
WO2019042884A1 (de) 2019-03-07
JP2020531241A (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
EP3676001A1 (de) Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung
EP3735310A1 (de) Passiver stickoxid-adsorber
DE102018106415A1 (de) Katalytisches wandstromfilter mit einem ammoniak-slip-katalysator
DE102016111000A1 (de) Gegen NH3-Überdosierung toleranter SCR-Katalysator
DE102016111147A1 (de) Abgassystem ohne einen DOC, das einen als einen DOC wirkenden ASC in einem System mit einem SCR-Katalysator vor dem ASC aufweist
DE102016118542A1 (de) Einen russkatalysator und einen scr-katalysator aufweisendes katalytisches filter
DE102016111151A1 (de) Einzel- oder doppelschicht-ammoniaksperrkatalysator
DE102016111148A1 (de) Ammoniak-Sperrkatalysator, ausgestaltet um der Erste in einem SCR-System zu sein
DE102018107779A1 (de) Auf einem einzelnen Ziegel befindlicher, eng gekoppelter SCR/ASC/PNA/DOC-Katalysator
DE102015209987A1 (de) Nicht-PGM-Ammoniakschlupfkatalysator
DE102015212356A1 (de) Perowskit mit einer Deckschicht-SCR-Komponente als Ammoniakoxidationskatalysator und System zur Abgasreinigung bei Dieselmotoren
DE102010027883A1 (de) Verfahren zur Verwendung eines Katalysators mit Kupfer und einem kleinporigen molekularen Sieb in einem chemischen Prozess
DE102017125040A1 (de) Kohlenwasserstoffinjektion durch kleinporigen cu-zeolith-katalysator
EP3296009B1 (de) Partikelfilter mit scr-aktiver beschichtung
WO2017178576A1 (de) Partikelfilter mit scr-aktiver beschichtung
EP3676000A1 (de) Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung
DE102018106329A1 (de) SCRF mit rückwärtigem Auf-Wand-Design
EP3695902B1 (de) Katalysator zur reduktion von stickoxiden
EP3442686A1 (de) Katalysator mit scr-aktiver beschichtung
EP3449999A1 (de) Passiver stickoxid-adsorber
DE102017119513A1 (de) Verringerte Sulfatierungsauswirkung auf Cu-SCRs
WO2021099361A1 (en) Catalyst for reducing nitrogen oxides
EP3843896B1 (de) Stickoxid-speicherkatalysator
WO2020144195A1 (de) Passiver stickoxid-adsorber mit oxidationskatalytisch aktiver funktion
EP3450015A1 (de) Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
18D Application deemed to be withdrawn

Effective date: 20201020