JP5076746B2 - 窒化物半導体レーザ素子及びその製造方法 - Google Patents

窒化物半導体レーザ素子及びその製造方法 Download PDF

Info

Publication number
JP5076746B2
JP5076746B2 JP2007225572A JP2007225572A JP5076746B2 JP 5076746 B2 JP5076746 B2 JP 5076746B2 JP 2007225572 A JP2007225572 A JP 2007225572A JP 2007225572 A JP2007225572 A JP 2007225572A JP 5076746 B2 JP5076746 B2 JP 5076746B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor layer
dislocation density
substrate
density region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007225572A
Other languages
English (en)
Other versions
JP2008091890A (ja
JP2008091890A5 (ja
Inventor
真吾 枡井
知典 森住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2007225572A priority Critical patent/JP5076746B2/ja
Priority to US11/849,734 priority patent/US7830940B2/en
Publication of JP2008091890A publication Critical patent/JP2008091890A/ja
Publication of JP2008091890A5 publication Critical patent/JP2008091890A5/ja
Application granted granted Critical
Publication of JP5076746B2 publication Critical patent/JP5076746B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/12Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/3203Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth on non-planar substrates to create thickness or compositional variations

Description

本発明は、窒化物半導体を用いたレーザ素子及びその製造方法に関する。
窒化物半導体レーザ素子は、次世代光ディスク用光源やディスプレイ用光源、その他にも露光用光源として期待されている。
窒化物半導体レーザ素子は、窒化物半導体基板を半導体層の成長用基板として用いる。窒化物半導体基板は、高転位密度領域と低転位密度領域とを有するものである。
この窒化物半導体基板の表面に、窒化物半導体層を、例えば、有機金属気相堆積法(MOCVD)により結晶成長させて、窒化物半導体層の積層構造を得る。
一般に、窒化物半導体レーザ素子は、製造上の歩留まりが低いことが問題となっている。その理由の一つは基板である。
現在、窒化物半導体層を成長させるための成長用基板としてGaN基板が用いられている。このGaN基板は、GaAs基板、InP基板等と異なり、ウェハ状態で全面均一の低転位基板を製造することが困難である。低転位基板を製造することは可能であっても大口径化が新たな問題となる。そのため、現状では、ウェハ内に転位が内在するGaN基板を用いている。このようなGaN基板を窒化物半導体層の成長用基板に用いることで、窒化物半導体層には、基板の高転位密度領域から、転位が伝播される。これでは、窒化物半導体層の駆動(主発光)領域の特性悪化を招く恐れがある。
また、GaN基板と窒化物半導体層とは、格子定数が完全に一致しないため、窒化物半導体層には引っ張り歪が生じる。この引っ張り歪によってウェハ内にクラックが生じる。その結果、歩留まりが低下する。
このような問題を解消するために、凹部を形成した窒化物半導体レーザ素子が提案されている(特許文献1)。
特許文献1に開示されている窒化物半導体レーザ素子は、窒化物半導体基板上に窒化物半導体層を成長した後に窒化物半導体層に凹部が形成されている。この凹部によって、レーザ光導波領域又はレーザ光導波領域周辺まで転位(欠陥)が伝播することを防止している。
また、高転位密度領域(転位集中領域)及び低転位密度領域(非転位集中領域)に凹部を形成する技術が提案されている(特許文献2)。
この技術は、特許文献2の図12及び図13に開示されているように、凹部を有する窒化物半導体基板上に窒化物半導体層を成長させる。
特開2004−327879号公報 特開2005−294416号公報
しかし、特許文献1では、凹部は窒化物半導体基板上に窒化物半導体層を成長した後に形成されるものであるため、窒化物半導体層の成長段階で発生した転位(欠陥)、特にレーザ光導波領域に伝播した転位を取り除くことはできない。また、転位が内在する窒化物半導体基板上に窒化物半導体層を成長させることにより、引っ張り歪が生じやすくなるためクラックが発生しやすい。さらに、その後のデバイス工程でのエッチングや成膜等により、引っ張り歪が生じて、新たにクラックが発生する問題が生じる。
特許文献2では、高転位密度領域に凹部を形成することのみによって、転位の再発を防止するものであるが、これだけではクラックの発生を十分に抑制することができず、窒化物半導体レーザ素子の安定した歩留まりが望めない。
本発明は、上記問題を解決するためになされたものである。具体例としては、高転位密度領域と低転位密度領域とを有する窒化物半導体基板上に窒化物半導体層を成長させた窒化物半導体レーザ素子であって、高転位密度領域から窒化物半導体層の駆動(主発光)領域への転位の伝播及び引っ張り歪の発生を抑制することができる窒化物半導体レーザ素子及びその製造方法を提供することを目的とする。
本発明の第1の窒化物半導体レーザ素子は、窒化物半導体基板と、その上に積層された窒化物半導体層とを備えた窒化物半導体レーザ素子であって、
前記窒化物半導体基板は、高転位密度領域と該高転位密度領域よりも転位密度が低い低転位密度領域(以下同じ)とを有する窒化物半導体基板であり、少なくとも1つの凹部が、少なくとも該高転位密度領域に形成されており、
前記窒化物半導体層は、前記基板の凹部側面からの横方向への成長膜厚が、前記凹部以外の領域からの縦方向への成長膜厚よりも大きい第1の窒化物半導体層と、前記第1の窒化物半導体層の上に接触して配置され、Inを含有する第2の窒化物半導体層とを有しており、
前記窒化物半導体基板の凹部上において、前記第1の窒化物半導体層と第2の窒化物半導体層とは凹部を有することを特徴とする。
この窒化物半導体レーザ素子においては、前記窒化物半導体基板の凹部は、窒化物半導体レーザ素子の共振器長方向と略平行方向に形成されていることが好ましい。
また、前記窒化物半導体基板の高転位密度領域と低転位密度領域とは交互にストライプ状に形成されており、該窒化物半導体基板の凹部側面は、低転位密度領域であることが好ましい。
さらに、前記窒化物半導体基板の凹部側面は、高転位密度領域の端部から5μm以上離間していることが好ましい。
また、前記第2の窒化物半導体層における凹部は、窒化物半導体基板の高転位密度領域から転位が伝播した領域であることが好ましい。
前記第1の窒化物半導体層は、Alを含有する窒化物半導体層であることが好ましい。
また、本発明の窒化物半導体レーザ素子の製造方法は、高転位密度領域と低転位密度領域とを有する窒化物半導体基板と、その上に積層された窒化物半導体層とを備えた窒化物半導体レーザ素子の製造方法であって、
前記窒化物半導体基板の高転位密度領域に凹部を形成する工程と、
前記窒化物半導体基板の上に、前記基板の凹部側面から横方向への成長膜厚が前記凹部以外の領域から縦方向への成長膜厚よりも大きくなるように第1の窒化物半導体層を形成する工程と、
前記第1の窒化物半導体層の上に、該第1の窒化物半導体層に接触するInを含有する第2の窒化物半導体層を形成する工程とを備えたことを特徴とする。
この方法では、前記窒化物半導体基板の凹部を、窒化物半導体レーザ素子の共振器長方向と略平行方向に形成することが好ましい。
また、前記窒化物半導体基板の高転位密度領域と低転位密度領域とを、交互にストライプ状に形成することが好ましい。
さらに、前記窒化物半導体基板の凹部を、高転位密度領域、及び該高転位密度領域を挟んだ両側の低転位密度領域に連続して形成することが好ましい。
前記窒化物半導体基板の凹部は、その側面を、高転位密度領域の端部から5μm以上離間して形成することが好ましい。
また、本発明の第2の窒化物半導体レーザ素子は、窒化物半導体基板と、その上に積層された窒化物半導体層とを備えた窒化物半導体レーザ素子であって、
前記窒化物半導体基板は、高転位密度領域と該高転位密度領域よりも転位密度が低い低転位密度領域とを有する窒化物半導体基板であり、少なくとも該高転位密度領域に少なくとも1つの凹部が形成されており、
前記窒化物半導体層は、前記基板の凹部側面からの横方向への成長膜厚が前記凹部以外の領域からの縦方向への成長膜厚よりも大きい第1の窒化物半導体層と、該第1の窒化物半導体層上に接触して形成されたInを含有する第2の窒化物半導体層とを有しており、
前記第1の窒化物半導体層の横方向への成長領域には面内方向に伸びる転位があることを特徴とする。
この窒化物半導体レーザ素子では、前記第1の窒化物半導体層の横方向への成長領域における面内方向に伸びる転位は、1×108個/cm2以上であることが好ましい。
また、本発明の第3の窒化物半導体レーザ素子は、窒化物半導体基板と、その上に積層された窒化物半導体層とを備えた窒化物半導体レーザ素子であって、
前記窒化物半導体基板は、基板表面における転位密度が1×107個/cm2以下であり、該基板表面には少なくとも1つの凹部が形成されており、前記窒化物半導体層は、前記基板の凹部側面からの横方向への成長膜厚が前記凹部以外の領域からの縦方向への成長膜厚よりも大きい第1の窒化物半導体層と、該第1の窒化物半導体層上に接触して形成されたInを含有する第2の窒化物半導体層とを有しており、
前記第1の窒化物半導体層の横方向への成長領域には面内方向に伸びる転位があり、その転位密度は1×108個/cm2以上であることを特徴とする。
これら第2及び第3の窒化物半導体レーザ素子では、前記窒化物半導体基板の凹部上において、前記第1の窒化物半導体層は凹部を有することが好ましい。
また、前記第1の窒化物半導体層は、Alを含有する窒化物半導体層であることが好ましい。
さらに、前記第1の窒化物半導体層の上に、Inを含有する第2の窒化物半導体層を有することが好ましい。
本発明によれば、窒化物半導体基板に内在する高転位密度領域からウェハ全体に伝播しようとする転位を優先的に凹部に収束させることができる。これによって、転位が窒化物半導体層の駆動(主発光)領域に伝播することを抑制することができる。また、窒化物半導体層にクラックが発生することを抑制することができる。
さらに、窒化物半導体レーザ素子の駆動時に生じる発熱(温度上昇)による素子の膨張によってクラックが発生することをも抑制することができるため、安定な寿命特性を示すとともに、レーザ特性の優れたものとすることができる。
また、本発明の窒化物半導体レーザ素子の製造方法によれば、ウェハ内に引っ張り歪が生じることを抑制することができる。これにより、後の設計工程でクラックが発生することを防止することができ、製品歩留まりを向上した窒化物半導体レーザ素子の製造方法を提供することができる。
以下、本発明に係る窒化物半導体レーザ素子及びその製造方法の実施の形態について、図面を用いて説明する。但し、本発明は以下の図面に限定されるものではない。
実施の形態1
この窒化物半導体レーザ素子は、図2に示すように、窒化物半導体基板100の表面100aに窒化物半導体層が積層されている。この窒化物半導体層は窒化物半導体基板100の表面100a側から順に第1の窒化物半導体層110と第2の窒化物半導体層120とを有している。さらに、その上には活性層205等が積層されている。また、窒化物半導体基板100の裏面100bには電極232が形成されている。
このようなレーザ素子は、n型窒化物半導体層とp型窒化物半導体層とで、活性層を挟んだ積層構造となっている。活性層205は多重量子井戸構造又は単一量子井戸構造とすることができる。また、光ガイド層を活性層の上下に備えることで光の導波路を構成する分離光閉じ込め型構造SCH(Separate Confinement Hetero structure)としてもよい。
以下に、窒化物半導体基板100上に窒化物半導体層を成長させる製造工程を説明する。
まず、窒化物半導体基板100を準備する。
この窒化物半導体基板100は、図1(a)に示すように表面100aから裏面100bに貫通したストライプ状の転位が集中した高転位密度領域102が形成されており、これ以外の領域に低転位密度領域101がある。
低転位密度領域101とは高転位密度領域102よりも単位面積あたりの転位数が少ない領域である。この低転位密度領域101の単位面積あたりの転位数は、1×107/cm2以下、好ましくは5×106/cm2以下、より好ましくは1×106/cm2以下である。高転位密度領域102とは低転位密度領域101よりも単位面積あたりの転位数が多い領域であって、特にその数は限定されない。転位密度の測定方法は、CL(カソード・ルミネッセンス)観察、TEM観察で行うのがよい。窒化物半導体基板は○状か□状のウェハであって、サイズは1インチ以上、好ましくは2インチ以上である。
この窒化物半導体基板100は、表面100a及び/又は裏面100bに0.05°〜1.0°のオフ角を有するものが好ましい。オフ角は、研磨や研削、レーザ照射によって形成することができる。これにより、レーザ素子の発振波長が365nm以下の紫外領域から500nm以上の長波長領域に至る範囲で素子特性を安定させることができる。具体的には、チップ内での活性層の組成分布を均一にすることができる。
また、この窒化物半導体基板100の膜厚は50μm以上1mm以下とするが、好ましくは100μm以上500μm以下である。
窒化物半導体基板100の製造方法には、MOCVD法又はHVPE法、MBE法等の気相成長法、超臨界流体中で結晶育成させる水熱合成法、高圧法、フラックス法、溶融法等がある。
窒化物半導体基板としては、GaN基板、AlN基板、AlGaN基板等を用いてもよいが、本実施形態ではGaN基板を使用する。
窒化物半導体基板100の表面100aは、C(0001)面、M(1−100)面、A(11−20)面である。前記窒化物半導体基板100の表面100aをC(0001)面とすれば、裏面100bは(000−1)面となる。
窒化物半導体基板は、窒化物半導体とは材料が異なる異種基板上に窒化物半導体を形成し、その後に異種基板を除去して形成することもできる。この窒化物半導体基板は、表面100aの全面が低転位であるGaN基板とすることができる。
また、窒化物半導体基板100は、2軸結晶法による(0002)回折X線ロッキングカーブの半値幅(Full Width at Half Maximum)が2分以下、好ましくは1分以下である。窒化物半導体基板100の曲率半径は、少なくとも0.1m以上、1m以上であってもよい。なお、本明細書において、面指数を表す括弧内のバー(−)は、後ろの数字の上に付すべきバーを表すものとする。
次に、図1(b)に示すように、窒化物半導体基板100上に、少なくとも1つの凹部103を、高転位密度領域102ごとに形成することが好ましい。この凹部103は、高転位密度領域102とその両側の低転位密度領域101に及ぶ幅で形成する。この凹部103は、後に形成される窒化物半導体レーザ素子の共振器長方向と略平行に形成する。
この凹部は高転位密度領域102のみに形成されるものに限定する必要はなく、図1(b)に示すように、高転位密度領域102の両側にある低転位密度領域101にも一部形成されるものであってもよい。凹部103側面を低転位密度領域101とすることにより、凹部側面からの転位の伝播が少なくなるため好ましい。
つまり、凹部は、図1(b)に示す以外に、図6(a)に示すように、窒化物半導体基板の高転位密度領域102にのみ形成されるもの、図6(b)に示すように、凹部を階段状に形成するものであってもよい。また、図6(c)に示すように、低転位密度領域にも凹部を形成することにより、窒化物半導体基板の応力を更に緩和させることができる。
凹部103を形成するために、任意に、マスクパターンとなる保護膜を形成し、化学的エッチングを利用する方法、物理的エッチングを利用する方法が利用できる。
化学的エッチングは、マスクパターンを使用せずに、窒化物半導体基板の高転位密度領域102と低転位密度領域101との溶液に対するエッチングレートの違い、ドライエッチング等の選択比を利用するものである。溶液には、例えば、硫酸と燐酸との混合酸、BHF(バッファードフッ酸)水溶液、他の酸溶液等を用いることができる。この混合液は100℃〜300℃に加熱したものを用いてもよい。ウェハをこの溶液に浸すことによって、凹部を形成する。
なお、マスクパターンを用いるウェットエッチングを利用してもよい。
物理的エッチングでは、まずGaN基板の表面にマスクを形成する。マスクにはSiO2、SiN、Al23などの絶縁膜、レジスト膜、金属膜を用いることができる。このマスクのパターンは、上述した凹部103が形成できるように開口部を有する。この開口部は高転位密度領域102上に形成される。
例えば、GaN基板が低転位密度領域101と高転位密度領域102とを交互にストライプ状に形成されている基板である場合には、開口部はストライプ状に形成される。低転位密度領域101と高転位密度領域102とが交互にストライプ状に形成されているGaN基板であれば、例えば、GaN基板の低転位密度領域101上にマスクの幅が50〜500μmで形成され、少なくとも高転位密度領域102上は開口部となっており、その開口部の幅が5〜100μmでストライプ状のパターンを形成する。
マスクの膜厚は凹部103の深さを所望の深さにできるものであればよく、例えば、0.1μm〜2μm、好ましくは0.3μm〜2μmとする。マスクの形成方法はCVD法(Chemical Vapor Deposition)、蒸着法、スパッタ法が挙げられる。
次に、少なくとも高転位密度領域102に開口部を有するマスクを形成したGaN基板をRIE(Reactive Ion Etching)法を用いて選択的にエッチングする。エッチングに用いるガスには、Cl2、CCl4、CHCl3、SiCl4、BCl3などの塩素を含むガス又はCHF3、CF4などのフッ素を含むガスを用いる。このエッチング条件は、例えば、Cl2ガスを用い、ガス圧を20〜200mTorrとし、好ましくは80〜120mTorrとする。ガス流量は10〜200sccm、好ましくは30〜100sccmとする。ガス流量の一例としては50sccm以下である。また、プラズマ励起パワーは50〜1000W、好ましくは200W〜500W、エッチレートは0.1〜2.0μm/min、好ましくは0.10〜1.25μm/minとする。
その後、保護膜を除去する。これによって、少なくとも高転位密度領域102に、例えば、ストライプ状の凹部が形成される。凹部同士の間隔幅は、100〜500μmで形成される。
凹部103の深さは、窒化物半導体基板100上に形成する第1の窒化物半導体層110と第2の窒化物半導体層120に凹部を形成することができる深さとする。具体的には0.5〜3μmである。
また、凹部103の幅は高転位密度領域102の幅に依存するものであるが、5〜100μmとすることができる。
凹部103側面を低転位密度領域101とする場合には、高転位密度領域102の両側にある低転位密度領域101の除去幅は40μm以下、好ましくは5〜25μmとする。この範囲で低転位密度領域101を除去すると、後に形成する第1の窒化物半導体層を容易に所望の成長膜厚比で形成することができる。
凹部103側面は、高転位密度領域の端部から5μm以上、好ましくは7μm以上離間していることで、窒化物半導体基板から窒化物半導体層への転位の伝播を抑制することができる。
また、凹部103側面の傾斜角度は、60°以上、好ましくは80°以上である。
次に、凹部103が形成された窒化物半導体基板上に気相成長法を用いて窒化物半導体層を形成する。
本発明では、窒化物半導体層は、一般式をInxAlyGa1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)とすることができる。これに加えて、III族元素としてBを一部に有することもできる。またV族元素としてNの一部をP、Asで置換することもできる。n型窒化物半導体層にはn型不純物として、Si、Ge、Sn、S、O、Ti、Zr、CdなどのIV族元素、あるいはVI族元素等のいずれか1つ以上を含有している。またp型窒化物半導体層にはp型不純物として、Mg、Zn、Be、Mn、Ca、Sr等を含有している。不純物の濃度は5×1016/cm3以上5×1021/cm3以下の範囲でドープされることが好ましい。なお、n型又はp型窒化物半導体層の全てがn型又はp型不純物を含有していなくてもよい。
この窒化物半導体層の成長方法としては、特に限定されないが、MOVPE(有機金属気相成長法)、MOCVD(有機金属化学気相成長法)、HVPE(ハイドライド気相成長法)、MBE(分子線エピタキシー法)など、窒化物半導体の成長方法として知られている全ての方法を好適に用いることができる。特に、MOCVDは結晶性良く成長させることができるので好ましい。また、窒化物半導体は、種々の窒化物半導体の成長方法を使用目的により適宜選択して成長させることが好ましい。
まず、図1(c)に示すように凹部103が形成された窒化物半導体基板上に第1の窒化物半導体層110を形成する。
この第1の窒化物半導体層110は、図1(c)の拡大図である図1(c’)に示すように、窒化物半導体基板の凹部側面から横方向への成長膜厚Yが凹部以外の領域から縦方向への成長膜厚Xよりも大きくなるように形成する。
このような窒化物半導体層110を形成する具体的な条件としては、反応炉内を常圧よりも減圧で成長させる。また、1050℃以上で成長させることが好ましい。
第1の窒化物半導体層110は、縦方向への成長膜厚Xが5μm以下、好ましくは3μm以下とする。これに対して基板の凹部側面から横方向への成長膜厚Yは5μm以上、好ましくは5μm以上25μm以下とする。また、凹部の底面から縦方向へ成長する膜厚Zは、特に限定されるものではないが、例えば、成長膜厚Xと同程度かそれ以下の膜厚であってもよい。
さらなる拡大図である図1(c”)に示すように、第1の窒化物半導体層を横方向に成長させることにより、転位106が結晶方位の<0001>方向に対して垂直の方向に発生する。結晶方位の<0001>方向に対して垂直の方向とは、例えば、<11−20>方向又は<1−100>方向等が挙げられる。横方向に成長させた領域には結晶方位に転位が発生することにより、結晶にかかる歪みをこの転位部分に分断して蓄えることができる。さらに横方向への成長領域の幅が大きいほど、また縦方向への成長膜厚Xと横方向への成長膜厚Yとの関係がY>Xであって、その比率が大きいほど、歪みを抑制する効果は大きい。
第1の窒化物半導体層110は、窒化物半導体基板100とは格子定数が異なるものであって、好ましくはAlを含有する窒化物半導体層である。これによって、結晶方位に転位を断続的に形成することができるため、より歪みを抑制する効果が期待できる。また、窒化物半導体基板100がAlを含有する場合には、第1の窒化物半導体層110と窒化物半導体基板100との格子定数が異なるように第1の窒化物半導体層110のAl混晶比を変化させる。第1の窒化物半導体層110は、窒化物半導体基板上で横方向の成長を縦方向の成長よりも優先させるものであって、その条件の一例としては、例えばMOCVD法を用いて常圧以下の減圧条件で成長させるものである。
また、第1の窒化物半導体層110の表面には、窒化物半導体基板100の凹部103上において凹部104が形成されている。窒化物半導体基板の高転位密度領域102から伝播される転位は第1の窒化物半導体層の凹部104内に収束させることが可能となる。この凹部104側面の傾斜角度は、窒化物半導体基板100に形成された凹部103よりも傾斜角度を小さくすることが好ましい。これによって凹部104内に転位をより選択的に収束させることができる。
この第1の窒化物半導体層110は、Alを含有する窒化物半導体層であって、AlxGa1-xN(0≦x≦1)で示される。また、窒化物半導体基板の転位が窒化物半導体層に広範囲に伝播しない程度であれば、窒化物半導体基板100と第1の窒化物半導体層110との間に一般式がInaAlbGa1-a-bN(0≦a≦1、0≦b<1)で示されるバッファ層、パターン形成された金属層を介してもよい。
第1の窒化物半導体層110の膜厚は0.1μm〜4μmであって、好ましくは0.4μm〜2.5μmである。
その後、図1(d)に示すように、第1の窒化物半導体層110上に第2の窒化物半導体層120を形成する。この第2の窒化物半導体層120は、Inを含有する窒化物半導体層である。好ましくは一般式がInxGa1-xN(0<x≦1)で示される。第2の窒化物半導体層の下層である第1の窒化物半導体層に転位が内在しており、その部分に微少な温度分布が発生すると考えられる。そのため横方向成長した第1の窒化物半導体層上に成長させるInを含有する窒化物半導体層内には微少なIn分布ゆらぎが発生し、このIn分布の揺らぎにより、引っ張り歪みをより効果的に分断し、クラックの発生を抑制することができる。このInを含有する窒化物半導体層は、面内方向での緩衝層として働くものとなる。以上の構成により、この第2の窒化物半導体層120上に成長させる層にクラックが発生しにくくなる。第1の窒化物半導体層をAlを含有するクラッド層として機能させてもよい。その際、第2の窒化物半導体層は、Inを含有する活性層として機能させてもよい。
また、第2の窒化物半導体層120の表面には、窒化物半導体基板の凹部103上において凹部105が形成されている。凹部103が形成された窒化物半導体基板100上に前記第1の窒化物半導体層110を形成し、その上にInを含有する窒化物半導体層を形成することによって、窒化物半導体基板と窒化物半導体層との間で発生する引っ張り歪を、第2の窒化物半導体層120の凹部105で分断させることができる。窒化物半導体基板と、その上に成長させる窒化物半導体層に連続して引っ張り歪が内在すると、結晶成長終了後、および後の設計工程でクラックが発生しやすくなるが、上記構成によって引っ張り歪を分断することができるため、後の設計工程でクラックが発生することを抑制することができる。引っ張り歪を緩和することのできるInを含有する窒化物半導体層に関しては平坦な方向に面積が広ければ効果が大きいと考えられる。つまり、図1(c)に示す第1の窒化物半導体層110の横方向への成長領域(横方向成長膜厚Y)上に形成される第2の窒化物半導体層120の成長範囲が広いことが引っ張り歪を緩和する効果が大きいと考えられる。さらにその下層であるAlを含有する窒化物半導体層の横方向の転位の発生により引っ張り歪をさらに効果的に分断することができる。
第2の窒化物半導体層120の膜厚は0.05μm〜0.3μmである。
この第2の窒化物半導体層120を形成する条件としては、例えば、反応炉内での成長温度を1000℃以下、圧力条件を常圧とすることである。
その後、図1(e)に示すように、第2の窒化物半導体層120上に第3の窒化物半導体層130を形成する。この第3の窒化物半導体層130は、下層から引き継いだ凹部を有している必要はなく、平坦化されていてもよい。第3の窒化物半導体層130は、クラッド層として機能させることができる。この場合には、n側クラッド層を別途設ける必要はない。また、第2の窒化物半導体層120を活性層として機能させる場合には、第3の窒化物半導体層130はp側窒化物半導体層として機能させる。
あるいは、本発明では、窒化物半導体基板上の窒化物半導体層であって、基板側から形成された第3の窒化物半導体層130までを下地層と称することがある。これら下地層は、n型不純物又はp型不純物を含有するもののいずれであってよいが、本実施形態ではn型窒化物半導体層である。
第3の窒化物半導体層130は、AlxGa1-xN(0<x≦0.5)、好ましくはAlxGa1-xN(0<x≦0.3)である。
具体的な成長条件としては、反応炉内での成長温度を950℃以上、圧力条件を常圧とする。
第3の窒化物半導体層130の膜厚は0.01〜5μm、好ましくは0.5〜5μmである。
次に、本実施の形態に係る窒化物半導体レーザ素子の製造工程を説明する。但し、本発明は以下の構成に限定されるわけではない。以下の条件で形成された窒化物半導体レーザ素子の模式的断面図を図2に示す。
(第1の工程)
まず、上述した窒化物半導体基板100を準備する。
(第2の工程)
次に、前記窒化物半導体基板100に上述した凹部103を形成する。
(第3の工程)
続いて、上述したように、窒化物半導体基板の表面100a上に、第1の窒化物半導体層、第2の窒化物半導体層と第3の窒化物半導体層を形成する。例えば、下地層(n型窒化物半導体層)を形成し、その上に、任意にn型窒化物半導体層、活性層を含んだコア領域、p型窒化物半導体層を形成する。例えば、これら各層は、MOCVD法により、減圧〜大気圧の条件で成長させることができる。
上述した第3の窒化物半導体層上にn型窒化物半導体層201を形成する。このn型窒化物半導体層は光ガイド層として機能するAlxGa1-xN(0≦x≦0.3)又はInxGa1-xN(0<x≦0.1)である。膜厚は0.05〜1μmである。但し、このn型窒化物半導体層は省略することが可能である。
前記n型窒化物半導体層201中には、InxAlyGa1-x-yN(0≦x≦1、0≦y<1、0<x+y≦1)からなる中間層を介した構成とすることもできる。また、中間層は単一層構造又は多層積層構造である。n型窒化物半導体層には組成比がお互いに異なる2層からなる超格子構造を有する構成であってもよい。
続いて、活性層205として、少なくともInを含有している一般式InxAlyGa1-x-yN(0<x≦1、0≦y<1、0<x+y≦1)からなる層を形成する。これにより、300nm〜580nmまでが発光可能となる。また、活性層を量子井戸構造で形成すると発光効率が向上する。ここで、井戸層の組成はInの混晶が0<x≦0.4、Alの混晶が0≦x<0.3である。井戸層の膜厚としては、10〜200Å、好ましくは30〜100Åである。障壁層の組成はInの混晶が0≦x<0.5、Alの混晶が0≦x<0.3である。障壁層の膜厚としては、20〜300Å、好ましくは50〜200Åである。活性層を多重量子井戸構造とする場合には、障壁層から始まり井戸層で終わっても、障壁層から始まり障壁層で終わっても、井戸層から始まり障壁層で終わっても、また井戸層から始まり井戸層で終わってもよい。障壁層をAlを含有する窒化物半導体層とすることで紫外域の発光が可能となる。活性層205は単一量子井戸構造であってもよい。
次に、活性層205上にp型窒化物半導体層を多層構造で形成する。第1のp型窒化物半導体層211としては、p型不純物を含有したAlxGa1-xN(0≦x≦0.5)である。第1のp型窒化物半導体層はp側電子閉じ込め層として機能する。第2のp型窒化物半導体層212としては、AlxGa1-xN(0≦x≦0.3)、第3のp型窒化物半導体層213としては、p型不純物を含有したAlxGa1-xN(0<x≦0.5)である。第3のp型窒化物半導体層は超格子構造であることが好ましく、クラッド層として機能する。具体的には、膜厚が100Å以下のAlxGa1-xN(0≦x<1)層とAlyGa1-yN(0<y≦1、x<y)層とを交互に形成する。第4のp型窒化物半導体層214としてp型不純物を含有したAlxGa1-xN(0≦x≦1)を形成する。この第4のp型窒化物半導体層は電極とのコンタクト層として機能する。第3のp型窒化物半導体層をコンタクト層として機能させる場合には、この第4のp型窒化物半導体層は省略可能である。また、これらの半導体層にInを混晶させてもよい。各層の膜厚としては、30Å〜5μmである。第1のp型窒化物半導体層211と第2のp型窒化物半導体層212は省略可能である。
反応終了後、反応容器内において、ウェハを窒素雰囲気中、700℃以上の温度でアニーリングして、p型窒化物半導体層を低抵抗化する。
(第4の工程)
窒化物半導体基板100上に窒化物半導体層を積層したウェハを反応容器から取り出す。p型窒化物半導体層側からエッチングを行い、n型窒化物半導体層又は下地層又は窒化物半導体基板を露出させる。このエッチングにより窒化物半導体層の外周部が形成され、その幅を100μm〜500μmとする。露出面の位置は特に限定されるのものではないが、本実施形態では第3の窒化物半導体層130まで露出する。これによって、応力緩和の効果がある。この工程は省略することが可能である。このエッチングと同時にp型窒化物半導体層の表面であって、光出射側端面付近にW型溝を形成してもよい。このW型溝によって迷光が端面から放出することを抑制することができる。また、このエッチングと同時に素子の四隅に劈開補助溝を形成してもよい。この劈開補助溝によってウェハからバー化、さらにはチップ化が容易になる。エッチングにはRIE法を用いCl2、CCl4、CHCl3、BCl3、SiCl4ガス等によりエッチングする。
次に、前記p型窒化物半導体層にストライプ状のリッジ部を形成する。導波路領域であるリッジ部の幅は1.0μm〜30.0μmとする。シングルモードのレーザ光とする場合のリッジ部の幅は1.0μm〜3.0μmとするのが好ましい。リッジ部の高さ(エッチングの深さ)は、少なくとも第3のp型窒化物半導体層213を露出する範囲であればよく、第1のp型窒化物半導体層211まで露出してもよい。
その後、前記p型窒化物半導体層の露出面に第1の絶縁膜220を形成する。第1の絶縁膜220はリッジの側面に形成することが好ましい。この第1の絶縁膜220は窒化物半導体層よりも屈折率が小さく、絶縁性の材料から選択することができる。具体例としては、Zr、Si、V、Nb、Hf、Ta、Al等の酸化物又は窒化物である。この第1の絶縁膜220は上記材料を組み合わせて積層された多層構造であってもよい。
その後、前記第4のp型窒化物半導体層214の表面にp電極230を形成する。好ましくは、第4のp型窒化物半導体層214上にのみp電極230を形成する。p電極としては、多層構造とする。例えばNiとAuからなる2層構造であれば、まず第4のp型窒化物半導体層上にNiを50Å〜200Åの膜厚で形成し、次にAuを500Å〜3000Åの膜厚で形成する。また、p電極を3層構造とする場合にはNi―Au―Pt又はNi―Au―Pdの順に形成する。p電極を3層構造とする場合の膜厚は、NiとAuは2層構造と同じ膜厚として、最終層となるPtやPdは500Å〜5000Åである。その他にはPd―Mo―Au、Pd―Pt―Au、Pd―Auが挙げられる。
またp電極230を形成した後、オーミックアニールを行ってもよい。アニール条件としては、温度を300℃以上、好ましくは500℃以上とする。雰囲気は窒素及び/又は酸素を含有するものとする。なお、p電極を形成する方法、本発明における他の電極を形成する方法は特に限定されず、スパッタ、CVD等の方法を用いることができる。
次に、前工程で露出したn型窒化物半導体層の側面等に第2の絶縁膜240を形成する。この第2の絶縁膜はZrO2、SiO2、PbO、TiO2、CeO2、HfO2、Al23、Bi23、Cr23、In23、Nd23、Sb23、Ta25、Y23、AlF3、BaF2、CeF2、CaF2、MgF2、NdF3、PbF2、SrF2、ZnS、ZnSe、その他V、Nb、Hf、Ta、Al等の酸化物又は窒化物を用いることができる。また、この第2の絶縁膜は単一膜に限定されるものではなく、上記材料を組み合わせて積層された多層膜であってもよい。
次に、p電極230の上にパッド電極250を形成する。パッド電極はNi、Ti、Au、Pt、Pd、W等の金属からなる積層体とすることが好ましい。例えば、パッド電極はp電極側からW―Pd―Au、Pt―Ti―Au、Ni―Ti―Au、Ni−Pd−Au等をこのの順に形成する。パッド電極の膜厚は特に限定されないが、最終層のAuの膜厚を1000Å以上とする。
(第5の工程)
その後、窒化物半導体基板の第2主面100bにn電極232を形成する。n電極232を形成する工程としては、まず、基板の第2主面側から研磨を行うことによって基板の膜厚を200μm以下とする。次に、n電極をスパッタ等により多層で形成する。n電極232は、V、Mo、Ti、Cr、W、Al、Zr、Au、Pd、Rh、Nb、Hf、Ta、Re、Mn、Zn、Pt、Ruからなる群より選択される少なくとも1つを含む合金または層構造を用いることができる。好ましくはV―Pt―Au、Ti―Pt―Au、Mo―Pt―Au、W―Pt―Au、Ti―Pd―Al、Ti―Al、Cr―Au、W―Al、Rh―Al、Hf―Al、Hf―Al―Mo―Au、Hf―Al―Pt―Au、Hf―Al―W―Au、Hf―Au、Hf―Mo―Auの順に形成して2層構造又は3層構造とする。n電極の表面上にバリア目的でTi、Mo、Si、W、Pt、Ni、Rh又はこれらの酸化物、窒化物を積層してもよい。チップの実装強度を強めることができる。
n電極の膜厚は、例えば、第1の層にはVを用いて膜厚100Åで形成する。第2の層にはPtを用いて膜厚2000Å、第3の層にはAuを用いて膜厚3000Åで形成する。スパッタの他にはCVDや蒸着等で形成してもよい。またn電極を形成した後、500℃以上でアニールを行ってもよい。
n電極232を形成した後、さらにメタライズ電極を形成することもできる。メタライズ電極としてはTi−Pt−Au−(Au/Sn)、Ti−Pt−Au−(Au/Si)、Ti−Pt−Au−(Au/Ge)、Ti−Pt−Au−In、Au/Sn、In、Au/Si、Au/Ge等を用いる。
n電極232を形成した後、共振器長の長さが200μm〜1500μmになるように、ストライプ状のp電極230に垂直な方向に窒化物半導体層をバー状に分割して、共振器端面を形成する。なお、共振器方向は、基板の高転位密度領域が延びる方向と略平行に形成される。ここで、共振器端面は、M面(1−100)又はA面(11−20)とする。ウェハをバー状に分割する方法としては、ブレードブレイク、ローラーブレイク、又はプレスブレイクがある。
(第6の工程)
次に共振器端面に誘電体膜を形成する。バー形状の半導体の共振器端面に誘電体膜を形成した後、バー形状からチップ化して窒化物半導体レーザ素子を形成する。窒化物半導体レーザ素子はチップ化した後の形状は矩形状であって、該矩形状の共振器長は1500μm以下とする。
以上より、上述した構成により得られる窒化物半導体レーザ素子は結晶成長工程、設計工程、駆動中に発生するクラックを抑制又は無くすことができる。その結果、発振波長375nmであって、寿命試験(Tc=25℃、CWで出力50mW)では、3000時間以上の結果を得ることができる。また、CODレベルが300mW以上であって、Kinkパワーが100mW以上となる。
さらに、本発明では接触抵抗を低減した対向電極構造の窒化物半導体レーザ素子であって、接触抵抗率は1.0E-3Ωcm2以下となる。
実施の形態2
この窒化物半導体レーザ素子は、高転位密度領域と低転位密度領域とを有する窒化物半導体基板と、その上に積層された窒化物半導体層とを備えており、少なくとも1つの凹部が、少なくとも高転位密度領域に形成されており、窒化物半導体層は、基板の凹部側面から横方向への成長膜厚が凹部以外の領域から縦方向への成長膜厚よりも大きい第1の窒化物半導体層を有している。また、第1の窒化物半導体層の横方向への成長領域には、面内方向に伸びる転位がある。これ以外の構造や製造条件は実施の形態1と同様とすることができる。なお、面内方向に伸びる転位は、第1窒化物半導体層以外の窒化物半導体層に存在してもよい。
このレーザ素子は、凹部が形成された窒化物半導体基板上に第1の窒化物半導体層を有している。この第1の窒化物半導体層は、基板の凹部側面から横方向への成長膜厚が凹部以外の領域から縦方向への成長膜厚よりも大きく、第1の窒化物半導体層の横方向への成長領域には面内方向に伸びる転位がある。面内方向に伸びる転位は、1×108個/cm2以上、より好ましくは1×108個/cm2以上、1×1011個/cm2以下、さらに好ましくは1×108個/cm2以上、1×1010個/cm2以下である。この範囲の転位が存在することで、上述した効果を発揮させることができる。特にウェハをエッチングする工程でウェハ表面に生じる引っ張り歪の発生を抑制することができる。
窒化物半導体層の面内方向に伸びる転位は、第1の窒化物半導体層の全面にあるのではなく、横方向への成長領域にのみ面内方向に伸びる転位があることが好ましい。この面内方向に伸びる転位の長さは特に限定するものではないが、0.1〜1.5μmが好ましく、0.3〜1.5μmであることがより好ましい。この範囲にあれば、レーザ素子の特性に影響を及ぼすような転位が他の領域に伝播せずに、ウェハ表面に生じる引っ張り歪の発生を抑制することができる。
このレーザ素子に用いられる窒化物半導体基板は、基板表面の転位密度が1×107個/cm2以下であるものを用いることが適している。窒化物半導体基板の基板全面がこの範囲の転位密度を有していてもよいが、通常、高転位密度領域と低転位密度領域とを有する基板の低転位密度領域がこの範囲の転位密度を有する。
実施の形態3
この窒化物半導体レーザ素子は、基板表面における転位密度が1×107個/cm2以下であって、基板表面には少なくとも1つの凹部が形成されており、窒化物半導体層は、基板の凹部側面から横方向への成長膜厚が凹部以外の領域から縦方向への成長膜厚よりも大きい第1の窒化物半導体層を有しており、第1の窒化物半導体層の横方向への成長領域には面内方向に伸びる転位があり、その転位密度は1×108個/cm2以上である以外、実質的に実施の形態1及び2と同様である。
第1の窒化物半導体層の横方向への成長領域に存在する面内方向に伸びる転位密度は、上述したとおりである。
これら実施の形態2及び3のレーザ素子では、実施の形態1と同様に、窒化物半導体基板の凹部上において、第1の窒化物半導体層は凹部を有することが好ましい。また、第1の窒化物半導体層は、Alを含有する窒化物半導体層であることが好ましい。さらに、第1の窒化物半導体層の上に、Inを含有する第2の窒化物半導体層を有することが好ましい。
実施の形態4
この窒化物半導体レーザ素子は、実施の形態1において、窒化物半導体基板上に窒化物半導体層を介して第1の窒化物半導体層を形成したものである。
この窒化物半導体層は、窒化物半導体基板の凹部を除く領域に形成されていればよく、凹部内には第1の窒化物半導体層が形成されている。
この窒化物半導体レーザ素子の製造方法は、例えば、図8(a)に示すように、表面領域に凹部303を有する窒化物半導体基板を準備し、図8(b)に示すように、凹部303およびその近傍を被覆する保護膜304を形成する。ここで保護膜は、上述した第1又は第2の絶縁膜で例示したものを用いることができ、公知の方法で所望の形状にパターニングすることにより形成することができる。
図8(c)に示すように、その上に窒化物半導体層305を形成する。ここでの窒化物半導体層としては、第1窒化物半導体と同様のものが挙げられるが、必ずしも同じ組成でなくてもよい。その膜厚は、特に限定されることなく、凹部の幅等によって適宜調整することができる。
その後、図8(d)に示すように、保護膜を除去する。ここで保護膜の除去は、リフトオフ法で行うことができる。なお、図8(d)は、図1(b)、図6(a)、図6(b)に略対応する。
続いて、図8(e)に示すように、窒化物半導体層上に、実施の形態1と同様に、第1の窒化物半導体層を形成する。
この製造方法では、第1の窒化物半導体層上の活性層形成時において、保護膜は除去されているため、活性層に保護膜から発生する汚染源が侵入することを抑止できる。
以下、本発明の実施例を説明するが、本発明は、下記の実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
[実施例1]
基板は、C面を主面とするウェハ状のGaN基板100を用いる。このGaN基板は、幅が50μm以下である高転位密度領域と幅が200μm以上である低転位密度領域とを交互にストライプ状に有するGaN基板である。
次に、GaN基板100の表面100aに凹部103を形成する。
SiO2からなるマスクをパターン形成する。低転位密度領域にはマスクが形成されており、高転位密度領域はマスクの開口部とする。その後、RIE(反応性イオンエッチング)を用いてCl2ガスによりエッチングを行い、幅が60μmであり、深さが2.5μmである凹部103を形成する。凹部の側面は高転位密度領域の端部からの距離が5μm以上である。
凹部が形成されたGaN基板をMOCVD装置に搬送する。
まず、GaN基板上に第1の窒化物半導体層110を形成する。炉内の雰囲気温度を1000℃以上、圧力を減圧にして、原料ガスにTMA(トリメチルアルミニウム)、TMG(トリメチルガリウム)及びアンモニアを用い、不純物ガスとしてシランガスを用いて、Si含有のAl0.02Ga0.98Nよりなる第1の窒化物半導体層を膜厚2.0μmで成長させる。
第1の窒化物半導体層110上に第2の窒化物半導体層120を形成する。炉内の雰囲気温度を1000℃以下、圧力を常圧にして、原料ガスにTMI(トリメチルインジウム)、TMG及びアンモニアを用い、不純物ガスとしてシランガスを用いて、Si含有In0.05Ga0.95Nよりなる第2の窒化物半導体層を膜厚0.15μmで成長させる。
第2の窒化物半導体層120上に第3の窒化物半導体層130を形成する。炉内の雰囲気温度を1000℃、圧力を常圧にして、原料ガスにTMA、TMG及びアンモニアを用い、不純物ガスとしてシランガスを用いて、Si含有のAl0.10Ga0.90Nを膜厚0.8μmで成長させる。
次に、第3の窒化物半導体層130と略同じ温度で原料ガスにTMA、TMG及びアンモニアを用い、アンドープのAl0.05Ga0.95Nよりなるn型窒化物半導体層201を0.15μmの膜厚で成長させる。この層は、n型不純物をドープさせてもよい。
温度を950℃にして、原料にTMI(トリメチルインジウム)、TMA、TMG及びアンモニアを用い、不純物ガスとしてシランガスを用いて、Si含有のAl0.15Ga0.85Nよりなる障壁層を80Åの膜厚で成長させる。続いてシランガスを止め、アンドープのIn0.02Ga0.98Nよりなる井戸層を150Åの膜厚で成長させる。最後にアンドープのAl0.15Ga0.85Nよりなる障壁層を60Åの膜厚で成長させて総膜厚290Åの単一量子井戸構造(SQW)の活性層を成長させる。
同様の温度で、N2雰囲気中で、Mg含有のAl0.25Ga0.75Nを30Åの膜厚で成長させる。次いで、H2雰囲気中で、Mg含有のAl0.30Ga0.70Nを100Åの膜厚で成長させて、2層構造からなる第1のp型半導体層211を成長させる。
温度を1050℃にして、原料ガスにTMG及びアンモニアを用い、アンドープのAl0.05Ga0.95Nよりなる第2のp型半導体層212を0.15μmの膜厚で成長させる。
続いて、アンドープのAl0.14Ga0.86NよりなるA層を80Åの膜厚で成長させ、その上にMgドープのAl0.06Ga0.94NよりなるB層を80Åの膜厚で成長させる。これを28回繰り返してA層とB層とを交互に積層させて、総膜厚0.45μmの多層膜(超格子構造)よりなる第3のp型半導体層213を成長させる。
最後に、1050℃で第3のp型半導体層213の上にMgドープのGaNよりなる第4のp型半導体層214を150Åの膜厚で成長させる。
反応終了後、反応容器内において窒素雰囲気中でウェハを700℃でアニーリングして、p型層をさらに低抵抗化する。
以上のようにしてGaN基板上に窒化物半導体を成長させて積層構造体を形成した後、ウェハを反応容器から取り出し、最上層の第4のp型半導体層214の表面にSiO2よりなる保護膜を形成してRIE(反応性イオンエッチング)を用いてCl2ガスによりエッチングし、第3の窒化物半導体層130の表面を露出させる。
次に、ストライプ状の導波路領域を形成するために、最上層の第4のp型半導体層214のほぼ全面にCVD装置により、SiO2よりなるマスクを0.5μmの膜厚で形成した後、RIE装置によりCHF3ガスを用いたエッチングによりストライプ状の形状をしたマスクを形成する。このマスクと、Cl2ガス及びSiCl4ガスとを用いて半導体層をエッチングして、活性層よりも上にリッジストライプが形成される。このとき、リッジの幅は1.8μmとなるようにする。
SiO2マスクを形成させた状態で、p型半導体層表面にZrO2よりなる第1の絶縁膜を膜厚約2000Åで形成する。BHF(バッファードフッ酸)水溶液に浸漬して、リッジストライプの上面に形成したSiO2を溶解除去し、リフトオフ法によりSiO2と共に、第4のp型半導体層214上にあるZrO2を除去する。これにより、リッジの上面は露出され、リッジの側面はZrO2で覆われた構造となる。
第4のp型半導体層の上にNi−Auからなるp電極230を形成する。Niの膜厚は100Å、Auの膜厚は1500Åとする。その後、600℃で熱処理をする(省略可能)。
次に、第2の絶縁膜としてSiO2をレーザ素子の側面に形成する。さらに、p電極上にpパッド電極としてNi−Ti−Auの順に形成する。
GaN基板を研磨して約85μmの膜厚になるよう調整し、基板裏面100bにV−Pt−Auの順に膜厚を100Å、2000Å、3000Åで積層したn電極232を形成する。
次に、ウェハのブレーキングにより、劈開を行いバー形状とする。窒化物半導体層の劈開面は、窒化物半導体のM面(11−00面)となっており、この面を共振器面とする。
上記のように形成されたバー形状の窒化物半導体の光出射側端面に誘電体膜を設ける。
光出射側端面(フロント側端面)には、ECRスパッタ装置を用いて酸素等の活性ガスのプラズマを用い共振器端面をクリーニングした後、Al23からなる誘電体膜を形成する。この誘電体膜の屈折率は375nmの光に対して1.66である。
次に、光反射側端面(リア側端面)にはAl23からなるなる誘電体膜を形成した後、SiO2とZrO2を交互に4ペア積層して反射ミラーを形成する。
その後、バー形状の半導体からチップ化して矩形状の窒化物半導体レーザ素子を形成する(図2)。チップ化する基準位置は両側面ともに前記凹部に内在する高転位密度領域とする。この位置でチップ化を行うことにより、チップ化工程での歩留まりが向上する。共振器長は600μm、チップ幅を400μmとする。
以上より、得られる窒化物半導体レーザ素子は、凹部や第1の窒化物半導体層、第2の窒化物半導体層を有しない従来例(図9)と比べてクラックが発生しないため、寿命特性が3000時間以上を示す。
また、本実施例の窒化物半導体レーザ素子は、室温において閾値電流密度3.5kA/cm2、CW駆動時で30mWの高出力において発振波長375nmの連続発振が可能となる。
[実施例2]
実施例1において、リッジストライプを高転位密度領域102を避けて形成する(図5)。またバー形状の半導体からチップ化する工程で、チップ化する基準位置を両側面ともに低転位密度領域とする(図3)。その他は実施例1と同様にして窒化物半導体レーザ素子を形成する。
本実施例で得られる窒化物半導体レーザ素子は結晶成長工程や設計工程で発生するクラックを抑制又は無くすことができるため、良好な寿命特性が期待できる。
[実施例3]
実施例1において、高転位密度領域と高転位密度領域との間の中央部をチップ化する基準位置とする。これによりチップの一方の側面は凹部に内在する高転位密度領域、もう一方の側面は低転位密度領域となり、チップ幅は200μmとなる(図4)。その他は実施例1と同様にして窒化物半導体レーザ素子を形成する。
本実施例で得られる窒化物半導体レーザ素子は結晶成長工程や設計工程で発生するクラックを抑制又は無くすことができるため、良好な寿命特性が期待できる。
しかも、チップ幅を小さくしているため、実施例1に比べてチップの取れ数が2倍になる。
[実施例4]
実施例1において、チップ幅を600μmとして、その内部にリッジストライプを3つ形成する(図5)。いずれのリッジストライプも高転位密度領域を避けて形成する。
本実施例で得られる窒化物半導体レーザ素子は結晶成長工程や設計工程で発生するクラックを抑制又は無くすことができるため、良好な寿命特性が期待できる。
しかも、リッジストライプを3つ備えたマルチアレイ型窒化物半導体レーザ素子であるため、150mW以上の高出力が期待できる。
[実施例5]
この実施例の素子は、図7に示すように、窒化物半導体層の構成を以下に示すように形成する以外、実質的に実施例1と同様の素子を作製する。
第1の窒化物半導体層110として、Al0.08Ga0.92N(25Å)/GaN(25Å)を220回繰り返した総膜厚1.1μmの超格子構造(平均Al混晶は4%)を形成する。なお、ここでは、第2の窒化物半導体層は、省略する。
その後、第3の窒化物半導体層130として、Al0.05Ga0.95N(25Å)/GaN(25Å)を60回繰り返した総膜厚3000Åの超格子構造(平均Al混晶は2.5%)を形成する
コア領域におけるn型光ガイド層として機能するn型窒化物半導体層201として、GaN層(1700Å)を形成する。
活性層205として、In0.05Ga0.95Nからなる障壁層(140Å)/In0.1Ga0.9Nからなる井戸層(70Å)を2回繰り返し、その上にIn0.05Ga0.95Nからなる障壁層(300Å)を形成した総膜厚約720Åの多重量子井戸構造(MQW)を形成する。
p型ガイド層として機能する窒化物半導体層212として、GaN(1500Å)、p型の窒化物半導体層213として、Al0.1Ga0.9N(20Å)/GaN(20Å)を300回繰り返した総膜厚4500Åの超格子構造(平均Al混晶は4.9%)を形成する。
なお、チップ化する基準位置は、実施例1と同様に、両側面ともに凹部に内在する高転位密度領域とする。この位置でチップ化を行うことにより、チップ化工程での歩留まりが向上する。共振器長は600μm、チップ幅を400μmとする。
本実施例の窒化物半導体レーザ素子は、室温において閾値電流密度3.5kA/cm2、CW駆動時で30mWの高出力において発振波長405nmの連続発振が可能となる。
本実施例で得られる窒化物半導体レーザ素子は結晶成長工程や設計工程で発生するクラックを抑制又は無くすことができるため、良好な寿命特性が期待できる。
[実施例6]
実施例5において、第1の窒化物半導体層をAl0.03Ga0.97Nとして2μmの膜厚で形成し、第3の窒化物半導体層をGaNとして1700Åの膜厚で形成する以外は、同様に形成する。これにより、実施例5と略同様の特性を示すレーザが得られる。
本発明にの窒化物半導体レーザ素子及びその製造方法は、次世代光ディスク用光源、ディスプレイ用光源、プリンター用光源等として利用することができる。
また、本発明の窒化物半導体レーザ素子及びその製造方法は、端面で帰還させるファブリ・ペロー共振器を有するもの以外に、内部に回折格子を設けて帰還させるDFB(Distributed Feedback)、外部に回折格子を設けて帰還させるDBR(Distributed Bragg Reflector)を有するものに適用することができる。
本発明に係る窒化物半導体レーザ素子の製造工程を説明するための模式的断面図である。 本発明に係る窒化物半導体レーザ素子を説明するための模式的断面図である。 本発明に係る窒化物半導体レーザ素子を説明するための模式的断面図である。 本発明に係る窒化物半導体レーザ素子を説明するための模式的断面図である。 本発明に係る窒化物半導体レーザ素子を説明するための模式的断面図である。 本発明に係る窒化物半導体基板を説明するための模式的断面図である。 本発明に係る窒化物半導体レーザ素子を説明するための模式的断面図である。 本発明に係る窒化物半導体レーザ素子の別の製造工程を説明するための模式的断面図である。 従来の窒化物半導体レーザ素子を説明するための模式的断面図である。
符号の説明
100 窒化物半導体基板
100a 表面
100b 裏面
101、301 低転位密度領域
102、302 高転位密度領域
103、303 凹部
110、306 第1の窒化物半導体層
120 第2の窒化物半導体層
304 保護膜
305 窒化物半導体層

Claims (17)

  1. 窒化物半導体基板と、その上に積層された窒化物半導体層とを備えた窒化物半導体レーザ素子であって、
    前記窒化物半導体基板は、高転位密度領域と該高転位密度領域よりも転位密度が低い低転位密度領域とを有する窒化物半導体基板であり、少なくとも該高転位密度領域に少なくとも1つの凹部が形成されており、
    前記窒化物半導体層は、前記基板の凹部側面からの横方向への成長膜厚が、前記凹部以外の領域からの縦方向への成長膜厚よりも大きい第1の窒化物半導体層と、前記第1の窒化物半導体層の上に接触して配置され、Inを含有する第2の窒化物半導体層とを有しており、
    前記窒化物半導体基板の凹部上において、前記第1の窒化物半導体層と第2の窒化物半導体層とは凹部を有することを特徴とする窒化物半導体レーザ素子。
  2. 前記窒化物半導体基板の凹部は、窒化物半導体レーザ素子の共振器長方向と略平行方向に形成されている請求項1に記載の窒化物半導体レーザ素子。
  3. 前記窒化物半導体基板の高転位密度領域と低転位密度領域とは交互にストライプ状に形成されており、該窒化物半導体基板の凹部側面は、低転位密度領域である請求項1又は2に記載の窒化物半導体レーザ素子。
  4. 前記窒化物半導体基板の凹部側面は、高転位密度領域の端部から5μm以上離間している請求項3に記載の窒化物半導体レーザ素子。
  5. 前記第2の窒化物半導体層における凹部は、窒化物半導体基板の高転位密度領域から転位が伝播した領域である請求項1に記載の窒化物半導体レーザ素子。
  6. 前記第1の窒化物半導体層は、Alを含有する窒化物半導体層である請求項1に記載の窒化物半導体レーザ素子。
  7. 高転位密度領域と該高転位密度領域よりも転位密度が低い低転位密度領域とを有する窒化物半導体基板と、その上に積層された窒化物半導体層とを備えた窒化物半導体レーザ素子の製造方法であって、
    前記窒化物半導体基板の高転位密度領域に少なくとも1つの凹部を形成する工程と、
    前記窒化物半導体基板の上に、前記基板の凹部側面から横方向への成長膜厚が前記凹部以外の領域から縦方向への成長膜厚よりも大きくなるように第1の窒化物半導体層を形成する工程と、
    前記第1の窒化物半導体層の上に、該第1の窒化物半導体層に接触するInを含有する第2の窒化物半導体層を形成する工程とを備えたことを特徴とする窒化物半導体レーザ素子の製造方法。
  8. 前記窒化物半導体基板の凹部を、窒化物半導体レーザ素子の共振器長方向と略平行方向に形成する請求項7に記載の窒化物半導体レーザ素子の製造方法。
  9. 前記窒化物半導体基板の高転位密度領域と低転位密度領域とを、交互にストライプ状に形成する請求項7に記載の窒化物半導体レーザ素子の製造方法。
  10. 前記窒化物半導体基板の凹部を、高転位密度領域、及び該高転位密度領域を挟んだ両側の低転位密度領域に連続して形成する請求項9に記載の窒化物半導体レーザ素子の製造方法。
  11. 前記窒化物半導体基板の凹部は、その側面を、高転位密度領域の端部から5μm以上離間して形成する請求項10に記載の窒化物半導体レーザ素子の製造方法。
  12. 窒化物半導体基板と、その上に積層された窒化物半導体層とを備えた窒化物半導体レーザ素子であって、
    前記窒化物半導体基板は、高転位密度領域と該高転位密度領域よりも転位密度が低い低転位密度領域とを有する窒化物半導体基板であり、少なくとも該高転位密度領域に少なくとも1つの凹部が形成されており、
    前記窒化物半導体層は、前記基板の凹部側面からの横方向への成長膜厚が前記凹部以外の領域からの縦方向への成長膜厚よりも大きい第1の窒化物半導体層と、該第1の窒化物半導体層上に接触して形成されたInを含有する第2の窒化物半導体層とを有しており、
    前記第1の窒化物半導体層の横方向への成長領域には面内方向に伸びる転位があることを特徴とする窒化物半導体レーザ素子。
  13. 前記第1の窒化物半導体層の横方向への成長領域における面内方向に伸びる転位は、1×108個/cm2以上である請求項12に記載の窒化物半導体レーザ素子。
  14. 窒化物半導体基板と、その上に積層された窒化物半導体層とを備えた窒化物半導体レーザ素子であって、
    前記窒化物半導体基板は、基板表面における転位密度が1×107個/cm2以下であり、該基板表面には少なくとも1つの凹部が形成されており、前記窒化物半導体層は、前記基板の凹部側面からの横方向への成長膜厚が前記凹部以外の領域からの縦方向への成長膜厚よりも大きい第1の窒化物半導体層と、該第1の窒化物半導体層上に接触して形成されたInを含有する第2の窒化物半導体層とを有しており、
    前記第1の窒化物半導体層の横方向への成長領域には面内方向に伸びる転位があり、その転位密度は1×108個/cm2以上であることを特徴とする窒化物半導体レーザ素子。
  15. 前記窒化物半導体基板の凹部上において、前記第1の窒化物半導体層は凹部を有する請求項12〜14のいずれか1つに記載の窒化物半導体レーザ素子。
  16. 前記第1の窒化物半導体層は、Alを含有する窒化物半導体層である請求項12〜15のいずれか1つに記載の窒化物半導体レーザ素子。
  17. 前記第1の窒化物半導体層と第2の窒化物半導体層とを、前記窒化物半導体基板の凹部上において凹部を有して形成する請求項7〜11に記載の窒化物半導体レーザ素子の製造方法。
JP2007225572A 2006-09-04 2007-08-31 窒化物半導体レーザ素子及びその製造方法 Active JP5076746B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007225572A JP5076746B2 (ja) 2006-09-04 2007-08-31 窒化物半導体レーザ素子及びその製造方法
US11/849,734 US7830940B2 (en) 2006-09-04 2007-09-04 Nitride semiconductor laser element having nitride semiconductor substrate and nitride semiconductor layer laminated thereon with nitride semiconductor substrate and nitride semiconductor layer having recesses formed in high dislocation density region of nitride semiconductor substrate and nitride semiconductor layer having portions with different film thicknesses

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006239161 2006-09-04
JP2006239161 2006-09-04
JP2007225572A JP5076746B2 (ja) 2006-09-04 2007-08-31 窒化物半導体レーザ素子及びその製造方法

Publications (3)

Publication Number Publication Date
JP2008091890A JP2008091890A (ja) 2008-04-17
JP2008091890A5 JP2008091890A5 (ja) 2010-09-16
JP5076746B2 true JP5076746B2 (ja) 2012-11-21

Family

ID=39151459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007225572A Active JP5076746B2 (ja) 2006-09-04 2007-08-31 窒化物半導体レーザ素子及びその製造方法

Country Status (2)

Country Link
US (1) US7830940B2 (ja)
JP (1) JP5076746B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534848B1 (ko) 2008-07-21 2015-07-27 엘지이노텍 주식회사 발광 다이오드 및 그 제조방법. 그리고 발광 소자 및 그발광 소자 제조방법
JP2010129581A (ja) * 2008-11-25 2010-06-10 Sanyo Electric Co Ltd 窒化物系半導体レーザ素子及びその作製方法
JP2011023473A (ja) * 2009-07-14 2011-02-03 Sumitomo Electric Ind Ltd Iii族窒化物半導体レーザダイオード
JP4978667B2 (ja) * 2009-07-15 2012-07-18 住友電気工業株式会社 窒化ガリウム系半導体レーザダイオード
JP5627871B2 (ja) * 2009-10-30 2014-11-19 フューチャー ライト リミテッド ライアビリティ カンパニー 半導体素子およびその製造方法
CN101872823A (zh) * 2010-06-07 2010-10-27 厦门市三安光电科技有限公司 侧壁具有分布布拉格反射镜的氮化镓基发光二极管及其制备方法
KR20130012376A (ko) * 2011-07-25 2013-02-04 삼성전자주식회사 반도체 발광소자 제조방법
JP6379696B2 (ja) * 2014-06-05 2018-08-29 住友電気工業株式会社 量子カスケード半導体レーザ
DE102018111227A1 (de) * 2018-05-09 2019-11-14 Osram Opto Semiconductors Gmbh Verfahren zum Durchtrennen eines epitaktisch gewachsenen Halbleiterkörpers und Halbleiterchip

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3592553B2 (ja) * 1998-10-15 2004-11-24 株式会社東芝 窒化ガリウム系半導体装置
JP2001267691A (ja) * 2000-01-13 2001-09-28 Sony Corp 半導体素子およびその製造方法
JP4703014B2 (ja) * 2001-02-15 2011-06-15 シャープ株式会社 窒化物半導体発光素子、光学装置、および半導体発光装置とその製造方法
JP4451846B2 (ja) * 2003-01-14 2010-04-14 パナソニック株式会社 窒化物半導体素子の製造方法
JP4266694B2 (ja) 2003-04-28 2009-05-20 シャープ株式会社 窒化物半導体レーザ素子および光学装置
JP2005191547A (ja) 2003-12-01 2005-07-14 Matsushita Electric Ind Co Ltd 半導体レーザ素子及びその製造方法
JP4201725B2 (ja) * 2004-02-20 2008-12-24 シャープ株式会社 窒化物半導体発光素子の製造方法
JP5013661B2 (ja) * 2004-03-31 2012-08-29 三洋電機株式会社 窒化物系半導体素子の製造方法及び窒化物系半導体素子
US7157297B2 (en) * 2004-05-10 2007-01-02 Sharp Kabushiki Kaisha Method for fabrication of semiconductor device
JP4322187B2 (ja) * 2004-08-19 2009-08-26 シャープ株式会社 窒化物半導体発光素子
JP2007184411A (ja) * 2006-01-06 2007-07-19 Sony Corp 発光ダイオードおよびその製造方法ならびに集積型発光ダイオードおよびその製造方法ならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器ならびに電子装置およびその製造方法

Also Published As

Publication number Publication date
JP2008091890A (ja) 2008-04-17
US7830940B2 (en) 2010-11-09
US20080056322A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5076746B2 (ja) 窒化物半導体レーザ素子及びその製造方法
JP4963060B2 (ja) 窒化物系半導体レーザ素子及びその製造方法
US8422527B2 (en) Nitride based semiconductor device and fabrication method for the same
JP2003017791A (ja) 窒化物半導体素子及びこの窒化物半導体素子の製造方法
JP2006066869A (ja) 窒化物半導体レーザ素子及び窒化物半導体素子
JP4997744B2 (ja) 窒化物半導体素子及びその製造方法
EP1496584B1 (en) Nitride semiconductor laser device and method of manufacturing the nitride semiconductor laser device
WO2001095446A1 (fr) Dispositif de laser a semi-conducteur et son procede de fabrication
JP2010177651A (ja) 半導体レーザ素子
JP5076656B2 (ja) 窒化物半導体レーザ素子
JP2001007447A (ja) 窒化物半導体レーザ素子
JP3716974B2 (ja) 半導体レーザ素子及びその製造方法
JP2005340625A (ja) 窒化物半導体レーザ素子
JP4991025B2 (ja) 窒化物半導体レーザ素子
JP2006165407A (ja) 窒化物半導体レーザ素子
JPH09246651A (ja) 窒化物半導体レーザ素子
JP4639571B2 (ja) 窒化物半導体レーザ素子およびその製造方法
JP2008028375A (ja) 窒化物半導体レーザ素子
JP4131293B2 (ja) 窒化物半導体レーザ素子及び窒化物半導体素子
JP5023567B2 (ja) 窒化物半導体レーザ素子
JP2009277844A (ja) 窒化物半導体レーザ素子
JP2005101536A (ja) 窒化物半導体レーザ素子
JPH10303493A (ja) 窒化物半導体レーザ素子
JP3334624B2 (ja) 窒化物半導体レーザ素子
JP5532082B2 (ja) 窒化物半導体レーザ素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250