JP6345731B2 - 多電極積層構成体 - Google Patents

多電極積層構成体 Download PDF

Info

Publication number
JP6345731B2
JP6345731B2 JP2016089405A JP2016089405A JP6345731B2 JP 6345731 B2 JP6345731 B2 JP 6345731B2 JP 2016089405 A JP2016089405 A JP 2016089405A JP 2016089405 A JP2016089405 A JP 2016089405A JP 6345731 B2 JP6345731 B2 JP 6345731B2
Authority
JP
Japan
Prior art keywords
electrode
collimator
charged particle
particle beam
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016089405A
Other languages
English (en)
Other versions
JP2016173992A (ja
Inventor
ウィレム・ヘンク・ウルバヌス
マルコ・ヤン−ヤコ・ウィーランド
Original Assignee
マッパー・リソグラフィー・アイピー・ビー.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51900874&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6345731(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by マッパー・リソグラフィー・アイピー・ビー.ブイ. filed Critical マッパー・リソグラフィー・アイピー・ビー.ブイ.
Publication of JP2016173992A publication Critical patent/JP2016173992A/ja
Application granted granted Critical
Publication of JP6345731B2 publication Critical patent/JP6345731B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/026Means for avoiding or neutralising unwanted electrical charges on tube components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3175Projection methods, i.e. transfer substantially complete pattern to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/002Cooling arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0216Means for avoiding or correcting vibration effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/024Moving components not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/03Mounting, supporting, spacing or insulating electrodes
    • H01J2237/032Mounting or supporting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/121Lenses electrostatic characterised by shape
    • H01J2237/1215Annular electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/16Vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/182Obtaining or maintaining desired pressure
    • H01J2237/1825Evacuating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/303Electron or ion optical systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof

Description

本発明は、一般的には電極積層体と、荷電粒子ビーム発生器と、荷電粒子リソグラフィシステムとに関する。さらに、本発明は、電極積層体で使用するための電極に関する。
半導体産業では、高い精度および信頼性を有しているより小型の構造体を製造することがますます望まれている。リソグラフィは、かかる製造プロセスの重要部分である。マスクレスリソグラフィシステムでは、荷電粒子小ビームが、ターゲットにパターンを転写するために使用され得る。小ビームは、所望のパターンを得るために個別に制御可能であり得る。
商業的に実用可能であるためには、荷電粒子リソグラフィシステムは、かなりのウェーハスループットおよび厳格な許容誤差に関する厳しい要求を満たすことが可能である必要がある。より高いスループットは、より多くの小ビーム、かくして、より高い電流を使用することによって実現され得る。
しかし、より多数の小ビームの操作は、結果としてより多数の制御回路の必要性をもたらす。動作制御回路は、リソグラフィシステム内で加熱を引き起こし得る。さらに、電流の増加は、結果としてリソグラフィシステムの構成部材と相互作用するより多数の荷電粒子をもたらす。リソグラフィシステム内での荷電粒子とシステムの構成部材との衝突が、各構成部材の著しい加熱を引き起こし得る。結果として引き起こされるビーム操作の構成部材の加熱は、リソグラフィ処理の精度を低下させる熱変形にまで至る場合がある。
多数の小ビームの使用は、小ビーム間の粒子間相互作用(例えばクーロン相互作用)により許容されない精度不良のリスクをさらに高める。
粒子間相互作用の影響は、粒子源とターゲットとの間の経路を短縮化することにより軽減され得る。経路短縮化は、荷電粒子を操作するためにより強力な電界を使用することによって達成され得るが、これは、荷電粒子リソグラフィシステムにおける様々な電極間により大きな電位差を与えることを必要とする。
より強力な電界が存在することにより、粒子源、電界電極、および他のビーム操作素子における機械的不アラインメント(例えば機械的共振の結果による不アラインメント)が、電界精度に関して、およびしたがってビーム処理精度に関してより高い影響を有していることになる。
また、より強力な電界により、ビーム操作部材のジオメトリ構成における任意の一時的変化が、放電のリスクを高め、これは、システムの構造的完全性および達成可能な精度に対する不利な結果をもたらし得る。
強力な電界条件下でも高い機械的安定性を実現しつつ、多数の荷電粒子小ビームの使用を可能にする、荷電粒子ビーム発生器およびリソグラフィシステムとその構成部材とを提供することが望ましい。
したがって、第1の態様によれば、光軸に沿って荷電粒子ビームを操作するための複数の積層された電極を有し、各電極は、荷電粒子ビームの通過を可能にするための電極アパチャを有している電極本体を備え、電極本体は、光軸と実質的に平行である軸方向に沿って相互に離間され、電極アパチャが、光軸に沿って同軸的にアラインメントされる、また、電気絶縁材料から本質的に構成され、軸方向に沿って所定の相互距離をおいて電極を位置決めするように隣接した電極の各対間に配置された複数のスペーサの集合体を有している、電極積層体が提供される。第1の電極および第2の電極、がそれぞれ、1つまたは複数の支持部分を有している電極本体を備えている。各支持部分は、少なくとも1つのスペーサ構造体を収容するように構成される。電極積層体は、少なくとも1つのスペーサ構造体が間に配置された状態で第1の電極および第2の電極の各支持部分を共に保持するように構成された少なくとも1つのクランプ留め部材を有して形成されている。
本明細書においては、円柱座標が、荷電粒子ビーム発生器の空間関係を説明するために使用されている。荷電粒子流の巨視的方向は、「軸方向」Z’と呼ばれる。本明細書においては、「上流」という用語は、荷電粒子の流れとは逆の方向を示すために使用されている。逆に、「下流」という用語は、荷電粒子の流れと一緒の方向を示すために使用されている。本例では、「上流」および「下流」という用語は、負軸方向−Zおよび正軸方向Zのそれぞれに対応する。軸方向Zに対して垂直なビーム電流密度分布の重心(即ち、平均位置)が、いわゆる「光軸」Aを規定している。「径方向」Rは、光軸Aから径方向に離れる方向を指す横断面内の任意の方向に対応している。「角度方向」は、横断面内の径方向位置の(微小)回転角度に沿った方向を指している。
一実施形態によれば、第1の電極および/または第2の電極の電極本体は、ディスク形状または偏円リング形状を有している。
一実施形態によれば、第1の電極および第2の電極の少なくとも1つが、電極本体の径方向外周面に沿って3つの支持部分を備え、3つの支持部分は、電極本体の重量を共同で支持している。
一実施形態によれば、支持部分は、軸方向に沿って電極本体に対する支持部分の反れを防止するように十分に剛性である。
一実施形態によれば、隣接した電極の電極支持部分および介在するスペーサ構成体は、軸方向と平行な支持コラムを規定するように軸方向にアラインメントされている。
さらなる一実施形態によれば、各支持コラムは、支持部分と介在するスペーサ構成体とを共に保持するために、各クランプ留め部材に連結されている。
各支持コラム用のクランプ留め部材は、コリメータ電極とスペーサ構成体とを組み立てるおよび分解するための効率的な解除可能装着機構を提供し、それにより各部品は、必要に応じて迅速に交換および/または再構成され得る。
一実施形態によれば、支持部分は、電極支持部材により対応する電極の電極本体に対して径方向に可動に連結されている。
さらなる一実施形態によれば、電極支持部材は、電極外周面に沿って設けられ、それにより電極支持部分と電極外周面との間に熱膨張空間を規定している。
一実施形態によれば、電極支持部材は、第1の端部で電極外周面に連結され、第2の端部で対応する電極支持部分に連結されている、可動の細長いアーム部を備えている。
さらなる一実施形態によれば、可動の細長いアーム部は、軸方向において電極本体に対する対応する電極支持部分の反れを防止しつつ、径方向−角度方向面内において電極本体に対する対応する電極支持部分の反れを可能にする可撓性アーム狭窄部を備えている。
さらなる一実施形態によれば、可撓性アーム狭窄部は、可動の細長いアーム部の少なくとも1つの端部部分上に設けられている。
一実施形態によれば、可動の細長いアーム部は、角度方向に実質的に沿って延びており、熱膨張空間は、角度方向に実質的に沿って延びたスロットを形成している。
一実施形態によれば、前記支持部分および対応する支持コラムのスペーサ構成体は、軸方向にアラインメントされた貫通穴を備えている。貫通穴は、対応するクランプ留め部材を収容するスペースを共同で規定し、クランプ留め部材は、軸方向と平行な支持コラムに圧縮力をかけるためにプレテンション加工されている。
支持部分およびスペーサ構成体のアラインメントされた貫通穴の内部にコラムクランプ留め部材を収容することにより、支持部分とスペーサ構成体とを軸方向にアラインメントされた状態に効率的に維持し、径方向−角度方向面内のコラムの幅が比較的小さく留まるのを確保している(これは、コリメータ積層体の内部に規定されたスペースから分子を除去する際にポンプ効率を改善し得る)、ロバストクランプ機構が得られる。
さらなる一実施形態によれば、前記支持部分および/またはスペーサ構成体の貫通穴の内径は、クランプ留め部材の外径よりも実質的に大きい。
さらなる一実施形態によれば、貫通穴の内径とクランプ留め部材の外径の差が、一方におけるクランプ留め部材と他方における支持部分および/またはスペーサ構成体との間に電気絶縁性を与えるために径方向スペースを空の状態に維持している。
一実施形態によれば、軸方向に沿って見た場合に、第1の電極および/または第2の電極の電極本体の厚さは、ほぼ第1の電極と第2の電極との間の電極間距離の大きさである。
第2の態様によれば、ならびに本明細書で上述された効果および利点によれば、光軸に沿って荷電粒子ビームを発生させるためのビーム源と、第1の態様による積層体支持システムを有している電極積層体とを備えている荷電粒子ビーム発生器が提供される。第1の電極は、電極積層体の上流端に設けられ、ビーム源は、第1の電極の上流に設けられている。前記ビーム源および電極の電極アパチャは、光軸に沿って同軸的にアラインメントされている。
一実施形態によれば、荷電粒子ビーム発生器は、粒子ビームコリメータとして動作するように構成されている。特に、荷電粒子ビーム発生器は、第1の電極と第2の電極との間に電位差を、および第2の電極と第3の電極との間にさらなる電位差を与えるように構成されてもよい。前述のさらなる電位差は、前記電位差よりも大きい。
さらなる一実施形態によれば、少なくとも第3の電極は、冷却用液体を案内するための冷却用導管を備えている。
一実施形態によれば、荷電粒子ビーム発生器は、電極積層体を収容するための発生器の真空チャンバを備えている。この発生器の真空チャンバは、積層体支持システムの突出支持部分が貫通するように構成された、突出支持部分が外部基準フレームに対して発生器の真空チャンバの外部で別個の支持連結部を確立することを可能にするためのチャンバの開口部を備えている。荷電粒子ビーム発生器は、ガスケットを備え、各ガスケットは、各チャンバ開口部と対応する突出支持部分との間のスペースを封止するように構成されている。
一実施形態によれば、荷電粒子ビーム発生器は、ビーム発生器モジュールとして形成されている。ビーム発生器の真空チャンバは、荷電粒子リソグラフィシステムの真空チャンバの内部に設けられたキャリアフレームに挿入可能で、キャリアフレームにより支持可能であり、それから取り出し可能である。
一実施形態によれば、荷電粒子ビーム発生器は、電極積層体の上流端に配置され、内側にビーム源を収容するように構成された源のチャンバと、積層体支持システム上に源のチャンバを直接的に支持するための源のチャンバ支持部材とを備えている。
源のチャンバ支持部材により、源のチャンバは、源のチャンバと電極積層体との間の直接的な機械結合を回避しつつ、積層体支持構成体により外部基準フレーム上に支持され得る。有利には、この支持構成体は、コリメータ積層体のアラインメントに対する源のチャンバの圧力により誘発される変形の影響を軽減し得る。逆に、有利には、支持構成体は、源のチャンバのジオメトリに対する電極積層体の熱により誘発される変形の影響を軽減し得る。
第3の態様によれば、ならびに本明細書で上述された効果および利点によれば、ターゲットを処理するための荷電粒子リソグラフィシステムが提供される。このシステムは、キャリアフレームを包囲する真空チャンバと、本発明の第2の態様による荷電粒子ビーム発生器とを備えている。ビーム発生器は、キャリアフレームにより収容されている。電極積層体は、3つの積層体支持部材を備えている。各支持部材は、キャリアフレーム上に電極積層体を支持するために、第1の端部で電極積層体の中央領域に、および第2の端部でキャリアフレームに連結されている。
第4の態様によれば、ならびに本明細書で上述された効果および利点によれば、荷電粒子ビーム発生器で使用するように構成された電極が提供される。電極は、上面および下面を備えているリング形状電極本体を備えている。下面および上面は、側部表面により相互に連結され、電極外周面を規定している。電極は、電極外周面に沿って3つの支持部分を備えている。各支持部分が、少なくとも1つのスペーサ構成体を収容するように構成されている。
一実施形態によれば、前記電極は、電極外周面に沿って3つの径方向可動電極支持アーム部を備えている。各電極支持アーム部が、対応する電極支持部分に電極外周面を相互連結し、それにより電極支持部分と電極外周面との間に熱膨張空間を規定している。
さらなる一実施形態によれば、電極支持部は、一方の端部で電極外周面に連結され、対向側の端部で電極支持部分に連結された径方向の細長い本体を備えている。細長い本体は、角度方向に実質的に沿って延在し、熱膨張空間は、やはり角度方向に実質的に沿って延びたスロットを形成している。
一実施形態によれば、電極は、モノリシック電極本体を備えている。好ましくは、電極本体は、鋳造金属により形成されている。より好ましくは、電極本体の鋳造金属は、主としてアルミニウムである。
アルミニウムは、軽量材料であり(これによりコリメータ積層体の作製および使用が容易化されている。)、良好な電気コンダクタンスおよび非磁性特性を有し(これは荷電粒子ビーム操作用途において有利である)、良好な熱コンダクタンスを有している(これは荷電粒子の散乱および衝突により引き起こされている。熱エネルギーを消散するのを助ける)。
以下、添付の概略図を参照として専ら例としてのみ実施形態を説明する。図面において、同一の参照符号は同一の部材を指している。
一実施形態による荷電粒子リソグラフィシステムの概略斜視図を示している。 一実施形態による荷電粒子リソグラフィシステムの真空チャンバの正面図を示している。 一実施形態によるビーム発生器の概略側面図を示している。 一実施形態によるコリメータ電極積層体の斜視図を示している。 一実施形態によるコリメータ電極の斜視図を示している。 一実施形態によるコリメータ電極積層体の概略側方断面図を示している。 実施形態によるコリメータ電極の側方断面図を示している。 実施形態によるコリメータ電極の側方断面図を示している。 実施形態によるコリメータ電極の側方断面図を示している。 実施形態によるコリメータ電極の側方断面図を示している。 一実施形態によるビーム発生器の詳細上面図を示している。 別の実施形態によるビーム発生器の斜視図を示している。 別の実施形態によるビーム発生器の斜視図を示している。 別の実施形態によるビーム発生器の斜視図を示している。 一実施形態によるビーム発生器の下方部分の側方断面図を示している。 一実施形態によるコリメータ電極積層体内の支持コラムの側方断面図を示している。 一実施形態によるコリメータ電極積層体内の冷却用導管の側方断面図を示している。 別の実施形態によるコリメータ電極積層体内の支持システムを示している。
図面は、専ら例示を目的として意図されたものであり、特許請求の範囲により規定されるような保護範囲を限定するものとしての役割は有さない。
以下は、専ら例として示され図面を参照とする本発明のいくつかの実施形態の説明である。
リソグラフィシステム
図1は、リソグラフィシステム10などのターゲット処理マシンの斜視図を概略的に示している。かかるリソグラフィシステム10は、半導体ターゲット31のリソグラフィ処理(例えばレジストで被覆された半導体基板上への構造物の作製)のために構成されている。リソグラフィシステム10は、(下方側に)投影コラム46を収容するための真空チャンバ30と、(上方側に、即ち、真空チャンバ30の上方に位置された)電子装置22を収容するためのキャビネット12とを備えている。
前記キャビネット12は、壁部パネルにより規定され、キャビネット12の内部へのアクセス用に開口14を正面側に備えた閉鎖可能ケーシングを備えている。2つのドア15が、開口14を覆うために設けられている。壁部およびドアは、空気がキャビネット12に進入するのを防ぐように封止的に閉鎖され得る直方体形状を規定している。キャビネット12は、電子機器22を収容するための棚20を担持する側方に離間されたラック18を収容している。真空チャンバ30は、上方側面32に、真空チャンバ30の内部のビーム投影コラム46からキャビネット12の内部の電子機器22に至る導管/ケーブル26を通させるためのアクセスポート36を有している接続壁部35を備えている凹状セクションを備えている。
前記真空チャンバ30は、ターゲット31および投影コラム46を収容するように構成されている。真空チャンバ30は、その内部で真空環境を維持する(典型的には10-3以下)ように構成された真空ケーシング39(外方層)を備えている。真空ケーシング39の内部には、支持ケーシング40(中間層)と、キャリアフレーム42を有しているキャリアケーシング41(最内領域)とが設けられている。投影コラム46は、キャリアケーシング41の内側のキャリアフレーム42により支持されている。投影コラム46は、ターゲット31を処理するために使用されている複数の処理用小ビーム47を発生させ操作するように構成されている。投影コラム46は、様々な光学部材を備え得る。例示の部材は、荷電粒子ビームから複数の小ビームを形成するためのアパチャアレイ、変調された小ビームを形成するために小ビームをパターニングするための小ビーム変調器、およびターゲット31の表面上に変調された小ビームを投影するための小ビーム投影器で有り得る。
図2は、荷電粒子リソグラフィシステム10の一実施形態の単純化された概略図を示している。かかるリソグラフィシステムは、例えば米国特許第6,897,458号、米国特許第6,958,804号、米国特許第7,019,908号、米国特許第7,084,414号、米国特許第7,129,502号、米国特許第8,089,056号、および米国特許第8,254,484;米国特許出願公開第2007/0064213号、米国特許出願公開第2009/0261267号、米国特許出願公開第2011/0073782号、米国特許出願公開第2011/0079739号、および米国特許出願公開第2012/0091358号などに記載されている。これらはいずれも、本発明の所有者に譲受され、いずれもここに参照によりそれらの全体として本明細書に組み込まれる
図2は、ターゲット処理システム10の真空チャンバ30の正面図を示している。荷電粒子ビーム発生器を有している投影コラム46は、真空チャンバ30の内側のキャリアフレーム42に収容されている。荷電粒子ビーム発生器50は、荷電粒子リソグラフィシステム10の真空チャンバ30の内部のキャリアフレーム42に挿入可能であり、そこから除去可能であるビーム発生器モジュールとして形成されている。キャリアケーシング41およびキャリアフレーム42は、懸架ベース43に連結された懸架部材44(例えば板ばね)により支持ケーシング40内に可動的に懸架され、この懸架ベース43は、次いで複数の剛性ではあるが側方にヒンジ動作可能な懸架ロッド45によりキャリアケーシング41に可動的に相互連結されている。
荷電粒子ビーム54は、荷電粒子ビーム発生器50により発生され、その後、投影コラム46内に設けられた様々な光学素子により操作される。
本明細書では、「屈折させる」という用語は、ビームの偏向部分の作用を一般的に指すために使用されている。本明細書では、「コリメートする」という用語は、ビームの様々な部分をよりコリメートする作用を指すために使用されている。
第1のビーム発生器の実施形態
図3は、一実施形態によるビーム発生器モジュール50の概略断面図を示している。この断面図は、軸方向−径方向面、即ち、軸方向Zおよび径方向Rに広がる面内で規定されている。
図3には、ビーム発生器50を構成する部品、構成部材、および/またはモジュールを収容したビーム発生器のチャンバ51が示される。ビーム発生器50は、荷電粒子ビーム源52と、コリメータ積層体70と、ビーム発生器のチャンバ51の内部を真空にするための真空ポンプ122、123(真空ポンプ122のみが図示されている)とを備えている。
前記ビーム源52は、ビーム源の真空チャンバ53内に収容され、このビーム源の真空チャンバ53は、次いでビーム発生器のチャンバ51内に配置されている。ビーム源52は、コリメータ積層体70の上部側に固定され、光軸Aに沿って荷電粒子ビーム54を発生させるように構成されている。ビーム源のチャンバ53は、源の真空ポンプユニット120を収容し、この源の真空ポンプユニット120は、ビーム源52の放射放出効率を向上させ有効放射寿命を延ばすために、ビーム源52の近くに局所的に超低真空を生成させ得る。
荷電粒子源52により発生された荷電粒子ビーム54は、初めに、光軸Aに沿って移動しつつ径方向に外方に発散する特性を有し得る。コリメータ電極積層体70は、次いで荷電粒子ビーム54の部分を選択的に屈折させて、ビームをコリメートする、即ち、ビーム分布の様々な部分を光軸Aに沿ってより共線的に下流へと移動させる役割を果たし得る。
コリメータ積層体70は、電気絶縁材料により形成されたスペーサ構成体89により軸方向Zに沿って相互に変位されたコリメータ電極71〜80の軸方向に配置された積層体(即ち、シーケンス)を備えている。コリメータ電極71〜80は、電極アパチャ82をそれぞれが備えている平坦リング形状の本体81により形成されている。図示する実施形態では、リング形状の本体81は、光軸Aに沿って均等な距離Hdをおいて変位され、電極アパチャ82は、光軸Aに沿って同軸的にアラインメントされている。好ましくは、電極本体81は、導電性および機械的に剛性の材料から作製されている。十分な導電性により、コリメータ電極71〜80の各表面への均質に分配された電荷の容易なチャージが可能となっている。十分な機械的剛性により、コリメータ電極71〜80は、一定の空間構成を保持し、したがって粒子ビーム54の発生時に安定的な電位差を持続させることが可能となる。好ましくは、電極71〜80は、アルミニウムから作製されている。アルミニウムは、良好な導電性および非磁性特性を有している軽量材料であり、さらに荷電粒子ビーム発生時に蓄積される熱エネルギーを放散するのに十分な伝熱性を示している。
複数のコリメータ電極71〜80およびスペーサ構成体89を同軸的にアラインメントされた電極積層体70へと形成していることにより、光軸Aに沿った種々の位置でのコリメータ積層体70内での電界分布を最適化することが可能となっている。複数の離間されたコリメータ電極71〜80の使用により、比較的軽量の設計が許容されている。
垂直方向Zに沿ったコリメータ電極71〜80の厚さH1、H5、Heは、ビーム発生時のかなりの熱応力下においても電極本体81の十分な構造的完全性を確保しつつ、各電極本体81内に液体用導管105を収容するのに十分なものであってもよい。
コリメータ積層体70の最上のコリメータ電極71(即ち、積層体70の上流側で荷電粒子ビーム54と最初に合って、これを通すコリメータ電極71)は、発散する湾曲アパチャを備えている。コリメータ積層体70の最終のコリメータ電極80(即ち、光軸Aに沿って下流に向かった荷電粒子ビーム54が最後に合ってこれを通すコリメータ電極)が、比較的小さな内方の厚さH10を有している。積層体の電極特性が、図6を参照してさらに論じられる。
前記コリメータ電極71〜80は、電気絶縁スペーサ構成体89により互いに離間されている。スペーサ構成体89は、ビーム発生時に電極間に与えられる比較的大きな電位差(数キロボルト/ミリメートル規模の電位差)でも隣接した電極間において放電が発生するのを防止する、電極71〜80間の最小距離Hdを規定している。
スペーサ構成体89は、電極間距離を一定に維持し、電極同士が電気的に接続状態になる(即ち、等電位表面になる)のを回避するために、機械的圧縮に対する高い抵抗性をさらに有している電気絶縁材料から作製されている。例えば、スペーサ構成体89は、セラミックから作製され得る。好ましくは、各スペーサ構成体89は、1対の隣接したコリメータ電極間に設けられている。3つのかかるスペーサ構成体89が、十分に確立された電極間間隔Hdを維持しつつ、各隣接したコリメータ電極ごとに1つが割り当てられる2つの安定的な3点支持面を提供するために、各対の隣接したコリメータ電極間に設けられている。
コリメータ積層体70は、支持突出部92bと、3つの側で積層体70を囲む支持脚部93とによりビーム発生器のチャンバ51内に懸架されている。支持脚部93は、外部基準フレーム(例えばキャリアフレーム42)に対してコリメータ積層体70を固定するために使用されている。
次に、図7a〜図7dとの組合せにおいて冷却用構成体(例えば部材110〜114と116〜119とを備えている)の実施形態を説明する。
第1のコリメータ電極積層体の実施形態
図4は、一実施形態によるコリメータ電極積層体70の斜視図を示している。この実施形態は、軸方向Zへと光軸Aに沿って伝播する電子ビーム54を成形するための10個のコリメータ電極71〜80を備えている。
第1のコリメータ電極71は、第1のコリメータ電極71に対してその上側に荷電粒子ビーム源52を固定するための源係合部材と、コリメータアパチャの正中線に発生された荷電粒子ビーム54の光軸Aをアラインメントさせるための源アラインメント部材とを備えている。
各選択されたコリメータ電極71〜74、76〜80は、電極外周面に沿って3つの支持部分86を備えている。各支持部分86は、一方の側ではスペーサ構成体89を、および場合によっては反対側では別のスペーサ構成体89を収容する。この実施形態では、スペーサ構成体89は、電極支持部分86を支持するまたはそれにより支持されている平坦端部表面を有している円筒状物体によって形成されている。均一な直径を有している円筒状スペーサ構成体89は、大量個数での製造が容易であり、これによりコリメータ積層体70の作製およびメンテナンスが容易化されている。さらに、円筒状スペーサ構成体89の円形形状は、電極コリメータ積層体70の内部の電界に対するスペーサ構成体の摂動の影響を軽減するのを助ける。コリメータ積層体70の作製は、均一な所定のスペーサ高さHsを有しているスペーサ構成体89を製造することによってさらに容易化され規格化されている。これにより、全てのコリメータ電極71〜80が、軸方向Zに沿って均等な所定の相互距離Hdにわたって効率的にアラインメントおよび離間され得る。
図示している実施形態では、3つのかかる電気絶縁円筒状スペーサ構成体89が、各隣接した対の電極間に配置されている。3つのスペーサ構成体89は、径方向および角度方向に均等に離間された三脚を形成し、即ち、各スペーサ構成体89は、光軸Aから均等な径方向距離を置いて配置され、3つのスペーサ構成体89は、光軸Aを中心として180°の角度で相互に離間されている。結果として得られる3点支持により、コリメータ電極は、安定的にそれらの各横断面に沿って担持され、高精度での(典型的には10マイクロメートル未満の最大アラインメント誤差を有している)電極アラインメントが可能となる。均等な径方向および角度方向の間隔は、必須ではないが、正確なコリメータアラインメントを助長する好ましいロバスト構成をもたらす。
隣接したコリメータ電極の電極支持部分86および介在するスペーサ構成体89は、軸方向Zに対して平行に配向された支持コラム90を規定している。ように軸方向にアラインメントされている。この実施形態では、3つの支持コラム90が規定されている。
各支持コラム90は、支持部分86と介在スペーサ構成体89を共に保持するためにクランプ留め部材91a、91bをそれぞれ備えている。留め横材91aが、支持コラム90の軸方向端部に設けられている。留め横材91aは、ロッド端部に留め横材91aを連結する2つのプレテンションロッド91bにより軸方向Zに沿って共に引っ張られる。クランプ留め部材91a、91bは、コリメータ電極71〜80およびスペーサ構成体89が相互固定位置へと軸方向に圧迫され得るようにするためのロバストクランプ機構を実現するのに十分な引張強度を有している剛性材料から作製されている。各プレテンションロッド91bは、コリメータ積層体70と各プレテンションロッド91bとの間の熱膨張差に対応するために狭窄部91cを備えてもよい。好ましくは、クランプ留め部材91a、91bは、荷電粒子ビーム54により発生される磁場に対する摂動磁場応答の発生を回避するために、非磁性材料から作製されている。上記を考慮して、好ましくは、クランプ留め部材91a、91bはチタンから作製されている。
コリメータ電極積層体70は、3つの積層体支持脚部93を備えている。各支持脚部は、コリメータ積層体70の中央領域75aに連結されている。これらの支持脚部93は、外部基準フレームに対してコリメータ積層体70を支持するように協働している。外部基準フレームは、例えば図1に示されている荷電粒子リソグラフィシステム10の真空チャンバ30の内部に懸架されたキャリアフレーム42であってもよい。
ビーム発生時に、機械的共振が、外部源から(例えばキャリアフレーム42を経由してコリメータ積層体70に到達するフロア振動から、およびコリメータ電極71〜80内の冷却用導管105を通してポンプ送給される冷却用液体内で発生する流量変動からなど)コリメータ積層体70内に誘発され得る。中央領域75aへの支持脚部93の連結によりコリメータ積層体70を支持することにより、誘発される機械的共振に関与する積層体部分の長さおよび重量が削減される。
誘発される機械的共振は、線形運動、回転運動、またはそれら両方のいずれかに関係し得る。有効積層体長さを削減することにより、軸方向に対して垂直な偏向についての有効線形ばね定数は、より短いコラム90がより剛直なコラムをもたらすことにより大きくなる。より剛直なコラムにより、積層体内の電極71〜80の横振れ応答が低下する。より剛直なコラム90により、電極71〜80は、相互に対してより少なく振動し、したがって環境に対してより少なく振動するため、これによりビーム投影精度が最終的に改善されることになる。
さらに、積層体の垂直方向質量中心にてほぼ中央で積層体を係合することにより、全体としてのおよび横断平面内の回転軸を中心とする積層体の慣性モーメントが、低減され、これが、外的に駆動されるより低い周波数トルク振動に対する全体としての積層体の回転振れ応答を低減する。
図4に示されている実施形態では、コリメータ積層体70の中央領域75a(即ち、垂直方向質量中心)は、コリメータ積層体70の中心のコリメータ電極75に対応するように選択されている。この場合に、中心の電極75は、源52(図4ではなく図3に図示する)から下流に計数されて第5のコリメータ電極75により形成されている。この場合に中心の電極75としての第5の電極について選好されている点(例えば第6の電極76との対照において)は、積層体70に対するより厚い第1の電極71および源52の追加重量に関係する。
中心のコリメータ電極75は、電極外周面に沿って3つの積層体支持突出部92bを備えている電極本体92aを有している。中心の電極75の外周面に沿った径方向に延びた積層体支持突出部92bは、例えば中心の電極75のユニボディ成形によってなど容易に製造され得るロバスト支持構成体をもたらす。電極本体92aおよび突出部92bは、コリメータ電極積層体70の総重量Wを共同で支持するのに十分な機械強度を有している。各積層体支持脚部93は、各積層体支持突出部92bに連結されている。
代替的な実施形態では(図示せず)、支持脚部93は、外部基準フレームとのバランス調整された支持連結を確立するために、支持コラム90内のスペーサ構成体89と係合し得る(中心のコリメータ電極75への係合の代わりにまたはそれに加えて)。
図4の実施形態では、各積層体支持脚部93は、中央積層体領域75aに(例えば支持突出部92bに)支持脚部を連結するための脚部接合部94を備えている。さらに、各積層体支持脚部93は、外部基準フレームに支持脚部93を連結するための
脚部ベース95を備えている。脚部ベース95の付近に、積層体支持脚部93は、逆の角度方向に沿って少なくとも部分的に配向された別個の脚部材93a〜93bを有している三角形支持構成体を有している。脚部材93a〜93bは、機械的に剛性ではあるが電気的に絶縁性の材料から作製され得る。これらの脚部材93a〜93bの上方および下方に、各支持脚部93は、脚部ベース95に対して径方向Rに脚部接合部94を変位させ得るための2つの径方向たわみ部分96a〜96bを備えている。図4の実施形態では、径方向たわみ部分96a〜96bは、可撓性幅狭中央領域を規定している。湾曲I字形プロファイルを有している断面を有しているビーム材を備えている。各ビーム材は、(局所的)径方向に対して垂直に実質的に配向され、それによりI字形プロファイルは、局所的径方向軸面内のみで撓曲し得る一方で、局所的角度方向においては機械的に剛直に留まる。脚部接合部94と対応する脚部ベース95との間で可能となる径方向変位は、例えばビーム発生時の脚部ベース95に対する中央積層体領域75a(例えば中心の電極75)の径方向の熱変形の結果であり得る。中心のコリメータ電極75は、ビーム発生時に比較的高い正電位に維持されることが予期され、これは、結果として多数の二次/後方散乱電子がこの中心の電極75に衝突することになる。この結果としての加熱により、コリメータ電極75の径方向膨張が引き起こされる一方で、外部基準フレームは、かかる熱変形を被らない。この径方向の熱差による変形は、径方向たわみ部分96a、96bと、これらのたわみ部分96a、96b間の脚部材93a〜93bの径方向傾斜とにより効率的に対応され得る。
代替的な実施形態では(図示せず)、支持システムが異なるように形状設定されてもよい。例えば、追加の脚部セグメントが、例えばA字形状支持脚部を形成するために、脚部材93a〜93bを有している三角形構成体の上方および/または下方に備えられてもよい。さらに、径方向たわみ部分96a〜96bは、例えば異なる断面プロファイルを有しているなど異なるように成形されてもよい。
様々な実施形態によれば、外部基準フレーム(例えばキャリアフレーム42)は、下方軸方向Z(支持脚部93に対してかけられる圧縮応力、図4に図示)、上方軸方向−Z(支持部材93に対してかけられる引っ張り応力、図示せず)、径方向R(支持部材93に対する曲げ応力、図示せず)、またはそれらの組合せのいずれかに配向され得る支持部材93を介して中央領域75a内に電極積層体70を支持してもよい。
コリメータ電極
図5は、中間コリメータ電極72〜74、76〜79の一実施形態の斜視図を示している。中間コリメータ電極72〜74、76〜79は、導電性および機械的に剛性の材料から作製された平坦電極本体81により形成され、コリメータアパチャ82が、平坦本体81の中心に設けられている。コリメータアパチャ82は、軸方向Zに沿って見た場合に実質的に円形であり、内方アパチャの直径φを規定している。さらに、円形アパチャ82は、角度方向Φに沿った断面(即ち、軸方向−径方向面内の断面)で見た丸め(即ち、湾曲状にトリミングされた)開口部外周面82aを有している。円形のアパチャの外周面82aは、外周面82aに沿った高い局所的電界集中を回避するのを助けている。円形のアパチャの外周面82aは、5キロボルト/ミリメートル超の局所的電界強度の発生を回避するように形状設定され得る。
コリメータ電極71〜80は、電極外周面85に沿って3つの支持部分86を備えている。各支持部分86は、一方の側に1つのスペーサ構成体89(例えば第1の電極71および最後の電極80のための)を、または各側にスペーサ構成体89(例えば中間の電極72、73、74、75、76、77、78、79のための)を収容するように構成されている。
好ましくは、コリメータ電極71〜80間のスペーサ構成体89は、軸方向Zに沿って均等な高さHsを有している。均等な高さを有しているスペーサ構成体89は、スペーサ89についての、およびコリメータ電極間に装着されることとなる他の構成体(例えば以下で論じられる中間冷却用導管)についての製造規格化を容易化する。好ましくは、スペーサ高さHsは、コリメータアパチャの外周面82aから付近のスペーサ89の側方表面までの最短径方向距離ΔR1の1/3よりも小さい。これにより、スペーサ構成体89の存在によるコリメータアパチャ82での電界摂動は、無視し得るレベルにまで低減される。
前記コリメータ電極71〜80は、電極プレート本体81の電極外周面85に沿って3つの電極支持アーム部87を備えている。3つの電極支持アーム部87は、好ましくは電極外周面85の周囲に均等に離間されて分散される(角座標に沿って均等な距離をおいて)。電極支持アーム部87は、外周面85に沿って径方向に若干突出し、角度方向Φに実質的に沿って延びた。各電極支持アーム部87は、一方の遠位端部で可撓性のアーム狭窄部87bを介して電極本体81の外周面85に連結された少なくとも1つの剛性アーム部分87aを備えてもよい。各電極支持アーム部87は、その反対側の遠位端部で対応する電極支持部分86に連結されてもよい。各電極支持部分86は、円形プラットフォームにより形成されてもよい。第2の可撓性アーム狭窄部87cは、剛性アーム部分87aと電極支持部分86との間に設けられてもよい。好ましくは、剛性アーム部分87aおよび可撓性アーム狭窄部87b〜87cは、軸方向Zにコリメータ電極を支持するのに十分な機械的剛直性/強度をもたらすために、対応するコリメータ電極の高さと同一のまたは少なくとも匹敵する軸方向に沿った高さを有している。各可撓性アーム狭窄部87b〜87cに設けられた狭窄部は、径方向−角度方向面内の方向に主に規定され、より好ましくは(局所的)径方向Rに沿って配向されている。この実施形態では、可撓性アーム狭窄部87b〜87cは、軸方向Zにおいて電極本体81に対する対応する電極支持部分86の撓曲を防止しつつ、径方向−角度方向面内で電極本体81に対する対応する電極支持部分86の変形および撓曲を主に可能にする板ばねを効果的に形成している。各電極支持アーム部87は、電極支持本体81と電極支持アーム部87との間に熱膨張スロット88を規定している。熱膨張スロット88もまた、径方向−角度方向面内で、角度方向Φに実質的に沿って延びた。
1つまたは複数の可撓性アーム狭窄部87b〜87cを有している径方向可動アーム部87および熱膨張空間88により、電極本体81は、隣接するコリメータ電極の対応する支持部分86に支持部分86を軸方向にアラインメントされた状態に維持しつつ、主に径方向−角度方向面内でおよびより具体的には径方向Rに変形する(膨張/収縮する)ことが可能となる。コリメータ電極積層体70の使用時に、コリメータ電極71〜80は、異なる電位値に維持され、異なる量の(二次/後方散乱)電子放射およびその結果としての熱エネルギーを受領することになることが予期される。可動アーム部87および膨張空間88は、荷電粒子ビーム54の発生および平行化の際に生じる電極71〜80の多様なおよび異なる熱誘発径方向によりに対して効率的に適応し、それにより支持コラム90(図4を参照)は、軸方向Zに沿って相互にアラインメントされた状態に留まる。
図4に示す実施形態における中心のコリメータ電極75および隣接する中間コリメータ電極は、ビーム発生時に大きな正電位にさらされるように設計されている。また、積層体70内の最終電極80は、かなりの電位(約+0.5〜+1.5キロボルト)にさらされるように設計されている。これらの電極が二次電子および後方散乱電子にかけることになる結果として生じるかなりの引力は、著しい電子衝突および電子吸収を引き起こし、したがってかなりの熱発生を引き起こすことになる。例えば、中心のコリメータ電極75の径方向膨張は、電極支持コラム90を径方向に外方へと移動させ、これが、他のコリメータ電極の支持部分86を外方に引っ張ることになる。しかし、残りのコリメータ電極に設けられた径方向可動支持アーム部87は、この径方向膨張に適応し、かくして、全ての電極71〜80を同軸的にアラインメントした状態に維持する。
電位の与え
図6は、一実施形態によるコリメータ電極積層体70の概略側方断面図を示している。コリメータ電極積層体70は、10個のコリメータ電極71〜80を備え、第5のコリメータ電極75が、中心のコリメータ電極を構成する。図示されている断面は、コリメータ電極積層体70のこの実施形態のいくつかの特徴的寸法を専ら概略的に示している。この実施形態の多数の構造詳細は、単純化のために省略されている(例えば、コリメータアパチャ、電極支持部分、およびスペーサ構成体の細部形状が図示されない)。
一般的に、同軸的に配置されたコリメータ電極積層体70を形成するためにスペーサ構成体89により分離された複数のコリメータ電極71〜80の使用により、光軸Aに沿った種々の位置でのコリメータ積層体70内での電界分布を最適化することが可能となる。少なくとも5つの隣接したコリメータ電極間の電位差の段階的変化により、結果として軸方向Aに沿って比較的平滑に変化する電界分布が得られる。5つ以上のコリメータ電極を備えている電極積層体は、複数の負電界最小値と複数の正電界最大値とを有し得る電界分布の発生を可能にし、したがって荷電粒子ビーム54をコリメートすることと荷電粒子ビーム54の球面収差を軽減することとの両方を行い得る電界を発生させるのに十分な自由度をもたらす。特定の用途に対する好ましいビーム特徴の発見は、与えられる電位の値の変化による多コリメータ電極積層体により容易に達成される。
ある特定の実施形態では、コリメータ積層体70で10個のコリメータ電極71〜80を使用することにより、一方では軸方向Zに沿って比較的漸進的な電位分布を生成するための、ならびに他方ではシンクポンプ122、123との良好な視線と、十分な電極冷却と、構造の単純化とを実現するのに十分な電極間間隔Hdを実現するための自由度間の良好なバランスがもたらされる点に本発明者らは気付いた。
図6に示すコリメータ電極積層体70の実施形態では、全ての中間コリメータ電極72、73、74、76、77、78、79の中間電極厚さHeが、実質的に同一である。本明細書では、「実質的に同一の」という用語は、達成可能な製造公差内で同一の値を有している中間電極厚さHeを指す。アルミニウムから作製されたコリメータ電極については、中間電極厚さHeは、10ミリメートル〜20ミリメートルの範囲内、好ましくは12ミリメートル〜15ミリメートルの範囲内であってもよく、より好ましくは13.6ミリメートルに等しい。均一厚さの中間電極を使用することにより、電極本体の大量生産が可能となり、コリメータ積層体への中間コリメータ電極の組立が簡単になる。代替的な実施形態では、全ての電極が同一厚さを有してもよい。さらに他の実施形態では、いくつかまたは全ての電極厚さが異なってもよい。
コリメータ積層体70の最上のコリメータ電極71(即ち、積層体70の上流側の光軸Aに沿った荷電粒子ビーム54に初めに合い、これを通すコリメータ電極71)は、発散的に湾曲した開口部ボア71aが続くより小さな上方アパチャの直径φ1を備えている。この小さな上方アパチャの直径φ1および湾曲開口部ボア71aにより、ビーム源52によって発生される荷電粒子ビーム54は漸進的な電界変化を被ることが可能となる。第1のコリメータ電極71の第1の電極厚さH1は、1.5・He≦H1≦2.5・Heにより定義されている範囲内である。この特定の範囲内の厚さを有している第1のコリメータ電極71により、コリメータ積層体70の上流端(即ち、頂部)は、比較的小さなビーム源開口部から比較的より大きなコリメータアパチャへの平滑移行部を有していることが可能となり、第1の電極は、上に取り付け可能であるビーム源52の重量を直接的に支持するのに十分な強度を有していることが可能となる。本明細書では、「平滑な」という用語は、表面(この場合は開口部表面)が巨視的スケールで曲線に急激な変化(即ち、鋭角のリッジ、角、または隙間)を有さないことを示すために使用されている。急激な曲線変化は、電界中に望ましくない大きな局所的変動を発生させる。
中心のコリメータ電極75は、第1のコリメータ電極71と最終のコリメータ電極80との間に設けられている。中間のコリメータ電極72、73、74、76、77、78、79は、第1のコリメータ電極71と最終のコリメータ電極80との間に、および中心のコリメータ電極75の両側に配置されている。中心のコリメータ電極75の中間の電極厚さH5は、1.5・He≦H5≦2.5・Heにより定義されている範囲内である。好ましくは、中間の電極厚さH5は、22ミリメートル〜26ミリメートルの間の範囲であり、より好ましくは24ミリメートルに等しい。この特定の範囲内の厚さH5を有している中心のコリメータ電極75により、コリメータ積層体70の中央領域75aは、コリメータ電極積層体70が例えば横軸(軸方向Zに対して垂直な)を中心として振動するのを防止するのに十分な強度および曲げ剛性を有していることが可能となる。
代替的な実施形態では、中心の電極75は、中間電極72〜74、76〜79の厚さHeと実質的に等しい厚さH5を有してもよい。これは、例えば機械的により強度の高い材料を使用することにより、または積層体支持構成体がコリメータ積層体内で他のおよび/またはより多くの電極に係合する場合に達成され得る。これは、図15を参照としてさらに説明される。
コリメータ積層体70の最終のコリメータ電極80(即ち、荷電粒子ビーム54と最後に合うコリメータ電極)は、最終内方電極厚さH10を有している径方向内方部分80aを有している。内方の厚さH10は、H10≦He/3により定義されている範囲内である。好ましくは、最終電極80の内方の厚さH10は、小さな軸方向距離のみにわたり延在しつつ、荷電粒子ビーム54に対して逆の極性を有している電位を効果的に持続するために比較的小さな値を有している。これにより、アパチャの外周面の付近に高度に局所化された引力電界を生成する。逆の極性を有している薄い最終の電極80は、コリメータ積層体70の先行部分で発生されているビームでの正球面収差を補償するために、荷電粒子ビームについて負球面収差を生じさせる。
最終のコリメータ電極80は、径方向外方部分80bに最終外方電極厚さH10’を有している。好ましくは、最終外方電極厚さH10’は、最終電極80を機械的により高い強度にするために、およびさらには外方部分の内部に冷却用導管を収容するのに十分な高さを与えるために、中間電極厚さHeと等しい。図6に示すように、内方部分80aから外方部分80bへの移行は、内方の厚さH10から外方の厚さH10’への軸方向段階的増加を伴い得る。これは、径方向内方部分80aについては内方アパチャの直径φ10を、および径方向外方部分80bについては外方アパチャの直径φ10’をもたらす。好ましい実施形態によれば、最終のコリメータ電極80の内方の本体厚さH10は5ミリメートル以下の範囲内であり、外方の本体厚さH10’は10ミリメートル以上の範囲内であり、内方アパチャの直径φ10は60ミリメートルであり、外方アパチャの直径φ10’は100ミリメートルである。
最終の電極80の下流には、荷電粒子ビーム54から複数の小ビームを形成するためのアパチャアレイ58が設けられている。アパチャアレイ58は、コリメータ電極積層体70の構造構成部材であり得る。代替的には、アパチャアレイ58は、(光軸Aに沿って見た場合に)ビーム発生器モジュール50の直ぐ下流に投影コラム46内に配置された集光レンズモジュール56の一部を形成してもよい。アパチャアレイ58は、下方中央表面と傾斜側方表面とを備えている。好ましくは、動作時に、アパチャアレイ58は接地電位に維持される。アパチャアレイ58の形状は、帯電した最終コリメータ電極80(の鋭角エッジ)とアパチャアレイ58との間の放電を回避するために、最終コリメータ電極80の(比較的)薄い径方向内方電極部分80aの内方外周部間に十分な距離をもたらす。また、アパチャアレイ58の形状により、アパチャアレイ58と最終コリメータ電極80の径方向外方部分80bとの間の間隔が、ビーム発生器モジュール50の外部および/または集光レンズモジュール56の外部の領域に対しコリメータ電極積層体70の内部の真空を保持するために小さく維持されることが確保される。
図6は、ビーム発生およびビーム処理時にコリメータ電極積層体70のこの実施形態を動作させるための例示の方法を示すのを補助する。この実施形態では、コリメータ電極71〜80は、同軸構成において光軸Aに沿って均等な距離Hdをおいて位置決めされている。
他の実施形態では、コリメータ電極は、異なる電極間距離をおいて位置決めされてもよい。例えば、図9〜図11を参照して論じられる実施形態を参照されたい。
異なる静電位の値(即ち、電圧)が、コリメータ電極71〜80に印加される。コリメータ電極積層体70、荷電粒子ビーム発生器50、または荷電粒子リソグラフィシステム10は、別個の電圧源のセット151〜160を備え得る。各電圧源151〜160は、各コリメータ電極71〜80に選択された電位を与えるための出力端子を備えている。電気接続が、各電圧源151〜160の出力端子と対応するコリメータ電極71〜80の電気接点109との間に与えられる。好ましくは、電圧源151〜160は、ビーム発生器50の動作時に個別におよび動的に調節可能である。代替的には、電圧源151〜160は、対応するコリメータ電極71〜80に印加されることとなる別個の選択された電圧値にその出力を変換するために、適切なアダプタおよび分割器を有している単一電源として形成され得る。
以下は、コリメータ電極の好ましい構成と、電極71〜80に与えられた2つの好ましい電位分布とに対応する、2つの数値シミュレーション(コラムごとに1つ)の表である。表中の一連の電極番号は、例えば図4および図6を参照とする説明で使用される際の一連のコリメータ電極71〜80に対応する。
様々な電極に関する列挙された電位値は、接地電位に対する電位差に対応する。各電位の値は、対応する電圧源151〜160によりコリメータ電極71〜80に与えられ得る。動作時に、最終のコリメータ電極80の直ぐ下流に配置されたアパチャアレイ58は、好ましくは接地電位に維持されている。荷電粒子ビーム発生器50を動作させるための方法は、ビーム源52で電子ビーム54を発生させることと、コリメータ電極積層体70のアパチャ82を通して光軸Aに沿って発生された電子ビームを投影することと、コリメータ電極71〜80に電位を与えることであって、接地電位に第1のコリメータ電極71を維持すること、最高の正電位に中心のコリメータ電極75を維持すること、および低い正電位に最終のコリメータ電極80を維持することを備えている、与えることとを備えてもよい。
コリメータ電極間に与えられる電位差は、角度誤差を軽減しつつ、均質な横断電子ビーム表面電流密度を生成する役割を果たす。ビーム発生時に、電子ビーム54は、径方向−軸方向面内の断面で見た場合に局所的発散輪郭を有しているビーム源52から発出する。
第3のコリメータ電極73、第4のコリメータ電極74、および第5のコリメータ電極75に与えられた大きく上昇した電の位値は、横断電子ビーム54に対して正レンズとして機能する局所的電界分布を生成する。これは、光軸Aに向かって径方向−軸方向断面内で電子ビーム54の局所的輪郭を屈折させる役割を果たし、電子ビーム54の分布を収束させる。径方向−角度方向面内の電界強度の径方向変動により、正レンズの影響は、電子ビーム54中の電子に径方向−角度方向面内で見た場合に非均一な軸方向速度分布をかのうにしている(球面収差の影響のためにそうさせる)。
第6のコリメータ電極76、第7のコリメータ電極77、第8のコリメータ電極78、および第9のコリメータ電極79に与えられた大きく低下した電位の値は、横断電子ビーム54に対して負レンズとして機能する局所的電界分布を生成する。これもまた、径方向−軸方向断面内でしかしここでは光軸Aから離れるように電子ビーム54の局所的輪郭を屈折させる。電子ビームおよび電界の径方向分布の変動は、球面収差の影響にやはり寄与し得る。
最終コリメータ電極80に与えられた正電位(接地基準に対する)は、横断する電子ビーム54に(または全般的に負荷電粒子のビームに対して)負球面収差を生じさせる。発生された負球面収差は、コリメータ積層体70の先行部分で発生されている任意の正球面ビーム収差を(少なくとも部分的に)補償している。
好ましくは、電圧源151〜160は、電子ビーム54がビーム発生器50から下流に発出する時に電子ビーム54の最終局所的輪郭が適切に平行化されるように(即ち、ビームが少なくとも可能な限り径方向−軸方向断面内で平行になされる)、コリメータ電極71〜80に対して電位を生成するように設定されている。電圧源151〜160により生成される電位は、軸方向に沿って電位値の分布を変更するために、および/または電界の局所的振幅を変更するために動的に調節され得る。したがって、正レンズおよび負レンズの軸方向中心が軸方向に沿って移動され得る、および/または電界振幅が変更され得る。動作時にコリメータ電極71〜80に与えられる電位の個別の調節が可能であることにより、変化する動作条件(例えばビーム電流、真空条件、遮断条件等)に対する再構成および最適化が容易になる。
この方法は、中央の電極75に先行する第2のコリメータ電極72を負電位に維持することをさらに備えている。さらに、この方法は、最終コリメータ電極80の直前で先行する2つの中間コリメータ電極78、79の少なくとも一方を低い負電位に維持することをさらに備えてもよい。最終コリメータ電極80に先行する最終の中間コリメータ電極78〜79の1つまたは2つに負電位を与えることは、コリメータ電極積層体70の下流の領域から起始する二次電極および/または後方散乱電極を偏向させるのを助ける。二次電子は、例えばアパチャアレイ58との電子ビーム54中の一次電子の衝突時に生成され得る。局所的負電位は、強力に正帯電した中心のコリメータ電極75に衝突する電子の個数を減少させるのを助ける。
上述の具体的な数の例によれば、ビーム発生器50を動作させるための方法のさらなる実施形態は、最終コリメータ電極80の直前に先行する2つの中間コリメータ電極78、79の少なくとも一方を−300ボルト〜−500ボルトの値を有している一定の電位に維持することと、第2のコリメータ電極72を−3キロボルト〜−4キロボルトの値を有している一定の電位に維持することと、中心のコリメータ電極(75)を+20キロボルト〜+30キロボルトの値を有している一定の電位に維持することと、最終コリメータ電極80を+500ボルト〜+1100ボルトの範囲内の正電位に維持することとを備えてもよい。
第1の冷却用構成体の実施形態
図7a〜図7dは、実施形態によるコリメータ電極71〜80の上方断面図および側方断面図を示している。図示されているコリメータ電極71〜80は、冷却用液体102を移送するための冷却用導管105を備え、冷却用導管105は、液体供給構成体117に連結するための第1の開口103と、液体排出構成体118に連結するための第2の開口104とを備えている。
冷却用導管105の存在は、コリメータ電極71〜80の熱により誘発される変形が調整され得るように、電界制御の精度および信頼性をさらに改善し得る。冷却用導管105は、例えば散乱電子および/または二次電子にさらされることにより引き起こされる熱的加熱によってコリメータ電極71〜80の膨張を低減させ得る。冷却用液体102内の電気コンダクタンスは、コリメータ電極の中の少なくとも1つで蓄積された電荷が、電極に与えられる電位を変更するのに十分な大きさの量で他のコリメータ電極に向かって移動するのを回避するために、最小限に抑えられるべきである。より強力な電荷源が、冷却用液体により任意の電荷搬送を補償するために使用されてもよいが、かかる電荷消散は、液体の冷却能力に負の影響を及ぼす、冷却用液体を通る結果として生じる電流による抵抗加熱によりあまり望ましくない。電気的分離は、超純水(UPW:ultra-pure water)または非導電性油を冷却用液体として使用することにより達成され得る。好ましくは、UPWは、粒子ビーム発生器50の動作時に絶えずまたは間断的にフィルタリングされる。
図7a〜図7dに示されているように、コリメータ電極は、荷電粒子源52に対面する上面83と荷電粒子源52から離れる方向に向く下面84とを備えているリング形状電極本体81(適用可能である場合には常に様々な実施形態にとって最善のものが示唆されている)を備えている。下面84および上面83は、電極外周面を規定している側部表面85により相互に連結されている。第1の開口103および第2の開口104は、側部表面85に配置されている。側部表面85に冷却用導管105の第1の開口103と第2の開口104とを配置することは、積層体70内の異なるコリメータ電極71〜80間でのスペースの干渉をもたらす恐れのある(即ち、電界摂動)構成体から免れるように維持するのを助ける。特に、冷却用液体供給および/または除去が、電極71〜80の側方側から行われるため、液体供給構成体117および/または液体排出構成体118は、コリメータ電極71〜80間のいずれの空間を占める必要もない。
第1の開口103および第2の開口104は、コリメータ電極71〜80の同一側に配置されている。同一側に第1の開口103および第2の開口104を配置することは、コリメータ積層体70の同一側での冷却用液体供給構成体117および冷却用液体排出構成体118の両方の配置を許容し、これは、他の構成部材がコリメータ積層体70に並んで/の周囲に配置されているためのより多くのスペースを与える。
冷却用導管105は、電極アパチャ82の周囲で電極本体81を貫通して延びた軌道に沿って第2の開口104に第1の開口103を連結する。冷却用導管105は、アパチャ82の周囲の実質的に円環状の部分105aと、第1の開口103および第2の開口104に円環状の部分105aを連結するための2つの実質的に直線状の端部部分105bとを備えている。この構成は、電極アパチャ82が円形のアパチャである場合には特に有利である。この場合に、実質的に円環状の導管部分105aは、アパチャ外周面82aから一定の距離をおいた軌道を辿り、これは、結果としてコリメータ電極71〜80の中央部分のより均質な冷却をもたらす。
冷却用導管105は、径方向に配向された管開口103、104を有している管状構成体により形成されている。比較的強力な伝熱性および導電性材料が、冷却管の構造材料として好ましい。例えば、チタンは、強力金属非磁性金属である。コリメータ電極本体81内/上に設けられているチタン冷却管105は、(付近の)電荷粒子フラックスが光軸に沿って移動するのに応答して著しい磁場擾乱または磁気応力を発生させない。さらに、チタンは、比較的高い融解温度(約1940ケルビン)を有し、これによりチタンは、チタン冷却管105の周囲に実質的により低い融点の金属(例えば約930ケルビンの融解温度を有しているアルミニウムなど)からコリメータ電極本体81を鋳造することによってコリメータ電極の内部に冷却用導管105を製造するのに非常に適した金属となる。代替的には、モリブデンが、冷却管を作製するための材料として使用されてもよい。
冷却管105は、比較的均質な液体流を内部で達成するための円形断面を有してもよい。かかる円形冷却管105の外径は、0.6センチメートル〜1センチメートルの範囲内であってもよく、対応する内径は、0.4センチメートル〜0.8センチメートルの範囲内であってもよい。
図7aに示されているように、導管105は、は、コリメータ電極71〜80の本体81内に一体化されて(鋳造されて)もよい。一体的な形成により、冷却効率が改善される。さらに、電極内に管を一体化することにより、管は、本体表面から突出せず、他の場合であれば電極アパチャ82間の望ましい電界分布を摂動する局所的電界集中を生じさせない。また、電極71〜80間でスパークする可能性が軽減される(これは、電極表面の頂部に位置決めされるかまたは電極表面から突出する導管の場合には該当しない)。さらに、コリメータ電極本体81内に導管105を一体化させることにより、コリメータ積層体70内で移動する自由分子が径方向に外方に移動し、例えばコリメータ積層体70から一定の距離をおいて径方向に外方に位置決めされたゲッタポンプ122、123によって吸収されるなど除去されるために利用可能な側方空間(即ち、平均自由行程)が増大することになる。コリメータ電極と冷却用液体102との間の伝熱効率が最大化されなければならない場合には、電極は、冷却用導管105の周囲に電極材料を鋳造することにより形成されることが好ましい。
好ましくは、導管105の円環状の部分105aは、電極アパチャ82の外周面82aから離れるように十分な径方向の導管距離ΔR2をおいて配置されている。これにより、冷却用導管105の円環状の部分105aを通り流れる冷却用液体102の冷却効果が、角座標に沿って比較的均質に留まる(即ち、流入液体と流出液体との間の温度差が比較的小さく留まる)ことが確保され、それにより電極本体81の熱膨張差は、角座標の関数とほぼ同一に留まる。
例えば、約13.6ミリメートルの電極厚さを有し、冷却用液体としての水流を受け、コリメータ電極の少なくとも1つが動作時に最大で60℃までの温度上昇を伴い加熱される、約60ミリメートルのアパチャ直径φを有している電極アパチャ82を備えたアルミニウムコリメータ電極(237ワット/メートルケルビンの典型的なバルク熱伝導率を有している)を有しているコリメータ積層体の実施形態では、径方向の導管距離ΔR2は、好ましくは20ミリメートル以上に選択されている。この例では、円環状の導管部分105aの典型的な総直径は、100ミリメートル以上となる点に留意されたい。
代わって、図7cに示されているように、導管105は、電極本体81’の上部側83’に設けられた凹部106の内部に収容されてもよい。電極本体81’中に凹部106をフライス加工し、その中に導管105を配置することは、電極を製造するための比較的安価な方法である。伝熱性接着材料107が、電極本体81’に管を固定し、有効伝熱界面を増大させるために、冷却管105の周囲にて凹部106内に設けられてもよい。また、凹部内への導管の装着により、導管105に沿って伝播する局所的機械的共振が軽減される。
図7dに示されているさらに別の実施形態では、導管105’’は、径方向−軸方向面に沿った断面で見た場合に矩形の外方断面を、即ち、矩形の外周面を有してもよい。また、この導管105’’は、電極本体81’’の内部に設けられた、電極本体81’’の上部側83’に開口を有している凹部106’の内部に収容されている。凹部106’は、一方では導管105’’の下方側部と側方側部との間の、および他方では凹部106’の下方側部と側方側部との間の熱接触を改善するように矩形の導管105’’を収容するために、凹部の(軸方向)内方部分に相補的な矩形輪郭を備えている。この実施形態では、導管105’’は、冷却用液体102’’を受けるための湾曲状内方スペースを有している下方溝部分105cと、(例えば下方溝部分105cの直立側方壁部上に上方蓋部分105dをレーザ溶接することにより)封止的に湾曲状内方スペースを閉じるための平坦上方蓋部分105dとを備えている。凹部106’の軸方向外方部分は、凹部106’内への導管105’’の挿入を容易にするために隅肉(丸め)形状を有してもよい。
これらの実施形態のいずれにおいても、中間導管(例えば管状部材)110が、コリメータ電極の第2の開口104を電極積層体70の後のコリメータ電極の第1の開口103に連結するために設けられている。中間管状部材110を使用することは、コリメータ積層体70内で2つ以上のコリメータ電極を冷却する能力をもたらし、一方で単体液体供給構成体117および液体排出構成体118のみが、冷却用液体の供給および除去のそれぞれに対して必要とされている。コリメータ電極積層体70の2つ以上のコリメータ電極が冷却されるべき場合には、この実施形態は実装が比較的容易である。
図3の実施形態では、中間管状部材110は、例えば酸化アルミニウムなどの電気絶縁材料により形成されている。これは、電極同士(液体連通が間で確立された)が電気的に接続された状態になる(即ち、等電位表面になる)のを防止している。かかる電気接続は、個別の電極を有しているという当初の目的を無効にする。代替的な実施形態では、中間管状部材は、導電性材料により形成された部分と、電気絶縁材料により形成された結合部分とを備えてもよい(例えば図14を参照)。
図3に示されている実施形態では、コリメータ電極71〜80内の冷却用導管105は、後のコリメータ電極71〜80に連続的に通して冷却用液体を搬送するために直列的に連結されている。最終コリメータ電極80の供給導管開口103は、コリメータ積層体70内に冷却用液体を搬送するために冷却用液体供給管117に連結されている。第1のコリメータ電極71の排出導管開口104は、コリメータ積層体70から冷却用液体を搬出するために冷却用液体排出管118に連結されている。冷却用液体ポンプ116(熱抽出手段を有している)が、ビーム発生器のチャンバ51の外部に設けられている。供給管117および排出管118は、所定の位置で気密的にビーム発生器のチャンバ51を貫通する。ビーム発生器のチャンバ51の外部では、供給管117および排出管118は、冷却用液体ポンプ116の供給ポートおよび排出ポート(図示せず)に結合されている。ビーム発生器のチャンバ51の内側では、供給管117および排出管118は、外側からの一過性の力および機械的共振が供給管117および排出管118を経由してコリメータ積層体70に搬送されるのを防止するために、動作揺らぎを減衰するためのさらなるベロー構成体119を備えている。好ましくは、さらなるベロー構成体119は、振動を効果的に減衰するために管直径よりも短い。
図示されている実施形態によれば、好ましくは、冷却用液体は、下流領域でコリメータ積層体70内に初めにポンプ送給され(即ち、最終の電極80に供給され)、加熱された冷却用液体は、上流領域でコリメータ積層体70からポンプ送出される(即ち、第1の電極71から排出される)。この構成は、負の軸方向−Zに沿って冷却用液体の純流動をもたらす。多くの用途で、電極積層体70の下流に配置されたコリメータ電極は、後方散乱電子および/または二次電子のさらなる衝突および吸収を被り、この結果としてより高い熱負荷が生じる。ここでは、下流電極への冷却用液体の初期供給と、後のより上方の電極への(加温された)冷却用液体の搬送とが、加熱された電極と冷却用液体との間のより効率的な熱交換をもたらすために好ましい。
また、図3には、中間の管状部材110が第1の開口103から離れる方向に径方向に向いた第1の実質的に直線状の部分111と、第2の開口104から離れる方向に径方向に向いた第2の実質的に直線状の部分112と、第2の直線状部分112に第1の直線状部分111を連結する実質的に湾曲した部分113とを備えている。これら直線状部分111、112と、これらの間の湾曲した部分113とを備えている中間の管状部材110は、座屈のリスクを軽減し、中間の管状部材110を通る冷却用液体の連続移送をより確実に保証する。中間の管状部材110は、少なくとも1つのベローズ構成体114を備えている。ベローズ114は、コリメータ電極と隣接するコリメータ電極との間のあらゆる熱差による変形に対する動的補償を可能にする。これらの電極の均質な加熱と結果的に生じる変形差とは、中間の管状部材110を経由した電極間における追加的な応力の印加を結果的にもたらさない。また、ベローズ構成体114は、コリメータ積層体70へと結合されている機械的振動を減衰/解消するのを支援する。
真空ポンプシステムの実施形態
図8は、一実施形態によるビーム発生器の詳細上面図を示している。このビーム発生器は、本明細書において上記で論じたように荷電粒子源52とコリメータ積層体70とを備えてもよい。
荷電粒子ビーム発生器50は、ビーム発生器真空チャンバ51の内部に収容されている。荷電粒子ビーム発生器50は、コリメータ電極積層体70の外周面から距離ΔRをおいて設けられた少なくとも11つの真空ポンプユニット122、123を備えている。真空ポンプユニット122、123は、光軸に対して平行に配向され、コリメータ高さの少なくとも一部に及ぶ開口部高さHpを有しているポンプ開口部122a、123aを有している細長い構成体を形成している。
図8の実施形態では、ビーム発生器のチャンバ51は、動作時に発生器のチャンバ51およびコリメータ積層体70内を低真空に持続させるために少なくとも2つの真空ポンプユニット122、123を備えている。真空ポンプユニット122、123は、コリメータ電極積層体70の外周面から径方向距離ΔRをおいて設けられている。真空ポンプユニットの個数は、環境からビーム発生器のチャンバ51内へのガス分子の予想される流入量に応じて、例えば3つまたは4つなどに増加されてもよい。真空ポンプユニット122、123は、ビーム発生器のチャンバ51を通り移動する分子を除去することにより真空を持続させる。ポンプユニット122、123は、化学反応または表面吸着によりビーム発生器のチャンバ51から自由移動ガス分子を除去する例えば2つのゲッタポンプを備えてもよい。
ポンプユニット122、123の能動ポンプ動作表面122a、123aは、コリメータ積層体70のかなりの部分に沿って、または好ましくは全高Hcに沿って延びている。コリメータ積層体70の高さHcに沿って実質的に延びた各ポンプ動作表面122a、123aを有しているポンプユニット122、123の位置決めにより、ビーム発生器のチャンバ51内の空間の節減が得られる。ポンプ開口部122a、123aは、好ましくはコリメータ外周面(コリメータ電極71〜80の外周面85により描かれる)に対面している。
コリメータ電極積層体70は、支持部分86を有している3つの支持コラム90を備えている。各支持コラム90(例えばその支持部分86)は、電極外周面85に沿って各角度範囲ΔΦ1、ΔΦ2、ΔΦ3にわたり延びている。ポンプユニット122、123のポンプ開口部122a、123aは、それぞれ、3つの角度範囲ΔΦ1、ΔΦ2、ΔΦ3のいずれとも重畳部を有さない角度ポンプ範囲ΔΦpに及ぶ。図示されている構成は、良好なポンプ効率を実現する。
電極積層体70は、中に設けられた冷却用導管105を有しているコリメータ電極71〜80を備えてもよい(即ち、「冷却可能コリメータ電極」)。この場合に、電極積層体70は、第1のコリメータ電極の第2の開口104を、これに隣接するコリメータ電極の第1の開口103に連結するための中間管状部材110をさらに備えている。これら中間管状部材110は、電極外周面85に設けられて管角度範囲ΔΦtで広がっている。ポンプユニット122、123に関する上記の角度位置決め特性に加えて、ポンプ開口部122a、123aの角度ポンプ範囲ΔΦpは、管角度範囲ΔΦtとの重畳部をやはり有さない。
第2のビーム発生器の実施形態
図9は、別の実施形態によるビーム発生器50’の斜視図を示している。上述の(特に図3〜図8に関連して)コリメータ電極積層体70に関連する特徴および効果が、図9〜図13に示されているコリメータ電極積層体70’の実施形態にも存在し得るため、ここでは全てを再び論じることはしない。図9〜図13のビーム発生器50’の実施形態の考察では、同様の参照番号は、同様の特徴に対して使用されるが、実施形態を識別するためにプライム符号により示されている。
図9のビーム発生器50’は、コリメータ電極積層体70’と、光軸A’に沿って荷電粒子ビームを発生するためにビーム源52’を包囲するビーム源真空チャンバ(または「源のチャンバ」)53’とを備えている。光軸A’は、コリメータ電極積層体70’の内方部分に沿って延びている。
コリメータ電極積層体70’は、電極アパチャ82’をそれぞれが有している10個のコリメータ電極積層体71’〜80’を備えている。電極アパチャ82’は、光軸A’に沿って同軸的にアラインメントされ、光軸A’に沿って軸方向Z’と実質的に平行に伝播する電子ビームを電気的に操作するように構成されている。
第1のコリメータ電極71’は、コリメータ電極70’の上流端に設けられている。ビーム源52’は、第1のコリメータ電極71’の外方面の上または付近にさらに上流に固定されている(図11を参照)。各選択されたコリメータ電極71’〜74’、76’〜80’は、電極外周面に沿って3つの支持部分86’を備えている。支持部分86’は、軸方向Z’に向く一方の側でスペーサ構成体89’を収容する。支持部分86’は、負の軸方向−Z’に向く反対側で別のスペーサ構成体89’をさらに収容し得る。スペーサ構成体89’は、電気的に絶縁性であり、機械的圧縮に対する耐性を有している。スペーサ構成体89’は、均一スペーサ高さと、隣接する電極71’〜74’、76’〜80’の電極支持部分86’を支持するまたはそれらにより支持されている平坦端部表面とを有している円筒状物体として形成されてもよい。
図示されている実施形態では、3つのかかるスペーサ構成体89’が、各隣接した対の電極間に配置されている。好ましくは、3つのスペーサ構成体89’は、三脚構造を形成している。スペーサ構成体89’は、光軸A’から離れるように実質的に均等な径方向距離をおいて配置され、光軸A’を中心として約180°の角度距離をおいて相互に離間されている。スペーサ構成体89’および支持コラム90’の構成が、図13を参照として以下でさらに説明される。
コリメータ電極積層体70’は、3つの積層体支持脚部93’を備えている。各支持脚部は、軸方向Z’に対するコリメータ積層体70’の中央領域75’に連結されている。支持脚部93’は、外部基準フレームに対してコリメータ積層体70’を支持するように協働し、この外部基準フレームは、図1の荷電粒子リソグラフィシステムのキャリアフレーム42により形成され得る。図4のコリメータ電極積層体に関して説明された共振調整効果が、この記載されるコリメータ構成によりやはり達成可能である。
コリメータ積層体70’の中央領域75’は、中心のコリメータ電極75’に対応するように選択され、この中心のコリメータ電極75’は、この場合には源52’から始まり軸方向Z’に沿って進んで下流方向へと数えて第5のコリメータ電極75’となる。中心のコリメータ電極75’は、3つの角92b’と3つの中間電極本体エッジ92cを有している機械的に強度の高い三角形スラブによって形成された電極本体を備えている。各角92b’は、軸方向Z’に向かう一方の側ではスペーサ構成体89’を、および負の軸方向−Z’に向かう反対側では別のスペーサ構成体89’を収容する。
各積層体支持脚部93’は、各電極本体エッジ92cに連結されている。図9〜図11の実施形態では、各積層体支持脚部93’は、3つの別個の領域でコリメータ積層体70’に連結された径方向に突出する三脚93a’〜96c’を備えている。積層体支持脚部93’は、外部基準フレームに支持脚部93’を連結するための支持フット99を有している脚部ベース95’を備えている。積層体支持脚部93’は、径方向に内方におよび脚部ベース95’から中央積層体領域75a’に向かう局所的に逆の角度方向に延びた第1の脚部材93a’と第2の脚部材93b’とを備えている。積層体支持脚部93’は、例えば第5の電極75’の対応する電極本体エッジ92c’になど、中央積層体領域75a’に第1の脚部材93a’と第2の脚部材93b’とを連結するための2つの脚部接合部94a’〜94b’を備えている。この実施形態では、脚部接合部94a’〜94b’は、第5の電極75’により発生される電界の角度対称性を保持するために、電極本体の上方表面と同一高さである。
また、各積層体支持脚部93’は、脚部ベース95’から電極積層体70’内の最下電極79’〜80’の一方に向かって延びた第3の脚部材93cを備えてもよい。
好ましくは、脚部材93a’〜93cは、機械的に剛性の材料から作製されている。各脚部材93a’〜93c’の少なくとも中間部分は、相互からおよび脚部ベース95’から支持される電極を電気的に絶縁するために電気絶縁材料から本質的に作製される。第1の脚部材93a’および第2の脚部材93b’はそれぞれ、径方向たわみ部分96a’〜96b’を備え、これは、対応する脚部接合部94a’〜94b’が脚部ベース95’に対して径方向R’に変位するのを可能にするように構成されている。図9の実施形態では、径方向たわみ部分96a’〜96b’は、可撓性幅狭中央領域を規定している。湾曲I字形断面を有しているビーム材を備えている。各I字形ビーム材は、(局所的)径方向に対して主に横方向に配向され、I字形プロファイルが(局所的)角度方向における機械的剛性を維持しつつ、(局所的)径方向−軸方向面内で撓曲するのを可能にする。
図10に示されているように、脚部ベース95’は、支持フット99に連結され、この支持フット99は、第1の支持フット部分99aと第2の支持フット部分99bとを備えている。支持フット部分99a〜99bは、相互に対して可動的に配置された別個の本体を形成している。支持フット部分99a〜99bは、第1の支持フット部分99aと第2の支持フット部分99bとの間に位置決めされた弾性部材100により相互連結され得る。弾性部材100は、第1のフット部分99aおよび第2のフット部分99bが所定の範囲内で相互に変位するのを可能にする。弾性部材100は、例えば軸方向Z’および(局所的)角度方向Φに対して平行に共に延びた2つの板ばね100a〜100bによって形成されてもよい。2つの板ばね100a〜100bは、光軸A’から異なる径方向距離をおいて相互に平行に配向されている。各板ばねは、径方向R’に実質的に向かって対面する(即ち、そのシート面法線が径方向R’を少なくとも部分的に指す)。1つの支持フット99の板ばね100a〜100bはそれぞれ、径方向−軸方向に沿った弾性撓曲を個別に可能にする。板ばね100a〜100bは共に、第1のフット部分99aおよび第2のフット部分99bが、平行四辺形的に径方向R’に沿って弾性的に撓曲するのを可能にする。これにより、第1のフット部分99aは、第2のフット部分99b(および外部基準フレーム)に対する径方向撓曲時にその配向を維持することが可能となる。板ばね100a〜100bは、例えば薄鋼板から構成され得る。
説明された積層体支持構成は、脚部接合部94a’〜94b’と各積層体支持脚部93’の対応する脚部ベース95’との間の径方向変位と、第1のフット部分99aと各積層体支持脚部93’の第2のフット部分99bとの間の径方向変位とを可能にする。協働する3つの積層体支持脚部93’は、光軸A’に沿ってアラインメントされた状態にコリメータ積層体70’を維持しつつ、脚部ベース95’に対する中心の電極75’の径方向変形差を好都合に許容し得る積層体支持構成をもたらす。
支持フット99は、対応する支持脚部93’の高さを微調整するための1つまたは複数の調節部材99cを備えてもよい。3つの支持脚部93’の支持高さを個別に変更することにより、コリメータ積層体70’の全高および外部フレーム42に対する傾斜が、正確に調節され得る。
また、脚部ベース95’は、本明細書において以下でさらに説明されるように周囲のビーム発生器のチャンバ51’と協働するガスケット98を備えてもよい。
図9〜図13の実施形態では、源真空チャンバ53’はビーム源52’を包囲する。
源真空チャンバ53’は、3つの面取りされた角を有している主として三角形状を有している径方向−角度方向面内に規定された断面を有しているチャンバ壁部によって形成される。結果的に得られる真空源のチャンバの壁部の不整六角形断面形状は、3つの面取りされた壁部角が下部に位置するコリメータ積層体70’の3つの支持コラム90’にアラインメントされるように配置されている。コリメータ電極積層体70’および源真空チャンバ53’は、直接的には機械的に連結されない。同様に、ビーム源52’および源真空チャンバ53’は、直接的には機械的に連結されない。代わりに、第1のコリメータ電極71’は、第1のコリメータ電極71’の上方側で第1のコリメータ電極71’に荷電粒子ビーム源52’を固定するための係合部材と、電極アパチャ82’の正中線に発生された荷電粒子ビームの光軸A’を配向するための源アラインメント部材とを備えている。
各積層体支持脚部93’は、源真空チャンバ53’をアラインメントおよび支持するための2つのチャンバ支持部材101を備えている。この実施形態では、各チャンバ支持部材は、細長い支持ロッド101により形成され、この細長い支持ロッド101は、対応する脚部ベース95の脚部連結部101aから源のチャンバ53’を局所的に支持するチャンバ連結部101bに向かって延びた。少なくとも1つの狭窄部101cが、熱膨張差を許容するために支持部材101に沿って設けられてもよい。図9〜図10に示されている実施形態は、6つのかかる支持ロッド100を備え、これらは上方におよび径方向に内方に延びた。
図9に示されている支持構成により、ビーム源のチャンバ53’およびコリメータ電極積層体70’は、ビーム源のチャンバ53’とコリメータ電極積層体70’との間の直接的な機械的結合を回避しつつ、同一の支持構成体93’〜101cを介して同一の外部基準フレーム42上に支持され得る。この支持構成は、コリメータ積層体70’のアラインメントに対するビーム源のチャンバ53’における圧力により誘発される変形の影響を有利に軽減し得る。対照的に、この支持構成は、源のチャンバ53’のジオメトリおよび源のチャンバ53’の内部の真空長剣に対する電極積層体70’の熱により誘発される変形の影響を有利に軽減し得る。代替的にはまたは追加的には、提案されている支持構成は、コリメータ電極積層体70’から余剰重量および余剰サイズの源のチャンバ53’を機械的に結合解除し、それによりコリメータ電極積層体70’の機械的共振(固有)周波数に対する源のチャンバ53’の寄与を軽減またはさらには解消する。したがって、コリメータ積層体70’に関して結果的に得られる機械的共振周波数は、周波数空間内でより高くなりさらに局所化される。源真空チャンバ53’と電極コリメータ積層体70’とを結合解除するための提案されている支持構成は、次に論じられる電極コリメータ積層体70’とビーム発生器真空チャンバ51’との間の機械的結合解除解決策とは別個に、独立した改良点として実装され得る。
第2の真空システムの実施形態
図10〜図11は、ビーム発生器真空チャンバ(または「発生器のチャンバ」)51’と真空ポンプシステムとを備えているビーム発生器の実施形態50’の斜視図を示している。図8の発生器のチャンバ51を有しているビーム発生器50に関する特徴および効果は、以下に説明する発生器のチャンバ51’を有しているビーム発生器50’においても存在し得るため、ここでは全てを再び論じることはしない。図10〜図11の実施形態の考察では、同様の参照番号は、同様の特徴に対して使用されるが、実施形態を識別するためにプライム符号により示されている。
ビーム発生器真空チャンバ51’は、図10〜図11では部分的にのみ図示されている。図10では、ビーム発生器のチャンバ51’の後方チャンバ部分51aおよび下方チャンバ部分51bのみが図示されている。上方チャンバ部分および側方チャンバ部分は、完全なビーム発生器のチャンバ51’の一部を形成しているが、発生器のチャンバ51’の内部の荷電粒子ビーム発生器50’を示すために図10では一部が切り取られている。発生器のチャンバ51’の3つの側方チャンバ部分51c〜51eが、図11に示されている。
ビーム発生器真空チャンバ51’は、動作時に発生器のチャンバ51’の内部を低真空に持続させるために真空ポンプユニット122’、123’(例えばゲッタ)を備えている。真空ポンプユニット122’、123’は、ポンプ支持構成体124に装着され、軸方向Zに対して実質的に平行な本体軸を有して配向されている。ポンプ支持構成体124は、(径方向Rに沿って見て)実質的にコリメータ積層体70’に向かって対面する湾曲した表面部分を有している。真空ポンプユニット122’、123’は、実質的にコリメータ積層体70’から離れる方向を向いたポンプ支持構成体124の表面部分に装着されている。ポンプ支持構成体124による電気遮蔽および真空ポンプ122’、123’の外方方向は、例えばコリメータ積層体70’の内部に生成される電界に対する多角形形状の真空ポンプ122’〜123’の摂動の影響を軽減するのを助けている。
コリメータ電極積層体70’の各支持コラム90’は、電極外周面に沿って各角度範囲ΔΦ1’、ΔΦ2’、ΔΦ3’にわたり延びた。範囲ΔΦ1’のみが図11では図示されている。有利には、各支持コラム90’のアラインメントされた貫通穴の内部にクランプ留め部材91a’〜91b’を有している構成は、コラム幅を縮小させ、したがって各支持コラム90’が延びた角度範囲ΔΦ1’、ΔΦ2’、ΔΦ3’をも縮小させる。縮小されたコラム幅は、コリメータ領域の内部の分子が障害を伴わずに真空ポンプユニット122’〜123’に向かって移動するためのより大きな窓を与え、結果としてより高いポンプ効率が得られる。
次に、コリメータ電極積層体70’とビーム発生器のチャンバ51’との間の機械的結合解除機構が説明される。
軸方向A’に沿って見た場合に、コリメータ電極積層体70’の積層体支持脚部93’は、径方向に外方に延在し、コリメータ電極71’〜80’の外周面を越えて突出する。また軸方向A’に沿って見た場合に、発生器のチャンバ51’のより低真空のチャンバ部分51bは、コリメータ電極71’〜80’の外周面を越えて延びた外方チャンバ外周部130を規定している。(コリメータ電極積層体70’が発生器のチャンバ51’の内部に位置決めされている場合)。積層体支持脚部93’の角座標にて、外方チャンバ外周部130は、積層体支持脚部ベース95’に対して「内接」されている(即ち、、外方チャンバ外周部130は、脚部ベース95’よりも光軸A’からより小さな径方向距離をおいて局所的に位置する)。
突出する積層体支持脚部93’を収容するために、下方真空チャンバ部分51bは、チャンバ壁部に3つの側方チャンバ開口部132を備えている。チャンバ開口部132は、各積層体支持脚部93’に対応する角座標に配置されている。好ましくは、各側方チャンバ開口部132が、対応する支持脚部93’の局所的外周面と相補的な形状を有している。図10の実施形態では、各側方チャンバ開口部132が、局所的に矩形断面を有している対応する脚部ベース95’を収容するために主に矩形の形状を有している。好ましくは、側方チャンバ開口部132は、対応する支持脚部93’の局所的外周部(断面)と同様に(適合するように)形状設定されているが、支持脚部(の局所的外周部)が収容され得ると共に、支持脚部が発生器のチャンバ51’の壁部との直接的な剛性連結を回避しつつチャンバ壁部を貫通して突出し得る場合には、他の開口部形状が可能である。
本明細書で上述したように、積層体支持部材93’は、周囲の発生器のチャンバ93’に連結するためのガスケット98をそれぞれ備えてもよい。ガスケット98は、側方チャンバ開口部132のエッジに沿って下方真空チャンバ部分51bに対応する積層支持部材93’を固定可能に連結するように配置および構成されている。さらに、ガスケット98は、側方チャンバ開口部132と支持脚部93’の間のスペースを覆い封止するように形成されている。結果的に得られる封止構成により、種々の真空条件を側方チャンバ開口部132の両側に(即ち、発生器のチャンバ51’の内部および外部に)与えることが可能となる。図10〜図11の実施形態では、各積層体支持部材93’のガスケット98は、合成ゴム(より具体的には、Viton(登録商標)のような真空適合性フルオロポリマーエラストマー)から作製された平坦矩形ワッシャにより形成され、このワッシャは、積層体支持部材93’の脚部ベース95’を囲む。
結果的に得られるビーム発生器構成により、コリメータ積層体70’および発生器のチャンバ51’が外部基準フレームにより個別に支持されるのを可能にしつつ、発生器のチャンバ51’の内側にコリメータ積層体70’を収容することが可能となる。これにより、コリメータ積層体70’と発生器のチャンバ51’とのaidの直接的な剛体的機械的結合が回避される。
有利には、コリメータ積層体70’とビーム発生器のチャンバ51’との間の提案されている機械的結合解除は、コリメータ積層体70’のアラインメントに対する発生器源のチャンバ51’圧力により誘発される変形の影響を軽減し得る、および/または発生器のチャンバ51’のジオメトリに対する電極積層体70’の熱により誘発される変形の影響を軽減し得る。
代替的にはまたは追加的には、提案されている機械的結合解除は、コリメータ電極積層体70’の機械的共振(固有)周波数に対する発生器のチャンバ51’の寄与を軽減またはさらには解消し得る。
代替的にはまたは追加的には、提案されているビーム発生器構成により、コリメータ積層体70’は、発生器のチャンバ51’の内部で生成される真空条件下で動作され得る一方で、コリメータ積層体70’の位置およびアラインメントは、真空チャンバ51’の外部から依然として調節され得る。これは、コリメータ積層体のアラインメントおよび性能試験を大幅に容易化し、ビーム精度の改善を助ける。
機械的結合解除を伴うこの提案されている支持構成により、比較的薄い壁部と底質量とを有している発生器のチャンバ51’の作製が可能となる。したがって、説明されているビーム発生器の実施形態50’は、荷電粒子リソグラフィシステム10(例えば図1に示されている)の真空チャンバ30の内部に設けられたキャリアフレーム42内に挿入可能でありそこから除去可能なモジュールとして好都合に形成され得る。
本明細書において上記で示されているように、提案されている支持構成(即ち、一方ではビーム発生器のチャンバ51’と電極コリメータ積層体70’とを機械的に結合解除するための、および他方では源真空チャンバ53’と電極コリメータ積層体70’とを機械的に結合解除するための)のいずれか1つが、単独で実装されてもよい。しかし、図9〜図10を参照として説明されている実施形態は、これらの結合解除解決策が、同一の積層体支持構成体を使用し、それにより所要空間および構造複雑性を比較的低く維持することによっても共に実装され得ることを示している。
これらの両機械的結合の解除の解決策は、異なる解決策として見なされてもよく、これらの解決策はいずれも、コリメータ積層体支持部93’〜96bがコリメータ積層体70’の中央領域75a’に連結されていることを必要とする。ビーム発生器のチャンバ51’と電極コリメータ積層体70’との間の説明された機械的結合解除は、一般的には、内側に電極積層体を有している真空チャンバを備えている任意のビーム発生器と、コリメータ電極積層体の側方領域に装着された積層体支持部とにおいて適用され得る。
しかし、図9〜図10を参照として説明されている実施形態は、結合解除解決策が、同一の積層体支持構成体を使用し、それにより所要空間および構造複雑性を比較的低く維持しつつ、本明細書において上記で論じられた3つの共振周波数の影響の全てに対するコリメータ電極積層体70’の共振感応度を有利に低くするために、コリメータ積層体70’の中央領域75a’内に係合するコリメータ積層体支持部93’〜96bと共に実装され得ることを示している。
図12は、ビーム発生器50’のこの第2の実施形態の下方(即ち、下流)側で、コリメータ電極積層体70’およびビーム発生器のチャンバ51’が機械的に分離された状態に留まるように構成されているのを概略的に示している。したがって、ビーム発生器のチャンバ51’およびコリメータ電極積層体70’は、外部基準フレーム42により別個に支持された状態に留まり得る。図12は、ビーム発生器のチャンバ51’が図10に示されている下方チャンバ部分51bの一部を形成している下部プレート134を備えているのを示している。下部プレート134は、比較的薄くコリメータ電極積層体の径方向に近位に配置された径方向内方チャンバプレート部分134aと、径方向内方チャンバプレート部分134aよりも薄く外方チャンバ外周部130に対して径方向により近くに配置された径方向外方チャンバプレート部分134bとを備えている。内方プレート部分134aは、最終コリメータ電極80’の近位に配置されている。特に、内方プレート部分134aは、径方向R’において径方向内方電極部分80a’の近位に、および軸方向Z’において径方向外方電極部分80b’の近位に位置する。幅狭間隙ΔZが、内方プレート部分134aと最終コリメータ電極80’との間に規定されている。この間隙ΔZは、好ましくは径方向R’に沿って一定の高さを有している。好ましくは、間隙ΔZの高さは、約0.5ミリメートル以下である。
さらに、好ましくは、この間隙ΔZを規定している。表面は、最終コリメータ電極80’(動作時に約1キロボルトの電位に維持され得る)とビーム発生器のチャンバ51’の内方プレート部分134a(好ましくは動作時に接地電位に維持されている)との間での放電を回避するために、特に内方プレート部分134aの径方向内方遠位端部に平滑曲線を有している。
結果的に得られる支持構成により、ビーム発生器のチャンバ51’およびコリメータ電極積層体70’は、外部基準フレーム42により個別に支持され得る。例えば、外部基準フレーム42は、その下部プレート134にてビーム発生器のチャンバ51’を支持し得るが、側方に突出する積層体支持脚部93’は、コリメータ電極積層体70’を担持し、さらに外部基準フレーム42によりビーム発生器のチャンバ51’の外部に支持されている。
また、図12は、積層体支持脚部93’が安定性を向上させるために最後から2番目のコリメータ電極79’に連結され得るのを示している。積層体支持脚部93’は、最後から2番目の電極79’の本体エッジに第3の脚部材93c’を連結するための第3の脚部接合部94cを備えている。例えば、第3の脚部接合部94cは、ねじ連結または他の既知の方法により最後から2番目のコリメータ電極79’に固定され得る。第3の脚部材93cは、積層体支持脚部93が、一方で第1の脚部材93a’および第2の脚部材93b’により支持された中心のコリメータ電極75’(図9を参照)と、他方で第3の脚部材93cにより支持された最後から2番目の電極79’との間の熱差の変形に対応するのを可能にする第3のたわみ部分96cを備えてもよい。
さらに、図12は、コリメータ電極78’〜80’間の電極間高さHd’が一定であってもよいことを示している。特に、最後から2番目の電極79’と最終電極80’の径方向内方電極部分80a’との間の電極間高さHd’が、好ましくは最後から3番目の電極78’と最後から2番目の電極79’と電極間高さHd’と均等である。
第2の支持コラムの実施形態
図13は、第2のコリメータ積層体70’の実施形態における支持コラム90’の構成を示している。隣接したコリメータ電極の電極支持部分86’および介在するスペーサ構成体89’は、積層体支持コラム90’を規定している。ように軸方向にアラインメントされ、積層体支持コラム90’は、軸方向Z’と実質的に平行に配向されている。この実施形態では、3つの支持コラム90’が形成されている。電極支持部分86’およびスペーサ構成体89’はそれぞれ、軸方向Z’と実質的に平行に延びた貫通穴を備えている。各支持コラム90’の貫通穴は、一体コラム貫通穴を形成しているように相互にアラインメントされている。支持コラム90’のアラインメントされた貫通穴は、支持部分86’と中間スペーサ構成体89’とを共に保持するためのクランプ留め部材91a’〜91d’を収容する。クランプ留め部材は、例えばプレテンションロッドの2つの遠位端部91a’を共に引っ張る軸方向プレテンションロッド91b’を備えている。2つの遠位ロッド端部91a’は、第1の電極71’および最終(即ち、外方)電極80’のそれぞれに結合されている。各プレテンションロッド91b’は、コリメータ積層体70’と各プレテンションロッド91b’との間の熱差による変形に対応するために2つの狭窄部91c’を備えている。さらに、ばね部材91dが、コリメータ積層体70’と各プレテンションロッド91b’との間の軸方向の熱差に対する追加の補償機構を提供するために、各プレテンションロッド91b’の一方のまたは両方の遠位ロッド端部91a’に設けられてもよい。好ましくは、クランプ留め部材91a’、91b’は、例えばチタンなどの強度の高く非磁性の材料から作製されている。十分な径方向相互間隔が、各プレテンションロッド91b’の外周面と、プレテンションロッド91b’が内部に収容されている電極支持部分86’の貫通穴の内方外周部との間に設けられている。
円筒状貫通穴およびロッドの場合には、支持部分86の貫通穴の内径φsuおよびスペーサ構成体89の貫通穴の内径φspは共に、プレテンションロッド91b’の外径φrよりも実質的に大きい。
この径方向相互間隔は、電極がコリメータ電極積層体70’の動作時に径方向熱変形を被る場合でも、一方の各電極71’〜80’と他方の各プレテンションロッド91b’との間の電気的分離を維持する役割を果たす。この実施形態の電極支持部分86’の内部の所要の貫通穴により、電極支持部分86’の典型的な直径は、例えば約1.5倍の大きさなど、図4〜図5に示されているコリメータ電極の実施形態における電極支持部分86の直径よりも大きいものとなる。
第2の冷却用導管の実施形態
図14は、図9〜図11に示されているコリメータ電極積層体70’の実施形態の冷却構成の一部分を概略的に示している。図14は電極本体の内側に冷却用導管105’をそれぞれが備えているコリメータ電極として形成された、第2のコリメータ電極72’、第3のコリメータ電極73’、および第4のコリメータ電極74’を示している。相互連結導管(中間管状部材として形成された)110’は、第1の電極(例えば第4の電極74’)の第1の導管開口103’と第2の電極(例えば第3の電極73’)の第2の導管開口104’との間に設けられている。この実施形態では、相互連結導管の各対は、直に隣接し合い、結果的に得られる電極と相互連結導管とのカスケードは、直列冷却構成を形成している。この実施形態では、各相互連結導管110’は、第1の直線状導管部分111’と、曲線状導管部分113’と、第2の直線状導管部分112’とを備えている。この実施形態では、導管部分111’〜113’は、機械的強度が高く非磁性の材料、例えばチタンから作製されている。図3に示されている実施形態とは対照的に、導管部分111’〜113’間には導管ベローズが設けられない。代わりに、各相互連結導管110’の直線状導管部分111’〜112’の少なくとも一方が、絶縁性管コネクタ115を備えている。対応する導管部分111’〜112’は、絶縁性管コネクタ115の内部で中断し、2つの遠位導管端部にて終端する。これらの遠位導管端部は、絶縁性管コネクタ115a〜115bにより液密的に絶縁性管コネクタ115の2つの両端部に固定されている。絶縁性管コネクタ115a〜115bは、Oリングを有しているフレアレス管継手により形成されてもよい。絶縁性管コネクタ115は、相互連結された導管部分間に電気絶縁性を与える電気絶縁材料(例えば酸化アルミニウム)から作製されている。絶縁性管コネクタ115を有している提案されている導管構成により、相互連結されているコリメータ電極間の放電が軽減されることが確保されている。
また、図3に示されている実施形態とはやはり対照的に、第2の冷却構成では、供給管117’および排出管118’は、さらなる導管ベローズを備えない。代わりに、供給管117’および排出管118’(図9〜図10に示されている)は、かなりの長さを有し、ビーム発生器50’の外部から起始する機械的共振を減衰するために曲線状領域を備えている。
第3のコリメータ積層体の実施形態
図15は、外部基準フレーム(42、図示せず)に対してコリメータ電極積層体70’’を支持するための積層体支持システム93’’を備え、コリメータ電極積層体70’の側方領域97に連結された、コリメータ電極積層体70’’の別の実施形態を示している。外側領域は、動径座標に沿って主に外方に対面するコリメータ積層体70’’の外周面に対応する。この実施形態では、積層体支持脚部93’’の1つの脚部材93a’’が、第3のコリメータ電極73’’に係合する。積層体支持脚部93’’のさらなる脚部材93c’’’は、第8のコリメータ電極78’’に係合する。この実施形態では、コリメータ電極71’’〜80’’の高さHeは、実質的に均等である。さらに、電極間距離Hdは、実質的に均等である。第3のコリメータ電極73’’および第8のコリメータ電極78’’は、積層体支持脚部93’’に対してコリメータ電極積層体70’’の全体の重量を共同で支持するのに十分な機械強度を有している電極支持アーム部を有している電極支持部分86’’を備えている。結果として、第3のコリメータ電極73’’および第8のコリメータ電極78’’もまた、固定位置に支持コラム90’’を維持しつつ電極本体81’’と支持部分86’’との間の熱差による変形に対応するための熱膨張空間88’’を備えている。
上記の説明は、限定的ではなく例示的なものとして意図されている。以下に示す特許請求の範囲から逸脱することなく本発明の代替的な実施形態および均等な実施形態が想起され実施され得ることが、当業者には自明となろう。
例えば、コリメータ電極積層体の実施形態および荷電粒子ビーム発生器の実施形態の上記の説明は、まさに3つの電極積層体支持コラムと3つの電極積層体支持脚部との存在を示唆する。3つという個数は、高い安定性および構造的単純性から好ましいが、2つのみのコラムおよび/または脚部か、あるいは4つ以上のコラムおよび/または脚部を有している構成もまた考えられ得る。
コリメータ積層体内の支持脚部は、外部基準フレームに対してバランス調整された懸架を確立するために、中心のコリメータ電極への係合の代替または追加として支持コラム内のスペーサ構成体に係合してもよい。
積層体支持システムは、説明された三角形または三脚状の脚部構造とは異なって形状設定されてもよい。上記の実施形態で説明されている積層体支持システムは、外部基準フレームの主に下流の電極積層体から延びた。一般的には、外部基準フレーム(例えばキャリアフレーム42)は、下方軸方向Z(図4の脚部93に対して印加されている圧縮応力)、上方軸方向−Z(支持部材に印加されている引張応力)、径方向R(支持部材に対する曲げ応力)、バランス調整された対向し合う角度方向Φ、またはそれらの組合せの中のいずれかで配向され得る支持部材により中央領域内に電極積層体を支持し得る。さらに、径方向たわみ部分は、例えば異なる形状、断面プロファイルを有しているなど異なるように形成されてもよく、または他の弾性材料から作製されてもよい。
様々な実施形態が、電極ビームリソグラフィ処理を参照として論じられた。しかし、本明細書において上記で論じられた原理は、他の荷電粒子ビームタイプ(例えば陽イオンまたは陰イオンのビーム)の発生と、他のタイプの荷電粒子ビーム処理方法(例えば電子ビームベースターゲット検査)とにも等しく十分に適用され得る。
これらの実施形態は、荷電粒子ビームをコリメートするように構成されたコリメータ電極積層体を参照として論じられた。1つまたは複数の荷電粒子ビームの経路、形状、および運動エネルギーを操作するように一般的に構成されている電極積層体もまた、範囲内に含まれるものとして理解される。
直ぐ次に項のセットが提示されるが、これらは電極、電極構成体、およびビーム発生器の態様および実施形態を定義する。これらの項セットは、分割出願の対象となり得る。また、これらの項は、プライム符号を伴って参照符号が示された本明細書において上記で説明された部材を備えている代替的な実施形態にも関する。簡略化および明瞭化のみを目的として、プライム符号でマークされた部材の参照符号は、以下の請求項および項に示されている(非限定的な)からは省略されているが、適用可能な場合には常に挿入されているものと見なされるべきである。
付記A
a1. コリメータ電極積層体(70)であって、
各々が、荷電粒子ビームに通路を与えるための電極アパチャ(82)を有している電極本体(81)を備え、これら電極本体は、光軸と実質的に平行である軸方向(Z)に沿って離間され、前記電極アパチャが、光軸に沿って同軸的にアラインメントされている、光軸(A)に沿って荷電粒子ビーム(54)をコリメートするための少なくとも3つのコリメータ電極(71〜80)と、
軸方向に沿って所定の距離をおいてコリメータ電極を位置決めするために隣接したコリメータ電極の各対間に設けられ、電気絶縁材料から作製された複数のスペーサ構成体(89)とを有し、各コリメータ電極(71〜80)は、個別の電圧出力部(151〜160)に電気的に接続されている。
a2. 付記a1に係わるコリメータ電極積層体(70)であって、各電圧出力(151〜160)が個別に調節可能である。
a3. 付記a1又はa2に係わるコリメータ電極積層体(70)であって、前記電極本体(81)は、軸方向(Z)に対して実質的に垂直な径方向−角度方向面内に配置されているディスク形状を有し、前記電極アパチャ(82)は、電極本体を貫通し軸方向に沿って延びた実質的に円形の切欠部により形成されている。
a4. 付記a1乃至a3のいずれか1つに係わるコリメータ電極積層体(70)であって、前記少なくとも3つのコリメータ電極(71〜80)は、
コリメータ積層体の上流端に設けられた第1のコリメータ電極(71)と、
コリメータ積層体の下流端に設けられた最終のコリメータ電極(80)と、
前記第1のコリメータ電極(71)と最終のコリメータ電極(80)との間に設けられた少なくとも1つの中間電極(72〜79)とを有し、
軸方向(Z)に沿って配置されている。
a5. 付記a4に係わるコリメータ電極積層体(70)であって、前記少なくとも1つの中間電極(72、73、74、76、77、78、79)は、軸方向(Z)に沿って電極厚さ(He)を有している。
a6 付記a4又は5に係わるコリメータ電極積層体(70)であって、一方における隣接した中間電極(72、73、74、76、77、78、79)と他方における軸方向(Z)に沿った中心の電極75厚さ(He)との間の電極間距離(Hd)が、関係0.75・He≦Hd≦1.5・Heにより規定されている。
a7. 付記a4乃至a6のいずれか1に係わるコリメータ電極積層体(70)であって、前記第1のコリメータ電極(71)は、1.5・He≦H1≦2.5・Heにより規定されている範囲内の第1の厚さ(H1)を有している。
a8. 付記a4乃至a7のいずれか1に係わるコリメータ電極積層体(70)であって、前記第1のコリメータ電極(71)は、光軸(A)から離れるように径方向(R)に向かう平滑曲線軌道を有して下流方向に光軸(A)に沿って発散する軸方向ボア(71a)を有している第1の電極アパチャを備えている。
a9. 付記a4乃至a8のいずれか1つに係わるコリメータ電極積層体(70)であって、
最終のコリメータ電極(80)の径方向内方部分(80a)の最終の電極厚さ(H10)は、3・H10≦Heにより規定されている範囲内である。
a10. 付記a4乃至a9のいずれか1に係わるコリメータ電極積層体(70)であって、最終のコリメータ電極(80)の径方向外方部分(80b)の厚さ(H10’)が、中心の電極75厚さ(He)と実質的に等しい。
a11. 付記a4乃至a10のいずれか1に係わるコリメータ電極積層体(70)であって、前記コリメータ電極(71〜80)は、少なくとも3つの中間の電極(72〜79)が第1のコリメータ電極(71)と最終のコリメータ電極(80)との間に設けられているように、軸方向(Z)に沿って配置されている。
a12. 付記a11に係わるコリメータ電極積層体(70)であって、少なくとも3つの中間電極(72〜79)の中心のコリメータ電極(75)が、1.5・He≦H5≦2.5・Heにより定義されている範囲内の厚さ(H5)を有している、コリメータ電極積層体(70)。
a13. 付記a1乃至a12のいずれか1に係わるコリメータ電極積層体(70)であって、各スペーサ構成体(89)の高さ(Hs)と、スペーサ構成体(89)とコリメータアパチャ(82)の外周面(82a)との間の径方向の最短距離(ΔR1)との間の関係が、3・Hs≦ΔR1により規定義されている。
a14. 荷電粒子ビーム発生器(50)であって、
光軸(A)に沿って荷電粒子ビーム(54)を発生させるためのビーム源(52)と、
付記a1乃至a13のいずれか1に係わるコリメータ電極積層体(70)と
を有し、
第1のコリメータ電極(71)が、コリメータ積層体の上流端に設けられ、コリメータ電極(71〜80)の電極アパチャ(82)が、光軸に沿ってアラインメントされ、ビーム源が、第1のコリメータ電極(71)の上部側に直接的に固定されている。
a15. 電極積層体(70)を備えているコリメータシステムであって、荷電粒子ビームの通過を可能にするための電極アパチャ(82)を有している電極本体(81)をそれぞれが備えている、前記積層体の光軸(A)に沿って荷電粒子ビーム(54)をコリメートするための複数の電極(71〜80)と、電位を電極に与えるための電気接続部とを備え、電極本体が、軸方向(Z)に沿って離間されて配置され、電極アパチャが、光軸に沿って同軸的にアラインメントされ、
使用時に、電極積層体(70)の中央の電極(75)が、他のコリメータ電極(71〜74、76〜80)と比較して最高の正電位にて維持されるように荷電され、電極積層体(70)の上流方向において中央の電極(75)に先行する2つの電極のそれぞれが、下流方向においてその隣接する電極よりも低い電位に維持されるように構成されている。
a16. 付記a15に係わるコリメータシステムであって、使用時に、最終のコリメータ電極(80)は、正電位に維持されるように構成され、中央の電極(75)と最終の電極(80)との間に配置された少なくとも1つの電極(76〜79)が、最終の電極(80)の電位よりも低い電位を有している。
a17. 付記a15に係わるコリメータシステムであって、少なくとも2つの電極(76〜79)が、中央の電極(75)と最終の電極(80)との間に配置され、その最後から2番目の電極が、負電位を得るように荷電される。
a18. 付記a14に係わる荷電粒子ビーム発生器(50)を動作させるための方法であって、
ビーム源(52)で電子ビーム(54)を発生させることと、
コリメータ電極積層体(70)のアパチャ(82)を通して光軸(A)に沿って発生される電子ビームを投影することと、
コリメータ電極(71〜80)に電位(V1〜V10)を与えることと、を具備し、
前記与えることは、
接地電位に第1のコリメータ電極(71)を維持すること、
最高の正電位に中心のコリメータ電極(75)を維持すること、および
低い正電位に最終のコリメータ電極(80)を維持すること
を備えている、方法。
a19. 付記a18に係わるビーム発生器(50)を動作させるための方法であって、コリメータ電極(71〜80)に電位(V1〜V10)を与えることが、
前記中心のコリメータ電極(75)と、中心のコリメータ電極の直ぐ下流に配置された隣接するコリメータ電極(74)との間に電位差を与えることと、
隣接するコリメータ電極(74)と、隣接するコリメータ電極の直ぐ上流に配置されたさらに隣接するコリメータ電極(73)との間にさらなる電位差を与えることと
を備え、
前記さらなる電位差は、電位差よりも大きい。
a20. 付記a18又はa19に係わるビーム発生器(50)を動作させるための方法であって、前記コリメータ電極(71〜80)に電位(V1〜V10)を与えることは、
負電位に中心の電極75(75)の上流の第2のコリメータ電極(72)を維持すること
を有している。
a21. 付記a18乃至a19のいずれか1に係わるビーム発生器(50)を動作させるための方法であって、前記コリメータ電極(71〜80)に電位(V1〜V10)を与えることは、
低い負電位に、最後から2番目の電極(79)および最後から3番目の電極(78)の少なくとも一方を維持すること
を有している。
a22. 付記a18乃至a21のいずれか1に係わるビーム発生器(50)を動作させるための方法であって、前記コリメータ電極(71〜80)に電位(V1〜V10)を与えることは、
−300ボルト〜−500ボルトの間の値を有している一定の電位に、最終のコリメータ電極(80)の直前で先行する2つの中間のコリメータ電極(78、79)の少なくとも一方を維持することと、
−3キロボルト〜−4キロボルトの間の値を有している一定の電位に、第2のコリメータ電極(72)を維持することと、
+20キロボルト〜+30キロボルトの間の値を有している一定の電位に、中心のコリメータ電極(75)を維持することと、
+500ボルト〜+1100ボルトの間の値を有している正電位に、最終のコリメータ電極(80)を維持することと
を有している。
付記C
c1. 好ましくはデスク形状又は平坦なリング形状の電極本体(81)を具備するコリメータ電極であって、前記電極本体には、中心電極アパチャ(82)が形成され、電極本体は、2つの対向した主面間の電極厚さ(H)を規定しており、また、電極本体は、冷却用液体(102)を流すための、電極本体中の冷却用導管(105)を収容している。
c2. 付記c1に係わるコリメータ電極であって、前記冷却用導管(105)は、好ましくはチタニウムで形成された案内チューブとして形成されている。
冷却用導管として案内チューブを使用することにより、導管の材料の適当な選択が可能である。特に、コリメータ電極は、異なる材料で形成され得るけれど、案内チューブは、熱伝導性及び導電性に優れた、比較的強い材料が、使用され得る。
c3. 付記c1又はc2に係わるコリメータ電極であって、前記電極本体(81)は、アルミニウムにより形成されている。
アルミニウムは、コリメータ積層体の軽重量の材料であり、コリメータ積層体の構成と保守とを容易にしている。アルミニウムは、また、良い導電性と非磁気特性とを有し、荷電粒子ビームの処理での適用にとって好ましい。更に、アルミニウムは、熱伝導が良く、荷電粒子の散乱及び衝突により発生する熱ネルギーを放散させる助けをする。
c4. 付記c1乃至c3の何れか1に係わるコリメータ電極であって、前記冷却用導管(105)は、液体供給構成体(117)に接続するための第1の開口(103)と、液体排出構成体(118)に接続するための第2の開口(104)とを有している。
c5. 付記c4に係わるコリメータ電極であって、前記第1の開口(103)と第2の開口(104)とは、第1及び第2のコリメータ電極の外周面(85)に位置されている。
冷却用導管(105)の第1の開口(103)と第2の開口(104)とをリング形状の電極本体(81)の外周面(85)に位置させることは、異なる電極本体(71−80)間のスペースに潜在的に相互関係する構造を無くす助けをしている。特に、冷却用液体の供給及び/又は排出は、電極積層体(70)の外周面から(即ち、径及び/又は角度方向に主に沿って)生じるので、液体供給構成体(117)及び/又は液体排出構成体(118)は、コリメータ電極間のスペースに設ける必要はない。
c6. 付記c5に係わるコリメータ電極であって、各コリメータ電極の前記第1の開口(103)と第2の開口(104)とは、コリメータ電極の外周面(85)に、互いに近接するように位置されている。
コリメータ電極の第1の開口と第2の開口とを、コリメータ電極の外周面(85)に、互いに近接して位置せることは、冷却用液体供給構成体と冷却用液体排出構成体との両者をコリメータシステムの同じ側への配置を可能にしている。このことは、もし必要であれば、コリメータシステムの横に位置される他の部品のための更なるスペースを与える。
c7. 付記c4乃至c6のいずれか1に係わるコリメータ電極であって、前記冷却用導管(105)は、電極本体(81)内でアパチャ(82)を囲むように設けられた導管経路部(105a−105b)により第1の開口(103)と第2の開口(104)とを相互接続している。
冷却用導管が、アパチャを囲み電極中を通る経路を有することにより、電極は、より均一に冷却され得る。
c8. 付記c5又はc6に係わるコリメータ電極であって、前記アパチャ(82)は、コリメータ電極の光軸(A)に対して円対称であり、また、冷却用導管(105)は、前記アパチャ(82)を囲むように延びた実質的な円環の部分(105a)と、この円環の部分と前記第1の開口及び第2の開口とに接続した2つの実質的な直線の端部分(105b)とを有している。
このような構成は、コリメータ電極のアパチャが、円形のアパチャである場合には、特に好ましい。このような場合、冷却用導管の、アパチャを囲んだ実質的な円環の部分は、これの経路部に沿ったアパチャの周側壁から同じ距離に位置され、コリメータ電極の中心部の冷却をより均一にすることができる。前記電極アパチャ(82)は、電極本体(81)内で軸方向(Z)に沿って延び実質的に円形の貫通孔により形成され得る。
c9. 付記c8に係わるコリメータ電極であって、一方では電極アパチャ(82)の直径(φ)と、他方では冷却用導管(105)の前記円環の部分(105a)と電極アパチャ(82)の周側壁(82a)との間の径方向の距離(ΔR2)との間の関係は、3・ΔR2≧φにより規定されている。
c10. 付記c2乃至c9のいずれか1に係わるコリメータ電極であって、前記案内チューブ(105)は、コリメータ電極の電極本体(81)内に一体的に設けられている。
コリメータ電極内での案内チューブ(105)の一体的な形成は、冷却効率を改善している。更に、案内チューブの場所での局部的な電界の集中の発生のリスクは、かなり減じられる。
c11. 付記c1乃至c10のいずれか1に係わるコリメータ電極であって、前記電極本体(81)は、少なくとも一部が鋳造材料により、好ましくは、アルミニウムの鋳造により形成されており、前記案内チューブ(105)は、鋳造材料中に入れられている。
好ましくは、前記案内チューブ(105)は、チタニウムで形成されている。チタニウムは、低磁界応答性を示し、比較的高い融点を有するストロングメタルである。チタニウムの導管は、(アルミニウムの非常に低い融点により)導管の周りに電極本体をキャステングすることによりアルミニウムの電極本体内に効率よく形成され得る。
c12. 付記c2乃至c9のいずれか1に係わるコリメータ電極であって、前記電極本体(81)の上面(83)には、案内チューブ(105)に対応した形状を有する凹所(106)が設けられており、案内チューブは、凹所内に配置されている。
中に案内チューブ(105)を位置させるように適当に形成された凹所(106)を備えたコリメータ電極は、製造が比較的容易である。
c13. 付記c12に係わるコリメータ電極であって、前記案内チューブ(105)は、熱伝導性接着剤(107)により、コリメータ電極(71−80)に前記凹所(106)内で取着されている。
コリメータ電極への案内チューブの熱伝導性接着剤による取着は、熱伝導性を改善し、かくして、より効果的な冷却がなされ得る。
c14. 付記c2乃至c13の何れか1に係わるコリメータ電極であって、前記案内チューブ(105)は、外側に規定された矩形面、並びに内側に規定され湾曲樋面を備えた下側の樋部(105c)と、この下側の樋部の内側に規定された湾曲樋面をシールして、冷却用液体(102)のための流れチャンネルを形成している上側の蓋部(105d)とを有している。
c15. 付記c2乃至c14の何れか1に係わるコリメータ電極であって、前記コリメータ電極は、少なくとも2つの電極支持部(86)と、電極本体(81)の電極外周面(85)に沿った複数の電極支持部材(87)とを有しており、各電極支持部材は、電極支持部と電極外周面との間に熱膨張許容スペース(88)を規定するように、電極外周面と、対応した電極支持部(86)とを相互接続しており、前記複数の電極支持部材(87)は、軸方向(Z)の電極本体(81)の重量を一緒になって支えるように設定されている。
c16. 付記c15に係わるコリメータ電極であって、前記電極支持部材は、第1端で基板外周面(85)に接続され、第2端で電極支持部(86)に接続された可動な細長いアーム部(87a−87c)を有している。
c17. 付記c16に係わるコリメータ電極であって、前記可動な細長いアーム部(87a−87c)は、軸方向(Z)での電極本体(81)に対する対応した電極支持部(86)の反れを防止しながら、径−角度面での電極本体(81)に対する対応した電極支持部(86)の反れを可能にしている可撓性のアーム薄部(87b−87c)を有している。
c18. 付記c1乃至c17の何れか1に係わるコリメータ電極であって、前記冷却用導管(105)は、前記電極本体(81)の外周面(85)の外に設けられた電気絶縁性の導管部材に接続さけている。
c19. 荷電粒子ビーム発生器(50)に使用されるためのコリメータ電極積層体(70)であって、前記コリメータ電極積層体は、
荷電粒子ビーム(54)をコリメートするように構成され、付記c1乃至c18の何れか1に係わる複数のコリメータ電極(71−80)を有し、
少なくとも、第1のコリメータ電極と第2のコリメータ電極とには、各々冷却液体を搬送するための冷却用導管(105)が設けられ、冷却用導管は、液体供給構成体(117)に接続するための第1の開口(103)と、液体排出構成体(118)に接続するための第2の開口(104)とを有し、また、このコリメータ電極積層体は、第1のコリメータ電極の第2の開口(104)と、第1のコリメータ電極の第1の開口(103)との間に液体接続を確立するように配設された接続導管(110)を有している。
コリメータ電極(71−80)の積層された構造は、ビーム発生器を比較的軽量に構成することを可能にしている。第1及び第2のコリメータ電極内の冷却用導管(105)は、これらの電極本体と冷却用液体(102)との間で熱エネルギーを熱交換するように、冷却用液体(102)が、電極に沿って流れることを可能にしている。かくして、冷却用液体(102)は、コリメータ電極から過度の熱を吸収し、またコリメータ電極の熱による変形の防止を可能にしている。
前記接続導管(110)は、電極間の液体接続の確立を可能にしている。前記接続導管(110)は、夫々のコリメータ電極の第1及び第2の開口(103−104)を相互接続しており、かくして、これらコリメータ電極間の一連の液体接続を確立している。積層体での幾つかのコリメータ電極の一連の流体接続は、冷却用液体の供給及び排出のために単一の冷却用液体供給構成体(117)及び冷却用液体排出構成体(118)を必要とするだけで、同時の冷却が可能である。
積極的に冷却されるコリメータ電極積層体(70)の設計に際して、電極から冷却用液体(102)への熱移送の効率を、同時に、冷却用液体(102)を介する電子チャージのロスを最小にしながら、最大にすることは、チャレンジである。
提案された多電極コリメータ積層体(70)は、軸方向(Z)に沿った電位分布の徐々の(段階的な)変化を発生するように構成されている。提案されたコリメータ電極積層体構造での夫々の電極の第1の開口と第2の開口(103−104)とを連続的に相互接続することにより、動作の間に隣接した電極間に与えられる電位差は、平行な電極の冷却構造(即ち、各電極への冷却用液体の供給及び排出導管の夫々異なる接続を有する冷却用構造)を有するコリメータ電極積層体に対するよりも小さくなることが期待されている。2つの電極間の接続導管(110)を通る冷却用液体(102)により生じる比較的小さい電位差の結果として、冷却用液体を通る消失電流による電極チャージのロスは、少なくなるように期待されている。
コリメータ電極積層体のコリメータ電極2つ、幾つか、又は全ては、第1の開口と第2の開口(103−104)との間の接続導管(110)を有する電極として形成され得る。コリメータ電極間の接続導管(110)を備えた一連の冷却液体用の構造は、メンテナンス、最適化テスト、並びに変更される動作要求に対する適用を良く果たすことができるように、形成及び/又は保守が、比較的容易である。
c20. 付記c7に係わるコリメータ電極積層体(70)であって、前記第1のコリメータ電極および第2のコリメータ電極の電極本体(81)は、コリメータ電極積層体の光軸(A)に沿ってアラインメントされた電極アパチャ(82)と同軸的に配置されている。
c21. 付記c20に係わるコリメータ電極積層体(70)であって、前記第2のコリメータ電極は、光軸(A)に沿って見た場合に、第1のコリメータ電極の上流に配置されている。
多数の荷電粒子ビームコリメータ装置において、下流に配置されたコリメータ電極は、後方散乱電子および/または二次電子の衝突をより被りやすく、その結果としてより高い熱負荷が生じる。上流に配置された第2の電極に冷却用液体を送る前に下流に配置された第1の電極に冷却用液体を供給することにより、第1の電極における冷却用液体のより低い温度によって、より多くの過剰な熱が吸収され得ることになり、加熱された電極と冷却用液体との間のより良好な総熱交換効率がもたらされる。
好ましくは、前記第1のコリメータ電極と第2のコリメータ電極とは、コリメータ電極積層体で直に隣接したコリメータ電極である。
c22. 付記c18乃至c21のいずれか1に係わるコリメータ電極積層体(70)であって、連結導管(110)が、第1の開口(103)から離れる方向に向いた第1の実質的に直線状の部分(111)と、第2の開口(104)から離れる方向に径方向に向いた第2の実質的に直線状の部分(112)と、第2の直線状部分に第1の直線状部分を連結する実質的に曲線状の部分(113)とを備えている中間管状部材(110)として形成されている。
2つの直線状部分と中間曲線状部分とを備えている中間管状部材は、中間管状部材の座屈のリスクを軽減し、中間管状部材を通した冷却用液体の連続した流れをより確実に保証する。
c23. 付記c18乃至c22のいずれか1に係わるコリメータ電極積層体(70)であって、前記連結導管(110)の少なくとも一部は、好ましくは酸化アルミニウムである電気絶縁材料により形成されている。
酸化アルミニウムは、比較的低い質量密度を有し、低いバルク導電率を有し、製造目的のための使用が容易であるため、好ましい材料である。
c24. 付記c18乃至c23のいずれか1に係わるコリメータ電極積層体(70)であって、前記連結導管(110)は、第1のコリメータ電極と第2のコリメータ電極との間の熱差による変形に対応するように構成された少なくとも1つのベローズ構成体(114)を備えている、コリメータ電極積層体(70)。
c25. 付記c18乃至c24のいずれか1に係わるコリメータ電極積層体(70)であって、前記冷却用液体(102)は、超純水か、低導電率を有している油かである。
c26. 付記c18乃至c25のいずれか1に係わるコリメータ電極積層体(70)であって、前記電極本体(81)は、荷電粒子源(52)に対面する上部表面(83)と荷電粒子源から離れる方向に向く下部表面(84)とを備え、前記下部表面および上部表面は、電極外周面を規定している側部表面(85)に相互により相互連結されている。
c27. 付記c18乃至c26のいずれか1に係わるコリメータ電極積層体(70)であって、コリメータ電極は、電気絶縁材料により形成されたスペーサ構成体(89)により相互に変位されている。
c28. 付記c27に係わるコリメータ電極積層体(70)であって、前記スペーサ構成体(89)は、軸方向(Z)に沿ってコリメータ電極間に電極間間隔(Hd)を与えている。
c29. 荷電粒子リソグラフィシステム(10)で使用するための荷電粒子ビーム発生器(50)であって、
荷電粒子ビーム(54)を発生させるための荷電粒子源(52)と、
付記c18乃至c28のいずれか1に係わるコリメータ電極積層体(70)と
を備えている。
c30. ターゲット(31)を露光するための荷電粒子リソグラフィシステム(10)であって、
付記c29に係わる荷電粒子ビーム(54)を発生させるための荷電粒子ビーム発生器(50)と、
荷電粒子ビームから複数の小ビームを形成するためのアパチャアレイ(58)と、
ターゲットの表面に小ビームを投影するための小ビーム投影器(66)と
を備えている、荷電粒子リソグラフィシステム(10)。
c31. 付記c30に係わる荷電粒子リソグラフィシステム(10)であって、変調された小ビームを形成するために小ビームをパターニングする小ビーム変調器(56、60)をさらに備え、小ビーム投影器(66)が、ターゲット(31)の表面に変調された小ビームを投影するように配置されている。
c32. 付記c30又はc31に係わる荷電粒子リソグラフィシステム(10)であって、冷却用液体ポンプ(116)からコリメータシステムに向かって冷却用液体を案内するための液体供給構成体(117)と、コリメータシステムから離れる方向へと冷却用液体ポンプ(116)に戻すように冷却用液体を案内するための液体排出構成体(118)とを備えている。
c33. 記c32に係わる荷電粒子リソグラフィシステム(10)であって、前記コリメータ電極積層体(70)を通して冷却用液体を循環させるために、前記液体供給構成体(117)と液体排出構成体(118)との少なくとも一方に連結された冷却用液体ポンプ(116)を備えている。
c34. 付記c33に係わる荷電粒子リソグラフィシステム(10)であって、前記冷却用液体ポンプ(116)は、閉ループで前記液体排出構成体(118)から液体供給構成体(117)に向かって冷却用液体(102)を再循環させるように構成され、また、荷電粒子リソグラフィシステムは、熱交換ユニットにより液体排出構成体(118)から排出される冷却用液体から熱エネルギーを除去するように構成されている、荷電粒子リソグラフィシステム(10)。
c35. 付記c34に係わる荷電粒子リソグラフィシステム(10)であって、動作時に再循環する冷却用液体(102)から導電性粒子を除去するように構成されたフィルタ構成体を備えている。
付記D
d1. 荷電粒子リソグラフィシステム(10)で使用するための荷電粒子ビーム発生器(50)であって、
光軸(A)に沿って荷電粒子ビーム(54)を発生するための荷電粒子源(52)と、
光軸に沿ったコリメータ高さ(Hc)を有し、荷電粒子ビームをコリメートするためのコリメータ電極積層体(70)と、
前記コリメータ電極積層体(70)と荷電粒子源(52)とを収容するための発生器の真空チャンバ(51)と、
前記コリメータ電極積層体の外周面(85)から距離(ΔRp)をおいて、発生器の真空チャンバ(51)内に設けられた少なくとも1つの真空ポンプシステム(122、123)と、を有し、前記少なくとも1つの真空ポンプシステムは、光軸(A)と実質的に平行に延びた有効ポンプ動作表面(122a、123a)を有し、前記有効ポンプ動作表面は、コリメータ高さ(Hc)の少なくとも一部に渡って延びた表面高さ(Hp)を有している。
d2. 付記d1に係わる荷電粒子ビーム発生器(50)であって、前記有効ポンプ動作表面(122a、123a)の表面高さ(Hp)は、最低限でもコリメータ電極積層体(70)のほぼ直径(φc)のオーダである値を有している。
d3. 付記d1及びd2のいずれか1に係わる荷電粒子ビーム発生器(50)であって、前記真空ポンプシステムは、互いに隣接して、軸方向(Z)と実質的に平行に配置され、前記コリメータ高さ(Hc)の最大部分に沿って各有効ポンプ動作表面(122a、123a)を有して延びた、少なくとも4つのゲッタ(122、123)を備えている。
d4. 付記d1乃至d3のいずれか1に係わる荷電粒子ビーム発生器(50)であって、前記真空ポンプシステム(122、123)とコリメータ電極積層体(70)の外周面(85)との間の距離(ΔRp)が、コリメータ電極積層体の2つの隣接した電極間の典型的な電極間距離(Hd)よりも大きい。
d5. 付記d1乃至d4のいずれか1に係わる荷電粒子ビーム発生器(50)であって、前記発生器の真空チャンバ(51)の内部に配置され、選択的に解除可能な連結部により真空ポンプシステムのポンプユニット(122、123)を担持するように構成された、ポンプ支持構成体(124)を備えている。
d6. 付記d1乃至d5のいずれか1に係わる荷電粒子ビーム発生器(50)であって、前記コリメータ積層体(70)は、コリメータ外周面に沿って3つの異なる角度コラム範囲(ΔΦ1、ΔΦ2、ΔΦ3)にわたり延びた3つの支持コラム(90)を備え、前記ポンプシステム(122、123)の有効ポンプ動作表面(122a、123a)は、前記3つの角度コラム範囲のいずれとも重畳部を有さない角度ポンプ範囲(ΔΦp)で広がっている。
d7. 付記d6に係わる荷電粒子ビーム発生器(50)であって、有効ポンプ動作表面(122a、123a)が広がっている前記角度ポンプ範囲(ΔΦp)は、2つの支持コラム(90)間に規定されている角度範囲と大部分において一致している。
d8. 付記d1乃至d7のいずれか1に係わる荷電粒子ビーム発生器(50)であって、前記コリメータ積層体(70)は、一連のコリメータ電極(71〜80)を備え、各コリメータ電極は、電位を持続させるための電極本体(81)を備え、荷電粒子ビーム(54)への通路を与えるためのアパチャ(82)を備えている。
d9. 付記d8に係わる荷電粒子ビーム発生器(50)であって、前記複数のコリメータ電極(71〜80)は、軸方向(Z)に沿って配置された、
コリメータ積層体の上流端に設けられた第1のコリメータ電極(71)と、
コリメータ積層体の下流端に設けられた最終のコリメータ電極(80)と、
前記第1のコリメータ電極(71)と最終のコリメータ電極(80)との間に設けられた少なくとも1つの中間の電極(72、73、74、76、77、78、79)と
を有している。
d10. 付記d9に係わる荷電粒子ビーム発生器(50)であって、前記少なくとも1つの中間のコリメータ電極は、厚さ(He)を有し、コリメータ電極が、光軸(A)に沿って所定の距離(Hd)をおいて相互に離間され、所定の相互距離(Hd)が、0.75・He≦Hd≦1.5・Heにより規定されている。
d11. 付記d8乃至d10のいずれか1に係わる荷電粒子ビーム発生器(50)であって、少なくとも1つのコリメータ電極(71、72、73、74、76、77、78、79、80)は、電極外周面(85)に沿って3つの各角度範囲(ΔΦ1、ΔΦ2、ΔΦ3)で延びた3つの支持部分(86)を備え、各支持部分(86)は、所定の距離(Hd)で隣接する電極本体(81)を相互に離間させるための少なくとも1つのスペーサ構成体(89)を収容するように構成されている。
d12. 付記d11に係わる荷電粒子ビーム発生器(50)であって、前記隣接したコリメータ電極の支持部分(86)と介在するスペーサ構成体(89)とは、3つの角度コラム範囲(ΔΦ1、ΔΦ2、ΔΦ3)の中の1つで軸方向(Z)に沿って支持コラム(90)を規定するように同軸的にアラインメントされている。
d13. 付記d8乃至d12のいずれか1に係わる荷電粒子ビーム発生器(50)であって、前記コリメータ電極の少なくとも2つは、冷却用液体(102)を送るための冷却用導管(105)を備え、各冷却用導管は、液体供給構成体に連結するための第1の開口(103)と液体排出構成体に連結するための第2の開口(104)とを備え、また、前記電極積層体が、第2のコリメータ電極の第1の開口に、第1のコリメータ電極(71)の第2の開口を連結するための中間管状部材(110)を備えている。
d14. 付記d13に係わる荷電粒子ビーム発生器(50)であって、前記複数のコリメータ電極(71〜80)は、荷電粒子源(52)に対面する上面(83)と、荷電粒子源から離れる方向に向く下面(84)とを備えているリング形状電極本体(81、81’)を有し、前記下面と上面とは、電極外周面を規定している。側部表面(85)により相互に連結され、第1の開口(103)および第2の開口(104)が、側部表面に配置されている。
d15. 付記d14に係わる荷電粒子ビーム発生器(50)であって、前記第1の開口(103)と第2の開口(104)とは、コリメータ電極(71〜80)の同一の側部表面に配置されている。
d16. 付記d13乃至d15のいずれか1に係わる荷電粒子ビーム発生器(50)であって、前記中間管状部材(110)は、前記電極外周面(85)に設けられて、電極外周面(85)に沿って管角度範囲(ΔΦt)で延び、また、前記ポンプ開口部(122a、123a)の角度ポンプ範囲(ΔΦp)は、導管角度範囲との重畳部を有していない。
d17. 付記d13乃至d16のいずれか1に係わる荷電粒子ビーム発生器(50)であって、冷却用導管(105)が、コリメータ電極本体(81)内で一体化された導管により形成されている。
導管をコリメータ電極本体内で一体化させることにより、コリメータ積層体内で移動する自由分子が径方向に外方に移動し、例えばコリメータ積層体からある距離をおいて径方向に外方に位置決めされたゲッタポンプによって吸収されるなど除去されるために利用可能な側方空間(即ち、平均自由行程)が増大することになる。
d18. 付記d1乃至d17のいずれか1に係わる荷電粒子ビーム発生器(50)であって、前記ビーム発生器のチャンバ(51)内に収容されたビーム源真空チャンバ(53)を備え、ビーム源(52)が、ビーム源真空チャンバ内に収容され、コリメータ積層体(70)が、ビーム源真空チャンバの外部に位置されている。
d19. 付記d18に係わる荷電粒子ビーム発生器(50)であって、前記ビーム源のチャンバ(53)は、ビーム源のチャンバとビーム発生器のチャンバ(51)との間に圧力差を生じさせるために少なくとも1つの源真空ポンプユニット(120)を囲んでいる。
ビーム源(52)の付近の差圧超低真空は、その放射放出効率を改善しその有効放射寿命を延ばすのを助ける。
d20. 付記d1乃至d19のいずれか1に係わる荷電粒子ビーム発生器(50)であって、前記ビーム発生器は、荷電粒子リソグラフィシステム(10)の真空チャンバ(30)の内部に設けられたキャリアフレーム(42)内に挿入可能でありそこから取り出し可能であるビーム発生器モジュールとして形成され、また、このビーム発生器は、ビーム源(52)およびコリメータ積層体(70)を囲んでいるビーム発生器のチャンバ(51)を備えている。
d21. 特に付記d1〜付記d20のいずれか1つに係わる荷電粒子ビーム発生器(50)であって、前記コリメータ電極積層体(70)は、外部基準フレーム(42)に対してコリメータ電極積層体を支持するための積層体支持システム(93〜101c)を備え、また、前記発生器の真空チャンバ(51)は、突出支持部分が発生器の真空チャンバ(51)の外側の外部基準フレーム(42)に対して別個の支持界面を形成することが可能となるように、積層体支持システム(93〜101c)の突出支持部分(95、99〜100b)が貫通するように構成されたチャンバ開口部(132)を備えている。
d22. 付記d21に係わる荷電粒子ビーム発生器(50)であって、前記発生器の真空チャンバの外側と内側との間に真空バリアを形成するように、各チャンバ開口部(132)と、対応する突出支持部分(95、99〜100b)との間のスペースを封止するようにそれぞれが構成されたガスケット(98)を備えている。
d23. 特に付記d1乃至d22のいずれか1に係わる荷電粒子ビーム発生器(50)であって、内側にビーム源(52)を収容する源真空チャンバ(53)を備え、荷電粒子源(52)および源真空チャンバ(53)が、コリメータ電極積層体の上流で発生器の真空チャンバ(51)の内部に設けられ、積層体支持システム(93〜101c)が、積層体支持システム(93〜101c)上に源真空チャンバ(53)を直接的に支持するための源のチャンバ支持部材(101〜101c)を備えている。
d24. 付記1乃至23のいずれか1に係わる荷電粒子ビーム発生器(50)であって、前記有効ポンプ動作表面(122a、123a)の表面幅は、最低限でもコリメータ電極積層体(70)のほぼ直径(φc)のオーダの値を有している。
d25. ターゲット(31)を露光するための荷電粒子リソグラフィシステム(10)であって、
付記d1乃至d24のいずれか1に係わる荷電粒子ビーム(54)を発生させるための荷電粒子ビーム発生器(50)と、
前記荷電粒子ビームから複数の小ビームを形成するためのアパチャアレイ(58)と、
前記ターゲットの表面上に小ビームを投影するための小ビーム投影器(66)と
を備えている。
付記E
e1. コリメータ電極積層体(70)であって、このコリメータ電極積層体は
各々が、荷電粒子ビームの通過を可能にするための電極アパチャ(82)を有している電極本体(81)を備え、これら電極本体は、光軸と実質的に平行である軸方向(Z)に沿って相互に離間され、前記電極アパチャは、光軸に沿って同軸的にアラインメントされている、光軸(A)に沿って荷電粒子ビーム(54)をコリメートするための複数の積層されたコリメータ電極(71〜80)と、
外部基準フレーム(42)に対してコリメータ電極積層体を支持するように、前記コリメータ電極積層体の側方領域(75a、92b、97)に連結された積層体支持システム(93〜101c)と
を備えている。
e2. 付記1に係わるコリメータ電極積層体(70)であって、積層体支持システム(93〜96b)が、コリメータ電極積層体(70)の外周面に沿って分散された積層体支持部材(93〜101c)を備え、外周部が、光軸(A)の周りで角度方向(Φ)に延び、前記積層体支持部材は、外部基準フレーム(42)に対してコリメータ電極積層体を支持するように協働している。
e3. 付記e2に係わるコリメータ電極積層体(70)であって、各積層体支持部材(93〜101c)は、
コリメータ電極積層体の側方領域(75a、92b、97)に積層体支持部材を連結するための接合部(94〜94b)と、
外部基準フレーム(42)に積層体支持部材を連結するためのベース(95、99、99a〜99b)と、
接合部が径方向(R)においてベースに対して変位するのを可能にするための少なくとも1つの可撓性径方向たわみ部分(96a〜96b、100a〜100b)と
を備えている。
e4. 付記e2又はe3に係わるコリメータ電極積層体(70)であって、前記各積層体支持部材は、コリメータ電極積層体の中央領域(75a)に配置された中心のコリメータ電極(75)に連結された積層体支持脚部(93’〜101c’)を備えている。
e5. 10個の積層されたコリメータ電極(71’’〜80’’)を備えている付記e2又はe3に係わるコリメータ電極積層体(70’’)であって、各積層体支持部材は、
第2のコリメータ電極(72’’)又は第3のコリメータ電極(73’’)に連結された脚部材(93a’’)と、
第8のコリメータ電極(78’’)または第9のコリメータ電極(79’’)に連結されたさらなる脚部材(93c’’)と、
を備えている積層体支持脚部(93’’〜101c’’)を有している。
e6. 付記e1乃至e5のいずれか1に係わるコリメータ電極積層体(70)であって、支持システム(93〜101c)が、前記コリメータ電極積層体(70)の中央領域(75a)に連結されている。
e7. 付記e1乃至e6のいずれか1に係わるコリメータ電極積層体(70)であって、軸方向(Z)に沿って所定の相互距離をおいてコリメータ電極(71〜80)を位置決めするために電気絶縁材料のスペーサ構成体(89)をさらに備えている。
e8. 付記e7に係わるコリメータ電極積層体(70)であって、前記コリメータ電極(71〜80)の少なくとも1つは、電極外周面(85)に沿って3つの支持部分(86)を備え、各支持部分が、少なくとも1つのスペーサ構成体(89)を収容するように構成されている。
e9. 付記e8に係わるコリメータ電極積層体(70)であって、隣接したコリメータ電極(71〜80)の電極支持部分(86)および介在するスペーサ構成体(89)が、軸方向(Z)と平行に支持コラム(90)を規定している。ように軸方向にアラインメントされている。
e10. 付記e9に係わるコリメータ電極積層体(70)であって、前記支持コラム(90)の各々は、前記支持部分(86)と介在するスペーサ構成体(89)とを共に保持するためのクランプ留め部材(91〜91c)を備えている。
e11. 付記e10に係わるコリメータ電極積層体(70)であって、前記支持部分(86)および対応する支持コラム(90)のスペーサ構成体(89)は、クランプ留め部材(91〜91c)を収容する軸方向にアラインメントされた貫通穴を備え、クランプ留め部材は、軸方向(Z)と平行な支持コラム(90)に圧縮力をかけるためにプレテンション加工されている。
e12. 付記e8乃至e11のいずれか1に係わるコリメータ電極積層体(70)であって、前記コリメータ電極(71〜80)は、電極外周面(85)に沿って3つの径方向の可動電極支持部材(87)を備え、各電極支持部材は、対応する電極支持部分(86)に電極外周面を相互連結することにより、電極支持部分と電極外周面との間に熱膨張空間(88)を規定している。
e13. 付記e12に係わるコリメータ電極積層体(70)であって、前記電極支持部材(87)は、第1の端部で電極外周面(85)に連結され第2の端部で電極支持部分(86)に連結されている径方向の可動の細長いアーム部分を備え、アーム部分は、角度方向(Φ)に実質的に沿って延び、熱膨張空間(88)が、角度方向に実質的に沿ってやはり延びたスロットを形成している。
e14. 荷電粒子ビーム発生器(50)であって、この荷電粒子ビーム発生器は、
光軸(A)に沿って荷電粒子ビーム(54)を発生させるためのビーム源(52)と、
付記e1乃至e3のいずれか1に係わる積層体支持システム(93〜101c)を有しているコリメータ電極積層体(70)と
を備え、
第1のコリメータ電極(71)が、コリメータ積層体の上流端に設けられ、ビーム源が、第1のコリメータ電極の上流に設けられ、ビーム源(52)およびコリメータ電極(71〜80)の電極アパチャ(82)が、光軸に沿って同軸的にアラインメントされている。
e15. 付記e14に係わる荷電粒子ビーム発生器(50)であって、
内側にコリメータ電極積層体(70)を収容するための発生器の真空チャンバ(51)であって、発生器の真空チャンバは、突出支持部分が発生器の真空チャンバの外部の外部基準フレーム(42)との間に別個の支持界面を確立することが可能となるように、積層体支持システム(93〜101c)の突出支持部分(95、99〜100b)が貫通するように構成されたチャンバ開口部(132)を備えている真空チャンバと、
各チャンバ開口部(132)と対応する突出支持部分(95、99〜100b)との間のスペースを封止するようにそれぞれが構成されたガスケット(98)と
を備えている。
e16. ビーム発生器モジュールとして形成された付記e12乃至e15のいずれか1に係わる荷電粒子ビーム発生器(50)であって、ビーム発生器の真空チャンバ(51)が、荷電粒子リソグラフィシステム(10)の真空チャンバ(30)の内部に設けられたキャリアフレーム(42)に挿入可能であり、それにより支持可能であり、そこから取り出し可能である。
e17. 付記e12乃至e16のいずれか1つに係わる荷電粒子ビーム発生器(50)であって、
コリメータ電極積層体(70)の上流端に配置され、内側にビーム源(52)を収容するように構成された源のチャンバ(53)と、
積層体支持システム(93〜96b)上に源のチャンバ(53)を直接的に支持するための源のチャンバ支持部材(101〜101c)と
を備えている。
e18. ターゲット(31)を処理するための荷電粒子リソグラフィシステム(10)であって、この荷電粒子リソグラフィシステムは、
キャリアフレーム(42)を囲んでいる真空チャンバ(30)と、
前記キャリアフレームに収容され、付記e12乃至e17のいずれか1に係わる荷電粒子ビーム発生器(50)と、
を備え、
前記コリメータ積層体(70)は、キャリアフレーム上にコリメータ積層体を支持するために、第1の端部にてコリメータ積層体の中央領域(75a)に、および第2の端部にてキャリアフレームにそれぞれが連結された、3つの積層体支持部材(93〜101c)を備えている。

Claims (23)

  1. 荷電粒子リソグラフィシステム(10)で使用される荷電粒子ビーム発生器(50)であって、
    光軸(A)に沿って荷電粒子ビーム(54)を発生させるための荷電粒子ビーム源(52)と、
    前記光軸に沿ったコリメータ高さ(Hc)を有し、荷電粒子ビームをコリメートするためのコリメータ電極積層体(70)と、
    第1の真空を発生させ、そして荷電粒子ビーム源(52)を収容するための、ビーム源真空チャンバ(53)と、ここにおいて、前記荷電粒子ビーム源は、前記第1の真空内に前記荷電粒子ビーム源を位置させるために前記ビーム源真空チャンバの内部に位置され、
    第2の真空を発生させ、そして前記コリメータ電極積層体(70)と前記ビーム源真空チャンバ(53)とを収容するための発生器真空チャンバ(51)と、ここにおいて、前記ビーム源真空チャンバは、前記第2の真空内に前記ビーム源真空チャンバを位置させるために前記発生器真空チャンバの内部に位置され、とを具備し、
    前記コリメータ電極積層体(70)は、前記第2の真空内に前記コリメータ電極積層体を位置させるために前記発生器真空チャンバの内部で前記ビーム源真空チャンバ(53)の外に位置されている、荷電粒子ビーム発生器(50)。
  2. 前記ビーム源真空チャンバ(53)は、ビーム源真空チャンバ(53)と発生器真空チャンバ(51)との間に圧力差を生じさせるために少なくとも1つの源真空ポンプユニット(120)を囲んでいる請求項1に記載の荷電粒子ビーム発生器(50)。
  3. 前記発生器真空チャンバ(51)内に設けられた少なくとも1つの真空ポンプシステム(122,123)を更に具備している請求項1又は2に記載の荷電粒子ビーム発生器(50)。
  4. 前記少なくとも1つの真空ポンプシステム(122,123)は、前記コリメータ電極積層体(70)の外周面(85)から距離(ΔRp)の所で前記発生器真空チャンバ(51)内に設けられ、又、
    前記少なくとも1つの真空ポンプシステム(122,123)は、前記光軸(A)に対して実質的に平行に向かいあった有効ポンプ面(122a、123a)を有しており、有効ポンプ面は、前記コリメータ高さ(Hc)の少なくとも一部に及ぶ表面高さ(Hp)を有している、請求項3に記載の荷電粒子ビーム発生器(50)。
  5. 前記有効ポンプ面(122a、123a)の前記表面高さ(Hp)と表面幅の少なくとも一方は、最低限でもコリメータ電極積層体(70)の直径(φc)のオーダである値を有している請求項4に記載の荷電粒子ビーム発生器(50)。
  6. 前記少なくとも1つの真空ポンプシステム(122,123)は、軸方向(Z)に垂直な平面内で互いに隣接して、前記軸方向(Z)と実質的に平行に配置され、前記コリメータ高さ(Hc)に沿って前記各有効ポンプ面(122a、123a)を有して延びた、少なくとも4つのゲッタ(122、123)を備えている請求項3乃至5のいずれか1項に記載の荷電粒子ビーム発生器(50)。
  7. 前記少なくとも1つの真空ポンプシステム(122、123)と前記コリメータ電極積層体(70)の外周面(85)との間の距離(ΔRp)が、コリメータ電極積層体(70)の2つの隣接した電極間の電極間距離(Hd)よりも大きい請求項4又は5に記載の荷電粒子ビーム発生器(50)。
  8. 前記少なくとも1つの発生器真空チャンバ(51)の内部に配置され、選択的に解除可能な連結部により真空ポンプシステム(122、123)のポンプユニットを担持するように構成された、ポンプ支持構成体(124)を備えている請求項3乃至7のいずれか1項に記載の荷電粒子ビーム発生器(50)。
  9. 前記コリメータ電極積層体(70)は、コリメータ外周面に沿って3つの異なる角度コラム範囲(ΔΦ1、ΔΦ2、ΔΦ3)にわたり延びた3つの支持コラム(90)を備え、前記真空ポンプシステム(122、123)の有効ポンプ面(122a、123a)は、前記3つの角度コラム範囲のいずれとも重畳部を有さない角度ポンプ範囲(ΔΦp)で広がっている請求項3乃至8のいずれか1項に記載の荷電粒子ビーム発生器(50)。
  10. 前記有効ポンプ面(122a、123a)が広がっている前記角度ポンプ範囲(ΔΦp)は、2つの支持コラム(90)間に規定されている角度範囲と大部分において一致している請求項9に記載の荷電粒子ビーム発生器(50)。
  11. 前記コリメータ電極積層体(70)は、複数のコリメータ電極(71〜80)を備え、各コリメータ電極は、電位を持続させるための電極本体(81)を備え、荷電粒子ビーム(54)への通路を与えるためのアパチャ(82)を備えている請求項1乃至10のいずれか1項に記載の荷電粒子ビーム発生器(50)。
  12. 前記複数のコリメータ電極(71〜80)は、軸方向(Z)に沿って配置された、
    コリメータ電極積層体(70)の上流端に設けられた第1のコリメータ電極(71)と、
    コリメータ電極積層体(70)の下流端に設けられた最終のコリメータ電極(80)と、
    前記第1のコリメータ電極(71)と最終のコリメータ電極(80)との間に設けられた少なくとも1つの中間の電極(72、73、74、76、77、78、79)とを有している請求項11に記載の荷電粒子ビーム発生器(50)。
  13. 前記少なくとも1つの中間のコリメータ電極は、厚さ(He)を有し、又、複数のコリメータ電極が、光軸(A)に沿って所定の距離(Hd)をおいて相互に離間され、所定の相互距離(Hd)が、0.75・He≦Hd≦1.5・Heにより規定されている請求項12に記載の荷電粒子ビーム発生器(50)。
  14. 前記コリメータ電極(71、72、73、74、76、77、78、79、80)は、電極外周面(85)に沿って3つの各角度範囲(ΔΦ1、ΔΦ2、ΔΦ3)で延びた3つの支持部分(86)を備え、各支持部分(86)は、所定の距離(Hd)で隣接する電極本体(81)を相互に離間させるための少なくとも1つのスペーサ構成体(89)を収容するように構成されている請求項11乃至13のいずれか1項に記載の荷電粒子ビーム発生器(50)。
  15. 前記隣接したコリメータ電極の支持部分(86)と介在するスペーサ構成体(89)とは、3つの角度コラム範囲(ΔΦ1、ΔΦ2、ΔΦ3)の中の1つで軸方向(Z)に沿って支持コラム(90)を規定するように同軸的にアラインメントされている請求項14に記載の荷電粒子ビーム発生器(50)。
  16. 前記コリメータ電極の少なくとも2つは、冷却用液体(102)を送るための冷却用導管(105)を備え、各冷却用導管は、液体供給構成体に連結するための第1の開口(103)と液体排出構成体に連結するための第2の開口(104)とを備え、また、前記コリメータ電極積層体が、2つのコリメータ電極のうち一方のコリメータ電極の第1の開口に、他方のコリメータ電極(71)の第2の開口を連結するための中間管状部材(110)を備えている請求項11乃至15のいずれか1項に記載の荷電粒子ビーム発生器(50)。
  17. 前記複数のコリメータ電極(71〜80)は、荷電粒子源(52)に対面する上面(83)と、荷電粒子源から離れる方向に向く下面(84)とを備えているリング形状電極本体(81、81’)を有し、前記下面と上面とは、電極外周面(85)を規定している側部表面により相互に連結され、第1の開口(103)および第2の開口(104)が、前記側部表面に配置されている請求項16に記載の荷電粒子ビーム発生器(50)。
  18. 前記第1の開口(103)と第2の開口(104)とは、コリメータ電極(71〜80)の電極外周面(85)の同一側面に配置されている請求項17に記載の荷電粒子ビーム発生器(50)。
  19. 前記中間管状部材(110)は、電極外周面(85)に設けられて、前記電極外周面(85)に沿って管角度範囲(ΔΦt)で延び、また、前記有効ポンプ面(122a、123a)の角度ポンプ範囲(ΔΦp)は、導管角度範囲との重畳部を有していない請求項9を引用する請求項16乃至18のいずれか1項に記載の荷電粒子ビーム発生器(50)。
  20. 前記冷却用導管(105)は、コリメータ電極本体(81)内で一体化された導管により形成されている請求項16乃至19のいずれか1項に記載の荷電粒子ビーム発生器(50)。
  21. この荷電粒子ビーム発生器(50)は、荷電粒子リソグラフィシステム(10)の真空チャンバ(30)の内部に設けられたキャリアフレーム(42)に挿入可能であり、又、そこから取り出し可能であるビーム発生器モジュールとして形成されている請求項1乃至20のいずれか1項に記載の荷電粒子ビーム発生器(50)。
  22. 前記コリメータ電極積層体(70)の上流端に配置され、内側に荷電粒子ビーム源(52)を収容するように構成された源のチャンバ(53)と、
    積層体支持システム(93〜96b)上に源のチャンバ(53)を直接的に支持するための源のチャンバ支持部材(101〜101c)と
    を備えている。請求項1乃至21のいずれか1項に記載の荷電粒子ビーム発生器(50)。
  23. ターゲット(31)を露光するための荷電粒子リソグラフィシステム(10)であって、
    荷電粒子ビーム(54)を発生させるための請求項1乃至22のいずれか1項に記載の荷電粒子ビーム発生器(50)と、
    荷電粒子ビームから複数の小ビームを形成するためのアパチャアレイ(58)と、
    前記ターゲット(31)の表面に、前記複数の小ビームを投影するための小ビーム投影器(66)とを備えている、荷電粒子リソグラフィシステム(10)。
JP2016089405A 2013-11-14 2016-04-27 多電極積層構成体 Active JP6345731B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361904057P 2013-11-14 2013-11-14
US61/904,057 2013-11-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016505865A Division JP5932185B1 (ja) 2013-11-14 2014-11-14 多電極積層構成体

Publications (2)

Publication Number Publication Date
JP2016173992A JP2016173992A (ja) 2016-09-29
JP6345731B2 true JP6345731B2 (ja) 2018-06-20

Family

ID=51900874

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2016505865A Active JP5932185B1 (ja) 2013-11-14 2014-11-14 多電極積層構成体
JP2015562267A Pending JP2016510165A (ja) 2013-11-14 2014-11-14 電極冷却装置
JP2015559529A Active JP6022717B2 (ja) 2013-11-14 2014-11-14 多電極電子光学系
JP2016089405A Active JP6345731B2 (ja) 2013-11-14 2016-04-27 多電極積層構成体
JP2016096068A Active JP6073518B2 (ja) 2013-11-14 2016-05-12 電極冷却装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2016505865A Active JP5932185B1 (ja) 2013-11-14 2014-11-14 多電極積層構成体
JP2015562267A Pending JP2016510165A (ja) 2013-11-14 2014-11-14 電極冷却装置
JP2015559529A Active JP6022717B2 (ja) 2013-11-14 2014-11-14 多電極電子光学系

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016096068A Active JP6073518B2 (ja) 2013-11-14 2016-05-12 電極冷却装置

Country Status (9)

Country Link
US (3) US9905322B2 (ja)
EP (3) EP3069366B1 (ja)
JP (5) JP5932185B1 (ja)
KR (6) KR101722498B1 (ja)
CN (6) CN107507750B (ja)
NL (8) NL2013816C2 (ja)
RU (2) RU2644388C2 (ja)
TW (2) TWI614788B (ja)
WO (3) WO2015071439A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10586625B2 (en) 2012-05-14 2020-03-10 Asml Netherlands B.V. Vacuum chamber arrangement for charged particle beam generator
US11348756B2 (en) * 2012-05-14 2022-05-31 Asml Netherlands B.V. Aberration correction in charged particle system
JP5932185B1 (ja) * 2013-11-14 2016-06-08 マッパー・リソグラフィー・アイピー・ビー.ブイ. 多電極積層構成体
US9966159B2 (en) * 2015-08-14 2018-05-08 Teledyne Dalsa, Inc. Variable aperture for controlling electromagnetic radiation
SG10201906362TA (en) 2015-10-07 2019-08-27 Battelle Memorial Institute Method and Apparatus for Ion Mobility Separations Utilizing Alternating Current Waveforms
US9807864B1 (en) * 2016-08-04 2017-10-31 Varian Semiconductor Equipment Associates Inc. Electrode, accelerator column and ion implantation apparatus including same
US10663746B2 (en) 2016-11-09 2020-05-26 Advanced Semiconductor Engineering, Inc. Collimator, optical device and method of manufacturing the same
JP6741879B2 (ja) * 2017-04-11 2020-08-19 エーエスエムエル ネザーランズ ビー.ブイ. 荷電粒子源モジュール、荷電粒子源モジュールを備えた露光システム、荷電粒子源配置、半導体デバイスを製造する方法、及びターゲットを検査する方法
FR3069100B1 (fr) * 2017-07-11 2019-08-23 Thales Source generatrice de rayons ionisants compacte, ensemble comprenant plusieurs sources et procede de realisation de la source
JP6819509B2 (ja) * 2017-08-10 2021-01-27 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置
US10692710B2 (en) 2017-08-16 2020-06-23 Battelle Memorial Institute Frequency modulated radio frequency electric field for ion manipulation
GB2579314A (en) * 2017-08-16 2020-06-17 Battelle Memorial Institute Methods and systems for ion manipulation
US10804089B2 (en) 2017-10-04 2020-10-13 Batelle Memorial Institute Methods and systems for integrating ion manipulation devices
US20190272970A1 (en) * 2018-03-02 2019-09-05 AcceleRAD Technologies, Inc. Static collimator for reducing spot size of an electron beam
JP7140839B2 (ja) 2018-10-31 2022-09-21 東芝エネルギーシステムズ株式会社 荷電粒子輸送システム及びその据え付け方法
EP3712902B1 (de) * 2019-03-18 2021-05-26 Siemens Healthcare GmbH Filtersystem zur lokalen abschwächung von röntgenstrahlung, röntgenapparat und verfahren zur lokalen veränderung der intensität von röntgenstrahlung
EP3761340A1 (en) * 2019-07-02 2021-01-06 ASML Netherlands B.V. Apparatus for and method of local phase control of a charged particle beam
EP3923315B1 (en) * 2020-06-11 2024-01-24 ASML Netherlands B.V. Manipulator, manipulator array, charged particle tool, multibeam charged particle tool, and method of manipulating a charged particle beam
US11177114B1 (en) * 2020-09-15 2021-11-16 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Electrode arrangement, contact assembly for an electrode arrangement, charged particle beam device, and method of reducing an electrical field strength in an electrode arrangement
CN114649178A (zh) * 2020-12-18 2022-06-21 中微半导体设备(上海)股份有限公司 一种下电极组件及等离子体处理装置
WO2023197131A1 (zh) * 2022-04-12 2023-10-19 华为技术有限公司 一种可调整的多电极准直装置

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL73982C (nl) * 1949-09-26 1954-01-15 Philips Nv inrichting voor het opwekken va roentgenstralen
US2868950A (en) * 1956-11-13 1959-01-13 Union Carbide Corp Electric metal-arc process and apparatus
US2985791A (en) * 1958-10-02 1961-05-23 Hughes Aircraft Co Periodically focused severed traveling-wave tube
US3034009A (en) * 1960-01-18 1962-05-08 Gen Electric Pin seal accelerator tubes
US3516012A (en) * 1968-04-22 1970-06-02 Perkin Elmer Corp Argon laser
US3688203A (en) * 1970-11-10 1972-08-29 Kev Electronics Corp Scanning system for ion implantation accelerators
US3702951A (en) * 1971-11-12 1972-11-14 Nasa Electrostatic collector for charged particles
FR2217628B1 (ja) * 1973-02-15 1975-03-07 Commissariat Energie Atomique
DE2307822C3 (de) * 1973-02-16 1982-03-18 Siemens AG, 1000 Berlin und 8000 München Supraleitendes Linsensystem für Korpuskularstrahlung
US4182927A (en) * 1978-08-04 1980-01-08 Dixie Bronze Company Electrode holders having differential clamping devices
NL7906633A (nl) * 1979-09-05 1981-03-09 Philips Nv Anti-contaminatie diafragma voor elektronen- straalapparaat.
JPS56134462A (en) 1980-03-26 1981-10-21 Jeol Ltd Electron beam system
US4419585A (en) * 1981-02-26 1983-12-06 Massachusetts General Hospital Variable angle slant hole collimator
JPS57199944U (ja) * 1981-06-17 1982-12-18
JPS59178725A (ja) * 1983-03-29 1984-10-11 Toshiba Corp 荷電ビ−ム露光装置
US4606892A (en) * 1984-06-26 1986-08-19 Bruno Bachhofer Ozone generator of stack-type design, employing round plate-electrodes
JPS62272444A (ja) * 1986-05-20 1987-11-26 Fujitsu Ltd イオン注入用タ−ゲツト機構
JPS62296358A (ja) 1986-06-16 1987-12-23 Nissin Electric Co Ltd イオンビ−ム装置
JPH02215099A (ja) 1989-02-16 1990-08-28 Toshiba Corp イオン加速電極板の製作方法
EP0405855A3 (en) * 1989-06-30 1991-10-16 Hitachi, Ltd. Ion implanting apparatus and process for fabricating semiconductor integrated circuit device by using the same apparatus
US5136166A (en) * 1990-05-17 1992-08-04 Etec Systems, Inc. Temperature stable magnetic deflection assembly
JP2899445B2 (ja) * 1991-05-30 1999-06-02 富士通株式会社 電子ビーム露光装置
US5264706A (en) * 1991-04-26 1993-11-23 Fujitsu Limited Electron beam exposure system having an electromagnetic deflector configured for efficient cooling
US5557105A (en) * 1991-06-10 1996-09-17 Fujitsu Limited Pattern inspection apparatus and electron beam apparatus
JPH06105598B2 (ja) * 1992-02-18 1994-12-21 工業技術院長 荷電ビーム用レンズ
US5270549A (en) * 1992-06-08 1993-12-14 Digital Scintigraphics, Inc. Annular cylindrical multihole collimator for a radioisotope camera and method of making same
FR2702593B1 (fr) * 1993-03-09 1995-04-28 Commissariat Energie Atomique Structure de guidage de particules chargées en électricité.
GB9320662D0 (en) * 1993-10-07 1993-11-24 Atomic Energy Authority Uk Corona discharge reactor
JPH088097A (ja) * 1994-06-20 1996-01-12 Nissin High Voltage Co Ltd 静電型イオン加速装置
JPH08148105A (ja) * 1994-11-18 1996-06-07 Nissin Electric Co Ltd イオン源装置
GB9515090D0 (en) * 1995-07-21 1995-09-20 Applied Materials Inc An ion beam apparatus
DE69738276T2 (de) * 1996-03-04 2008-04-03 Canon K.K. Elektronenstrahl-Belichtungsgerät, Belichtungsverfahren und Verfahren zur Erzeugung eines Objekts
JP3728015B2 (ja) 1996-06-12 2005-12-21 キヤノン株式会社 電子ビーム露光システム及びそれを用いたデバイス製造方法
JP3796317B2 (ja) * 1996-06-12 2006-07-12 キヤノン株式会社 電子ビーム露光方法及びそれを用いたデバイス製造方法
DE69634602T2 (de) * 1996-09-19 2006-02-09 High Voltage Engineering Europa B.V. Herstellungsverfahren von einem Beschleunigerrohr
US5981954A (en) 1997-01-16 1999-11-09 Canon Kabushiki Kaisha Electron beam exposure apparatus
GB9719858D0 (en) * 1997-09-19 1997-11-19 Aea Technology Plc Corona discharge reactor
JPH11149882A (ja) * 1997-11-13 1999-06-02 Nissin Electric Co Ltd イオン源用電極
JP3504494B2 (ja) * 1998-03-20 2004-03-08 株式会社荏原製作所 ビーム発生装置
US6053241A (en) * 1998-09-17 2000-04-25 Nikon Corporation Cooling method and apparatus for charged particle lenses and deflectors
EP1105908B1 (en) * 1999-06-23 2005-03-02 Applied Materials, Inc. Ion beam generation apparatus
US6185278B1 (en) * 1999-06-24 2001-02-06 Thermo Electron Corp. Focused radiation collimator
JP3763446B2 (ja) * 1999-10-18 2006-04-05 キヤノン株式会社 静電レンズ、電子ビーム描画装置、荷電ビーム応用装置、および、デバイス製造方法
JP2001281398A (ja) 2000-03-30 2001-10-10 Toshiba Corp イオン源電極
US6887440B2 (en) * 2000-11-16 2005-05-03 Delphi Technologies, Inc. Edge-connected non-thermal plasma exhaust after-treatment device
US20020148971A1 (en) * 2001-03-05 2002-10-17 Michael Sogard Lens assembly for electron beam column
CN1314300C (zh) * 2001-06-07 2007-05-02 普莱克斯有限责任公司 星形箍缩的x射线和远紫外线光子源
JP2003045789A (ja) 2001-08-02 2003-02-14 Canon Inc 描画装置及び描画方法
WO2003075328A1 (fr) * 2002-03-01 2003-09-12 Nikon Corporation Procede de reglage d'un systeme optique de projection, procede de prediction, procede d'evaluation, procede de reglage, procede d'exposition, dispositif d'exposition, programme et procede de fabrication dudit dispositif
JP4392346B2 (ja) * 2002-06-15 2009-12-24 エヌエフエイビー・リミテッド 粒子ビーム発生装置
JP3834271B2 (ja) 2002-07-16 2006-10-18 キヤノン株式会社 マルチ荷電ビームレンズ及びこれを用いた荷電粒子線露光装置ならびにデバイス製造方法
EP2434522B8 (en) 2002-07-16 2014-07-23 Canon Kabushiki Kaisha Multi-charged beam lens, charged-particle beam exposure apparatus using the same, and device manufacturing method
DE10233002B4 (de) 2002-07-19 2006-05-04 Leo Elektronenmikroskopie Gmbh Objektivlinse für ein Elektronenmikroskopiesystem und Elektronenmikroskopiesystem
EP1389797B1 (en) * 2002-08-13 2008-10-08 Carl Zeiss NTS GmbH Particle-optical apparatus and its use as an electron microscopy system
US6849846B2 (en) * 2002-08-23 2005-02-01 Agilent Technologies, Inc. Precision multiple electrode ion mirror
JP4143373B2 (ja) 2002-10-09 2008-09-03 株式会社日立ハイテクノロジーズ 電子銃、電子ビーム描画装置、及び電子ビーム描画方法
EP2302459A3 (en) * 2002-10-25 2011-04-06 Mapper Lithography Ip B.V. Lithography system
CN101414127A (zh) * 2002-10-30 2009-04-22 迈普尔平版印刷Ip有限公司 电子束曝光系统
GB2397691B (en) * 2003-01-24 2005-08-10 Leica Microsys Lithography Ltd Cooling of a device for influencing an electron beam
US7129502B2 (en) 2003-03-10 2006-10-31 Mapper Lithography Ip B.V. Apparatus for generating a plurality of beamlets
ATE524822T1 (de) 2003-05-28 2011-09-15 Mapper Lithography Ip Bv Belichtungsverfahren für strahlen aus geladenen teilchen
EP1491955A1 (en) * 2003-06-27 2004-12-29 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
JP4664293B2 (ja) 2003-07-30 2011-04-06 マッパー・リソグラフィー・アイピー・ビー.ブイ. 変調器回路
JP4459568B2 (ja) * 2003-08-06 2010-04-28 キヤノン株式会社 マルチ荷電ビームレンズおよびそれを用いた荷電ビーム露光装置
JP2005147967A (ja) * 2003-11-19 2005-06-09 Nhv Corporation 電子線照射装置用加速管の製造方法
US7405401B2 (en) * 2004-01-09 2008-07-29 Micromass Uk Limited Ion extraction devices, mass spectrometer devices, and methods of selectively extracting ions and performing mass spectrometry
US7342236B2 (en) * 2004-02-23 2008-03-11 Veeco Instruments, Inc. Fluid-cooled ion source
CN101019203B (zh) * 2004-05-17 2010-12-22 迈普尔平版印刷Ip有限公司 带电粒子束曝光系统
WO2006046507A1 (ja) 2004-10-26 2006-05-04 Nikon Corporation 光学装置、鏡筒、露光装置、及びデバイスの製造方法
JP3929459B2 (ja) * 2004-11-11 2007-06-13 株式会社日立ハイテクノロジーズ 荷電粒子線露光装置
EP1753010B1 (en) * 2005-08-09 2012-12-05 Carl Zeiss SMS GmbH Particle-optical system
US7709815B2 (en) 2005-09-16 2010-05-04 Mapper Lithography Ip B.V. Lithography system and projection method
US7345287B2 (en) * 2005-09-30 2008-03-18 Applied Materials, Inc. Cooling module for charged particle beam column elements
US7514676B1 (en) * 2005-09-30 2009-04-07 Battelle Memorial Insitute Method and apparatus for selective filtering of ions
WO2007084880A2 (en) 2006-01-13 2007-07-26 Veeco Instruments Inc. Ion source with removable anode assembly
EP1982346A4 (en) * 2006-02-02 2014-05-07 Cebt Co Ltd DEVICE FOR MAINTAINING DIFFERENTIAL PRESSURE GRADES FOR AN ELECTRONIC COLUMN
GB0608470D0 (en) * 2006-04-28 2006-06-07 Micromass Ltd Mass spectrometer
DE602007011888D1 (de) * 2007-03-14 2011-02-24 Integrated Circuit Testing Kühlung der Spule einer Magnetlinse
DE102007016316A1 (de) * 2007-04-04 2008-10-09 Siemens Ag Verfahren und System zum Trennen einer Vielzahl von keramischen Bauelementen aus einem Bauelementeblock
US7781728B2 (en) * 2007-06-15 2010-08-24 Thermo Finnigan Llc Ion transport device and modes of operation thereof
US8111025B2 (en) * 2007-10-12 2012-02-07 Varian Medical Systems, Inc. Charged particle accelerators, radiation sources, systems, and methods
JP5361171B2 (ja) 2007-11-15 2013-12-04 株式会社日立ハイテクノロジーズ 電磁コイル
JP5042785B2 (ja) 2007-11-16 2012-10-03 新日本製鐵株式会社 連続鋳造用鋳型の短辺テーパー制御方法
KR101481950B1 (ko) 2008-02-26 2015-01-14 마퍼 리쏘그라피 아이피 비.브이. 투사 렌즈 배열체
EP2260499B1 (en) 2008-02-26 2016-11-30 Mapper Lithography IP B.V. Projection lens arrangement
US8445869B2 (en) 2008-04-15 2013-05-21 Mapper Lithography Ip B.V. Projection lens arrangement
CN101981650B (zh) 2008-03-26 2013-05-01 株式会社堀场制作所 带电粒子束用静电透镜
ITGE20080036A1 (it) 2008-04-30 2009-11-01 Dott Ing Mario Cozzani Srl Metodo per il controllo della posizione di un attuatore elettromeccanico per valvole di compressori alternativi.
JP5743886B2 (ja) 2008-06-04 2015-07-01 マッパー・リソグラフィー・アイピー・ビー.ブイ. ターゲットを露光するための方法およびシステム
WO2010082764A2 (en) 2009-01-13 2010-07-22 Samsung Electronics Co., Ltd. Method of dirty paper coding using nested lattice codes
EP2399270B1 (en) * 2009-02-22 2013-06-12 Mapper Lithography IP B.V. Charged particle lithography apparatus
RU87565U1 (ru) * 2009-06-04 2009-10-10 Общество с ограниченной ответственностью "АНАЛИТИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ" Фотоэмиссионный электронный спектрометр
WO2010144267A1 (en) * 2009-06-12 2010-12-16 Carl Zeiss Nts, Llc Method and system for heating a tip apex of a charged particle source
KR20120098627A (ko) * 2009-09-18 2012-09-05 마퍼 리쏘그라피 아이피 비.브이. 다중 빔을 갖는 대전 입자 광학 시스템
JP2011076937A (ja) * 2009-09-30 2011-04-14 Toshiba Corp イオン源用電極
US8139717B2 (en) * 2009-10-02 2012-03-20 Morpho Detection, Inc. Secondary collimator and method of making the same
US8642974B2 (en) * 2009-12-30 2014-02-04 Fei Company Encapsulation of electrodes in solid media for use in conjunction with fluid high voltage isolation
US8987678B2 (en) * 2009-12-30 2015-03-24 Fei Company Encapsulation of electrodes in solid media
JP2012023316A (ja) * 2010-07-16 2012-02-02 Canon Inc 荷電粒子線描画装置および物品の製造方法
US8736177B2 (en) * 2010-09-30 2014-05-27 Fei Company Compact RF antenna for an inductively coupled plasma ion source
US8586949B2 (en) * 2010-11-13 2013-11-19 Mapper Lithography Ip B.V. Charged particle lithography system with intermediate chamber
NL2007604C2 (en) * 2011-10-14 2013-05-01 Mapper Lithography Ip Bv Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
NL2007392C2 (en) * 2011-09-12 2013-03-13 Mapper Lithography Ip Bv Assembly for providing an aligned stack of two or more modules and a lithography system or a microscopy system comprising such an assembly.
US8217359B1 (en) * 2011-07-11 2012-07-10 Jefferson Science Associates, Llc Collimator with attachment mechanism and system
US8642955B2 (en) * 2011-08-18 2014-02-04 Brigham Young University Toroidal ion trap mass analyzer with cylindrical electrodes
JP5813123B2 (ja) * 2011-09-30 2015-11-17 京セラ株式会社 静電レンズおよびそれを用いた荷電粒子ビーム装置
US8637838B2 (en) * 2011-12-13 2014-01-28 Axcelis Technologies, Inc. System and method for ion implantation with improved productivity and uniformity
US9000394B2 (en) 2011-12-20 2015-04-07 Hermes Microvision, Inc. Multi-axis magnetic lens for focusing a plurality of charged particle beams
GB201201403D0 (en) * 2012-01-27 2012-03-14 Thermo Fisher Scient Bremen Multi-reflection mass spectrometer
ES2683188T3 (es) * 2012-03-13 2018-09-25 View, Inc. Mitigación estenopeica para dispositivos ópticos
JP2015511069A (ja) 2012-03-19 2015-04-13 ケーエルエー−テンカー コーポレイション 柱で支持されたマイクロ電子レンズアレイ
JP5973061B2 (ja) * 2012-05-14 2016-08-23 マッパー・リソグラフィー・アイピー・ビー.ブイ. 荷電粒子マルチ小ビームリソグラフィシステム及び冷却装置製造方法
KR20140055318A (ko) * 2012-10-31 2014-05-09 삼성전자주식회사 콜리메이터 모듈, 콜리메이터 모듈을 포함하는 방사선 검출 장치, 콜리메이터 모듈을 포함하는 방사선 촬영 장치 및 방사선 촬영 장치의 제어 방법
JP5932185B1 (ja) * 2013-11-14 2016-06-08 マッパー・リソグラフィー・アイピー・ビー.ブイ. 多電極積層構成体

Also Published As

Publication number Publication date
WO2015071440A1 (en) 2015-05-21
CN105874556A (zh) 2016-08-17
NL2013817A (en) 2015-05-19
EP3069366B1 (en) 2022-01-05
NL2019099B1 (en) 2018-04-16
KR20230056063A (ko) 2023-04-26
KR101722617B1 (ko) 2017-04-03
US9355751B2 (en) 2016-05-31
NL2013817C2 (en) 2015-07-21
CN108962708A (zh) 2018-12-07
WO2015071440A4 (en) 2015-07-30
TWI614788B (zh) 2018-02-11
CN109637921A (zh) 2019-04-16
TWI641017B (zh) 2018-11-11
NL2013816A (en) 2015-05-19
US9905322B2 (en) 2018-02-27
NL2013813A (en) 2015-05-19
JP2016173992A (ja) 2016-09-29
NL2015141A (en) 2016-07-07
JP2016508664A (ja) 2016-03-22
US20150137010A1 (en) 2015-05-21
JP2016510165A (ja) 2016-04-04
JP6022717B2 (ja) 2016-11-09
RU2621290C1 (ru) 2017-06-01
CN105874559A (zh) 2016-08-17
KR20160086390A (ko) 2016-07-19
NL2017067A (en) 2016-10-10
US20150136995A1 (en) 2015-05-21
WO2015071438A1 (en) 2015-05-21
KR102368876B1 (ko) 2022-03-03
CN107507750A (zh) 2017-12-22
RU2016123059A (ru) 2017-12-18
TW201528311A (zh) 2015-07-16
JP5932185B1 (ja) 2016-06-08
TW201810342A (zh) 2018-03-16
EP3069369A1 (en) 2016-09-21
CN105874560A (zh) 2016-08-17
KR101722498B1 (ko) 2017-04-18
KR20170038118A (ko) 2017-04-05
NL2015141B1 (en) 2016-08-01
NL2017067B1 (en) 2017-07-21
KR20160086391A (ko) 2016-07-19
KR102122474B1 (ko) 2020-06-15
RU2644388C2 (ru) 2018-02-12
JP2016181514A (ja) 2016-10-13
NL2013814B1 (en) 2016-05-10
NL2013816C2 (en) 2015-07-21
NL2019099A (en) 2017-08-21
WO2015071438A4 (en) 2015-08-27
NL2013813B1 (en) 2016-05-10
KR20160079885A (ko) 2016-07-06
EP3069368A1 (en) 2016-09-21
WO2015071439A4 (en) 2015-07-30
NL2013815C2 (en) 2015-07-21
CN105874559B (zh) 2018-11-23
KR20220030316A (ko) 2022-03-10
KR102523497B1 (ko) 2023-04-21
NL2013814A (en) 2015-05-19
CN107507750B (zh) 2020-02-07
NL2013815A (en) 2015-05-19
US20150137009A1 (en) 2015-05-21
US9165693B2 (en) 2015-10-20
JP6073518B2 (ja) 2017-02-01
CN105874560B (zh) 2018-07-20
CN109637921B (zh) 2021-10-26
EP3069366A1 (en) 2016-09-21
JP2016519840A (ja) 2016-07-07
EP3069368B1 (en) 2021-01-06
CN105874556B (zh) 2017-12-12
WO2015071439A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP6345731B2 (ja) 多電極積層構成体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180523

R150 Certificate of patent or registration of utility model

Ref document number: 6345731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250