JP5051054B2 - 半導体レーザおよび半導体レーザを作製する方法 - Google Patents

半導体レーザおよび半導体レーザを作製する方法 Download PDF

Info

Publication number
JP5051054B2
JP5051054B2 JP2008207041A JP2008207041A JP5051054B2 JP 5051054 B2 JP5051054 B2 JP 5051054B2 JP 2008207041 A JP2008207041 A JP 2008207041A JP 2008207041 A JP2008207041 A JP 2008207041A JP 5051054 B2 JP5051054 B2 JP 5051054B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
quantum
optical confinement
predetermined axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008207041A
Other languages
English (en)
Other versions
JP2010045102A (ja
Inventor
英樹 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008207041A priority Critical patent/JP5051054B2/ja
Priority to US12/464,262 priority patent/US7957446B2/en
Publication of JP2010045102A publication Critical patent/JP2010045102A/ja
Application granted granted Critical
Publication of JP5051054B2 publication Critical patent/JP5051054B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1231Grating growth or overgrowth details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3054Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、半導体レーザ及び半導体レーザの作製方法に関する。
非特許文献1には、短共振器型のDBRレーザが記載されている。このDBRレーザでは、InGaAlAsからなる多重量子井戸とInGaAsPからなる光導波路層との集積にバットジョイント構造が用いられている。バットジョイント構造の形成では、InGaAlAs半導体層の一部をエッチングにより除去した後、InGaAsP半導体層が、再成長される。InGaAsP半導体層の遷移エネルギーは、InGaAlAs半導体層の遷移エネルギーより大きいので、InGaAsP半導体層は光導波路となる。また、レーザ光の出射端面と反対側の端面に、レーザ光の反射のための誘電体膜が設けられている。
また、特許文献1には、分布反射型の半導体レーザが記載されている。この半導体レーザは、活性領域及び光導波領域からなる活性層を有している。この活性領域は、活性層の一部に不純物を添加されている。光導波領域には、DFB型回折格子が設けられている。
K. Shinoda et al.:IPRM2007, TuB2-3, 39. 特開昭63−255985号公報
非特許文献1に記載される半導体レーザは、多重量子井戸、多重量子井戸とは異なる工程で形成された光導波路層、及びレーザ光の反射のための誘電体膜を備えている。このため、この半導体レーザの構造は複雑である。また、多重量子井戸及び光導波路層はバットジョイント構造により形成され、さらに、これらの半導体層の再成長の後に、誘電体膜が別途形成されるので、作製工程が煩雑である。
特許文献1に記載される半導体レーザでは、DFB型回折格子により共振器を形成するので、構造が複雑である。また、光導波領域の遷移エネルギーは、活性領域に採用する半導体材料により決定され、活性領域の発光波長は、活性領域の不純物濃度により決定される。このため、作製工程が煩雑である。
本発明は、上記した問題点に鑑みてなされたものであり、バットジョイント構造を用いず、半導体構造からなる共振器を内蔵する半導体レーザを提供することを目的とし、また、この半導体レーザを作製する方法を提供することを目的とする。
本発明に係る半導体レーザは、第1〜第3のエリアを含む主面を有し、クラッド領域上に設けられた第1光閉じ込め層と、第1のエリア上に所定の軸に沿って配列され、第1の分布ブラッグ反射器のための複数の第1の量子細線と、第2のエリア上に所定の軸に沿って配列され、第2の分布ブラッグ反射器のための複数の第2の量子細線と、第1の量子細線の側面の間及び第2の量子細線の側面の間に設けられた埋め込み半導体領域と、所定の軸に沿って第3のエリアの一端から他端まで延びており、第3のエリア上に設けられた活性層と、第1の分布ブラッグ反射器上、第2の分布ブラッグ反射器上及び活性層上に設けられた第2光閉じ込め層とを有し、第3のエリアは、第1のエリアと第2のエリアとの間に設けられており、埋め込み半導体領域は、第1の量子細線の平均の屈折率及び第2の量子細線の平均の屈折率とは異なる屈折率を有することを特徴とする。
この半導体レーザでは、互いに異なる屈折率を有する第1の量子細線及び埋め込み半導体領域を第1のエリア上に交互に配列して、第1の分布ブラッグ反射器を構成する。また、互いに異なる屈折率を有する第2の量子細線及び埋め込み半導体領域を第2のエリア上に交互に配列して、第2の分布ブラッグ反射器を構成する。これらの分布ブラッグ反射器及び活性層はレーザ共振器を形成する。従って、本発明の半導体レーザでは、バットジョイント構造を用いずに、レーザ共振器が実現される。共振器内にバットジョイント構造が含まれないので、バットジョイント構造に起因する光学的損失が低減できる。
本発明に係る半導体レーザでは、所定の軸に沿って取られた各第1の量子細線の幅は、所定の軸に沿って取られた各第2の量子細線の幅よりも大きく、第1の分布ブラッグ反射器の所定の軸に沿って取られた長さは、第2の分布ブラッグ反射器の所定の軸に沿って取られた長さよりも長いことが好ましい。
この半導体レーザでは、第1及び第2の量子細線の幅が互いに異なるので、第1の量子細線の屈折率結合係数は、第2の量子細線の屈折率結合係数より大きい。また、分布ブラッグ反射器の長さと屈折率結合係数との積は、反射率及びストップバンド幅に寄与するので、第1の分布ブラッグ反射器の反射率は、第2の分布ブラッグ反射器の反射率より大きい。このため、第1の分布ブラッグ反射器は高反射率の反射器となる。一方、第2の分布ブラッグ反射器のストップバンド幅は、第1の分布ブラッグ反射器のストップバンド幅よりも小さい。第1の分布ブラッグ反射器のストップバンドには、複数の縦モードが含まれ、これらの縦モードのしきい値利得が減少する。ここで、縦モードのしきい値利得とは、当該モードに対してレーザ発振に必要なレーザ利得をいう。しきい値利得が減少された縦モードのうち、第2の分布ブラッグ反射器のストップバンドにも含まれる縦モードのしきい値利得は、さらに減少する。一般に、複数の縦モードが存在する場合、しきい値利得が最低の縦モードが選択的に発振する。故に、この第2の分布ブラッグ反射器のストップバンドにも含まれる縦モードが選択され、発振モードとなる。従って、第2の分布ブラッグ反射器は波長フィルタとして作用し、この半導体レーザからの出射光は単一モードとなる。
本発明に係る半導体レーザでは、第1の量子細線は、交互に配置された第1の井戸層と第1の障壁層とを有し、第2の量子細線は、交互に配置された第2の井戸層と第2の障壁層とを有し、活性層は、交互に配置された第3の井戸層と第3の障壁層とを有し、第1〜第3の井戸層は互いに同じ材料からなり、第1〜第3の障壁層は互いに同じ材料からなることを特徴とする。
この半導体レーザによれば、第1の量子細線、第2の量子細線及び活性層は、同じ材料からなる井戸層及び障壁層を有しているので、第1の量子細線、第2の量子細線及び活性層は同じ半導体構造から構成される。第1及び第2の量子細線の吸収端波長は、量子効果に起因して活性層の吸収端波長より短くなるので、第1及び第2の分布ブラッグ反射器は、低損失な光導波路となる。
本発明に係る半導体レーザでは、活性層の所定の軸に沿って取られた長さは、50μm以上100μm以下であることが好ましい。
活性層の所定の軸に沿って取られた長さは、この半導体レーザのレーザ共振器の共振器長に相当する。共振器長が100μm以下であるので、第2の分布ブラッグ反射器での選択反射により単一モードとするのに十分な縦モード間隔が得られる。また、共振器長が50μm以上であるので、十分な利得が得られる。
本発明に係る半導体レーザは、活性層と第2光閉じ込め層との間に設けられたキャリアストップ層を更に備え、クラッド領域はn型半導体からなり、キャリアストップ層は、III族元素としてアルミニウム及びインジウムを含むと共にV族元素としてヒ素を含む半導体材料からなり、第2光閉じ込め層はp型GaInAsP半導体からなり、キャリアストップ層のバンドギャップは、第2光閉じ込め層のバンドギャップより大きく、且つ活性層の内の最大のバンドギャップより大きいことを特徴とする。
この半導体レーザによれば、キャリアストップ層と第2光閉じ込め層との価電子帯側バンドオフセットは小さくできるので、キャリアストップ層は、活性層に向かって移動するホールへの実質的な障壁とはならない。故に、良好な特性の半導体レーザが得られる。また、伝導帯側では、バンドギャップの大きさの差異に起因して、キャリアストップ層は、活性層からの電子に対してポテンシャル障壁となる。従って、電子オーバフローを抑制できるので、良好な温度特性を有する半導体レーザが得られる。
本発明に係る半導体レーザは、活性層と第2の分布ブラッグ反射器との間に設けられ、埋め込み半導体領域と同じ材料からなるギャップ領域を更に備え、ギャップ領域の所定の軸に沿って取られた幅は、第2の量子細線の間隔よりも大きいことを特徴とする。
本発明に係る半導体レーザは、活性層上に設けられた電極を更に備えることを特徴とする。この半導体レーザによれば、活性層への電荷の注入が可能となる。
本発明に係る半導体レーザを作製する方法は、第1光閉じ込め層をクラッド領域上に成長する工程と、多重量子井戸のための半導体層を第1光閉じ込め層上に成長する工程と、所定の軸の方向に配列された複数の第1の量子細線のための第1のパターンと、所定の軸の方向に配列された複数の第2の量子細線のための第2のパターンと、活性層のための第3のパターンとを有するマスクを半導体層上に形成する工程と、マスクを用いて半導体層をエッチングし、活性層、第1及び第2の量子細線を形成する工程と、第1及び第2の量子細線を埋め込むために、第1の量子細線の側面の間及び第2の量子細線の側面の間に埋め込み半導体領域を成長する工程とを備え、第3のパターンは、第1のパターンと第2のパターンとの間に設けられていることを特徴とする。
本発明の方法では、複数の第1及び第2の量子細線と量子細線間の埋め込み半導体領域とが交互に配列されるので、それぞれ分布ブラッグ反射器が形成される。さらに、第1の量子細線により形成される分布ブラッグ反射器と第2の量子細線により形成される分布ブラッグ反射器との間に活性層が形成されるので、DBRレーザが形成される。この形成には、第1〜第3のパターンを有するマスクを用いて、多重量子井戸のための半導体層のエッチングが行われるので、活性層、第1及び第2の量子細線は、それぞれの作製工程に分離されることなく、同一の工程で作製される。
本発明に係る半導体レーザを作製する方法では、所定の軸に沿って取られた各第1の量子細線の幅は、所定の軸に沿って取られた各第2の量子細線の幅よりも大きく、第1の量子細線の配列の所定の軸に沿って取られた長さは、第2の量子細線の配列の所定の軸に沿って取られた長さよりも長いことを特徴とする。
本発明の方法では、所定の軸に沿って活性層の前後それぞれに複数の第1及び第2の量子細線の配列が形成される。この量子細線の配列は、それぞれ分布ブラッグ反射器となる。量子細線の配列の所定の軸に沿って取られた長さは、分布ブラッグ反射器の長さに相当する。第1及び第2の量子細線の幅が互いに異なるので、第1の量子細線の屈折率結合係数は、第2の量子細線の屈折率結合係数より大きい。また、分布ブラッグ反射器の長さと屈折率結合係数との積は、反射率及びストップバンド幅に寄与する。故に、第1の量子細線により形成される分布ブラッグ反射器は、第2の量子細線により形成される分布ブラッグ反射器よりも大きな反射率を有することができる。このため、第1の量子細線により形成される分布ブラッグ反射器は高反射率の反射器となる。一方、第2の量子細線により形成される分布ブラッグ反射器のストップバンド幅は、第1の量子細線により形成される分布ブラッグ反射器のストップバンド幅よりも小さい。第1の量子細線により形成される分布ブラッグ反射器のストップバンドには、複数の縦モードが含まれ、これらの縦モードのしきい値利得を減少させる。これらの縦モードのうち、第2の量子細線により形成される分布ブラッグ反射器のストップバンドにも含まれる縦モードのしきい値利得のみがさらに減少し、この縦モードのみが選択され、発振モードとなる。従って、第2の量子細線により形成される分布ブラッグ反射器は波長フィルタとして作用し、この半導体レーザからの出射光は単一モードとなる。また、量子細線の幅は、マスクのパターン形状により制御可能である。さらに、複数の量子細線により構成される分布ブラッグ反射器の所定の軸に沿って取られた長さもパターン形状により制御可能である。従って、分布ブラッグ反射器の反射率及びストップバンド幅の制御が容易である。
本発明に係る半導体レーザを作製する方法は、半導体層をエッチングした後、且つ埋め込み半導体領域を成長する前にマスクを除去する工程と、埋め込み半導体領域を成長した後に、第2光閉じ込め層を成長する工程とを更に備え、埋め込み半導体領域を成長する工程において、活性層上にキャリアストップ層を併せて成長し、埋め込み半導体領域及びキャリアストップ層は、III族元素としてアルミニウム及びインジウムを含むと共にV族元素としてヒ素を含む半導体材料からなり、クラッド領域はn型半導体からなり、第2光閉じ込め層はp型GaInAsP半導体からなり、埋め込み半導体領域及び前記キャリアストップ層のバンドギャップは、第2光閉じ込め層のバンドギャップより大きく、且つ活性層の内の最大のバンドギャップより大きく、第2光閉じ込め層は、第1の量子細線上、第2の量子細線上、埋め込み半導体領域及びキャリアストップ層上に成長することを特徴とする
本発明の方法では、活性層上にキャリアストップ層が成長され、その後に第2光閉じ込め層が成長される。このキャリアストップ層と第2光閉じ込め層との価電子帯側バンドオフセットは小さくできるので、キャリアストップ層は、活性層に向かって移動するホールへの実質的な障壁とはならない。故に、良好な特性の半導体レーザが得られる。また、伝導帯側では、バンドギャップの大きさの差異に起因して、キャリアストップ層は、活性層からの電子に対するポテンシャル障壁となる。従って、キャリアオーバフローを抑制できるので、良好な温度特性を有する半導体レーザが得られる。また、埋め込み半導体領域及びキャリアストップ層は、共通の半導体成長プロセスにより一括に形成される。故に、作製工程が簡素化される。
本発明によれば、バットジョイント構造を用いず、半導体構造からなる共振器を内蔵する半導体レーザが提供され、また、この半導体レーザを作製する方法が提供される。
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発明の半導体レーザ及び半導体レーザを作製する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1は、本発明に係る半導体レーザの第1の実施形態の構造を示す斜視図である。また、図2は、図1のI−I線に沿ってとられた断面図である。半導体レーザ10は、第1クラッド層13、第1光閉じ込め層15、第1の分布ブラッグ反射器18、第2の分布ブラッグ反射器20、活性層21、第2光閉じ込め層31及び第2クラッド層33を備えている。第1クラッド層13は、半導体基板11の主面11a上に設けられている。半導体基板11及び第1クラッド層13は、例えばn型半導体からなる。このn型半導体は、例えばn型InP半導体等であることができる。
第1光閉じ込め層15は、第1クラッド層13上に設けられている。第1光閉じ込め層15は、例えばn型GaInAsP半導体であることができる。第1光閉じ込め層15の厚さは、例えば100nmである。好ましくは、この第1光閉じ込め層15の厚さは、100nm以上であることができる。また、第1光閉じ込め層15の厚さは、150nm以下であることができる。また、第1光閉じ込め層15は、第1〜第3のエリア15a、15b、15cを含む主面を有する。第3のエリア15cは、第1のエリア15aと第2のエリア15bとの間に設けられており、所定の軸Axに沿って並べられている。所定の軸Axが示す方向が、レーザ光の出射方向となる。
第1光閉じ込め層15の第1のエリア15a上には、複数の第1の量子細線17が、所定の軸Axに沿って所定の周期Λで配列されている。各第1の量子細線17は、所定の軸Axの方向に規定される幅Wを有する。第1の量子細線17は、量子井戸構造を有している。この量子井戸構造は、交互に配列された第1の井戸層17a及び第1の障壁層17bを含むことができる。また、第1の量子細線17は、第3光閉じ込め層17cを含むことができる。第3光閉じ込め層17cは、量子井戸構造上に設けられている。第1の井戸層17aは、例えばアンドープGaInAsP半導体からなり、第1の井戸層17aの厚さは、例えば6nmであることができる。第1の障壁層17bは、例えばアンドープGaInAsP半導体からなり、第1の障壁層17bの厚さは、例えば9nmであることができる。第3光閉じ込め層17cは、例えばアンドープGaInAsP半導体からなり、第3光閉じ込め層17cの厚さは、例えば40nmであることができる。好ましくは、この第3光閉じ込め層17cの厚さは、30nm以上であることができる。また、第3光閉じ込め層17cの厚さは、50nm以下であることができる。
第1の量子細線17の側面の間には、埋め込み半導体領域23が設けられている。この埋め込み半導体領域23は、III族元素としてアルミニウム及びインジウムを含むと共にV族元素としてヒ素を含む半導体材料からなることができる。この半導体材料は、例えばAlInAs半導体であることができる。
第1の量子細線17と埋め込み半導体領域23とは、異なる屈折率を有すると共に、第1のエリア15a上に交互に配列されている。従って、複数の第1の量子細線17及び埋め込み半導体領域23は、第1の分布ブラッグ反射器18を構成する。第1の分布ブラッグ反射器18は、所定の軸Axに沿って取られた長さLを有する。
第1光閉じ込め層15の第2のエリア15b上には、複数の第2の量子細線19が、所定の軸Axに沿って所定の周期Λで配列されている。各第2の量子細線19は、所定の軸Axの方向に規定される幅Wを有する。第2の量子細線19は、量子井戸構造を有している。この量子井戸構造は、交互に配列された第2の井戸層19a及び第2の障壁層19bを含むことができる。また、第2の量子細線19は、第4光閉じ込め層19cを含むことができる。第4光閉じ込め層19cは、量子井戸構造上に設けられている。第2の井戸層19aは、例えばアンドープGaInAsP半導体からなり、第2の井戸層19aの厚さは、例えば6nmであることができる。第2の障壁層19bは、例えばアンドープGaInAsP半導体からなり、第2の障壁層19bの厚さは、例えば9nmであることができる。第4光閉じ込め層19cは、例えばアンドープGaInAsP半導体からなり、第4光閉じ込め層19cの厚さは、例えば40nmであることができる。好ましくは、この第4光閉じ込め層19cの厚さは、30nm以上であることができる。また、第4光閉じ込め層19cの厚さは、50nm以下であることができる。
第2の量子細線19の側面の間には、埋め込み半導体領域25が設けられている。この埋め込み半導体領域25は、III族元素としてアルミニウム及びインジウムを含むと共にV族元素としてヒ素を含む半導体材料からなることができる。この半導体材料は、例えばAlInAs半導体であることができる。
第2の量子細線19と埋め込み半導体領域25とは、異なる屈折率を有すると共に、第2のエリア15b上に交互に配列されている。従って、複数の第2の量子細線19及び埋め込み半導体領域25は、第2の分布ブラッグ反射器20を構成する。第2の分布ブラッグ反射器20は、所定の軸Axに沿って取られた長さLを有する。
第1光閉じ込め層15の第3のエリア15c上には、活性層21が所定の軸Axに沿って第3のエリア15cの一端から他端まで延びて設けられている。この活性層21は、量子井戸構造を有している。この量子井戸構造は、交互に配列された第3の井戸層21a及び第3の障壁層21bを含むことができる。この量子井戸構造上には、第5光閉じ込め層29が設けられている。第3の井戸層21aは、例えばアンドープGaInAsP半導体からなり、第3の井戸層21aの厚さは、例えば6nmであることができる。第3の障壁層21bは、例えばアンドープGaInAsP半導体からなり、第3の障壁層21bの厚さは、例えば9nmであることができる。第5光閉じ込め層29は、例えばアンドープGaInAsP半導体からなり、第5光閉じ込め層29の厚さは、例えば40nmであることができる。好ましくは、この第5光閉じ込め層29の厚さは、30nm以上であることができる。また、第5光閉じ込め層29の厚さは、50nm以下であることができる。
第1の分布ブラッグ反射器18、第2の分布ブラッグ反射器20及び活性層21により、レーザ共振器が形成される。このレーザ共振器は、活性層21の所定の軸Axに沿って取られた長さLを共振器長とする。第1の量子細線17の周期Λ及び第2の量子細線19の周期Λは共に、レーザ発振の波長に対応したブラッグ周期である。例えば発振波長1550nmを得るためには、周期Λ及び周期Λは240nmである。例えば発振波長1300nmを得るためには、周期Λ及び周期Λは200nmである。
また、第1の量子細線17及び第2の量子細線19では、量子効果に起因して吸収端波長が活性層21よりも短くなる。このため、第1の分布ブラッグ反射器18及び第2の分布ブラッグ反射器20は、低損失な光導波路となる。この場合には、第1の量子細線17の幅W及び第2の量子細線19の幅Wは、共に50nm以下であることが好ましい。従って、この半導体レーザ10では、別途の半導体層により光導波路層を形成したり、誘電体膜により反射器を形成したりする必要がない。故に、バットジョイント構造を含まずに、半導体構造によるレーザ共振器が実現される。共振器内にバットジョイント構造が含まれないので、バットジョイント構造に起因する光学的損失が低減できる。また、この半導体レーザ10では、単一モード動作のための回折格子が活性層21内、あるいは、その近傍に形成されないので、回折格子形成時に生じる活性層21へのダメージが生じず、これに起因した特性劣化が低減される。
第1の量子細線17の幅Wは、第2の量子細線19の幅Wよりも大きく、第1の分布ブラッグ反射器18の長さLは、第2の分布ブラッグ反射器20の長さよりも長いことが好ましい。この場合の第1の分布ブラッグ反射器18及び第2の分布ブラッグ反射器20の反射スペクトルの例は、図3(a)及び図3(b)のそれぞれに示される。ここで示した例における周期Λ及び周期Λは共に、240nmである。図3(a)及び図3(b)によれば、波長1550nm近傍での反射スペクトルS1の反射率は、反射スペクトルS2の反射率より大きい。また、波長1550nm近傍での反射スペクトルS2のストップバンド幅は、反射スペクトルS1のストップバンド幅よりも小さい。
分布ブラッグ反射器の量子細線の幅は、屈折率結合係数(κ)の大きさに寄与する。また、分布ブラッグ反射器の長さ(L)と屈折率結合係数(κ)の積(κ・L)は、分布ブラッグ反射器の反射率に寄与する。幅Wは幅Wよりも大きく、長さLは長さLより長いので、第1の分布ブラッグ反射器18の反射率は、第2の分布ブラッグ反射器20よりも大きくなる。従って、第1の分布ブラッグ反射器18は、高反射率の反射器となる。このため、レーザ光の出射端面の反対側の端面に、レーザ光の反射のための誘電体膜を設ける必要がない。
一方、分布ブラッグ反射器の長さ(L)と屈折率結合係数の積(κ)は、分布ブラッグ反射器のストップバンド幅にも寄与する。故に、第2の分布ブラッグ反射器20のストップバンド幅は、第1の分布ブラッグ反射器18のストップバンド幅よりも小さくなる。従って、第2の分布ブラッグ反射器20は、波長選択性を備えたフィルタとなることができる。
以上説明したような第1の分布ブラッグ反射器18の高反射率及び第2の分布ブラッグ反射器20の波長選択性を実現するためには、幅Wは、例えば40nmであり、幅Wは、例えば20nmであることができる。また、長さLは、例えば300μmであり、長さLは、例えば100μmであることができる。長さLは、第1のエリア上15aに配列される第1の量子細線17の数の変更により調整可能である。また、長さLは、第2のエリア上15bに配列される第2の量子細線19の数の変更により調整可能である。
図3(a)における実線M1〜M3及び図3(b)における実線M4〜M6は、活性層21で発生する縦モードを示す。波長1550nm近傍において、反射スペクトルS1は大きなストップバンド幅を有するので、縦モードM1〜M3に対する反射率は、いずれも大きい。一方、波長1550nm近傍において、反射スペクトルS2のストップバンド幅は小さいので、縦モードM5に対する反射率は大きく、縦モードM4及び縦モードM6に対する反射率は小さい。故に、第2の分布ブラッグ反射器20では、縦モードM5が選択的に反射されるので、単一モードの発振が実現される。
第2の分布ブラッグ反射器20の波長選択性による単一モード動作を実現するためには、活性層21で発生する複数の縦モード間の間隔は、十分に広いことが必要である。故に、活性層21の長さLは、100μm以下であることが好ましい。一方、十分な利得を得るためには、活性層21の長さLは、50μm以上であることが好ましい。
第1の井戸層17aと第2の井戸層19aと第3の井戸層21aとは互いに同じ材料からなり、第1の障壁層17bと第2の障壁層19bと第3の障壁層21bとは互いに同じ材料からなることができる。第1の量子細線17、第2の量子細線19及び活性層21は、同じ材料からなる井戸層及び障壁層を有するので、これらの半導体層は、共通の半導体成長プロセスにより形成されることができる。従って、作製工程が単純化される。
第5光閉じ込め層29上には、キャリアストップ層27が設けられている。このキャリアストップ層27は、III族元素としてアルミニウム及びインジウムを含むと共にV族元素としてヒ素を含む半導体材料からなることができる。この半導体材料は、例えばAlInAs半導体等であることができる。
第1の分布ブラッグ反射器18上、第2の分布ブラッグ反射器20上及びキャリアストップ層27上には、第2光閉じ込め層31が設けられている。この第2光閉じ込め層31は、例えばp型GaInAsP半導体、AlGaInAs等からなることができる。第2光閉じ込め層31の厚さは、例えば60nmであることができる。好ましくは、この第2光閉じ込め層31の厚さは、60nm以上であることができる。また、第2光閉じ込め層31の厚さは、110nm以下であることができる。
図4は、図1及び図2に示した半導体レーザ10におけるバンド構造を示す図である。図4において、参照符号BG0,BG1は第3の井戸層21a及び第3の障壁層21bからなる部分のバンドギャップを示し、参照符号BG2はキャリアストップ層27のバンドギャップを示し、参照符号BG3は第2光閉じ込め層31のバンドギャップを示し、参照符号BG4は第5光閉じ込め層29のバンドギャップを示し、参照符号BG5は第1光閉じ込め層15のバンドギャップを示す。図4に示されるように、キャリアストップ層27のバンドギャップは、第2光閉じ込め層31のバンドギャップより大きく、且つ活性層21の内の最大のバンドギャップより大きい。
キャリアストップ層27がAlInAs半導体からなり、第2光閉じ込め層31及び第5光閉じ込め層29がGaInAsP半導体からなる場合、キャリアストップ層27と第2光閉じ込め層31及び第5光閉じ込め層29との価電子帯のバンドオフセットΔEV1、ΔEV2は、約10meVであり、伝導帯のバンドオフセットΔEC1、ΔEC2は、約200meV程度ある。従って、キャリアストップ層27と第2光閉じ込め層31及び第5光閉じ込め層29との価電子帯のバンドオフセットΔEV1、ΔEV2は、伝導帯のバンドオフセットΔEC1、ΔEC2よりも1桁以上小さいので、キャリアストップ層27は、p型クラッドから活性層21に向かって移動するホールHLの障壁とはなりにくい。また、キャリアストップ層27と第2光閉じ込め層31及び第5光閉じ込め層29との伝導帯のバンドオフセットΔEC1、ΔEC2は価電子帯のバンドオフセットΔEV1、ΔEV2より1桁以上大きいので、キャリアストップ層27は、活性層21からの電子ELに対する電子ブロック層として機能する。故に、電子のオーバフローを低減可能となるので、良好な温度特性を有する半導体レーザが得られる。キャリアストップ層27が電子ブロック層として良好に機能するためには、活性層21上におけるキャリアストップ層27の厚さは、20nm以上とすることが好ましい。また、キャリアストップ層27による素子抵抗の増加を小さくするために、活性層21上におけるキャリアストップ層27の厚さは、50nm以下であることが好ましい。
ここで再び図1及び図2を参照する。第1クラッド層13、第1光閉じ込め層15、第1の分布ブラッグ反射器18、第2の分布ブラッグ反射器20、活性層21、キャリアストップ層27及び第2光閉じ込め層31は、所定の軸Axに沿って延びる半導体メサを構成する。また、半導体メサは、ストライプ状でありメサ埋め込み領域35によってその側面が埋め込まれている。
メサ埋め込み領域35は、例えば第1のp型電流狭窄層35a、n型電流狭窄層35b、及び第2のp型電流狭窄層35cによって構成される。第1のp型電流狭窄層35aは、半導体メサの側面及び第1クラッド層13の表面に設けられ、第1クラッド層13の表面及び半導体メサの側面を覆っている。n型電流狭窄層35bは、第1のp型電流狭窄層35a上に設けられている。第2のp型電流狭窄層35cは、n型電流狭窄層35bと、第2クラッド層33との間に設けられている。これらの電流狭窄層35a〜35cは、例えばn型またはp型InPからなる。この積層には、p−n−p−n構造が形成される。
半導体メサ及びメサ埋め込み領域35上には、第2クラッド層33が設けられている。第2クラッド層33はp型半導体からなり、例えばp型InP半導体とすることができる。第2クラッド層33上には、コンタクト層37が設けられている。コンタクト層37は、例えばp型GaInAs半導体とすることができる。コンタクト層37上には、絶縁膜39が形成されている。絶縁膜39は活性層21上に開口を有する。次いで、第1の電極膜41が設けられる。コンタクト層37が第1の電極膜41と該開口を介してオーミック接触を成している。このため、活性層21への電荷の注入が可能となる。半導体基板11の主面11aとは反対側の裏面11bには第2の電極膜42が設けられており、第2の電極膜42と半導体基板11とがオーミック接触を成している。
以上に述べた半導体レーザの各層の材料、ドーパント元素、ドーパント濃度及び厚さの一例は、以下に示される。
第1クラッド層13:n型InP,Si,1×1018cm−3,厚さ 500nm
第1光閉じ込め層15:n型GaInAsP,Si,5×1017cm−3,厚さ 150nm
第1の量子細線17:第1の井戸層17a及び第1の障壁層17b
第1の井戸層17a:アンドープGaInAsP,厚さ 6nm
第1の障壁層17b:アンドープGaInAsP,厚さ 9nm
第2の量子細線19:第2の井戸層19a及び第1の障壁層19b
第2の井戸層19a:アンドープGaInAsP,厚さ 6nm
第2の障壁層19b:アンドープGaInAsP,厚さ 9nm
活性層21:第3の井戸層21a及び第3の障壁層21b
第3の井戸層21a:アンドープGaInAsP,厚さ 6nm
第3の障壁層21b:アンドープGaInAsP,厚さ 9nm
第3光閉じ込め層17c:アンドープGaInAsP,厚さ 40nm
第4光閉じ込め層19c:アンドープGaInAsP,厚さ 40nm
第5光閉じ込め層29:アンドープGaInAsP,厚さ 40nm
埋め込み半導体領域23,25:アンドープAlInAs
キャリアストップ層27:アンドープAlInAs、厚さ 40nm
第2光閉じ込め層31:p型GaInAsP,Zn,5×1017cm−3,厚さ 110nm
第2クラッド層33:p型InP,Zn,1×1018cm−3,厚さ 2000nm
コンタクト層37:p型GaInAs,Zn,1×1019cm−3,厚さ 500nm
次に図5〜図8を参照しながら、第1の実施形態に係る半導体レーザを作製する方法の工程を説明する。
図5(a)に示されるように、n型InP半導体からなる基板上に、n型InP半導体からなる第1クラッド層43及びn型GaInAsP半導体からなる第1光閉じ込め層45を順に成長する。次いで、第1光閉じ込め層45上に複数のアンドープGaInAsP半導体層を成長して、多重量子井戸層47を形成する。多重量子井戸層47は、井戸層47a及び障壁層47bを含む。さらに、多重量子井戸層47上に、アンドープGaInAsP半導体からなる光閉じ込め半導体層49を成長する。これらの成長は、例えば有機金属気相成長法により行われる。
図5(b)に示されるように、光閉じ込め半導体層49上に、絶縁膜51を形成する。この形成は、例えば、シラン系ガス及び酸素系ガスをプロセスガスとして用いて、プラズマCVD法で行われる。シラン系ガスの一例としては、モノシランが用いられる。酸素系ガスの一例としては、酸素ガスが用いられる。絶縁膜51は、例えばSiOといった酸化シリコンからなる。絶縁膜51の膜厚は、レジストマスク53とのエッチング選択比を確保するために、15nm以上20nm以下程度であることが好ましい。次いで、絶縁膜51上にレジスト膜53を形成する。この形成は、電子ビーム露光用レジストの塗布により行なわれる。
図6(a)に示されるように、絶縁膜51上にレジストマスク53dを形成する。この形成は、レジスト膜53を電子ビーム露光法により露光して、現像することによって行なわれる。レジストマスク53dは、周期的に配列された複数の細線を絶縁膜59に形成するために周期的に配列された複数の細線パターン53a、53b及び活性層のためのパターン53cを有する。
図6(b)に示されるように、レジストマスク53dを用いて絶縁膜51をエッチングし、絶縁体マスク51gを光閉じ込め半導体層49上に形成する。このエッチングは、例えば、CFガスを用いた反応性イオンエッチング(RIE)を用いることができる。このRIEにより、レジストマスク53dの形状が絶縁体マスク51gに転写される。エッチングの後にレジストマスク53dを除去して絶縁体マスク51gが形成される。このレジストマスク53の除去は、例えばOアッシングにより行なわれる。
ここで形成される絶縁体マスク51gは、複数の第1の量子細線48aのための第1のパターン51d、複数の第2の量子細線48bのための第2のパターン51e及び活性層のための第3のパターン51cを有する。第1のパターン51d、第2のパターン51e及び第3のパターン51cはそれぞれ、所定の軸に沿って取られた長さL、長さL及び長さLを有する。第1のパターン51dは、複数の第1の細線パターン51aを含む。第1の細線パターン51aは、所定の軸Axの方向に所定の周期Λで配列されている。第2のパターン51eは、複数の第2の細線パターン51bを含む。第2の細線パターン51bは、所定の軸Axの方向に所定の周期Λで配列されている。第3のパターン51cは、所定の軸Axの方向にわたって延びている。
周期Λ及び周期Λは共にブラッグ周期に設定される。例えば発振波長1550nmとするための周期Λ及び周期Λは共に240nmであり、例えば発振波長1300nmとするための周期Λ及びΛは共に200nmである。
第1の細線パターン51a及び第2の細線パターン51bはそれぞれ、所定の軸Axに沿って取られた幅W及び幅Wを有する。第1の細線パターン51aの幅Wは、第2の細線パターン51bの幅Wよりも大きい。また、第1のパターン51dの長さLは、第2のパターン51eの長さLよりも長い。
図7(a)に示されるように、絶縁体マスク51gを用いて多重量子井戸層47及び光閉じ込め半導体層49をエッチングし、複数の第1の量子細線48a、複数の第2の量子細線48b及び活性層47eを形成する。このエッチングの一例では、CH/H混合ガスを用いた反応性イオンエッチング(RIE)が用いられる。多重量子井戸層47及び光閉じ込め半導体層49をエッチングする工程において、例えば、CH/Hを用いたRIEと、このエッチング中に半導体表面に堆積する炭素重合物を除去するためのOアッシングとを繰り返し行うことが好ましい。このように繰り返すことにより、垂直性に優れた量子細線の配列が得られる。
図7(b)に示されるように、ドライエッチングによる損傷層を除去するために、ドライエッチングが終了した後にウェットエッチングを行う。このエッチングは、例えば硫酸系の溶液を用いる。ウェットエッチングの後、絶縁体マスク51gを除去する。例えば、シリコン酸化物からなるマスクはバッファードフッ酸によるエッチングで除去される。
図7(a)及び図7(b)を用いて説明したように、複数の第1の量子細線48a、複数の第2の量子細線48b及び活性層47eは、それぞれの作製工程に分離されることなく一括に作製される。故に、作製工程が単純化される。
図8(a)に示されるように、複数の第1の量子細線48aの側面の間及び第2の量子細線48bの側面の間に、それぞれ埋め込み半導体領域54a、54bを成長して、第1の量子細線48a及び第2の量子細線48bを埋め込む。また、この工程において、第5光閉じ込め層49c上にキャリアストップ層54cが併せて成長される。埋め込み半導体領域54a、54b及びキャリアストップ層54cは、同じ材料からなることができ、III族元素としてアルミニウム及びインジウムを含むと共にV族元素としてヒ素を含む半導体材料からなることができる。この半導体材料は、例えばノンドープAlInAs半導体であることができる。なお、第1埋め込み半導体領域54a、54b及びキャリアストップ層54cの成長速度は、500nm/h以下の低速であることが好ましい。この成長速度であれば、平坦な成長界面を得ることができる。
複数の第1の量子細線48aと埋め込み半導体領域54a、及び複数の第2の量子細線48bと埋め込み半導体領域54bは、それぞれ分布ブラッグ反射器を形成する。ここで、各第1の量子細線48aの幅Wは、各第2の量子細線48bの幅Wより大きい。また、第1の量子細線48aの配列の所定の軸Axに沿って取られた長さLは、第2の量子細線48bの配列の所定の軸Axに沿って取られた長さLよりも長い。これらの長さL及び長さLはそれぞれ、所定の軸Axに沿って取られた分布ブラッグ反射器の長さに相当する。量子細線の幅は屈折率結合係数に寄与するので、第1の量子細線48aの屈折率結合係数は、第2の量子細線48bの屈折率結合係数より大きい。また、分布ブラッグ反射器の長さと屈折率結合係数との積は、反射率及びストップバンド幅に寄与するので、第1の量子細線48aにより形成される分布ブラッグ反射器は、第2の量子細線48bにより形成される分布ブラッグ反射器の反射率より大きな反射率を有することができる。一方、第2の量子細線により形成される分布ブラッグ反射器のストップバンド幅は、第1の量子細線により形成される分布ブラッグ反射器のストップバンド幅よりも小さい。故に、第2の量子細線により形成される分布ブラッグ反射器は波長フィルタとして作用し、この半導体レーザからの出射光は単一モードとなる。
また、量子細線の幅及び量子細線の配列の長さは、絶縁体マスク51gのパターン形状及び大きさにより制御可能である。従って、分布ブラッグ反射器の反射率及びストップバンド幅の制御が容易である。
図8(b)に示されるように、複数の第1の量子細線48a上、複数の第2の量子細線48b上、埋め込み半導体領域54a、54b上及びキャリアストップ層54c上に、p型GaInAsP半導体からなる第2光閉じ込め層55を成長する。次いで、第2光閉じ込め層55上にp型InP半導体からなる第2クラッド層57を成長する。
この場合には、埋め込み半導体領域54a、54b及びキャリアストップ層54cのバンドギャップは、第2光閉じ込め層55のバンドギャップよりも大きく、且つ活性層47eのうちのバンドギャップよりも大きくなる。故に、キャリアストップ層54cは、活性層47eからの電子に対するポテンシャル障壁となる。このため、活性層47eからの電子は第2光閉じ込め層55に到達しない。一方、キャリアストップ層54cは、p型クラッドから活性層47eに向かって移動するホールに対する障壁とはならない。従って、このホールは、キャリアストップ層54cを通過して活性層47eに到達する。
この後に、第2クラッド層57上にコンタクト層を成長する。さらに、単一横モードを得るために、ストライプ幅を1μm程度としたBH型ストライプ構造といった屈折率導波構造を形成する。
図9は、本発明に係る半導体レーザの第2の実施形態の構成を示す図面である。図9に示した半導体レーザの構成は、活性層71と第2の分布ブラッグ反射器70との間にギャップ領域85が設けられている点で、第1の実施形態の半導体レーザの構成と相違する。この相違点について説明する。
ギャップ領域85は、埋め込み半導体領域75と同じ材料からなる。また、ギャップ領域85の所定の軸Axに沿って取られた幅Wは、埋め込み半導体領域75の所定の軸Axに沿って取られた幅W10よりも大きい。このギャップ領域を設けることにより活性層71と第2の分布ブラッグ反射器70との間に生じる散乱損失の低減が可能となり、活性層71と第2の分布ブラッグ反射器70との間の結合効率を向上させることができる。従って、レーザ光の高出力化が可能となる。このギャップ領域85の材料は、例えばノンドープAlInAs半導体であることができる。また、ギャップ領域85の幅Wは、例えば500nm程度である。また、ギャップ領域85の幅Wは、散乱損失の影響を受けないようにするために300nm以上とし、さらに、内部損失が増加しないようにするために、1000nm以下であることが好ましい。
図1は、本発明の第1の実施形態にかかる半導体レーザ素子の構造を示す斜視図である。 図2は、図1の一部を拡大して示す断面図である。 図3(a)及び図3(b)はそれぞれ、第1及び第2の分布ブラッグ反射器の反射スペクトルを示す図である。 図4は、半導体レーザのバンド構造を示す図である。 図5(a)及び図5(b)は、半導体レーザを作製する方法における半導体レーザの作製工程を示す図である。 図6(a)及び図6(b)は、半導体レーザを作製する方法における半導体レーザの作製工程を示す図である。 図7(a)及び図7(b)は、半導体レーザを作製する方法における半導体レーザの作製工程を示す図である。 図8(a)及び図8(b)は、半導体レーザを作製する方法における半導体レーザの作製工程を示す図である。 図9は、本発明の第2の実施形態にかかる半導体レーザの構造を模式的に示す断面図である。
符号の説明
10…半導体レーザ、11…半導体基板、13,43…第1クラッド層、15,45…第1光閉じ込め層、17,48a…第1の量子細線、18…第1の分布ブラッグ反射器、19,48b…第2の量子細線、20…第2の分布ブラッグ反射器、21,47e…活性層、23,25,54a,54b…第1埋め込み半導体領域、27,54c…キャリアストップ層、29…第5光閉じ込め層、31,55…第2光閉じ込め層、33,57…第2クラッド層、37…コンタクト層、39…絶縁膜、41…第1の電極膜、42…第2の電極膜、47…多重量子井戸層、47a…井戸層、47b…障壁層、51c…第3のパターン、51d…第1のパターン、51e…第2のパターン、51g…絶縁体マスク、85…ギャップ領域。

Claims (10)

  1. 第1〜第3のエリアを含む主面を有し、クラッド領域上に設けられた第1光閉じ込め層と、
    前記第1のエリア上に前記所定の軸に沿って配列され、第1の分布ブラッグ反射器のための複数の第1の量子細線と、
    前記第2のエリア上に前記所定の軸に沿って配列され、第2の分布ブラッグ反射器のための複数の第2の量子細線と、
    前記第1の量子細線の側面の間及び前記第2の量子細線の側面の間に設けられた埋め込み半導体領域と、
    前記所定の軸に沿って前記第3のエリアの一端から他端まで延びており、前記第3のエリア上に設けられた活性層と、
    前記第1の分布ブラッグ反射器上、前記第2の分布ブラッグ反射器上及び前記活性層上に設けられた第2光閉じ込め層と
    を有し、
    前記第3のエリアは、前記第1のエリアと前記第2のエリアとの間に設けられており、
    前記埋め込み半導体領域は、前記第1の量子細線の平均の屈折率及び前記第2の量子細線の平均の屈折率とは異なる屈折率を有することを特徴とする半導体レーザ。
  2. 前記所定の軸に沿って取られた各第1の量子細線の幅は、前記所定の軸に沿って取られた各第2の量子細線の幅よりも大きく、
    前記第1の分布ブラッグ反射器の前記所定の軸に沿って取られた長さは、前記第2の分布ブラッグ反射器の前記所定の軸に沿って取られた長さよりも長いことを特徴とする請求項1に記載の半導体レーザ。
  3. 前記第1の量子細線は、交互に配置された第1の井戸層と第1の障壁層とを有し、
    前記第2の量子細線は、交互に配置された第2の井戸層と第2の障壁層とを有し、
    前記活性層は、交互に配置された第3の井戸層と第3の障壁層とを有し、
    前記第1〜第3の井戸層は互いに同じ材料からなり、
    前記第1〜第3の障壁層は互いに同じ材料からなることを特徴とする請求項1または請求項2に記載の半導体レーザ。
  4. 前記活性層の前記所定の軸に沿って取られた長さは、50μm以上100μm以下であることを特徴とする請求項1〜請求項3のいずれか1項に記載の半導体レーザ。
  5. 前記活性層と前記第2光閉じ込め層との間に設けられたキャリアストップ層を更に備え、
    前記クラッド領域はn型半導体からなり、
    前記キャリアストップ層は、III族元素としてアルミニウム及びインジウムを含むと共にV族元素としてヒ素を含む半導体材料からなり、
    前記第2光閉じ込め層はp型GaInAsP半導体からなり、
    前記キャリアストップ層のバンドギャップは、前記第2光閉じ込め層のバンドギャップより大きく、且つ前記活性層の内の最大のバンドギャップより大きいことを特徴とする請求項1〜請求項4のいずれか1項に記載の半導体レーザ。
  6. 前記活性層と前記第2の分布ブラッグ反射器との間に設けられ、前記埋め込み半導体領域と同じ材料からなるギャップ領域を更に備え、
    前記ギャップ領域の前記所定の軸に沿って取られた幅は、前記第2の量子細線の間隔よりも大きいことを特徴とする請求項1〜請求項5のいずれか1項に記載の半導体レーザ。
  7. 前記活性層上に設けられた電極を更に備えることを特徴とする請求項1〜6のいずれか1項に記載の半導体レーザ。
  8. 半導体レーザを作製する方法であって、
    第1光閉じ込め層をクラッド領域上に成長する工程と、
    多重量子井戸のための半導体層を前記第1光閉じ込め層上に成長する工程と、
    前記所定の軸の方向に配列された複数の第1の量子細線のための第1のパターンと、前記所定の軸の方向に配列された複数の第2の量子細線のための第2のパターンと、活性層のための第3のパターンとを有するマスクを前記半導体層上に形成する工程と、
    前記マスクを用いて前記半導体層をエッチングし、前記活性層、前記第1及び第2の量子細線を形成する工程と、
    前記第1及び第2の量子細線を埋め込むために、前記第1の量子細線の側面の間及び前記第2の量子細線の側面の間に埋め込み半導体領域を成長する工程と
    を備え、
    前記第3のパターンは、前記第1のパターンと前記第2のパターンとの間に設けられていることを特徴とする方法。
  9. 前記所定の軸に沿って取られた各第1の量子細線の幅は、前記所定の軸に沿って取られた各第2の量子細線の幅よりも大きく、
    前記第1の量子細線の配列の前記所定の軸に沿って取られた長さは、前記第2の量子細線の配列の前記所定の軸に沿って取られた長さよりも長いことを特徴とする請求項8に記載の方法。
  10. 前記半導体層をエッチングした後、且つ前記埋め込み半導体領域を成長する前に前記マスクを除去する工程と、
    前記埋め込み半導体領域を成長した後に、第2光閉じ込め層を成長する工程と
    を更に備え、
    前記埋め込み半導体領域を成長する工程において、前記活性層上にキャリアストップ層を併せて成長し、
    前記埋め込み半導体領域及び前記キャリアストップ層は、III族元素としてアルミニウム及びインジウムを含むと共にV族元素としてヒ素を含む半導体材料からなり、
    前記クラッド領域はn型半導体からなり、
    前記第2光閉じ込め層はp型GaInAsP半導体からなり、
    前記埋め込み半導体領域及び前記キャリアストップ層のバンドギャップは、前記第2光閉じ込め層のバンドギャップより大きく、且つ前記活性層の内の最大のバンドギャップより大きく、
    前記第2光閉じ込め層は、前記第1の量子細線上、前記第2の量子細線上、前記埋め込み半導体領域及び前記キャリアストップ層上に成長することを特徴とする請求項8または請求項9に記載の方法。
JP2008207041A 2008-08-11 2008-08-11 半導体レーザおよび半導体レーザを作製する方法 Active JP5051054B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008207041A JP5051054B2 (ja) 2008-08-11 2008-08-11 半導体レーザおよび半導体レーザを作製する方法
US12/464,262 US7957446B2 (en) 2008-08-11 2009-05-12 Semiconductor laser and method of making semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207041A JP5051054B2 (ja) 2008-08-11 2008-08-11 半導体レーザおよび半導体レーザを作製する方法

Publications (2)

Publication Number Publication Date
JP2010045102A JP2010045102A (ja) 2010-02-25
JP5051054B2 true JP5051054B2 (ja) 2012-10-17

Family

ID=41652913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207041A Active JP5051054B2 (ja) 2008-08-11 2008-08-11 半導体レーザおよび半導体レーザを作製する方法

Country Status (2)

Country Link
US (1) US7957446B2 (ja)
JP (1) JP5051054B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2507527A (en) * 2012-11-01 2014-05-07 Oclaro Technology Ltd Semiconductor DBR laser
JP6379696B2 (ja) * 2014-06-05 2018-08-29 住友電気工業株式会社 量子カスケード半導体レーザ
JP6464895B2 (ja) * 2015-04-03 2019-02-06 住友電気工業株式会社 量子カスケード半導体レーザ
JP2018006440A (ja) * 2016-06-29 2018-01-11 日本電信電話株式会社 半導体レーザ
CN113471812B (zh) * 2021-07-02 2023-10-13 中国科学院半导体研究所 增益器件、半导体激光器及半导体激光器的制作方法
CN113791416B (zh) * 2021-09-10 2023-12-05 苏州长光华芯光电技术股份有限公司 一种激光雷达系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255985A (ja) 1987-04-14 1988-10-24 Oki Electric Ind Co Ltd 分布反射型半導体レ−ザ素子
US6822982B2 (en) * 2001-09-28 2004-11-23 The Furukawa Electric Co., Ltd. Device and method for providing a tunable semiconductor laser
JP4193866B2 (ja) * 2006-04-27 2008-12-10 住友電気工業株式会社 半導体発光素子の製造方法

Also Published As

Publication number Publication date
US20100034229A1 (en) 2010-02-11
US7957446B2 (en) 2011-06-07
JP2010045102A (ja) 2010-02-25

Similar Documents

Publication Publication Date Title
JP4643794B2 (ja) 半導体発光素子
US7941024B2 (en) Buried heterostructure device having integrated waveguide grating fabricated by single step MOCVD
US8906721B2 (en) Semiconductor light emitting device and method for manufacturing the same
JP5051054B2 (ja) 半導体レーザおよび半導体レーザを作製する方法
US20080315182A1 (en) Optical semiconductor device and method for manufacturing the same
US9859683B2 (en) Distributed feedback semiconductor laser element
JPH0653619A (ja) 化合物半導体装置及びその製造方法
JPH08242034A (ja) 分布帰還型半導体レーザ装置
US8637338B2 (en) Method for producing integrated optical device
JP3204474B2 (ja) 利得結合分布帰還型半導体レーザとその作製方法
JP5673253B2 (ja) 光半導体素子、半導体レーザ、および光半導体素子の製造方法
CN113422295A (zh) 一种多结分布反馈半导体激光器及其制备方法
JP4599700B2 (ja) 分布帰還型半導体レーザ
JP5310271B2 (ja) 半導体レーザ素子
JP2009194149A (ja) 半導体光集積素子及びその作製方法
JP4617684B2 (ja) 半導体レーザ素子
JP2630035B2 (ja) 波長可変半導体レーザ
JP2012033975A (ja) 半導体レーザの作製方法
JP2010045066A (ja) 半導体レーザ装置
JP5076964B2 (ja) 半導体レーザおよび半導体レーザを作製する方法
JP2010171262A (ja) 半導体レーザを作製する方法および半導体レーザ
US20040151224A1 (en) Distributed feedback semiconductor laser oscillating at longer wavelength mode and its manufacture method
JP2006013191A (ja) 光半導体素子
JP2009238796A (ja) 半導体レーザ及び半導体レーザの作製方法
JP2009206126A (ja) 半導体レーザの作製方法及び半導体レーザ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5051054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250