WO2023197131A1 - 一种可调整的多电极准直装置 - Google Patents

一种可调整的多电极准直装置 Download PDF

Info

Publication number
WO2023197131A1
WO2023197131A1 PCT/CN2022/086235 CN2022086235W WO2023197131A1 WO 2023197131 A1 WO2023197131 A1 WO 2023197131A1 CN 2022086235 W CN2022086235 W CN 2022086235W WO 2023197131 A1 WO2023197131 A1 WO 2023197131A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
charged particle
electrode
electrodes
collimator
Prior art date
Application number
PCT/CN2022/086235
Other languages
English (en)
French (fr)
Inventor
黎琼奔
李梦杰
张超
贺佳坤
赵冲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/086235 priority Critical patent/WO2023197131A1/zh
Publication of WO2023197131A1 publication Critical patent/WO2023197131A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Definitions

  • the present invention relates to the field of particle optics, and in particular, to a multi-electrode collimation device and a charged particle system using the multi-electrode collimation device.
  • the particle system since the particles used (such as electrons, ions, etc.) often have shorter wavelengths, when the particle system is applied to fields such as microscopy imaging, it can provide better resolution than traditional optical systems.
  • the particle system can also be used in semiconductor process defect detection, mask inspection, electron beam exposure and other fields, and has good accuracy and resolution.
  • the design of the particle system needs to be flexible and adjustable.
  • current particle systems still suffer from many limitations, including the design of collimators. For example, existing collimator designs have weak capabilities in adjusting beam spot size (i.e., resolution), adjusting beam current, and optimizing aberrations. Therefore, improving the design of the collimator is beneficial to enhancing the particle system's ability to adjust resolution, beam current, and aberration.
  • Embodiments of the present application provide a charged particle beam system to enhance the particle system's ability to adjust the beam spot size and balance the aberration and high voltage requirements of the system under the same focusing capabilities.
  • inventions of the present application provide a charged particle beam system.
  • the device includes: a charged particle source for generating a charged particle beam; and an adjustable collimating lens for collimating the charged particle beam, wherein,
  • the adjustable collimating lens includes axially distributed multi-level electrodes.
  • Each level electrode in the multi-level electrode forms an electrode hole for the charged particle beam to pass through.
  • the size of the electrode holes of the multi-stage electrode increases sequentially, and some of the electrodes in the multi-stage electrode are configured to be powered independently to provide different electrode combinations for collimation of the charged particle beam.
  • the charged particle beam system adjusts the position of the main plane by configuring different adjustment voltages, thereby changing the beam spot size of the charged particle beam, and while maintaining the same convergence capacity, due to the expanded hole structure, Aberrations can be optimized to balance the aberrations and high voltage requirements of the system.
  • each of the multi-stage electrodes is a ring electrode.
  • the size change of the electrode hole is a stepwise increase or a stepwise linear increase along the forward direction of the charged particle beam.
  • the aberration of the system can be optimized more obviously and the resolution of the system can be improved.
  • the plurality of electrodes are special-shaped electrodes; wherein the upper plane of the electrode hole on each special-shaped electrode is smaller than the lower plane along the forward direction of the charged particle beam.
  • the electrode plate By changing the electrode plate to a special-shaped electrode, the aberration of the system is further optimized and the resolution of the system is improved.
  • the electrode holes on the plurality of special-shaped electrodes gradually increase in size along each plane in the forward direction of the charged particle beam.
  • the aberration of the system can be further optimized and the resolution of the system can be improved.
  • the present application provides a charged particle beam application system.
  • the charged particle beam system includes the charged particle beam system provided in any implementation manner of the above-mentioned aspect, especially the adjustable collimating lens therein, for Generates a beam of charged particles.
  • the charged particle beam application system provided by the embodiment of the present application includes the charged particle beam system of the embodiment of the first aspect. Therefore, the charged particle beam system provided by the embodiment of the present application can solve the same technical problem as the technical solution of the first aspect, and To achieve the same expected effect, we will not go into details here.
  • the charged particle beam application system is a charged particle beam inspection system, such as a scanning electron microscope.
  • the charged particle beam inspection system also includes: A deflector for deflecting the charged particle beam, a stage for placing the object to be inspected, and a detector, wherein the charged particle beam generated by the charged particle beam system and deflected by the deflector is focused on the object to be inspected; the detector is used for detection Secondary charged particles generated by a charged particle beam from the object to be inspected to produce a signal corresponding to the secondary charged particles.
  • the above-mentioned charged particle beam system is applied in a scanning electron microscope, which can have a larger beam spot size adjustment range; and with the same focusing ability, the high voltage demand and aberration can be balanced by adjusting the voltage configuration. It can adapt to different detection resolution requirements and optimize the balance between detection time and energy consumption.
  • the charged particle beam application system is a charged particle beam lithography system, such as an electron beam exposure machine.
  • the charged particle beam lithography system also includes: A deflector used to deflect the charged particle beam and a stage used to place the object to be inspected.
  • the charged particle beam generated by the charged particle beam system and deflected by the deflector is focused on the object to be engraved coated with anti-corrosion agent.
  • a particle beam spot is formed on the object to be carved.
  • the above-mentioned charged particle beam system is applied in an electron beam exposure machine.
  • the charged particle beam generated by the charged particle beam system has a larger beam spot size adjustment range, and with the same focusing ability, it can Balance the exposure machine's high voltage needs and aberrations by adjusting the voltage configuration. It can be adapted to different application scenarios and optimize the balance between engraving time and energy consumption.
  • Figure 1 is a schematic cross-sectional structural diagram of a particle beam generation system provided by an embodiment of the present application
  • Figure 2 is a schematic cross-sectional structural diagram of a collimator provided by an embodiment of the present application.
  • Figure 3 is a schematic cross-sectional structural diagram of a multi-electrode collimator provided by an embodiment of the present application when no voltage is applied;
  • Figure 4 is a schematic cross-sectional structural diagram of a multi-electrode collimator after voltage is applied according to an embodiment of the present application
  • Figure 5 is a schematic structural diagram of a long structural design of a multi-electrode collimator provided by an embodiment of the present application
  • Figure 6 is a schematic cross-sectional structural diagram of a multi-electrode collimator provided by an embodiment of the present application, in which a small-aperture electrode is used in Figure 6a, and a large-aperture electrode is used in Figure 6b;
  • Figure 7 is a schematic cross-sectional structural diagram of a multi-electrode collimator provided by an embodiment of the present application, in which all electrodes are special-shaped electrodes;
  • Figure 8 is a schematic diagram of the principle of a collimator provided by an embodiment of the present application, in which a common flat electrode is used in Figure 8a, and a special-shaped electrode is used in Figure 8b;
  • Figure 9 is a schematic structural diagram of a particle optical scribing system according to an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a particle optical inspection system according to an embodiment of the present application.
  • the collimation device provided by the embodiments of the present application can be applied in systems that require adjustment of particle beams.
  • the initial particle beam described below refers to a collection of particles generated by a particle source and not separated.
  • a particle beam refers to a collection of particles after the initial particle beam is divided.
  • Particles refer to negative electrons.
  • the particles can also be charged particles such as ions (for example, helium ions), positrons, or myons.
  • Figure 1 provides a particle beam generation system, as shown in Figure 1, which mainly includes a particle source 10.
  • the particle source 10 is a particle generator structure that can generate charged particles.
  • the specific types of charged particles can refer to the above-mentioned types of charged particles.
  • the particle beam generation system also includes a collimator 20 and an electron lens 30 .
  • the collimator 20 and the electron lens 30 are sequentially arranged along the beam path of the charged particles generated by the particle source 10 .
  • the particle beam 11 is generated by the particle source 10
  • it is collimated by the collimator 20 and focused by the electronic lens 30, and then hits the surface of the sample 40 (for example, a wafer).
  • the collimator 20 is used to focus the particle beam 11 Collimation is performed so that the particle beam 11 can be in a parallel or nearly parallel state;
  • the electronic lens 30 is used to adjust the inclination, offset, astigmatism, etc. of the collimated particle beam 11 . Therefore, when the particle beam 11 converges on the surface of the sample 40, the particles interact with the colloid component (for example, photoresist) on the surface, so that part of the colloid irradiated by the particle beam can be etched.
  • the colloid component for example, photoresist
  • the particle system can also be used in the field of microscopic imaging.
  • it can be used in a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • detection elements for example, detectors such as SEM can be used to inspect objects.
  • semiconductor wafers (wafers) can be inspected for process defects.
  • a, b or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b and c can be single or multiple.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same functions and effects. Those skilled in the art can understand that words such as “first” and “second” do not limit the number and execution order.
  • the "first” in the first preset layer and the "second” in the second preset layer in the embodiment of the present application are only used to distinguish different preset layers.
  • the first, second, etc. descriptions appearing in the embodiments of the present application are only for illustration and to distinguish the description objects, and there is no order. They do not represent special limitations on the number of devices in the embodiments of the present application, and cannot constitute a limitation of the present application. Any limitations of the embodiments.
  • the collimator 20 may be an electronic lens structure, including an electrode plate group 201 and a control circuit 202 for applying voltage (not shown in the figure).
  • the electrode plate group 201 includes at least two parallel electrodes. Different voltages are applied to the electrodes to form an electric field.
  • the electrodes have electrode holes, and the electrode holes allow the passage of charged particle beams.
  • the electrode plate group 201 is arranged along the axial direction parallel to the main optical axis of the collimator (indicated by a dotted line in Figure 2). In the electrode plate group 201, the electrode holes on the electrodes are coaxially aligned with the main optical axis, and the electrode holes are circular.
  • the electrode plate set 201 also includes a plurality of spacing structures, represented by white squares in FIG. 2 , which are disposed between adjacent electrodes in the electrode plate set 201 and are made of electrically insulating materials. A plurality of spacing structures are used to position the electrode plate at a predetermined distance along the axial direction.
  • the control circuit 202 is used to supply power to each electrode plate in the electrode plate group 201 independently, and the adjustment voltage corresponding to each electrode plate can be adjusted independently or in conjunction.
  • the principle of the collimator 20 is to use magnetic fields and electric fields to modify the trajectory of charged particles, with the purpose of turning the divergent charged particle beam into a charged particle beam with a reduced divergence angle compared with the original, or a parallel charged particle beam.
  • Multiple electrode plates in the electrode plate group 201 can apply different adjustment voltages through the control circuit 202 to generate an electric field and form an electronic lens, which has a working principle similar to that of an optical lens. From the perspective of its effect on particle beams, the collimator approximates the effect of a convex lens.
  • a schematic diagram of a collimator provided in this embodiment includes three electrodes, to which adjustment voltages U 1 , U 2 and U 3 are applied respectively.
  • the dotted line between the electrode plates is the equipotential surface.
  • the horizontal dotted line represents the optical axis of the collimator, and the corresponding focus of the collimator falls on the optical axis.
  • the electrode holes on the three electrode plates have the same aperture and are aligned with the optical axis of the collimator. It can be seen from the figure that at the electrode hole, the equipotential surface bulges outward. Under the action of the electric field force, the incident charged particles pass through the electrode hole and then converge.
  • the thick solid line is the path of the charged particles.
  • the charged particle beam output from the collimator is a parallel charged particle beam, or the divergence angle is smaller than the divergence angle of the incident particle beam.
  • the particle beam output by the collimator is a parallel particle beam; when the beam source is located within the focal distance, the divergence angle of the particle beam output by the collimator is smaller than the divergence at the time of incidence angle; when the beam source is located outside the focal distance, the particle beams converge after entering the collimator, and may even converge within the collimator.
  • the focus of the collimator 20 can move along the main optical axis.
  • the main plane 203 of the collimator can also be adjusted.
  • the main plane 203 is represented by a dotted line.
  • the collimated particle beam spot size changes. The closer the main plane 203 is to the particle source 10, the smaller the beam spot size of the collimated particle beam 11 is. Since the output of the particle source is constant, the beam density is larger; the further away the main plane 203 is from the particle source 10, the smaller the beam spot size of the collimated particle beam is. The larger the beam spot size of beam 11, the smaller the beam current density.
  • the collimator 20 can convert a surface source of a continuously diffusing particle beam into a more stable surface source with a relatively fixed beam density, which is beneficial for subsequent adjustment of the particle beam. Since the smaller the beam spot size is, the greater the beam current density is, which can increase the efficiency of particle beam system-related applications (such as etching and detection systems). In addition, as a large-scale electrostatic lens, the collimator has a great impact on the aberration of the particle beam system. The greater the aberration, the resolution of the system will be negatively affected. As particle beam systems have been developing towards high resolution and high efficiency, collimators should also have higher requirements for the beam spot size and the resulting aberrations.
  • the charged particle beam 11 After the charged particle beam 11 is generated by the particle source 10 , the charged particle beam 11 will continue to diverge outward before reaching the collimator 20 . Therefore, when the charged particle beam 11 reaches the collimator 20 , the beam spot size is larger than when it is generated by the particle source 10 .
  • the charged particle beam 11 reaches the collimator 20 if the electrostatic field in the collimator 20 remains unchanged, that is, the collimation effect remains unchanged, the incident charged particle beam 11 becomes more divergent, that is, the beam spot radius at the time of incidence is The larger the value, the larger the beam spot size of the charged particle beam 11 after being collimated by the collimator 20 .
  • controlling the relative distance between the position of the collimator 20 (mainly for which the internal electrostatic field acts, and can also be regarded as the main plane 203) and the particle source 10 can effectively adjust the beam spot size after collimation.
  • the beam spot size of the collimated charged particle beam 11 is also larger.
  • the relative distance between the particle source 10 and the collimator 20 can be adjusted.
  • This implementation is mainly realized through physical movement control, so a new mechanical structure needs to be introduced to realize the position movement of the particle source 10 and/or the collimator 20 .
  • the movement of the mechanical structure can easily lead to errors such as alignment, yaw, and jitter between modules, introducing unfavorable factors to the particle system equipped with this module.
  • Adjust the relative distance between the particle source 10 and the main plane 203 of the collimator 20 This implementation is mainly realized through the control of the adjustment voltage by the control circuit, and the beam spot size of the collimated charged particle beam 11 is adjusted while keeping the relative position between the particle source 10 and the collimator 20 unchanged. adjustment to avoid the mechanical errors introduced in the previous implementation.
  • the adjustment range of the collimator main plane 203 is within the range of the electrode plate.
  • the above optimization direction is used to change the beam spot size to achieve greater beam density and improve the efficiency of the particle beam system.
  • Aberration that is, the deviation between actual imaging and ideal imaging, is generally reflected in blurred or incompletely similar images.
  • Aberrations can be classified into four categories: mechanical aberration, geometric aberration, chromatic aberration and space charge aberration.
  • the electrostatic field between the electrode plate groups 201 of the collimator 20 acts like an optical lens and is called an electrostatic lens. Therefore, the collimator can also be regarded as an application category of the electrostatic lens.
  • the filling coefficient of the particle beam spot and the electrode hole aperture (common particle beam spots account for between 10% and 25% of the electrode hole aperture) the smaller the filling coefficient, that is, the electrostatic field that affects the charged particle beam is concentrated in Within the interval of the electrode hole of the electrode plate, the electrostatic field in this area is more stable and the force is more uniform, so the aberration is smaller.
  • the aberration is related to the aperture of the electrode holes on the electrode plate group 201 of the collimator 20.
  • a large-aperture electrode plate also means that the focusing ability of the particle beam is weakened, and a larger voltage difference is required to achieve the same convergence effect as a small-aperture electrode plate.
  • the high-voltage requirements often limit the application scenarios of the corresponding particle beam systems.
  • the general idea of the embodiments of the present application is as follows: through the collimator structure design with multi-electrode expansion, the action distance of the collimator on the incident charged particle beam is increased, and a wider range of adjustment of the main plane is achieved, and through The expanded hole design optimizes the collimator aberration without changing the convergence effect, so that the collimator not only optimizes the adjustment ability of the charged particle beam, but also flexibly adapts to a variety of application scenarios.
  • the collimator 20 includes a particle source 10, a set of electrode plates 201 and a control circuit 202 (not shown in the figure).
  • the electrode plate group 201 includes multiple (more than 3) parallel electrode plates.
  • the electrode plates are spaced apart along the axial direction parallel to the collimator optical axis (shown as a dotted line in the figure); each electrode plate has Electrode holes, each electrode hole aligned coaxially with the optical axis, are used to allow passage of the charged particle beam.
  • d 1 is the beam spot size when the particle beam is incident
  • d 2 is the beam spot size when the particle beam is emitted.
  • the closest electrode plate in the electrode plate group 201 is the first-level electrode, and the electrode hole on it is also used as an entrance for the electron beam to enter the electrode plate group 201 .
  • the second-level electrode, the third-level electrode, and the multiple electrode plates are named in sequence.
  • the aperture of the electrode holes on each electrode plate is not smaller than the aperture on the previous electrode plate.
  • the aperture of the electrode holes on each electrode plate is means, n corresponds to the nth level electrode.
  • the control circuit 202 is electrically connected to the plurality of electrodes, and is used to control the adjustment voltage to control the electric field intensity in the electrode plate group 201 .
  • the beam spot size, beam current density, astigmatism, etc. can be corrected under the action of the electric field force, thereby improving the quality of the charged particle beam.
  • the adjustment voltage on the multi-electrodes is adjusted by the control circuit 202, and the adjustment voltage may be a high potential, a low potential, or ground.
  • an electrostatic field can be formed between adjacent electrodes, which acts on the charged particle beam passing through the electrode holes on the electrodes; if equal potentials are applied to adjacent electrodes, no Generates an electrostatic field that acts on a beam of charged particles. Since the electrostatic field acts on the charged particle beam, an electrode whose potential is not equal to any adjacent electrode can also be called an "active electrode", and an electrode whose potential is equal to that of any adjacent electrode is called a “redundant electrode”. electrode”. By adjusting the "starting electrode” at different positions and configuring the adjustment voltage on the "starting electrode”, the position of the main plane of the multi-electrode collimator can be changed.
  • the electrode holes can be regular cylindrical or special-shaped, and the diameter of the electrode holes increases gradually.
  • the change in the electrode hole diameter of each stage of electrode follows a law that is not limited to linear increase (i.e. n is a series), it can also include: positive correlation, such as Interval changes, such as in m is a positive integer, etc.
  • the electrode hole is of a special shape, the aperture of the electrode hole on the lower surface of the adjacent electrode plate closer to the particle source should be larger than the aperture of the electrode hole on the upper surface of the other electrode plate.
  • the multi-electrode collimator 20 includes 8 electrodes, and the third to sixth electrode plates are "active electrodes", which are marked with vertical stripes.
  • the corresponding high potentials applied on these electrode plates are VDD 1 , VDD 2 , VDD 3 and VDD 4 respectively, and the potentials on adjacent electrode plates are different.
  • the first and second-level electrode plates apply potential VDD 1. Since their potential is equal to the third-level electrode plate, no electrostatic field is generated between the first and second-level electrode plates.
  • the seventh and eighth-level electrode plates can be deduced. There is no electrostatic field between the electrodes, so the first, second, seventh, and eighth electrode plates can be called “redundant electrodes" and are marked with a grid.
  • the charged particle beam 11 enters the multi-electrode collimator 20. It first passes through the electrode hole on the first electrode plate. Since there is no potential difference between the first and second electrode plates, it is not affected by the electrostatic field, and the particle beam 11 will continue to diverge. The same situation occurs in the electrode holes on the second-stage electrode plate, which will not be described again here.
  • the seventh and eighth electrode plates are the same as the first and second electrode plates and are redundant electrodes. Therefore, when the particle beam 11 passes through the electrode holes on the seventh and eighth electrode plates, it is not affected by the electrostatic field. , the particle beam 11 diverges.
  • the particle beam 11 passes through the collimator 20, it is affected by the unequal adjustment voltages applied on the third to sixth electrode plates, and the divergence angle of the beam is reduced, and through appropriate adjustment voltage configuration, the particle beam Can be adjusted to parallel. After collimation, the particle beam 11 enters the electronic lens 30, which can be used to adjust its deflection angle and other parameters.
  • the multi-electrode collimator using this structure can adjust and move the main plane 203 of the multi-electrode collimator 20 within the electrode plate position interval from the third level to the sixth level by applying different adjustment voltages, thereby The relative displacement of the main plane 203 compared to the particle source 10 is achieved, and the beam spot size of the charged particle beam is adjusted.
  • the collimator is also realized relative to the The ability to adjust the position of the particle source upward on the main optical axis.
  • the effective electrodes are respectively and The size of the electrode hole, the filling factor of the collimator 20 varies between ⁇ 3 and ⁇ 6 , where ⁇ 3 corresponds to the electrode hole diameter of The filling factor of the third-stage electrode plate, ⁇ 6 , corresponds to the electrode hole diameter of The filling coefficient of the sixth-level electrode plate, ⁇ n is the filling coefficient, and the electrode plates referred to can be deduced in turn.
  • the collimator 20 in Figure 4 also includes the fifth and sixth-level electrode plates because the effective electrodes, that is, the aperture size and The particle beam 11 passes through the large-diameter electrode hole, and the collimator 20 has lower aberrations.
  • the collimator 20 in Figure 4 also includes a third-level electrode plate because the effective electrode, that is, the aperture size
  • the effective electrode that is, the aperture size
  • the smaller R the greater the field strength is, and the greater the force on the charges between them, that is, the force directed from the edge to the center.
  • R the greater the voltage
  • the greater the field strength the voltage applied to the small-aperture electrode plate group can be lower than the voltage applied to the larger-aperture electrode plate group. Therefore, the overall voltage requirement of the collimator 20 is lower.
  • collimators with an expanded-aperture multi-electrode structure often have lower aberration or lower high-voltage requirements when the collimation effect remains unchanged, that is, the beam density remains unchanged.
  • the advantages have been comprehensively optimized. Therefore, the collimator 20 achieves a balance between resolution and high voltage requirements while maintaining a certain efficiency.
  • electrodes at different positions are configured as "active electrodes", so that the main plane 203 of the multi-electrode collimator can be axially adjusted relative to the particle source 11 along the optical axis direction.
  • a large-aperture electrode as an "activating electrode”, apply a higher voltage, and increase the potential difference between adjacent electrodes to obtain A stronger electrostatic field, thereby better converging the diverging charged particle beam.
  • the multi-electrode collimator includes 8 electrodes, of which the first to eighth electrodes are all "activation electrodes", and the control circuit is applied thereon
  • the respective adjustment voltages are VDD 1 , VDD 2 , VDD 3 , VDD 4 ...VDD 8 , and the adjustment voltages on adjacent electrodes are different.
  • the multi-electrode collimator forms a long structure collimator.
  • the action range of the electrostatic field between the electrodes extends from the first-level electrode to the eighth-level electrode.
  • the action distance of the electric field is lengthened, so that the charged particles passing through it are fully converged.
  • the position change range of the main plane 203 of the collimator is between the first to eighth level electrodes.
  • FIG. 4 What is shown in Figure 4 is a short-structure multi-electrode collimator, in which the third to sixth electrodes are "activation electrodes", and the corresponding adjustment voltages are VDD 1 , VDD 2 , VDD 3 and VDD respectively. 4.
  • the adjustment voltages on adjacent electrodes are different.
  • the range of the electrostatic field formed between the electrodes extends from the third-level electrode to the sixth-level electrode. When the adjustment voltage changes, the position of the main plane 203 of the collimator changes within the range between the third to sixth level electrodes.
  • a collimator with a long structure has a longer electrostatic field action range.
  • the equivalent main plane of the collimator has a larger position change range, and the beam spot size changes after collimation.
  • the range is also greater.
  • the two collimator structures can achieve equal convergence effects.
  • the long structure multi-electrode collimation The regulator has a lower regulation voltage.
  • the particle beam decelerates more significantly when passing through the electrostatic field therebetween. Therefore, the particle beam is exposed to the electrostatic field for a longer time. Since the particle beam is affected for a longer time, the voltage difference between the applied adjustment voltages of the collimator 20 can be reduced in order to achieve the same convergence effect. It should be noted that a large voltage difference will not only cause breakdown of the collimator, but will also limit the expansion of application scenarios. Therefore, the overall voltage requirement of the long-structured collimator 20 will be reduced and it can be widely used.
  • the long-structure multi-electrode aperture collimator can not only have a larger beam spot size adjustment range, but also reduce the system's demand for high voltage while maintaining the same convergence effect, thereby enabling it to be used in different application scenarios. Have greater flexibility.
  • the electrode hole diameters of the multi-electrodes in this embodiment are different and show a linear increasing trend.
  • the aberration comes from the deviation caused by the non-ideality of the large-scale electrostatic lens of the collimator and the charged particle beam.
  • the relationship between aberration and aperture of an electrostatic lens can be defined by the following empirical formula:
  • C s is the aberration
  • f is the focal length of the electronic lens
  • d is the electrode aperture of the electronic lens. It can be seen from the formula that increasing the electrode aperture can effectively optimize aberration.
  • the electronic lens design with small aberration helps the electron beam collimated by the collimator to draw a more accurate image.
  • the electrode holes on the electrodes are all pre-formed, in the prior art, the diameter of the electrode holes on the single-piece electrode in the collimator is fixed. If you want to achieve adjustable aperture, the electrode hole often needs to introduce a new mechanical structure, so it is easy to introduce various errors.
  • the first to fourth-level electrode plates are "active electrodes", which are marked by vertical stripes. In this embodiment, the active electrodes are close to the particle source 10.
  • the second to fifth-level electrode plates are "active electrodes", marked by vertical stripes. In this embodiment, the active electrode is slightly farther from the particle source 10 than in the previous embodiment. The convergence effect of the two is the same, and the position of the main plane 203 of the collimator 20 in the two embodiments is the same.
  • the average pore diameter of the active electrode of the embodiment in Figure 6a is smaller, that is, the filling factor is larger.
  • the average pore size of the active electrode of the embodiment in Figure 6b is slightly larger. Therefore, the former collimator 20 has lower voltage requirements, and the latter has better aberration. It can be inferred that by adding more starting electrodes, the voltage requirement of the collimator can be further reduced; or by adjusting and using more large-aperture starting electrodes, the aberration of the collimator can be further optimized.
  • the collimator in this embodiment can change the effective electrode by adjusting the voltage change, and can achieve small aberration or low aberration while keeping the main plane unchanged, that is, the convergence ability of the collimator remains unchanged. voltage requirements to flexibly adapt to different application scenarios.
  • special-shaped electrodes can also be designed to smooth the equipotential surface and reduce the difference in field strength at each point in the cross-section, thereby optimizing the aberration.
  • the design of special-shaped electrodes mostly changes the shape of the electrode hole on the electrode plate, so that the hole is not a regular cylindrical shape, that is, the cross-section of the electrode hole is not rectangular or square.
  • the upper and lower holes of the electrode hole have different sizes.
  • the wall connecting the upper and lower surfaces of the electrode hole has a gentle arc and a smooth transition at the edge.
  • the special-shaped electrode is simplified as a circular electrode plate in this application, and the cross-section of the electrode hole on the electrode plate is an isosceles trapezoid with different upper and lower sides.
  • Figure 7 is another embodiment provided by the embodiment of the present application, in which the multi-electrode collimator includes a total of 8 electrode plates.
  • the electrode holes on each electrode plate are tapered and the cross-section is an equilateral trapezoid.
  • the electrode holes on each electrode plate have a smaller aperture toward the particle source 10 and a larger aperture on the other side, and the small aperture side of the electrode plate is larger than the aperture on the previous electrode plate. Large aperture size.
  • the third to sixth electrodes of the collimator are "active electrodes".
  • the corresponding high potentials are VDD 1 , VDD 2 , VDD 3 and VDD 4 respectively.
  • the effect of the electrostatic field formed by the active electrode at the electrode hole is The range extends from the third-level electrode to the position of the sixth-level electrode.
  • wedge-shaped electrodes are a type of special-shaped electrodes.
  • the electrostatic field formed by the special-shaped electrodes has more gentle changes in the equipotential lines, and the changes in the equipotential lines are closer to the electrostatic field effect of large apertures, so it has a certain effect on aberration. Optimization effect.
  • wedge electrodes also require higher adjustment voltages. By controlling and adjusting the voltage, electrodes at different positions become “effective electrodes", adjusting the position of the "equivalent principal plane” compared to the particle source, or using a long-structured multi-electrode collimator, you can optimize aberrations while Achieve the adjustment of the charged particle beam spot and reduce the demand for high voltage.
  • the collimator of any of the above embodiments can also be applied in a chip manufacturing process.
  • Step 1 make the wafer;
  • Step 2 apply an anti-corrosion agent on the surface of the wafer;
  • Step 3 use a charged particle beam system to irradiate the charged particle beam to the anti-corrosion agent to form a pattern;
  • Step 4 use an etching machine to etch the N-well and P-well on the exposed silicon, and inject ions to form a PN junction (logic gate);
  • Step 5 then use chemical and physical vapor deposition Make metal connection circuits to make chips.
  • the wafer can be engraved using the scribing system including a collimator provided in this application, such as an electron beam exposure machine.
  • Figure 9 shows the schematic diagram of a scribing system. Structural diagram.
  • the engraving system also includes a stage 90. This stage 90 can be used to place the object 70 to be etched, such as the wafer to be engraved, and also includes a biaser. (deflector) 60, the deflector (deflector) 60 is used to control the etching position on the wafer to be etched.
  • the particle source 10 When the wafer is carved using the scribing system shown in Figure 9, the particle source 10 generates charged particles, the collimator 20 then adjusts and collimates the charged particles, and the adjusted and collimated charged particle beam passes through the beam splitter
  • the device 30 is divided into multiple beams, and the electrostatic lens 40 converges the multiple beams of charged particles, and under the action of the biaser 50, the charged particle beam is focused on the position on the wafer that needs to be engraved.
  • the particle beam output to the beam splitter 30 has a larger beam spot size adjustment range, and the particle beam current density adjustment range is also larger.
  • the beam spot size is larger, the number of multi-beams generated by the beam splitter 30 is greater, the number of working multi-beams is greater, the working area covered is larger, and the efficiency for large-scale surveying and mapping is also higher.
  • the efficiency of a single mapping of the system is also higher. Therefore, lithography systems using enlarged multi-electrode collimators can improve efficiency.
  • the collimator 20 based on the multi-stage expansion structure has a larger aperture in the active electrode, resulting in smaller aberrations, so the resolution of the scribing system using this collimator is also optimized.
  • the collimator 20 with a multi-stage expansion hole structure can balance high voltage requirements and aberrations by adjusting the voltage configuration under the same focusing ability. Therefore, the engraving system using this collimator can be adapted to more application scenarios.
  • the engraving system proposed in this application is optimized in terms of efficiency and resolution, and can be adapted to a variety of application scenarios by balancing engraving accuracy and energy consumption requirements.
  • Step one is to inspect the chip to check whether there are process defects in the chip;
  • step two is to package the inspected chip.
  • an inspection system is required.
  • Figure 10 shows a structural diagram of an inspection system.
  • the inspection system also includes a station 90.
  • the station 90 can For mounting the object 70 to be inspected, such as the manufactured chip, a detector 80 may also be included.
  • the detector 80 is used to detect secondary charged particles generated by the charged particle beam from the object 70 to be inspected, to generate secondary charged particles.
  • the signal corresponding to the subcharged particles can be understood in this way.
  • the electron beam generated by the charged particle beam system is focused on the wafer to form an electron beam spot on the wafer.
  • the detector 80 collects the secondary electrons and backscattered electrons generated on the surface of the wafer. To obtain the topography information of the wafer surface.
  • FIG. 10 it is schematically pointed out that the secondary charged particles generated by the object 70 to be inspected will be reflected in the detector 80 , and the transmission path of the secondary charged particles is not limited.
  • the particle beam output to the beam splitter 30 has a larger beam spot size adjustment range, and the current density of the particle beam can be adjusted.
  • the range is also greater.
  • the beam spot size is larger, the number of multi-beams generated by the beam splitter 30 is greater, the number of working multi-beams is greater, and the detection efficiency in the case of large size is also higher.
  • the current density of multiple beams is larger, the single detection efficiency of the system is also higher. Therefore, detection systems using expanded-hole multi-electrode collimators will have higher efficiency.
  • the collimator 20 based on the multi-stage expansion structure has a larger aperture in the effective electrode, resulting in smaller aberration, so the resolution of the detection system using this collimator is also optimized.
  • the collimator 20 with a multi-stage expansion hole structure can balance high voltage requirements and aberrations by adjusting the voltage configuration under the same focusing capability. Therefore, the detection system using this collimator can be adapted to more application scenarios.
  • the detection system proposed in this application can be optimized in terms of efficiency and resolution, and can be adapted to a variety of application scenarios by balancing engraving accuracy and energy consumption requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

一种可调整的多电极准直装置,以及采用该准直装置的带电粒子系统。该带电粒子系统包括:带电粒子源;可调准直透镜,其中,可调准直透镜包括轴向分布的多级电极,其中每级电极均形成供带电粒子束(11)穿过的电极孔,沿带电粒子束(11)的前进方向上,多级电极的电极孔的尺寸不小于前一级电极上电极孔的尺寸,多级电极中部分电极被配置为单独供电,以便为带电粒子束(11)的准直提供不同的电极组合。这样,通过对各个电极单独供电、施加不同的电压,可以有效调整该多电极准直装置的主平面所在位置,调整束斑尺寸的范围;并在汇聚能力不变的情况下,平衡高压需求和像差。

Description

一种可调整的多电极准直装置 技术领域
本发明涉及粒子光学领域,尤其涉及一种多电极准直装置、以及采用该多电极准直装置的带电粒子系统。
背景技术
在粒子系统中,由于所使用的粒子(如电子、离子等)往往具有较短的波长,因此,当粒子系统应用到显微成像等领域中时,可以提供优于传统光学系统的分辨率。此外,粒子系统还能够应用在半导体工艺缺陷检测、掩膜版检测、电子束曝光等领域中,且具有良好的精度和分辨率。在实际应用中,由于场景广泛,会对粒子系统的分辨率、束流大小、像差等有不同要求,因此需要粒子系统的设计具有灵活性与调整能力。但是目前的粒子系统仍受诸多限制,其中就包括准直器的设计仍存在诸多不足。例如,现有的准直器的设计在调整束斑大小(即分辨率)、调节束流、优化像差等方面的能力弱。因此,改进准直器的设计对加强粒子系统对分辨率、束流、像差的调整能力有益。
发明内容
本申请实施例提供一种带电粒子束系统,用以加强粒子系统对束斑尺寸的调整能力,平衡聚焦能力相同情况下的系统的像差与高压需求。
第一方面,本申请实施例提供一种带电粒子束系统,该装置包括:带电粒子源,用于生成带电粒子束;以及可调准直透镜,用于准直所述带电粒子束,其中,所述可调准直透镜包括轴向分布的多级电极,所述多级电极中每级电极均形成供所述带电粒子束穿过的电极孔,沿所述带电粒子束的前进方向上,所述多级电极的电极孔的尺寸依次增大,所述多级电极中部分电极被配置为单独供电,以便为所述带电粒子束的准直提供不同的电极组合。
基于上述的方法,该带电粒子束系统通过配置不同的调整电压,调整主平面的位置,从而改变带电粒子束的束斑尺寸,并在汇聚能力不变的情况下,由于扩孔的结构,使像差可以得到优化,平衡系统的像差与高压需求。
在第一方面可能的实现方式中,所述多级电极中每级电极为环形电极。其中,所述电极孔的尺寸变化为沿所述带电粒子束的前进方向上逐级增大或逐级线性递增。
通过确定电极板上的电极孔逐级递增的方式,使系统的像差的优化更明显,提高系统的分辨率。
在第一方面可能的实现方式中,所述多个电极为异形电极;其中每个异形电极上的电极孔沿所述带电粒子束的前进方向上的上平面比下平面尺寸小。
通过将电极板改为异形电极,进一步优化系统的像差,提高系统的分辨率。
在第一方面可能的实现方式中,所述多个异形电极上的电极孔沿所述带电粒子束的前进方向上的每个平面的电极孔的尺寸逐级增大。
通过结合异形电极板与电极孔孔径的逐级变化,可以进一步优化系统的像差,提高系统的分辨率。
第二方面,本申请提供了一种带电粒子束应用系统,该带电粒子束系统包括上述第以方面任一实现方式中提供的带电粒子束系统,尤其是其中的可调准直透镜,用于生成带电粒子束。
本申请实施例提供的带电粒子束应用系统包括第一方面实施例的带电粒子束系统,因此本申请实施例提供的带电粒子束系统与第一方面中的技术方案能够解决相同的技术问题,并达到相同的预期效果,在此不再赘述。
在第二方面可能的实现方式中,该带电粒子束应用系统为带电粒子束检查系统,比如为扫描电子显微镜,带电粒子束检查系统除包括上述的带电粒子束系统之外,还包括:用于偏转带电粒子束的偏转器,用于放置待检查物体的台,和探测器,其中,由带电粒子束系统生成、经偏转器偏转后的带电粒子束聚焦在待检查物体上;探测器用于探测来自待检查物体的由带电粒子束生成的二次带电粒子,以产生与二次带电粒子相对应的信号。
例如,在扫描电子显微镜中应用了上述的带电粒子束系统,可以有更大的束斑尺寸调整范围;且在相同聚焦能力的情况下,可以通过调整电压配置平衡高压需求和像差。可以适配不同的检测分辨率需求,在检测时间与能耗之间优化平衡。
在第二方面可能的实现方式中,带电粒子束应用系统为带电粒子束刻绘系统,比如为电子束曝光机,带电粒子束刻绘系统除包括上述的带电粒子束系统之外,还包括:用于偏转带电粒子束的偏转器,用于放置待检查物体的台,由带电粒子束系统生成、经偏转器偏转后的带电粒子束聚焦在涂敷有抗腐蚀剂的待刻绘物体上,以在待刻绘物体上形成粒子束斑。
比如,在电子束曝光机中应用了上述的带电粒子束系统,这样的话,由带电粒子束系统生成的带电粒子束有更大的束斑尺寸调整范围,且在相同聚焦能力的情况下,可以通过调整电压配置平衡曝光机的高压需求和像差。可以适配不同的应用场景,在刻绘时间与能耗之间优化平衡。
附图说明
图1为本申请实施例提供的一种粒子束产生系统的剖面结构示意图;
图2为本申请实施例提供的一种准直器的剖面结构示意图;
图3为本申请实施例提供的一种多电极准直器的未施加电压时的剖面结构示意图;
图4为本申请实施例提供的一种多电极准直器的施加电压后的剖面结构示意图;
图5为本申请实施例提供的一种多电极准直器的长结构设计的结构示意图;
图6为本申请实施例提供的一种多电极准直器的剖面结构示意图,其中,图6a中使用的是小孔径电极,图6b中使用的是大孔径电极;
图7为本申请实施例提供的一种多电极准直器的剖面结构示意图,其中所有电极为异形电极;
图8为本申请实施例提供的一种准直器的原理示意图,其中,图8a中使用的是常见的平板电极,图8b中使用的是异形电极;
图9为本申请实施例的粒子光学刻绘系统的结构示意图;
图10为本申请实施例的粒子光学检查系统的结构示意图。
应理解,上述结构示意图中,各框图的尺寸和形态仅供参考,不应构成对本申请实施例的排他性的解读。结构示意图所呈现的各框图间的相对位置和包含关系,仅为示意性地表示 各框图间的结构关联,而非限制本申请实施例的物理连接方式。
具体实施方式
为了方便理解本申请实施例提供的准直设备,下面首先介绍一下其应用场景。
本申请实施例提供的准直设备,可以应用在需要对粒子束进行调节的系统中。需要说明的是,为了便于理解本申请技术方案,下述中所描述的初始粒子束指的是由粒子源产生且未被分隔的粒子集合。粒子束指的是初始粒子束被分隔后的粒子集合。粒子指的是负电子。当然,在实际应用时,粒子也可以是离子(比如,氦离子)、正电子或者迈子(myon)等带电粒子。
图1提供了一种粒子束产生系统,如图1所示,其主要包括粒子源10。该粒子源10是一种粒子发生器结构,可以产生带电粒子,具体的带电粒子的类型可以参照上述所述的带电粒子类型,
该粒子束产生系统还包括准直器20和电子透镜30,准直器20和电子透镜30沿着粒子源10产生的带电粒子的束路径依次布置。粒子束11由粒子源10产生后,经过准直器20准直和电子透镜30聚焦等模块后,打到样品40(例如,晶圆)表面,其中,准直器20用于对粒子束11进行准直,以使粒子束11能够处于平行或接近平行的状态;电子透镜30用于对准直后的粒子束11的倾角、偏移量、像散等进行调节。由此当粒子束11汇聚到样品40表面后,通过粒子与表面上的胶体成分(例如,光刻胶)发生作用,使得被粒子束照射到的部分胶体得以被刻蚀。
此外,粒子系统还可以应用在显微成像领域,比如,可以应用在扫描电子显微镜(scanning electron microscope,SEM)中,在SEM中,除包括多分束带电粒子系统之外,还可以包括检测元件,比如,探测器,这样的SEM可以用于检验物体,例如,可以检验半导体晶片(wafer)是否存在工艺缺陷。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图和具体实施例对本申请作进一步地详细描述。在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或,a和b和c,其中a、b和c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。比如,本申请实施例中的第一预设图层中的“第一”和第二预设图层中的“第二”仅用于区分不同的预设图层。本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同 之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调
如图2所示,在本申请提供的一个实施例中,准直器20可以是电子透镜结构,包括电极板组201和施加电压的控制电路202(图中未示出)。电极板组201包括至少两个平行的电极,通过给电极加载不同的电压,以形成电场,所述电极上具有电极孔,所述电极孔允许带电粒子束的通过。电极板组201沿着与准直器主光轴(在图2中以虚线表示)平行的轴向方向设置。电极板组201中,电极上的电极孔与主光轴同轴对准,所述电极孔的为圆形。所述电极板组201还包括多个间隔结构,在图2中以白色方块表示,被设置在电极板组201中的相邻电极之间,并且由电隔绝材料制成。多个间隔结构用于沿轴向方向,以预定的距离来定位前述电极板。控制电路202用于对所述电极板组201中的每一个电极板单独供电,每一个电极板对应的调节电压可被独立或联动地调整。
准直器20的原理是利用磁场和电场修改带电粒子的运行轨迹,目的是让发散的带电粒子束变成发散角较原先减小、或平行的带电粒子束。所述电极板组201中的多个电极板可以通过控制电路202施加不同的调节电压,从而产生电场,形成电子透镜,其与光学透镜的工作原理类似。从对粒子束的效果来看,准直器近似凸透镜的效果。
如图8a所示,为本实施例提供的一个准直器的原理图,其包含三个电极,分别施加有调整电压U 1,U 2和U 3。电极板之间的虚线为等势面。水平的点横线代表该准直器的光轴,准直器对应的焦点落于该光轴上。三个电极板上的电极孔有相同的孔径,且都对准准直器的光轴。从图中可以看到在电极孔处,等势面向外凸起。入射带电粒子在电场力的作用下,穿过电极孔后汇聚,粗实线为该带电粒子的路径。
带电粒子束穿过准直器的电极孔后,可以实现路径调整和准直功能。当U 2>U 1且U 2>U 3时,即准直器中的位于中间的电极板加载有比其余电极板更高的电压,在电压的作用下,准直器位于中间的电极板附近会存在有一个发散电场区域,带电粒子在通过该发散电场区域时,会受到一个从中心指向边缘的电场力,从而电子束出现向外发散的变化,实现调整(如扩束)的功能;当U 2>U 1时,准直器中的最上方的电极板加载有比位于中间的电极板低的电压,会在准直器入口处形成一个汇聚电场区域,带电粒子在通过该汇聚电场区域时,会受到一个从边缘指向中心的电场力,从而粒子束出现向中心汇聚的变化;同样的情况发生在最下方的电极板的附近,带电粒子束经过此区域可以实现准直功能。
准直器输出的带电粒子束为平行的带电粒子束,或发散角度小于入射粒子束发散角度。当束源位于该准直器的焦点上时,准直器输出的粒子束为平行的粒子束;当束源位于焦点距离内时,准直器输出的粒子束的发散角度小于入射时的发散角;当束源位于焦点距离外时,粒子束进入准直器后汇聚,甚至可能出现在准直器内交汇的现象。
通过改变调节电压,准直器20的焦点可以沿主光轴移动,施加在电极上的电势差越大,静电场的汇聚能力越强,准直器的焦距越小。此外,准直器的主平面203也可以调整,在图2中,主平面203以虚线表示。当主平面沿着主光轴从一个位置移动到另一个位置时,准直后的粒子束束斑尺寸发生变化。主平面203越靠近粒子源10,准直后的粒子束11束斑尺寸越小,由于粒子源的输出恒定,因此束流密度越大;主平面203越远离粒子源10,准直后的粒子束11束斑尺寸越大,束流密度也越小。
由于粒子源10生成的带电粒子束是发散的,其在到达准直器20前,束斑半径一直递增。准直器20可以将一个持续扩散的粒子束的面源转为一个较稳定的面源,束流密度相对固定,对于后续对粒子束的调整有好处。而由于束斑尺寸越小,束流密度越大,这可以使粒子束系统的相关应用(例如刻蚀和检测系统)的效率增大。此外,准直器作为一种大尺度的静电透镜,对粒子束系统的像差的影响很大,像差越大,系统的分辨率会受到负面影响。由于粒子束系统一直向高分辨率、高效率的方向发展,因此准直器也应对其输出的束斑尺寸与带来的像差有更高的需求。
当带电粒子束11被粒子源10生成后,其在到达准直器20之前,带电粒子束11会持续向外发散。因此带电粒子束11在到达准直器20时,相较被粒子源10生成时,束斑尺寸增大。而当带电粒子束11到达准直器20时,若准直器20内的静电场保持不变,即准直效果保持不变,入射的带电粒子束11越发散,即入射时的束斑半径越大,则带电粒子束11经过准直器20准直后的束斑尺寸也越大。由此可知,减小粒子源10和准直器20之间的相对距离,使带电粒子束11在生成后自由发散的时间减短,即入射准直器20时的束斑半径越小,准直后的带电粒子束11的束斑也越小。
总结可得,控制准直器20(主要为其内部静电场发生作用,也可视为主平面203)的位置与粒子源10之间的相对距离,可以有效调节准直后的束斑尺寸。相对距离越小时,准直后的带电粒子束11束斑尺寸也越小。相对距离越大时,准直后的带电粒子束11束斑尺寸也越大。
由此可推得,实现的方式有以下两种:
1、使粒子源10与准直器20之间的相对距离可被调整。此实现方式主要通过物理上的移动控制来实现,因此需要引入新的机械结构用于实现粒子源10和/或准直器20的位置移动。然而机械结构的运动容易导致模块间的对准、偏摆、抖动等误差,为配备有此模块的粒子系统引入不利因素。
2、调整粒子源10与准直器20中主平面203的相对距离。这种实现方式主要通过控制电路对调整电压的控制来实现,在保持粒子源10与准直器20之间相对位置不变的情况下,实现对准直后的带电粒子束11束斑尺寸的调节,避免前一个实现方式中会引入的机械误差。该准直器主平面203的调整范围为电极板的范围内。
以上的优化方向是用于改变束斑尺寸,达到更大的束流密度,提升粒子束系统的效率。此外,为了使粒子束系统有更高的分辨率,也应注意改进准直器带来的像差。像差,即实际成像与理想成像的偏离,一般体现为成像模糊或不完全相似。像差可以被归为四类:机械像差、几何像差、色差和空间电荷像差。准直器20的电极板组201间的静电场,其作用类似光学透镜,被称为静电透镜,因此准直器也可以被视作静电透镜的一种应用分类。边缘粒子束在静电透镜轴向不同截面上的汇聚能力存在差异,成像位置会不一致,最终导致成像效果变差。当静电透镜尺寸越大,系统的边缘影响就越强。准直器作为一种常见的大尺寸静电透镜,其像差影响也很大。
参考粒子束束斑与电极孔孔径的填充系数(常见的粒子束束斑占电极孔孔径的10%到25%之间),填充系数越小,即对带电粒子束产生作用的静电场集中在电极板的电极孔这一区间内,此区域静电场更平稳,作用力较为均匀,因此像差更小。
由上可知,像差与准直器20的电极板组201上电极孔的孔径有关,孔径越大,该准直器在同汇聚能力的情况下,像差更好。
但大孔径的电极板也意味着对粒子束的聚焦能力减弱,需要更大的电压差,来实现与小孔径电极板的同样的汇聚效果。而高压需求往往又会限制相应粒子束系统的应用场景。
总结可得,在不引入新的机械结构的情况下,拥有更大的束斑尺寸调整范围、更小的像差,以及汇聚效果不变的情况下,平衡粒子束系统的高压需求,拓展应用场景,就是一个亟待解决的问题。
为解决上述问题,本申请实施例的总体思路如下:通过多电极扩孔的准直器结构设计,增加准直器对入射带电粒子束的作用距离,实现主平面更广范围的调整,并且通过扩孔设计实现汇聚效果不变的情况下的准直器像差的优化,使准直器不仅对带电粒子束的调整能力得到优化,也灵活适配于多种应用场景下。
如图3所示,在本申请实施例提供的一个准直器的截面图。准直器20包括一个粒子源10、一组电极板201和控制电路202(图中未示出)。电极板组201包括多个(大于3个)平行的电极板,电极板沿着与准直器光轴(在图中以虚线形式表示)平行的轴向方向间隔设置;每个电极板上具有电极孔,每个电极孔与光轴同轴对准,用于允许带电粒子束的通过。其中,d 1为粒子束入射时的束斑大小,d 2为粒子束出射时的束斑大小。
自粒子源10起,电极板组201中最靠近的电极板为第一级电极,其上的电极孔也用作让电子束进入电极板组201的入口。其后为第二级电极、第三极电极……多个电极板依次命名。其中,每一级电极板上电极孔的孔径不小于前一极电极板上的孔径,在图3中,每一级电极板上电极孔的孔径以
Figure PCTCN2022086235-appb-000001
表示,n对应于第n级电极。
所述控制电路202与所述多个电极电连接,用于对调整电压进行控制,以对电极板组201内的电场强度进行控制。当带电粒子束在通过电极板组201时,可以在电场力的作用下,对束斑尺寸、束流密度、像散等进行矫正,从而能够提升带电粒子束的品质。
在具体实施时,多电极上的调整电压由控制电路202进行调节,调整电压可以是高电势或低电势或接地。通过对相邻电极施加不相等的电势,在相邻电极间可以形成静电场,对从电极上的电极孔中穿过的带电粒子束作用;如果在相邻电极上施加相等的电势,则不生成对带电粒子束作用的静电场。由于静电场对带电粒子束起作用,因此,也可以把与任一相邻电极的电势不相等的电极称为“起效电极”,与相邻电极的电势都相等的电极称为“冗余电极”。通过调整不同位置的“起效电极”、以及通过配置“起效电极”上的调整电压,可以使多电极准直器的主平面产生位置变化。
此外,电极孔可以是规则的圆柱形,也可以是异形,电极孔孔径递增。当电极孔为圆柱形时,每一级电极的电极孔孔径变化遵循的规律不仅限于线性递增(即
Figure PCTCN2022086235-appb-000002
n为级数),也可以包括:正相关关系,如
Figure PCTCN2022086235-appb-000003
间隔变化,如
Figure PCTCN2022086235-appb-000004
其中
Figure PCTCN2022086235-appb-000005
m为正整数,等。当电极孔为异形时,其相邻电极板中,更靠近粒子源的电极板上,其下平面的电极孔的孔径应大于另一极电极板上平面的电极孔的孔径。
如图4所示,在本申请实施例提供的一个实施例的实现方法。其中,多电极准直器20包括8个电极,第三至六级电极板为“起效电极”,以竖条纹标注出。这些电极板上施加的相对应的高电势分别是VDD 1、VDD 2、VDD 3和VDD 4,相邻电极板上的电势各不相同。第一、二级电极板施加电势VDD 1,由于其电势等同于第三级电极板,因此第一与第二级电极板间不产生静电场,同理可推得第七、八级电极板的电极间也不产生静电场,因此第一、二、七、八级电极板可被称为“冗余电极”,以格纹标注出。
由图中可知,带电粒子束11在离开粒子源10后,进入多电极准直器20。其先通过第一极电极板上的电极孔,由于第一、二级电极板间没有电势差,因此其不受到静电场的作用,粒子束11将继续发散。同样的情况发生在第二级电极板上的电极孔,在此不作赘述。
由于第三、四级电极板间存在电势差,因此第三极电极板的电极孔处有外泄的静电场。根据图8a可知,电极孔处的静电场对粒子束11中粒子的作用力起汇聚作用,因此粒子束11不继续发散。由此可推知,粒子束11在穿过第三至六级的电极板上的电极孔后,受到电场的汇聚作用。其中,准直器的主平面203位置可以通过施加在第三至六级电极上的调整电压的配置变化,而在第三至六级电极之间发生位置的改变。在图4中,该准直器20的主平面203被认为存在在第四级与第五级电极之间,由虚线表示。
第七与第八级电极板与第一、二级电极板相同,属于冗余电极,因此粒子束11在穿过第七与第八级电极板上的电极孔时,不受静电场的作用,粒子束11发散。
因此,粒子束11在通过准直器20后,其受第三至第六级电极板上施加的不相等的调整电压作用,束的发散角度减小,且通过合适的调整电压配置,粒子束可以被调为平行的。粒子束11在准直之后进入电子透镜30,可用于调整其偏转角度等参数。
应用了此结构的多电极准直器,通过施加不同的调整电压,可以对所述多电极准直器20的主平面203在第三级至第六级的电极板位置区间内调整移动,从而达成主平面203相较于粒子源10的相对位移,对带电粒子束束斑大小进行调整。
此外,通过给不同区域的电极板施压成为起效电极,如第一至四级、第五至八级等,由于“起效电极”的电场位置的不同,也实现了准直器相对于粒子源的、在主光轴向上的位置调整能力。
更进一步,在此结构的多电极准直器中,起效电极分别有
Figure PCTCN2022086235-appb-000006
Figure PCTCN2022086235-appb-000007
的尺寸的电极孔,准直器20的填充系数的变化范围在λ 3和λ 6之间,其中,λ 3对应于电极孔孔径为
Figure PCTCN2022086235-appb-000008
的第三级电极板的填充系数,λ 6对应于电极孔孔径为
Figure PCTCN2022086235-appb-000009
的第六级电极板的填充系数,λ n为填充系数,指代的电极板可依次类推。
相较于拥有
Figure PCTCN2022086235-appb-000010
孔径的等孔径多电极准直器,图4中的准直器20由于有效电极还包括第五、六级电极板,即孔径大小
Figure PCTCN2022086235-appb-000011
Figure PCTCN2022086235-appb-000012
粒子束11穿过大尺径的电极孔,准直器20拥有更低的像差。
同时,相较于拥有
Figure PCTCN2022086235-appb-000013
孔径的等孔径多电极准直器,图4中的准直器20由于有效电极还包括第三级电极板,即孔径大小
Figure PCTCN2022086235-appb-000014
对于小孔径的电极板,当所需的汇聚效果相同时,当电压保持不变时,R越小,场强越大,对其间电荷的作用力,即从边缘指向中心的力也越大。同理可推得,当电子透镜上的电极孔孔径越小时,汇聚能力越强。而当R不变时,电压越大,场强越大。因此施加在小孔径电极板组上的电压较大孔径电极板组上的电压可以更低。因此,准直器20整体的电压需求更低。
因此,拥有扩孔多电极架构的准直器相较于等孔径的多电极准直器,在准直效果不变、即束流密度不变的情况下,往往有低像差或低高压需求的优势,进行了综合的优化。由此,该准直器20达到了在保持一定的效率的前提下,平衡了分辨率和高压需求。此外,由于通过调整电压配置,将不同位置的电极配置为“起效电极”,从而使多电极准直器的主平面203得以沿光轴方向、相对粒子源11进行轴向调整。更进一步地,为了在获得小束斑尺寸的同时优化像差,也可以通过将大孔径的电极配置为“起效电极”,通过施加更高的电压、增加相邻电极间的电势差,来获取更强的静电场,从而对发散的带电粒子束起到更好的汇聚作用。
如图5所示,是本申请实施例提供的另一个实施例,其中,多电极准直器包括8个电极,其中第一至八级电极皆为“起效电极”,控制电路施加其上的各自的调整电压分别是VDD 1、VDD 2、VDD 3、VDD 4…VDD 8,相邻电极上的调整电压不相同。
由于所有电极皆为起效电极,上述实施例相较于图5中的实施例,此多电极准直器构成一个长结构的准直器。电极间的静电场的作用范围从第一级电极起延续至第八级电极的位置,电场的作用距离加长,使穿过其中的带电粒子得到充分的汇聚作用。其中,当调整电压变化时,此准直器的主平面203位置变化范围在第一至第八级电极间。
而图4中所示的则是一个短结构的多电极准直器,其中第三至六级电极为“起效电极”,相对应的调整电压分别是VDD 1、VDD 2、VDD 3和VDD 4,相邻电极上的调整电压不相同。电极间形成的静电场的作用范围从第三级电极起延续至第六级电极。当调整电压变化时,此准直器的主平面203位置变化范围在第三至第六级电极间。
长结构的准直器有更长的静电场作用范围,在起效电极不变的情况下,该准直器的等效主平面有更大的位置变化范围,准直后的束斑尺寸变化范围也更大。此外,根据前述分析,粒子束11经过长结构与短结构的准直器后,如果其束斑尺寸大小相同,即两个准直器结构能达到相等的汇聚效果,长结构的多电极准直器有更低的调整电压。
现有技术下,当相邻电极上的电位差越大,粒子束在穿过其间静电场时减速得越明显,因此,粒子束在静电场内的受作用时间也越长。由于粒子束受作用的时间越长,准直器20为达到相同的汇聚效果,施加的调整电压间的压差可以减小。需要注意的是,大的电压差不仅会造成对该准直器的击穿,还会限制应用场景的拓展。因此,长结构的准直器20整体对电压的需求会降低,应用广泛。
总结可知,长结构的多电极扩孔准直器不仅可以有更大的束斑尺寸调整范围,还可以在保持相同汇聚效果的情况下、降低系统对高压的需求,从而在不同的应用场景下具备更高的灵活性。
如图6所示,在本申请实施例提供的另两个实施例。与现有技术相比,此实施例中多电极的电极孔孔径各不相同,且呈线性增大趋势。根据前述对图8a的介绍,像差来源于准直器这个大尺度静电透镜与带电粒子束的非理想性导致的偏差。通常,静电透镜的像差与孔径的关系可以由下述经验公式定义:
C s=f 2/d
其中,C s是像差,f为电子透镜焦距,d为电子透镜电极孔径。由公式可知,增大电极孔径可以有效优化像差。而小像差的电子透镜设计有助于使经准直器准直后的电子束描绘出更准确的图像。
由于电极上的电极孔都是预先成型的,因此现有技术中,准直器中单片电极上的电极孔孔径是固定的。如果想达成孔径可调整,则该电极孔往往也需要引入新的机械结构,因此容易引入多种的误差。
图6a中,第一至第四级电极板为“起效电极”,由竖条纹标注出,该实施例中的起效电极有离粒子源10近。图6b中,第二至第五级电极板为“起效电极”,由竖条纹标注出,该实施例中起效电极较前一个实施例中离粒子源10稍远。两者的汇聚效果相同,两个实施例中的准直器20的主平面203所在位置相同。
轻易可看出,图6a中的实施例的起效电极的平均孔径较小,即填充系数较大。相较之下,图6b中的实施例的起效电极的平均孔径稍大。因此,前者的准直器20有更低的电压需求, 后者有更好的像差。推理可得,通过增加更多的起效电极,准直器的电压需求可以进一步降低;或调整使用更多大孔径的起效电极,进一步优化准直器的像差。
由上可知,本实施例中的准直器可以通过调整电压的改变,改变起效电极,在保持主平面不变,即准直器汇聚能力不变的情况下,可以达到小像差或低电压需求,从而灵活适配不同应用场景。
除了通过大孔径的电极来改善准直器的像差问题,还可以通过设计异形电极,来平滑等势面,使横截面处各点场强的差异减小,以此优化像差。
如图8b所示,为异形电极情况下的、电极间的静电场,其等势面如图中虚线所示。可以看出,在粒子束入射处,电极孔处的静电场的等势面相较图8b中的平缓许多,因此,入射的粒子束的各处粒子收到的电场力的作用更接近,从而减小像差。
异形电极的设计多为对电极板上的电极孔的形状的改变,使该孔不是一个规整的圆筒形,即电极孔的截面不是长方形或正方形。异形电极中,电极孔的上下面孔径大小不等,连接电极孔上下两面之间的壁有和缓的弧度,边缘平滑过渡。为了表述方便,异形电极在本申请中被简化为一个圆环电极板,该电极板上的电极孔的截面为一个上下边长度不等的等腰梯形。
图7为本申请实施例提供的另一个实施例,其中多电极准直器包括共8个电极板,每个电极板上电极孔为锥形,截面呈等边梯形。每个电极板上的电极孔,朝向粒子源10处拥有更小的孔径、另一面有更大的孔径,且该电极板上的小孔径的一面,该孔径大小大于前一极电极板上的大孔径的尺寸。
该准直器的第三至六级电极为“起效电极”,相对应的高电势分别是VDD 1、VDD 2、VDD 3和VDD 4,起效电极在电极孔处形成的静电场的作用范围从第三级电极起延续至第六级电极的位置。
由前述可知,楔形电极属于异形电极的一种,异形电极所形成的静电场,其等势线变化更为平缓,等势线的变化更接近于大孔径的静电场效果,因此对像差有优化效果。而由于其设计,楔形电极也需要更高的调整电压。通过控制调整电压,使不同位置的电极成为“起效电极”,调整“等效主平面”相较于粒子源的位置或采用长结构的多电极准直器,可以在优化像差的同时,达到对带电粒子束束斑的调整,以及降低对高压的需求。
上述的任一实施例的准直器还可以被应用在芯片制造工艺中。
下述描述了芯片制造过程,主要包括下述工艺步骤:步骤一,制作晶圆;步骤二,在晶圆表面涂上抗腐蚀剂;步骤三,使用带电粒子束系统将带电粒子束照射到抗腐蚀剂上,以构成图案;步骤四,使用刻蚀机在裸露出的硅上刻蚀出N阱和P阱,并注入离子,形成PN结(逻辑闸门);步骤五,然后通过化学和物理气相沉淀做出金属连接电路,进而制得芯片。
在上述的步骤三的工艺过程中,可以采用本申请给出的包含有准直器的刻绘系统对晶圆进行刻绘,例如电子束曝光机,图9给出了一种刻绘系统的结构图,该刻绘系统除包括上述的带电粒子束系统之外,还包括台90,该台90可以用于放置待刻绘的物体70,比如待刻绘的晶圆,还包括偏置器(deflector)60,该偏置器(deflector)60用于控制在待刻绘的晶圆上的刻蚀位置。当采用图9所示的刻绘系统对wafer进行刻绘时,粒子源10生成带电粒子,准直器20再对带电粒子进行调整和准直,调整和准直后的带电粒子束通过分束器30分成多束,静电透镜40将多分束带电粒子进行汇聚,并在偏置器50的作用下将带电粒子束聚焦在晶圆上的需要刻绘的位置处。
其中,由于准直器20采用了多级扩孔结构,输出到分束器30的粒子束有更大的束斑尺寸调整范围,粒子束的电流密度调整范围也更大。当束斑尺寸越大时,分束器30生成的多束的数量越多,工作的多束的数量越多,覆盖的工作面积越大,对于大尺寸的测绘效率也越高。而束斑尺寸越小时,粒子束经过分束器30后获得多束,这些多束的电流密度也更大。而当多束的电流密度越大,系统单次测绘的效率也越高。因此,使用扩孔多电极准直器的刻绘系统可以提升效率。
此外,基于多级扩孔结构的准直器20由于其起效电极中会有更大的孔径,导致更小的像差,因此使用该准直器的刻绘系统的分辨率也得到优化。
更进一步地,多级扩孔结构的准直器20在相同聚焦能力的情况下,可以通过调整电压配置平衡高压需求和像差。因此,使用该准直器的刻绘系统可以适配更多的应用场景
所以,采用本申请给出的刻绘系统,在效率方面、分辨率方面均得到优化,且可以通过平衡刻绘精度与能耗需求,适配多种应用场景。
在完成上述的芯片制造后,还会包括下述步骤,步骤一,对芯片进行检查,检验芯片是否存在工艺缺陷;步骤二,对检查后的芯片进行封装。在执行该步骤一过程中,需要一种检查系统,图10给出了一种检查系统的结构图,该检查系统除包括上述的带电粒子束系统之外,还包括台90,该台90可以用于安装待检查的物体70,比如制得的芯片,还可以包括探测器80,探测器80用于探测来自待检查的物体70的由带电粒子束生成的二次带电粒子,以产生与二次带电粒子相对应的信号,可以这样理解,带电粒子束系统产生的电子束聚焦在wafer上,以在wafer上形成电子束斑点,探测器80收集wafer表面产生的二次电子与背散射电子,以获得wafer表面的形貌信息。
需要说明的是,在图10中,示意性的指出了待检查的物体70生成的二次带电粒子会反射中探测器80中,不对二次带电粒子的传输路径构成限定。
在图10示出的检查系统中,其中,由于准直器20采用了多级扩孔结构,输出到分束器30的粒子束有更大的束斑尺寸调整范围,粒子束的电流密度调整范围也更大。当束斑尺寸越大时,分束器30生成的多束的数量越多,工作的多束的数量越多,大尺寸情况下的检测效率也越高。而束斑尺寸越小时,粒子束经过分束器30后获得多束,这些多束的电流密度也更大。而当多束的电流密度越大,系统的单次检测效率也越高。因此,使用扩孔多电极准直器的检测系统会有更高的效率。
此外,基于多级扩孔结构的准直器20,由于其起效电极中会有更大的孔径,导致更小的像差,因此使用该准直器的检测系统的分辨率也得到优化。
更进一步地,多级扩孔结构的准直器20在相同聚焦能力的情况下,可以通过调整电压配置平衡高压需求和像差。因此,使用该准直器的检测系统可以适配更多的应用场景
所以,采用本申请给出的检测系统,在效率方面、分辨率方面均得到优化,且可以通过平衡刻绘精度与能耗需求,适配多种应用场景。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种带电粒子束系统,其特征在于,包括:
    带电粒子源,用于生成带电粒子束;
    可调准直透镜,用于准直所述带电粒子束,其中,所述可调准直透镜包括轴向分布的多级电极,所述多级电极中每级电极均形成供所述带电粒子束穿过的电极孔,沿所述带电粒子束的前进方向上,所述多级电极的电极孔的尺寸不小于前一极电极上电极孔的尺寸,所述多级电极中部分电极被配置为单独供电,以便为所述带电粒子束的准直提供不同的电极组合。
  2. 根据权利要求1所述的带电粒子束系统,其特征在于:
    所述多级电极中每级电极为环形电极。
  3. 根据权利要求2所述的带电粒子束系统,其特征还在于:
    所述电极孔的尺寸变化为沿所述带电粒子束的前进方向上逐级增大。
  4. 根据权利要求3所述的带电粒子束系统,其特征还在于:
    所述电极孔的尺寸变化为沿所述带电粒子束的前进方向上逐级线性递增。
  5. 根据权利要求1所述的带电粒子束系统,其特征还在于:
    所述多个电极为异形电极;
    其中每个异形电极上的电极孔沿所述带电粒子束的前进方向上的上平面比下平面尺寸小。
  6. 根据权利要求5所述的带电粒子束系统,其特征还在于:
    所述多个异形电极上的电极孔沿所述带电粒子束的前进方向上的每个平面的电极孔的尺寸逐级增大。
  7. 根据权利要求1至6中任一所述的带电粒子束系统,其特征在于,所述带电粒子束系统为带电粒子束系统检查系统,所述带电粒子束检查系统还包括:
    偏转器,用于偏转所述带电粒子束系统生成的带电粒子束;
    台,用于放置待检查物体,由所述带电粒子束系统生成、经所述偏转器偏转后的带电粒子束聚焦在待检查物体上;
    探测器,用于探测来自所述待检查物体的由所述带电粒子束生成的二次带电粒子束,以产生与所述二次带电粒子束相对应的信号。
  8. 根据权利要求1至6中任一所述的带电粒子束系统,其特征在于,所述带电粒子束系统为带电粒子束系统刻绘系统,所述带电粒子束刻绘系统还包括:
    偏转器,用于偏转所述带电粒子束系统生成的带电粒子束;
    台,用于放置待刻绘物体,由所述带电粒子束系统生成、经所述偏转器偏转后的带电粒子束聚焦在所述待刻绘物体上。
PCT/CN2022/086235 2022-04-12 2022-04-12 一种可调整的多电极准直装置 WO2023197131A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086235 WO2023197131A1 (zh) 2022-04-12 2022-04-12 一种可调整的多电极准直装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086235 WO2023197131A1 (zh) 2022-04-12 2022-04-12 一种可调整的多电极准直装置

Publications (1)

Publication Number Publication Date
WO2023197131A1 true WO2023197131A1 (zh) 2023-10-19

Family

ID=88328683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086235 WO2023197131A1 (zh) 2022-04-12 2022-04-12 一种可调整的多电极准直装置

Country Status (1)

Country Link
WO (1) WO2023197131A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645548A (zh) * 2004-01-21 2005-07-27 株式会社东芝 带电粒子束装置、控制方法、基板检查方法及半导体器件制造方法
US20150124229A1 (en) * 2012-05-14 2015-05-07 Mapper Lithography Ip B.V. Charged particle lithography system and beam generator
US20150137009A1 (en) * 2013-11-14 2015-05-21 Mapper Lithography Ip B.V. Multi-electrode cooling arrangement
CN110622276A (zh) * 2017-04-11 2019-12-27 Asml荷兰有限公司 带电粒子源模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645548A (zh) * 2004-01-21 2005-07-27 株式会社东芝 带电粒子束装置、控制方法、基板检查方法及半导体器件制造方法
US20150124229A1 (en) * 2012-05-14 2015-05-07 Mapper Lithography Ip B.V. Charged particle lithography system and beam generator
US20150137009A1 (en) * 2013-11-14 2015-05-21 Mapper Lithography Ip B.V. Multi-electrode cooling arrangement
CN110622276A (zh) * 2017-04-11 2019-12-27 Asml荷兰有限公司 带电粒子源模块

Similar Documents

Publication Publication Date Title
CN111681939B (zh) 多个带电粒子束的装置
US10497536B2 (en) Apparatus and method for correcting arrayed astigmatism in a multi-column scanning electron microscopy system
US8748841B2 (en) Drawing apparatus and method of manufacturing article
TWI412053B (zh) 多束充電粒子光學系統以及具有至少兩個電極的透鏡結構
TW201248674A (en) Drawing apparatus and method of manufacturing article
CN102017053A (zh) 投影透镜装置
EP4118673A1 (en) Certain improvements of multi-beam generating and multi-beam deflecting units
JP2001052998A (ja) 荷電粒子ビーム結像方法、荷電粒子ビーム結像装置及び荷電粒子ビーム露光装置
TW202226313A (zh) 物鏡陣列總成、電子光學系統、電子光學系統陣列、聚焦方法;物鏡配置
US20240071716A1 (en) Charged particle assessment system and method
WO2023197131A1 (zh) 一种可调整的多电极准直装置
US20230324318A1 (en) Charged particle tool, calibration method, inspection method
US20220392743A1 (en) Charged particle assessment tool, inspection method
KR20240006497A (ko) 높은 처리량의 다중 전자 빔 시스템
US20150037731A1 (en) Drawing apparatus and article manufacturing method
WO2023197125A1 (zh) 用于减小散焦距离defocus的静电透镜
US20220392745A1 (en) Inspection apparatus
US20230005699A1 (en) Aperture body, flood column and charged particle tool
KR20240047336A (ko) 고해상도 다중 전자 빔 장치
TW202312211A (zh) 帶電粒子裝置及方法
EP4327350A1 (en) Systems and methods of creating multiple electron beams
TW202328812A (zh) 帶電粒子裝置及方法
TW202405855A (zh) 成像多電子束之方法及系統
JP2022526972A (ja) 内蔵電圧発生器を備えたmems画像形成素子
KR20120096077A (ko) 다중 빔 대전 입자 광학 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936788

Country of ref document: EP

Kind code of ref document: A1