TW202312211A - 帶電粒子裝置及方法 - Google Patents

帶電粒子裝置及方法 Download PDF

Info

Publication number
TW202312211A
TW202312211A TW111118809A TW111118809A TW202312211A TW 202312211 A TW202312211 A TW 202312211A TW 111118809 A TW111118809 A TW 111118809A TW 111118809 A TW111118809 A TW 111118809A TW 202312211 A TW202312211 A TW 202312211A
Authority
TW
Taiwan
Prior art keywords
electrode
array
potential
sample
objective lens
Prior art date
Application number
TW111118809A
Other languages
English (en)
Inventor
艾爾伯圖斯 維克 傑拉杜斯 馬格努斯
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202312211A publication Critical patent/TW202312211A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/03Mounting, supporting, spacing or insulating electrodes
    • H01J2237/036Spacing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0475Changing particle velocity decelerating
    • H01J2237/04756Changing particle velocity decelerating with electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1205Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/151Electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/21Focus adjustment
    • H01J2237/216Automatic focusing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明提供一種用於一帶電粒子系統之帶電粒子光學裝置。該裝置朝向一樣本投影(投射)一帶電粒子束陣列。該裝置包含:一控制透鏡陣列,其用以控制該射束陣列之一參數;及一物鏡陣列,其用以將該射束陣列投影至該樣本上,該物鏡陣列在該控制透鏡之順流方向上。該物鏡陣列包含:一上部電極;及一下部電極配置,其包含一逆流方向電極及一順流方向電極。該裝置經組態以將一上部電位施加至該上部電極、將一逆流方向電位施加至該逆流方向電極、及將一順流方向電位施加至該順流方向電極。控制該等電位以控制該等射束在該樣本上之著陸能量及在該等著陸能量下維持該等射束在該樣本上之聚焦。

Description

帶電粒子裝置及方法
本文中所提供之實施例大體上係關於一種帶電粒子光學裝置及投影帶電粒子之方法,且特定言之,係關於使用多個帶電粒子束之裝置及方法。
在製造半導體積體電路(IC)晶片時,由於例如光學效應及偶然粒子所導致的非所需之圖案缺陷在製程期間不可避免地出現在基板(亦即,晶圓)或光罩上,從而降低良率。因此,監視非所需之圖案缺陷之程度係IC晶片之製造中之重要程序。更一般而言,基板或其他物件/材料之表面的檢測及/或量測,係在其製造期間及/或之後之重要程序。
具有帶電粒子束之圖案檢測工具已用於檢測物件,例如,用於偵測圖案缺陷。此等工具通常使用電子顯微技術,諸如掃描電子顯微鏡(SEM)。在SEM中,相對較高能量下之電子的初級電子射束以最終減速步驟為目標,以便以相對較低著陸能量著陸於樣本上。電子射束聚焦為樣本上之探測光點。探測光點處之材料結構與來自電子射束之著陸電子之間的相互作用使得自表面發射信號帶電粒子,諸如次級電子、反向散射電子或歐傑(Auger)電子。可自樣本之材料結構發射所產生之次級電子。藉由在樣本表面上方掃描呈探測光點形式之初級電子射束,可橫跨樣本之表面發射信號帶電粒子。藉由自樣本表面收集此等經發射信號帶電粒子,圖案檢測工具可獲得與樣本表面之材料結構相關之資料,例如,該資料可用以形成表示樣本表面之材料結構之特性的影像。
通常需要改良帶電粒子光學裝置之產出量及其他特性。詳言之,需要能夠以便利的方式控制入射於樣本上之電子之著陸能量。
本發明之目標為提供支援帶電粒子光學裝置之產出量或其他特性之改良的實施例。
根據本發明之一實施例,提供了一種用於一帶電粒子系統之帶電粒子光學裝置,該裝置經組態以朝向一樣本投影一帶電粒子束陣列,該裝置包含:一控制透鏡陣列,其經組態以控制該射束陣列之一參數;以及一物鏡陣列,其經組態以將該射束陣列投影至該樣本上,該物鏡陣列在該控制透鏡之順流方向上,且包含:一上部電極;及包含一逆流方向電極及一順流方向電極之一下部電極配置,其中該裝置經組態以將一上部電位施加至該上部電極、將一逆流方向電位施加至該逆流方向電極及將一順流方向電位施加至該順流方向電極,且該裝置經組態以控制該逆流方向電位及該順流方向電位以改變及/或設定該等射束在該樣本上之著陸能量,且在不同著陸能量下維持該等射束在該樣本上之聚焦。
現將詳細參考例示性實施例,其實例繪示於附圖中。以下描述參考附圖,其中除非另外表示,否則不同圖式中之相同編號表示相同或類似元件。在例示性實施例之以下描述中闡述之實施並不表示符合本發明之所有實施。相反,其僅為符合所附申請專利範圍中所列舉之本發明之裝置及方法之實例。
可藉由顯著增加IC晶片上之電路組件(諸如電晶體、電容器、二極體等)之裝填密度來實現電子裝置之增強之計算能力,其減小該等裝置之實體大小。此已藉由增加的解析度來實現,從而使得能夠製得更小的結構。舉例而言,智慧型手機之IC晶片(其為拇指甲大小且在2019年或早於2019年可用)可包括超過20億個電晶體,各電晶體之大小小於人類毛髮之1/1000。因此,半導體IC製造係具有數百個個別步驟之複雜且耗時製程並不出人意料。甚至一個步驟中之錯誤亦有可能顯著影響最終產品之運作。僅一個「致命缺陷」可導致裝置失效。製造製程之目標係改良製程之總良率。舉例而言,為獲得50步驟製程(其中步驟可指示形成於晶圓上之層的數目)之75%良率,各個別步驟必須具有大於99.4%之良率。若各個別步驟具有95%之良率,則總製程良率將低達7%。
儘管高製程良率在IC晶片製造設施中係合乎需要的,但維持高基板(亦即,晶圓)產出量(經界定為每小時處理之基板的數量)亦為必要的。高製程良率及高基板產出量可受缺陷之存在影響。若需要操作員干預來審查缺陷,則此尤其成立。因此,藉由檢測工具(諸如掃描電子顯微鏡(「SEM」))進行之微米及奈米級缺陷之高產出量偵測及識別對於維持高良率及低成本係至關重要的。
SEM包含掃描裝置及偵測器設備。掃描裝置包含:照射設備,其包含用於產生初級電子之電子源;及投影設備,其用於運用一或多個聚焦初級電子射束來掃描樣本,諸如基板。至少照射設備或照射系統及投影設備或投影系統可統稱為電光學系統或設備。初級電子與樣本相互作用,且產生次級電子。當掃描樣本時,偵測設備自樣本捕獲次級電子,使得SEM可獲得樣本之掃描區域之資料,例如,該資料可用以產生樣本之掃描區域之影像。對於高產出量檢測,檢測設備中之一些使用多個聚焦初級電子射束,亦即,多射束。多射束之組成射束可被互換地稱作射束、子射束或細射束。多射束可同時掃描樣本之不同部分。因此,多射束檢測設備可以比單射束檢測設備高得多的速度檢測樣本。
下文描述已知多射束檢測設備之實施。
圖式為示意性的。因此出於清楚起見,誇示了圖式中之組件之相對尺寸。在以下圖式描述內,相同或類似參考編號係指相同或類似組件或實體,且僅描述關於個別實施例之差異。儘管描述及圖式係針對電光學設備,但應瞭解,實施例不用於將本發明限制為特定帶電粒子。因此,更一般而言,貫穿本發明文件之對電子之引用可被認為係對帶電粒子之引用,其中帶電粒子未必為電子。
現參考 1,其為說明例示性帶電粒子束檢測設備100之示意圖。帶電粒子束檢測設備100為帶電粒子系統之實例。 1之帶電粒子束檢測設備100包括主腔室10、裝載鎖定腔室20、電子射束工具40、設備前端模組EFEM) 30及控制器50。電子射束工具40位於主腔室10內。
EFEM 30包括第一裝載埠30a及第二裝載埠30b。EFEM 30可包括額外裝載埠。舉例而言,第一裝載埠30a及第二裝載埠30b可接收含有待檢測之基板(例如,半導體基板或由其他材料製成之基板)或樣本的基板前開式單元匣(FOUP) (基板、晶圓及樣本下文統稱為「樣本」)。EFEM 30中之一或多個機器人臂(圖中未繪示)將樣本傳輸至裝載鎖定腔室20。
裝載鎖定腔室20用以移除樣本周圍之氣體。此產生真空,亦即局域氣體壓力低於周圍環境中之壓力。可將裝載鎖定腔室20連接至裝載鎖定真空泵系統(圖中未繪示),該裝載鎖定真空泵系統移除裝載鎖定腔室20中之氣體粒子。裝載鎖定真空泵系統之操作使得裝載鎖定腔室能夠達到低於大氣壓力之第一壓力。在達到第一壓力之後,一或多個機器人臂(圖中未示)將樣本自裝載鎖定腔室20傳輸至主腔室10。將主腔室10連接至主腔室真空泵系統(圖中未示)。主腔室真空泵系統移除主腔室10中之氣體粒子,使得樣本周圍之壓力達到低於第一壓力之第二壓力。在達到第二壓力之後,將樣本傳輸至可檢測該樣本之電子射束工具40。電子射束工具40可包含如下文所描述之帶電粒子光學裝置,例如多射束電光學設備。
將控制器50以電子方式連接至電子射束工具40。控制器50可為經組態以控制帶電粒子束檢測設備100之處理器(諸如電腦)。控制器50亦可包括經組態以執行各種信號及/或影像處理功能之處理電路系統。雖然控制器50在 1中經展示為在包括主腔室10、裝載鎖定腔室20及EFEM 30之結構外部,但應瞭解,控制器50可為該結構之部分。控制器50可位於帶電粒子束檢測設備之組成元件中之一者中或其可分佈於組成元件中之至少兩者上方。雖然本發明提供容納電子射束檢測工具之主腔室10之實例,但應注意,本發明之態樣在其最廣泛意義上而言不限於容納電子射束檢測工具之腔室。相反,應瞭解,亦可將前述原理應用於設備的在第二壓力下操作之其他工具及其他配置。
現參考 2,其為說明例示性電子射束工具40之示意圖,該例示性電子射束工具包括作為 1之例示性帶電粒子束檢測設備100之部分的多射束檢測工具。多射束電子射束工具40 (在本文中亦稱為設備40)包含電子源201、投影設備230、機動載物台209及樣本保持器207。電子源201及投影設備230可統稱作照射設備。樣本保持器207係由機動載物台209支撐以便固持樣本208 (基板或光罩)以供檢測。多射束電子射束工具40可進一步包含電子偵測裝置240。
帶電粒子系統可包含源201。在操作期間,源201提供帶電粒子(例如電子)射束。舉例而言,源201可包含陰極(圖中未示)及提取器或陽極(圖中未示),且源可自陰極發射電子來作為初級電子。藉由提取器及/或陽極提取或加速初級電子以形成初級電子射束202。可提供帶電粒子源,代替電子源201。聚焦於樣本208上之多射束源自由源201提供之射束。舉例而言,可使用界定射束限制孔隙之陣列之射束限制器自射束導出子射束。源201理想地為具有亮度與總發射電流之間之良好折衷的高亮度熱場發射器。
投影設備230經組態以將初級電子射束202轉換成複數個子射束211、212、213 (其可另外被稱作射束或細射束)且將各子射束引導至樣本208上。儘管為簡單起見說明三個子射束,但可能存在數十、數百或數千個子射束。
可將控制器50連接至電子射束工具40之各個部分,諸如電子源201、電子偵測裝置240、投影設備230及/或機動載物台209。控制器50可執行各種影像及/或信號處理功能。控制器50亦可產生各種控制信號以控管帶電粒子系統之操作,且可用以產生各種控制信號以控管帶電粒子光學裝置之操作。
投影設備230可經組態以將子射束211、212及213聚焦至用於檢測之樣本208上且可在樣本208之表面上形成三個探測光點221、222及223。投影設備230可經組態以使初級子射束211、212及213偏轉,以使探測光點221、222及223橫跨樣本208之表面之區段中的個別掃描區域掃描。回應於初級子射束211、212及213入射於樣本208上之探測光點221、222及223上,信號粒子(例如電子)係自樣本208產生,該等信號粒子可包括次級電子及反向散射電子。次級電子通常具有≤ 50 eV之電子能且反向散射電子通常具有50 eV與初級子射束211、212及213之著陸能量之間的電子能量。次級電子及反向散射電子可另外分別被稱作次級帶電粒子及反向散射帶電粒子,且可與次級帶電粒子及反向散射帶電粒子互換。自樣本發射之帶電粒子(例如次級電子及反向散射電子)可通常稱作信號粒子,例如次級信號粒子及反向散射信號粒子。
電子偵測裝置240經組態以偵測信號粒子,例如次級電子及/或反向散射電子,且產生對應信號,該等對應信號被發送至控制器50或信號處理系統(圖中未示),例如建構樣本208之對應經掃描區域之影像。電子偵測裝置240可併入至投影設備230中,如圖2所展示。電子偵測裝置240可與投影設備230分離,例如其中提供次級光學柱以將信號帶電粒子,例如次級電子及/或反向散射電子,引導至電子偵測裝置240。電子偵測裝置240為帶電粒子偵測裝置之一實例且可用任何適當帶電粒子偵測裝置替換。
控制器50可包含資料處理系統及/或儲存裝置(圖中未示)。舉例而言,控制器50可包含處理器、電腦、伺服器、大型電腦主機、終端機、個人電腦、任何種類之行動計算裝置及其類似者,或其組合。資料處理系統可包含控制器之處理功能的至少部分。因此,資料處理系統可包含至少一或多個處理器。資料處理系統可以通信方式耦接至准許信號通信之設備40之電子偵測裝置240,諸如電導體、光纖纜線、攜帶型儲存媒體、IR、藍牙、網際網路、無線網路、無線電等或其組合。資料處理系統可自電子偵測裝置240接收信號,可處理包含於信號中之資料。資料處理系統可基於自電子偵測裝置240接收之信號獲取與樣本相關之資料。該信號可對應於使用帶電粒子子射束之掃描操作。儲存器可為諸如以下各者之儲存媒體:硬碟、快閃驅動器、雲端儲存器、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體及其類似者。儲存器可與資料處理系統耦接,且可用於保存經掃描原始資料及/或經後處理資料。
另外或替代地,控制器50可包含影像處理系統,其包括影像獲取器(圖中未示)。除資料處理系統外,亦可提供此影像處理系統。影像處理系統可包含該資料處理系統。影像獲取器可包含控制器之處理功能之至少部分。因此,影像獲取器可包含至少一或多個處理器。影像獲取器可自電子偵測裝置240接受信號,可處理包含於該信號中之資料(例如,使用資料處理系統)且可自其建構影像。影像獲取器可因此獲取樣本208之影像。影像獲取器亦可執行各種後處理功能,諸如在經獲取影像上產生輪廓、疊加指示符及類似者。影像獲取器可經組態以執行對經獲取影像之亮度及對比度等之調節。儲存器可與影像獲取器耦接,且可用於將經掃描原始影像資料保存為原始影像,及後處理影像。
影像獲取器可基於資料信號獲取樣本之一或多個影像。經獲取影像可為包含複數個成像區域之單個影像。可將單個影像儲存於儲存器中。單個影像可為可劃分成複數個區之原始影像。該等區中之各者可包含含有樣本208之特徵之一個成像區域。經獲取影像可包含在一時間週期內經取樣多次之樣本208之單個成像區域的多個影像。該多個影像可儲存於儲存器中。控制器50可經組態以藉由樣本208之相同位置之多個影像來執行影像處理步驟。
控制器50可包括量測電路系統(例如,類比至數位轉換器)以獲得信號帶電粒子(例如次級電子)之分佈。在偵測時間窗期間收集到之信號帶電粒子分佈資料可與入射於樣本表面上之初級子射束211、212及213中之各者的對應掃描路徑資料組合使用,以獲得受檢測之樣本結構之資料。可使用資料處理,原始資料或經處理資料,以揭示樣本208中之特性及/或缺陷(例如,不產生影像)。該資料可視情況用於重建構此等樣本結構之影像。經重建構影像可用以揭示樣本208之內部或外部結構之各種特徵。經重建構影像可藉此用於揭示可存在於樣本中之任何缺陷。
控制器50可控制機動載物台209以在樣本208之檢測期間移動樣本208。控制器50可使得機動載物台209能夠至少在樣本檢測期間例如以恆定速度在一方向上(較佳地為連續地)移動樣本208。控制器50可控制機動載物台209之移動,使得該控制器取決於各種參數而改變樣本208之移動速度。舉例而言,控制器50可取決於掃描程序之檢測步驟之特性而控制載物台速度(包括其方向)。
3為評估工具之示意圖。電子源201朝向形成投影系統230之部分之聚光透鏡231陣列引導電子。電子源201理想地為具有亮度與總發射電流之間之良好折衷之高亮度熱場發射器。可能存在數十、數百或數千個聚光透鏡231。陣列中之聚光透鏡231可包含多電極透鏡且具有基於EP1602121A1之構造,該EP1602121A1特此以引用之方式併入,詳言之,其係關於將電子射束分裂為複數個子射束211、212、213之透鏡陣列的揭示內容,其中陣列為各子射束211、212、213提供透鏡。聚光透鏡陣列231可呈至少兩個板(充當電極)之形式,其中各板中之孔隙彼此對準且對應於子射束211、212、213之位置。在不同電位下在操作期間維持板中之至少兩者以達成所需透鏡效應。
在一配置中,聚光透鏡陣列231係由三個板陣列形成,其中帶電粒子在其進入及離開各透鏡時具有相同能量,該配置可被稱作單透鏡。因此,分散僅出現在單透鏡自身內(在透鏡之進入電極與離開電極之間),藉此限制離軸色像差。當聚光透鏡之厚度較低,例如為數毫米時,此類像差具有較小或可忽略之影響。
陣列中之各聚光透鏡將帶電粒子引導至各別子射束211、212、213中,該各別子射束聚焦於各別中間焦點233處。偏轉器235設置於中間焦點233處。偏轉器235經組態以使各別子射束211、212、213彎曲達一量,以有效確保主射線(其亦可稱作束軸)實質上正入射於樣本208上(亦即,與樣本之標稱表面實質上成90°)。偏轉器235亦可被稱作準直器。
在偏轉器235下方(亦即,順流方向或進一步遠離源201),存在控制透鏡陣列250,其針對各子射束211、21、213包含一控制透鏡。各控制透鏡包含連接至各別電位源之至少兩個電極(例如,兩個或三個電極)。控制透鏡陣列250可包含連接至各別電位源之兩個或多於兩個(例如,三個)板狀電極陣列。各板狀電極陣列藉由隔離元件(諸如可包含陶瓷或玻璃之間隔件)可與鄰近的板狀電極陣列機械地連接及電分離。控制透鏡陣列之電極可連接至電絕緣間隔件。該控制透鏡陣列可經組態以控制該射束陣列之一參數。控制透鏡陣列250之功能為根據射束之縮小率最佳化射束張角及/或控制遞送至物鏡234之射束能量,該等物鏡中之各者將各別子射束211、212、213引導至樣本208上。
控制透鏡陣列250可與物鏡陣列241相關聯(例如,兩個陣列可靠近彼此而定位(例如,彼此鄰近)及/或以機械方式彼此連接及/或作為一單元一起被控制)。控制透鏡陣列250可藉由隔離元件(諸如可包含陶瓷或玻璃之間隔件)與物鏡陣列241機械地連接及電分離。各控制透鏡251可與各別物鏡234相關聯。控制透鏡陣列250定位於物鏡陣列241之逆流方向上。物鏡陣列241可定位於電光學系統之基底處或附近。更特定而言,物鏡陣列241可定位於投影系統230之基底處或附近。控制透鏡可預先聚焦子射束(例如,在子射束到達物鏡陣列241之前對子射束施加聚焦動作)。預聚焦可減少子射束之發散或增加子射束之收斂速率。控制透鏡陣列250係視情況選用的,但較佳用於最佳化物鏡陣列241之逆流方向(亦即,高於或更接近源201)上之子射束211、212、213。
控制透鏡陣列250及物鏡陣列241可被視為一配置。該配置可經描述為四個或多於四個為板之透鏡電極。在該等板中界定孔隙,舉例而言,以孔隙陣列之形式,其與對應射束陣列中之數個射束對準。電極可分組成具有兩個或多於兩個電極之透鏡,例如,以提供諸如控制透鏡群組之控制透鏡陣列及諸如物鏡群組之物鏡陣列。在一配置中,該物鏡群組具有至少兩個透鏡電極,且該控制透鏡群組具有至少兩個透鏡電極。
舉例而言,離樣本208最遠之物鏡陣列241之電極,亦即,物鏡陣列之最逆流方向之電極(其可對應於下文關於圖5所描述之上部電極303),及最接近樣本208之控制透鏡陣列250之電極,亦即,控制透鏡陣列250之最順流方向之電極(其可對應於下文所描述之下部電極602)可由共同電極提供。因此,物鏡群組之最逆流方向之電極透鏡為共同電極,亦為聚光透鏡群組之最順流方向之電極之部件。儘管電極可為物鏡陣列241及控制透鏡陣列250兩者共有,但電極之表面可屬於不同透鏡。舉例而言,共同電極之逆流方向表面形成控制透鏡陣列250之透鏡之部分,且共同電極之順流方向表面形成物鏡陣列241之透鏡之部分。此途徑在需要將控制透鏡陣列250定位成接近物鏡陣列241之情況下係有益的。當不存在聚光透鏡陣列時,更可能出現此情況。
物鏡陣列241經組態以將子射束211、212、213之陣列投影至樣本208上。物鏡陣列241中之物鏡234可為操作多射束中之不同子射束或射束群組之微透鏡。在物鏡陣列241之電極或板中,界定孔隙(或孔)之陣列。各孔在板(例如電極)中之位置對應於對應孔在其他板中之位置。對應孔在使用中在多射束中之相同子射束或射束群組上起作用。
物鏡陣列241之電極可藉由電絕緣間隔件(圖中未示)間隔開。間隔件可為結構間隔件。物鏡陣列241之電極可經連接至電絕緣間隔件。間隔件可包含陶瓷或玻璃,或任何其他合適材料。
視情況,將掃描偏轉器陣列260設置於控制透鏡陣列250與物鏡234之陣列之間。掃描偏轉器陣列260包含用於各子射束211、212、213之掃描偏轉器。各掃描偏轉器經組態以使各別子射束211、212、213在一個或兩個方向上偏轉,以便使子射束在一個或兩個方向上橫跨樣本208掃描。
電子偵測裝置240經提供以偵測信號粒子,例如自樣本208發射之次級及/或反向散射電子。如圖3所展示,電子偵測裝置240可定位於物鏡234與樣本208之間。如下文進一步描述,電子偵測裝置240可另外或替代地設置於其他位置中。下文描述電子偵測裝置240之例示性構造,該電子偵測裝置可提供為偵測器陣列。
物鏡234可為減速透鏡,亦即,物鏡陣列241可使帶電粒子束(例如子射束211、212、213)減速。已知減速透鏡可為由沿著光軸之兩個電極組成的相對簡單的靜電透鏡,其中帶電粒子束在入射於樣本208上之前穿過電極。使帶電粒子束在物鏡中減速,此係因為下部電極(亦即,進一步遠離源201)相比於上部電極具有更低電位。上部電極電壓通常被視為與射束入口能量(以keV為單位)相同。減速透鏡之整體聚焦效應可描述為藉由兩個電極之間的電場(該等電極具有不同電位)及藉由使電場本身減速而在兩個電極處產生之孔徑透鏡效應之組合結果。
通常,可達到的解析度改良下部電極孔徑透鏡之較小焦距。可藉由增加物鏡之電極之間的電壓差且減小上部電極與下部電極之間的距離來使焦距更小。實務上,此受到最大電壓限制,例如鑒於X射線安全措施,大約30 kV可為最大電壓之較佳上限。此亦受最大電場限制,例如,大約10 kV/mm可為電場之較佳上限,因為高於此之電場可增加真空中之電崩潰之風險。因此,此等係減速透鏡可達到的解析度之實際限制。
為了在此類已知雙電極物鏡中達到固定著陸能量的最佳解析度,可以一方式最佳化下部電極之厚度,使得下部電極之頂部(其中進行孔徑透鏡之主要聚焦動作)與樣本208之間的距離大約與此孔徑透鏡之焦距相同。下部電極電壓可與著陸能量大致相同以僅在樣本208上具有小電場以防止對樣本208之損壞。僅舉例而言,在此實例中,下部電極之厚度可小於大約1 mm。
改變子射束在樣本208上之著陸能量可為有益的。著陸能量可變化(亦即,經控制)以獲得展示資料中之對比度之資訊(其可例如產生成像對比度)。改變著陸能量可減少充電,及/或可有益於減少或防止樣本208之損壞。
如上文所描述,下部電極之幾何形狀可針對某一著陸能量最佳化。對於具有相同上部電極電壓(亦即,相同射束入口能量)之可變著陸能量,下部孔徑透鏡之焦距將取決於著陸能量。因此,當使用較低著陸能量時,焦距減小且子射束聚焦於樣本208上方而非聚焦於樣本208上;當使用較高著陸能量時,焦距增加且子射束聚焦於樣本208下方而非聚焦於樣本208上。有可能藉由將不同電壓施加至下部電極及樣本208以校正聚焦,亦即,在樣本208上方產生另一透鏡場。然而,此類聚焦校正可能需要下部電極與樣本之間的強電場,且大型電場有損壞樣本208之風險。此外,此強電場可影響自樣本發射之信號帶電粒子(且特定言之,次級電子)之軌跡,其可對偵測器收集效率有害。替代地,可藉由改變下部電極與樣本208之間的距離來校正聚焦。舉例而言,樣本208可在圖2中相對於物鏡陣列向上或向下移動。然而,樣本208與物鏡之下部電極之間的距離必須經非常準確地調節,此增加裝置之複雜度且可降低偵測器收集效率。因此,相對簡單的雙電極物鏡可能並不非常適合可變著陸能量。出於參考目的,此類雙電極物鏡可被稱作「原始電極幾何形狀」。
4為描繪解析度隨著陸能量而變之曲線圖(其假定重新最佳化射束張角/縮小率以改變著陸能量)。實線展示當物鏡陣列241之最底部電極可相對於樣本208移動時(亦即,在物鏡陣列與樣本208之間具有可調節的工作距離),原始電極幾何形狀之解析度及著陸能量之變化。可看到,隨著著陸能改變成降至最小值LE_min,解析度可保持實質上恆定。解析度在LE_min以下會降低,此係因為例如有必要縮減物鏡234之透鏡強度及物鏡234內之電場,以便維持物鏡及/或偵測器與樣本208之間的最小間距。
本發明之基礎想法為藉由將減速物鏡之下部電極分裂成兩個較薄電極以實現連續可變的著陸能量(其可用以固定樣本距離)來建立三電極減速透鏡。兩個較薄電極之集合之幾何形狀可自用於系統之最高著陸能量推斷出(詳細論述如下)。藉由使用兩個較薄電極之集合(例如,其可具有與最高著陸能量所需之原始厚度相同之總厚度),可藉由改變兩個較薄電極上之個別電壓來實現較低著陸能量。圖4中之虛線展示當物鏡陣列241相對於樣本2018固定時(亦即,當工作距離恆定時),具有此等兩個較薄底部電極之電極幾何形狀之解析度及著陸能量的變化。可看出,解析度在較低著陸能量下較低,因此相較於原始電極幾何形狀可實現LE_min之較低值。
在一實施例中,提供帶電粒子光學裝置以朝向樣本208投影子射束211、212、213。子射束211、212、213表示帶電粒子束陣列且可互換地被稱作帶電粒子束陣列。帶電粒子光學裝置控制子射束211、212、213在樣本208上之著陸能量。取決於所評估之樣本208的性質,著陸能量可經選擇以增加信號粒子之發射及偵測。該裝置可經組態以將著陸能量控制在預定範圍內之任何期望值或複數個預定值中之一期望值。
該裝置包含物鏡陣列241。理想地,著陸能量係藉由控制離開物鏡234之帶電粒子之能量而變化。物鏡陣列241包含上部電極及下部電極配置,該下部電極配置包含逆流方向電極及順流方向電極。下部電極配置可對應於上文所描述之經分裂下部電極。提供下部電極配置而非原始電極幾何形狀中之單一下部電極可以多種不同方式受益,且特定言之,可用以控制著陸能量及/或聚焦。物鏡234亦可稱為再聚焦透鏡,此係由於其可用以鑒於著陸能量之改變而校正聚焦位置。在一實施例中,物鏡陣列接近樣本及/或提供裝置之最順流方向之表面。上部電極、逆流方向電極及順流方向電極彼此接近。上部電極、逆流方向電極及順流方向電極可為依序定位於裝置中之電極。上部電極、逆流方向電極及順流方向電極可為裝置之最順流方向之電極。
該裝置經組態以將電壓施加至物鏡陣列241之電極。該裝置經組態以將上部電位施加至上部電極、將逆流方向電位施加至逆流方向電極、及將順流方向電位施加至順流方向電極。上部電極、逆流方向電極及順流方向電極各自具備孔隙,各別子射束經由該孔隙傳播。
該裝置可包含至少一個電源。電源可更一般而言指代電源供應器,且可與電源供應器互換。至少一個電源可用以設定裝置之一或多個電位,且特定言之,用以向物鏡陣列241之電極提供電位。較佳地,電源使用控制器50設定相關電位。至少一個電源可經組態以將電位施加至控制透鏡陣列250之電極。至少一個電源可由控制器50控制。
5為一個物鏡234及一個控制透鏡251之放大示意圖。物鏡234包含上部電極303、逆流方向電極301及順流方向電極302。電壓源V3、V1、V2經組態以分別將電位施加至上部電極、逆流方向電極及順流方向電極。電壓源V4可連接至樣本208以施加樣本電位。可相對於源201界定電位。控制透鏡251包含分別連接至電壓源V6、V7、V5之中間電極601、下部電極602及上部電極601。電極601、602、603可間隔開幾毫米(例如3 mm)。理想地,控制透鏡之下部電極602及物鏡之最上部電極(亦即,上部電極303)具有實質上相同的電位。控制透鏡251可用以控制射束張角。理想地,控制透鏡陣列為例如控制透鏡之電極,其鄰接物鏡陣列。
若在控制透鏡陣列250與物鏡陣列241之間存在間距(亦即,控制透鏡之下部電極602與物鏡之上部電極303之間存在間隙),則該間距可選自廣範圍,例如2 mm至200 mm或更大。小間距使得對準更容易,而較大間距允許使用較弱透鏡,從而縮減像差。
控制透鏡陣列251及物鏡陣列241可藉由電絕緣間隔件(圖中未示)間隔開。間隔件可為結構間隔件。控制透鏡陣列之一電極及/或物鏡陣列之一電極可連接至該電絕緣間隔件。間隔件可包含陶瓷或玻璃,或任何其他合適材料。
帶電粒子裝置可使用下部電極配置來控制(例如改變及/或設定)著陸能量。該裝置可控制逆流方向電位及順流方向電位,以改變及/或設定子射束在樣本208上之著陸能量。該裝置可經組態以改變逆流方向電位與順流方向電位之間的差值以控制子射束在樣本208上之著陸能量。差值在一些情況下可為零,且可在改變著陸能量時增加至大於零。
著陸能量可在大約0.2 kV至5 kV之間。著陸能量可設定在約0.5 keV與2.5 keV之範圍內。舉例而言,為了將著陸能量設定為0.5 kV及2.5 kV中之任一者,可分別將電位V1、V2及V3施加至逆流方向電極301、順流方向電極302及上部電極303,如下表1中所指示。施加至下部電極配置之電位用以設定著陸能量。此表中之電位係以keV為單位之射束能量之值給出,其等效於相對於射束源201之陰極的電極電位。應理解,在設計電光學系統時,存在關於系統中之哪一點經設定為接地電位之相當大的設計自由度,且系統之操作係藉由電位差而非絕對電位來判定。僅舉例而言,值提供於表1中。
表1
著陸能量 0.5 keV 2.5 keV
V1 ~2.55 keV 2.55 keV
V2 0.55 keV 2.55 keV
V3 30 keV 30 keV
V4 0.5 keV 2.5 keV
V5 10-100 keV (通常為30 keV) 10-100 keV (通常為30 keV)
V6 1-30 keV (例如,10 keV) 1-30 keV (例如,10 keV)
V7 5-100 keV (通常為30 keV) 5-100 keV (通常為30 keV)
如表中所展示,順流方向電極電位與著陸能量大約相同。經展示,順流方向電極電位可在大約0.55 keV至2.55 keV之間。逆流方向電極電位可與順流方向電極電位相同或比其高。僅舉例而言,取決於著陸能量及設計幾何形狀,逆流方向電極電位可比順流方向電極電位高50 V至1000 V。差值可大於此,例如高達2000 V (如上表中展示),且差值可甚至更高。在下文中進一步描述逆流方向電極及順流方向電極以及其電位。
如表1中展示,當逆流方向電極及順流方向電極均設定成2.55 keV之較高值時,著陸能量設定成大約2.5 keV之較高位準。然而,當逆流方向電極經設定為大約2.55 keV且順流方向電極經設定為大約0.55 keV時,著陸能量經設定為大約0.5 keV之較低位準。順流方向電極電位在量值上較佳地與著陸能量類似。舉例而言,順流方向電位可比著陸能量多大約50 V。
最大著陸能量係藉由下部電極配置之厚度判定(假定樣本與物鏡陣列之底部電極之間的固定工作距離及固定最大內電場)。可藉由增加樣本與物鏡陣列241之間的工作距離或減少內電場而增加最大著陸能量,然而,此可對解析度產生負面影響。
當逆流方向電極301與順流方向電極302之間不存在電位差時(亦即,當逆流方向電極電位與順流方向電極電位相同時),著陸能量處於此範圍之最高端處。在此狀況下,在此等電極之間實質上不存在電場。因此,下部電極配置可以與單一電極實質上相同的方式起作用,亦即,逆流方向電極301及順流方向電極302可有效地充當具有與沿著子射束路徑之下部電極配置之尺寸相同的厚度的單一電極。在此狀況下,該物鏡可如同僅包括兩個電極(即上部電極303及一有效下部電極(由下部電極配置形成))一般地起作用,如上文關於先前技術所描述。
沿著子射束路徑之下部電極配置之尺寸t4為如圖6中所展示之下部電極配置之厚度。該配置可具有以下尺寸:逆流方向電極301之厚度t2;順流方向電極302之厚度t3,及/或沿著射束路徑之逆流方向電極與順流方向電極之間的距離d2。沿著射束路徑之下部電極配置之尺寸t4為厚度t2、厚度t3及距離d2之總和。若厚度t4經設定為與上文所論述之原始電極幾何形狀中之下部電極相同的值,則將逆流方向電極及順流方向電極上之電位設定為相同值意謂可達成與原始電極幾何形狀相同的在最高著陸能量下之解析度,此係因為焦距將不改變。如上文所描述,下部電極配置之厚度可以一方式經最佳化,使得逆流方向電極301之頂部(其中發生主要聚焦動作)與樣本208之間的距離與焦距大約相同。
替代地,對於較低著陸能量,逆流方向電位與順流方向電位可存在差值,如表1中所展示。逆流方向電位與順流方向電位之間的差值可大於0 V且最高至(並包括)大約2.5 kV。當逆流方向電位與順流方向電位之間存在差值時,逆流方向電位具有比順流方向電位大的量值。逆流方向電位與順流方向電位之差值在逆流方向電極301與順流方向電極302之間產生額外透鏡場。逆流方向電位與順流方向電位之間的差值可在大約50 V至2 kV之間。逆流方向電位與順流方向電位之間的差值可在大約50 V至1 kV之間。逆流方向電位與順流方向電位之間的差值可在大約50 V至500 V之間。逆流方向電位與順流方向電位之間的差值可在大約50 V至300 V之間。
對於最低著陸能量,順流方向電極302可經設定於較低著陸能量上(或如表1中之V2所展示之高50 V),而子射束211、212、213可以逆流方向電極301之電位(表1中之V1)聚焦於樣本208上。以此方式,此仍有可能亦在較低著陸能量下達成良好的解析度。應注意,當著陸能量縮減時,減速透鏡之焦距變得較小(假定相同內電場強度)。若焦距變得小於底部電極配置之厚度,則將射束聚焦於底部電極配置內部而非樣本208上。因此,底部電極配置之厚度促成(若不判定的話)最小焦距。因此,最小可達成的著陸能量可藉由順流方向電極之最小可達成厚度判定。
當物鏡陣列經定位於距樣本208之預定距離處時,如上文所描述,可控制逆流方向電位及/或順流方向電位以改變及/或設定著陸能量。因此,即使當樣本208與物鏡陣列之間的距離維持在預定距離時(亦即,樣本208及物鏡陣列241皆不需要移動),該裝置可經組態以調節著陸能量。此係有益的,此係因為改變樣本208與物鏡之間的距離可增加整個系統之複雜度。
當順流方向電極302與樣本208之間的電位差改變時,樣本上之電場將改變,其影響如上文所描述之子射束211、212、213之聚焦。可藉由改變逆流方向電極301之電位來在物鏡陣列中校正由電場之此變化造成的總焦距的改變,以便維持子射束在樣本208上之聚焦。能夠改變聚焦有利於以良好的解析度在所需著陸能量下提供子射束211、212、213,而不必改變物鏡陣列241與樣本208之間的距離。應注意,在具有原始電極幾何形狀之物鏡陣列中,當樣本208上之電場變化時,至樣本208之距離或著陸能量將需要改變。因此,提供物鏡陣列中之三個電極意謂該裝置可經組態以改變及/或設定著陸能量,同時維持射束在樣本上之聚焦。因此,可改變及/或設定著陸能量,同時具有恆定聚焦,使得在不同著陸能量下,射束之聚焦係在樣本上。換言之,著陸能量可在具有恆定聚焦的同時改變。因此,該裝置可經組態以在不同著陸能量下控制子射束211、212、213在樣本208上之聚焦,且較佳地維持子射束211、212、213在樣本208上之聚焦。詳言之,逆流方向電極電位可經設定以控制逆流方向電極與順流方向電極之間的電場以將子射束聚焦於樣本208上。此允許維持射束在樣本208上之聚焦,而不管著陸能量之變化,亦即,聚焦可不受變化的著陸能量影響。
因此,下部電極配置可有益地將子射束211、212、213聚焦於樣本上。此可有益於解釋其他變化。舉例而言,可改變樣本208與順流方向電極302之間的距離,例如以控制與經偵測信號粒子之能量及/或角度相關的充電或偵測條件,且可使用如上文所描述之下部電極配置調適及維持聚焦。在此狀況下,可改變順流方向電極302及逆流方向電極上之電壓,但可不改變順流方向電極302與逆流方向電極之間的距離。另外或替代地,能夠調節聚焦有助於以安全方式處理具有比針對最佳工具效能所提議之樣本距離更大的高度變化的樣本。
該裝置可包含控制器50以改變及/或設定著陸能量。較佳地,控制器50係使用者致動的,使得使用者可將輸入提供至控制器50及/或裝置。該輸入可為所需著陸能量。控制器50可接收所需著陸能量之指示,且可控制至少逆流方向電極301及順流方向電極302之電位以將著陸能量改變及/或設定為所需著陸能量。控制器50可調節逆流方向電位以維持子射束在樣本上之聚焦。
施加至物鏡電極中之各者的電位橫跨各電極原則上為相同的(亦即,橫跨各電極實質上為均勻的)。舉例而言,可橫跨順流方向電極302將相同電位施加至穿過順流方向電極302之子射束211、212、213中之各者。然而,電極之平直度之變化或子射束中之電場彎曲效應可引起聚焦變化。此等變化可使用橫跨電極之電位來校正,如本文中將描述。舉例而言,可分別設定橫跨物鏡陣列之不同物鏡的逆流方向電位及順流方向電位,以校正陣列中之不同物鏡之間的聚焦變化。因此,可針對橫跨物鏡陣列241之不同物鏡設定逆流方向電極電位與順流方向電極電位之間的任何差值。此為有益的,因為其允許對射束進行更多控制及更準確的聚焦以解決例如由於電極之平直度之變化或子射束中之電場彎曲效應導致的變化。可針對各個別子射束,或在子射束之群組及/或環中(亦即,針對陣列中之各透鏡,在透鏡之群組及/或環中)設定陣列中之不同物鏡之電位。因此,例如藉由各孔隙具有經施加電壓可經控制之電極,或藉由在孔隙周圍使用多極電極陣列,可針對各透鏡單獨地(亦即,每孔隙)進行聚焦校正,如EP2702595A1中所描述,就多極電極而言,其以引用之方式併入本文中;替代地,聚焦校正可成組(亦即,孔隙群組),例如,其中各孔隙群組具有一共同電極。此可在不改變至樣本208之距離或不改變樣本208上之電場的情況下進行。此可應用於本文中所揭示之實施例中之任一者。
可橫跨物鏡陣列可控制地調節逆流方向電極301上之電位以校正陣列中之不同物鏡之間的聚焦變化。此為有益的,因為其允許對射束進行更多控制及更準確的聚焦以解決例如由於電極之平直度之變化或子射束中之電場彎曲效應導致的變化。陣列中之不同物鏡之電位的設定可藉由陣列中之各透鏡或藉由陣列中之透鏡群組進行。因此,可單獨地(亦即,各孔隙)或成組地(亦即,孔隙群組)設定逆流方向電極301之電位以實現聚焦校正;亦即,物鏡陣列之各逆流方向電極301可為個別電極,或陣列中之物鏡群組可具有共同逆流方向電極,而非物鏡陣列中之所有物鏡具有共同逆流方向電極301。此可應用於本文中所揭示之實施例中之任一者。可維持物鏡與樣本之間的距離及經施加至樣本之電場。
帶電粒子裝置可進一步包含偵測器402 (其可視情況為電子偵測裝置240之部分)。偵測器402經組態以偵測自樣本208發射之信號粒子。信號粒子可包括由SEM偵測到之帶電粒子中之任一者,包括自樣本208發射之次級及/或反向散射電子。偵測器402可為包含多個偵測器模組或偵測元件之偵測器陣列。
偵測器402在定位於物鏡陣列之電極之間時可被稱作透鏡內偵測器。舉例而言,透鏡內偵測器402可定位於上部電極之底部處,如圖7A及圖7B中所展示。在本發明中,透鏡內偵測器可能優於底部偵測器,因為可能難以在順流方向電極302與樣本208之間裝配底部偵測器。此底部偵測器可將額外厚度加至底部電極配置,此可影響物鏡陣列之效能。然而,由於信號粒子在到達透鏡內偵測器之前必須行進之距離,使用透鏡內偵測器可能比使用底部偵測器更難實現較高的次級信號粒子收集效率。
當逆流方向電極301與順流方向電極302施加實質上相同的電位(例如大約2.55 keV)以獲得高著陸能量時,在逆流方向電極301與順流方向電極302之間不存在電場。此意謂信號粒子(例如次級帶電粒子) 80將以直線在順流方向電極302與逆流方向電極301之間行進,從而可能擊中電極孔之內部。若偵測器402設置於物鏡陣列內,如圖7A中所展示,則此等信號粒子不會到達偵測器。此可藉由增大電極孔直徑來避免,但此限制了可達成的最小子射束間距,且因此限制了最大產出量。
在以上實施例中,物鏡234可用於藉由使用下部電極配置以將信號帶電粒子引導至偵測器,來增加次級信號粒子偵測效率而不使孔變大。此可藉由控制至少逆流方向電極301及順流方向電極302相對於彼此之電位來完成。
在此配置中,可施加逆流方向電極與順流方向電極之間的電位差,使得逆流方向電位之量值大於順流方向電位之量值。逆流方向電極與順流方向電極之間的電位差在逆流方向電極301與順流方向電極302之間產生電場,該電場使信號粒子加速(該等信號粒子在與子射束211、212、213相反之方向上行進)。如圖7B中所展示,加速電場使信號粒子81 (且特定言之,次級信號粒子)朝向各別子射束路徑之主光軸發散,使得次級信號粒子之軌跡通常更接近主光軸。更具體言之,藉由在逆流方向電極與順流方向電極之間施加此電場,信號粒子軌跡之軸向分量增加(且徑向分量可實質上相同),從而有效地縮減信號粒子之發散。此減小信號粒子擊中逆流方向電極301及/或順流方向電極302之內部的機率,且增加信號粒子到達透鏡內偵測器402之機率。總體而言,此可增加偵測器處之收集效率。此可產生實現較高掃描頻率之較佳信雜比。已發現,當電極中之孔隙之直徑較大時,例如當孔隙相較於50微米具有大約100微米之直徑時(例如,孔隙之大小大約為其正常大小的兩倍),效率增加尤其有效。
應注意,在較低著陸能量下,逆流方向電極與順流方向電極之間已經存在電位差,其產生存在於所提議之組態中之加速電場。然而,當在逆流方向電極與順流方向電極之間通常不存在電場時,提供此加速電場在最高著陸能量下尤其適用。在此情形下,即使較小電位差亦可有益於改良偵測效率。逆流方向電位與順流方向電位之間的差值可小於或等於順流方向電位之大約10%。在一配置中,差值可為大約50 V至1000 V,更佳為例如50 V至300 V,以便限制對電光學系統之效能造成負面影響的風險。舉例而言,逆流方向電極電位可為大約2.75 keV,且順流方向電極電位可為大約2.55 keV。總體而言,電位差將為提供可能的最高著陸能量(當不存在電位差時)與引入較小差值以改良偵測效率之平衡。
具有較大逆流方向電位將改變射束之聚焦,較佳地對其進行校正。此可藉由在逆流方向電極與順流方向電極之間選擇比將另外使用之距離大的距離d2來實現,使得在逆流方向電極與順流方向電極之間存在加速電場時,對於最高著陸能量,仍聚焦於樣本208上。增加的距離d2可導致稍微較大的像差,從而在解析度保持相同之情況下產生較低子射束電流。然而,可最佳化設計以平衡子射束電流之此減小與信號粒子偵測效率之增加,從而得到系統之最大產出量。
該裝置可在操作中經組態以具有小於逆流方向電位與上部電位之間的差值的逆流方向電位與順流方向電位之間的差值。舉例而言,逆流方向電位與順流方向電位之間的差值可在大約0 kV與2.5 kV之間。如上文所描述,可選擇(例如,調節)此差值以控制及/或設定著陸能量。上部電極電位與逆流方向電極電位之間的差值可在著陸能量變化時實質上相同。在著陸能量變化時,上部電極電位與逆流方向電極電位之間的差值可存在較小的改變。上部電極電位與逆流方向電極電位之間的差值可為逆流方向電位與順流方向電位之間的差值的至少10倍以上。
帶電粒子可具有負電荷,例如,帶電粒子可為電子。因此,為提供減速電場,上部電位可具有比逆流方向電位及/或順流方向電位大的量值。舉例而言,上部電位與逆流方向電位及/或順流方向電位之間的差值的量值為大約10 kV至50 kV。上部電位與逆流方向電位及/或順流方向電位之間的差值的量值可為大約20 kV至40 kV。上部電位與逆流方向電位及/或順流方向電位之間的差值可大於或等於大約20 kV。上部電位與逆流方向電位及/或順流方向電位之間的差值可大於或等於大約25 kV。上部電位與逆流方向電位及/或順流方向電位之間的差值可為大約27.45 kV。
在上部電極與逆流方向電極之間具有比逆流方向電極與順流方向電極之間大的電位差可用於使用較大電位差(在上部電極與逆流方向電極之間)控制子射束之總體減速,同時允許使用較小的電位差(在逆流方向電極與順流方向電極之間)來調諧著陸能量。隨著內部電場越高且減速越大(電位差越大),解析度越好,因此上部電極與逆流方向電極之間存在較大的電位差。為了能夠聚焦一系列著陸能量,可在逆流方向電極與順流方向電極之間使用較小的電位差。當此電位差小於上部電極與逆流方向電極之間的較大電位差時,對惡化解析度之影響受到限制。
上部電極303與下部電極配置之間的距離d1及下部電極配置沿著射束路徑之尺寸t4可實質上相同。如上文所描述,沿射束路徑之下部電極配置之尺寸t4為如圖6中所展示之下部電極配置之厚度(亦即,逆流方向電極301之厚度t2、順流方向電極302之厚度t3、以及逆流方向電極與順流方向電極之間的距離d2之總和)。舉例而言,上部電極與下部電極配置之間的距離d1以及下部電極配置沿射束路徑之尺寸t4可為大約0.5 mm至2 mm。較大距離d1意謂有益於解析度之更長減速軌跡。
逆流方向電極301與順流方向電極302之間的距離d2可小於上部電極303與下部電極配置之間的距離d1。在逆流方向電極與順流方向電極之間提供較小的距離可有益於將兩個電極裝配至較小空間中(此可用於先前技術中之僅單個電極)。因此,下部配置之相對於彼此接近地定位之此等電極可用以控制如上文所描述之著陸能量及/或聚焦。d2越大,則用於裝配下部電極配置之電極之空間越大,且較大的距離d2亦允許較大著陸能量範圍。
逆流方向電極301與上部電極303之間的距離d1可比逆流方向電極301與順流方向電極302之間的距離d2大大約2倍至6倍。逆流方向電極301與上部電極303之間的距離d1可比逆流方向電極301與順流方向電極302之間的距離d2大大約1.1倍至20倍。逆流方向電極301與上部電極303之間的距離d1可比逆流方向電極301與順流方向電極302之間的距離d2大大約1.5倍至10倍。逆流方向電極與順流方向電極之間的距離d2可為大約0.3 mm至2 mm。上部電極與下部電極配置之間的距離d1可至少大致遵循所陳述之關係。上部電極303與逆流方向電極301之間的此等距離,及逆流方向電極301與順流方向電極302之間的距離僅作為實例,且可視需要經選擇。因此,可使用其他距離。
下文描述可應用於以上實施例及/或變化中之任一者的其他變化。
物鏡陣列241可接近於樣本208。因此,物鏡陣列可鄰近於樣本208。可在物鏡陣列241與樣本208之間提供其他元件。因此,儘管物鏡陣列241較佳地接近於樣本208,但物鏡陣列241不必接近於樣本208。
該裝置可視情況包含實施例或變化中之任一者中的控制透鏡陣列251。物鏡陣列241可在控制透鏡陣列251之順流方向上。
通常,上部電位與順流方向及/或逆流方向電位之間將存在差值。上部電極303與逆流方向電極301及/或順流方向電極之間的電位差產生物鏡陣列中之電場,該電場可對子射束211、212、213具有減速或加速效應。應注意,使子射束減速之電場將使信號粒子加速,此係因為此等射束在相反方向上行進(且反之亦然)。
上部電極303可具有大於逆流方向電極301之厚度t2及/或順流方向電極302之厚度t3的厚度t1。因此,上部電極303可具有沿著射束路徑之尺寸,其大於沿著逆流方向電極301及/或順流方向電極302之射束路徑之尺寸。較佳地,上部電極303具有大於逆流方向電極之厚度t2及順流方向電極之厚度t3的厚度t1 (亦即,沿射束路徑之尺寸)。舉例而言,上部電極303可具有大約0.1 mm至1 mm之厚度t1。舉例而言,逆流方向電極301可具有大約0.1 mm至0.2 mm之厚度t2。舉例而言,順流方向電極302可具有大約0.1 mm至0.2 mm之厚度t3。逆流方向電極301之厚度t2與順流方向電極302之厚度t3可實質上相同。
通常,對於逆流方向電極及順流方向電極之較小厚度,可獲得較低的最小著陸能量。詳言之,最小化下部電極配置中之電極的厚度係有益於允許逆流方向電極301與順流方向電極302之間的較大間隙(距離d2),該間隙允許較大的著陸能量範圍。因此,逆流方向電極及順流方向電極愈薄,愈佳。然而,對電極之厚度存在機械限制。應注意,當逆流方向電極及順流方向電極之厚度較低時,子射束電流可較低。此外,已發現,相較於具有三個較厚電極(例如,類似於上部電極之厚度)之三個電極物鏡陣列,提供具有較薄逆流方向電極及順流方向電極之物鏡改良了偵測效率。對於當電極中之孔隙具有比50 µm大之直徑d A(例如,100 µm)時(例如,如 6中所描繪),情況尤其如此。
下部電極配置之厚度t4 (自逆流方向電極301之頂部至順流方向電極302之底部)可與上部電極303之厚度t1實質上相同。替代地,下部電極配置之厚度t4可實質上不同於上部電極與下部電極配置之間的距離d1。
逆流方向電極301之厚度與順流方向電極302之厚度可實質上相同。
儘管可較佳地在物鏡陣列241與樣本208之間維持預定距離,但若較佳,可當改變著陸能量時視需要調節樣本208與物鏡陣列241之間的距離,例如以將子射束聚焦於樣本208上。可藉由移動物鏡陣列241及/或樣本208或藉由調換至少包含物鏡陣列241之裝置之模組化部分來改變物鏡陣列241與樣本208之間的距離。不同模組中之物鏡陣列241之電極幾何形狀的參數可不同,使得物鏡陣列241之電極之幾何形狀可易於使用不同模組調換。舉例而言,厚度t1、厚度t2、厚度t3、厚度t4、距離d1及/或距離d2中之至少一者可因模組而異。
下部電極配置可鄰近於上部電極303。因此,下部電極配置可沿射束路徑緊鄰上部電極303。可能不存在定位於下部電極配置與上部電極303之間的任何其他組件。若將透鏡內偵測器402設置於下部電極配置與上部電極303之間,則偵測器402可鄰近於下部電極配置及上部電極303。因此,在偵測器402與下部電極配置之間可不存在任何其他組件,且在偵測器402與上部電極303之間可不存在任何其他組件。
如上文所描述,偵測器402 (其可為偵測器陣列)可定位於上部電極303與下部電極配置之間。更一般而言,偵測器402可與物鏡陣列241相關聯。偵測器可為物鏡陣列241之部分。偵測器可鄰近於、附接至物鏡陣列之電極中之至少一者或與物鏡陣列之電極中之至少一者整合。舉例而言,偵測器可藉由將CMOS晶片偵測器整合至物鏡陣列之電極中來實施。偵測器陣列至物鏡陣列中之整合替換次級柱。該CMOS晶片較佳地經定向以面向該樣本。在一實施例中,用以捕獲信號粒子之偵測元件形成於CMOS裝置之頂部金屬層中。偵測元件可形成於其他層中。可藉由矽穿孔將CMOS之功率及控制信號連接至CMOS。為了魯棒性,較佳地,底部電極由兩個元件組成:CMOS晶片及具有孔之被動Si板。該板保護CMOS免受高電場之影響。可使用其他類型之偵測器代替CMOS晶片,諸如PIN偵測器或閃爍器。
上述整合式偵測器陣列在與具有可調諧著陸能量的工具共同使用時為尤其有利的,此係由於信號粒子捕獲可針對一系列著陸能量經最佳化。偵測器陣列亦可整合至其他電極陣列中,而不僅整合至最低電極陣列中。整合至物鏡中之偵測器模組之其他細節及替代配置可見於EP申請案第20184160.8號中,該文件關於有關偵測器模組及其內之偵測器之細節,特此以引用之方式併入。
偵測器可設置於物鏡陣列241之輸出側上,亦即,設置於物鏡之輸出側上。偵測器402可定位於物鏡陣列241之電極中之任一者的上表面上或定位成鄰近於該上表面。因此,該偵測器可定位成在物鏡陣列241之電極(例如上部電極303)上面向逆流方向,如在EPA第21174519.5號中所描述,該文件關於不同偵測器配置之細節特此以引用之方式併入。偵測器402可置放於物鏡陣列241之電極中之任一者的下表面上或定位成鄰近於該下表面。偵測器402可定位於物鏡陣列241上方,亦即,偵測器402可定位於物鏡陣列241之所有電極上方。偵測器可定位於物鏡陣列241與控制透鏡陣列250 (若提供)之間。偵測器可定位於物鏡陣列241上方且接近於該物鏡陣列。
舉例而言,將偵測器402定位於物鏡陣列241之上部電極303的正上方,例如甚至定位在上部電極303之逆流方向表面上方,可能為有益的,以避免偵測器402處於自上部電極303下方開始的強減速電場中。在此狀況下,為了保持良好的偵測器收集效率,上部電極303之孔隙直徑可足夠大(比如可相當於或大於偵測器之直徑)以不阻擋任何次級信號粒子朝向偵測器402行進。
偵測器可定位成面向樣本208。偵測器402可定位於任何適當位置中,包括不與物鏡陣列241相關聯之位置。舉例而言,偵測器402可定位於物鏡陣列241下方。此位置中之偵測器402可另外被稱作底部偵測器。該底部偵測器可接近於樣本208。偵測器可鄰近於樣本208。由於在改變著陸能量時樣本208與順流方向電極之間的距離可保持相同,因此可在不移動偵測器之情況下實質上維持底部偵測器收集效率。底部偵測器可具有可限制著陸能量範圍之最小厚度。因此,可較佳地將偵測器定位於其他位置中。然而,對於其他著陸能量範圍或若偵測器之厚度可減小,則底部偵測器可為有用的。
可提供多個偵測器。因此,可在沿子射束路徑之不同位置處提供多個偵測器陣列。
偏轉器陣列(圖中未示)可定位於偵測器402與物鏡陣列241之間。在一實施例中,偏轉器陣列包含韋恩濾波器(Wien filter),使得偏轉器陣列可稱為射束分離器。偏轉器陣列可經組態以提供磁場以使子射束(亦即,經投影至樣本208之帶電粒子)與來自樣本208之信號粒子分離。
在一實施例中,偏轉器陣列包含磁偏轉器及靜電偏轉器。靜電偏轉器經組態以針對朝向樣本208傳輸的經投影帶電粒子束抵消磁偏轉器之偏轉。因此,經投影帶電粒子束可在水平面中小範圍地移位。偏轉器陣列之順流方向上之射束實質上平行於偏轉器陣列之逆流方向上之射束。
電壓源可經組態以將電位施加至偵測器(如針對圖5中之電壓源及電極所展示)。將電位施加至偵測器之電壓源可為與圖5中所展示之彼等電壓源分離的電壓源。替代地,電壓源中之一者,例如,V1、V2或V3可用以將電位施加至偵測器以及物鏡陣列241之適當電極。施加至偵測器之電位可與施加至物鏡陣列之電極中之一者的電位實質上相同。施加至偵測器之電位可與施加至物鏡陣列之電極中之最近電極(例如,與偵測器相關聯之或甚至該偵測器機械連接至之電極)的電位實質上相同。舉例而言,當偵測器為底部陣列時,施加至底部偵測器之電位可與施加至順流方向電極302之電位實質上相同。
如所提及,偵測器可為包含複數個偵測器元件(例如,諸如捕獲電極之感測器元件)之偵測器陣列。該複數個偵測器元件可提供於實質上相同的平面中。複數個偵測器可以矩形陣列提供,或可以不同方式配置,例如以六邊形陣列。至少一個偵測器元件可包含捕獲電極。各偵測器元件可包含包圍各孔隙之單一電極。替代地,各偵測器元件可圍繞各孔隙包含複數個電極元件。藉由包圍一個孔隙之電極元件捕獲的信號粒子可經組合成單個信號或用於產生獨立信號。電極元件可經徑向劃分(亦即,以形成複數個同心環)、成角度地劃分(亦即,以形成複數個區段(或扇形塊))、經徑向地及成角度地劃分或以任何其他合理可想像之方式劃分。
通常,可較佳地使偵測元件儘可能大以改良偵測效率。然而,較大偵測表面導致較大寄生電容,因此導致較低頻寬。出於此原因,可能需要限制偵測器元件之外徑。尤其在較大偵測器僅給出略微較大的偵測效率,但電容明顯更大之狀況下。圓形(環形)偵測元件可提供收集效率與寄生電容之間的良好折衷。電極之較大外徑亦可導致較大串擾(對相鄰孔隙之信號的靈敏度)。此亦可為使電極外徑較小之原因。尤其在較大電極僅給出略微較大的偵測效率,但串擾明顯更大之狀況下。
藉由捕獲電極收集之反向散射及/或次級電子電流可藉由放大器(例如,可整合至其中提供捕獲電極之偵測器模組之基板中的轉阻放大器)放大。
上文所描述之聚光透鏡陣列231可為如以上實施例及變化中之任一者中的裝置的部分。聚光透鏡陣列包含射束限制孔隙陣列,以自源射束(亦即,來自源之射束)產生射束陣列。射束限制孔隙陣列可充當塑形限制器陣列242。此射束塑形限制器陣列使射束塑形。該裝置之電光學配置,例如,如圖3中所描繪,另外可包含至少一個像差校正器。另外,該裝置可包含如先前所描述之至少一個掃描偏轉器。
如關於校正器及其沿射束路徑之定位特此以引用之方式併入的EP申請案第20158804.3號及國際申請案第PCT/EP2021/058824號及第PCT/EP2021/058823號中所描述,該裝置可包含一或多個像差校正器,該一或多個像差校正器縮減子射束中之一或多個像差。像差校正器之至少一子集中之各者可定位於中間焦點中之各別中間焦點中或直接鄰近於中間焦點中之各別中間焦點(例如,在中間影像平面中或鄰近於中間影像平面),諸如接近於準直器陣列,例如偏轉器陣列235。子射束在諸如中間平面之焦點平面中或附近具有最小截面積。此為像差校正器提供了比其他地方(亦即,中間平面之逆流方向或順流方向)可獲得之空間更多的空間(或者比不具有中間影像平面之替代配置中可獲得之空間更多的空間)。另外或替代地,像差校正器陣列可位於諸如聚光透鏡陣列及/或物鏡陣列之透鏡陣列中,使得校正器可校正儘可能接近其引入於初級射束中之像差。像差校正器可校正呈現為處於不同射束之不同位置的源201。像差校正器可包含用於此等校正之偏轉器。校正器可用以校正由源引起之宏觀像差,該等宏觀像差阻止各子射束與對應物鏡之間的良好對準。
像差校正器可校正阻止適當柱對準之像差。此類像差亦可致使子射束與校正器之間的未對準。出於此原因,可能需要另外或替代地將像差校正器定位於聚光透鏡陣列231之聚光透鏡處或附近(例如,其中各此類像差校正器與聚光透鏡231中之一或多者整合或直接鄰近於聚光透鏡231中之一或多者)。此為合乎需要的,此係因為在聚光透鏡陣列231之聚光透鏡處或附近,像差將尚未導致對應子射束之移位,此係因為聚光透鏡與射束孔隙豎直地接近或重合。然而,將校正器定位於聚光透鏡處或附近之挑戰在於,子射束在此位置處相對於下游更遠之位置各自具有相對較大的截面積及相對較小的節距。像差校正器可為如EP2702595A1中所揭示之基於CMOS之個別可程式化偏轉器或如EP2715768A2中所揭示之多極偏轉器陣列,該兩個文件中之細射束操控器之描述特此以引用之方式併入。像差校正器與聚光透鏡可例如藉由電隔離元件(亦即,間隔件)而彼此連接。
在一些實施例中,像差校正器之至少一子集中的各者與物鏡234中之一或多者整合或直接鄰近於物鏡234中之一或多者。在一實施例中,此等像差校正器縮減以下各者中之一或多者:電場曲率;聚焦誤差;及像散。另外或替代地,一或多個掃描偏轉器(圖中未示)可與物鏡234中之一或多者整合或直接鄰近於物鏡234中之一或多者,從而使子射束211、212、213在樣本208上方掃描。在一實施例中,可使用描述於US 2010/0276606中之掃描偏轉器,該文件特此以全文引用之方式併入。像差校正器及物鏡可例如藉由電隔離元件(亦即,間隔件)而彼此連接。
在一實施例中,該裝置為可更換模組,其僅包含物鏡陣列或包括諸如控制透鏡陣列及/或偵測器陣列及/或載物台209之其他元件。在一實施例中,可更換模組經組態為可在帶電粒子系統內替換。該可更換模組可為可為現場可替換的,亦即,可由現場工程師用新模組調換該模組。可現場替換意指模組可經移出且用相同或不同模組替換,同時維持電子射束工具40所在的真空。在一實施例中,工具內容納多個可更換模組,且可在不打開工具之情況下在可操作位置與不可操作位置之間調換該多個可更換模組。在一實施例中,可更換模組為MEMS模組。
在具有較佳地不同於上文所描述之電光學配置之裝置中,射束限制孔隙陣列及射束塑形之功能係與物鏡配置相關聯,如EP申請案21166202.8中所描述,至少就射束限制孔隙及射束塑形孔隙之揭示內容而言,該申請案以引用之方式併入。此配置特徵在於具有兩個電極之減速透鏡。射束限制孔隙係在物鏡陣列之第一透鏡電極之逆流方向上或係物鏡陣列之第一透鏡電極。此射束限制孔隙可被稱作如本文中稍後所描述之上部射束限制器252。射束限制孔隙陣列產生用於由源發射之源射束之射束陣列。射束塑形孔隙陣列可與物鏡配置之透鏡電極相關聯(例如,在其順流方向上),例如,以提供物鏡陣列之最順流方向電極,或射束塑形孔隙陣列可與物鏡之任何電極相關聯,此係因為此等電極接近樣本。該射束塑形孔隙陣列界定該等射束之形狀。出於此原因,射束塑形陣列之孔隙具有比射束限制陣列之孔隙小的直徑。
8 及圖 9中所例示,特徵在於具有複數個底部電極之物鏡的裝置可包含射束塑形限制器242 (另外被稱為射束限制器陣列)。射束塑形限制器242界定射束限制孔隙124之陣列。射束塑形限制器124展示為具有射束限制孔隙之3×3陣列,但可具有任何適當數量個之射束限制孔隙124,例如100×100,且孔隙可具有任何合適的網格陣列,例如六邊形。射束塑形限制器242可被稱作射束塑形-限制孔隙陣列。射束塑形限制器242可包含具有複數個孔隙之板(其可為板狀體)。射束塑形限制器242係在控制透鏡陣列250之至少一個電極(視情況,在所有電極)的順流方向上。在一些實施例中,射束塑形限制器242係在物鏡陣列241之至少一個電極(視情況,在所有電極)的逆流方向上。
在一配置中,射束塑形限制器242與物鏡陣列241之電極(例如上部電極303)相關聯(例如鄰近於該電極)。理想地,射束塑形限制器242定位於具有低靜電場強度之區中。射束限制孔隙124中之各者與物鏡陣列241中之對應物鏡對準。各射束限制孔隙124具有射束限制效應,從而僅允許入射至射束塑形限制器242上之子射束之選定部分穿過射束限制孔隙124。該選定部分可使得僅穿過物鏡陣列中之各別孔隙之中心部分的各別子射束之一部分到達樣本208。中心部分可具有圓形截面及/或以子射束211、212、213之束軸為中心。
8 9之特定實例中,射束塑形限制器242經展示為與物鏡陣列241之上部電極303分離而形成之元件。替代地,射束塑形限制器242可與物鏡陣列241之上部電極303一體成型(例如,藉由執行微影以蝕刻掉適合於充當基板之相對側上之透鏡孔隙及射束阻擋孔隙的空腔)。儘管參考上部電極303,但射束塑形限制器242可與物鏡陣列241之電極中的任一者一起形成。
在一實施例中,射束塑形限制器242中之孔隙124經提供於在逆流方向上與對應物鏡陣列241之上部電極303中之對應透鏡孔隙之至少一部分相距一定距離處,該距離等於或大於透鏡孔隙之直徑,較佳比透鏡孔隙之直徑大至少1.5倍,較佳比透鏡孔隙之直徑大至少2倍。
通常需要將射束塑形限制器242定位成鄰近於各物鏡之具有最強透鏡效應之電極。在本發明中,物鏡陣列241之電極中之至少一者可定位於射束塑形限制器242之順流方向上。物鏡陣列241之所有電極可定位於射束塑形限制器242之順流方向上。帶電粒子裝置亦可經組態以控制物鏡陣列(例如,藉由控制施加至物鏡陣列之電極的電位),以使得射束塑形限制器242鄰近於物鏡陣列241之電極或與該電極整合,該電極為物鏡陣列241之電極中具有最強透鏡效應之電極。
通常亦需要將射束塑形限制器242定位於電場較小之區中,較佳地定位於實質上無電場區中。此情形避免或最小化射束塑形限制器242之存在對所要透鏡效應之破壞。
需要在偵測器402之逆流方向上提供射束塑形限制器242,如 8中所例示。在偵測器之逆流方向上提供射束塑形限制器242確保了射束塑形限制器242將不會阻礙自樣本208發射之信號粒子且不會阻止該等信號粒子到達偵測器402。因此,在物鏡陣列241之所有電極之逆流方向上提供偵測器402的實施例中,亦需要在物鏡陣列241之所有電極之逆流方向上或甚至在控制透鏡陣列250之電極中之一或多者的逆流方向上提供射束塑形限制器242。在此情境下,可需要將射束塑形限制器242定位成儘可能接近於物鏡陣列241,同時仍在偵測器402之逆流方向上。因此,可在逆流方向上將射束塑形限制器242設置為直接鄰近於偵測器。
10中展示一種裝置,其具有與物鏡配置相關聯之具有射束塑形陣列之電光學配置。圖10描繪提供於物鏡陣列241及/或控制透鏡陣列250之逆流方向上的準直器。準直器可包含巨集準直器270。巨集準直器270在已將射束拆分成子射束之前作用於來自源201之射束。巨集準直器270使射束之各別部分彎曲一定量,以有效確保源自射束之子射束中之各者的束軸實質上正入射於樣本208上(亦即,與樣本208之標稱表面實質上成90°)。巨集準直器270將宏觀準直應用於射束。巨集準直器270可因此作用於所有射束,而非包含各自經組態以作用於射束之不同個別部分的準直器元件的陣列。巨集準直器270可包含磁透鏡或磁透鏡配置,其包含複數個磁透鏡子單元(例如,形成多極配置之複數個電磁體)。替代地或另外,巨集準直器可至少部分地以靜電方式實施。巨集準直器可包含靜電透鏡或靜電透鏡配置,其包含複數個靜電透鏡子單元。巨集準直器270可使用磁透鏡與靜電透鏡之組合。
可提供巨集掃描偏轉器265以使子射束在樣本208上方掃描。巨集掃描偏轉器265使射束之各別部分偏轉以使子射束在樣本208上方掃描。在一實施例中,巨集掃描偏轉器256包含宏觀多極偏轉器,例如,具有8個極或更多極。偏轉係為了使源自射束之子射束在一個方向(例如平行於單個軸,諸如X軸)上或在兩個方向(例如相對於兩個非平行軸,諸如X軸及Y軸)上橫跨樣本208進行掃描。巨集掃描偏轉器265宏觀上作用於所有射束,而非包含各自經組態以作用於射束之不同個別部分之偏轉器元件的陣列。在所展示之實施例中,巨集掃描偏轉器265設置於巨集準直器270與控制透鏡陣列250之間。
該裝置可包含掃描偏轉器陣列260。掃描偏轉器陣列260包含複數個掃描偏轉器。掃描偏轉器陣列260可使用MEMS製造技術來形成。各掃描偏轉器使各別子射束在樣本208上方掃描。掃描偏轉器陣列260可因此包含用於各子射束之掃描偏轉器。如所展示,可提供巨集掃描偏轉器265及掃描偏轉器陣列260兩者。子射束在樣本表面上方之掃描可藉由較佳地同步地一起控制巨集掃描偏轉器265及掃描偏轉器陣列260來達成(當兩者均如 10中所展示提供時)。
掃描偏轉器陣列260之各掃描偏轉器可使子射束中之射線在一個方向(例如平行於單個軸,諸如X軸)上或在兩個方向(例如相對於兩個非平行軸,諸如X軸及Y軸)上偏轉。偏轉係為了使得子射束在一個或兩個方向上(亦即,一維地或二維地)橫跨樣本208進行掃描。在一實施例中,EP2425444中所描述之掃描偏轉器可用於實施掃描偏轉器陣列260,該文件特定地關於掃描偏轉器特此以全文引用之方式併入。較佳地,掃描偏轉器陣列260定位於物鏡陣列241與控制透鏡陣列250之間。
儘管圖10中展示掃描器偏轉器陣列260及巨集掃描偏轉器265兩者,但可提供偏轉器中之僅一者或另一者,或皆不提供。舉例而言,可在無巨集掃描偏轉器265之情況下提供掃描偏轉器陣列260。舉例而言,可在無掃描偏轉器陣列260之情況下提供巨集掃描偏轉器265。掃描偏轉器陣列260 (例如使用如上文所提及之MEMS製造技術形成)可比巨集掃描偏轉器265在空間上更緊湊。
提供掃描偏轉器陣列260 (與巨集掃描偏轉器265相比)可縮減來自控制透鏡之像差。此係因為巨集掃描偏轉器265之掃描動作引起射束在射束塑形限制器(亦可稱作下部射束限制器)上方之對應的移動,該射束塑形限制器界定在控制透鏡之至少一個電極之順流方向上的射束限制孔隙陣列,此增加控制透鏡對像差的貢獻。當替代地使用掃描偏轉器陣列260時,射束在射束塑形限制器上方移動的量小得多。此係因為自掃描偏轉器陣列260至射束塑形限制器之距離短得多。由於此情形,較佳的係將掃描偏轉器陣列260定位成儘可能接近於物鏡陣列241 (例如使得掃描偏轉器陣列260直接鄰近於物鏡陣列241,如 11中所描繪)。在射束塑形限制器上方之較小移動導致所使用的各控制透鏡之部分較小。控制透鏡因此具有較小像差貢獻。為了最小化或至少縮減由控制透鏡造成之像差,射束塑形限制器用以在控制透鏡之至少一個電極之順流方向上對射束進行塑形。此在架構上不同於習知系統,在習知系統中,射束塑形限制器僅作為孔隙陣列而提供,該孔隙陣列係射束路徑中之第一操縱器陣列之部分或與第一操縱器陣列相關聯,且通常自源之單個射束產生多射束。
在一些實施例中,控制透鏡陣列250為源201之順流方向上之射束路徑中的第一偏轉或透鏡帶電粒子光學陣列元件。
11中所展示,可提供準直器元件陣列271而非巨集準直器270。儘管未展示,但亦有可能將此變化形式應用於 3之實施例,以提供具有巨集掃描偏轉器及準直器元件陣列之實施例。各準直器元件使各別子射束準直。準直器元件陣列271 (例如,使用MEMS製造技術形成)可比巨集準直器270在空間上更為緊湊。因此,一起提供準直器元件陣列271及掃描偏轉器陣列260可提供空間節省。此空間節省係合乎需要的,其中包含物鏡陣列總成之複數個電光學系統提供於電光學系統陣列中。在此配置中,可不存在巨集聚光透鏡或聚光透鏡陣列。在此情境下,控制透鏡因此提供針對著陸能量改變而最佳化射束張角及放大率的可能性。另外,不具有巨集聚光透鏡且具有聚光透鏡陣列之配置使得能夠主要基於物鏡陣列之最強透鏡電極的位置來判定射束塑形陣列相對於物鏡陣列之電極的定位。亦即,使射束整形陣列要定位於具有最大透鏡效應的物鏡電極附近,甚至為該物鏡電極。
在一些實施例中,如 11所例示,準直器元件陣列271為源201之順流方向上的射束路徑中之第一偏轉或聚焦帶電粒子光學陣列元件。
避免在控制透鏡陣列250之逆流方向上或準直器元件陣列271之逆流方向上的任何偏轉或透鏡電光學陣列元件(例如透鏡陣列或偏轉器陣列)降低了對物鏡之逆流方向上的帶電粒子光學器件之要求,及對於校正器校正此類光學器件中之缺陷的要求。舉例而言,一些替代配置尋求藉由除物鏡陣列以外亦提供聚光透鏡陣列來最大化源電流利用率。以此方式提供聚光透鏡陣列及物鏡陣列會引起對遍及源張角之虛擬源位置均一性之位置的嚴格要求,或需要各子射束之校正性光學器件以便確保各子射束穿過其順流方向上之對應物鏡的中心。諸如 10 11之架構的架構允許自第一偏轉或透鏡電光學陣列元件至射束塑形限制器之射束路徑縮減至小於約10 mm,較佳縮減至小於約5 mm,較佳縮減至小於約2 mm。該射束路徑之縮減降低或移除對遍及源張角之虛擬源位置的嚴格要求。
在一些實施例中,該系統進一步包含上部射束限制器252。此上部射束限制器展示於 10 11中。上部射束限制器252界定射束限制孔隙陣列。上部射束限制器252可被稱作上部射束限制孔隙陣列或逆流方向射束限制孔隙陣列。上部射束限制器252可包含具有複數個孔隙之板(其可為板狀體)。上部射束限制器252自藉由源201發射之帶電粒子束形成子射束。可藉由上部射束限制器252阻擋(例如,吸收)射束中除促成形成子射束之部分之外的部分,以免干擾順流方向上之子射束。上部射束限制器252可被稱作子射束界定孔隙陣列。
上部射束限制器可設置於不具有聚光透鏡陣列231之系統中。上部射束限制器252可例如鄰近於控制透鏡陣列250及/或與控制透鏡陣列250整合(例如鄰近於控制透鏡陣列250之最接近源201的電極603及/或與該電極整合)。上部射束限制器252可為控制透鏡陣列250之最逆流方向電極。在一實施例中,上部射束限制器252界定比射束塑形限制器242之射束限制孔隙124大(例如,具有較大截面積)的射束限制孔隙。射束塑形限制器242之射束限制孔隙124可因此具有比界定於上部射束限制器252中及/或物鏡陣列241中及/或控制透鏡陣列250中之對應孔隙小的尺寸(亦即,較小面積及/或較小直徑及/或較小其他特性尺寸)。
當存在聚光透鏡陣列231時,如 3中例示,上部射束限制器252可設置成鄰近於聚光透鏡陣列231及/或與聚光透鏡陣列231整合(例如,鄰近於聚光透鏡陣列231之最接近源201之電極及/或與該電極整合)。
通常需要將射束塑形限制器242之射束限制孔隙組態為小於界定在射束塑形限制器242之逆流方向上的射束限制孔隙的所有其他射束限制器的射束限制孔隙。
射束塑形限制器242理想地經組態以具有射束限制效應(亦即,以移除入射於射束塑形限制器242上之各子射束的一部分)。射束塑形限制器242可例如經組態以確保離開物鏡陣列241之物鏡的各子射束已穿過各別物鏡之中心。與替代途徑形成對比,此效應可使用射束塑形限制器242來達成,而不需要複雜對準程序來確保入射至物鏡上之子射束與物鏡很好地對準。此外,射束塑形限制器242之效應將不會受到柱對準動作、源不穩定性或機械不穩定性破壞。此外,射束塑形限制器242縮減了針對子射束之掃描操作所遍及的長度。距離縮減至自射束塑形限制器242至樣本表面之射束路徑之長度。
上部射束限制器252中之射束限制孔隙之直徑與射束塑形限制器242中之對應射束限制孔隙124之直徑的比率可等於或大於3、視情況等於或大於5、視情況等於或大於7.5、視情況等於或大於10。在一個配置中,例如,上部射束限制器252中之射束限制孔隙具有約50微米之直徑,且射束塑形限制器242中之對應射束限制孔隙124具有約10微米之直徑。在另一配置中,上部射束限制器252中之射束限制孔隙具有約100微米之直徑,且射束塑形限制器242中之對應射束限制孔隙124具有約10微米之直徑。合乎需要的是,僅已穿過物鏡之中心之射束的部分由射束限制孔隙124選擇;亦即,使射束塑形限制器:塑形由射束限制孔隙124產生之伴隨射束;及在經引導朝向樣本208之射束塑形孔隙之射束路徑中界定在順流方向上之射束。
上文所描述之下部電極配置包含逆流方向電極及順流方向電極。下部電極配置可包含至少一個額外電極,例如三個或多於三個電極。換言之,先前技術之下部電極可分裂成三個或多於三個電極,而非如上文所描述之兩個電極。然而,下部電極配置中之電極數量受可用於電極之最小厚度限制,且電極數量亦受焦距限制。
本發明之實施例提供一種至少包含物鏡陣列之帶電粒子光學裝置。可將帶電粒子光學裝置併入至帶電粒子系統(諸如帶電粒子評估工具)中。該帶電粒子系統可經組態以將多射束聚焦於樣本上。
在一實施例中,提供一種帶電粒子系統陣列。該陣列可包含複數個本文中所描述之帶電粒子系統中之任一者。帶電粒子系統中之各者將各別多射束同時聚焦至同一樣本之不同區上。各帶電粒子系統可自來自不同各別源201之帶電粒子束形成子射束。各各別源201可為複數個源201中之一個源。該複數個源201之至少一子集可提供為源陣列。源陣列可包含設置於共同基板上之複數個源201。複數個多射束同時聚焦至同一樣本之不同區上允許同時處理(例如,評估)樣本208之增加區域。陣列中之帶電粒子系統可彼此鄰近地配置以便將各別多射束投影至樣本208之鄰近區上。可在該陣列中使用任何數量個帶電粒子系統。較佳地,帶電粒子系統之數量在9至200的範圍內。帶電粒子系統可以矩形陣列或六邊形陣列配置。替代地,帶電粒子系統可以不規則陣列或以具有除矩形或六邊形外之幾何形狀的規則陣列提供。陣列中之各帶電粒子系統可在引用帶電粒子系統時以本文中所描述之任何方式組態。如上文所提及,掃描偏轉器陣列260及準直器元件陣列271由於其空間緊密性而特別適合併入至帶電粒子系統陣列中,此促進帶電粒子系統定位成彼此接近。
帶電粒子系統可為評估工具。因此,根據本發明之實施例的帶電粒子系統可為進行樣本之定性評估(例如,通過/不通過)之工具、進行樣本之定量量測(例如,特徵之大小)之工具,或處理與樣本相關之資料的工具,或產生樣本之映圖之影像的工具。評估工具之實例為檢測工具(例如用於識別缺陷)、檢查工具(例如用於分類缺陷)及度量衡工具,或能夠執行與檢測工具、檢查工具或度量衡工具(例如度量衡檢測工具)相關聯之評估功能性之任何組合的工具。電光學柱40可為評估工具之組件;諸如檢測工具或度量衡檢測工具,或電子射束微影工具之部分。本文中對工具之任何引用均意欲涵蓋裝置、設備或系統,該工具包含可共置或可不共置且甚至可位於單獨空間中尤其例如用於資料處理元件的各種組件。
對組件或組件或元件之系統的引用係可控制的而以某種方式操縱帶電粒子束包括組態控制器或控制系統或控制單元以控制組件按所描述之方式操縱帶電粒子束,並且視情況使用其他控制器或裝置(例如,電壓供應器及/或電流供應器)以控制組件從而以此方式操縱帶電粒子束。舉例而言,電壓供應器可電連接至一或多個組件以在控制器或控制系統或控制單元之控制下將電位施加至該等組件,該等組件諸如在包括控制透鏡陣列250、物鏡陣列241、聚光透鏡231、校正器、準直器元件陣列271及掃描偏轉器陣列260之非限制清單中。諸如載物台之可致動組件可為可控制的,以使用用以控制該組件之致動之一或多個控制器、控制系統或控制單元來致動諸如射束路徑之另外組件且因此相對於諸如射束路徑之另外組件移動。此外,上文所提及之控制器50可包含多個控制器。各單獨控制器可包括至少一個處理器。該等控制器可為獨立的,此係因為其分別起作用。可在不同控制器之間發送信號以在控制器之間傳送資訊及/或資料。
本文中所描述之實施例可採用沿著射束或多射束路徑以陣列形式配置的一系列孔隙陣列或電光學元件的形式。此類電光學元件可為靜電的。在一實施例中,例如在樣本之前的子射束路徑中自射束限制孔隙陣列至最後電光學元件的所有電光學元件可為靜電的,及/或可呈孔隙陣列或板陣列之形式。在一些配置中,將電光學元件中之一或多者製造為微機電系統(MEMS) (亦即,使用MEMS製造技術)。
如上文所描述之此類配置的系統或裝置可視情況包含任何適當組件,諸如上部射束限制器252、巨集準直器、巨集掃描準直器、準直器元件陣列271、控制透鏡陣列250、掃描偏轉器陣列260、射束塑形限制器242及/或偵測器陣列240;可存在的此等元件中之一或多者可藉由諸如陶瓷或玻璃間隔件之隔離元件連接至一或多個鄰近元件。此間隔件可設置於例如聚光透鏡陣列231、物鏡陣列241及/或控制透鏡陣列250中之任何鄰近電極之間。
用於控制本發明之裝置的指令可包括於電腦程式中。舉例而言,電腦程式可包含指令以指示控制器50執行以下步驟。控制器50控制電子射束設備以朝向樣本208投影電子射束。在一實施例中,控制器50控制至少一個電光學元件(例如多個偏轉器或掃描偏轉器260、265之陣列)以對電子射束路徑中之電子射束進行操作。另外或替代地,在一實施例中,控制器50控制至少一個電光學元件(例如偵測器陣列240)以回應於電子射束而對自樣本208發射之電子射束進行操作。
因此,電源供應器可設定該裝置之一或多個電位,該裝置諸如至少控制透鏡,例如控制透鏡之一或多個電極、上部電極及下部電極配置,例如逆流方向電極及/或向順流方向電極。該裝置可包含控制器以改變及/或設定著陸能量。該控制器可為使用者致動的,及/或控制甚至維持射束在樣本上之聚焦。可在經改變及/或經設定著陸能量下維持聚焦。可藉由控制電源供應器來維持聚焦以便設定裝置之一或多個電位。維持施加至樣本之電場,理想地控制該電場。電源供應器連接至該樣本。該控制器可經組態以控制電源供應器以控制(理想地維持)施加至樣本之電場。
可提供一種在帶電粒子光學裝置中朝向樣本投影帶電粒子束陣列之方法,該裝置包含:控制透鏡陣列,其經組態以控制射束陣列之參數;以及物鏡陣列,其經組態以將射束陣列投影至樣本上,該物鏡在該控制透鏡之順流方向上且包含上部電極及包含逆流方向電極與順流方向電極之下部電極配置,該方法包含:提供射束陣列;將上部電位施加至上部電極、將逆流方向電位施加至逆流方向電極、及將順流方向電位施加至順流方向電極;及控制逆流方向電位與順流方向電位之間的差值以改變及/或設定射束在樣本上之著陸能量。
該方法可進一步包含控制逆流方向電位及順流方向電位以便在不同著陸能量下維持射束在樣本上之聚焦。
可提供一種使用如上文所描述之帶電粒子光學裝置朝向樣本投影帶電粒子束陣列的方法。
對上部及下部、向上及向下、上方及下方之引用應被理解為係指平行於照射於樣本208上之電子射束或多射束之(通常但未必總是垂直的)逆流方向及順流方向的方向。因此,對逆流方向及順流方向之提及意欲係指獨立於任何當前重力場相對於射束路徑之方向。逆流方向朝向源且順流方向朝向樣本。
通常,上文所提及之電荷及電位用於帶負電荷粒子,例如電子。然而,可替代地使用帶正電荷粒子,例如正離子。在此情況下,可相應地調適所施加之電位。
為了易於說明,藉由橢圓形狀陣列在圖3、圖10及圖11中示意性地描繪透鏡陣列。各橢圓形狀表示透鏡陣列中之透鏡中之一者。按照慣例,橢圓形狀用以表示透鏡,類似於光學透鏡中常常採用之雙凸面形式。然而,在諸如本文中所論述之帶電粒子配置的帶電粒子配置之上下文中,應理解,透鏡陣列將通常以靜電方式操作且因此可能不需要採用雙凸面形狀之任何實體元件。如上文所描述,替代地,透鏡陣列可包含具有孔隙之多個板。
術語「射束」、「子射束」及「細射束」在本文中可互換使用且均被理解為涵蓋藉由劃分或分裂母輻射射束而自母輻射射束導出之任何輻射射束。術語「操縱器」用以涵蓋影響射束、子射束或細射束之路徑之任何元件,諸如透鏡或偏轉器。對元件沿著射束路徑或子射束路徑對準之提及應被理解為意謂各別元件沿著射束路徑或子射束路而定位。對光學器件之提及應理解為意謂電光學器件。
在以下編號條項中闡述本發明之實施例:
條項1:一種用於一帶電粒子系統之帶電粒子光學裝置,該裝置經組態為朝向一樣本投影一帶電粒子束陣列,該裝置包含:一控制透鏡陣列,其經組態以控制該射束陣列之一參數;以及一物鏡陣列,其經組態以將該射束陣列投影至該樣本上,該物鏡陣列在該控制透鏡之順流方向上,且包含:一上部電極;及包含一逆流方向電極及一順流方向電極之一下部電極配置,其中該裝置經組態以將一上部電位施加至該上部電極、將一逆流方向電位施加至該逆流方向電極、及將一順流方向電位施加至該順流方向電極,且該裝置經組態為控制該逆流方向電位及該順流方向電位以改變及/或設定該等射束在該樣本上之著陸能量,且在不同著陸能量下維持該等射束在該樣本上之聚焦。理想地,該物鏡陣列係接近樣本及/或提供該裝置之最順流方向之表面。上部電極、逆流方向電極及順流方向電極係彼此接近,理想地為該裝置中之順序電極。理想地,上部電極、逆流方向電極及順流方向電極為該裝置之最順流方向之電極。理想地,控制透鏡陣列接近於例如鄰接物鏡陣列(較佳地在其逆流方向上)。
條項2:如條項1之裝置,其中該逆流方向電位與該順流方向電位之間的一差值小於該逆流方向電位與該上部電位之間的一差值。
條項3:一種用於一帶電粒子系統之帶電粒子光學裝置,該裝置經組態為朝向一樣本投影一帶電粒子束陣列,該裝置包含:一物鏡陣列,其經組態以將該射束陣列投影至該樣本上,該物鏡陣列係接近於該樣本且包含:一上部電極;及包含一逆流方向電極及一順流方向電極之一下部電極配置,該裝置經組態以將一上部電位施加至該上部電極、將一逆流方向電位施加至該逆流方向電極、及將一順流方向電位施加至該順流方向電極,且該裝置經組態以控制該逆流方向電位與該順流方向電位之間的一差值以改變及/或設定該等射束在該樣本上之著陸能量,其中該裝置在操作中經組態以具有小於該逆流方向電位與該上部電位之間的一量值值的該逆流方向電位與該順流方向電位之間的一量值差。
條項4:如前述條項中任一項之裝置,其中該逆流方向電極與該順流方向電極之間的一距離小於該上部電極與該下部電極配置之間的一距離。
條項5:一種用於一帶電粒子系統之帶電粒子光學裝置,該裝置經組態為朝向一樣本投影一帶電粒子束陣列,該裝置包含:一物鏡陣列,其經組態以將該射束陣列投影至該樣本上,該物鏡係接近於該樣本且包含:一上部電極;及包含一逆流方向電極及一順流方向電極之一下部電極配置,該裝置經組態以將一上部電位施加至該上部電極、將一逆流方向電位施加至該逆流方向電極、及將一順流方向電位施加至該順流方向電極,其中該逆流方向電極與該順流方向電極之間的一距離小於該上部電極與該下部電極配置之間的一距離。
條項6:如條項4或5中任一項之裝置,其中該逆流方向電極與該上部電極之間的距離比該逆流方向電極與該順流方向電極之間的該距離大大約2倍至6倍。
條項7:如前述條項中任一項之裝置,其中該等帶電粒子束沿射束路徑投影,且該上部電極與該下部電極配置之間的該距離與該下部電極配置沿該等射束路徑之一尺寸實質上相同。
條項8:一種用於一帶電粒子系統之帶電粒子光學裝置,該裝置經組態為朝向一樣本沿著射束路徑投影一帶電粒子束陣列,該裝置包含:一物鏡陣列,其經組態以將該射束陣列投影至該樣本上,該物鏡係接近於該樣本且包含:一上部電極;及包含一逆流方向電極及一順流方向電極之一下部電極配置,該裝置經組態以將一上部電位施加至該上部電極、將一逆流方向電位施加至該逆流方向電極、及將一順流方向電位施加至該順流方向電極,其中該上部電極與該下部電極配置之間的一距離與該下部電極配置沿該等射束路徑之一尺寸實質上相同。
條項9:如前述條項中任一項之裝置,其中橫跨該物鏡陣列之不同物鏡的該逆流方向電位及該順流方向電位經組態以分別設定,以校正該陣列中之該等不同物鏡之間的聚焦變化。
條項10:如前述條項中任一項之裝置,其中該逆流方向電極上之該電位經組態以橫跨該物鏡陣列經可控制地調節,以校正該陣列中之該等不同物鏡之間的聚焦變化。
條項11:一種用於一帶電粒子系統之帶電粒子光學裝置,該裝置經組態為朝向一樣本投影一帶電粒子束陣列,該裝置包含:一物鏡陣列,其經組態以將該射束陣列投影至該樣本上,該物鏡係接近於該樣本且包含:一上部電極;及包含一逆流方向電極及一順流方向電極之一下部電極配置,該裝置經組態以將一上部電位施加至該上部電極、將一逆流方向電位施加至該逆流方向電極、及將一順流方向電位施加至該順流方向電極,且該裝置經組態以控制該逆流方向電位及該順流方向電位,其中橫跨該物鏡陣列之不同物鏡的該逆流方向電位及該順流方向電位可經組態以分別經設定,以校正該陣列中之該等不同物鏡之間的聚焦變化。
條項12:如條項11之裝置,其中該逆流方向電極上之該電位經組態以可控制地調節。
條項13:一種用於一帶電粒子系統之帶電粒子光學裝置,該裝置經組態為朝向一樣本投影一帶電粒子束陣列,該裝置包含:一物鏡陣列,其經組態以將該射束陣列投影至該樣本上,該物鏡係接近於該樣本且包含:一上部電極;及包含一逆流方向電極及一順流方向電極之一下部電極配置,該裝置經組態以將一上部電位施加至該上部電極、將一逆流方向電位施加至該逆流方向電極、及將一順流方向電位施加至該順流方向電極,且該裝置經組態以控制該逆流方向電位及該順流方向電位,其中該逆流方向電極上之該電位經組態以橫跨該物鏡陣列經可控制地調節,以校正該陣列中之該等不同物鏡之間的聚焦變化。
條項14:如條項13之裝置,其中橫跨該物鏡陣列之不同物鏡的該逆流方向電位與該順流方向電位之間的差值經組態以分別經設定,以校正該陣列中之該等不同物鏡之間的聚焦變化。
條項15:如條項9至14中任一項之裝置,其中該陣列中之不同物鏡之該等電位的設定係藉由該陣列中之各透鏡或藉由該陣列中之透鏡群組進行。
條項16:如條項9至15中任一項之裝置,其中該物鏡與該樣本之間的一距離經組態以維持。
條項17:如條項3、5、8或11至16中任一項之裝置,其中該裝置經組態以控制該逆流方向電位及該順流方向電位以改變及/或設定該等射束在該樣本上之著陸能量,且視情況控制該逆流方向電位及該順流方向電位,以在不同著陸能量下維持該等射束在該樣本上之聚焦。
條項18:如條項3、5、8或11至17中任一項之裝置,其進一步包含一控制透鏡,其中該物鏡陣列在該控制透鏡陣列之順流方向上。
條項19:如條項1、2、4、7、9、10或15至18中任一項之裝置,其中該控制透鏡陣列與物鏡陣列藉由一電絕緣間隔件間隔開且連接,其中該間隔件包含陶瓷或玻璃。
條項20:如條項1、2、4、7、9、10或15至19中任一項之裝置,其中該控制透鏡包含藉由一電絕緣間隔件間隔開且連接之電極,其中該間隔件包含陶瓷或玻璃。
條項21:如任一前述條項之裝置,其中該等帶電粒子具有一負電荷,且該上部電位具有大於該逆流方向電位及該順流方向電位之一量值。
條項22:如前述條項中任一項之裝置,其中該上部電位與該逆流方向電位之間的一差的一量值大約為10 kV至50 kV,或較佳地大約為20 kV至40 kV。
條項23:如前述條項中任一項之裝置,其中該逆流方向電極之一厚度小於該上部電極之一厚度。
條項24:如前述條項中任一項之裝置,其中該順流方向電極之一厚度小於該上部電極之一厚度。
條項25:如前述條項中任一項之裝置,其中該逆流方向電極之該厚度與該順流方向電極之該厚度實質上相同。
條項26:如前述條項中任一項之裝置,其中該下部電極配置之一厚度與該上部電極與該下部電極配置之間的一距離實質上相同。
條項27:如條項1至25中任一項之裝置,其中該下部電極配置之一厚度實質上不同於該上部電極與該下部電極配置之間的一距離。
條項28:如前述條項中任一項之裝置,該逆流方向電極具有大約0.1 mm至0.2 mm之一厚度及/或該順流方向電極具有大約0.1 mm至0.2 mm之一厚度。
條項29:如前述條項中任一項之裝置,其中該逆流方向電極與該順流方向電極之間的一距離為大約0.3 mm至2 mm。
條項30:如前述條項中任一項之裝置,其中該裝置進一步包含一偵測器。
條項31:如條項30之裝置,其中該偵測器係定位於該上部電極與該下部電極配置之間及/或面向該樣本。
條項32:如條項30或31中任一項之裝置,其中該下部電極配置經組態以將信號帶電粒子引導至該偵測器。
條項33:如前述條項中任一項之裝置,其中在該逆流方向電位與該順流方向電位之間存在一差值。
條項34:如條項33之裝置,其中該逆流方向電位具有比該順流方向電位大之一量值。
條項35:如條項33或34中任一項之裝置,其中該逆流方向電位與該順流方向電位之間的該差值大於0 V且高達大約2.5 kV。
條項36:如條項1至32中任一項之裝置,其中該逆流方向電位與該順流方向電位實質上相同。
條項37:如前述條項中任一項之裝置,其中該物鏡陣列之電極藉由一電絕緣間隔件間隔開且連接,其中該間隔件包含陶瓷或玻璃。
條項38:如前述條項中任一項之裝置,其中該裝置經組態以在該物鏡陣列定位成與該樣本相距一預定距離時藉由控制逆流方向電位及順流方向電位來改變及/或設定該著陸能量。
條項39:如前述條項中任一項之裝置,其中該著陸能量係在大約0.2 kV至5 kV之間。
條項40:如前述條項中任一項之裝置,其進一步包含一電源供應器,該電源供應器用以設定該裝置之一或多個電位,該裝置諸如至少該控制透鏡,例如該控制透鏡之一或多個電極、該上部電極及該下部電極配置,例如,該逆流方向電極及/或該順流方向電極。
條項41:如前述條項中任一項之裝置,其中該裝置包含一控制器,該控制器用以改變及/或設定該著陸能量,較佳地其中該控制器係使用者致動的,及/或理想地藉由控制經組態以設定該裝置之一或多個電位的該電源供應器來控制(理想地維持)在經改變及/或經設定著陸能量下該等射束在該樣本上之聚焦。
條項42:如前述條項中任一項之裝置,其中施加至該樣本之電場經組態以維持,理想地,連接至該樣本之一電源供應器及一控制器經組態以控制該電源供應器,從而控制(理想地維持)施加至該樣本之該電場。
條項43:如前述條項中任一項之裝置,其中該下部電極配置係鄰近於該上部電極。
條項44:如前述條項中任一項之裝置,其進一步包含一聚光透鏡陣列,及/或一射束限制器陣列及/或一偏轉器陣列。
條項45:一種在一帶電粒子光學裝置中朝向一樣本投影一帶電粒子束陣列之方法,該裝置包含:一控制透鏡陣列,其經組態以控制該射束陣列之一參數;及一物鏡陣列,其經組態以將該射束陣列投影至該樣本上,該物鏡在該控制透鏡之順流方向上且包含一上部電極及包含一逆流方向電極及一順流方向電極之一下部電極配置,該方法包含:提供該射束陣列;將一上部電位施加至該上部電極、將一逆流方向電位施加至該逆流方向電極、及將一順流方向電位施加至該順流方向電極;及控制該逆流方向電位及該順流方向電位以改變及/或設定該等射束在該樣本上之著陸能量且在不同著陸能量下維持該等射束在該樣本上之聚焦。
條項46:一種使用如條項1至44中任一項之帶電粒子光學裝置將一帶電粒子束陣列朝向一樣本投影的方法。
雖然已經結合各種實施例描述本發明,但藉由考慮本文中揭示之本發明之說明書及實踐,本發明之其他實施例對於熟習此項技術者將顯而易見。意欲將本說明書及實例視為僅例示性的,其中本發明之真正範疇及精神由以下申請專利範圍指示。
10:主腔室 20:裝載鎖定腔室 30:設備前端模組 30a:第一裝載埠 30b:第二裝載埠 40:電子射束工具 50:控制器 80:信號粒子 81:信號粒子 100:帶電粒子束檢測設備 124:射束限制孔隙 201:電子源/源 202:初級電子射束 207:樣本保持器 208:樣本 209:機動載物台 211:子射束 212:子射束 213:子射束 221:探測光點 222:探測光點 223:探測光點 230:投影設備 231:聚光透鏡 233:中間焦點 234:物鏡 235:偏轉器陣列 240:電子偵測裝置 241:物鏡陣列 242:射束塑形限制器 250:控制透鏡陣列 251:控制透鏡 252:上部射束限制器 260:掃描偏轉器陣列 265:巨集掃描偏轉器 270:非巨集準直器 271:準直器元件陣列 301:逆流方向電極 302:順流方向電極 303:上部電極 402:偵測器 601:中間電極 602:下部電極 603:上部電極 V1:電壓源 V2:電壓源 V3:電壓源 V4:電壓源 V5:電壓源 V6:電壓源 V7:電壓源 d 1:距離 d 2:距離 d A:直徑 t 1:厚度 t 2:厚度 t 3:厚度 t 4:尺寸
本發明之上述及其他實施例自結合附圖進行之例示性實施例之描述將變得更顯而易見。
1為說明例示性帶電粒子束檢測設備之示意圖。
2為說明作為 1之例示性帶電粒子束檢測設備之部分的例示性多射束設備之示意圖。
3為根據一實施例之例示性多射束設備之示意圖。
4為例示性配置之著陸能量相對於解析度之曲線圖。
5為根據一實施例之控制透鏡及物鏡之放大圖。
6為根據一實施例之物鏡之示意性截面視圖。
7A 7B為根據實施例之物鏡之截面示意圖。
8為根據一實施例之形成具有最終射束限制孔隙陣列之物鏡的電極之部分的示意性截面視圖。
9為相對於 8中之平面A-A之示意性放大頂部截面視圖,其展示最終射束限制孔隙陣列中之孔隙。
10為根據一實施例之包含巨集準直器及巨集掃描偏轉器之例示性帶電粒子系統的示意圖。
11為根據一實施例之包含準直器元件陣列及掃描偏轉器陣列之例示性帶電粒子系統的示意圖。
示意圖及視圖展示下文所描述之組件。然而,圖中描繪之組件未按比例。
201:電子源/源
208:樣本
211:子射束
212:子射束
213:子射束
231:聚光透鏡
233:中間焦點
234:物鏡
235:偏轉器陣列
240:電子偵測裝置
241:物鏡陣列
250:控制透鏡陣列
251:控制透鏡
260:掃描偏轉器陣列

Claims (15)

  1. 一種用於一帶電粒子系統之帶電粒子光學裝置,該裝置經組態以朝向一樣本投影一帶電粒子束陣列,該裝置包含: 一控制透鏡陣列,其經組態以控制該射束陣列之一參數;及 一物鏡陣列,其經組態以將該射束陣列投影至該樣本上,該物鏡陣列在該控制透鏡之順流方向上且包含: 一上部電極;及 一下部電極配置,其包含一逆流方向電極及一順流方向電極, 其中該裝置經組態以將一上部電位施加至該上部電極、將一逆流方向電位施加至該逆流方向電極及將一順流方向電位施加至該順流方向電極,且該裝置經組態以控制該逆流方向電位及該順流方向電位,從而改變及/或設定該等射束在該樣本上之著陸能量且在不同著陸能量下維持該等射束在該樣本上之聚焦。
  2. 如請求項1之裝置,其中該逆流方向電位與該順流方向電位之間的一差值小於該逆流方向電位與該上部電位之間的一差值。
  3. 如請求項1或2之裝置,其中該逆流方向電極與該順流方向電極之間的一距離小於該上部電極與該下部電極配置之間的一距離。
  4. 如請求項3之裝置,其中該逆流方向電極與該上部電極之間的距離比該逆流方向電極與該順流方向電極之間的該距離大大約2倍至6倍。
  5. 如請求項1或2之裝置,其中該等帶電粒子束沿射束路徑投影,且該上部電極與該下部電極配置之間的一距離與沿該等射束路徑之該下部電極配置的一尺寸實質上相同。
  6. 如請求項1或2之裝置,其中橫跨該物鏡陣列之不同物鏡的該逆流方向電位及該順流方向電位經組態以分別設定以校正該陣列中之該等不同物鏡之間的聚焦變化。
  7. 如請求項1或2之裝置,其中該逆流方向電極上之該電位經組態以橫跨該物鏡陣列經可控制地調節,以校正該陣列中之該等不同物鏡之間的聚焦變化。
  8. 如請求項6之裝置,其中該陣列中之不同物鏡之該等電位的設定係藉由該陣列中之各透鏡或藉由該陣列中之透鏡群組進行。
  9. 如請求項6之裝置,其中該物鏡與該樣本之間的一距離經組態以維持。
  10. 如請求項8之裝置,其中該裝置經組態以控制該逆流方向電位及該順流方向電位以改變及/或設定該等射束在該樣本上之該著陸能量,且視情況控制該逆流方向電位及該順流方向電位,以在不同著陸能量下維持該等射束在該樣本上之聚焦。
  11. 如請求項8之裝置,其進一步包含一控制透鏡,其中該物鏡陣列在該控制透鏡陣列之順流方向上。
  12. 如請求項1或2之裝置,其中該逆流方向電極之一厚度小於該上部電極之一厚度及/或該順流方向電極之一厚度小於該上部電極之一厚度。
  13. 如請求項1或2之裝置,其中該逆流方向電極之該厚度與該順流方向電極之該厚度實質上相同。
  14. 如請求項1或2之裝置,其中該下部電極配置之一厚度與該上部電極與該下部電極配置之間的一距離實質上相同。
  15. 如請求項1或2之裝置,其中該裝置進一步包含一偵測器。
TW111118809A 2021-05-25 2022-05-20 帶電粒子裝置及方法 TW202312211A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21175823.0 2021-05-25
EP21175823.0A EP4095881A1 (en) 2021-05-25 2021-05-25 Charged particle device

Publications (1)

Publication Number Publication Date
TW202312211A true TW202312211A (zh) 2023-03-16

Family

ID=76137908

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111118809A TW202312211A (zh) 2021-05-25 2022-05-20 帶電粒子裝置及方法

Country Status (5)

Country Link
US (1) US20240087835A1 (zh)
EP (1) EP4095881A1 (zh)
CN (1) CN117396997A (zh)
TW (1) TW202312211A (zh)
WO (1) WO2022248138A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068607B1 (ko) 2003-03-10 2011-09-30 마퍼 리쏘그라피 아이피 비.브이. 복수 개의 빔렛 발생 장치
NL1036912C2 (en) 2009-04-29 2010-11-01 Mapper Lithography Ip Bv Charged particle optical system comprising an electrostatic deflector.
TWI497557B (zh) 2009-04-29 2015-08-21 Mapper Lithography Ip Bv 包含靜電偏轉器的帶電粒子光學系統
NL2007604C2 (en) 2011-10-14 2013-05-01 Mapper Lithography Ip Bv Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
NL2006868C2 (en) 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
US20220392735A1 (en) * 2019-10-21 2022-12-08 Applied Materials, Israel Ltd. Method for inspecting a specimen and charged particle beam device
JP2023509397A (ja) * 2020-01-06 2023-03-08 エーエスエムエル ネザーランズ ビー.ブイ. 荷電粒子評価ツール、検査方法
CA3198634A1 (en) * 2020-11-12 2022-05-19 Asml Netherlands B.V. Objective lens array assembly, electron-optical system, electron-optical system array, method of focusing

Also Published As

Publication number Publication date
CN117396997A (zh) 2024-01-12
US20240087835A1 (en) 2024-03-14
EP4095881A1 (en) 2022-11-30
WO2022248138A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US11798783B2 (en) Charged particle assessment tool, inspection method
US20230245849A1 (en) Objective lens array assembly, electron-optical system, electron-optical system array, method of focusing, objective lens arrangement
US20240029995A1 (en) Electron-optical system and method of operating an electron-optical system
US20230230795A1 (en) Charged particle assessment tool, inspection method
KR20230098813A (ko) 대물 렌즈 어레이 조립체, 전자-광학 시스템, 전자-광학 시스템 어레이, 포커싱 방법
EP3971939A1 (en) Charged particle assessment tool, inspection method
EP3971940A1 (en) Objective lens array assembly, electron-optical system, electron-optical system array, method of focusing, objective lens arrangement
TW202324478A (zh) 帶電粒子光學裝置及操作帶電粒子評估工具之方法
CN116762152A (zh) 带电粒子工具、校准方法、检查方法
TW202312211A (zh) 帶電粒子裝置及方法
TWI842002B (zh) 用於評估設備之帶電粒子裝置中以偵測來自樣本之帶電粒子的偵測器
TWI824604B (zh) 帶電粒子光學裝置、帶電粒子設備及方法
JP7482238B2 (ja) 検査装置
TWI827124B (zh) 帶電粒子設備及方法
EP4156227A1 (en) Charged particle apparatus and method
TW202303658A (zh) 補償電極變形之影響的方法、評估系統
TW202312215A (zh) 評估系統、評估方法
TW202318466A (zh) 帶電粒子裝置、偵測器、及方法
KR20240008858A (ko) 하전 입자 광학 장치, 대물 렌즈 어셈블리, 검출기, 검출기 어레이 및 방법