JP6627651B2 - レーザ素子、レーザ素子の製造方法 - Google Patents

レーザ素子、レーザ素子の製造方法 Download PDF

Info

Publication number
JP6627651B2
JP6627651B2 JP2016115335A JP2016115335A JP6627651B2 JP 6627651 B2 JP6627651 B2 JP 6627651B2 JP 2016115335 A JP2016115335 A JP 2016115335A JP 2016115335 A JP2016115335 A JP 2016115335A JP 6627651 B2 JP6627651 B2 JP 6627651B2
Authority
JP
Japan
Prior art keywords
ridge
ceiling
channel
terrace
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016115335A
Other languages
English (en)
Other versions
JP2017220608A (ja
Inventor
和弘 前田
和弘 前田
政史 南
政史 南
直幹 中村
直幹 中村
大介 森田
大介 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016115335A priority Critical patent/JP6627651B2/ja
Priority to US15/407,530 priority patent/US9923336B2/en
Priority to TW106101506A priority patent/TWI663801B/zh
Priority to KR1020170070510A priority patent/KR101928655B1/ko
Priority to CN201710433669.3A priority patent/CN107492787B/zh
Publication of JP2017220608A publication Critical patent/JP2017220608A/ja
Priority to US15/844,686 priority patent/US10069281B2/en
Application granted granted Critical
Publication of JP6627651B2 publication Critical patent/JP6627651B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/204Strongly index guided structures
    • H01S5/2045Strongly index guided structures employing free standing waveguides or air gap confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2213Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on polyimide or resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、例えば高速動作させるレーザ素子及びそのレーザ素子の製造方法に関する。
特許文献1には、半導体層にリッジストライプが設けられ、該リッジストライプに沿って両脇に溝部が設けられ、該溝部の上方に形成された金属層と該溝部の底部との間に空洞部を有する窒化物半導体レーザ素子が開示されている。該金属層は、リッジストライプ及び溝部の外側に設けられた丘部に支持されている。
特許文献2には、メサストライプの左右に空隙を形成することが開示されている。空隙の上には絶縁部と絶縁部の上に設けられた電極部がある。
特開2006−066411号公報 特開2007−173392号公報
特許文献1のレーザ素子では、空洞部の上にある金属層と半導体層との距離が近く、寄生容量がレーザ素子の特性に影響を与える問題があった。特許文献2のレーザ素子では、空隙に絶縁部が垂れ下がってくるおそれがある。
本発明は、上述のような課題を解決するためになされたもので、寄生容量を小さくしつつ、メサストライプの左右の中空部を確保できるレーザ素子とレーザ素子の製造方法を提供することを目的とする。
本願の発明に係るレーザ素子は、ストライプ状に隆起したリッジ部と、該リッジ部に隣接し、該リッジ部を両側から挟み、該リッジ部より高さが低いチャネル部と、該チャネル部の該リッジ部とは反対側に隣接し、該チャネル部より高く形成されたテラス部と、該チャネル部の上に設けられ、該リッジ部の側面と該テラス部の側面の少なくとも一方と離して設けられた、樹脂で形成された支持部と、該支持部の上に設けられた第1部分と、該第1部分につながり該チャネル部の上に中空部を介して位置する第2部分とを有する、樹脂で形成された天井部と、該天井部の上に設けられるとともに該リッジの上面に接続された金属層と、を備え、該金属層は該テラス部の上に設けられたパッド部を有し、該中空部は、該金属層のうち、該リッジ部の上の部分と、該パッド部との間の部分の下方にあることを特徴とする。
本願の発明に係るレーザ素子の製造方法は、ストライプ状に隆起したリッジ部と、該リッジ部を両側から挟み、該リッジ部より高さが低いチャネル部と、該チャネル部の該リッジ部とは反対側に隣接し、該チャネル部より高く形成されたテラス部と、を有するレーザ構造の該チャネル部の一部に樹脂を形成し、該レーザ構造と該樹脂によって密閉された中空部を形成する工程と、該樹脂の上に該リッジ部の上面に接する金属層を形成する工程と、レジストを用いて該金属層をパターニングする工程と、を備え、該金属層は該テラス部の上に設けられたパッド部を有し、該中空部は、該金属層のうち、該リッジ部の上の部分と、該パッド部との間の部分の下方にあることを特徴とする。
本願の発明に係るレーザ素子の製造方法は、ストライプ状に隆起したリッジ部と、該リッジ部を両側から挟み、該リッジ部より高さが低いチャネル部と、該チャネル部の該リッジ部とは反対側に隣接し、該チャネル部より高く形成されたテラス部と、を有するレーザ構造の該チャネル部の一部に、該リッジ部の側面と該テラス部の側面の少なくとも一方と離して設けられた、樹脂で形成された支持部を形成する工程と、該支持部と該リッジ部とに支持された樹脂を材料とする天井部を、ラミネート法又はSTP法によって形成し、該天井部と該チャネル部の間に中空部を形成する工程と、該天井部の上に該リッジ部の上面に接する金属層を形成する工程と、を備え、該金属層は該テラス部の上に設けられたパッド部を有し、該中空部は、該金属層のうち、該リッジ部の上の部分と、該パッド部との間の部分の下方にあることを特徴とする。



本発明によれば、リッジ部の左右にある溝の上において金属層の下地となる天井部を当該溝中に設けた支持部で支持するので、天井部の垂れ下がりを防止できる。
実施の形態1に係るレーザ素子の断面図である。 レーザ構造等の断面図である。 前駆体等の断面図である。 支持部等の断面図である。 支持部等の平面図である。 支持部等の断面図である。 絶縁膜等の断面図である。 天井部等の断面図である。 天井部の平面図である。 絶縁膜等の断面図である。 金属層等の平面図である。 静電容量を説明するために注釈を加えたレーザ素子の断面図である。 実施の形態2に係るレーザ素子の断面図である。 支持部等の断面図である。 支持部等の断面図である。 絶縁膜等の断面図である。 広い開口が形成された天井部等の断面図である。 絶縁膜等の断面図である。 実施の形態3に係るレーザ素子の断面図である。 支持部等の断面図である。 支持部等の断面図である。 支持部等の平面図である。 絶縁膜等の断面図である。 天井部等の断面図である。 実施の形態4に係るレーザ素子の断面図である。 天井部等の平面図である。 金属層等の平面図である。 小さく形成された支持部等の平面図である。 小さく形成された天井部等の平面図である。 小さく形成された金属層等の平面図である。 実施の形態5に係るレーザ素子の断面図である。 実施の形態6に係るレーザ素子の断面図である。 実施の形態7に係るレーザ素子の支持部等の平面図である。 変形例に係る支持部等の平面図である。 実施の形態8に係る支持部等の平面図である。 天井部等の平面図である。 金属層等の平面図である。
本発明の実施の形態に係るレーザ素子とレーザ素子の製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
図1は、実施の形態1に係るレーザ素子の断面図である。このレーザ素子は、ストライプ状に隆起したリッジ部10aを備えている。リッジ部10aの横には、リッジ部10aに隣接し、リッジ部10aを両側から挟むチャネル部10bが形成されている。チャネル部10bはリッジ部10aより高さが低い。チャネル部10bのリッジ部10aとは反対側にはチャネル部10bに隣接するテラス部10cが形成されている。テラス部10cはチャネル部10bより高く形成されている。テラス部10cとリッジ部10aの高さは同程度である。リッジ部10a、チャネル部10b及びテラス部10cをまとめてレーザ構造10と称する。レーザ構造10の材料は半導体である。
レーザ構造10の上面は絶縁膜12によって覆われている。チャネル部10bの上には樹脂で形成された支持部13が設けられている。支持部13は、リッジ部10aの側面とテラス部10cの側面の両方から離して設けられている。支持部13の左右は中空部15となっている。支持部13と絶縁膜12は絶縁膜14によって覆われている。
レーザ構造10と支持部13の上に樹脂で形成された天井部16が設けられている。天井部16は、支持部13の上に設けられた第1部分16aと、第1部分16aにつながりチャネル部10bの上に中空部15を介して位置する第2部分16bと、テラス部10cの上に設けられた第3部分16cを有している。第1部分16a、第2部分16b及び第3部分16cは一体的に形成されている。
天井部16の上には絶縁膜17が形成されている。天井部16の上には絶縁膜17を介して金属層18が設けられている。絶縁膜12、14、17及び天井部16はリッジ部10aの上に開口を有している。そして、金属層18がこれらの開口を埋めることで、金属層18はリッジ部10aの上面に接続されている。
本発明の実施の形態1に係るレーザ素子の製造方法を説明する。最初の工程はレーザ構造等の断面図である図2を参照して説明する。この工程では、レーザ構造10を絶縁膜12で被覆する。その後、リッジ部10aの上の絶縁膜12を開口する。
次いで、レーザ構造10に感光性樹脂を材料とする前駆体を塗布する。断面図である図3には、前駆体13Aが示されている。前駆体13Aは、リッジ部10a、チャネル部10b及びテラス部10cで形成された溝を埋める。
次いで、露光、現像により前駆体13Aをパターニングする。断面図である図4には、前駆体をパターニングすることで得られた支持部13が示されている。図5は、支持部13等の平面図である。前駆体をパターニングすることで、リッジ部10aとテラス部10cから離れた支持部13と、この支持部13につながる埋込部30を形成する。支持部13はリッジ部10aと平行に伸びる部分である。埋込部30は、チャネル部10bの上に設けられ、平面視で支持部13の両端に接続している。そして、埋込部30は、リッジ部10aの側面とテラス部10cの側面の両方に接する。したがって埋込部30は、リッジ部10aの横の溝の一部を埋め込むものである。図5には、このような埋込部30が4つ示されている。埋込部30は、レーザ素子の端面に沿って設けられている。図5の構造の右側端面が前端面であり、左側端面が後端面である。
次いで、キュア処理を行うことで樹脂を材料とする支持部13を硬化させる。断面図である図6には、キュア処理後の支持部13が示されている。前述の前駆体13Aの厚さ又はキュア処理の温度及び時間を調整することで、収縮後の支持部13及び埋込部30と、リッジ部10aの高さが同程度となるようにする。
次いで、支持部13、埋込部30及びレーザ構造10に絶縁膜を形成する。断面図である図7には、支持部13、埋込部30及び絶縁膜12に絶縁膜14を形成したことが示されている。絶縁膜14は、リッジ部10aの上方に開口を有している。
次いで、天井部を形成する。断面図である図8には、天井部16が示されている。天井部16はラミネート法又はSTP法(Spin Coating Film Transfer and Hot-pressing)によって形成する。具体的には、感光性樹脂膜を形成したシートフィルムを、リッジ部10a、支持部13及びテラス部10cの上面に接合させる。その後、シートフィルムを剥離することにより感光性樹脂膜からなる天井部16が残る。天井部16は、支持部13、リッジ部10a及びテラス部10cによって支持されている。天井部16を形成することで、天井部16とチャネル部10bの間に中空部15を形成する。
図9は、天井部16を形成した後のレーザ素子の平面図である。図9において、破線は、リッジ部10aとチャネル部10bの境界、又はチャネル部10bとテラス部10cの境界を示す。一点鎖線は支持部13及び埋込部30の輪郭を示す。天井部16は、第1部分16a、第2部分16b及び第3部分16cに加えて、埋込部30の上に設けられ、第1部分16a又は第2部分16bにつながる第4部分16dを備えている。天井部に対し、露光及び現像処理を施すことによりこれをパターンニングし、リッジ部10aの上を開口させる。その後、キュア処理により天井部16を硬化させる。天井部16を形成すると、埋込部30、レーザ構造10及び天井部16により、中空部15が密閉される。中空部15は閉ざされた空間であり、外部から中空部15に物質が入ることはない。
次いで、絶縁膜を形成する。断面図である図10には、天井部16の上に絶縁膜17を形成したことが示されている。この絶縁膜17はリッジ部10aの上部に開口を有している。次いで、天井部16の上に絶縁膜17を介して金属層18を形成する。金属層18を形成したレーザ素子の断面図は図1である。この金属層18は、リッジ部10aの上に形成された開口を埋めることでリッジ部10aの上面に接する。
金属層18を金属配線として利用するために、金属層18を予め定められた形状にパターニングする。具体的には、天井部16により中空部15を密閉した状態で、絶縁膜17の上にレジストを形成し、そのレジストをパターニングし、そのレジストをマスクとして金属層18の一部をエッチングする。これにより平面図である図11に示されるパターニングされた金属層18を得る。レジストを使用する際に中空部15は天井部16、埋込部30及びレーザ構造10によって密閉されているので、レジストが中空部15に入り込みそこにレジスト残渣を生じさせることはない。完成した金属層18は、テラス部の上にパッド18Aを備える。パッド18Aはワイヤーボンディングによりワイヤ接続される部分である。
本発明の実施の形態1に係るレーザ素子によれば、天井部16が中空部15に垂れ下がる問題を解消できるのでその点について説明する。
Jpn.J.Appl.Phys.Vol.42(2003)pp.2462-2467には、STP法を用いて形成された樹脂膜の膜厚と、中空部の大きさとの関係に関する記載がある。この文献には、樹脂膜の膜厚が約2μm、約9μmの場合、中空部を維持するためにはそれぞれ中空部の幅を20μm以下、100μm以下にすべきであることが記載されている(p.2465,Fig.10)。しかし、一般的な半導体レーザ素子のチャネル部の幅は10〜50μm程度であり、共振器長は200μm程度である。天井部の膜厚を1〜10μmとすると、上記一般的な半導体レーザ素子において、中空部を形成することは困難である。つまり、上記一般的なサイズの半導体レーザ素子に天井部を形成しようとすると天井部の強度が不足し、天井部が中空部に垂れ下がってくる問題があった。
そこで、本発明の実施の形態1に係るレーザ素子ではチャネル部10bに支持部13を設け、その支持部13で天井部16を支えることとしたので、天井部16が中空部15に垂れ下がってくることを防止できる。
本発明の実施の形態1に係るレーザ素子では、静電容量を小さくすることができるのでその点について説明する。静電容量Cは、C=εεS/d(ε:真空の誘電率,ε:比誘電率,S:面積,d:距離)の式で表される。本発明の実施の形態1に係るレーザ素子の金属層18は中空部15の上に設けられるので、金属層18をリッジ部10aの側面、チャネル部10bの上面及びテラス部10cの側面に沿って設けた場合と比べて、金属層18をレーザ構造10から離すことができる。よって、静電容量を小さくできる。
樹脂でリッジの左右の溝を埋め込んだ場合と、中空部を形成した場合を比較するために、図12を参照する。中空部15には空気があるのでその比誘電率は1である。樹脂膜である支持部13と天井部16の比誘電率は3とする。天井部16の厚さをd、中空部15の高さを2dとする。支持部13の面積はチャネル部10bの面積Sの半分の面積であるS/2とする。これにより、リッジ部10aの左右の溝の体積の半分が、支持部13によって占められる。
仮に、樹脂でリッジ部10aの左右の溝を埋め込んだとすると、その静電容量Cは、
C=εε/(d+2d)=ε/d
となる。
中空部15を有する場合の静電容量を求める。図12に示すように、天井部16の静電容量をC、支持部13の静電容量をC、中空部15の静電容量をCとする。図12にはC、C、Cに対応する部分が破線で示されている。
それぞれの静電容量は、
C1=εε/d=ε・3・S/d=3ε/d
C2=εε/2/2d=ε・3・S/d=3ε/d
C3=εε/2/2d=ε・1・S/d=ε/d
となる。
図12に示されるように、天井部16が直列に、支持部13と中空部15が並列の関係になっていることから、中空部15を形成した場合の全体の静電容量Cを表す式は、
1/C=1/C+1/(C+C)
となる。よって、
C=C・(C+C)/(C+C+C)=3/4・ε/d
となる。以上のことから、リッジ部10aの左右の溝を樹脂で埋め込んだ場合よりも、中空部15を形成した場合の方が静電容量を小さくすることができることが分かる。静電容量を小さくすることで、高速動作に有利なレーザ素子を提供することができる。
本発明の実施の形態1に係るレーザ素子では、寄生容量を小さくすることができるのでその点について説明する。リッジから引き出した配線が絶縁膜を介してレーザ構造に接すると、当該絶縁膜の誘電率が大きいことから、寄生容量が大きくなってしまう。寄生容量が大きくなることを防止するために、金属配線及びその一部であるパッド部の面積を小さくし、寄生容量を小さくする必要があった。パッド部が小さいと組み立て工程において高いワイヤーボンディング精度が必要となるので、生産安定性に欠ける。
しかしながら、本発明の実施の形態1では、中空部15を設けることで金属層18とレーザ構造10を離すことができる。しかも、金属層18とレーザ構造10の間に、誘電率が高い絶縁膜ではなく、低誘電率を有する樹脂で形成された天井部16と支持部13が存在するので、寄生容量を小さくすることができる。寄生容量が小さくなる分、パッド面積を大きくすることができるので、生産安定性を向上させることができる。
また、レーザ構造10の上に樹脂を形成すると、両者の線膨張係数差によって樹脂内にストレスが生じ、樹脂が剥離したり、樹脂にクラックが生じたりするおそれがある。しかしながら、本発明の実施の形態1に係るレーザ素子では、中空部15を設けることで、樹脂で形成された支持部13とレーザ構造10の接触面積を減らすことができる。よって、支持部13の内部ストレスを小さくし、支持部13の剥がれ及びクラックを抑制できる。
本発明の実施の形態1に係るレーザ素子の製造方法によれば、中空部15を確保することができるのでその点について説明する。前述のとおり、中空部15が、天井部16、埋込部30及びレーザ構造10によって密閉された状態で、金属層18をパターニングするためのレジストを用いるので、中空部15にレジストが入り込むことを防止できる。よって、中空部15を確保することができる。
本発明の実施の形態1に係るレーザ素子とそのレーザ素子の製造方法は、その特徴を失わない範囲で様々な変形が可能である。例えば、支持部13を設けつつ中空部15を確保するためには、支持部13はリッジ部10aの側面とテラス部10cの側面の少なくとも一方と離して設けられればよい。つまり、支持部13がリッジ部10aの側面又はテラス部10cの側面に接しても良い。もし支持部13がテラス部10cに接する場合は、天井部16の第3部分16cは、第2部分16bではなく第1部分16aにつながる。第3部分16cは支持部13の位置に応じて第1部分16a又は第2部分16bにつながる。
このレーザ素子における絶縁膜12、14、17は、各層の密着性向上及び半導体レーザの耐湿性向上のため形成されている。これらの絶縁膜の有無および形状について適宜変更することができる。例えば絶縁膜14、17を省略しても良い。
絶縁膜12、14、17は、リッジ部10aの上に開口を有する必要がある。絶縁膜17を形成した後に、絶縁膜12、14、17の開口を一括形成してもよい。絶縁膜12、14、17の開口を一括形成することで、絶縁膜12、14、17のそれぞれに別工程で開口を形成する場合と比べて工程を短縮できる。
支持部13と天井部16の両方、又はどちらか一方を非感光性樹脂としても良い。その場合、例えばまず、図3の前駆体13Aのような形状となるように非感光性樹脂を形成し、その後、当該樹脂に対してドライエッチングで全面エッチバックを行い、当該樹脂とリッジ部10a及びテラス部10cの表面を一致させる。その後、絶縁膜によるハードマスク及びレジストを形成し、ドライエッチングでチャネル部10b内の樹脂をパターニングすることで、支持部13を形成する。天井部16は、一部を開口してリッジ部10aの上面を露出させるために、天井部16の上部に絶縁膜によるハードマスク及びレジストを形成し、ドライエッチングを行う。非感光性樹脂を用いると、キュア時に樹脂材料から出てくるアウトガスが少ないという利点がある。
中空部15を確保するためには、レジストを使用して金属層18をパターニングする際に、中空部15を密閉する必要がある。樹脂材料とレーザ構造10によって中空部15を密閉できる限り、樹脂で形成された支持部13と天井部16の形状を適宜変更することができる。これらの変形は以下の実施の形態に係るレーザ素子とレーザ素子の製造方法にも適宜応用できる。
なお、以下の実施の形態に係るレーザ素子とレーザ素子の製造方法については、実施の形態1との類似点が多いので、実施の形態1との相違点を中心に説明する。
実施の形態2.
図13は、実施の形態2に係るレーザ素子の断面図である。実施の形態2に係るレーザ素子は、支持部40をリッジ部10aの側面に接触させたものである。天井部16は、支持部40とテラス部10cによって支持されている。支持部40がリッジ部10aの左右に接することで、実施の形態1に比べてリッジ構造の幅が大きくなっている。
本発明の実施の形態2に係るレーザ素子の製造方法を説明する。まず、図2、3のとおり、絶縁膜12を形成し、感光性樹脂の前駆体13Aを塗布する。次いで、この前駆体13Aをパターニングし、支持部40を形成する。断面図である図14には、支持部40が示されている。前駆体13Aに対し、露光、現像処理によりパターニングを行い、リッジ部10aに接する支持部40を形成する。ここで、リッジ幅が、前駆体の最小パターン寸法、すなわち解像度よりも小さい場合、リッジ部10aの上部に膜厚の薄い樹脂膜が残る。この薄い樹脂膜は、軽度のアッシングにより除去が可能である。
次いで、キュア処理を行うことで支持部40を硬化させる。断面図である図15には、キュア処理により硬化した支持部40が示されている。前駆体13Aの材料をキュア処理により収縮する樹脂材料としておき、キュア処理で支持部40を収縮させ、支持部40の高さとリッジ部10aの高さを同程度とする。
次いで、絶縁膜を形成する。断面図である図16には、絶縁膜14を形成したことが開示されている。絶縁膜14は、レーザ構造10及び支持部40を覆う。絶縁膜14はリッジ部10aの上部に開口を有している。次いで、実施の形態1と同様にラミネート法又はSTP法を用いて、樹脂を形成したシートフィルムを、リッジ部10a、支持部40及びテラス部10cの上面に接合させる。図17には、天井部16が示されている。このように、チャネル部10bの一部に樹脂材料で支持部40を形成し、その支持部40の上に天井部16を形成することで、レーザ構造10と樹脂によって密閉された中空部15を形成する。天井部16は中空部15の天井となる。
露光、現像処理により天井部16をパターンし、リッジ部10aの上の部分を開口する。その後、天井部16に対してキュア処理を施す。支持部40がリッジ部10aに接しているので、天井部16の開口幅W2を大きくすることができる。これに対し、実施の形態1では支持部13とリッジ部10aが離れているので、天井部16はリッジ部10aによって支持される必要がある。そのため、図17の開口幅W2を、図8に示される天井部16の開口幅W1より大きくすることができる。
次いで、天井部16の上に絶縁膜を形成する。断面図である図18には、絶縁膜17が示されている。リッジ部10aの上の絶縁膜17は除去する。次いで、天井部16の上にリッジ部10aの上面に接する金属層18を形成する。レジストを用いて金属層18をパターニングすることで、テラス部10cの上に予め定められた形状のパッド電極を形成する。こうして、図13に示す、金属層18を有するレーザ素子が完成する。なお、樹脂として、支持部40と、天井部16に加え、埋込部30を形成し、支持部13と埋込部30によって天井部16を支持する点は実施の形態1と同じである。
リッジ部10aの幅が例えば2μm以下と細い場合、天井部16を形成するためにリッジ部10aの上にシートフィルムを貼り付けるときにリッジ部10aが折れる懸念がある。しかしながら、本発明の実施の形態2に係るレーザ素子では、支持部40をリッジ部10aに接触させるので、支持部40がリッジ部10aを補強しリッジ部10aの強度を向上させる。よって、リッジ部10aが折れることを防止できる。
実施の形態1では、リッジ部10aの上に、「天井部16を支える部分」と「天井部16が開口する部分」の両方を設ける必要がある。そのため、リッジ幅よりも感光性樹脂膜の露光、現像によるパターニングの最小幅が大きい場合、リッジ部10aの上に「天井部16を支える部分」と「天井部16が開口する部分」の両方を設けることができない。つまり、中空部15を形成することはできない。リッジ部10aの幅よりも感光性樹脂膜の露光、現像によるパターニングの最小幅が小さい場合でも、ある程度の「天井部を支える」部分を確保しなければならないのでプロセスの安定性を確保しがたい。
そこで、本発明の実施の形態2では、リッジ部10aの側面に絶縁膜を介して支持部40を接触させることで、リッジ部10aと支持部40により幅の大きいリッジ構造を形成する。これにより、リッジ部10aだけでなく、リッジ部10aと支持部40の上に、「天井部16を支える部分」と「天井部16が開口する部分」を設けることができる。よって、十分広い場所に「天井部16を支える部分」と「天井部16が開口する部分」を設けることができるので、プロセスを安定させることができる。
このように、リッジ部10aと支持部40により幅の大きいリッジ構造を形成することで、天井部16の開口幅W2を大きくできる。開口幅W2が大きいと、リッジ部10aの上の金属層18の体積を大きくして、金属層18の配線抵抗を低減し利得を向上させることができる。天井部16の開口の左右における天井部16はテーパ形状となっているので、当該開口を埋める金属層18の体積を大きくすることができる。上方よりも下方の方が大きい開口幅になる逆テーパ形状の天井部を設けると、天井部16の段切れが生じ得る。しかし、図17に示すように、上方より下方の方が小さい開口幅になるテーパ形状の天井部16を設けると、天井部16の段切れを防止できる。
さらに、リッジ部10aの側面に支持部40を設けることで、支持部40の剥離を防止できる。例えば、リッジ部の左右の溝をBCBで埋め込んだBCB埋込型リッジ導波路構造の製造において、リッジ部上部の樹脂層に開口を形成するドライエッチングにおいてリッジ部側面から樹脂が剥離する問題があった。しかし、本発明の実施の形態2では、感光性樹脂で天井部16を形成しているため、露光、現像、及び軽度のアッシングにより天井部16に開口を形成することができるので、支持部40の剥離を防止できる。
実施の形態3.
図19は、実施の形態3に係るレーザ素子の断面図である。このレーザ素子は、図1に示す支持部13と図13に示す支持部40を両方備えている。つまり、支持部として、リッジ部10aの側面に接する部分である支持部40と、リッジ部10aの側面にもテラス部10cの側面にも接しない部分である支持部13とが設けられている。
実施の形態3に係るレーザ素子の製造方法を説明する。まず、図2、3を参照しつつ説明したように、前駆体13Aを形成する。次いで、この前駆体13Aをパターニングする。断面図である図20には、前駆体をパターニングすることで得られた支持部13、40が示されている。その後、アッシング及びキュア処理により、支持部13、40及び埋込部30と、リッジ部10aの高さが同程度となるようにする。断面図である図21にはアッシング及びキュア処理により、支持部13、40と、リッジ部10aの高さが同程度となったことが示されている。
図22は、図21のレーザ素子の平面図である。支持部13と支持部40は平面視でチャネル部10bの一部を囲んでいる。支持部13、40は、絶縁膜12が開口しリッジ部10aが露出した部分を囲む。支持部13をテラス部10cに接触させても良い。
次いで、断面図である図23に示すように、レーザ構造10及び支持部13、40に絶縁膜14を形成する。次いで、断面図である図24に示すように、支持部13、40、及びテラス部10cによって支持される天井部16を形成する。天井部16は、支持部13、40によって囲まれた空間を密閉する。具体的には、天井部16は、支持部13と支持部40に挟まれた中空部15を密閉する蓋となる。なお、図22における支持部13の端部をテラス部10cに接触させた場合は、その部分が埋込部として機能するので、支持部13とテラス部10cに挟まれた領域も天井部16によって密閉される。
次いで、絶縁膜17及び金属層18を形成することで、図19に示されるレーザ素子が完成する。支持部13、40を1つのレーザ素子に形成することで、実施の形態1、2で説明した効果を両方享受できる。
実施の形態4.
図25は、実施の形態4に係るレーザ素子の断面図である。このレーザ素子の天井部16はチャネル部10bの上方に設けられ、テラス部10cの上方に設けられていない。より詳細には、天井部16は支持部13と支持部40に支持されており、テラス部10cには支持されていない。支持部13、40の平面形状は図22のとおりである。
図26は、天井部16等の平面図である。天井部16は、チャネル部10bとリッジ部10aの上に設けられ、テラス部10cの上には設けられない。図27は、金属層18等の平面図である。金属層18の一部であるパッド18Aは、支持部13の直上に設けられる。静電容量CはC=εεS/d(ε:真空の誘電率, ε:比誘電率,S:面積,d:距離)の式で表される。実施の形態4ではチャネル部10bとリッジ部10aの直上だけに金属層18を設けるので、実施の形態1と比べて金属層18の面積を小さくできる。よって、静電容量を小さくすることができる。静電容量の小さいレーザ素子は、高速動作に好適である。
図27に示すような小さな金属層18を設ける場合は、図26に示される天井部16よりも天井部の面積を小さくしてもよい。小さな天井部を設ける場合、それを支える支持部も小さくすることができる。例えば、図28には、小さく形成された支持部13、40が示されている。支持部13、40は、共振器の端面よりも内側に形成されている。支持部13、40の共振器長方向の長さは、共振器長より短い。
図29には、図28の支持部13、40の上に形成された天井部16が示されている。図29の天井部16は、図26の天井部16に比べて共振器長方向の長さが短い。図29の天井部16は、共振器長方向の長さが共振器長より小さい。そして、この天井部16の上に、図30に示すように、金属層18を形成する。
実施の形態5.
図31は、実施の形態5に係るレーザ素子の断面図である。実施の形態1−4ではテラス部10cを半導体で形成したが、実施の形態5のテラス部60は樹脂で形成されている。樹脂で形成したテラス部60の高さを調整するのは容易である。よって、リッジ部10a、支持部13、40及びテラス部60の高さを容易にそろえることができる。
実施の形態6.
図32は、実施の形態6に係るレーザ素子の断面図である。金属層18は、2つのテラス部10cのうち、一方のテラス部10cの上方にはあるが、他方のテラス部10cの上方にはない。このように、レーザ素子の片側だけに金属層18による配線を配置することで、配線の寄生容量を小さくすることができる。
静電容量CはC=εεS/d(ε:真空の誘電率, ε:比誘電率,S:面積,d:距離)の式で表される。実施の形態6の金属層18の面積は、実施の形態1の金属層18の面積の半分であるため、静電容量を半減させることができる。静電容量の小さいレーザ素子は、高速動作において有利である。
実施の形態7.
図33は、実施の形態7に係るレーザ素子の支持部等の平面図である。感光性樹脂を材料とする支持部13は、共振器長方向に沿って複数形成されている。言い換えると、複数の島状の支持部13がリッジ部10aに沿って設けられている。天井部及び金属層の形状は実施の形態1と同じである。
このように支持部13を平面視で断続的に設けることで、実施の形態1と比べて中空部の体積を増加させることができる。よって、寄生容量の小さいレーザ素子を提供することができる。また、実施の形態1と比べて樹脂で形成された支持部13の体積が減少するため、当該樹脂の内部ストレスが小さくなり、当該樹脂の剥離及びクラックを抑制することができる。
図34は、支持部の変形例を示す図である。図34では、図33よりも支持部13の数を減らし、その分埋込部30を共振器端面から共振器中央方向へ移動した。埋込部30と支持部13とテラス部10cの上に天井部を形成することで、密閉された中空部を形成する。天井部の長さは共振器長より短くし、天井部が支持部又は埋込部によって支持されるようにする。
実施の形態8.
図35は、実施の形態8に係る支持部等の平面図である。埋込部30は、レーザ素子の端面より内側に設けられている。図36は、図35の支持部13、埋込部30及びテラス部10cの上に形成された天井部16を示す図である。実施の形態1では図9を参照しつつ説明したように、レーザ構造全体に天井部16を形成したが、実施の形態8では、図36に示すように共振器の短手方向に長い天井部16を形成する。天井部16が感光性樹脂の場合、露光、現像及びアッシングにより天井部16をパターニングする。他方、天井部16が非感光性樹脂の場合、天井部16の上部に絶縁膜によるハードマスク及びレジストを形成し、ドライエッチングによりパターニングを行う。
図37は、天井部16の上に形成された金属層18を示す図である。実施の形態8に係るレーザ素子の特徴は、金属層18の形状を考慮して、必要な部分だけに、支持部13を形成することである。本発明の実施の形態8によれば、樹脂で形成された支持部13及び天井部16の体積が実施の形態1と比較して減少するため、支持部13及び天井部16の内部ストレスが小さくなる。よって、支持部13及び天井部16の樹脂材料が剥離したりクラックを生じたりすることを抑制できる。なお、ここまでに説明した各実施の形態に係るレーザ素子及びレーザ素子の製造方法の特徴は、適宜に組み合わせて用いてもよい。
10 レーザ構造、 10a リッジ部、 10b チャネル部、 10c テラス部、 12,14,17 絶縁膜、 13 支持部、 15 中空部、 16 天井部、 18 金属層

Claims (18)

  1. ストライプ状に隆起したリッジ部と、
    前記リッジ部に隣接し、前記リッジ部を両側から挟み、前記リッジ部より高さが低いチャネル部と、
    前記チャネル部の前記リッジ部とは反対側に隣接し、前記チャネル部より高く形成されたテラス部と、
    前記チャネル部の上に設けられ、前記リッジ部の側面と前記テラス部の側面の少なくとも一方と離して設けられた、樹脂で形成された支持部と、
    前記支持部の上に設けられた第1部分と、前記第1部分につながり前記チャネル部の上に中空部を介して位置する第2部分とを有する、樹脂で形成された天井部と、
    前記天井部の上に設けられるとともに前記リッジ部の上面に接続された金属層と、を備え
    前記金属層は前記テラス部の上に設けられたパッド部を有し、
    前記中空部は、前記金属層のうち、前記リッジ部の上の部分と、前記パッド部との間の部分の下方にあることを特徴とするレーザ素子。
  2. 前記天井部は、前記第1部分又は前記第2部分につながり、前記テラス部の上に設けられた第3部分を有することを特徴とする請求項1に記載のレーザ素子。
  3. 前記支持部は、前記リッジ部の側面と前記テラス部の側面の両方から離して設けられたことを特徴とする請求項1又は2に記載のレーザ素子。
  4. ストライプ状に隆起したリッジ部と、
    前記リッジ部に隣接し、前記リッジ部を両側から挟み、前記リッジ部より高さが低いチャネル部と、
    前記チャネル部の前記リッジ部とは反対側に隣接し、前記チャネル部より高く形成されたテラス部と、
    前記チャネル部の上に設けられ、前記リッジ部の側面と前記テラス部の側面の少なくとも一方と離して設けられた、樹脂で形成された支持部と、
    前記支持部の上に設けられた第1部分と、前記第1部分につながり前記チャネル部の上に中空部を介して位置する第2部分とを有する、樹脂で形成された天井部と、
    前記天井部の上に設けられるとともに前記リッジ部の上面に接続された金属層と、
    前記チャネル部の上に設けられ、平面視で前記支持部の両端に接続し、前記リッジ部の側面と前記テラス部の側面の両方に直接又は絶縁膜を介して接する、樹脂で形成された埋込部と、
    前記天井部の一部として形成された、前記埋込部の上に設けられ、前記第1部分又は前記第2部分につながる第4部分と、を備えたことを特徴とするレーザ素子。
  5. 前記埋込部は、レーザ素子の端面に沿って設けられたことを特徴とする請求項4に記載のレーザ素子。
  6. 前記埋込部は、レーザ素子の端面より内側に設けられたことを特徴とする請求項4に記載のレーザ素子。
  7. 前記支持部は前記リッジ部の側面に直接又は絶縁膜を介して接することを特徴とする請求項1又は2に記載のレーザ素子。
  8. 前記支持部は、前記リッジ部の側面に直接又は絶縁膜を介して接する部分と、前記リッジ部の側面にも前記テラス部の側面にも接しない部分とを備えたことを特徴とする請求項1又は2に記載のレーザ素子。
  9. 前記天井部は前記チャネル部の上方に設けられ、前記テラス部の上方に設けられていないことを特徴とする請求項1に記載のレーザ素子。
  10. 前記テラス部は樹脂で形成されたことを特徴とする請求項1〜9のいずれか1項に記載のレーザ素子。
  11. 前記金属層は、一方の前記テラス部の上方にはあるが、他方の前記テラス部の上方にはないことを特徴とする請求項2に記載のレーザ素子。
  12. 前記支持部は、共振器長方向に沿って複数形成されたことを特徴とする請求項1〜11のいずれか1項に記載のレーザ素子。
  13. 前記支持部は、平面視で環状に設けられ、
    前記天井部は、前記支持部によって囲まれた空間を密閉することを特徴とする請求項1に記載のレーザ素子。
  14. ストライプ状に隆起したリッジ部と、前記リッジ部を両側から挟み、前記リッジ部より高さが低いチャネル部と、前記チャネル部の前記リッジ部とは反対側に隣接し、前記チャネル部より高く形成されたテラス部と、を有するレーザ構造の前記チャネル部の一部に樹脂を形成し、前記レーザ構造と前記樹脂によって密閉された中空部を形成する工程と、
    前記樹脂の上に前記リッジ部の上面に接する金属層を形成する工程と、
    レジストを用いて前記金属層をパターニングする工程と、を備え
    前記金属層は前記テラス部の上に設けられたパッド部を有し、
    前記中空部は、前記金属層のうち、前記リッジ部の上の部分と、前記パッド部との間の部分の下方にあることを特徴とするレーザ素子の製造方法。
  15. 前記樹脂は、前記チャネル部に直接又は絶縁膜を介して接する支持部と、前記支持部の上に設けられ前記中空部の天井となる天井部とを有し、
    前記天井部の一部は、前記テラス部の上に設けられ、
    前記金属層をパターニングすることで、前記テラス部の上にパッド電極を形成することを特徴とする請求項14に記載のレーザ素子の製造方法。
  16. ストライプ状に隆起したリッジ部と、前記リッジ部を両側から挟み、前記リッジ部より高さが低いチャネル部と、前記チャネル部の前記リッジ部とは反対側に隣接し、前記チャネル部より高く形成されたテラス部と、を有するレーザ構造の前記チャネル部の一部に樹脂を形成し、前記レーザ構造と前記樹脂によって密閉された中空部を形成する工程と、
    前記樹脂の上に前記リッジ部の上面に接する金属層を形成する工程と、
    レジストを用いて前記金属層をパターニングする工程と、を備え、
    前記樹脂は、
    前記チャネル部の上に設けられ、前記リッジ部の側面と前記テラス部の側面の少なくとも一方と離して設けられた支持部と、
    前記チャネル部の上に設けられ、平面視で前記支持部の両端に接続し、前記リッジ部の側面と前記テラス部の側面の両方に直接又は絶縁膜を介して接する埋込部と、
    前記支持部と前記埋込部によって支持された、前記中空部の天井である天井部と、を備えたことを特徴とするレーザ素子の製造方法。
  17. ストライプ状に隆起したリッジ部と、前記リッジ部を両側から挟み、前記リッジ部より高さが低いチャネル部と、前記チャネル部の前記リッジ部とは反対側に隣接し、前記チャネル部より高く形成されたテラス部と、を有するレーザ構造の前記チャネル部の一部に、前記リッジ部の側面と前記テラス部の側面の少なくとも一方と離して設けられた、樹脂で形成された支持部を形成する工程と、
    前記支持部と前記リッジ部とに支持された樹脂を材料とする天井部を、ラミネート法又はSTP法によって形成し、前記天井部と前記チャネル部の間に中空部を形成する工程と、
    前記天井部の上に前記リッジ部の上面に接する金属層を形成する工程と、を備え
    前記金属層は前記テラス部の上に設けられたパッド部を有し、
    前記中空部は、前記金属層のうち、前記リッジ部の上の部分と、前記パッド部との間の部分の下方にあることを特徴とするレーザ素子の製造方法。
  18. 前記支持部は前記リッジ部の側面に直接又は絶縁膜を介して接触たことを特徴とする請求項17に記載のレーザ素子の製造方法。
JP2016115335A 2016-06-09 2016-06-09 レーザ素子、レーザ素子の製造方法 Active JP6627651B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016115335A JP6627651B2 (ja) 2016-06-09 2016-06-09 レーザ素子、レーザ素子の製造方法
US15/407,530 US9923336B2 (en) 2016-06-09 2017-01-17 Laser diode and method of manufacturing laser diode
TW106101506A TWI663801B (zh) 2016-06-09 2017-01-17 雷射元件、雷射元件的製造方法
KR1020170070510A KR101928655B1 (ko) 2016-06-09 2017-06-07 레이저 소자, 레이저 소자의 제조 방법
CN201710433669.3A CN107492787B (zh) 2016-06-09 2017-06-09 激光器元件、激光器元件的制造方法
US15/844,686 US10069281B2 (en) 2016-06-09 2017-12-18 Laser diode and method of manufacturing laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016115335A JP6627651B2 (ja) 2016-06-09 2016-06-09 レーザ素子、レーザ素子の製造方法

Publications (2)

Publication Number Publication Date
JP2017220608A JP2017220608A (ja) 2017-12-14
JP6627651B2 true JP6627651B2 (ja) 2020-01-08

Family

ID=60573194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115335A Active JP6627651B2 (ja) 2016-06-09 2016-06-09 レーザ素子、レーザ素子の製造方法

Country Status (5)

Country Link
US (2) US9923336B2 (ja)
JP (1) JP6627651B2 (ja)
KR (1) KR101928655B1 (ja)
CN (1) CN107492787B (ja)
TW (1) TWI663801B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200237A (zh) * 2018-11-20 2020-05-26 潍坊华光光电子有限公司 一种桥式电极半导体激光器及其制备方法
CN113922210B (zh) * 2021-09-13 2024-01-05 厦门三安光电有限公司 激光二极管及其封装结构

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359437A (ja) * 2001-03-29 2002-12-13 Toshiba Electronic Engineering Corp 光半導体素子および光半導体素子の製造方法
JP4785276B2 (ja) * 2001-06-11 2011-10-05 Okiセミコンダクタ株式会社 半導体光機能素子の製造方法
JP2004335530A (ja) * 2003-04-30 2004-11-25 Mitsubishi Electric Corp リッジ導波路型半導体レーザ
JP4570422B2 (ja) 2004-08-24 2010-10-27 シャープ株式会社 窒化物半導体レーザ素子およびそれを用いた装置
JP2007173392A (ja) 2005-12-20 2007-07-05 Sumitomo Electric Ind Ltd 半導体光素子の作製方法及び半導体光素子
JP2008186859A (ja) 2007-01-26 2008-08-14 Matsushita Electric Ind Co Ltd 半導体レーザ装置およびその製造方法
JP2009103915A (ja) * 2007-10-23 2009-05-14 Fuji Xerox Co Ltd 光導波路フィルム及びその製造方法、並びに、光送受信モジュール
DE102008013896A1 (de) * 2007-12-21 2009-06-25 Osram Opto Semiconductors Gmbh Laserlichtquelle
JP5439953B2 (ja) 2008-10-30 2014-03-12 ソニー株式会社 半導体レーザおよびその製造方法
US8743916B2 (en) * 2009-02-05 2014-06-03 Mitsubishi Electric Corporation Plane waveguide type laser and display device
JP5521411B2 (ja) * 2009-07-03 2014-06-11 ソニー株式会社 半導体レーザ装置
JP2011023628A (ja) * 2009-07-17 2011-02-03 Mitsubishi Electric Corp 半導体レーザ装置
JP2011077339A (ja) * 2009-09-30 2011-04-14 Sony Corp 半導体レーザ
JP2011165869A (ja) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp 半導体発光素子及びその製造方法
JP5521611B2 (ja) * 2010-02-15 2014-06-18 ソニー株式会社 光装置および光機器
JP2013149747A (ja) * 2012-01-18 2013-08-01 Sumitomo Electric Ind Ltd 導波路型の光半導体素子
JP6094043B2 (ja) 2012-03-16 2017-03-15 三菱電機株式会社 半導体レーザ素子
JP6379696B2 (ja) * 2014-06-05 2018-08-29 住友電気工業株式会社 量子カスケード半導体レーザ
JP6371609B2 (ja) * 2014-07-04 2018-08-08 日本オクラロ株式会社 半導体発光素子
JP2016197657A (ja) * 2015-04-03 2016-11-24 住友電気工業株式会社 量子カスケード半導体レーザ
JP6672721B2 (ja) 2015-11-09 2020-03-25 三菱電機株式会社 半導体レーザーおよびその製造方法

Also Published As

Publication number Publication date
TWI663801B (zh) 2019-06-21
CN107492787A (zh) 2017-12-19
TW201810843A (zh) 2018-03-16
US10069281B2 (en) 2018-09-04
KR20170139455A (ko) 2017-12-19
JP2017220608A (ja) 2017-12-14
CN107492787B (zh) 2019-11-15
KR101928655B1 (ko) 2018-12-12
US9923336B2 (en) 2018-03-20
US20180109077A1 (en) 2018-04-19
US20170358902A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP4636160B2 (ja) 電子部品の製造方法および親基板
JP5329733B2 (ja) 基板の2つの面間の電気的接続および製造工程
US8674489B2 (en) Interconnect structure with cavity having one or several contact rises on the wall of the cavity and method for producing same
JP5435199B2 (ja) 機能デバイス及びその製造方法
JP6627651B2 (ja) レーザ素子、レーザ素子の製造方法
WO2018109982A1 (ja) 光半導体装置の製造方法
US10866345B2 (en) Laminated lens structure, camera module, and method for manufacturing laminated lens structure
JP5001760B2 (ja) 半導体素子の製造方法
CN111095526B (zh) 用于制造半导体器件的方法以及半导体器件
JP4832764B2 (ja) 半導体装置およびその製造方法
TW201640600A (zh) 半導體結構及其製作方法
TWI631782B (zh) 半導體雷射及其製造方法
WO2004068591A1 (ja) 半導体装置の製造方法及び加速度センサ
US9382113B2 (en) Method for fabricating a self-aligned vertical comb drive structure
US20240088205A1 (en) Capacitor unit
TW201543634A (zh) 半導體結構及其製作方法
US11435604B2 (en) Hybrid EO polymer modulator with silicon photonics
CN109795980B (zh) Mems器件的制造方法
US20210159151A1 (en) Sensing device and manufacturing method thereof
TWI571978B (zh) A method of manufacturing a microelement with a support structure
JP6263274B2 (ja) コンポーネントの製造方法
JP6003460B2 (ja) 縦型トランジスタの製造方法
JPH1074900A (ja) 半導体装置
JPH0669071B2 (ja) 半導体装置の製造方法
JP2017001104A (ja) 電子装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250