JP6464895B2 - 量子カスケード半導体レーザ - Google Patents

量子カスケード半導体レーザ Download PDF

Info

Publication number
JP6464895B2
JP6464895B2 JP2015076967A JP2015076967A JP6464895B2 JP 6464895 B2 JP6464895 B2 JP 6464895B2 JP 2015076967 A JP2015076967 A JP 2015076967A JP 2015076967 A JP2015076967 A JP 2015076967A JP 6464895 B2 JP6464895 B2 JP 6464895B2
Authority
JP
Japan
Prior art keywords
region
semiconductor
quantum cascade
cascade laser
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015076967A
Other languages
English (en)
Other versions
JP2016197658A (ja
Inventor
橋本 順一
順一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015076967A priority Critical patent/JP6464895B2/ja
Priority to US15/088,490 priority patent/US9774168B2/en
Publication of JP2016197658A publication Critical patent/JP2016197658A/ja
Application granted granted Critical
Publication of JP6464895B2 publication Critical patent/JP6464895B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2224Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、量子カスケード半導体レーザに関する。
非特許文献1は、埋込ヘテロ構造の量子カスケード半導体レーザを開示する。
Journal of Modern Optics, vol.52, No. 16, pp. 2303-2308, 2005
非特許文献1は、一素子エリアに設けられた単一のストライプ状メサと、このストライプ状メサの幅と同一幅を有し一素子エリアに設けられた分布反射領域とを含む構造を開示する。
ストライプ状メサの幅より広い分布反射領域を備える従来の埋込ヘテロ構造(Buried Heterostructure、以下BHと略す)量子カスケード半導体レーザでは、各素子エリアに単一のストライプ状メサを形成した後に、ストライプ状メサを再成長により埋め込んで半導体領域を形成する。この半導体領域上に分布反射領域のためのマスクを形成すると共に、このマスクを用いて半導体領域をエッチングして分布反射領域のための構造を形成する。
発明者の知見によれば、広い幅の分布反射領域を備える従来の埋込ヘテロ構造量子カスケード半導体レーザでは、素子表面の平坦性が良好でない。発明者の検討によれば、平坦性に係る不具合は、埋込再成長により形成された半導体領域の表面の平坦性に関連している。
この従来の埋込ヘテロ構造量子カスケード半導体レーザの作製において、光導波路のためのストライプ状メサが、一素子サイズの間隔にて、ウエハ上に複数配列される。ここで、1つのストライプ状メサと、それに隣接する両側のストライプ状メサの間の領域は、埋込領域を形成する半導体により埋め込まれて、ストライプ状メサの間に埋込領域が満たされる。発明者の注意深い観察によれば、隣接するストライプ状メサの間の埋込領域の厚さは、一方のストライプ状メサから離れるにつれて小さくなって最小値を取り、その後他方のストライプ状メサに向けて最小値から大きくなる。従って、埋込領域は、隣接する素子エリアのストライプ状メサの間に窪みを有している。この窪みは、ストライプ状メサと同じ方向に延在する。分布反射領域が形成されるべき半導体領域においても、ストライプ状メサの両側に位置する埋込領域の厚さは、ストライプ状メサから離れるにつれて薄くなる。
発明者の更なる検討によれば、上記埋込領域の厚さにおける大きなばらつきは、ストライプ状メサの幅より広い分布反射領域を形成するに際して障害になり得るレベルである。具体的には、幅広い分布反射領域の高屈折率部を規定する誘電体膜等から成るマスクは、ストライプ状メサと、その両側の埋込再成長により形成された半導体領域上に形成される。ここで上記のように、ストライプ状メサの両側に位置する個々の埋込領域に窪みがあると、マスク形成のためのレジストパターニングの際の、最適な露光条件が場所により変動するため、領域全体に対し、最適な条件での露光が困難となり、その結果、レジストの露光状態に不均一が生じる。このような不均一な露光は、高屈折率部を規定するマスク形成のためのレジストのパターン幅に分布を生じさせる。これは、結果として、導波路軸方向における分布反射領域の高屈折率部、及び高屈折率部間の低屈折率部の幅のばらつきに至る。即ち、上記のように埋込領域の平坦性が悪いと、そこに形成される分布反射領域の加工精度も低下する。
上記のように、幅広い分布反射領域の形成に際しては、これが形成される半導体領域の構造が、分布反射領域の特性に大きく関連する。具体的には、埋込領域の平坦性が悪いと、分布反射領域の加工精度が低下するので、分布反射領域の反射率の面内均一性や再現性が悪化し、素子歩留りを低下させる原因となる。
本発明の一側面は、このような事情を鑑みて為されたものであり、メサ導波路より幅広い分布反射領域において、反射率の面内均一性や再現性が改善され、高い歩留まりを有する量子カスケード半導体レーザを提供することを目的とする。
本発明の一側面に係る量子カスケード半導体レーザは、第1軸の方向に配列された導波路エリア及び分布反射エリアを含む主面を備える半導体基板と、前記半導体基板の前記導波路エリア上に設けられたレーザ本体領域と、前記半導体基板の前記分布反射エリア上に設けられた分布反射領域と、前記レーザ本体領域上に設けられた上部電極と、を備え、前記レーザ本体領域は、前記第1軸の方向に延在する第1側面及び第2側面を有するメサ導波路、前記メサ導波路の前記第1側面上及び前記半導体基板の前記主面上に設けられた第1埋込領域、及び前記メサ導波路の前記第2側面上及び前記半導体基板の前記主面上に設けられた第2埋込領域を備え、前記メサ導波路は、導波路軸に沿って延在しており、前記メサ導波路は、前記上部電極に接続され、前記分布反射領域は、分布反射のための一又は複数の半導体壁を含み、前記半導体壁の各々は、前記半導体基板の前記主面の法線軸の方向に延在しており、前記半導体壁は、複数の第1バルク半導体領域及び複数の第1積層領域を含み、前記半導体壁において、前記第1バルク半導体領域及び前記第1積層領域は、前記第1軸及び前記法線軸に交差する第2軸の方向に交互に配列され、前記メサ導波路及び前記第1積層領域は第1半導体積層構造を有しており、前記第1半導体積層構造は、コア層のための第1半導体層と上部クラッド層のための第2半導体層とを含む。
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
以上説明したように、本発明の一側面によれば、メサ導波路より幅広い分布反射領域において、反射率の面内均一性や再現性が改善され、高い歩留まりを有する量子カスケード半導体レーザが提供される。
図1は、実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。 図2は、図1に示されたII−II線に沿ってとられた断面における量子カスケード半導体レーザを模式的に示す図面である。 図3は、図1に示されたIII−III線に沿ってとられた断面における量子カスケード半導体レーザを模式的に示す図面である。 図4は、図1に示されたIV−IV線に沿ってとられた断面における量子カスケード半導体レーザのレーザ本体領域を模式的に示す図面である。 図5は、実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。 図6は、図5に示されたVI−VI線に沿ってとられた断面における量子カスケード半導体レーザを模式的に示す図面である。 図7は、実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。 図8は、図7に示されたVIII−VIII線に沿ってとられた断面における量子カスケード半導体レーザを模式的に示す図面である。 図9は、図7に示されたIX−IX線に沿ってとられた断面における量子カスケード半導体レーザを模式的に示す図面である。 図10は、本実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。 図11は、本実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。 図12は、本実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。 図13は、実施例2に係る半導体レーザを作製する方法における主要な工程を模式的に示す図面である。 図14は、実施例2に係る半導体レーザを作製する方法における主要な工程を模式的に示す図面である。 図15は、実施例2に係る半導体レーザを作製する方法における主要な工程を模式的に示す図面である。 図16は、実施例2に係る半導体レーザを作製する方法における主要な工程を模式的に示す図面である。 図17は、バルク半導体領域及び積層領域の交互配列が適用されない分布反射領域の高屈折率部を作製すべきエリアにおける一素子サイズの幅で断面を示す図面である。 図18は、分布反射領域及びレーザ本体領域のいすれにもバルク半導体領域及び積層領域の交互配列が適用されない量子カスケード半導体レーザの実装を示す図面である。 図19は、実施例2に係る量子カスケード半導体レーザの実装を示す図面である。 図20は、図12に示された量子カスケード半導体レーザを作製する際における素子区画の配列を示す平面図である。
以下、いくつかの具体例を説明する。
一形態に係る量子カスケード半導体レーザは、(a)第1軸の方向に配列された導波路エリア及び分布反射エリアを含む主面を備える半導体基板と、(b)前記半導体基板の前記導波路エリア上に設けられたレーザ本体領域と、(c)前記半導体基板の前記分布反射エリア上に設けられた分布反射領域と、(d)前記レーザ本体領域上に設けられた上部電極と、を備え、前記レーザ本体領域は、前記第1軸の方向に延在する第1側面及び第2側面を有するメサ導波路、前記メサ導波路の前記第1側面上及び前記半導体基板の前記主面上に設けられた第1埋込領域、及び前記メサ導波路の前記第2側面上及び前記半導体基板の前記主面上に設けられた第2埋込領域を備え、前記メサ導波路は、導波路軸に沿って延在しており、前記メサ導波路は、前記上部電極に接続され、前記分布反射領域は、分布反射のための一又は複数の半導体壁を含み、前記半導体壁の各々は、前記半導体基板の前記主面の法線軸の方向に延在しており、前記半導体壁は、複数の第1バルク半導体領域及び複数の第1積層領域を含み、前記半導体壁において、前記第1バルク半導体領域及び前記第1積層領域は、前記第1軸及び前記法線軸に交差する第2軸の方向に交互に配列され、前記メサ導波路及び前記第1積層領域は第1半導体積層構造を有しており、前記第1半導体積層構造は、コア層のための第1半導体層と上部クラッド層のための第2半導体層とを含む。
この量子カスケード半導体レーザによれば、分布反射のための高屈折率部として機能する半導体壁の各々が複数の第1バルク半導体領域及び複数の第1積層領域を含むと共に、メサ導波路及び第1積層領域は第1半導体積層構造を有する。第1バルク半導体領域及び第1積層領域は、第2軸の方向に交互に配列される。第1バルク半導体領域は第1積層領域を埋め込むように成長されて、半導体壁の各々において第1積層領域間に第1バルク半導体領域が設けられる。これ故に、半導体壁は、第2軸の方向に第1バルク半導体領域が長く延在することなく第1バルク半導体領域及び第1積層領域によって構成される交互配列を備える。半導体壁における第2軸の方向への交互配列は、前記法線軸方向における半導体壁の高さの均一性を第2軸の方向に関して高めるために有効である。高さの均一性に起因して、分布反射のための半導体壁の形状の精度が、メサ導波路の両サイドの領域を第1バルク半導体領域のみで構成する半導体壁に比べて良好になる。
具体的に説明すれば、この量子カスケード半導体レーザでは、分布反射のための高屈折率部である半導体壁は、第2軸の方向に交互に配置される第1積層領域及び第1バルク半導体領域を含む半導体領域を加工して形成される。この半導体領域の形成において、第1バルク半導体領域が埋込成長により第1積層領域間に形成される。埋込成長される第1バルク半導体領域が第1積層領域により区切られるので、この半導体領域の表面の平坦性が良好になる。半導体壁は、この半導体領域上の半導体壁となる領域を規定する誘電体膜等から成るマスクを用いて、エッチングにより形成されるが、上記のように半導体領域表面の平坦性が良好なため、本マスクを形成するためのレジストをパターニングする際の最適な露光条件が場所に依らず同一となる。従って、場所に依存せずに、最適条件での均一な露光が可能となり、レジストのパターニング精度が向上する。そのため、本レジストを用いてエッチングされる、上記マスクの加工精度も向上し、これを用いてエッチングされる半導体壁の加工精度も改善される。この結果、分布反射領域の加工精度に起因する素子歩留りの低下を回避できる。
一形態に係る量子カスケード半導体レーザでは、前記第1埋込領域及び前記第2埋込領域の各々は、第2バルク半導体領域及び第2積層領域を含み、前記第2バルク半導体領域及び前記第2積層領域は、前記第2軸の方向に交互に配列され、前記第2積層領域は、前記第1軸の方向に延在すると共に前記第1半導体積層構造を有する。
この量子カスケード半導体レーザによれば、第1埋込領域及び第2埋込領域の各々が第2バルク半導体領域及び第2積層領域を含むと共に、メサ導波路及び第2積層領域は第1半導体積層構造を有する。また、第2バルク半導体領域及び第2積層領域は、第2軸の方向に配列されると共に、第2積層領域において第1半導体積層構造は第1軸の方向に延在する。第2バルク半導体領域は第2積層領域を埋め込むように成長される。第2バルク半導体領域が第2積層領域間に埋込成長により形成されるので、第1埋込領域及び第2埋込領域のための半導体領域の高さの均一性が第2軸の方向に関して良好になる。
このように、第2バルク半導体領域及び第2積層領域の交互配列により、レーザ本体領域の素子表面の平坦性が良好になることで、量子カスケード半導体レーザをエピダウン形態で実装することが容易になる。このため、量子カスケード半導体レーザに優れた放熱性のエピダウン実装を提供でき、エピダウン形態により、量子カスケード半導体レーザ特性が放熱不良に起因して劣化することを回避できる。
第1埋込領域及び第2埋込領域内の複数の第2積層領域は、メサ導波路と同一のエッチング工程で形成される。一素子エリア内に配置された第2積層領域及びメサ導波路を一括して形成する。この一括形成により、一素子エリア当たりのエッチングされるべき面積が小さくなるので、第1埋込領域及び第2埋込領域内の第2積層領域とメサ導波路を一括形成する際のエッチングレートを増加できる。このエッチングレートの増加により、量子カスケード半導体レーザの作製における課題である高いメサ導波路の形成が容易となる。
一形態に係る量子カスケード半導体レーザでは、前記第1埋込領域及び前記第2埋込領域の各々は、第1埋込部分及び第2埋込部分を含み、前記第1埋込部分及び前記第2埋込部分は、前記第2軸方向において、前記導波路軸から当該量子カスケード半導体レーザの側面への向きに順に配置され、前記第1埋込部分が、前記第2積層領域及び前記第2バルク半導体領域を含むと共に、前記第2埋込部分が前記第2積層領域を含まず、前記第2埋込部分は前記2バルク半導体領域を含み、前記第2埋込部分の前記2バルク半導体領域は前記第2軸の方向に延在し、前記第2積層領域及び前記第2バルク半導体領域は、前記第1埋込部分において前記第2軸の方向に沿って交互に配列されている。
この量子カスケード半導体レーザによれば、第1埋込領域及び第2埋込領域の各々は、導波路軸の近くに位置する第1埋込部分を含み、導波路軸から離れており第1埋込部分の外側に位置する第2埋込部分を含む。第2埋込部分は第2バルク半導体領域を含み、この第2バルク半導体領域は第2軸の方向に延在する。第2埋込部分は、単一の材料からなる高抵抗のバルク半導体で形成される。第2埋込部分への高抵抗のバルク半導体の適用により、第1埋込領域及び第2埋込領域をより高抵抗にでき、第1埋込領域及び第2埋込領域を流れる漏れ電流をより低減できる。これによって、量子カスケード半導体レーザの特性を更に改善できる。
一形態に係る量子カスケード半導体レーザは、前記第2バルク半導体領域が、アンドープ又は半絶縁性の半導体を備える。
この量子カスケード半導体レーザによれば、第2バルク半導体領域は、これらの高抵抗材料を備えメサ導波路の第1側面及び第2側面にそれぞれ接する第1部分及び第2閉込部を有する。第2バルク半導体領域の第1閉込部及び第2閉込部は、メサ導波路に電流を狭窄するための電流ブロック層として良好に機能する。また、メサ導波路から離れた第1埋込領域及び第2埋込領域が、上記の高抵抗の第2バルク半導体領域を備えるので、これらの半導体領域の高抵抗性の寄与により、第1埋込領域及び第2埋込領域が全体として高抵抗を示す。その結果、メサ導波路を埋め込む第1埋込領域及び第2埋込領域に流れる漏れ電流をより低減できる。
一形態に係る量子カスケード半導体レーザは、前記半導体壁上に設けられた第1半導体キャップ層を更に備え、前記第1半導体キャップ層は前記半導体壁の前記第1バルク半導体領域に接触を成し、前記第1半導体キャップ層の材料は前記第1バルク半導体領域と同一の材料である。
この量子カスケード半導体レーザによれば、半導体壁の第1バルク半導体領域が、第1バルク半導体領域と同じ材料の第1半導体キャップ層によって互いに接続される。第1バルク半導体領域及び第1半導体キャップ層は、同一の材料から成るので、これらは結晶的に一体化されて単一材料からなる構造となる。従って、半導体壁の強度が高められる。この第1半導体キャップ層によって、分布反射のための半導体壁の破損を低減することが可能となり、素子の製造歩留まり及び素子の耐久性を改善することが可能になる。
一形態に係る量子カスケード半導体レーザでは、前記半導体壁は、第1部分及び第2部分を含み、前記第1部分及び前記第2部分は、前記第2軸方向において、前記導波路軸から当該量子カスケード半導体レーザの側面への向きに順に配置され、前記第1部分が、前記第1積層領域及び前記第1バルク半導体領域を含むと共に、前記第2部分が前記第1積層領域を含まず、前記第2部分は前記第1バルク半導体領域を含み、前記第1積層領域及び前記第1バルク半導体領域は、前記第1部分において前記第2軸の方向に沿って交互に配列されている。
この量子カスケード半導体レーザによれば、半導体壁は、導波路軸の近くに位置する第1部分を含み、導波路軸から離れており第1部分の外側に位置する第2部分を含む。第2部分は第1バルク半導体領域を含み、この第1バルク半導体領域は第2軸の方向に延在する。第2部分は、第1積層領域を含まずバルク半導体で形成される、第2部分へのバルク半導体の適用により、半導体壁の第2部分における機械的強度を増強でき、分布反射のための半導体壁が破損しにくくできる。
一形態に係る量子カスケード半導体レーザは、誘電体材料から成る絶縁膜を更に備え、前記絶縁膜は、前記第1埋込領域及び前記第2埋込領域と前記上部電極との間に設けられる。
この量子カスケード半導体レーザによれば、誘電体の絶縁膜は、優れた耐久性及び絶縁性を有する。また、この絶縁膜は、一般的な誘電体膜成膜装置を用いて容易に成膜でき、誘電体の絶縁膜を製造プロセスに導入することが容易である。
一形態に係る量子カスケード半導体レーザは、アンドープ半導体又は半絶縁性半導体から成る第2半導体キャップ層を更に備え、前記第2半導体キャップ層は、前記第1埋込領域及び前記第2埋込領域と前記上部電極との間に設けられる。
この量子カスケード半導体レーザによれば、第2半導体キャップ層が半絶縁性半導体及びアンドープ半導体から成り、これらの半導体は良好な熱伝導を有する。また、第2半導体キャップ層は、下地の半導体領域(メサ導波路、第1、第2埋込領域)の表面の凹凸を軽減するように、それらの表面上に成長される。従って、前記誘電体絶縁膜を用いる場合に比べて、レーザ本体領域の表面平坦性がより改善される。このようなレーザ本体領域の表面平坦性の向上により、エピダウン実装の際における素子放熱性がより高められるため、量子カスケード半導体レーザの特性が放熱不良により劣化することの回避がより容易となる。
一形態に係る量子カスケード半導体レーザは、前記半導体壁のうちの第1壁及び第2壁を互いに接続する第1補強部を更に備える。
この量子カスケード半導体レーザによれば、複数の半導体壁、具体的には半導体壁の内の第1壁及び第2壁が第1補強部を介して接続されて、第1補強部、第1壁及び第2壁が一体化される。この補強構造により、分布反射領域の機械的強度を増加できる。その結果、分布反射領域が破損しにくくなって、素子の製造歩留まり及び素子の耐久性を更に改善することが可能となる。
一形態に係る量子カスケード半導体レーザでは、前記第1壁は、前記第1補強部に接続された第11部分を有し、前記第2壁は、前記第1補強部に接続された第21部分を有し、前記第1補強部、前記第11部分、及び前記第21部分の材料は同じである。
この量子カスケード半導体レーザによれば、第1補強部、第11部分、及び第21部分の材料が同じであるので、これら第1補強部、第11部分、及び第21部分は、結晶的に一体化されて単一材料からなる構造となる。従って、分布反射領域の強度をより効果的に増加できる。また、第1補強部、第11部分及び第21部分が同じ材料であるので、これらを一括形成できる。一括形成により、量子カスケード半導体レーザの製造プロセスを簡略化できる。
一形態に係る量子カスケード半導体レーザは、前記半導体壁を前記第1埋込領域及び前記第2埋込領域に接続する第2補強部を更に備える。
この量子カスケード半導体レーザによれば、第2補強部を介して分布反射領域の半導体壁をレーザ本体領域に接続して、一体化された構造を形成する。この構造によれば、分布反射領域の機械的強度を増加でき、その結果、分布反射領域の破損を回避できる。この第2補強部によって、素子の製造歩留まり及び素子の耐久性を改善することが可能になる。
一形態に係る量子カスケード半導体レーザでは、前記半導体壁は、前記第2補強部に接続された接続部を含み、前記半導体壁の前記接続部の材料は、前記第2補強部の材料と同じである。
この量子カスケード半導体レーザによれば、半導体壁の接続部及び第2補強部は同一の材料からなるので、これらは結晶的に一体化されて単一材料からなる構造となる。従って、分布反射領域の強度をより効果的に増加できる。また半導体壁の接続部及び第2補強部の材料が同じであるので、これらを一括形成できる。一括形成により、量子カスケード半導体レーザの製造プロセスを簡略化できる。
一形態に係る量子カスケード半導体レーザでは、前記第1埋込領域は、前記第2補強部に接続された第11埋込部を含み、前記第2埋込領域は、前記第2補強部に接続された第21埋込部を含み、前記第2補強部、前記第11埋込部及び前記第21埋込部の材料は同じである。
この量子カスケード半導体レーザによれば、第2補強部、第11埋込部及び第21埋込部の材料が同じであるので、これらは結晶的に一体化されて単一材料からなる構造となる。従って、分布反射領域の強度をより効果的に増加できる。また、第2補強部、第11埋込部及び第21埋込部の材料が同じであるので、これらを一括形成できる。一括形成により、量子カスケード半導体レーザの製造プロセスを簡略化できる。
一形態に係る量子カスケード半導体レーザでは、前記半導体壁の長さは、前記第2軸の方向において前記半導体基板の幅より短い。
この量子カスケード半導体レーザによれば、本量子カスケード半導体レーザの作製に関して、素子サイズに対応するエリアにおける一素子エリアの幅より該素子エリア上の半導体壁の長さを短くすることで、分布反射のための半導体壁を形成するエッチングにおける面内均一性及び再現性が改善される。また、該量子カスケード半導体レーザの作製において、素子分離の際に生じうる半導体壁の破損に起因する製造歩留まり低下を回避でき、且つ半導体壁の機械的強度を増強でき、破損が生じにくくなる。
一形態に係る量子カスケード半導体レーザでは、前記第1バルク半導体領域が、アンドープ又は半絶縁性の半導体を備える。
この量子カスケード半導体レーザによれば、アンドープ半導体及び半絶縁性半導体では、自由キャリアに起因する光吸収が中赤外の波長領域において微小であるので、分布反射領域の半導体壁における導波光の吸収を低減できる。
一形態に係る量子カスケード半導体レーザでは、前記上部クラッド層はInPを備える。
この量子カスケード半導体レーザによれば、InPは中赤外の発振光に対して実質的に光吸収を示さず透明であるので、クラッド層材料として好適である。また、InPは2元混晶であると共にInP基板に格子整合するので、InP基板上の成長が容易である、また、InPの熱伝導性が高いので、InPクラッド層は、コア層からの良好な放熱性を提供でき、量子カスケード半導体レーザの温度特性向上に寄与する。
一形態に係る量子カスケード半導体レーザでは、前記コア層は、発光領域である複数の活性層と、前記活性層にキャリアを注入するための複数の注入層を含み、前記活性層及び前記注入層が交互に配列されている。
この量子カスケード半導体レーザによれば、注入層と活性層の多段接続は、量子カスケード半導体レーザのコア層構造として有用であり、活性層間に注入層を設けてこれらを接続することにより、電子は隣接する活性層に連続的にスムーズに受け渡されて伝導帯サブバンド間を遷移でき、その結果、良好な量子カスケードレーザ発振が得られる。
一形態に係る量子カスケード半導体レーザでは、前記活性層及び前記注入層の各々は、GaInAs/AlInAsの超格子列を備える。
この量子カスケード半導体レーザによれば、上記の超格子列は、中赤外域の波長に相当する伝導帯サブバンド間遷移を提供できるので、中赤外量子カスケード半導体レーザのコア層の材料として好適である。
一形態に係る量子カスケード半導体レーザでは、前記基板はn型InP基板である。
この量子カスケード半導体レーザによれば、量子カスケード半導体レーザを構成する半導体層は、InPに近い格子定数を有する。従って、量子カスケード半導体レーザのための基板としてInP基板を用いることにより、量子カスケード半導体レーザを構成する半導体層を良好な結晶品質で成長することが可能となる。また、InP基板は、中赤外波長領域の光に対して実質的に光吸収を示さず透明であるので、InP基板を下部クラッドとして使用できる。
一形態に係る量子カスケード半導体レーザでは、前記メサ導波路と前記半導体壁との間に空隙が設けられており、前記半導体壁間に別の空隙が設けられている。
この量子カスケード半導体レーザによれば、半導体壁は分布反射エリアに設けられて高屈折率部を構成し、メサ導波路と半導体壁との間の空隙及び半導体壁間の別の空隙は、前記分布反射エリアに設けられて低屈折率部を構成する。
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、実施形態に係る量子カスケード半導体レーザ及び量子カスケード半導体レーザを作製する方法を説明する。可能な場合には、同一の部分には同一の符号を付する。なお以下の各実施例では、レーザ本体領域に単一モード発振のための回折格子層を導入した、分布帰還型(Distributed Feedback、以下DFBと略す)量子カスケード半導体レーザを例示した。
図1は、実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。図2は、図1に示されたII−II線に沿ってとられた断面における量子カスケード半導体レーザを模式的に示す図面である。図3は、図1に示されたIII−III線に沿ってとられた断面における量子カスケード半導体レーザを模式的に示す図面である。更に、図4は、図1に示されたIV−IV線に沿ってとられた断面における量子カスケード半導体レーザ1のレーザ本体領域を模式的に示す図面である。
図1〜図3を参照すると、量子カスケード半導体レーザ1は、半導体基板11、レーザ本体領域12、及び分布反射領域13、14、を備える。半導体基板11は主面11aを備え、主面11aは、第1軸Ax1の方向(X方向)に配列された導波路エリア11b及び分布反射エリア11c、11dを含む。レーザ本体領域12が、半導体基板11の導波路エリア11b上に設けられる。分布反射領域13、14が、それぞれ、分布反射エリア11c、11d上に設けられる。分布反射領域13、14は素子端面3c、3dを各々有す。引き続く説明は、半導体基板11の分布反射エリア11c上の分布反射領域13について行われるが、この説明は、分布反射エリア11d上の分布反射領域14にも適用される。
レーザ本体領域12は、メサ導波路17、第1埋込領域19、及び第2埋込領域21を備える。メサ導波路17は、第1軸Ax1に平行な導波路軸WGに沿って延在する。メサ導波路17は、第1軸Ax1の方向に延在する第1側面17b及び第2側面17cを有する。第1埋込領域19は、メサ導波路17の第1側面17b上、及び半導体基板11の主面11a上に設けられ、第2埋込領域21は、メサ導波路17の第2側面17c上、及び半導体基板11の主面11a上に設けられる。
分布反射領域13は、分布反射のための一又は複数の半導体壁29を含み、各半導体壁29は、半導体基板11の主面11aに対する法線軸NX(直交座標系SにおけるZ軸)の方向に主面11aから延在する。半導体壁29は、分布反射エリア11c内において、第1軸Ax1の方向に配列されており、本実施例では、分布反射領域13は、3つの半導体壁29を含む。各半導体壁29は、複数の第1バルク半導体領域33及び複数の第1積層領域35を含む。個々の半導体壁29において、第1バルク半導体領域33及び複数の第1積層領域35は、第1軸Ax1及び法線軸NXに交差する第2軸Ax2の方向(Y方向)に交互に配列される。本実施例では、量子カスケード半導体レーザ1の側縁3a、3bの一方から他方にまで、第1バルク半導体領域33及び複数の第1積層領域35の交互配列が、第2軸Ax2の方向に延在する。
この量子カスケード半導体レーザ1によれば、分布反射のための半導体壁29の各々が複数の第1バルク半導体領域33及び複数の第1積層領域35を含むと共に、メサ導波路17及び第1積層領域35は第1半導体積層構造23を有する。第1バルク半導体領域33及び第1積層領域35は、第2軸Ax2の方向に交互に配列される。第1バルク半導体領域33は第1積層領域35を埋め込むように成長されて、半導体壁29の各々において第1積層領域35の間に第1バルク半導体領域33が設けられる。これ故に、半導体壁29は、第2軸Ax2の方向に第1バルク半導体領域33を広く延在させることになく第1バルク半導体領域33及び第1積層領域35によって構成される交互配列を備える。半導体壁29における第2軸Ax2の方向への交互配列は、第2軸Ax2の方向に関して半導体壁29の法線軸Nx方向における高さの均一性を高めるために有効である。高さの均一性に起因して、分布反射領域13を高反射化するための半導体壁29の加工精度が、第1バルク半導体領域のみで構成される半導体壁に比べて良好になる。
また、この量子カスケード半導体レーザ1では、分布反射のための半導体壁29は、第2軸Ax2の方向に交互に配置される第1積層領域35及び第1バルク半導体領域33を含む半導体領域を加工して形成される。この半導体領域の形成において、第1バルク半導体領域33のバルク半導体が埋込成長により第1積層領域35間に形成される。埋込成長されるバルク半導体が第1積層領域35により区切られるので、この半導体領域の表面の平坦性が良好になる。半導体壁29は、この半導体領域上の半導体壁29となる領域を規定する誘電体膜等から成るマスクを用いて、エッチングにより形成されるが、上記のように半導体領域表面の平坦性が良好なため、本マスクを形成するためのレジストをパターニングする際の最適な露光条件が場所に依らず同一となる。従って、場所に依存せずに最適条件での均一な露光が可能となり、レジストのパターニング精度が向上する。そのため、本レジストを用いてエッチングされる、上記マスクの加工精度が向上し、これを用いてエッチングされる半導体壁29の加工精度も改善される。この結果、分布反射領域13、14の加工精度に起因する素子歩留りの低下を回避できる。
メサ導波路17及び第1積層領域35は第1半導体積層構造23を有する。第1半導体積層構造23は、コア層のための第1半導体層27a及び上部クラッド層のための第2半導体層27bを含み、本実施例では、第1半導体積層構造23は、コンタクト層のための第3半導体層27c、下部クラッド層のための第4半導体層27d及び回折格子層のための第5半導体層27eを更に含む。第4半導体層27d(下部クラッド層)、第1半導体層27a(コア層)、第5半導体層27e(回折格子層)、第2半導体層27b(上部クラッド層)及び第3半導体層27c(コンタクト層)は、法線軸NXの方向に順に配列されている。
メサ導波路17の端部は、半導体壁29から離間して設けられて、本実施例ではメサ導波路17の端部と半導体壁29の側面との間に空隙22を構成する。半導体壁29は互いに離間して設けられて、半導体壁29間には、本実施例では別の空隙24が設けられている。半導体壁29は分布反射エリア11cに設けられて高屈折率部を構成し、メサ導波路17と半導体壁29との間の空隙22、半導体壁29間の別の空隙24、及び最も端面3cに近い半導体壁29と端面3cの間の空隙26は、分布反射エリア11cに設けられて低屈折率部を構成する。これによって、分布反射領域13は、高屈折率部及び低屈折率部の交互配列を含む。また第1軸Ax1方向において、高屈折率部及び低屈折率部は、各々WH、及びWLの幅を有している。
量子カスケード半導体レーザ1では、第1バルク半導体領域33はアンドープ半導体及び/又は半絶縁性半導体を備えることが好ましい。アンドープ半導体及び半絶縁性半導体では、自由キャリアに起因する光吸収が中赤外の波長領域において微小であるので、分布反射領域13の半導体壁29における導波光の吸収を低減できる。
量子カスケード半導体レーザ1は、メサ導波路17の上面17aに接触を成す上部電極15と、半導体基板11の裏面11fに設けられた下部電極41とを備える。上部電極15の材料は、メサ導波路17の上面17aにオーミック接触を可能にするものである。下部電極41の材料は、半導体基板11の裏面11fにオーミック接触を可能にするものである。また、量子カスケード半導体レーザ1は、第1埋込領域19及び第2埋込領域21との間に設けられた分離層43を備えることができる。
量子カスケード半導体レーザ1は、必要な場合には、半導体壁29の上面上を延在する第1半導体キャップ層47を更に備えることができる。第1半導体キャップ層47は半導体壁29の第1バルク半導体領域33に接触を成す。第1半導体キャップ層47の材料は第1バルク半導体領域33と同一の材料であることが好ましい。この量子カスケード半導体レーザ1によれば、半導体壁29の第1バルク半導体領域33が、第1バルク半導体領域33と同じ材料の第1半導体キャップ層47によって互いに接続される。第1バルク半導体領域33及び第1半導体キャップ層47は、同一の材料から成るので、これらは結晶的に一体化されて単一材料からなる構造となる。従って、半導体壁29の強度が高められる。この第1半導体キャップ層47は、分布反射のための半導体壁29の破損を低減することに役立ち、素子の製造歩留まり及び素子の耐久性を改善することを可能にする。
第1埋込領域19及び第2埋込領域21と上部電極15との間に、分離層43として働く誘電体絶縁膜及び半導体キャップ層の少なくともいずれかを設けることができる。分離層43は、メサ導波路17の上面17a上に位置する開口43aを有する。この開口43aを介して、上部電極15は、メサ導波路17の上面17aに接触を成す。
量子カスケード半導体レーザ1では、分離層43は、第1埋込領域19及び第2埋込領域21と上部電極15との間に設けられる誘電体材料から成る絶縁膜を含むことができる。誘電体材料から成る絶縁膜は、第1埋込領域19及び第2埋込領域21と上部電極15との間に設けられる。この量子カスケード半導体レーザ1によれば、絶縁膜は、優れた耐久性及び絶縁性を有する。また、この絶縁膜は、一般的な誘電体膜成膜装置を用いて容易に成膜でき、誘電体の絶縁膜を製造プロセスに導入することが容易である。絶縁膜は、SiO、SiON、SiN、アルミナ、BCB樹脂、及びポリイミド樹脂の少なくともいずれかを備えることができる。
また、量子カスケード半導体レーザ1では、分離層43は、第1埋込領域19及び第2埋込領域21と上部電極15との間に設けられる第2半導体キャップ層を含むことができる。この第2半導体キャップ層はアンドープ半導体又は半絶縁性半導体を備えることができる。この量子カスケード半導体レーザ1によれば、第2半導体キャップ層が半絶縁性半導体及びアンドープ半導体から成り、これらの半導体は良好な熱伝導を有する。また、第2半導体キャップ層は、下地の半導体領域(メサ導波路17、第1、第2埋込領域19、21)の表面の凹凸を軽減するように、それらの表面上に成長される。従って、前記誘電体絶縁膜を用いる場合に比べて、レーザ本体領域12の表面平坦性がより改善される。このようなレーザ本体領域12の表面平坦性の向上により、エピダウン実装の際における素子放熱性がより高められ、また、量子カスケード半導体レーザの特性が放熱不良により劣化することの回避がより容易となる。
量子カスケード半導体レーザ1の一例。
半導体基板11:n型InP基板。
第1半導体層27a(コア層):活性層及び注入層が交互に積層された構造。
活性層28a:GaInAs/AlInAsの超格子構造。
注入層28b:GaInAs/AlInAsの超格子構造。
第2半導体層27b(上部クラッド層):n型InP。
第3半導体層27c(コンタクト層):n型GaInAs。
第4半導体層27d(下部クラッド層):n型InP。
第5半導体層27e(回折格子層):アンドープ又はn型のGaInAs。
第1バルク半導体領域33:半絶縁性InP、アンドープInP。
上部電極15及び下部電極41:Ti/Au、Ge/Au。
好適な実施例では、半導体基板11はn型InP基板を備える。この量子カスケード半導体レーザ1によれば、量子カスケード半導体レーザ1を構成する半導体層はInPに近い格子定数を有するので、InP基板の適用は、これらの層を良好な結晶品質で成長することを可能にする。また、InP基板は中赤外の発振光に対して透明であるので、基板のInPが下部クラッドとして機能する。
また、第2半導体層27bによって提供される上部クラッド層は、InPを備える。この量子カスケード半導体レーザ1によれば、InPは中赤外の発振光に対して透明であるので、クラッド層材料として好適である。また、InPは2元混晶であり、InP基板に格子整合するので、InPの成長は容易である。更に、InPの熱伝導性が良好であるので、InPクラッド層を介してコア層からの熱を良好な放出でき、InPクラッド層の使用により、量子カスケード半導体レーザの温度特性を向上できる。下部クラッド層27dもInPを備えるようにしても良い。
第1半導体層27aによって提供されるコア層は、発光領域である複数の活性層28aと、活性層28aにキャリアを注入するための複数の注入層28bとを含む。活性層28a及び注入層28bは交互に配列される。この量子カスケード半導体レーザ1によれば、活性層28a及び注入層28bの多段接続は、量子カスケード半導体レーザ1のコア層に適用可能である。活性層28a間に注入層28bを設けて活性層28aを接続することによって、隣接する活性層28aに電子が連続的にスムーズに受け渡されて伝導帯サブバンド間の電子の遷移が可能になり、その結果、良好な量子カスケード半導体レーザの発振が提供される。例えば、活性層28a及び注入層28bはGaInAs/AlInAs超格子構造によって構成される。この量子カスケード半導体レーザ1によれば、この超格子列は、中赤外域の波長に相当する伝導帯サブバンド間の電子の遷移を提供でき、この結果、中赤外のレーザ発振のためのコア層として好適である。
第1埋込領域19の構造例及び第2埋込領域21の構造例を説明する。
(構造例1)
図1〜図3に示されるように、第1埋込領域19は、電流ブロックのための第2バルク半導体領域39を備えることができる。第1埋込領域19は、メサ導波路17の第1側面17b上に沿って延在する第1閉込部39b含み、本実施例では、第1閉込部39bが、量子カスケード半導体レーザ1の側縁3aに到達している。また、第2埋込領域21は、同様に、メサ導波路17の第2側面17c上に沿って延在する第2閉込部39cを含み、本実施例では、第2閉込部39cが、量子カスケード半導体レーザ1の側縁3bに到達している。第2バルク半導体領域39の、第1閉込部39b及び第2閉込部39cは共に、半絶縁性半導体又はアンドープ半導体の少なくともいずれかを備える。これらの高抵抗材料は、第2バルク半導体領域39がメサ導波路17に電流(キャリア)を狭窄するための電流ブロック層として良好に機能することを可能にする。また、メサ導波路17の側面上とは別の領域に設けられた第2バルク半導体領域39は、その高抵抗性に起因して、メサ導波路17外の半導体領域に、高抵抗を提供でき、メサ導波路17の外部を流れる漏れ電流を低減するために役立つ。
より具体的には、第2バルク半導体領域39は半絶縁性半導体を備える。この半絶縁性半導体は、遷移金属がドープされた半導体であることができる。遷移金属は、Fe、Ti、Cr、及びCoの少なくともいずれかであることができる。この量子カスケード半導体レーザ1によれば、これらの遷移金属を添加することによって、InP、GaInAs、AlInAs、GaInAsP、AlGaInAsといったIII−V化合物半導体に半絶縁性を付与でき、この結果、電子に対して例えば10(Ω・cm)以上の充分な高抵抗性が得られる。従って、これらの遷移金属の添加は、量子カスケード半導体レーザ1内のバルク半導体領域の高抵抗材料の提供に好適である。
(構造例2)
図5は、実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。図6は、図5に示されたVI−VI線に沿ってとられた断面における量子カスケード半導体レーザを模式的に示す図面である。図5に示されたII−II線に沿ってとられた断面は、既に図2に示されている。第1埋込領域19及び第2埋込領域21の各々は、複数の第2積層領域37と、該複数の第2積層領域37を埋め込む第2バルク半導体領域39とを備える。本実施例では、第2バルク半導体領域39は、第1埋込領域19においては、第1軸Ax1方向に延在する第1閉込部39bと複数の第1バルク部分39dから成り、一方、第2埋込領域21においては、第1軸Ax1方向に延在する第2閉込部39cと複数の第1バルク部分39dから成る。また、第2積層領域37は、第1軸Ax1の方向に延在すると共に第1半導体積層構造23を有する。第2バルク半導体領域39、及び第2積層領域37が第2軸Ax2の方向に交互に配列される。
具体的には、図5に示されるように、第2バルク半導体領域39は、第1埋込領域19に設けられた複数の第1バルク部分39dを含むことができる。第1埋込領域19において、メサ導波路17から量子カスケード半導体レーザ1の側縁3aへの方向に第1バルク部分39d及び第2積層領域37が交互に配列される。具体的には、メサ導波路17の第1側面17bに沿って第1閉込部39bが延在し、第1閉込部39bに沿って第2積層領域37が延在し、この第2積層領域37に沿って最初の第1バルク部分39dが延在する。第1埋込領域19は、更なる第1バルク部分39d及び第2積層領域37を含むことができ、結果として第1埋込領域19において、第1バルク部分39d及び第2積層領域37が第2軸Ax2の方向に交互に配列される。メサ導波路17から側縁3aまでのエリアの全体にわたって第1バルク部分39d及び第2積層領域37の配列が設けられて、本実施例では、側縁3aには第1バルク部分39dが現れている。第1埋込領域19は、第1閉込部39b及び複数の第1バルク部分39dを備え、これらは、互いに第2積層領域37によって隔てられている。第2積層領域37と上部電極15との間には分離層43が設けられて、上部電極15は第2積層領域37に接続されない。また、第2埋込領域21は、第2閉込部39c及び複数の第1バルク部分39dを備え、これらは、互いに第2積層領域37によって隔てられている。第1閉込部39bが第2閉込部39cに置き換えられる点を除いて、第2埋込領域21は第1埋込領域19と同一の構造を有しており、第2バルク半導体領域39は、第2埋込領域21においても、第1埋込領域19と同様に配列された複数の第1バルク部分39dを含むことができる。第1埋込領域19及び第2埋込領域21において、第1閉込部39b、第2閉込部39c及び第1バルク部分39dは、第1軸Ax1の方向に延在し、これらは、互いにメサ導波路17又は第2積層領域37によって隔てられている。
この量子カスケード半導体レーザ1によれば、第1埋込領域19及び第2埋込領域21の各々が第2バルク半導体領域39及び第2積層領域37を含むと共に、メサ導波路17及び第2積層領域37は第1半導体積層構造23を有する。また、第2バルク半導体領域39及び第2積層領域37は、第2軸Ax2の方向に交互に配列されると共に、第2積層領域37は第1軸Ax1の方向に延在し、この第2積層領域37を埋め込むように、第2バルク半導体領域39が成長される。第2バルク半導体領域39が隣接する第2積層領域37の間に埋込成長されて第1埋込領域19及び第2埋込領域21のための半導体領域が形成されるので、この半導体領域の法線軸Nxの方向における高さの均一性が、第2軸Ax2の方向に関して良好になる。従って、レーザ本体領域12の素子表面の平坦性が良好になる。
上記のように、第2バルク半導体領域39及び第2積層領域37の交互配列により、レーザ本体領域12の素子表面の平坦性が良好になる。このため、量子カスケード半導体レーザ1をエピダウン形態で実装することが容易になる。このため、量子カスケード半導体レーザ1に優れた放熱性のエピダウン実装を提供でき、エピダウン実装により、量子カスケード半導体レーザ特性が放熱不良に起因して劣化することを回避できる。
第1埋込領域19及び第2埋込領域21内の複数の第2積層領域37は、メサ導波路17と共に、同一のエッチング工程で一括して形成する。この一括形成に際してはより、第1埋込領域19及び第2埋込領域21への第2積層領域37の適用によって、それ以外の第2バルク半導体領域39となる領域のみをエッチングすることができる。従い、従来の第1埋込領域19上、及び第2埋込領域21上に形成された全半導体積層23をエッチングする必要がある構造に比べて、一素子エリアでエッチングされるべき半導体の面積が少なくなる。このようなエッチング面積の低減により、エッチングレートを増加できるため、量子カスケード半導体レーザ1に所望される高いメサ導波路17をエッチングにより形成することが容易となる。
(構造例3)
図7は、実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。図8は、図7に示されたVIII−VIII線に沿ってとられた断面における量子カスケード半導体レーザを模式的に示す図面である。図9は、図7に示されたIX−IX線に沿ってとられた断面における量子カスケード半導体レーザを模式的に示す図面である。
第1埋込領域19及び第2埋込領域21の各々は、第1埋込部分20a及び第2埋込部分20bを含む。第1埋込部分20a及び第2埋込部分20bは、第1軸Ax1に平行な導波路軸WGから当該量子カスケード半導体レーザ1の側縁3a(3b)への向きに順に配置される。第1埋込部分20aは、第2積層領域37、第1閉込部39b、第2閉込部39c、及び第1バルク部分39d(第2バルク半導体領域39)を含むと共に、第2積層領域37及び第1バルク部分39dが第2軸Ax2の方向に交互に配列されている。これ故に、第1埋込部分20aが、構造例2における第1埋込領域19及び第2埋込領域21と同様の配列構造を有する。
第2埋込部分20bは第2積層領域37を含まないけれども、第2バルク半導体領域39の1領域である39eを含む。第2埋込部分20bの第2バルク半導体領域39eは、第1軸Ax1の方向に、導波路エリア11bと分布反射エリア11cとの境界から導波路エリア11bと分布反射エリア11dとの境界まで延在する。また、第2埋込部分20bの第2バルク半導体領域39eは、第2軸Ax2の方向に、第1埋込部分20aと第2埋込部分20bとの境界から量子カスケード半導体レーザ1の側縁3a(3b)まで延在する。
この量子カスケード半導体レーザ1によれば、第1埋込領域19及び第2埋込領域21の各々は、導波路軸WGの近くに位置する第1埋込部分20aと、導波路軸WGから離れており第1埋込部分20aの外側に位置する第2埋込部分20bとを含む。第2埋込部分20bは第2バルク半導体領域39eを含み、この第2バルク半導体領域39eは第1軸Ax1及び第2軸Ax2の方向に延在する。
第1埋込部分20aの配列構造は、構造例2と同様に、メサ導波路17と第1埋込部分20aから成る領域の表面における平坦性を良好にする。また、第2埋込部分20bは、単一の材料からなる高抵抗のバルク半導体で形成される。第2埋込部分20bへの高抵抗のバルク半導体の適用により、構造例2に比べて、高抵抗のバルク半導体領域が第1埋込領域19及び第2埋込領域21に占める割合を増やせる。従って、構造例2に比べて、第1埋込領域19及び第2埋込領域21をより高抵抗にでき、第1埋込領域19及び第2埋込領域21を流れる漏れ電流をより低減できる。これによって、量子カスケード半導体レーザの特性を更に改善できる。
構造例3においては、半導体壁29は、第1部分29a及び第2部分29bを含む。第1部分29a及び第2部分29bは、導波路軸WGから当該量子カスケード半導体レーザ1の側縁3a(3b)への向きに順に配置される。半導体壁29の第1部分29aは、導波路エリア11b上の第1埋込部分20aの位置に対応して設けられ、また半導体壁29の第2部分29bは、導波路エリア11b上の第2埋込部分20bの位置に対応して設けられる。半導体壁29の第1部分29aの全体にわたって、第1積層領域35及び第1バルク半導体領域33が第2軸Ax2の方向に交互に配列される。また、半導体壁29の第2部分29bの全体にわたって、第2軸Ax2の方向において、第1部分29aと第2部分29bとの境界から当該量子カスケード半導体レーザ1の側縁3a(3b)まで第1バルク半導体領域33が延在する。本実施例では、半導体壁29の第1部分29aは、第1埋込部分20aの配列構造に合わせて、第1積層領域35及び第1バルク半導体領域33を含む。また、半導体壁29の第2部分29bは、第2埋込部分20bの構造に合わせて、第1積層領域35を含まず、また第1バルク半導体領域33を含む。
この量子カスケード半導体レーザ1によれば、半導体壁29は、導波路軸WGの近くに位置する第1部分29aを含み、導波路軸WGから離れており第1部分29aの外側に位置する第2部分29bを含む。第2部分29bは第1バルク半導体領域33を含み、この第1バルク半導体領域33は第2軸Ax2の方向に延在する。第2部分29bは、第1積層領域35を含まず単一の材料からなるバルク半導体で形成される、第2部分29bへのバルク半導体の適用により、半導体壁の第2部分29bにおける機械的強度を増強でき、その結果、構造例1,2に比べて、分布反射のための半導体壁29を破損しにくくできる。また必要な場合には、図2に示した構造例1と同様に、図9に示したように、第1半導体キャップ層47を半導体壁29の最上部に形成しても良い。これの導入により、半導体壁29の強度が増し、半導体壁29がより波損しにくくなる。
構造例1、2、3において、第2バルク半導体領域39(39b、39c、39d、39e)が、アンドープ又は半絶縁性の半導体を備えることが好ましい。この量子カスケード半導体レーザ1によれば、第2バルク半導体領域39は、これらの高抵抗材料を備えメサ導波路17の第1側面17b及び第2側面17cにそれぞれ接する第1閉込部39b及び第2閉込部39cを形成する。第1閉込部39b及び第2閉込部39cは、メサ導波路17に電流を狭窄するための電流ブロック層として良好に機能する。また、メサ導波路17から離れた部分において第1埋込領域19及び第2埋込領域21が上記の高抵抗材料を備える構造では、第2バルク半導体領域39の高抵抗性の寄与により、第1埋込領域19及び第2埋込領域21の高抵抗性がより高まる。その結果、メサ導波路17を埋め込む第1埋込領域19及び第2埋込領域21に流れる漏れ電流をより低減できる。
なお、第1埋込部分20aと第2埋込部分20bの第2バルク半導体領域39に用いられるバルク半導体材料は同一である必要は無く、必要に応じて各々に異なるバルク半導体材料を用いることが出来る。同じく、第1部分29aと第2部分29bの第1バルク半導体領域33に用いられるバルク半導体材料は同一である必要は無く、必要に応じて各々に異なるバルク半導体材料を用いることが出来る。
(構造例4)
図10は、本実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。本実施例の構造は、第1補強部30dが付加されている以外は、構造例3と同一構造である。構造例3と同じく、分布反射領域13(14)の半導体壁29として、第1部分29aと第2部分29bから成る第1壁30a、第2壁30b及び第3壁30cを備える。分布反射領域13(14)は、第1壁30a、第2壁30b及び第3壁30cのうちの隣合う2つの半導体壁を互いに接続する第1補強部30dを更に備えることができる。第1補強部30dは、第1軸Ax1の方向に延在して、本実施例では第2部分29bにおいて、第1壁30a、第2壁30b及び第3壁30cを接続する。この量子カスケード半導体レーザ1によれば、複数の半導体壁29が第1補強部30dを介して接続されて、第1補強部30dと、互いに接続された半導体壁29とが一体化される。この補強構造により、補強構造を有さない構造例3に比べて、分布反射領域13(14)の機械的強度をより増加できる。その結果、分布反射領域13(14)が破損しにくくなって、素子の製造歩留まり及び素子の耐久性を更に改善することが可能となる。
構造例4においては、第1壁30aと第2壁30bとの接続では、第1壁30aは第1補強部30dに接続された第2部分29b中の第11部分30eを有し、第2壁30bは第1補強部30dに接続された第2部分29b中の第21部分30fを有する。これらの接続部の材料は、第1補強部30dと同じ半導体材料からなることが好ましい。第1補強部30d、第11部分30e、及び第21部分30fの材料は同じであるので、これらは結晶的に一体化されて単一材料からなる構造となる。従って、分布反射領域13(14)の強度を効果的に増加できる。また、第1補強部30d、第11部分30e、及び第21部分30fが同じ材料であるので、これらを一括形成できる。一括形成により、量子カスケード半導体レーザ1の製造プロセスを簡略化できる。なお以上では、構造例3に対し、第1補強部30dを適用した例を説明したが、これには限定されず、他の実施例の構造に対しても同様に第1補強部30dを適用できる。
(構造例5)
図11は、本実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。本実施例では、構造例4において、分布反射領域13(14)は,半導体壁29を第1埋込領域19及び/又は第2埋込領域21に接続する第2補強部30gを更に備えており、それ以外は構造例4と同一構造である。第2補強部30gを介して分布反射領域13(14)の半導体壁29(30a)の第2部分29bをレーザ本体領域12の第1埋込領域19及び第2埋込領域21の第2埋込部分20bに接続して、これらが一体化された構造を形成する。この構造によれば、分布反射領域13(14)の機械的強度を増加でき、その結果、分布反射領域13(14)の破損を回避できる。従って、この第2補強部30gによって、素子の製造歩留まり及び素子の耐久性を改善することが可能になる。なお、本実施例では、量子カスケード半導体レーザ1は、更に第1補強部30dを備えている。
第2補強部30gのために、半導体壁29(30a)は第2補強部30gに接続された第2部分29bの接続部(例えば第11部分30e)を備える。この接続部の材料は、第2補強部30gの材料と同じであることが好ましい。この量子カスケード半導体レーザ1によれば、半導体壁29(30a)の接続部(例えば第11部分30e)及び第2補強部30gは同一の材料からなるので、これらは結晶的に一体化されて単一材料からなる構造となる。従って、分布反射領域13(14)の強度を効果的に増加できる。また、半導体壁29(30a)の接続部及び第2補強部30gの材料が同じであるので、これらを一括形成できる。一括形成により、量子カスケード半導体レーザの製造プロセスを簡略化できる。
構造例5において、第1埋込領域19は、第2補強部30gに接続された接続埋込部39aを含み、第2埋込領域21も、同様に、第2補強部30gに接続された接続埋込部39aを含む。第2補強部30g、第1埋込領域19(第2埋込領域21)の接続埋込部39aの材料は同じであることが好ましい。第2補強部30g、第1埋込領域19(第2埋込領域21)の接続埋込部39aの材料が同じであるとき、これらは結晶的に一体化されて単一材料からなる構造となる。従って、分布反射領域13(14)の強度を効果的に増加できる。また、第2補強部30g、第1埋込領域19(第2埋込領域21)の接続埋込部39aを同じ材料で形成することによって、これらを一括に形成できる。一括形成により、量子カスケード半導体レーザ1の製造プロセスを簡略化できる。なお以上では、第2補強部30gと第1補強部30dが同時に用いられた構造を示したが、これには限定されず、第2補強部30gのみが適用された構造であっても良い。また第2補強部30gは、構造例4以外の、他の実施例の構造に対しても同様に適用できる。
(構造例6)
図12は、本実施形態に係る量子カスケード半導体レーザを模式的に示す平面図である。本実施例では、構造例2において、分布反射領域13(14)では、第2軸Ax2の方向における半導体壁29の壁幅W5は、量子カスケード半導体レーザのための半導体基板11の素子幅W6より短くなっており、それ以外は構造例2と同一構造である。分布反射エリア11c(11d)では、第2軸Ax2の方向における半導体壁29の一端及び他端が、それぞれ、量子カスケード半導体レーザ1の側縁3a、3bから離れており、側縁3a、3bに沿って、空隙接続部16が形成されている。空隙接続部16は、空隙24(22、26)と同じく、主面11aが露出した空隙であり、また各空隙24(22、26)を接続している。この量子カスケード半導体レーザ1によれば、素子サイズに対応するエリアにおいて、当該エリアの半導体基板11の素子幅W6より当該素子エリア上の半導体壁29の壁幅W5が短いことに起因して、量子カスケード半導体レーザ1の作製において、分布反射のための半導体壁29を形成するエッチングにおける面内均一性及び再現性が改善され、また、素子分離の際に生じうる半導体壁29の破損に起因する製造歩留まり低下を回避でき、且つ半導体壁29の機械的強度を増強でき、破損が生じにくくなる。
引き続き実施例を説明する。
(実施例1)
構造例1(図1〜図3)のような量子カスケード半導体レーザでは、メサ導波路17の両側が高抵抗のアンドープ又は半絶縁性のバルク半導体39b、39cによって埋め込まれている。この埋込(BH)構造の素子では、メサ導波路17は、n型半導体基板11上にn型下部クラッド層27d、コア(発光)層27a、回折格子層27e、n型上部クラッド層27b、n型コンタクト層27cが積層されたエピタキシャル層の積層構造23を有しており、また導波路軸WGの方向に延在する。素子表面には、上部電極15が設けられ、基板裏面11fには下部電極41が設けられている。埋込領域19、21の電流ブロック層39b、39cと上部電極15との間には絶縁膜43が設けられている。一方、分布反射領域13,14の高屈折率部29は、導波路軸WGに交差する方向(Ax2方向)に、基板主面11aに沿って、第1バルク半導体領域33と第1積層領域35が素子の一端部3aから他端部3bまで交互に配列されている。この内、第1積層領域35は、上記メサ導波路17と同じ半導体積層構造23を有しており、また第1バルク半導体領域33には任意のバルク半導体を使用でき、例えば電流ブロック層39b,39cと同じ高抵抗の半導体で形成される。また、分布反射領域13、14の低屈折率部22、24、26は、基板上の半導体層23が全て除去された空隙で構成されている。
各領域を構成する材料について説明する。
半導体基板11は、例えばn型InP基板を備える。中赤外の量子カスケード半導体レーザを構成する半導体層はInPに近い格子定数の半導体材料で形成されるので、InP基板を用いることによって、これらの層を良好に結晶成長できる。またInP基板は中赤外の発振光に対して透明であるので、これを下部クラッド層として使用することが可能である。基板に対する他の要件としては、素子への通電のためには基板は導電性を有する。量子カスケード半導体レーザは、単一極性のキャリアを用いており、このキャリアは一般に電子であるので、導電型としてはn型半導体基板が使用される。
上部クラッド層27b及び下部クラッド層27dは、n型InPからなることができる。InPは中赤外の発振光に対して透明であるので、InPを上下のクラッド層材料に適用することが可能である。また、InPは、2元混晶であって、InP基板に格子整合する。このため、InP基板上への良好な結晶成長が容易である。更に、InPは中赤外量子カスケード半導体レーザに使用可能な半導体材料中、熱伝導が最良であるので、これをクラッド層に用いることによって、コア領域からの良好な放熱性が確保されて、量子カスケード半導体レーザの温度特性が向上する。
コア層27aについて説明する。コア層27aは、活性層28aと注入層28bから成る単位構造が数十周期多段接続された構造で通常構成される。活性層28aと注入層28bは共に、数ナノメートル厚の薄膜の量子井戸層と、同じく数ナノメートル厚の薄膜であって量子井戸層よりも高バンドギャップのバリア層とを備え、量子井戸層及びバリア層が交互に積層されて、超格子列を構成する。コア層27a全体としては数百層の半導体層から成る超格子列が形成される。量子カスケード半導体レーザでは、キャリアとしては電子のみを利用し、伝導帯サブバンドの上準位と下準位の間の電子の遷移により発光が生じる。ここで、活性層28aを構成する量子井戸層とバリア層の材料組成、及び膜厚を適宜選択して、上準位と下準位のエネルギー差を適宜調節することで、3〜20マイクロメートルの中赤外波長領域の光を発生できる。
現状中赤外発光に好適な材料として、活性層28a、注入層28b共、量子井戸層には例えばGaInAsが適用され、バリア層には例えばAlInAsが適用される。これらの材料の半導体層を用いてコア領域を構成する超格子列を形成することができ、超格子列内の多段接続された各単位構造において発光及び遷移が繰り返され、各単位構造での発光が足し合わさって、外部に光が放出される。電流増加と共に発光が強まり、発振閾値電流を超えると、レーザ発振が生じて、量子カスケード半導体レーザのレーザ光として放出される。
量子カスケード半導体レーザでは伝導帯のみを用い、伝導帯サブバンド間の電子遷移により発光が生じる。一方、pn接合を用いた光通信半導体レーザでは、伝導帯の電子が価電子帯にバンド間遷移して、価電子帯のホールと再結合する際に放出する遷移エネルギーにより発光が生じる。従って両者は、発光機構の点で異なる半導体レーザである。
回折格子層27eについて説明する。本レーザはDFB型量子カスケード半導体レーザのため、図4に示すように、導波路軸WG方向(X方向)において、波長選択用の回折格子層27eが形成されている。ここで、回折格子は凹部と凸部が周期Λで繰り返された構造となっており、Λの値を適宜設定することで、これに対応したブラッグ波長のみが回折格子で選択的に反射されて共振器内で増幅されるため、その波長のみでの単一モード発振が可能となる。回折格子の性能は、共振器内における、前進する導波光と後進する導波光の結合の大きさを示す結合係数で表され、分布帰還(DFB)量子カスケード半導体レーザとしての良好な単一モード発振のためには、大きな結合係数が得られる回折格子が望ましい。このため、回折格子27eの材料としては、大きい結合係数の実現に有利な高屈折率の半導体、例えばアンドープ又はn型のGaInAsが好ましい。
コンタクト層27cについて説明する、上部電極15との良好なオーミックコンタクトを形成するためには、低バンドギャップであってInP基板に格子整合可能な材料が望ましく、例えばn型GaInAsが望ましい。また、上部電極15及び下部電極41として、例えばTi/Au又はGe/Auの電極を用いることができる。
また、必要な場合には、コア領域への導波光の閉じ込めを強化するための光閉じ込め領域をコア領域の上下に付加しても良い。光閉じ込め領域には、コア領域への導波光の閉じ込めを強化するために、高屈折率を有しており且つInP基板に格子整合可能な材料が望ましく、例えばアンドープ又はn型のGaInAsが適用される。
コンタクト層27cが無くても、上部電極15に対する良好なオーミックコンタクトが提供されるときには、コンタクト層27cを省略しても良い。また、発振光に対して透明な材料(例えばInP)で構成される基板11を用いるときには、基板11を下部クラッド層として利用できるので、下部クラッド層27dを省略しても良い。
n型半導体層を形成するためのドーパントとしては、Si、S、Sn、Se等を用いることができる。
電流ブロック層39b、39cについて説明する。電流ブロック層39b、39cは、アンドープ半導体又は半絶縁半導体から成る。これらの半導体は、キャリアである電子に対して高抵抗を示すので、電流ブロック層39b、39cの材料として好適であり、メサ導波路領域17に電流(キャリア)を狭窄するための電流ブロック層39b、39cに適用可能である。電流ブロック層39b、39cに使用可能な半絶縁性半導体としては、例えばInPやAlInAs等を使用できる。これらの半導体に、例えばFe,Ti、Cr,Co等の遷移金属を添加することによって、電子をトラップする深い準位を半導体の禁制帯中に形成して半絶縁化された半導体を得ることができる。特に、鉄(Fe)がドーパントとして一般に用いられている。これらの遷移金属を添加することによって、InP、AlInAs等のIII−V化合物半導体は、半絶縁性を示すようになって、電子に対して例えば10(Ωcm)以上の充分な高抵抗特性を提供でき、電流ブロック層39b、39cのための材料として良好に機能する。
アンドープ半導体で充分な高抵抗性が得られる場合は、半絶縁性半導体だけでなくアンドープ半導体を電流ブロック層39b、39cに使用可能である。アンドープ、半絶縁性のIII−V化合物半導体の具体例としては、InP基板11と格子整合すると共に分子線エピタキシ又は有機金属気相成長法で成長が容易な材料、InP、GaInAs、AlInAs、GaInAsP、AlGaInAsといった半導体が例示される。
別の利点としては、アンドープ及び半絶縁性の半導体は、中赤外領域において強い光吸収源となる自由キャリア(n型半導体で構成される量子カスケード半導体レーザでは、自由キャリアは自由電子である)が僅かしか存在しないので、中赤外光に対する自由キャリア吸収が微小である。したがって、上記の半導体からなる電流ブロック層39b、39cでは、自由キャリア吸収が抑制されるため、良好な発振特性が維持される。
更に、これらのアンドープ及び半絶縁半導体は熱伝導が高いので、これらを電流ブロック層39b、39cに用いれば、素子放熱性が改善され、素子の高温動作が可能となる。特にInPは、中赤外量子カスケード半導体レーザに使用可能な半導体材料中、熱伝導が最も高く、InPの使用により高い放熱性を実現できること、またInPは2元混晶であってInP基板11上への良好な結晶成長が容易である等の理由により、電流ブロック層39b、39cの半導体としてはInPを用いることが多い。
しかしながら、電流ブロック層39b、39cに、他の半導体、例えばAlInAsを用いても良い。AlInAsはInPよりも高バンドギャップを有するので、AlInAsを電流ブロック層39b、39cに用いることによって、InPを用いた場合と比較して、電流ブロック層39b、39cに隣接するメサ導波路17を構成する各層と電流ブロック層39b、39cとの間の伝導帯端のエネルギー不連続を大きくでき、これによって、メサ導波路17と電流ブロック層39b、39cとの界面に形成されるエネルギー障壁(電子に対するエネルギー障壁)がより増大する。したがって、電流ブロック層39b、39c自体の高抵抗性であることに加えて、大きなエネルギー障壁の作用により、メサ導波路領域17から電流ブロック層39b、39cへの電子の侵入をより抑制することが可能となる。その結果、電流ブロック層39b、39cが電子に対してより高抵抗化され、電流がメサ導波路領域17により強く狭窄される。この結果、より良好な量子カスケード半導体レーザ1の発振特性が得られる。
第1バルク半導体領域33を説明する。上記電流ブロック層39b、39cと同じアンドープまたは半絶縁性の半導体材料を第1バルク半導体領域33に使用できる。アンドープ半導体及び半絶縁性半導体は、中赤外光に対する自由キャリア吸収が微小であるので、これらを第1バルク半導体領域33に用いれば、分布反射領域13、14の高屈折率部29における導波光の吸収を低減できる。また、第1積層領域35は、メサ導波路17と同一材料の半導体層で構成される。
必要であるときには電流ブロック層39b、39cと上部電極15との間に絶縁膜43を設ける。この絶縁膜は、例えばSiO、SiON、SiN、アルミナ、BCB樹脂、ポリイミド樹脂といった誘電体膜を備えることができる。これらは、半導体素子の保護膜として優れた耐久性及び絶縁性を有する。また、これらの誘電体膜はスパッタ法、化学的気相成長法、スピンコート法といった成膜法の誘電体膜成膜装置を用いて形成でき、製造プロセスへの導入が容易である。但し本絶縁膜は必須では無く、電流ブロック層39b、39cのみでメサ導波路17の外部を流れる漏れ電流を充分に防ぎ、メサ導波路17への良好な電流狭窄を実現できる場合は、省略可能である。
本実施例では、分布反射領域13、14の高屈折率部29は、第1バルク半導体領域33及び第1積層領域35がAx2方向において、一方の素子側縁3aから他方の素子側縁3bまで水平横方向に交互に配列された構造を有する。
(実施例2)
実施例1では、第1積層領域35と第1バルク半導体領域33が交互に配列された構造は分布反射領域13、14にのみに設けられる。しかしながら図5に示されるように、レーザ本体領域12においても、メサ導波路17を埋め込む埋込領域19、21に積層領域及びバルク半導体領域の交互配列を設けることができる。図5に示されるように、第1埋込領域19及び第2埋込領域21は、第2積層領域37及び第2バルク半導体領域39の交互配列を備えることができる。
また、本実施例では、実施例1と同様に、分布反射領域13、14の低屈折率部22,24,26は空隙となっている。図6に示すように、レーザ本体領域12のメサ導波路17以外の領域には、下地半導体層(第1埋込領域19及び第2埋込領域21)を上部電極15から電気的に絶縁すると共にメサ導波路17に電流狭窄するために、実施例1と同様に、分離層43として誘電体絶縁膜が設けられている。
実施例2においても、第1積層領域35と第1バルク半導体領域33の交互配列の構造を分布反射領域13、14に適用することによって、高屈折率部29を形成すべきエリアの表面平坦性が改善される。
図13〜図16を参照しながら、実施例2に係る量子カスケード半導体レーザ1を作製する方法を説明する。図13〜図16は、一素子サイズに対応するエリアを示す。図13及び図14は、実施例2に係る量子カスケード半導体レーザ1を作製する工程を示すための、メサ導波路17の導波路軸WGに直交する線にそって取られたYZ断面を示し、図15及び図16は、実施例2に係る半導体レーザ1を作製する工程を示すXY平面図である。この作製方法は例示である。作製方法の説明において、理解を容易にするために、量子カスケード半導体レーザ1のために既に行われた説明における参照符合を用いる。
半導体ウエハといった半導体基板11上に下部クラッド層27d、コア層27a、回折格子層27eの各半導体層を成長した後、導波路軸WG方向(X方向)において、周期Λの間隔で、回折格子の凸部となる回折格子層27eの領域上にレジストをパターニングし、それをマスクとして、凹部となる領域の回折格子層27eの一部、または全部を周期的にエッチングすることで、図4に示したような回折格子が形成される。なお上記レジストのパターニングには通常のフォトリソグラフィーやEB露光を使用でき、またエッチングも通常のウエットエッチング、またはドライエッチングを使用できる。その後、2回目成長で、本回折格子上に上部クラッド層27bとコンタクト層27cを成長することで、図13の(a)部に示されるように、メサ導波路17のための半導体層が基板全面に形成される。次に、図13の(b)部に示されるように、メサ導波路17を規定するパターン61a及び分布反射領域13、14の第1積層領域35とレーザ本体領域12の第2積層領域37を規定するパターン61bを有するマスク61を半導体層上に形成する。マスク61は誘電体膜等から成る。本実施例では、マスク61の開口サイズは、パターン幅より小さい。図14の(a)部及び図15の(a)部に示されるように、マスク61を用いて、本マスクで保護されていない領域の半導体層をドライエッチングにより加工して、量子カスケード半導体レーザ1におけるメサ導波路17及び積層領域(35、37)のための複数の第1半導体積層構造23を形成する。複数の第1半導体積層構造23の間には、空隙が形成される。次に、図14の(b)部及び図15の(b)部に示されるように、メサ導波路17及び積層領域(35、37)上をマスク61で保護した状態で、バルク半導体領域(33、39)を埋込再成長する。この再成長では、どのバルク半導体領域(33、39)の成長エリアも、積層領域(35、37)によって区切られた共通の構造を有するため、どのバルク半導体領域(33、39)の成長レートも近い値となる。従って、どの領域のバルク半導体層の厚さも同等となるため、良好な平坦性でバルク半導体領域(33、39)を形成できる。マスク61を除去した後に、必要な場合には、第1、または第2半導体キャップ層43、47のための半導体層を成長する。次いで、図16の(a)部に示すように、分布反射のための半導体壁29を分布反射エリア11c、11dに形成するためのマスク63を形成する。マスク63は誘電体膜等から成る。マスク63は、導波路エリア11b上のレーザ本体領域12を覆うパターン63a及び分布反射エリア11c、11dにおける半導体壁29を規定するパターン63bを有する。マスク63を用いてエッチングを行うことによって、本マスクで保護されていない、分布反射領域の低屈折率部となる領域のみが選択的にエッチングされ、その結果、分布反射エリア11c、11dに分布反射領域(13、14)が形成される。分布反射領域(13、14)は、複数の半導体壁29の配列を含む。マスク63を除去すると、図16の(b)部に示されるように、分布反射領域の高屈折率部29と、低屈折率部、例えば空隙22,24,26とが形成される。
この製造工程から理解されるように、分布反射領域13,14の第1バルク半導体領域33の成長エリア、及びレーザ本体領域12の第2バルク半導体領域39の成長エリアは、場所に依らず、各々第1積層領域35、及び第2積層領域37によって区切られた共通の構造となっているため、これらの成長エリアにおける第1バルク半導体領域33、及び第2バルク半導体領域39の成長レートも成長エリアの位置に実質的に依存せず同等の値となる。したがって、素子全域にわたり、第1バルク半導体領域33、及び第2バルク半導体領域39の半導体層が実質的に均一な厚みで成長される。
分布反射領域13,14における第1バルク半導体領域33、及びレーザ本体領域12における第2バルク半導体領域39の幅(図2におけるW1、及び図6におけるW3)は各々場所に依らず、一定であることが望ましい。この場合、埋込成長される第1、第2バルク半導体領域33、39の形状が場所に依らず同一となるので、この領域におけるバルク半導体の成長レートの均一性が更に改善され、その結果、素子全域において、バルク半導体領域の半導体層の厚みに高い均一性が得られる。
以上では、実施例2の構造の作製法を説明したが、実施例1に係る量子カスケード半導体レーザの作製のためには、第1埋込領域19及び第2埋込領域21に交互配列が作製されないように、マスク61のパターンが規定される。
図17は、従来のBH構造量子カスケード半導体レーザにおける分布反射領域の高屈折率部を作製すべきエリアにおける一素子サイズの幅での断面を示す。メサ導波路10を埋め込む電流ブロック層8は、前述の理由のため、第2軸Ax2方向において、メサ導波路10から素子境界18に向かうに従い、徐々に薄くなる。従って、電流ブロック層8の表面は平坦ではない。そのため、高屈折率部となる半導体壁のエッチング用の誘電体マスクを形成するために、フォトリソグラフィーを用いてレジストパターンの露光を行う際、メサ導波路10の位置に焦点を合わせて露光すると、メサ導波路10から離れるにつれて焦点ズレが生じる。逆に、メサ導波路10から離れた素子境界18の付近の位置に焦点を合わせて露光するときには、メサ導波路10付近において焦点ズレが生じる。このように素子表面の高さの違いDHに起因して、第2軸Ax2方向における露光ビームのフォーカス状態に顕著な差が生じる。しかし、図13〜図16に示される作製方法では、分布反射領域13,14の素子表面を平坦化出来るため、上記のような、素子表面の高さの違いに起因する露光ビームのフォーカス状態の顕著な差が生じない。このため、従来のBH構造量子カスケード半導体レーザに比べて、レジスト露光条件の最適化も容易となり、その結果、レジストのパターンニング精度が向上する。その結果、レジストマスクは良好なパターン精度を有するので、これを用いて形成される誘電体マスク63bも良好なパターン精度を有する。従って、最終的に、本誘電体マスクを用いて作製される高屈折率部29の加工精度、特に分布反射領域の反射率を決定する要因の1つである、第1軸Ax1軸方向の半導体壁の厚さWHの加工精度も従来のBH構造量子カスケード半導体レーザに比べて、大幅に改善される。
量子カスケード半導体レーザは消費電力が大きいため、その実装形態は、放熱性に優れるエピダウン実装を用いることが望ましい。エピダウン実装によれば、量子カスケード半導体レーザの動作時にコア層において発生する熱を、量子カスケード半導体レーザの厚い(〜100μm)基板を介さずにヒートシンクに伝達できる。このため、良好な素子放熱性が期待される。図18は、分布反射領域及びレーザ本体領域のいずれにもバルク半導体領域及び積層領域の交互配列が適用されない従来のBH構造の量子カスケード半導体レーザの本体領域をエピダウンでダイボンドした実装形態を示す図面である。図19は、実施例2に係る量子カスケード半導体レーザの本体領域をエピダウンでダイボンドした実装形態を示す図面である。図18に示すように、従来のBH構造素子では、レーザ本体領域表面の平坦性が悪いので、メサ導波路上の上部電極のみが半田材を介して、ヒートシンクに接触する。そのため、エピダウンでのダイボンド実装の際に、メサ導波路にダイボンドの全荷重が集中する。したがって、第1の問題点として、メサ導波路が機械的に損傷を受けやすく、これに起因して、発振不良等の素子劣化が生じやすい。また、第2の問題点として、実装の際の損傷がないとしても、メサ導波路付近の上部電極のみが半田材を介してヒートシンクにダイボンドされるので、コア層からの熱をヒートシンクに放出する経路が狭い。したがって、折角エピダウン実装しても、コア層の熱をヒートシンクへ効率よく逃がすことができず、熱的な特性劣化の回避が困難であった。
一方、図19に示されるように、本実施例の構造は、分布反射領域13,14に加えてレーザ本体領域12も同様に、第2積層領域37及び第2バルク半導体領域39の交互配列を有する埋込領域(19、21)を備える。このため、埋込領域(19、21)の平坦性が良好になって、素子全域において半導体領域の平坦性が良好になる。ここで、埋込領域(19、21)内の第2積層領域(37)が、メサ導波路17と同じ高さの支柱として働き、ダイボンドの荷重が分散される。このため、エピダウンでのダイボンド実装の際のメサ導波路17への荷重が分散される。したがって、メサ導波路17への機械的な損傷の可能性が低減されて、素子劣化が回避される。これ故に、エピダウン実装に関する第1の問題点を解決できる。
また、上記のような表面平坦性の改善の結果として、図19における、量子カスケード半導体レーザ1をエピダウンで実装した組立て体51では、埋込領域(19、21)及びメサ導波路(17)の両方の上の上部電極15の全面がエピダウンでのダイボンド実装において半田材53を介してヒートシンク55に融着される。このため、コア層27aからの熱をヒートシンク55に効率良く放出できるようになって、エピダウン実装本来の良好な素子放熱性が得られる。その結果、熱的な特性劣化の回避が可能となる。したがって、エピダウン実装に関する第2の問題点を解決できる。
一例としては、分布反射領域13、14における第1バルク半導体領域33の幅(図2に示されるW1)は、異常成長等の成長不良を避けるために10マイクロメートル以上であることが良く、一方、第1バルク半導体領域33の表面の良好な平坦性のために、70マイクロメートル以下であることが好ましい。これによれば、上記の第1バルク半導体領域33の成長不良が生じず、且つ、埋め込み再成長後の第1バルク半導体領域33の表面は僅かな窪み程度に収まるようにできるため、分布反射領域13、14において、埋込領域の良好な平坦性が維持される。従って、上記のように、分布反射領域13、14の高屈折率部29の加工に必要な、フォトリソグラフィーによるレジストパターニングにおいて、場所に依らず、均一な最適条件での露光が可能となり、加工精度が向上するため、従来構造に比べて、素子歩留まりを改善できる。
一例としては、分布反射領域13、14の第1積層領域35の幅(図2に示されるW2)は、通常のフォトリソグラフィーやエッチング等の製造技術を用いて精度良く加工できる領域幅としては、1マイクロメートル以上であることが良く、一方、第1バルク半導体領域33の埋め込み再成長時に第1積層領域35上の誘電体マスク上にバルク半導体の多結晶が堆積してマスク除去が困難となるトラブルを避けるため、50マイクロメートル以下であることが良い。
一例としては、第1埋込領域19及び第2埋込領域21における第2バルク半導体領域39の幅(図6に示されるW3)は、異常成長等の成長不良を避けるために10マイクロメートル以上であることが良く、一方、第2バルク半導体領域39の表面の良好な平坦性のために、70マイクロメートル以下であることが好ましい。これによれば、上記、第2バルク半導体の成長不良が生じず、且つ、埋め込み再成長後の第2バルク半導体領域39の表面は僅かな窪み程度に収まるようにできるため、エピダウンでダイボンド実装した際に、第2バルク半導体領域39上の表面の窪みを半田材53で空隙無く埋めることが可能となる。この結果、エピダウンでのダイボンド実装において、上部電極15の全面が半田材53を介してヒートシンク55に空隙無く融着されるため、良好な素子放熱性が得られる。
一例としては、第1埋込領域19及び第2埋込領域21の第2積層領域37の幅(図6に示されるW4)は、通常のフォトリソグラフィーやエッチング等の製造技術を用いて精度良く加工できる領域幅としては、1マイクロメートル以上であることが良く、一方、第2バルク半導体領域39の埋め込み再成長時に、第2積層領域37上の誘電体マスク上にバルク半導体の多結晶が堆積してマスク除去が困難となるトラブルを避けるため、50マイクロメートル以下であることが良い。
本実施例の素子構造における別の利点としては、本実施例における素子構造の作製では、メサ導波路17の形成時にエッチングされる領域を、第1バルク半導体領域33、及び第2バルク半導体領域39が形成される狭い領域に限定している。これ故に、従来のBH構造量子カスケード半導体レーザでは必要だった、メサ導波路17を除いた残り全部の半導体積層の広範なエッチングが不要となり、エッチングガスが限定されたエッチング領域に集中して供給されるので、エッチングレートを所望の程度にまで増加できる。このような、素子構造に起因するエッチングレート増強により、深いメサエッチング、例えば5〜10マイクロメートル程度の量子カスケード半導体レーザに必要な高いメサの形成が可能となる。
本実施例において、第2積層領域37と上部電極15との間に電気的絶縁のための分離層43、例えば誘電体から成る絶縁膜を設けているけれども、それ自体が高抵抗である第2バルク半導体領域39上の絶縁膜43は必須ではない。
(実施例3)
上記の実施例では、分布反射領域13、14における高屈折率部である個々の半導体壁29内の第1バルク半導体領域33は互いに分離されている。本実施形態はこれに限定されない。例えば、図2、図9に示したように、第1バルク半導体領域33を構成する半導体と同じ半導体で形成された第1半導体キャップ層47を半導体壁29上に設けて、第1バルク半導体領域33を互いに接続するようにしても良い。この構造においても、実施例1、2と同様の改善が得られる。
一方、本実施例での新規の改善点を以下に説明する。分布反射領域13、14の高屈折率部である半導体壁29の厚さ、換言すれば、導波路軸WGの方向に関する幅(図1のWH)は、数マイクロメートルのオーダーであり、非常に薄い。このため、半導体壁29の機械的強度は弱く、振動・衝撃等で高屈折率部の破損が生じやすい。これに対し、本実施例の構造では、第1バルク半導体領域33と同じ材料から成る第1半導体キャップ層47を用いて第1バルク半導体領域33が互いに接続されて、一体の構造を形成する。第1バルク半導体領域33及び第1半導体キャップ層47は、同一の材料から成るので、この接続の結果、これらは結晶的に一体化されて単一材料からなる構造となる。従って、半導体壁29の強度が高められる。したがって、第1バルク半導体領域33が互いに分離している実施例1、2の構造に比べて、本実施例においては、分布反射領域13、14がより破損しにくくなる。このため、素子の製造歩留まりや、素子の耐久性を更に改善される。
(実施例4)
実施例1、2においては、図3、図6に示されるように、レーザ本体領域12のメサ導波路17を埋め込む埋込領域(19、21)における電気的絶縁のために、上部電極15と埋込領域(19、21)との間に分離層43として、誘電体絶縁膜を設けている。本実施形態はこれに限定されない。レーザ本体領域12上に、誘電体絶縁膜の代わりに、高抵抗の半導体から成る第2半導体キャップ層を分離層43として設けても良い。第2半導体キャップ層に適用可能な高抵抗の半導体層は、例えば第1、第2バルク半導体領域33、39に使用可能な遷移金属ドープの半絶縁性半導体、またはアンドープ半導体を使用できる。本実施例の構造においても、実施例1、2と同様の改善が得られる。
本実施例の構造における新規の利点としては、第2半導体キャップ層43は上部電極15と埋込領域19、21を電気的に絶縁すると共に、誘電体絶縁膜より遥かに高い熱伝導の半導体で形成されるため、放熱性も改善される。また実施例2においては、第1埋込領域19及び第2埋込領域21における第2積層領域37の配列に起因して、第2バルク半導体領域39の埋め込み成長後に、第2積層領域37間のバルク半導体領域39の表面に窪みが生じたとしても、この窪みを埋め込んで素子表面を平坦化するように第2半導体キャップ層43を成長することが可能である。従って、分離層43として第2半導体キャップ層を用いれば、誘電体絶縁膜を用いた場合に比べて、素子表面の平坦性を更に改善できる。上記のように、本実施例の構造では、第2半導体キャップ層43の優れた熱伝導性と本キャップ層による素子表面平坦性の更なる改善により、誘電体絶縁膜を用いる実施例2の構造に比べて、エピダウン実装の際の量子カスケード半導体レーザ1のチップからヒートシンクへの放熱性が更に改善される。したがって、エピダウン実装に関する第2の問題点をより簡単に解決できる。
(実施例5)
上記実施例2の説明では、分布反射領域13,14の全域に、第1バルク半導体領域33と第1積層領域35の交互配列を適用すると共に、レーザ本体領域12の埋込領域19,21の全域にストライプ状の第2バルク半導体領域39及びストライプ状の第2積層領域37の交互配列を適用する。本実施形態は、これに限定されない。図7に示されるように、分布反射領域13,14における第1部分29aのみに、第1バルク半導体領域33と第1積層領域35の交互配列を適用すると共に、レーザ本体領域12の第1埋込領域19及び第2埋込領域21における第1埋込部分20aのみにストライプ状の第2バルク半導体領域39及びストライプ状の第2積層領域37の交互配列を適用するようにしても良い。メサ導波路17の近傍の第1埋込部分20aに交互配列を適用することによって、動作時に発熱するメサ導波路17の近傍に良好な平坦性、及び良好な放熱性を提供できる。従って、実施例2と同様の改善が得られる。一方、第1埋込領域19及び第2埋込領域21における残りの第2埋込部分20bは、第2バルク半導体領域39(39e)のみで埋め込むことができる。この第2バルク半導体領域39として、任意のバルク半導体を使用できる。一例としては、中赤外光に対する光吸収が微小な半絶縁性半導体やアンドープ半導体の使用が望ましい。また、分布反射領域13、14の半導体壁29は、導波路軸に近い第1部分29aに、第1バルク半導体領域33と第1積層領域35の交互配列を適用すると共に、この交互配列の外側に位置する第2部分29bに第1バルク半導体領域33を適用することができる。このバルク半導体領域として、任意のバルク半導体を使用できる。一例としては、中赤外光に対する光吸収が微小な上記半絶縁性半導体やアンドープ半導体の使用が望ましい。
本実施例においても、第2バルク半導体領域39と第2積層領域37の交互配列をレーザ本体領域12に適用して、電流注入により発熱するコア層27aを含むメサ導波路17の表面及びその近傍の表面において平坦性が改善される。このため、エピダウン実装が容易となり、実施例2と同様の改善が得られる。また、分布反射領域13、14においても、同じく交互配列を適用する第1部分29aは、導波光の反射の主体として働く。ここで、分布反射領域13、14の反射率を決定する主領域である高屈折率部の導波路軸WG近傍の領域である第1部分29aの表面平坦性が改善されるので、実施例1と同様の高屈折率部の加工精度の改善が得られる。
一方、本実施例における新規改善点としては、本実施例の構造では、レーザ本体領域12及び分布反射領域13,14における導波路軸WG近傍の領域の外側のエリア20b、29bをバルク半導体のみで埋め込んでいる。したがって、レーザ本体領域12において、第2埋込部分20bを高抵抗のバルク半導体で埋め込むことにより、実施例2の構造に比べて、埋込領域19、21をより高抵抗にできる。その結果、メサ導波路17の外部の埋込領域19,21を流れる漏れ電流をより低減できる。これ故に、量子カスケード半導体レーザの特性が更に改善される。また、分布反射領域13,14に関しては、高屈折率部29の第1積層領域35に含まれるコア層27aは、上述のように量子井戸層とバリア層が数百層積層された超格子列で構成され、法線軸Nx方向における厚さが数マイクロメートルと厚い。この構造では、コア層27aを構成する各半導体層の基板に対する格子歪は僅かでも、これらが多数積層されると、この格子歪が累積されて、大きな歪応力となる。このような歪応力があると、高屈折率部29の機械的強度が低下し、エッチングで高屈折率部29を形成する際の加工ダメージにより、高屈折率部29に亀裂や膜剥がれ等の結晶劣化が生じて、分布反射領域が破損しやすかった。特に高屈折率部29は、導波路軸WG方向の幅WHが数μmと薄く、元々の強度が弱いため、このような破損が顕著に生じやすかった。これに対し、本実施例では、半導体壁29の一部分(29b)が丈夫なバルク半導体領域を含むので、分布反射領域13,14の高屈折率部29の機械的強度を向上できる。従って、本実施例の構造では、高屈折率部の機械的強度が増し、破損しにくくなる利点がある。
本実施例では、レーザ本体領域12の第1埋込領域19及び第2埋込領域21と分布反射領域13、14との両方において、導波路軸WGから離れた領域に部分的にバルク半導体領域を適用している。しかしながら、バルク半導体領域の部分適用は、レーザ本体領域12及び分布反射領域13、14のいずれか一方に行われることができる。
(実施例6)
上記各実施例では、分布反射領域13,14内の高屈折率部である半導体壁29の各々が独立して設けられている。しかしながら、本実施形態は、これには限定されない。半導体壁29が互いに接続されていても良い。例えば、実施例5の構造に本実施例の構造を適用した場合を図10に示す。図10に示されるように、バルク半導体領域からなる第1補強部30dが複数の高屈折率部30a、30b、30cの第2部分29bを接続して、第1補強部30d、及び複数の高屈折率部30a、30b、30cが一体化される構造を形成するようにしてもよい。例えば、第1壁30aと第2壁30bとの接続では、第1壁30aの第2部分29b中の第11部分30eと、第2壁30bの第2部分29b中の第21部分30fとが、第1補強部30dで接続されている。
この実施例に係る量子カスケード半導体レーザ素子構造にも、実施例5に記載された諸改善が提供される。更に、本実施例では、第1補強部30dの付加により、導波路軸WGの方向に数マイクロメートル幅を有する薄片状の高屈折率部30a、30b、30cが一体化されて、分布反射領域の機械的強度を増加できる。その結果、高屈折率部が分離されている上記他の実施例の構造に比べて、分布反射領域13,14が破損しにくくなって、素子の製造歩留まりや、素子の耐久性を更に改善できる。
第1補強部の材料としては半導体を用いることができる。例えば、上記高屈折率部に使用可能な半導体材料、具体的には上記InPやGaInAs、AlInAs、GaInAsP、AlGaInAsといった半導体を使用できる。特に、第1補強部30dと、該第1補強部30dに接続される高屈折率部30a、30b、30cの第2部分29b(第1バルク半導体領域33)の接続部とが、共にFeドープInP等の同一の半導体材料で形成されていることが良く、この構造では、第1補強部30dと高屈折率部30a、30b、30cの第2部分29bの接続部の両者は結晶的に一体化されて単一材料からなる構造となる。このため、分布反射領域13、14の強度を効果的に増加できる。また両者は、同じ材料で一括形成できる。このため、製造プロセスを簡略化できる利点もある。但し、第1補強部30dの材料は、上記のものに限定はされず、必要に応じて、分布反射領域13,14の機械的強度を改善可能な他の材料を使用できる。
本実施例では、全ての高屈折率部30a、30b、30cが第1補強部30dにより結合されて一体化された分布反射構造を示している。本実施形態は、これには限定されない。複数の高屈折率部のうちの少なくとも2つの高屈折率部が第1補強部により接続されて、これらが一体化された構造を形成しても良い。この構造においても、分布反射領域の機械的強度を増加できる。
本実施例では、実施例5の構造に第1補強部30dを追加している。本実施形態は、これには限定されない。実施例1〜4に実施例6の第1補強部30dを導入することもでき、これらに第1補強部30dを導入した場合でも、上記と同様の改善効果が得られる。
(実施例7)
実施例6では、高屈折率部が互いに第1補強部により一体化された構造を示したけれども、分布反射領域の補強構造はこれには限定されない。例えば、実施例6の構造に、図11に示されるように、レーザ本体領域12の端面に最も近い高屈折率部30aの第2部分29b中の第11部分30eが、レーザ本体領域12の第2埋込部分20b中の接続埋込部39aに第2補強部30gによって接続されて、一体化された構造となっていても良い。図11に示された構造は、第2補強部30gによる補強に加えて、実施例6に示された第1補強部30dによる一体化構造も含んでいる。
本実施例の構造は、第2補強部30gの導入を除いて、実施例6と同一の構造であり、実施例6に記載された諸改善が得られる。また、本実施例の構造では、高屈折率部30aとレーザ本体領域12が第2補強部30gにより一体化されているので、この一体化によって、分布反射領域13、14の機械的強度を増加でき、その結果、高屈折率部が分離されている上記他の実施例の構造に比べて、分布反射領域13、14が破損しにくくなる。これ故に、素子の製造歩留まりや、素子の耐久性を改善できる。
本実施例の構造のように、分布反射領域13、14が複数の高屈折率部29を含む構造では、実施例6の構造と同様に、高屈折率部29同士を第1補強部30dによって結合して一体化構造を形成しても良い。この構造では、第2補強部30gのみを用いる場合に比べて、分布反射領域13、14の機械的強度を更に増加でき、素子の製造歩留まりや、素子の耐久性を更に改善できる。なお、分布反射領域13、14内の一部の高屈折率部29が第1補強部30dによって結合されていても良い。
第2補強部30gの材料は、例えば実施例6に記載された第1補強部30dに使用可能な材料と同じ材料であることができる。特に、第2補強部30gと高屈折率部30aの第2部分29b(第1バルク半導体領域33)の接続部(30e)が同じFeドープInP等のバルク半導体で形成されているとき、両者は結晶的に一体化されて単一材料からなる構造となる。このため、分布反射領域13,14の強度を効果的に増加できる。また、この構造では、第2補強部30gと高屈折率部30aの第2部分29bの接続部(30e)の両者を同じ材料で一括形成できるので、製造プロセスを簡略化できる利点もある。更に、第2補強部30g、高屈折率部30aの第2部分29bの接続部(30e)、及びレーザ本体領域12の第2埋込部分20bの接続部(39a)が同じFeドープInP等のバルク半導体で形成されたとき、これら三者は結晶的に一体化されて単一材料からなる構造となる。このため、分布反射領域の強度を更に効果的に増加できる。また、この構造では、これら三者は同じ材料で一括形成できるので、製造プロセスを更に簡略化できる利点もある。特に、全ての高屈折率部の第2部分29bの接続部と第1補強部30d、第2補強部30g、及びレーザ本体領域12の第2埋込部分20bの接続部が同じバルク半導体から成り、且つ全ての高屈折率部の第2部分29bとレーザ本体領域12の第2埋込部分20bが第1補強部30d及び第2補強部30gによって結合された構造は、分布反射領域13、14の機械的強度を最大化出来るので、最も好ましい。
上記の説明では、実施例6の構造に本実施例の補強構造を導入しているけれども、本実施形態はこれに限定されない。例えば、実施例1〜5に実施例7の構造を適用することができ、これらの構造でも第2補強部30gの導入により、上記と同様の改善効果が得られる。
(実施例8)
上記の実施例では、基板主面11aに沿った方向、つまり水平横方向(Y方向)において、分布反射領域13、14の高屈折率部29が素子端部3a、3bまで形成されている。本実施形態はこれには限定されない。水平横方向(Y方向)において高屈折率部が素子端部にまでは形成されていなくても良い。例えば実施例2の構造に本実施例の分布反射構造を適用した場合を、図12に示した。この実施例では、分布反射領域13、14以外の構造は、実施例2の構造と同一である。本実施例でも、実施例2に記載した諸改善が得られる。
また、本実施例では、水平横方向における分布反射領域の高屈折率部の壁幅(図12におけるW5)が素子幅(図12におけるW6)より短い。これに起因して、次のような新規の利点がある。即ち、実際の量子カスケード半導体レーザの製造では、半導体基板上において、量子カスケード半導体レーザ1のための素子区画が二次元に配列されて多数の素子が一括形成される。図20は、図12に示された量子カスケード半導体レーザ1を作製する際における半導体基板上における素子区画の配列を示す。図20には、12個の素子区画が示されている。図12に示された量子カスケード半導体レーザ1では、分布反射領域13,14の高屈折率部29の幅W5が素子区画の幅W6に比べて短い。従って、図20に示すように、分布反射領域13、14の高屈折率部29が素子区画の側縁境界3a、3bから離れて、分布反射領域13、14は、高屈折率部29を含まずに側面境界3a、3bに沿って延在する分離領域GAP(空隙接続部16)を備える。本素子区画の配列構造においては、高屈折率部29のドライエッチングの際に、分離領域GAPが無い素子区画の配列構造に比べて、第1軸Ax1方向(X方向)において、エッチングガスが分離領域GAPを介して流れ易くなって、エッチング時のガスの循環が良くなる。その結果、基板面内におけるマイクロローディング効果に起因するエッチングレートの変動が軽減されるので、高屈折率部の形成において基板面内におけるエッチング均一性や再現性が改善される。
また、上記のように、本素子区画の配列では、素子区画の境界領域に高屈折率部29が形成されていない分離領域GAPが設けられている。このため、劈開等により、第1軸Ax1方向(X方向)に沿って、GAP領域に亀裂を入れて素子分離する際に、高屈折率部29が損傷を被らず、これ故に、分離領域GAPが無い素子区画の配列構造に比べて、素子分離において高屈折率部29の破損に起因する製造歩留まり低下を回避できる。また、幅W5の短縮に起因して、高屈折率部29の高さ(Z軸方向の高屈折率部のサイズ)Hと高屈折率部の幅W5との比(W5/H)を小さくでき、これ故に、分離領域GAPが無い素子区画の配列構造に比べて、高屈折率部29の機械的強度が増して高屈折率部29の破損がより生じにくくなる利点もある。なお、以上では実施例2に本実施例の構造を適用した場合を示したが、それ以外の実施例にも本実施例の構造を適用でき、何れに適用した場合も、上記と同じ改善が得られる。
以上の実施例においては、分布反射領域13、14の低屈折率部22,24,26が空隙、例えば空気層である構造を示した。空気の屈折率は想定されうる材料中、最も低く1程度であるので、低屈折率部22、24、26が空隙である構造では、高屈折率部と低屈折率部との屈折率差が大きい。分布反射構造は、この屈折率差が大きいほど高反射化できるため、低屈折率部が空気層等の空隙で構成された場合は、分布反射構造を集積した共振器端面の高反射化が容易となる。しかしながら、低屈折率部22、24、26はこれには限定されず、高屈折率部を構成する半導体壁29より低屈折率の任意の材料を適用できる。このような材料は、例えばSiO、SiON、SiN、アルミナ、BCB樹脂、ポリイミド樹脂といった誘電体材料であることができる。低屈折率部22、24、26がこれらの誘電体材料を備えるとき、低屈折率部22、24、26の誘電体層は、数マイクロメートル程度の幅の薄片状の形状を有する高屈折率部の半導体壁29を保持するように、その両側に設けられている。低屈折率部22、24、26の誘電体層による保持によって、高屈折率部のための半導体壁29の機械的強度を向上できる利点がある。
分布反射領域を集積したレーザ本体領域の端面を効率よく高反射化するためには、導波路軸WG方向における低屈折率部、及び高屈折率部の幅WL、WHを以下のように設定するのが望ましい。
半導体壁(29)の幅(WH):λ/(4×n1)の奇数倍、「n1」は半導体壁の屈折率、「λ」は真空中の発振波長。
低屈折率部(22、24)の幅(WL):λ/(4×n2)の奇数倍、「n2」は低屈折率部の屈折率。
上記の実施例に係る量子カスケード半導体レーザは、レーザ本体領域12の両端近傍に分布反射領域13、14を集積した構造を有する。本実施形態は、これには限定されない。レーザ本体領域の両端のいずれか一方に、分布反射領域を設けても良い。また、上記の実施例では、分布反射領域における高屈折率部29の数が3である。本実施形態は、これに限定されるものではなく、分布反射領域は、必要に応じて任意の数の高屈折率部を有することができ、基本的には高屈折率部の数の増加に伴って高反射が得られる。
上記の実施例に係る分布反射領域13、14は複数の高屈折率部29を含む。このような分布反射領域では、必要に応じて、少なくともその一部を他と異なる半導体材料で形成しても良く、同様に、分布反射領域が複数の低屈折率部を含む構造では、必要に応じて、少なくともその一部を他と異なる材料で形成しても良い。これらの高屈折率部及び/又は低屈折率部を含む量子カスケード半導体レーザにおいても、本実施例と同じ改善が得られる。
上記の実施例では、DFB型量子カスケード半導体レーザを説明してきた。実施形態に係る量子カスケード半導体レーザは、DFB型に限定されず、上記の各実施例は、回折格子層を含まないファブリーペロー(FP)型の量子カスケード半導体レーザにも同様に適用でき、DFB型量子カスケード半導体レーザと同様の改善が提供される。
上記の実施例では、量子カスケード半導体レーザを参照した説明を行ったが、上記の各実施形態は量子カスケード半導体レーザに限られず、上記の各実施例の素子構造と同様の構造を備える半導体素子、例えば光通信等に用いられるpn接合を有する半導体レーザに適用可能であり、量子カスケード半導体レーザと同様の改善が提供される。
本実施形態の技術的意義を説明する。
本実施形態における積層領域(35、37)を分布反射領域及び埋込領域に設けない従来の分布反射領域集積のBH構造量子カスケード半導体レーザでは、半導体基板の全面に下部クラッド層から回折格子層を含む半導体層を成長した後に、回折格子層に回折格子構造を形成する。この後に、回折格子層上に、上部クラッド層とコンタクト層を成長して、積層半導体領域を形成する。次に、導波路軸上のメサ導波路のストライプを規定する誘電体膜のマスクを積層半導体領域上に形成すると共に、このマスクを用いて積層半導体領域をエッチングする。これにより、マスクで保護されたストライプ状のメサ導波路のみ残り、その両側のエリア上の積層半導体領域が選択的に除去されて、空隙が形成される。この後に、マスクを残したまま、半導体結晶成長装置を用いて、半絶縁性半導体又はアンドープ半導体からなる埋込領域を選択再成長により形成すると、上記の空隙部に埋込領域の半導体が成長する。この成長に際して、メサ導波路近傍においては、基板主面上への成長及び導波路軸に沿ったメサ導波路側面上の成長の両方からの寄与により、電流ブロック層の成長レートが大きくなる。これに対して、メサ導波路から基板主面に沿って水平横方向(Y方向)に離れたエリア上への成長では、メサ側面上の成長の影響が減って、基板主面上への成長のみとなるため、電流ブロック層の成長レートが小さくなる。その結果、電流ブロック層の厚さは、メサ導波路から水平横方向(Y方向)に離れるにつれて徐々に薄くなる。従って、このBH型量子カスケード半導体レーザでは、素子表面の平坦性が良くない(例えば、図17に示されたBH型量子カスケード半導体レーザ)。例えば、メサ導波路近傍と、メサ導波路から離れた素子側面付近の段差(図17のDH)は5〜6マイクロメートル程度と大きい。次に、上記埋め込み再成長用のマスクを除去した後に、新たな誘電体膜をウエハ全面に形成する。そして、レーザ本体領域全面を覆うパターン及び分布反射領域の高屈折率部となる領域上を覆うパターンを有する誘電体マスクを新たな誘電体膜から形成する。分布反射領域においては、導波路軸の方向に関して、高屈折率部の幅と低屈折率部の幅の各々が分布反射領域における高反射を得るために最適な値(例えば上記λ/(4×n1)の奇数倍、及びλ/(4×n2)の奇数倍)となるよう、高屈折率部となる領域上の誘電体マスクの幅、及び隣接する誘電体マスク間の幅が設定されている。この誘電体マスクを用いて下地の半導体領域をエッチングすると、誘電体マスクで保護されていない低屈折率部になる領域の半導体が選択的に除去されて基板が露出する。エッチング後に誘電体マスクを除去する。このエッチングにより分布反射領域の高屈折率部及び低屈折率部が形成される。この後に,レーザ本体領域のメサ導波路領域のコンタクト層上の絶縁膜に開口を形成し、その後に、上部電極及び下部電極を形成する。
上記構造の量子カスケード半導体レーザでは、埋め込み領域の表面平坦性が悪いので、上記分布反射領域の高屈折率部を規定する誘電体マスクを形成するためのフォトリソグラフィーやEBリソグラフィーによるレジストパターニングに際して、上記メサ導波路近傍のエリアと素子側面近傍のエリアにおける高低差(DH)に起因して、メサ導波路近傍と素子側面近傍では、レジストパターニングのための、最適なレジストの露光条件に大きな違いが生じる。そのため、水平横方向(Y方向)に関しては、高屈折率部形成のための、レジストパターン全体に最適化された露光条件を適用するのが困難となり、レジストのパターンニング精度が低下する。レジストパターンニング精度の低下は、これをマスクとしてエッチングされる誘電体マスクのパターンニング精度の低下を生じさせる。その結果、更に誘電体マスクを用いてエッチングされる分布反射領域の高屈折率部、及び低屈折率部の導波路軸方向の幅の加工精度も悪化する。このような分布反射領域の加工精度の悪化により、最終的には、分布反射領域の反射率の面内均一性や再現性が悪化し、素子歩留りを低下させる原因となる。
これに対し、本実施形態に係る分布反射領域によれば、BH構造素子における上記表面平坦性の改善により、メサ導波路より幅広い分布反射領域において、反射率の面内均一性や再現性が改善され、高い歩留まりを有する量子カスケード半導体レーザが提供される。
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
以上説明したように、本実施形態によれば、メサ導波路より幅広い分布反射領域において、反射率の面内均一性や再現性が改善され、高い歩留まりを有する量子カスケード半導体レーザが提供される。
1…量子カスケード半導体レーザ、11…半導体基板、12…レーザ本体領域、13、14…分布反射領域、11b…導波路エリア、11c、11d…分布反射エリア、29…半導体壁、33…第1バルク半導体領域、35…第1積層領域、27a…第1半導体層、27b…第2半導体層。

Claims (14)

  1. 量子カスケード半導体レーザであって、
    第1軸の方向に配列された導波路エリア及び分布反射エリアを含む主面を備える半導体基板と、
    前記半導体基板の前記導波路エリア上に設けられたレーザ本体領域と、
    前記半導体基板の前記分布反射エリア上に設けられた分布反射領域と、
    前記レーザ本体領域上に設けられた上部電極と、
    を備え、
    前記レーザ本体領域は、前記第1軸の方向に延在する第1側面及び第2側面を有するメサ導波路、前記メサ導波路の前記第1側面上及び前記半導体基板の前記主面上に設けられた第1埋込領域、及び前記メサ導波路の前記第2側面上及び前記半導体基板の前記主面上に設けられた第2埋込領域を備え、前記メサ導波路は、導波路軸に沿って延在しており、前記メサ導波路は、前記上部電極に接続され、
    前記分布反射領域は、分布反射のための一又は複数の半導体壁を含み、前記半導体壁の各々は、前記半導体基板の前記主面の法線軸の方向に延在しており、前記半導体壁は、複数の第1バルク半導体領域及び複数の第1積層領域を含み、
    記半導体壁において、前記第1バルク半導体領域及び前記第1積層領域前記第1軸及び前記法線軸に交差する第2軸の方向に交互に配列して、前記分布反射領域の幅を前記メサ導波路の幅より広くすると共に前記第1積層領域間に前記第1バルク半導体領域を設け、
    前記メサ導波路及び前記第1積層領域は第1半導体積層構造を有しており、前記第1半導体積層構造は、コア層のための第1半導体層と上部クラッド層のための第2半導体層とを含む、量子カスケード半導体レーザ。
  2. 前記第1埋込領域及び前記第2埋込領域の各々は、第2バルク半導体領域及び第2積層領域を含み、前記第2バルク半導体領域及び前記第2積層領域は、前記第2軸の方向に交互に配列され、前記第2積層領域は、前記第1軸の方向に延在すると共に前記第1半導体積層構造を有する、請求項1に記載された量子カスケード半導体レーザ。
  3. 前記第1埋込領域及び前記第2埋込領域の各々は、第1埋込部分及び第2埋込部分を含み、前記第1埋込部分及び前記第2埋込部分は、前記第2軸の方向において、前記導波路軸から当該量子カスケード半導体レーザの側面への向きに順に配置され、前記第1埋込部分が、前記第2積層領域及び前記第2バルク半導体領域を含むと共に、前記第2埋込部分が前記第2積層領域を含まず、前記第2埋込部分は前記第2バルク半導体領域を含み、
    前記第2埋込部分の前記第2バルク半導体領域は前記第2軸の方向に延在し、
    前記第2積層領域及び前記第2バルク半導体領域は、前記第1埋込部分において前記第2軸の方向に沿って交互に配列されている、請求項2に記載された量子カスケード半導体レーザ。
  4. 前記第2バルク半導体領域が、アンドープ又は半絶縁性の半導体を備える、請求項2又は請求項3に記載された量子カスケード半導体レーザ。
  5. 前記半導体壁の前記第1バルク半導体領域上に設けられた第1半導体キャップ層を更に備え、
    前記第1半導体キャップ層は前記半導体壁の前記第1バルク半導体領域に接触を成し、
    前記第1半導体キャップ層の材料は前記第1バルク半導体領域と同一の材料である、請求項1〜請求項4のいずれか一項に記載に記載された量子カスケード半導体レーザ。
  6. 前記半導体壁は、第1部分及び第2部分を含み、前記第1部分及び前記第2部分は、前記第2軸の方向において、前記導波路軸から当該量子カスケード半導体レーザの側面への向きに順に配置され、前記第1部分が、前記第1積層領域及び前記第1バルク半導体領域を含むと共に、前記第2部分が前記第1積層領域を含まず、前記第2部分は前記第1バルク半導体領域を含み、
    前記第1積層領域及び前記第1バルク半導体領域は、前記第1部分において前記第2軸の方向に沿って交互に配列されている、請求項1〜請求項5のいずれか一項に記載された量子カスケード半導体レーザ。
  7. 誘電体材料から成る絶縁膜を更に備え、
    前記絶縁膜は、前記第1埋込領域及び前記第2埋込領域と前記上部電極との間に設けられる、請求項1〜請求項6のいずれか一項に記載された量子カスケード半導体レーザ。
  8. アンドープ半導体又は半絶縁性半導体から成る第2半導体キャップ層を更に備え、
    前記第2半導体キャップ層は、前記第1埋込領域及び前記第2埋込領域と前記上部電極との間に設けられる、請求項1〜請求項7のいずれか一項に記載された量子カスケード半導体レーザ。
  9. 前記半導体壁のうちの第1壁及び第2壁を互いに接続する第1補強部を更に備える、請求項1〜請求項8のいずれか一項に記載された量子カスケード半導体レーザ。
  10. 前記第1壁は、前記第1補強部に接続された第11部分を有し、前記第2壁は、前記第1補強部に接続された第21部分を有し、
    前記第1補強部、前記第11部分、及び前記第21部分の材料は同じである、請求項9に記載された量子カスケード半導体レーザ。
  11. 前記半導体壁を前記第1埋込領域及び前記第2埋込領域に接続する第2補強部を更に備える、請求項1〜請求項10のいずれか一項に記載された量子カスケード半導体レーザ。
  12. 前記半導体壁は、前記第2補強部に接続された接続部を含み、
    前記半導体壁の前記接続部の材料は、前記第2補強部の材料と同じである、請求項11に記載の量子カスケード半導体レーザ。
  13. 前記第1埋込領域は、前記第2補強部に接続された第11埋込部を含み、前記第2埋込領域は、前記第2補強部に接続された第21埋込部を含み、
    前記第2補強部、前記第11埋込部及び前記第21埋込部の材料は同じである、請求項11又は請求項12に記載された量子カスケード半導体レーザ。
  14. 前記半導体壁の長さは、前記第2軸の方向において前記半導体基板の幅より短い、請求項1〜請求項13のいずれか一項に記載された量子カスケード半導体レーザ。
JP2015076967A 2015-04-03 2015-04-03 量子カスケード半導体レーザ Active JP6464895B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015076967A JP6464895B2 (ja) 2015-04-03 2015-04-03 量子カスケード半導体レーザ
US15/088,490 US9774168B2 (en) 2015-04-03 2016-04-01 Quantum cascade semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015076967A JP6464895B2 (ja) 2015-04-03 2015-04-03 量子カスケード半導体レーザ

Publications (2)

Publication Number Publication Date
JP2016197658A JP2016197658A (ja) 2016-11-24
JP6464895B2 true JP6464895B2 (ja) 2019-02-06

Family

ID=57017802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015076967A Active JP6464895B2 (ja) 2015-04-03 2015-04-03 量子カスケード半導体レーザ

Country Status (2)

Country Link
US (1) US9774168B2 (ja)
JP (1) JP6464895B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9407066B2 (en) * 2013-07-24 2016-08-02 GlobalFoundries, Inc. III-V lasers with integrated silicon photonic circuits
JP2017022234A (ja) * 2015-07-09 2017-01-26 住友電気工業株式会社 量子カスケードレーザ
WO2017119400A1 (ja) 2016-01-08 2017-07-13 大日本印刷株式会社 回折光学素子、及び光照射装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2513186B2 (ja) * 1986-07-28 1996-07-03 ソニー株式会社 分布帰還型半導体レ―ザの製造方法
JPS63227087A (ja) * 1987-03-17 1988-09-21 Fujitsu Ltd 半導体発光装置
JPH11220215A (ja) * 1998-02-03 1999-08-10 Alps Electric Co Ltd 半導体レーザ
EP1130724A1 (fr) 2000-03-03 2001-09-05 Alpes Lasers Laser à cascade quantique et procédé pour la fabrication d'un tel laser
US6788727B2 (en) * 2002-06-13 2004-09-07 Intel Corporation Method and apparatus for tunable wavelength conversion using a bragg grating and a laser in a semiconductor substrate
WO2005053124A1 (ja) * 2003-11-28 2005-06-09 Nec Corporation 分布帰還型半導体レーザ、分布帰還型半導体レーザアレイ及び光モジュール
GB2416427A (en) * 2004-06-18 2006-01-25 Univ Sheffield DFB laser
JP4873746B2 (ja) * 2006-12-21 2012-02-08 キヤノン株式会社 発振素子
JP2008218915A (ja) * 2007-03-07 2008-09-18 Hamamatsu Photonics Kk 量子カスケードレーザ素子
JP5051054B2 (ja) * 2008-08-11 2012-10-17 住友電気工業株式会社 半導体レーザおよび半導体レーザを作製する方法
DE102009028823B4 (de) * 2009-08-21 2017-04-06 Forschungsverbund Berlin E.V. Diodenlaser und Laserresonator für einen Diodenlaser mit verbesserter lateraler Strahlqualität
JPWO2011096040A1 (ja) * 2010-02-02 2013-06-06 株式会社日立製作所 半導体レーザ素子、半導体レーザ素子の製造方法および光モジュール
JP2012074446A (ja) * 2010-09-28 2012-04-12 Yokogawa Electric Corp 波長可変半導体レーザ
JP2012227332A (ja) * 2011-04-19 2012-11-15 Sumitomo Electric Ind Ltd リッジ型半導体レーザ及びその製造方法
JP2013197238A (ja) * 2012-03-19 2013-09-30 Japan Oclaro Inc 半導体光素子、光モジュール、光伝送装置、及びそれらの製造方法
JP2013197502A (ja) * 2012-03-22 2013-09-30 Nippon Telegr & Teleph Corp <Ntt> 変調器集積半導体レーザ
JP2013254907A (ja) * 2012-06-08 2013-12-19 Sumitomo Electric Ind Ltd 量子カスケード半導体レーザ
JP6244667B2 (ja) * 2013-05-31 2017-12-13 住友電気工業株式会社 量子カスケードレーザ
JP6379696B2 (ja) * 2014-06-05 2018-08-29 住友電気工業株式会社 量子カスケード半導体レーザ
JP2016197657A (ja) * 2015-04-03 2016-11-24 住友電気工業株式会社 量子カスケード半導体レーザ

Also Published As

Publication number Publication date
US20160294159A1 (en) 2016-10-06
US9774168B2 (en) 2017-09-26
JP2016197658A (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
JP3983933B2 (ja) 半導体レーザ、および半導体レーザの製造方法
JP6801416B2 (ja) 量子カスケード半導体レーザ
JP5327234B2 (ja) 2次元フォトニック結晶面発光レーザおよびその製造方法
EP1146614B1 (en) Semiconductor laser element having increased light confinement and method for fabrication
US9595811B2 (en) Quantum cascade semiconductor laser
US9843161B2 (en) Quantum cascade laser
US20080037607A1 (en) Semiconductor laser diode with a ridge structure buried by a current blocking layer made of un-doped semiconductor grown at a low temperature and a method for producing the same
US9525268B2 (en) Quantum cascade laser
JP6464895B2 (ja) 量子カスケード半導体レーザ
US8379683B2 (en) Quantum cascade laser
US9711944B2 (en) Quantum cascade laser
JP6244668B2 (ja) 量子カスケードレーザ
KR20080014613A (ko) 반도체 광 소자 및 그 제조 방법
CN109119889B (zh) 量子级联激光器
JP6737158B2 (ja) 量子カスケード半導体レーザ
JP2011187529A (ja) 光半導体装置、光半導体装置の製造方法及び光半導体素子
JP2010021430A (ja) 半導体光素子
JP7028049B2 (ja) 量子カスケードレーザ
JP5204690B2 (ja) 分布帰還型半導体レーザ及びその製造方法
JP6870500B2 (ja) 量子カスケード半導体レーザ
JP2005286198A (ja) 光集積素子
JP2014135351A (ja) 半導体光素子、集積型半導体光素子およびその製造方法
US6793388B2 (en) Semiconductor laser and fabricating method of the same
WO2007108117A1 (ja) 光半導体素子
JP2022122444A (ja) 半導体レーザ素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181224

R150 Certificate of patent or registration of utility model

Ref document number: 6464895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250