JP6379696B2 - 量子カスケード半導体レーザ - Google Patents

量子カスケード半導体レーザ Download PDF

Info

Publication number
JP6379696B2
JP6379696B2 JP2014116710A JP2014116710A JP6379696B2 JP 6379696 B2 JP6379696 B2 JP 6379696B2 JP 2014116710 A JP2014116710 A JP 2014116710A JP 2014116710 A JP2014116710 A JP 2014116710A JP 6379696 B2 JP6379696 B2 JP 6379696B2
Authority
JP
Japan
Prior art keywords
semiconductor
quantum cascade
layer
wall
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014116710A
Other languages
English (en)
Other versions
JP2015230974A (ja
Inventor
幸洋 辻
幸洋 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014116710A priority Critical patent/JP6379696B2/ja
Priority to US14/726,091 priority patent/US9300115B2/en
Publication of JP2015230974A publication Critical patent/JP2015230974A/ja
Application granted granted Critical
Publication of JP6379696B2 publication Critical patent/JP6379696B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0267Integrated focusing lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2224Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、量子カスケード半導体レーザに関する。
特許文献1及び非特許文献1は、量子カスケードレーザを開示する。
特開2001−320136号公報
S. Golka, et al. Journal of Modern Optics Vol.52, No.16, 10, November 2005, pp.2303-2308
量子カスケード半導体レーザは、サブバンド間遷移を利用しており、3μmから10μmの波長帯の中赤外光を生成する。いくつかの利点のために、量子カスケード半導体レーザの共振器に、分布型反射器を適用する試みがある。量子カスケード半導体レーザにおいて分布型反射器を構成するために、レーザ共振器のための分布型反射器は、電気印加に応答して中赤外光を生成する量子カスケードコア層を含む半導体積層の出射端面から隔置された周期構造体を含む。出射端面から出射される光は拡がりながら分布型反射器に入射する。この光拡がりに起因した光損失の可能性が見出され、この光損失を分布型反射器において低減することが望ましい。分布型反射器を量子カスケード半導体レーザに適用するに際して、分布型反射器から出射端面に戻す光の量を増加させることが望まれる。
本発明は、このような事情を鑑みて為されたものであり、改善された反射構造を有する分布ブラッグ反射器を含む量子カスケード半導体レーザを提供することを目的とする。
本発明の一側面に係る量子カスケード半導体レーザは、第1軸の方向に配列された第1領域及び第2領域を有する第1導電型半導体領域と、前記第1軸に交差する第2軸の方向に順に配列された量子カスケードコア半導体層及び第1導電型の上部クラッド層を含み、前記第2領域上に設けられた半導体積層と、前記第2軸の方向に延在する側面を有する一又は複数の半導体壁を含み、前記第1領域上に設けられたブラッグ反射器と、を備え、前記半導体壁の前記側面は、前記半導体積層の端面に光学的に結合され、前記半導体壁は前記量子カスケードコア半導体層及び前記上部クラッド層を含み、前記半導体壁の前記量子カスケードコア半導体層は、第1部分、第2部分及び第3部分を有し、前記第2部分、前記第3部分及び前記第1部分は前記第2軸の方向に順に配列され、前記半導体壁の前記量子カスケードコア半導体層の側面は、前記半導体壁内の前記上部クラッド層の側面に対して窪みを有し、前記半導体壁の前記量子カスケードコア半導体層の前記第1部分の側面は、逆メサ形状を有し、前記半導体壁の前記量子カスケードコア半導体層の前記第2部分の側面は、順メサ形状を有し、前記半導体壁の前記量子カスケードコア半導体層の前記第3部分は、前記窪みの最深部を有する。
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
以上説明したように、本発明によれば、改善された反射構造を有する分布ブラッグ反射器を含む量子カスケード半導体レーザが提供される。
図1は、本実施の形態に係る量子カスケード半導体レーザの構造を模式的に示す図面である。 図2は、本実施の形態に係る量子カスケード半導体レーザのための埋込構造及びダブルチャネル構造を模式的に示す図面である。 図3は、一実施例に係る量子カスケード半導体レーザ(ダブルチャネル構造)を作製する方法における主要な工程を示す図面である。 図4は、一実施例に係る量子カスケード半導体レーザ(埋込構造)を作製する方法における主要な工程を示す図面である。 図5は、実施例に従って作製された量子カスケード半導体レーザの寸法を示す図面である。 図6は、実施例に従って作製された量子カスケード半導体レーザの断面、及びへき開端面を示す図面である。
引き続き、いくつかの具体例を説明する。
一形態に係る量子カスケード半導体レーザは、(a)第1軸の方向に配列された第1領域及び第2領域を有する第1導電型半導体領域と、(b)前記第1軸に交差する第2軸の方向に順に配列された量子カスケードコア半導体層及び第1導電型の上部クラッド層を含み、前記第2領域上に設けられた半導体積層と、(c)前記第2軸の方向に延在する側面を有する一又は複数の半導体壁を含み、前記第1領域上に設けられたブラッグ反射器と、を備え、前記半導体壁の前記側面は、前記半導体積層の端面に光学的に結合され、前記半導体壁は前記量子カスケードコア半導体層及び前記上部クラッド層を含み、前記半導体壁の前記量子カスケードコア半導体層は、第1部分、第2部分及び第3部分を有し、前記第2部分、前記第3部分及び前記第1部分は前記第2軸の方向に順に配列され、前記半導体壁の前記量子カスケードコア半導体層の側面は、前記半導体壁内の前記上部クラッド層の側面に対して窪みを有し、前記半導体壁の前記量子カスケードコア半導体層の前記第1部分の側面は、逆メサ形状を有し、前記半導体壁の前記量子カスケードコア半導体層の前記第2部分の側面は、順メサ形状を有し、前記半導体壁の前記量子カスケードコア半導体層の前記第3部分は、前記窪みの最深部を有する。
この量子カスケード半導体レーザによれば、半導体積層の端面に光学的に結合される側面を有する半導体壁において、量子カスケードコア半導体層の第1部分の側面及び第2部分の側面は、それぞれ、逆メサ形状及び順メサ形状を有するので、半導体壁は、厚い量子カスケードコア半導体層の側面において窪んでいる。順メサ形状及び逆メサ形状を有する窪み構造は、半導体壁側面による光の反射に発散的というよりも収束的な性質を付与することを可能にし、この窪み構造は、ブラッグ反射器が半導体積層により多くの光を戻すことに寄与する。
一形態に係る量子カスケード半導体レーザでは、前記量子カスケードコア半導体層は、1.5μm以上の厚さを有することができる。この量子カスケード半導体レーザによれば、光通信用のレーザダイオードの活性層より厚い量子カスケードコア半導体層を利用して、光共振器のためのブラッグ反射器の反射光量を向上できる。
一形態に係る量子カスケード半導体レーザでは、前記量子カスケードコア半導体層は、交互に配列されたAlInAs層及びInGaAs層を含むことができる。この量子カスケード半導体レーザによれば、ウエットエッチング及び/又はドライエッチングの適用により、半導体壁の量子カスケードコア半導体層の側面に順メサ構造及び逆メサ構造を付与できる。
一形態に係る量子カスケード半導体レーザは、前記半導体積層を規定する第1溝及び第2溝を更に備えることができる。前記第1溝は、前記第1軸の方向に延在する第1テラスと前記半導体積層とにより規定され、前記第2溝は、前記第1軸の方向に延在する第2テラスと前記半導体積層とにより規定され、前記半導体壁は、前記第1テラスに接続された一端と、前記第2テラスに接続された他端とを有する。この量子カスケード半導体レーザによれば、第1テラス及び第2テラスは、量子カスケードコア半導体層の側面に窪みを有する半導体壁を支持する。
一形態に係る量子カスケード半導体レーザは、前記半導体積層を埋め込む半導体埋込領域を更に備えることができる。前記半導体壁は、前記半導体埋込領域に接続された一端と、前記半導体埋込領域に接続された他端とを有する。この量子カスケード半導体レーザによれば、半導体埋込領域は、量子カスケードコア半導体層の側面に窪みを有する半導体壁を支持する。
一形態に係る量子カスケード半導体レーザを作製する方法は、(a)第1導電型半導体領域上に順に配列された量子カスケードコア半導体層及び第1導電型の上部クラッド層を含む半導体積層上に、ブラッグ反射器のためのパターンを有するマスクを形成する工程と、(b)前記量子カスケードコア半導体層に窪みを形成するように前記半導体積層のエッチングを前記マスクを用いて行って、ブラッグ反射器のための半導体壁を形成する工程とを備える。
この量子カスケード半導体レーザを作製する方法(作製方法)によれば、ブラッグ反射器のためのパターンを有するマスクを用いて、ブラッグ反射器のための形状を形成するエッチングを、量子カスケードコア半導体層に窪みを形成するように、半導体積層に適用する。このエッチングでは、上部クラッド層のエッチングの後に量子カスケードコア半導体層のエッチングが行われる。半導体壁を形成するエッチング中に、量子カスケードコア半導体層は以下のように、量子カスケードコア半導体層に窪みを形成するように加工される。量子カスケードコア半導体層は上部クラッド層に近い第1部分と、第1導電型半導体領域に近い第2部分と、第1部分と第2部分との間に位置する第3部分とに分けると、第3部分は、量子カスケードコア半導体層の多層構造を有する第1部分と第2部分とに挟まれる一方で、第1部分は、量子カスケードコア半導体層の多層構造を有する第3部分と上部クラッド層とに挟まれ、第2部分は、量子カスケードコア半導体層の多層構造を有する第3部分と第1導電型半導体領域とに挟まれる。半導体壁の形成中に量子カスケードコア半導体層の側面が形成される。量子カスケードコア半導体層の多層構造をエッチング可能なエッチャントにより、量子カスケードコア半導体層の多層構造を有する第1部分及び第2部分に挾まれる第3部分のエッチングが進行し、この進行の影響は、第3部分の隣の第1部分及び第2部分に及ぶ。第1部分及び第2部分のエッチングは、第3部分におけるエッチングの進行の影響を受ける一方で、コア層の第1部分及び第2部分に隣接する半導体層が上記のエッチャントによりエッチングされ難いことの影響に受ける。これ故に、量子カスケードコア半導体層の第1部分及び第2部分はエッチングされて、半導体壁の量子カスケードコア半導体層の第1部分の側面及び第2部分の側面は傾斜する。より具体的には、半導体壁において、第1部の側面は順メサ形状を有すると共に第2部の側面は逆メサ形状を有する。
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、量子カスケード半導体レーザ、及び量子カスケード半導体レーザを作製する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1は、本実施の形態に係る量子カスケード半導体レーザの構造を模式的に示す図面である。図1を参照すると、量子カスケード半導体レーザ11は、第1導電型半導体領域13と、半導体積層15と、第1ブラッグ反射器17と、第2ブラッグ反射器19とを備える。半導体積層15は、第1ブラッグ反射器17と第2ブラッグ反射器19との間に設けられる。本実施例では、量子カスケード半導体レーザ11は、2つのブラッグ反射器を含むけれども、いずれか一個のブラッグ反射器を備えることができる。図1は、量子カスケード半導体レーザ11のレーザ導波路LDWGの向きを示す導波路ベクトルWGVと第1導電型半導体領域13の主面の法線軸NVとにより規定される基準面に沿って取られた断面を示す。導波路ベクトルWGVは第1ブラッグ反射器17から第2ブラッグ反射器19へ向かう方向を示す。第1ブラッグ反射器17及び第2ブラッグ反射器19は、量子カスケード半導体レーザ11の光共振器を構成する。
第1導電型半導体領域13は、第1領域13a、第2領域13b及び第3領域13cを有しており、第1領域13a、第2領域13b及び第3領域13cは第1軸Ax1の方向(例えば導波路ベクトルWGVの方向)に配列されている。半導体積層15は、第2領域13bの主面上に設けられており、また量子カスケードコア半導体層21及び第1導電型の上部クラッド層23を含む。量子カスケードコア半導体層21及び第1導電型の上部クラッド層23は、第1軸Ax1に交差する第2軸Ax2の方向(例えば法線軸NVの方向)に順に配列されている。
第1ブラッグ反射器17は、第1領域13aの主面上に設けられており、また一又は複数の半導体壁17aを含む。半導体壁17a(17b)は、第2軸Ax2の方向に延在する第1側面17aa(17ba)及び第2側面17ab(17bb)を有する。第2側面17abは第1側面17aaの反対側にある。第2ブラッグ反射器19は、第3領域13cの主面上に設けられており、また一又は複数の半導体壁19a(19b)を含む。半導体壁19a(19b)は、第2軸Ax2の方向に延在する第1側面19aa(19ba)及び第2側面19ab(19bb)を有する。半導体壁17aの第1側面17aaは、半導体積層15の第1端面15aに光学的に結合され、半導体壁19aの第1側面19aaは、半導体積層15の第2端面15bに光学的に結合される。
半導体壁17a、半導体壁17b、半導体壁19a、半導体壁19bは量子カスケードコア半導体層21及び上部クラッド層23を含む。半導体壁17a(17b、19a、19b)の量子カスケードコア半導体層21は、第1部分25a、第2部分25b及び第3部分25cを有し、第1部分25a、第3部分25c及び第2部分25bは第2軸Ax2の方向に順に配列される。半導体壁17a(17b、19a、19b)の量子カスケードコア半導体層21の側面は、半導体壁17a(17b、19a、19b)内の上部クラッド層23の側面に対して窪み27を有する。半導体壁17a(17b、19a、19b)の量子カスケードコア半導体層21の第1部分25aの側面は逆メサ形状を有し、第2部分25bの側面は順メサ形状を有する。第3部分25cは窪み27の最深部を有する。
この量子カスケード半導体レーザ11によれば、半導体積層15の第1端面15a(15b)に光学的に結合される第1側面17aaを有する半導体壁17a(19a)において、量子カスケードコア半導体層21の第1部分25aの側面及び第2部分25bの側面は、それぞれ、逆メサ形状及び順メサ形状を有するので、半導体壁17a(19a)は、厚い量子カスケードコア半導体層21の側面において窪んでいる。順メサ形状及び逆メサ形状を有する窪み構造により、半導体壁17a(19a)の第1側面17aa(19aa)における反射に、発散的というよりも収束的な性質を付与でき、この窪み構造は、ブラッグ反射器(17、19)が半導体積層15により多くの光を戻すことに寄与する。
量子カスケードコア半導体層21は例えば1.5μm以上の厚さを有することが好ましい。この量子カスケード半導体レーザ11によれば、光通信用のレーザダイオードの活性層より厚い量子カスケードコア半導体層21を利用して、光共振器のためのブラッグ反射器(15、17)の反射光量を向上できる。また、量子カスケードコア半導体層21の厚さは例えば3μm以下であることができる。
量子カスケードコア半導体層21は超格子構造を備え、この超格子構造は異なる半導体層の交互配列を含む。本実施例では、超格子構造は、交互に配列されたAlInAs層及びInGaAs層を含むことができる。この量子カスケード半導体レーザ11によれば、ウエットエッチング及び/又はドライエッチングにより、半導体壁17a(19a)の量子カスケードコア半導体層21の側面に順メサ構造及び逆メサ構造を付与できる。
第1導電型半導体領域13は、好適には、基板を含むことができる。基板は、機械的な強度を提供する支持体として役立ち、また半導体のエピタキシャル成長を可能にする単結晶半導体表面を提供する。
半導体積層15及び半導体壁17a(17b、19a、19b)は量子カスケードコア半導体層21及び上部クラッド層23上に設けられたコンタクト層29を更に備えることができる。半導体積層15及び半導体壁17a(17b、19a、19b)の表面は、パッシベーション膜31で覆われることができる。パッシベーション膜31は、半導体積層15の上面上に設けられた開口を有しており、この開口を介して電極33aは半導体積層15の上面に接触を成す。また、第1導電型半導体領域13の裏面(基板の裏面)には、電極33bが設けられる。一実施例では、電極33a及び電極33bは、それぞれ、アノード電極及びカソード電極に対応付けられる。
図2は、本実施の形態に係る量子カスケード半導体レーザの分布ブラッグ反射器の構造を示す平面図である。図1に示される量子カスケード半導体レーザ11は、例えば図2の(a)部に示される半導体埋込領域35を有することができる。この埋込構造では、第1軸Ax1の方向に延在するレーザストライプが半導体埋込領域35によって埋め込まれる。半導体埋込領域35として、例えば半絶縁性半導体(例えばFeドープInP)を適用でき、或いは樹脂体(例えばBCB樹脂)を適用できる。図1における断面は、量子カスケード半導体レーザ11のレーザ導波路を示す導波路ベクトル及び基板の法線軸により規定される基準面に沿って取られており、これは図2の(a)部におけるI−I線における断面に対応する。
半導体壁17a(17b、19a、19b)は、半導体埋込領域35に接続された一端と、半導体埋込領域35に接続された他端とを有する。この量子カスケード半導体レーザ11によれば、半導体埋込領域35は、量子カスケードコア半導体層21の側面に窪み27を有する半導体壁17a(17b、19a、19b)を支持できる。半導体壁17a(17b、19a、19b)において、量子カスケードコア半導体層21の側面の窪み27は、量子カスケードコア半導体層21と半導体埋込領域35との境界で終端する。
図1に示される量子カスケード半導体レーザ11は、例えば図2の(b)部に示されるダブルチャネル構造37を有することができる。このダブルチャネル構造37では、量子カスケード半導体レーザ11は、半導体積層15を規定する第1溝39a及び第2溝39bを更に備える。第1溝39aは、第1軸Ax1の方向に共に延在する第1テラス41aと半導体積層15とにより規定される。第2溝39bは、第1軸Ax1の方向に共に延在する第2テラス41bと半導体積層15とにより規定される。
半導体壁17a(17b、19a、19b)は、第1テラス41aに接続された一端と、第2テラス41bに接続された他端とを有することができる。この量子カスケード半導体レーザ11によれば、第1テラス41a及び第2テラス41bは、量子カスケードコア半導体層21の側面に窪み27を有する半導体壁17a(17b、19a、19b)を支持する。
(実施例1)
図3を参照しながら、一実施例に係る量子カスケード半導体レーザを作製する方法を説明する。この量子カスケード半導体レーザは、分布反射器を含むと共にダブルチャネル構造を有する。図3における各部分において、直交座標系Sにより生産物の向きを示す。図3においては、製造工程における生産物を一素子区画のサイズで描いており、描かれた生産物は、多くの場合、二次元に配列される形態で作製される。まず、InP基板51を準備する。このInP基板51は、n導電性を有しており、このためにドーパントとして錫を備える。エピタキシャル成長工程では、図3の(a)部に示されるように、InP基板51の(100)面上に量子カスケードコア層53を成長する。この成長は、例えば有機金属気相成長法又は分子線エピタキシー法で行われる。量子カスケードコア層53は、半導体の超格子構造を有しており、超格子構造は、発光部及び注入部として、例えばInGaAs層及びAlInAs層を含む。InGaAs層の厚さは例えば0.5nm以上から10nm以下であり、AlInAs層の厚さは例えば0.5nm以上から10nm以下である。各層の厚みは所望の発振波長に合わせて調整される。積層の繰り返しは、例えば20層以上から60層以下であり、本実施例では30層である。超格子構造の厚さは例えば2.3μmである。この量子カスケードコア層53上に、n型InPクラッド層55を成長する。n型InPクラッド層55の厚さは例えば3μmである。n型InPクラッド層55上に、n型InGaAsコンタクト層57を成長する。n型InGaAsコンタクト層57の厚さは例えば100nmである。n型InPクラッド層55及びn型InGaAsコンタクト層57にn導電性を付与するために、これらの半導体層には例えばシリコンがドーパントとして添加される。これらのエピタキシャル成長により、半導体積層59が形成される。
次いで、エッチング工程では、図3の(b)部及び(c)部に示されるように、レーザストライプを形成する。このように成長された半導体積層59の主面上にマスク61を形成する。このマスク61は、レーザストライプのための第1パターンと、分布ブラッグ反射器のための複数の半導体壁のための第2パターンとを有する。第1パターンは、(0−1−1)面に垂直な第1方向に延在する。第2パターンは、第1方向に垂直な第2方向((0−1−1)面に平行な方向)に延在しており、第1方向に周期的に配列される。マスクは、例えば化学的気相成長法で堆積されたシリコン(SiN)窒化膜を含むことができる。また、SiN膜の厚さは、例えば500nmである。SiN膜からマスク61を作成するために、フォトリソグラフィ及びエッチングを適用できる。SiN膜のマスク61を用いて半導体積層59のドライエッチングを行って、レーザストライプ63a及び分布ブラッグ反射器63b、63cを形成する。このドライエッチングに、ハロゲン系ガスを用いる誘導結合プラズマ−反応性イオンエッチング(ICP−RIE)法を適用できる。このように作製された分布ブラッグ反射器のための半導体壁の側面においては、量子カスケードコア層53の半導体超格子構造はその上下に位置するクラッド領域の側面に沿って延在する基準面から窪んでいる。量子カスケードコア層53の半導体超格子構造は、半導体壁の側面において凹面状の曲面を備え、その曲面は、半導体超格子構造を構成する多数の半導体層が半導体壁側面において延在する方向に延在するように形成されている。窪みの一形態では、n型InPクラッド層55からInP基板51への方向に、量子カスケードコア層53の半導体超格子構造の端面がn型InPクラッド層55(上部クラッド領域)の縁からn型InPクラッド層55の側面を基準にして徐々に深くなり、この後にInP基板51(下部クラッド領域)の縁に向けて下部クラッド領域の側面を基準にして徐々に浅くなる。
本実施例におけるエッチング条件の一例。
ハロゲン系ガス:HI。
プラズマ励起ガス:Ar。
これらのガスの(流量比)混合比:[HI]:[Ar]=2:8〜10:0。又は、HIガス100%。
[HI]/([HI]+[Ar])=0.2〜1。
量子カスケードコア層の半導体超格子構造のAlInAs層及びInGaAs層のエッチングレートが、その上下に位置するクラッド領域のInPのエッチングレートに比べて大きいエッチング条件では、半導体超格子構造に対するエッチング異方性がクラッド領域に対するエッチング異方性に比べて弱まって、等方的なエッチング性が半導体超格子構造のエッチングに寄与することになる。半導体超格子構造とクラッド領域との間におけるエッチング異方性の差により、半導体超格子構造の側面は、その上下に位置するクラッド領域における一方のクラッド領域(下部)の側面に対して順メサ形状になり、他方のクラッド領域(上部)の側面に対して逆メサ形状になる。
或いは、クラッド領域と半導体超格子構造との選択比が小さいドライエッチング条件を用いて、半導体積層の加工を行ってブラッグ反射器のための半導体壁を形成する。この半導体壁の側面は、窪みを有する上記形態に比べて平坦である。半導体壁を形成した後に、該半導体壁にウエットエッチングを適用することにより半導体壁の側面に凹面状の曲面を形成することもできる。このウエットエッチングにおけるエッチャントの一例は、塩酸/酢酸/過酸化水素の混合液である。このエッチャントのウエットエッチングによっても、InPとAlInAs/InGaAsとのエッチング選択性を利用して曲面構造を形成できる。
ドライエッチングにより、レーザストライプ63a及び分布ブラッグ反射器63b、63cを形成した後に、SiNのマスク61をフッ酸で除去する。この後に、パッシベーション工程では、図3の(d)部に示されるように、基板の全面にパッシベーション膜65として、プラズマCVD法でシリコン系無機絶縁(例えばSiN、SiON)膜を成長する。シリコン系無機絶縁膜の厚さは、例えば300nmである。
上部電極形成工程では、図3の(e)部に示されるように、レーザストライプ上のシリコン系無機絶縁膜にコンタクト開口65aを形成する。このコンタクト開口65aは、レジストマスク及びウエットエッチングを用いて行われる。ウエットエッチングのエッチャントとしてフッ酸溶液が用いられる。開口形成の後に、電極67a(例えばTi/Pt/Auの積層構造)のための金属膜を蒸着法で形成する。電極67aのパターン形成のために、フォトリソグラフィとリフトオフ法が適用される。電極67aの積層構造の厚さは例えば500nmである。
図3の(f)部に示されるように、InP基板の裏面を研磨して、研磨面を形成する。研磨後のInP基板の厚さは例えば100μmである。上部電極形成工程では、InP基板の裏面(例えばInP研磨面)上に裏面電極67bのための金属膜(AuGeNi/Auの積層構造)を蒸着により形成する。裏面電極の積層構造の厚さは例えば1μmである。上記の工程により作製された基板生産物のへき開によりバー生産物を作製する。バー生産物から半導体チップを形成すれば、複素屈折率結合型の分布帰還型量子カスケードレーザが得られる。この実施例では、この量子カスケードレーザの作製に際して、コンタクト層、量子カスケードコア層の上部、又は量子カスケードコア層の下部に回折格子構造を形成して、単一モード発振を実現するようにしてもよい。
レーザストライプの端面から分布ブラッグ反射器の半導体壁のクラッド領域の側面までの距離は、当該量子カスケード半導体レーザの発振波長(λ)の1/4波長又は3/4波長である。
(実施例2)
図4を参照しながら、一実施例に係る量子カスケード半導体レーザを作製する方法を説明する。この量子カスケード半導体レーザは、分布反射器を含むと共にダブルチャネル構造を有する。実施例1と同様に準備したInP基板上に、InGaAs層及びAlInAs層の積層を含む量子カスケードコア層、SiドープInPクラッド層、及びSiドープInGaAsコンタクト層を成長する。この形態は、例えば図3の(a)部に示されている。n型InPクラッド層の厚さは例えば3μmであり、n型InGaAsコンタクト層の厚さは例えば0.5μmである。これらのエピタキシャル成長により、半導体積層59が形成される。本実施例では、半導体積層59は、量子カスケードコア層53、n型InPクラッド層55及びn型InGaAsコンタクト層57を含む。
本実施例では、次いで、図4の(a)部に示されるように、レーザストライプを形成する。このように成長された半導体積層59の主面上にマスク69を形成する。このマスク69は、レーザストライプのためのパターンを有する。このパターンは、(0−1−1)面に垂直な第1方向に延在する。一素子区画の境界を越えて、複数の素子区画にわたって延在する。マスク69は、例えば化学的気相成長法で堆積されたシリコン(SiN)窒化膜を含むことができる。また、SiN膜の厚さは、例えば500nmである。SiN膜にフォトリソグラフィ及びエッチングを適用して、SiNのマスク69を作成する。
マスク69を用いたドライエッチングの半導体積層59を行って、ストライプ状の半導体メサ71aを形成する。このドライエッチングに、ハロゲン系ガスを用いる誘導結合プラズマ−反応性イオンエッチング(ICP−RIE)法を適用できる。
本実施例におけるエッチング条件の一例。
ハロゲン系ガス:HI。
プラズマ励起ガス:Ar。
これらのガスの(流量比)混合比:[HI]:[Ar]=1:9〜2:8。
[HI]/([HI]+[Ar])=0.1〜0.2。
メサストライプ形成のための上記ドライエッチングには、ハロゲン系ガスを用いる誘導結合プラズマ−反応性イオンエッチング(ICP−RIE)法を適用できる。このエッチングにより、レーザストライプのための半導体メサ71aが作製される。エッチング条件の結果として、半導体メサ71aの量子カスケードコア層の側面に実質的な窪みは形成されない。半導体メサの形成の後に、図4の(b)部に示されるように、SiN製のマスク69を除去することなくマスク69を選択成長のためのマスクとして用いる。マスク69を用いて半絶縁性InPの埋め込み成長を行って、半導体メサ71aを埋め込む。この成長には、例えば有機金属気相成長法が用いられる。半導体メサ71aは、素子区画の境界を横切って素子区画の行方向に延在する。半導体メサ71aは、量子カスケードコア層53、n型InPクラッド層55、及びn型InGaAsコンタクト層57を含む。埋め込み成長により、半導体メサ71aの両側を埋め込む半絶縁性InP埋込領域73が形成される。
図4の(c)部に示されるように、分布ブラッグ反射器71b、71cを形成する。上記のように成長された半絶縁性InP埋込領域73及び半導体メサ71a上にマスク75を形成する。このマスク75は、分布ブラッグ反射器71b、71cのためのパターンを有する。このマスク75は、(0−1−1)面に平行な方向に延在する複数のストライプ開口を有する。マスク75は、例えば化学的気相成長法で堆積されたシリコン(SiN)窒化膜を含むことができる。また、SiN膜の厚さは、例えば500nmである。SiN膜にフォトリソグラフィ及びエッチングを適用して、SiN製のマスク75を作成する。
このマスク75を用いて半絶縁性InP埋込領域73及び半導体メサ71aをエッチングする。マスク75のストライプ開口は、半導体メサを横切って半導体メサ71aの一方側の半絶縁性InP埋込領域73から半導体メサ71aの他方側の半絶縁性InP埋込領域73まで延在する。
マスク75を用いて半絶縁性InP埋込領域73及び半導体メサ71aのドライエッチングを行って、メサ形状のレーザストライプに光学的に結合可能な分布ブラッグ反射器71b、71cを形成する。このドライエッチングに、ハロゲン系ガスを用いる誘導結合プラズマ−反応性イオンエッチング(ICP−RIE)法を適用できる。このように作製された分布ブラッグ反射器71b、71cのための半導体壁の側面においては、量子カスケードコア層53の半導体超格子構造はその上下に位置するクラッド領域の側面に沿って延在する基準面から窪んでいる。量子カスケードコア層53の半導体超格子構造は、半導体壁の側面において凹面状の曲面を備え、その曲面は、半導体超格子構造を構成する多数の半導体層が半導体壁側面において積層される方向に直交する方向に延在する。
本実施例におけるエッチング条件の一例。
ハロゲン系ガス:HI。
プラズマ励起ガス:Ar。
これらのガスの(流量比)混合比:[HI]:[Ar]=2:8〜10:0。又は、HIガス100%。
[HI]/([HI]+[Ar])=0.2〜1。
このドライエッチングにおいては、実施例1と同様の作用により、半導体超格子構造の側面は、その上下に位置するクラッド領域における一方のクラッド領域(下部)の側面に対して順メサ形状になり、他方のクラッド領域(上部)の側面に対して逆メサ形状になる。或いは、実施例1と同様に、半導体壁にウエットエッチングを適用することができる。
ドライエッチングにより分布ブラッグ反射器を形成した後に、マスク75のSiN膜をフッ酸で除去する。この後に、図4の(d)部に示されるように、基板の全面にパッシベーション膜77として、プラズマCVD法でシリコン系無機絶縁(例えばSiN、SiON)膜を成長する。シリコン系無機絶縁膜の厚さは、例えば300nmである。
図4の(e)部に示されるように、半導体メサ71a、及び分布ブラッグ反射器71b、71c上のシリコン系無機絶縁膜にコンタクト開口77aを形成する。この開口は、レジストマスク及びウエットエッチングを用いて行われる。ウエットエッチングのエッチャントとしてフッ酸溶液が用いられる。開口形成の後に、電極79a(例えばTi/Pt/Auの積層構造)のための金属膜を蒸着法で形成する。電極79aのパターン形成のために、フォトリソグラフィとリフトオフ法が適用される。電極79aの積層構造の厚さは例えば500nmである。
次いで、実施例1と同様に、InP基板51の裏面を研磨して研磨面を形成する。研磨後のInP基板51の厚さは例えば100μmである。InP基板51の裏面(InP研磨面)上に裏面電極79bのための金属膜(AuGeNi/Auの積層構造)を蒸着により形成する。裏面電極79bの積層構造の厚さは例えば1μmである。上記の工程により作製された基板生産物のへき開によりバー生産物を作製する。バー生産物から半導体チップを形成すれば、複素屈折率結合型の分布帰還型量子カスケードレーザが得られる。この実施例においても、この量子カスケードレーザの作製に際して、コンタクト層、量子カスケードコア層の上部、又は量子カスケードコア層の下部に回折格子構造を形成して、単一モード発振を実現するようにしてもよい。また、レーザストライプの端面から分布ブラッグ反射器の半導体壁のクラッド領域の側面までの距離は、当該量子カスケード半導体レーザの発振波長(λ)の1/4波長又は3/4波長である。
図5は、上記の実施例に従って作製された量子カスケード半導体レーザの寸法を示す図面である。
7μm波長帯の量子カスケード半導体レーザの構成例。
ストライプメサ長(共振器長):0.3μm〜3mm。
InP基板の厚さ:100μm。
InGaAs/AlInAs超格子構造のコア層の厚さ:2.3μm。
メサストライプの幅:3μm〜10μm。
InPクラッド層の厚さ:3μm。
InGaAsコンタクト層の厚さ:0.5μm。
上部電極の厚さ:5μm。
分布ブラッグ反射器の半導体壁の厚さ:2μm(3λ/4)又は0.6μm(λ/4)。
分布ブラッグ反射器の半導体壁の間隔:6μm(3λ/4)又は2μm(λ/4)。
コア層下に設けられる半導体壁の厚さ(掘り込み量):1μm。
また、上記の実施例に従って作製された分布ブラッグ反射器の反射率を測定した。InP基板の(100)面上に形成された分布ブラッグ反射器の半導体壁は、図6の(a)部に示される構造を有する。半導体壁の側面には、実施例で説明された窪みが形成されていた。
分布ブラッグ反射器:3λ/4構造の2周期(発振波長:λ)。
量子カスケードコア層(総厚:2.3μm、InGaAs層の厚さ:0.5nm以上から10nm以下、AlInAs層の厚さ:0.5nm以上から10nm以下、各層の厚みは所望の発振波長に合わせて調整される。繰り返す数:20層以上から60層以下。
n型InPクラッド層(厚さ:3μm)。
n型InGaAsコンタクト層(厚さ:0.5μm)。
反射率:60%。
図6の(b)部に示される同様の半導体積層のへき開端面の反射率:30%。
窪み無しの同様の構造の分布ブラッグ反射器の反射率:50%。
レーザストライプの端面から分布ブラッグ反射器への方向に出射される光は広がる。この光は、分布ブラッグ反射器の多数の平坦な半導体壁側面によって反射されるけれども、平坦な半導体壁側面はレーザストライプ端面における光の広がりを収束させることができない。分布ブラッグ反射器の半導体壁側面の量子カスケードコア層の窪みは、レーザストライプを伝搬する光が、レーザストライプの量子カスケードコア層端面に分布ブラッグ反射器の平坦な半導体壁側面に比べてより多く戻ることに寄与する。
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
以上説明したように、本実施の形態によれば、改善された反射構造を有する分布ブラッグ反射器を含む量子カスケード半導体レーザが提供される。
11…量子カスケード半導体レーザ、13…第1導電型半導体領域、15…半導体積層、17…第1ブラッグ反射器、19…第2ブラッグ反射器、21…量子カスケードコア半導体層、23…上部クラッド層、17a、17b、19a、19b…半導体壁、71a…半導体メサ。

Claims (5)

  1. 量子カスケード半導体レーザであって、
    第1軸の方向に配列された第1領域及び第2領域を有する第1導電型半導体領域と、
    前記第1軸に交差する第2軸の方向に順に配列された量子カスケードコア半導体層及び第1導電型の上部クラッド層を含み、前記第2領域上に設けられた半導体積層と、
    前記第2軸の方向に延在する側面を有する一又は複数の半導体壁を含み、前記第1領域上に設けられたブラッグ反射器と、
    を備え、
    前記半導体壁の前記側面は、前記半導体積層の端面に光学的に結合され、
    前記半導体壁は前記量子カスケードコア半導体層及び前記上部クラッド層を含み、
    前記半導体壁の前記量子カスケードコア半導体層は、第1部分、第2部分及び第3部分を有し、前記第2部分、前記第3部分及び前記第1部分は前記第2軸の方向に順に配列され、
    前記半導体壁の前記量子カスケードコア半導体層の側面は、前記半導体壁内の前記上部クラッド層の側面に対して窪みを有し、前記半導体壁の前記量子カスケードコア半導体層の前記第1部分の側面は、逆メサ形状を有し、前記半導体壁の前記量子カスケードコア半導体層の前記第2部分の側面は、順メサ形状を有し、前記半導体壁の前記量子カスケードコア半導体層の前記第3部分は、前記窪みの最深部を有する、量子カスケード半導体レーザ。
  2. 前記量子カスケードコア半導体層は、1.5μm以上の厚さを有する、請求項1に記載された量子カスケード半導体レーザ。
  3. 前記量子カスケードコア半導体層は、交互に配列されたAlInAs層及びInGaAs層を含む、請求項1又は請求項2に記載された量子カスケード半導体レーザ。
  4. 前記半導体積層を規定する第1溝及び第2溝を更に備え、
    前記第1溝は、前記第1軸の方向に延在する第1テラスと前記半導体積層とにより規定され、
    前記第2溝は、前記第1軸の方向に延在する第2テラスと前記半導体積層とにより規定され、
    前記半導体壁は、前記第1テラスに接続された一端と、前記第2テラスに接続された他端とを有する、請求項1〜請求項3のいずれか一項に記載された量子カスケード半導体レーザ。
  5. 前記半導体積層を埋め込む半導体埋込領域を更に備え、
    前記半導体壁は、前記半導体埋込領域に接続された一端と、前記半導体埋込領域に接続された他端とを有する、請求項1〜請求項3のいずれか一項に記載された量子カスケード半導体レーザ。
JP2014116710A 2014-06-05 2014-06-05 量子カスケード半導体レーザ Active JP6379696B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014116710A JP6379696B2 (ja) 2014-06-05 2014-06-05 量子カスケード半導体レーザ
US14/726,091 US9300115B2 (en) 2014-06-05 2015-05-29 Quantum cascade laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014116710A JP6379696B2 (ja) 2014-06-05 2014-06-05 量子カスケード半導体レーザ

Publications (2)

Publication Number Publication Date
JP2015230974A JP2015230974A (ja) 2015-12-21
JP6379696B2 true JP6379696B2 (ja) 2018-08-29

Family

ID=54770347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116710A Active JP6379696B2 (ja) 2014-06-05 2014-06-05 量子カスケード半導体レーザ

Country Status (2)

Country Link
US (1) US9300115B2 (ja)
JP (1) JP6379696B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197658A (ja) * 2015-04-03 2016-11-24 住友電気工業株式会社 量子カスケード半導体レーザ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072302A (ja) * 2014-09-26 2016-05-09 住友電気工業株式会社 量子カスケード半導体レーザ
JP2016072300A (ja) * 2014-09-26 2016-05-09 住友電気工業株式会社 量子カスケード半導体レーザ
US9453938B2 (en) * 2014-12-17 2016-09-27 Schlumberger Technology Corporation Laser spectroscopy for downhole sensing of gases and fluids
JP6485340B2 (ja) * 2015-12-09 2019-03-20 住友電気工業株式会社 量子カスケード半導体レーザを作製する方法、量子カスケード半導体レーザ
JP6485341B2 (ja) * 2015-12-10 2019-03-20 住友電気工業株式会社 量子カスケード半導体レーザを作製する方法、量子カスケード半導体レーザ
FR3048561B1 (fr) * 2016-03-03 2019-03-15 Centre National De La Recherche Scientifique Laser a cascade quantique.
JP6627651B2 (ja) 2016-06-09 2020-01-08 三菱電機株式会社 レーザ素子、レーザ素子の製造方法
JP2018098263A (ja) * 2016-12-08 2018-06-21 住友電気工業株式会社 量子カスケード半導体レーザ
JP6737158B2 (ja) * 2016-12-08 2020-08-05 住友電気工業株式会社 量子カスケード半導体レーザ
JP7121536B2 (ja) * 2018-05-18 2022-08-18 株式会社堀場製作所 半導体レーザ素子の製造方法及びその半導体レーザ装置並びにガス分析装置
DE102019116862B4 (de) * 2018-08-29 2021-09-30 Taiwan Semiconductor Manufacturing Co. Ltd. Techniken zur oxidation von oberflächenemittierenden lasern mit vertikalem hohlraum
JP2023016164A (ja) * 2021-07-21 2023-02-02 株式会社東芝 面発光型半導体発光装置
DE102023106427A1 (de) * 2023-03-15 2024-09-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Quantenkaskadenlaser und Verfahren zu seiner Herstellung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563852B1 (en) 2000-05-08 2003-05-13 Lucent Technologies Inc. Self-mode-locking quantum cascade laser
GB2416427A (en) * 2004-06-18 2006-01-25 Univ Sheffield DFB laser
JP5076746B2 (ja) * 2006-09-04 2012-11-21 日亜化学工業株式会社 窒化物半導体レーザ素子及びその製造方法
JP4850757B2 (ja) * 2007-03-08 2012-01-11 日本電信電話株式会社 波長可変半導体レーザ素子及びその制御装置、制御方法
FR2917910B1 (fr) * 2007-06-22 2010-06-11 Thales Sa Dispositif de lumiere optimisee par l'utilisation de materiaux artificiels et procede de fabrication associe
JP5048611B2 (ja) * 2008-08-05 2012-10-17 株式会社アルバック 半導体装置の製造装置及び半導体装置の製造方法
JP5051054B2 (ja) * 2008-08-11 2012-10-17 住友電気工業株式会社 半導体レーザおよび半導体レーザを作製する方法
WO2011096040A1 (ja) * 2010-02-02 2011-08-11 株式会社日立製作所 半導体レーザ素子、半導体レーザ素子の製造方法および光モジュール
JP2012074446A (ja) * 2010-09-28 2012-04-12 Yokogawa Electric Corp 波長可変半導体レーザ
JP2012074445A (ja) * 2010-09-28 2012-04-12 Yokogawa Electric Corp 波長可変レーザ
JP2012227332A (ja) * 2011-04-19 2012-11-15 Sumitomo Electric Ind Ltd リッジ型半導体レーザ及びその製造方法
JP5729138B2 (ja) * 2011-05-30 2015-06-03 住友電気工業株式会社 光半導体デバイスの製造方法
JP5810720B2 (ja) * 2011-08-01 2015-11-11 住友電気工業株式会社 量子カスケード半導体レーザ、レーザ装置および量子カスケード半導体レーザの製造方法
US8731017B2 (en) * 2011-08-12 2014-05-20 Acorn Technologies, Inc. Tensile strained semiconductor photon emission and detection devices and integrated photonics system
JP2013149665A (ja) * 2012-01-17 2013-08-01 Sumitomo Electric Ind Ltd 量子カスケード半導体レーザ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197658A (ja) * 2015-04-03 2016-11-24 住友電気工業株式会社 量子カスケード半導体レーザ

Also Published As

Publication number Publication date
US9300115B2 (en) 2016-03-29
JP2015230974A (ja) 2015-12-21
US20150357794A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP6379696B2 (ja) 量子カスケード半導体レーザ
EP2020711B1 (en) Method for manufacturing surface-emitting laser
JP5177285B2 (ja) 光素子及びその製造方法
JP4817255B2 (ja) 光半導体素子及びその製造方法
JP5182362B2 (ja) 光素子及びその製造方法
WO2009116140A1 (ja) 光半導体素子及びその製造方法
JP2011204895A (ja) 半導体レーザ装置
TWI357699B (en) Semiconductor laser device
JP2012028395A (ja) 半導体レーザ素子
JP5704901B2 (ja) 2次元フォトニック結晶面発光レーザ
JP5217767B2 (ja) 半導体レーザ及び半導体レーザの製造方法
JP2018088456A (ja) 量子カスケード半導体レーザ
JP4906053B2 (ja) フォトニック結晶光半導体デバイス
US9941666B2 (en) Method for producing quantum cascade laser and quantum cascade laser
CN109309343B (zh) 用于制作半导体激光二极管的方法以及激光二极管
JP4984514B2 (ja) 半導体発光素子および該半導体発光素子の製造方法
JP5836609B2 (ja) 面発光レーザ、アレイ及び画像形成装置
JP2017092382A (ja) 量子カスケードレーザデバイス
JP4769778B2 (ja) 光半導体素子及びその製造方法
JP2005340644A (ja) 発光ダイオードおよび発光ダイオードの製造方法
JP2013025208A (ja) 半導体光素子及び半導体光素子の製造方法
JP2014053561A (ja) 垂直共振器型面発光レーザ
CN115764549B (zh) 一种vcsel激光器
JPWO2018134950A1 (ja) 半導体レーザ素子、半導体レーザ素子の製造方法
JP2010141241A (ja) 発光装置の製造方法および発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6379696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250