TW202303658A - 補償電極變形之影響的方法、評估系統 - Google Patents

補償電極變形之影響的方法、評估系統 Download PDF

Info

Publication number
TW202303658A
TW202303658A TW111120159A TW111120159A TW202303658A TW 202303658 A TW202303658 A TW 202303658A TW 111120159 A TW111120159 A TW 111120159A TW 111120159 A TW111120159 A TW 111120159A TW 202303658 A TW202303658 A TW 202303658A
Authority
TW
Taiwan
Prior art keywords
sample
electrode
objective lens
electrodes
array
Prior art date
Application number
TW111120159A
Other languages
English (en)
Inventor
瑪寇 傑 加寇 威蘭德
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202303658A publication Critical patent/TW202303658A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1205Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electron Beam Exposure (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明揭示評估系統及方法。在一個配置中,補償一物鏡陣列中之電極變形之一影響。藉由使該物鏡陣列中之一靜電場變化來調整一電極變形。該調整係為了補償電極變形對照射於一樣本上之一多光束之子光束之一影響。回應於該物鏡陣列中之靜電場之該變化而再聚焦一子光束。該調整及該再聚焦包含改變施加至該物鏡陣列之至少兩個電極之電位。

Description

補償電極變形之影響的方法、評估系統
本文中所提供之實施例係關於使用帶電粒子(尤其電子)例如藉由偵測自樣本發射之信號電子來評估該樣本的方法及評估系統。
在製造半導體積體電路(IC)晶片時,由於例如光學效應及偶然粒子所引起的非所要圖案缺陷在製造製程期間不可避免地出現在基板(亦即,晶圓)或遮罩上,從而降低良率。因此,監視非所要圖案缺陷之範圍為IC晶片之製造中之重要製造。更一般而言,基板或其他物件/材料之表面的檢測及/或量測為在其製造期間及/或之後的重要製程。
具有帶電粒子束之圖案檢測工具已用於檢測物件(其可稱為樣本),例如以偵測圖案缺陷。此等工具通常使用電子顯微法技術,諸如掃描電子顯微鏡(SEM)。在SEM中,運用最終減速步驟以在相對較高之能量下之電子的初級電子束為目標,以便以相對較低之著陸能量著陸於樣本上。電子束聚焦為樣本上之探測光點。探測光點處之材料結構與來自電子束之著陸電子之間的相互作用使得待自表面發射信號電子,諸如次級電子、反向散射電子或歐傑電子(Auger electron)。可自樣本之材料結構發射信號電子。藉由在樣本表面上方掃描作為探測光點之初級電子束,可跨樣本之表面發射信號電子。藉由收集自樣本表面之此等發射之信號電子,圖案檢測工具可獲得表示樣本之表面之材料結構的特性之影像。
一般需要改良評估系統及方法中之對帶電粒子束之控制。
本發明之一目標為改良評估系統及方法中之對帶電粒子束之控制。
根據本發明之一態樣,提供一種補償多光束帶電粒子評估系統之物鏡陣列中之電極變形之影響的方法,該方法包含:藉由使物鏡陣列中之靜電場變化來調整電極變形,物鏡陣列包含硬體校正,該硬體校正用於補償物鏡陣列中之經預測電極變形對子光束之經預測影響,該調整係為了補償電極變形對照射於樣本上之多光束之子光束之影響;及回應於物鏡陣列中之靜電場之變化而再聚焦多光束之子光束,其中:調整及再聚焦包含改變施加至物鏡陣列之兩個電極之電位,且電極變形之調整包含調整電極變形以大體上匹配經預測電極變形。
現在將詳細參考例示性實施例,在隨附圖式中說明該等例示性實施例之實例。以下描述參考隨附圖式,其中除非另外表示,否則不同圖式中之相同編號表示相同或類似元件。在例示性實施例之以下描述中所闡述之實施並不表示符合本發明之所有實施。實情為,其僅為符合關於所附申請專利範圍中所列舉的本發明之態樣的設備及方法之實例。
可藉由顯著增加IC晶片上之電路組件(諸如電晶體、電容器、二極體等)之裝填密度來實現電子裝置之增強之計算能力,其減小該裝置之實體大小。此已藉由增加之解析度來實現,從而使得能夠製得更小的結構。舉例而言,智慧型手機的IC晶片(其為拇指甲大小且在2019年或更早可用)可包括超過20億個電晶體,各電晶體之大小小於人類毛髮之1/1000。因此,半導體IC製造係具有數百個個別步驟之複雜且耗時製程並不出人意料。即使一個步驟中之誤差亦有可能顯著影響最終產品之功能。僅一個「致命缺陷」可造成裝置故障。製造製程之目標為改良製程之總良率。舉例而言,為獲得50步驟製程(其中步驟可指示形成於晶圓上之層的數目)之75%良率,各個別步驟必須具有大於99.4%之良率。若各個別步驟具有95%之良率,則總製程良率將低至7%。
儘管高製程良率在IC晶片製造設施中係合乎需要的,但維持高基板(亦即,晶圓)產出量(經定義為每小時處理之基板的數目)亦為必不可少的。高製程良率及高基板產出量可受缺陷之存在影響。若需要操作員干預來檢閱缺陷,則此尤其成立。因此,藉由檢測工具(諸如掃描電子顯微鏡(『SEM』))進行之微米及奈米級缺陷之高產出量偵測及識別對於維持高良率及低成本係至關重要的。
SEM包含掃描裝置及偵測器設備。掃描裝置包含:照明設備,其包含用於產生初級電子之電子源;及投影設備,其用於運用一或多個聚焦的初級電子束來掃描樣本,諸如基板。至少照明設備或照明系統及投影設備或投影系統可統稱為電子光學系統或設備。初級電子與樣本相互作用,且產生次級電子。偵測設備在掃描樣本時捕捉來自樣本之次級電子,使得SEM可產生樣本之掃描區域的影像。對於高產出量檢測,檢測設備中之一些使用初級電子之多個聚焦光束,亦即多光束。多光束之組成光束可稱為子光束或細光束。多光束可同時掃描樣本之不同部分。多光束檢測設備因此可以比單光束檢查設備高得多的速度檢測樣本。
下文描述已知多光束檢測設備之實施。
圖式為示意性的。因此出於清楚起見,誇示圖式中之組件之相對尺寸。在以下圖式描述內,相同或相似參考編號係指相同或相似組件或實體,且僅描述關於個別實施例之差異。儘管描述及圖式係針對電子光學設備,但應瞭解,實施例不用於將本發明限制為特定帶電粒子。因此,更一般而言,貫穿本發明文獻對電子之參考可被視為對帶電粒子之參考,其中帶電粒子不一定為電子。
現參考 1,其為說明例示性帶電粒子束檢測設備100之示意圖,該裝置亦可稱為帶電粒子束評估系統或簡單地稱為評估系統。 1之帶電粒子束檢測設備100包括主腔室10、裝載鎖定腔室20、電子束工具40、裝備前端模組(EFEM) 30及控制器50。電子束工具40位於主腔室10內。
EFEM 30包括第一裝載埠30a及第二裝載埠30b。EFEM 30可包括額外裝載埠。第一裝載埠30a及第二裝載埠30b可例如收納含有待檢測之基板(例如,半導體基板或由其他材料製成之基板)或樣本的基板前開式單元匣(FOUP) (基板、晶圓及樣本下文統稱為「樣本」)。EFEM 30中之一或多個機器人臂(未展示)將樣本輸送至裝載鎖定腔室20。
裝載鎖定腔室20用於移除樣本周圍之氣體。此產生局部氣體壓力低於周圍環境中之壓力的真空。裝載鎖定腔室20可連接至裝載鎖定真空泵系統(未展示),該裝載鎖定真空泵系統移除裝載鎖定腔室20中之氣體粒子。裝載鎖定真空泵系統之操作使得裝載鎖定腔室能夠達至低於大氣壓力之第一壓力。在達至第一壓力之後,一或多個機器人臂(未展示)將樣本自裝載鎖定腔室20輸送至主腔室10。將主腔室10連接至主腔室真空泵系統(未展示)。主腔室真空泵系統移除主腔室10中之氣體粒子,使得樣本周圍之壓力達至低於第一壓力之第二壓力。在達至第二壓力之後,將樣本輸送至可檢測該樣本之電子束工具。電子束工具40可包含多光束電子光學設備。
控制器50以電子方式連接至電子束工具40。控制器50可為經組態以控制帶電粒子束檢測設備100之處理器(諸如電腦)。控制器50亦可包括經組態以執行各種信號及影像處理功能之處理電路系統。儘管控制器50在 1中展示為在包括主腔室10、裝載鎖定腔室20及EFEM 30之結構外部,但應瞭解,控制器50可為該結構之部分。控制器50可位於帶電粒子束檢測設備之組成元件中之一者中或其可分佈於組成元件中之至少兩者上方。儘管本發明提供收容電子束檢測工具之主腔室10之實例,但應注意,本發明之態樣在其最廣泛意義上而言不限於收容電子束檢測工具之腔室。實情為,應瞭解,亦可將前述原理應用於在第二壓力下操作之設備的其他工具及其他配置。
現參考 2,其為說明例示性電子束工具40之示意圖,該電子束工具包括作為 1之例示性帶電粒子束檢測設備100的部分之多光束檢測工具。多光束電子束工具40 (在本文中亦稱為設備40)包含電子源201、投影設備230、機動載物台209及樣本固持器207。電子源201及投影設備230可統稱為照明設備。樣本固持器207由機動或致動載物台209支撐,以便固持用於檢測之樣本208 (例如,基板或遮罩)。多光束電子束工具40進一步包含電子偵測裝置240。
電子源201可包含陰極(未展示)及提取器或陽極(未展示)。在操作期間,電子源201經組態以自陰極發射電子作為初級電子。藉由提取器及/或陽極提取或加速初級電子以形成初級電子束202。
投影設備230經組態以將初級電子束202轉換成複數個子光束211、212及213且將各子光束引導至樣本208上。儘管為簡單起見說明三個子光束,但可存在數十、數百、數千、數萬或甚至數十萬(或更多)個子光束。子光束可稱為細光束。
控制器50可連接至 1之帶電粒子束檢測設備100的各種部分,諸如電子源201、電子偵測裝置240、投影設備230及機動載物台209。控制器50可執行各種影像及信號處理功能。控制器50亦可產生各種控制信號以管控帶電粒子束檢測設備(包括帶電粒子多光束設備)之操作。
投影設備230可經組態以將子光束211、212及213聚焦至用於檢測之樣本208上且可在樣本208之表面上形成三個探測光點221、222及223。投影設備230可經組態以使初級子光束211、212及213偏轉以跨樣本208之表面之區段中的個別掃描區域來掃描探測光點221、222及223。回應於初級子光束211、212及213入射於樣本208上之探測光點221、222及223上,自樣本208產生電子,該等電子包括可稱為信號粒子之次級電子及反向散射電子。次級電子通常具有≤ 50 eV之電子能量且反向散射電子通常具有50 eV與初級子光束211、212及213之著陸能量之間的電子能量。
電子偵測裝置240經組態以偵測次級電子及/或反向散射電子且產生對應信號,將該等對應信號發送至控制器50或信號處理系統(未展示),例如以建構樣本208之對應掃描區域的影像。電子偵測裝置可併入於投影設備中或可與該投影設備分離,其中次級光學柱經提供以將次級電子及/或反向散射電子引導至電子偵測裝置。
控制器50可包含影像處理系統,該影像處理系統包括影像獲取器(未展示)及儲存裝置(未展示)。舉例而言,控制器可包含處理器、電腦、伺服器、大型電腦主機、終端機、個人電腦、任何種類之行動計算裝置及類似者,或其組合。影像獲取器可包含控制器之處理功能之至少部分。因此,影像獲取器可包含至少一或多個處理器。影像獲取器可通信耦接至允許信號通信之設備40的電子偵測裝置240,諸如電導體、光纖纜線、攜帶型儲存媒體、IR、藍芽、網際網路、無線網路、無線電以及其他或其組合。影像獲取器可自電子偵測裝置240接收信號,可處理信號中所包含之資料且可根據該資料建構影像。影像獲取器可因此獲取樣本208之影像。影像獲取器亦可執行各種後處理功能,諸如在所獲取影像上產生輪廓、疊加指示符及類似者。影像獲取器可經組態以執行對所獲取影像之亮度及對比度等的調整。儲存器可為諸如以下各者之儲存媒體:硬碟、快閃驅動器、雲端儲存器、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體及類似者。儲存器可與影像獲取器耦接且可用於保存經掃描原始影像資料作為初始影像及後處理影像。
影像獲取器可基於自電子偵測裝置240接收到之成像信號獲取樣本之一或多個影像。成像信號可對應於用於進行帶電粒子成像之掃描操作。所獲取影像可為包含複數個成像區域之單個影像。單個影像可儲存於儲存器中。單個影像可為可劃分成複數個區之原始影像。該等區中之各者可包含含有樣本208之特徵之一個成像區域。所獲取影像可包含在時段內取樣多次的樣本208之單個成像區域的多個影像。多個影像可儲存於儲存器中。控制器50可經組態以藉由樣本208之相同位置之多個影像來執行影像處理步驟。
控制器50可包括量測電路系統(例如,類比/數位轉換器)以獲得所偵測之次級電子的分佈。在偵測時間窗期間收集之電子分佈資料可與入射於樣本表面上之初級子光束211、212及213中之各者之對應掃描路徑資料組合使用,以重建構受檢測樣本結構之影像。經重建構影像可用於顯露樣本208之內部或外部結構的各種特徵。經重建構影像可藉此用於顯露可存在於樣本中之任何缺陷。
控制器50可控制機動載物台209以在樣本208之檢測期間移動樣本208。控制器50可使得機動載物台209能夠至少在樣本檢測期間例如以恆定速度在一方向上(較佳地連續地)移動樣本208。控制器50可控制機動載物台209之移動,使得該機動載物台取決於各種參數而改變樣本208之移動速度。舉例而言,控制器可取決於檢測步驟及/或掃描程序之掃描之特性而控制載物台速度(包括其方向),例如如2021年5月3日申請之EPA 21171877.0中所揭示,該EPA 21171877.0就載物台之至少經組合步進及掃描策略而言特此併入。
3為用於評估系統之例示性電光學柱之示意圖。為了易於說明,本文中藉由橢圓形狀陣列示意性地描繪透鏡陣列。各橢圓形狀表示透鏡陣列中之透鏡中之一者。按照慣例,橢圓形狀用以表示透鏡,類似於光學透鏡中經常採用之雙凸面形式。然而,在諸如本文中所論述之彼等帶電粒子配置的帶電粒子配置之上下文中,應理解,透鏡陣列將通常以靜電方式操作且因此可能不需要採用雙凸面形狀之任何實體元件。如下文所描述,替代地,透鏡陣列可包含具有孔徑之多個板。具有孔徑之各板可稱為電極。電極可沿著多光束之子光束之子光束路徑串聯地提供。
電子源201朝向形成投影系統230之部分之聚光透鏡231之陣列引導電子。電子源理想地為具有亮度與總發射電流之間的良好折衷的高亮度熱場發射器。可能存在數十、數百或數千或甚至數萬個聚光透鏡231。陣列231之聚光透鏡可包含多電極透鏡且具有基於EP1602121A1之構造,該EP1602121A1之文獻特此以引用方式尤其併入至用以將電子束分裂成複數個子光束之透鏡陣列的揭示內容,其中該陣列提供用於各子光束之透鏡。聚光透鏡陣列可採取至少兩個(較佳地三個)板充當電極之形式,其中各板中之孔徑與其他板中之孔徑對準以界定通過該等板之子光束之路徑。在不同電位下在操作期間維持板中之至少兩者以達成所要透鏡化效應。在聚光透鏡陣列之板之間為例如由諸如陶瓷或玻璃之絕緣材料製成之電絕緣板,其具有用於子光束之一或多個孔徑。在一替代性配置中,板中之一或多者之特徵可在於各自具有其自身電極之孔徑,例如在其周邊周圍具有電極之陣列或以具有共同電極之孔徑之群組配置。
在一配置中,聚光透鏡陣列係由三個板陣列形成,在該等三個板陣列中,帶電粒子在其進入及離開各透鏡時具有相同的能量,該配置可稱為單透鏡。因此,分散僅出現在單透鏡自身內(透鏡之進入電極與離開電極之間),由此限制離軸色像差。當聚光透鏡之厚度低,例如數毫米時,此類像差具有小或可忽略的影響。
陣列中之各聚光透鏡將電子引導至各別子光束211、212、213中,該各別子光束聚焦於各別中間焦點233處。準直器或準直器之陣列可經定位以對各別中間焦點233進行操作。準直器可採取設置於中間焦點233處之偏轉器235之形式。偏轉器235經組態以使各別細光束211、212、213彎曲一有效量以確保主要射線(其亦可稱為光束軸線)大體上法向入射於樣本208上(亦即,與樣本之標稱表面大體上成90°)。
偏轉器235下方(亦即,順流方向或更遠離源201)存在控制透鏡陣列250,該控制透鏡陣列包含用於各子光束211、212、213之控制透鏡251。控制透鏡陣列250可包含連接至各別電位源之兩個或更多個(較佳地至少三個)板狀電極陣列,較佳地其中絕緣板例如在該等電極之間與該等電極接觸。板狀電極陣列中之各者可稱為控制電極。控制透鏡陣列250之功能為相對於光束之縮小率最佳化光束張角及/或控制遞送至物鏡234之光束能量,該等物鏡中之各者將各別子光束211、212、213引導至樣本208上。
視情況,將掃描偏轉器260之陣列設置於控制透鏡陣列250與物鏡234之陣列(物鏡陣列)之間。掃描偏轉器260之陣列包含用於各子光束211、212、213之掃描偏轉器261。各掃描偏轉器經組態以使各別子光束211、212、213在一個或兩個方向上偏轉,以便在一個或兩個方向上跨樣本208掃描子光束。
偵測器之偵測器模組402設置於物鏡234及樣本208內或之間以偵測自樣本208發射之信號電子/粒子。下文描述此類偵測器模組402之例示性構造。應注意,偵測器另外或替代地可具有在沿著物鏡陣列或甚至控制透鏡陣列之初級光束路徑之逆流方向的偵測器元件。
3之系統經組態以藉由使施加至控制透鏡及物鏡之電極的電位變化來控制電子在樣本上之著陸能量。控制透鏡及物鏡共同地工作且可稱為物鏡總成。取決於所評估之樣本的性質,著陸能量可經選擇以增加次級電子之發射及偵測。控制器可經組態以將著陸能量控制在預定範圍內之任何期望值或複數個預定值中之期望值。在一實施例中,著陸能量可控制為例如1000 eV至5000 eV之預定範圍內的期望值。 4為描繪解析度隨著陸能量而變的圖式,其假定重新最佳化光束張角/縮小率以用於改變著陸能量。如可看出,隨著著陸能量變化降至最小值LE_min,評估工具之解析度可保持大體上恆定。解析度低於LE_min會劣化,此係因為有必要減小物鏡之透鏡強度及物鏡內之電場,以便維持物鏡及/或偵測器與樣本之間的最小間隔。如下文進一步論述,可交換模組亦可用以改變或控制著陸能量。
理想地,藉由控制離開控制透鏡之電子的能量來主要地改變著陸能量。物鏡內之電位差較佳地在此變化期間保持恆定,使得物鏡內之電場保持儘可能高。另外,施加至控制透鏡之電位可用於最佳化光束張角及縮小率。控制透鏡亦可稱為再聚焦透鏡,此係由於其可用以鑒於著陸能量之改變而校正焦點位置。理想地,各控制透鏡包含三個電極以便提供兩個獨立控制變數,如下文進一步論述。舉例而言,電極中之一者可用於控制縮小率,而不同電極可用於獨立控制著陸能量。替代地,各控制透鏡可僅具有兩個電極。相比之下,當僅存在兩個電極時,電極中之一者可需要控制縮小率及著陸能量兩者。
5為物鏡陣列中之一個物鏡300及控制透鏡陣列250之一個控制透鏡600的放大示意圖。物鏡300可經組態以使電子束縮小達大於10 (理想地在50至100或更大之範圍內)之因數。物鏡包含中間或第一電極301、下部或第二電極302及上部或第三電極303。電壓源V1、V2、V3經組態以分別將電位施加至第一、第二及第三電極。另一電壓源V4連接至樣本以施加可接地的第四電位。可相對於樣本208界定電位。第一、第二及第三電極各自具備孔徑,各別子光束傳播通過該孔徑。第二電位可類似於樣本之電位,例如相比於樣本在+50 V至+200 V之範圍內。替代地,第二電位相對於樣本可在約+500 V至約+1,500 V之範圍內。若偵測器模組402在光學柱中高於最低電極,則較高電位係有用的。第一及/或第二電位可按孔徑或孔徑之群組發生變化以實現聚焦校正。
理想地,在一實施例中,省略第三電極。具有僅兩個電極之物鏡可具有比具有更多電極之物鏡更低的像差。三電極物鏡可具有電極之間的更大電位差且因此實現更強透鏡。額外電極(亦即,多於兩個電極)提供用於控制電子軌跡之額外自由度,例如以聚焦次級電子以及入射光束。
如上文所提及,期望使用控制透鏡來判定著陸能量。然而,有可能另外使用物鏡300來控制著陸能量。在此類情況下,當選擇不同著陸能量時,物鏡上之電位差改變。期望藉由改變物鏡上之電位差而部分地改變著陸能量的情形之一個實例係防止子光束之焦點變得過於接近物鏡。此情況可例如在著陸能量降低之情形下發生。此係因為物鏡之焦距大致隨著所選擇之著陸能量而按比例調整。藉由降低物鏡上之電位差,且藉此降低物鏡內部之電場,物鏡之焦距再次變大,從而導致焦點位置進一步低於物鏡。
在所描繪之配置中,控制透鏡600包含連接至電位源V5至V7之三個電極601至603。電極601至603可間隔開幾毫米(例如,3 mm)。控制透鏡與物鏡之間的間隔(亦即,物鏡之下部電極602與上部電極之間的間隙)可選自廣泛範圍,例如2 mm至200 mm或更大。小分離度使得對準更容易,而較大分離度允許使用較弱透鏡,從而減小像差。理想地,控制透鏡600之最上部電極603的電位V5維持與控制透鏡之逆流方向的下一電子光學元件(例如,偏轉器235)之電位相同。施加至下部電極602之電位V7可變化以判定光束能量。施加至中間電極601之電位V6可變化以判定控制透鏡600之透鏡強度且因此控制光束之張角及縮小率。理想地,控制透鏡之下部電極602及物鏡之最上部電極及樣本具有大體上相同的電位。在一個設計中,省略物鏡V3之上部電極。在此情況下,理想地,控制透鏡之下部電極602及物鏡之電極301具有大體上相同的電位。應注意,即使著陸能量無需改變或已藉由其他手段改變,仍可使用控制透鏡以控制光束張角。子光束之焦點之位置係藉由各別控制透鏡及各別物鏡之動作之組合而判定。
在一實例中,為了獲得在1.5 kV至2.5 kV範圍內之著陸能量,可如下表1中所指示來設定電位V1、V2、V4、V5、V6及V7。此表中之電位給定為以keV為單位之光束能量值,其等效於相對於光束源201之陰極的電極電位。應理解,在設計電子光學系統時,存在關於系統中之哪一點經設定為接地電位之相當大的設計自由度,且系統之操作係藉由電位差而非絕對電位來判定。
表1
著陸能量 1.5 keV 2.5 keV 3.5 keV
V1 29 keV 30 keV 31 keV
V2 1.55 keV 2.55 keV 3.55 keV
V3 (或省略) 29 keV 30 keV 31 keV
V4 1.5 keV 2.5 keV 3.5 keV
V5 30 keV 30 keV 30 keV
V6 19.3 keV 20.1 keV 20.9 keV
V7 29 keV 30 keV 31 keV
將看到,V1、V3及V7處之光束能量係相同的。在實施例中,此等點處之光束能量可在10 keV與50 keV之間。若選擇較低電位,則電極間隔可減小,尤其是在物鏡中,以限制電場之減小。
當控制透鏡而非聚光透鏡用於電子束之張角/縮小率校正時,準直器保持在中間焦點處使得無需準直器之像散校正。另外,著陸能量可在廣泛範圍之能量上變化,同時維持物鏡中之最佳場強度。此情形最小化物鏡之像差。聚光透鏡(若使用)之強度亦維持恆定,從而避免由於準直器不處於中間焦平面處或電子通過聚光透鏡之路徑改變而引入任何額外像差。
在一些實施例中,帶電粒子評估工具進一步包含減少子光束中之一或多個像差的一或多個像差校正器。在一實施例中,像差校正器之至少一子集中之各者經定位於中間焦點中之各別一者中或直接鄰近於中間焦點中之各別一者(例如,在中間影像平面中或鄰近於中間影像平面)。子光束在諸如中間平面之焦平面中或附近具有最小橫截面積。與在別處(亦即,中間平面之逆流方向或順流方向)可用之空間相比(或與將在不具有中間影像平面之替代配置中可用的空間相比),此為像差校正器提供更多的空間。
在實施例中,定位於中間焦點(或中間影像平面)中或直接鄰近於中間焦點(或中間影像平面)定位之像差校正器包含偏轉器以校正出現在不同光束的不同位置處之源201。校正器可用於校正由源引起之宏觀像差,該等宏觀像差防止各子光束與對應物鏡之間的良好對準。
像差校正器可校正防止適當柱對準之像差。此類像差亦可導致子光束與校正器之間的未對準。出於此原因,另外或替代地,可需要將像差校正器定位於聚光透鏡陣列231之聚光透鏡處或附近(例如,其中各此類像差校正器與聚光透鏡231中之一或多者整合或直接鄰近於聚光透鏡中之一或多者)。此為合乎需要的,此係因為在聚光透鏡陣列231之聚光透鏡處或附近,像差將尚未引起對應子光束之移位,此係因為聚光透鏡與光束孔徑豎直地接近或重合。然而,將校正器定位於聚光透鏡處或附近之挑戰在於,子光束在此位置處相對下游更遠的位置各自具有相對較大的橫截面積及相對較小的節距。像差校正器可為如EP2702595A1中所揭示之基於CMOS之個別可程式化偏轉器或如EP2715768A2中所揭示之多極偏轉器之陣列,兩個文獻中的細光束操縱器之描述特此以引用之方式併入。
在一些實施例中,像差校正器之至少一子集中的各者與物鏡234中之一或多者整合或直接鄰近於物鏡中之一或多者。在一實施例中,此等像差校正器減少以下中之一或多者:場曲;聚焦誤差;及像散。另外或替代地,一或多個掃描偏轉器(未展示)可與物鏡234中之一或多者整合或直接鄰近於物鏡中之一或多者,從而在樣本208上方掃描子光束211、212、214。在一實施例中,可使用描述於US 2010/0276606中之掃描偏轉器,其文獻特此以全文引用之方式併入。
在一些實施例中,物鏡陣列總成包含偵測器,該偵測器具有位於物鏡陣列241之至少一個電極之順流方向的偵測器模組402。偵測器模組402可採取偵測器陣列之形式。在一實施例中,偵測器之至少一部分鄰近於物鏡陣列241及/或與該物鏡陣列整合。舉例而言,偵測器模組402可藉由將CMOS晶片偵測器整合至物鏡陣列241之底部電極中來實施。偵測器模組402至物鏡陣列中之整合替換次級柱。CMOS晶片較佳地經定向以面向樣本(此係由於電子光學系統之晶圓與底部之間的較小距離(例如,100 μm))。在一實施例中,用以捕捉次級電子信號之電極形成於CMOS裝置之頂部金屬層中。電極可形成於基板之例如CMOS晶片之其他層中。可藉由矽穿孔將CMOS之功率及控制信號連接至CMOS。為了穩固性,較佳地,底部電極由兩個元件組成:CMOS晶片及具有孔之被動Si板。該板屏蔽CMOS以免受高電子場之影響。
為了最大化偵測效率,需要使電極表面儘可能大,使得物鏡陣列之大體上所有區域(除孔徑之外)係由電極佔據且各電極具有大體上等於陣列節距之直徑。在一實施例中,電極之外部形狀為圓形,但可將此形狀製成正方形以最大化偵測區域。亦可最小化基板穿孔之直徑。電子束之典型大小為大約5至15微米。
在一實施例中,單個電極包圍各孔徑。在另一實施例中,複數個電極元件經設置於各孔徑周圍。由包圍一個孔徑之電極元件捕捉的電子可經組合成單個信號或用於產生獨立信號。電極元件可經徑向劃分(亦即,以形成複數個同心環)、經成角度地劃分(亦即,以形成複數個區段狀塊)、經徑向地及成角度地劃分或以任何其他適宜方式經劃分。
然而,較大電極表面導致較大寄生電容,因此導致較低頻寬。出於此原因,可需要限制電極之外徑。尤其在較大電極僅產生略微較大之偵檢效率,但顯著更大的電容之情況下。圓形(環形)電極可提供收集效率與寄生電容之間的良好折衷。
電極之較大外徑亦可導致較大串擾(對相鄰孔之信號的靈敏度)。此亦可為使電極外徑較小之原因。尤其在較大電極僅產生略微較大偵檢效率,但顯著更大的串擾之情況下。
藉由電極收集之反向散射及/或次級電子電流藉由轉阻放大器放大。
整合至物鏡陣列中之偵測器之例示性實施例展示於 6中,該圖以示意性橫截面說明多光束物鏡401之一部分。在此實施例中,偵測器包含偵測器模組402,該偵測器模組包含複數個偵測器元件405 (例如,諸如捕捉電極之感測器元件) (例如,陣列),該複數個偵測器元件較佳地作為偵測器元件之陣列(亦即,較佳地在二維表面上方呈圖案或配置形式之複數個偵測器元件)。在此實施例中,偵測器模組402設置於物鏡陣列之輸出側上。輸出側為物鏡401之輸出側。 7為偵測器模組402之仰視圖,該偵測器模組包含基板404,在該基板上提供各自包圍光束孔徑406之複數個捕捉電極405。光束孔徑406可藉由蝕刻穿過基板404來形成。在 7中所展示之配置中,光束孔徑406以矩形陣列形式展示。光束孔徑406亦可以不同方式配置,例如以如 8中所描繪之六邊形緊密封裝陣列形式配置。
9以橫截面形式以較大標度描繪偵測器模組402之一部分。捕捉電極405形成偵測器模組402之最底部(亦即,最接近樣本的)表面。在捕捉電極405與矽基板404之主體之間提供邏輯層407。邏輯層407可包括放大器(例如,轉阻放大器)、類比/數位轉換器及讀出邏輯。在一實施例中,各捕捉電極405存在一個放大器及一個類比/數位轉換器。以此等元件為特徵之電路可包含於稱為與孔徑相關聯之胞元的單位區域中。偵測器模組402可具有各自與孔徑相關聯之若干胞元;較佳地,該等胞元具有類似形狀。可使用CMOS製程製造邏輯層407及捕捉電極405,其中捕捉電極405形成最終金屬化層。
佈線層408設置於基板404之背側上或基板內且藉由矽穿孔409連接至邏輯層407。矽穿孔409的數目無需與光束孔徑406的數目相同。特定而言,若電極信號在邏輯層407中經數字化,則可僅需要少數矽穿孔來提供資料匯流排。佈線層408可包括控制線、資料線及電力線。應注意,儘管存在光束孔徑406,但仍存在足夠的空間用於所有必要的連接。亦可使用雙極或其他製造技術來製造偵測器模組402。印刷電路板及/或其他半導體晶片可經設置於偵測器模組402之背側上。
以上所描述之整合式偵測器模組402在與具有可調諧著陸能量之工具一起使用時係特別有利的,此係由於可針對著陸能量之範圍來最佳化次級電子捕捉。呈陣列形式之偵測器模組亦可整合至其他電極陣列中,而不僅可整合至最低電極陣列中。可在文獻特此以引用方式併入之EP申請案第20184160.8號中找到整合至物鏡中之偵測器模組的另外細節及替代配置。
10為用於評估系統中之另一例示性電光學柱之示意圖。該柱包含物鏡陣列總成。物鏡陣列總成包含物鏡陣列241。物鏡陣列241包含複數個物鏡。各物鏡包含連接至各別電位源之至少兩個電極(例如,兩個或三個電極)。物鏡陣列241可包含連接至各別電位源之兩個或更多個(例如,三個)板狀電極陣列。物鏡陣列241之板狀電極陣列可稱為接物鏡電極。由板狀電極陣列形成之各物鏡可為對多光束中之不同子光束或子光束之群組操作的微透鏡。各板界定複數個孔徑(其亦可稱為孔)。板中之各孔徑之位置對應於另一板(或多個板)中之對應孔徑(或對應孔)的位置。對應孔徑界定物鏡,且各組對應孔因此在使用中對多光束中之同一子光束或子光束之群組進行操作。各物鏡將多光束之各別子光束投影至樣本208上。亦參見對物鏡陣列234之描述。
在一些配置中,物鏡陣列241中之孔徑經調適以補償多光束中之離軸像差。舉例而言,接物鏡電極中之一或多者之孔徑可經塑形、設定大小及/或定位以補償離軸像差。舉例而言,該等孔徑可具有用以補償場曲之不同區域之範圍、用以補償像散之不同橢圓率之範圍及/或用以補償由遠心性誤差引起之變形的自標稱柵格位置之不同位移之範圍。參見例如2021年3月31日申請之EPA 21166214.3,其就離軸像差校正而言特此以引用之方式併入。
物鏡陣列總成進一步包含控制透鏡陣列250。控制透鏡陣列250包含複數個控制透鏡。各控制透鏡包含連接至各別電位源之至少兩個電極(例如,兩個或三個電極)。控制透鏡陣列250可包含連接至各別電位源之兩個或更多個(例如,三個)板狀電極陣列。控制透鏡陣列250之板狀電極陣列可稱為控制電極。控制透鏡陣列250與物鏡陣列241相關聯(例如,該等兩個陣列接近於彼此定位及/或以機械方式彼此連接及/或作為一單元共同受控制)。控制透鏡陣列250定位於物鏡陣列241之逆流方向。控制透鏡預先聚焦子光束(例如,在子光束達至物鏡陣列241之前對子光束施加聚焦動作)。預先聚焦可減少子光束之發散或增加子光束之收斂速率。控制透鏡陣列及物鏡陣列共同地操作以提供組合焦距。無中間焦點之組合操作可降低像差風險。
在一實施例中,包含物鏡陣列總成之電子光學系統經組態以控制物鏡總成(例如,藉由控制施加至控制透鏡陣列250之電極之電位),使得控制透鏡之焦距大於控制透鏡陣列250與物鏡陣列241之間的分離度。因此,控制透鏡陣列250及物鏡陣列241可相對接近地定位在一起,其中來自控制透鏡陣列250之聚焦動作太弱而不能在控制透鏡陣列250與物鏡陣列241之間形成中間焦點。在其他實施例中,物鏡陣列總成可經組態以在控制透鏡陣列250與物鏡陣列241之間形成中間焦點。
在一實施例中,控制透鏡陣列為可交換模組,其為獨自的或與諸如物鏡陣列及/或偵測器模組之其他元件組合。可交換模組可為可現場替換的,亦即,可由現場工程師用新模組調換該模組。可現場替換意欲意謂模組可經移除且用相同或不同模組替換,同時維持電子光學工具40經定位所在之真空。僅對應於模組的柱之區段經排氣以用於移除及返還或替換模組。
控制透鏡陣列可在與物鏡陣列241相同的模組中,亦即,形成物鏡陣列總成或物鏡配置,或其可在單獨模組中。
可提供電源以將各別電位施加至控制透鏡陣列250之控制透鏡及物鏡陣列241之物鏡的電極。
除了物鏡陣列241以外,亦提供控制透鏡陣列250,其提供用於控制子光束之屬性之額外自由度。即使當控制透鏡陣列250及物鏡陣列241相對接近地提供時亦提供額外自由度,例如使得在控制透鏡陣列250與物鏡陣列241之間不形成中間焦點。控制透鏡陣列250可用於相對於光束之縮小率最佳化光束張角及/或控制遞送至物鏡陣列241之光束能量。控制透鏡可包含兩個或三個或更多個電極。若存在兩個電極,則共同地控制縮小率及著陸能量。若存在三個或更多個電極,則可獨立地控制縮小率及著陸能量。控制透鏡可因此經組態以調整各別子光束之縮小率及/或光束張角(例如,使用電源將適合的各別電位施加至控制透鏡及物鏡的電極)。此最佳化可藉由對物鏡的數目具有過度負面影響且在不過度劣化物鏡之像差的情況下(例如,在不增加物鏡之強度的情況下)達成。
10之實施例中,電子光學系統包含源201。源201提供帶電粒子(例如,電子)光束。聚焦於樣本208上之多光束來源於由源201提供之光束。子光束可來源於光束,例如使用界定光束限制孔徑之陣列之光束限制器。源201理想地為具有亮度與總發射電流之間的良好折衷的高亮度熱場發射器。在所展示之實例中,在物鏡陣列總成之逆流方向提供準直器。準直器可包含巨型準直器270。巨型準直器270在來自源201之光束已經分裂成多光束之前作用於該光束。巨型準直器270使光束之各別部分彎曲一量,以有效地確保來源於該光束之子光束中之各者的光束軸線大體上法向地入射於樣本208上(亦即,與樣本208之標稱表面大體上成90°)。巨型準直器270將宏觀準直應用於光束。巨型準直器270可因此作用於光束中之所有,而非包含各自經組態以作用於光束之不同個別部分的準直器元件之陣列。巨型準直器270可包含磁透鏡或磁透鏡配置,該磁透鏡或磁透鏡配置包含複數個磁透鏡子單元(例如,形成多極配置之複數個電磁體)。替代地或另外,巨型準直器可至少部分地以靜電方式實施。巨型準直器可包含靜電透鏡或靜電透鏡配置,該靜電透鏡或靜電透鏡配置包含複數個靜電透鏡子單元。巨型準直器270可使用磁透鏡與靜電透鏡之組合。
10之實施例中,提供巨型掃描偏轉器265以使子光束在樣本208上方進行掃描。巨型掃描偏轉器265使光束之各別部分偏轉以使子光束在樣本208上方進行掃描。在一實施例中,巨型掃描偏轉器256包含宏觀多極偏轉器,例如具有8個極或更多極。偏轉係為了使得來源於光束之子光束待在一個方向(例如,平行於單個軸,諸如X軸)上或在兩個方向(例如,相對於兩個非平行軸,諸如X軸及Y軸)上跨樣本208進行掃描。在一些配置中,使子光束之掃描與樣本208之移動協調。舉例而言,使子光束平行於X軸進行掃描同時平行於Y軸移動樣本208的組合可在樣本之不同步進位置處進行重複,以處理樣本208上之多個平行狹長條帶。樣本208之較大移動可接著用於跳躍至樣本208上之新處理位置。此移動之實例在2021年5月3日申請之EPA 21171877.0中加以描述,該EPA 21171877.0特此就隨著載物台移動之對光束掃描之控制而言併入。巨型掃描偏轉器265宏觀上作用於光束中之所有,而非包含各自經組態以作用於光束之不同個別部分之偏轉器元件之陣列。在所展示之實施例中,巨型掃描偏轉器265設置於巨型準直器270與控制透鏡陣列250之間。
本文中所描述之物鏡陣列總成中之任一者可進一步包含偵測器(例如,包含偵測器模組402)。偵測器偵測自樣本208發射之帶電粒子。經偵測帶電粒子可包括由SEM偵測到之帶電粒子中之任一者,包括自樣本208發射之次級及/或反向散射電子。偵測器模組402之例示性構造在上文參考 6 至圖 9加以描述。
10之實施例之變化形式中,物鏡陣列總成可包含掃描偏轉器陣列。掃描偏轉器陣列包含複數個掃描偏轉器。各掃描偏轉器掃描樣本208上方之各別子光束。掃描偏轉器陣列可因此針對各子光束包含掃描偏轉器。偏轉係為了使得在一個或兩個方向上(亦即,一維地或二維地)跨樣本208掃描子光束。在一實施例中,EP2425444中所描述之掃描偏轉器可用於實施掃描偏轉器陣列,該文獻特定關於掃描偏轉器特此以全文引用之方式併入。掃描偏轉器陣列定位於物鏡陣列241與控制透鏡陣列250之間。可提供掃描偏轉器陣列來替代巨型掃描偏轉器265。在其他實施例中,提供巨型掃描偏轉器265及掃描偏轉器陣列兩者且可使其同步地操作。在一些實施例中,如 10中所例示,控制透鏡陣列250為在源201之順流方向的光束路徑中之第一偏轉或透鏡化電子光學陣列元件。
可提供準直器元件陣列來替代巨型準直器270。儘管未展示,但亦有可能將此變化形式應用於 3之實施例,以提供具有巨型掃描偏轉器及準直器元件陣列之實施例。各準直器元件準直各別子光束。準直器元件陣列可比巨型準直器270在空間上更緊密。一起提供準直器元件陣列及掃描偏轉器陣列260可因此提供空間節省。此空間節省係合乎需要的,其中包含物鏡陣列總成之複數個電子光學系統提供於電子光學系統陣列中。在此類實施例中,可不存在巨型聚光透鏡或聚光透鏡陣列。在此情境下,控制透鏡因此提供針對著陸能量改變而最佳化光束張角及縮小率的可能性。
在一實施例中,提供電子光學系統陣列。該陣列可包含本文中所描述之複數個電子光學系統中之任一者。電光學系統中之各者將各別多光束同時聚焦至同一樣本之不同區上。各電子光學系統可自來自不同各別源201之帶電粒子束形成子光束。各各別源201可為複數個源201中之一個源。該複數個源201之至少一子集可提供為源陣列。源陣列可包含共同基板上之複數個發射器。複數個多光束同時聚焦至同一樣本之不同區上允許同時處理(例如,評估)樣本208之增加區域。陣列中之電子光學系統可彼此鄰近地配置以便將各別多光束投影至樣本208之鄰近區上。可在該陣列中使用任何數目個電子光學系統。較佳地,電子光學系統之數目在9至200之範圍內。在一實施例中,電子光學系統係以矩形陣列或六邊形陣列配置。在其他實施例中,電子光學系統係以不規則陣列或以具有除矩形或六邊形之外之幾何形狀的規則陣列提供。當提及單個電子光學系統時,陣列中之各電子光學系統可以本文中所描述之方式中之任一者組態。如上文所提及,掃描偏轉器陣列260及準直器元件陣列271由於其空間緊密性而特別適合併入至電子光學系統陣列中,此促進電子光學系統彼此接近地定位。
11描繪物鏡陣列總成之另一實例之一部分。此物鏡陣列總成可用於 10之配置中。該物鏡陣列總成包含控制透鏡陣列250及物鏡陣列241。如 11中所描繪,控制透鏡陣列250可由複數個控制電極501至503界定。各控制電極501至503可包含板狀元件,該板狀元件具有用於各子光束路徑510之孔徑(形成孔徑之陣列)。物鏡陣列241可由複數個接物鏡電極503至504界定。各接物鏡電極503至504可包含板狀元件,該板狀元件具有用於各子光束路徑510之孔徑(形成孔徑之陣列)。控制電極501至503及接物鏡電極503至504可稱為透鏡電極。控制透鏡陣列250與物鏡陣列241之組合可包含至少四個此類透鏡電極。該等透鏡電極可正交於多光束之子光束路徑510及/或沿著多光束之子光束路徑串聯地配置。
11中展示了五個例示性子光束路徑510。控制電極501至503沿著子光束路徑510串聯地配置且界定與子光束路徑510對準之各別孔徑以界定控制透鏡。各控制透鏡因此與各別子光束之子光束路徑510對準且對子光束進行操作(例如,以靜電方式操縱)。各控制電極501至503可對子光束之一部分或對子光束中之所有進行操作。物鏡陣列241中之各物鏡可與子光束路徑510對準,該子光束路徑與各別控制透鏡對準。物鏡陣列241將子光束引導至樣本208上。
該配置可描述為四個或更多個為板之透鏡電極。在該等板中係經界定之孔徑,例如作為孔徑陣列,其與對應光束陣列中之多個光束對準。電極可分組成兩個或更多個電極,例如以提供控制電極群組,及接物鏡電極群組。在一配置中,接物鏡電極群組具有至少三個電極且控制電極群組具有至少兩個電極。
11之實例中,最遠離樣本208的接物鏡電極503 (其可稱為物鏡陣列641之最逆流方向電極)及最接近樣本208的控制電極503 (其可稱為控制透鏡陣列250之最順流方向電極)係由共同電極提供。因此,接物鏡電極群組之最逆流方向電極為共同電極,亦為控制電極群組之部件。共同電極503之背離樣本208之表面(其可描述為逆流方向表面)對控制透鏡陣列貢獻功能性,且因此可被視為包含控制透鏡陣列之部分。共同電極503之面朝樣本208之表面(其可稱為順流方向表面)對物鏡陣列241貢獻功能性,且因此可被視為包含物鏡陣列241之部分。
提供共同電極在需要將控制透鏡陣列250接近物鏡陣列241定位之情況下係有益的。在不使用掃描偏轉器260之陣列,例如替代地使用巨型掃描偏轉器265的配置中更可能為此情況。此係因為在使用掃描偏轉器260之陣列的情況下,需要將掃描偏轉器260之陣列定位於控制透鏡陣列250與物鏡陣列241之間,例如以使掃描偏轉器260與物鏡陣列241之間的距離儘可能地短。具有巨型掃描偏轉器265之配置在 10中進行例示。然而,應注意,仍不具有聚光透鏡陣列但具有掃描偏轉器之陣列的關於 10之配置的變化形式係可能的。在此類配置中,亦可需要將掃描偏轉器之陣列定位於控制透鏡陣列與物鏡陣列之間。替代地,掃描偏轉器之陣列可定位於別處,諸如定位於控制透鏡陣列內或控制透鏡陣列之逆流方向上,諸如定位於控制透鏡陣列與光束限制孔徑之陣列之間。
11之此實例中,物鏡陣列總成進一步包含光束塑形限制器242。光束塑形限制器242界定光束限制孔徑之陣列。光束塑形限制器242可稱為光束塑形限制孔徑陣列或最終光束限制孔徑陣列。光束塑形限制器242可包含具有複數個孔徑之板(其可為板狀體)。光束塑形限制器242在控制透鏡陣列250之至少一個電極(視情況所有電極)的順流方向。在一些實施例中,光束塑形限制器242在物鏡陣列241之至少一個電極(視情況所有電極)的順流方向。在另一實施例中,其可為陣列,例如物鏡陣列241之最底部陣列。
在一配置中,光束塑形限制器242在結構上與物鏡陣列241之電極整合。各光束限制孔徑具有光束限制效應,從而僅允許入射至光束塑形限制器242上之子光束之所選部分穿過光束限制孔徑124。該所選部分可使得僅穿過物鏡陣列中之各別孔徑之中心部分的各別子光束之一部分達至樣本208。
在一些實施例中,電子光學系統進一步包含上部光束限制器252。上部光束限制器252界定光束限制孔徑之陣列或例如自來自源201之源光束產生光束之陣列。上部光束限制器252可包含具有複數個孔徑之板(其可為板狀體)。上部光束限制器252自由源201發射之帶電粒子束形成子光束。可藉由上部光束限制器252阻擋(例如,吸收)光束中除促成形成子光束之部分之外的部分,以免干擾順流方向的子光束。
上部光束限制器252可形成物鏡陣列總成之部分。上部光束限制器252可例如鄰近於控制透鏡陣列250及/或與控制透鏡陣列整合(例如,鄰近於控制透鏡陣列250之最接近源201的電極及/或與該電極整合)。在一實施例中,上部光束限制器252界定比光束塑形限制器242之光束限制孔徑大(例如,具有較大橫截面積)的光束限制孔徑。光束塑形限制器242之光束限制孔徑可因此具有比界定於物鏡陣列241中及/或控制透鏡陣列250中的對應孔徑小的尺寸。
光束塑形限制器242理想地經組態以具有光束限制效應(亦即,以移除入射於光束塑形限制器242上之各子光束的一部分)。光束塑形限制器242可例如經組態以確保離開物鏡陣列241之物鏡的各子光束已穿過各別物鏡之中心。另外,光束塑形限制器242減小了針對子光束之掃描操作所遍及的長度。距離減小為自光束塑形限制器242至樣本表面之光束路徑的長度。
光束塑形限制器242可與物鏡陣列241之底部電極一體地形成。通常需要將光束塑形限制器242定位成鄰近於各物鏡之具有最強透鏡化效應的電極。在一配置中,需要在偵測器之偵測器模組402的逆流方向提供光束塑形限制器242。在偵測器模組402之逆流方向提供光束塑形限制器242確保光束塑形限制器242將不會阻礙自樣本208發射之帶電粒子且防止該等帶電粒子達至偵測器模組402。光束塑形限制器242因此可在逆流方向上直接鄰近於偵測器模組402提供。
如上文參考 1 至圖 11所例示,可提供評估系統,其朝向樣本引導配置於之多光束中之子光束中之帶電粒子。評估系統可稱為多光束帶電粒子評估系統。評估系統包含物鏡陣列241。物鏡陣列241可採取參考 3 5 至圖 11所描述的形式中之任一者。在一些配置中,評估系統進一步包含控制透鏡陣列250。在存在之情況下,控制透鏡陣列250可採取參考 3 5 10 11所描述的形式中之任一者。評估系統偵測自樣本208發射之信號電子(例如,使用偵測器,其可包含如上文所描述之偵測器模組402)以獲得關於樣本208之資訊。
如上文所描述之物鏡陣列241包含電極(其可稱為接物鏡電極)。電極可包含沿著子光束路徑串聯的導電板。各導電板界定與子光束路徑對準之孔徑。在 5 11中,電極301至302及503至504為此類導電板之實例。評估系統將電位施加至電極以控制多光束之子光束(例如,以縮小子光束及/或將子光束恰當地聚焦於待評估之樣本上)。
評估系統可包含控制器500 (如 3 10中所示意性地描繪)以控制電極之操作。如下文所描述,控制器500可藉由正用於提供所需功能性之元件(例如,CPU、RAM等)之任何適合組合而電腦實施。如上文參考 5所描述,控制電極及接物鏡電極可藉由將該等電極連接至電位源來控制。控制器500可因此包含及/或控制電位源。電位源可將電位施加至不同的電極、樣本208及/或其他元件(諸如如下文所描述之中間元件555)。控制器500可進一步控制用於撐樣本之載物台。
本文中對經組態以執行功能性的評估系統(或簡單地系統)之任何參考意欲涵蓋控制器500經組態以執行功能性(例如,藉由適合地程式化以將必要的控制信號提供至設備,諸如電位源及/或載物台)之情況。
在操作中,評估系統在物鏡陣列241之電極之間產生強電場。顯著電場亦可產生於系統中之別處的電極之間。強電場與對應地強靜電壓力相關聯。靜電壓力為與場能量密度
Figure 02_image001
成比例,其進而根據
Figure 02_image003
(其中
Figure 02_image005
為電容率且 E為電場強度)與
Figure 02_image007
成比例。靜電壓力因此藉由增加 E而快速增加。
在一些配置中,靜電壓力引起評估系統之一或多個電極之形狀及/或位置之改變。電極之形狀及/或位置之改變可稱為電極變形。 12示意性地描繪物鏡陣列241之電極503及504之此類電極變形。為了易於描繪,電極503、504展示為無孔徑且未按比例。成形為矩形之虛線描繪在系統接通之前(亦即,當電極503、504之間不存在電場時)電極503、504之實例橫截面形狀。在此實例中,電極503、504在此階段為大體上平面的。實線矩形描繪當系統接通且電極之間存在實例電場時電極503、504之實例橫截面形狀。 12描繪電極弓曲至高電場強度之區中的典型情況。電極變形之此模式可稱為弓曲。弓曲可引起具有拋物線或近似拋物線形式之變形。即,變形作為徑向位置之平方之近似函數而變化。
物鏡陣列241中之電極變形可影響多光束之子光束。舉例而言,電極變形可促成場曲。場曲為聚焦平面對於多光束之不同的子光束為不同的情況,其可引起樣本208之平面表面處之聚焦誤差。有可能組態物鏡陣列以補償物鏡陣列中之經預測電極變形對子光束之經預測影響。物鏡陣列可因此具備硬體校正。在一些配置中,硬體校正包含電極中之一或多個中所界定的隨各電極中之位置而變的孔徑之大小(例如,孔徑為圓形的情況下之直徑)之變化。使電極中之孔徑之大小變化可補償場曲之改變。
有限的製造容差限制電極變形預測之準確度。有限的製造容差在物鏡陣列241之不同製造實例之間引起較小但顯著的變化,諸如電極厚度及/或孔徑大小之差異。此等變化可影響電極之,其可使得給定靜電壓力與不同製造實例之不同的電極變形相關聯。此變化性意謂上文所描述之類型之硬體校正可能不會達成最佳補償。對於 3中所展示之類型之典型實施,吾人預期電極變形可引起至多約10微米之表面位移。若100 nm之預算散焦量分配至此影響,則此將意味著若硬體校正(例如,藉由使孔徑直徑變化)將為有效的,則電極變形應可再現至1%內。不希望受到此種嚴密製造容差約束。對於 10中所展示之類型之配置,電極變形預計小得多,但尤其需要在此類系統中支援可調諧著陸能量。調諧著陸能量在物鏡陣列中之靜電場中引起顯著變化,其可再次引起硬體校正不充分。下文所描述之配置旨在改良電極變形之影響之補償。經改良補償可允許製造容差放寬(例如,1%至10%)及/或支援可調諧著陸能量功能性。
在一類配置中,提供一種補償物鏡陣列241之電極中之電極變形之影響的方法。電極變形之影響包含對多光束之子光束之影響,諸如場曲之改變。該方法包含調整電極變形。該調整降低電極變形對子光束之影響。在電極變形在多光束中引起場曲的情況下,電極變形之調整可因此減少場曲。在一些配置中,電極變形之調整包含調整電極變形以大體上匹配經預測電極變形。經預測電極變形之此類匹配可補償實際電極變形。經預測電極變形之此匹配可意謂用於補償經預測電極變形對子光束之經預測影響的硬體校正變得更有效。舉例而言,針對場曲之硬體校正可變得更有效,由此降低場曲。在一配置中,經預測變形為目標變形,該變形可在施加至物鏡陣列時匹配實際變形或可替代地調整物鏡陣列241之電極,使得其作用於子光束以提供所要電子光學影響,例如以在子光束之間應用所要場曲。
藉由使物鏡陣列241中之靜電場變化來調整電極變形。靜電場之變化可包含改變兩個電極之間體積中之電場強度,以便改變作用於彼等電極之間的靜電場壓力。電場強度之增加將增加電極之變形的量。電場強度之減少將減少電極之變形的量。
如上文所提及,物鏡陣列241之電極503、504可包含沿著子光束路徑串聯的導電板。在各板中界定與子光束路徑對準之孔徑。此類導電板中之孔徑將具有透鏡化效應,其中電場存在於孔徑之一側上且子光束穿過孔徑。以此方式操作之各孔徑可稱為基本透鏡或孔徑透鏡。根據
Figure 02_image009
,此類基本透鏡之焦距 f取決於子光束之能量 U及電場強度 E。在物鏡陣列241僅具有兩個電極之配置中,例如如 11 12中所例示,各物鏡將包含兩個基本透鏡。第一基本透鏡將由最遠離樣本208之電極503中之孔徑界定。第二基本透鏡將由最接近樣本之電極504中之孔徑界定。各電極處之光束能量由施加至電極之電位界定。
若物鏡為減速透鏡,則第一基本透鏡將為負透鏡且第二基本透鏡將為正透鏡。第二基本透鏡相比於第一基本透鏡將更強(亦即,更小的焦距 f),此係因為當子光束達至第二基本透鏡(亦即,在減速之後)時,子光束之光束能量 U更低。
相對而言,若物鏡為加速透鏡,則第一基本透鏡將為正透鏡且第二基本透鏡將為負透鏡。在此情況下第一基本透鏡相比於第二基本透鏡將更強(亦即,更小的焦距 f),此係因為當子光束達至第二基本透鏡(亦即,在加速之後)時,子光束之光束能量 U更高。
在本發明之配置中,各物鏡通常操作為在第一及第二基本透鏡之間的光束能量中具有很大差異的減速透鏡。此意謂各物鏡中之第二基本透鏡相比於第一基本透鏡顯著更強且很大程度上主導物鏡之屬性。舉例而言,在一個實施中,電極503處之光束能量為30 keV且電極504處之光束能量為2.5 keV,使得第一基本透鏡比第二基本透鏡弱12倍。第二基本透鏡之實例及提供透鏡化效應之相關聯等電位示意性地描繪於 13中。箭頭示意性地表示將施加至穿過基本透鏡之帶電粒子的力之方向(垂直於等電位)。
如上文所描述,使電極之間之靜電場變化會使靜電壓力變化。靜電壓力之變化提供電極變形之所要調整。方法進一步包含回應於靜電場之此變化而再聚焦多光束之子光束(視情況子光束中之所有)。再聚焦避免子光束變得不合需要地在樣本208處散焦。
如下文尤其參考 14 17將例示,藉由改變施加至物鏡陣列241之至少兩個電極的電位V1、V2來執行電極變形之調整及再聚焦。(電位V1可稱為逆流方向電極電位。電位V2可稱為順流方向電極電位)。藉由經503及504標記之電極來例示兩個電極。此等電極可對應於 11中之經503及504標記之電極及/或對應於 5中之經301及302標記之電極。樣本208處之電位Vs (其可稱為樣本電位)界定子光束之著陸能量。結合對樣本208處之電位Vs之控制,對電位V1及V2之控制提供由兩個電極及樣本208組成之系統的三個自由度。三個自由度可由三個電位V1、V2及Vs表示。
電極變形之調整涉及對物鏡陣列241中之電場E1 (或透鏡場強度)之控制。在 14 至圖 17之實例中,電場E1為電極503與504之間的場。進一步需要控制子光束之著陸能量(由Vs定義)、作用於子光束的物鏡之總焦距 f(或子光束焦距 f)及樣本208處之場強度E2 (或樣本場強度E2)。三個自由度V1、V2及Vs不足以獨立地控制E1、Vs、 f及E2中之所有。如下文參考 15 16所描述,對V1、V2及Vs之控制可用於控制E1、Vs、 f及E2中之所選的三個。若提供額外自由度,如下文參考 14 17所論述,則有可能獨立地控制E1、Vs、 f及E2中之所有。
在圖11及 14 至圖 17之實例中,評估系統亦包含中間元件555。中間元件555在樣本208與物鏡陣列241之間(亦即,樣本208與最接近樣本208之物鏡陣列241之電極504之間)。中間元件555包含或支援用於偵測自樣本208發射之信號電子的偵測器。在 11之實例中,中間元件555支援偵測器,該偵測器包含如上文參考 6 至圖 9所描述之偵測器模組402。在 14 至圖 16中,中間元件555電連接至電極504。中間元件555之電位因此不獨立於此等實例中之電極504之電位V2 (兩個元件之電位為V2)而可控制。如將在下文參考 11 及圖 17解釋,在一些配置中,中間元件555經組態以允許中間元件555之電位Vint獨立地經控制。電位Vint可稱為中間元件電位。
在一些配置中,如 14中所例示,再聚焦包含使(亦即,控制)樣本208與物鏡陣列241 (及此實例中之中間元件555)之間的距離變化。舉例而言,可藉由朝向或遠離物鏡陣列241移動樣本208而使該距離變化。此移動可描述為沿著Z軸(或Z位移)移動。可藉由移動支撐樣本208之載物台來至少部分地執行該移動。可朝向或遠離物鏡陣列241而移動載物台。在 14之實例中,電極變形之調整涉及藉由對電位V1及V2之適當的控制而減小電極503與504之間的電場E1 (例如,根據
Figure 02_image011
,對於在電極之間具有分離度 d之平行板幾何形狀。即,透鏡場強度與一方面逆流方向電極電位與順流方向電極電位之間的差之模數與另一方面電極之間的分離度之間的比相同)。E1之減小減少電極變形。E1之減小亦涉及電極504處之光束能量之減少(由V2定義)。如上文所解釋,對於僅包含兩個電極的減速物鏡陣列241,與最接近樣本208的電極504相關聯之基本透鏡將為主導基本透鏡。物鏡之總焦距因此增加,如藉由 14中自 f1(第一焦距)至 f2(第二焦距)之改變所示意性地指示。在此實例中,樣本208之移動回應於靜電場之變化而將因此使得樣本208更遠離物鏡陣列241及中間元件555移動(例如,等於 f1f2之間的差之距離)。
藉由移動樣本208而再聚焦子光束相對容易實施。藉由此功能性提供之額外自由度亦使得電場E2及著陸能量(由Vs給出)兩者在電極變形之調整及再聚焦期間有可能保持恆定。在此實例中,保持Vs及E2恆定之要求有效地判定V2。(注意:V2將需要增加以補償電極504或中間元件555 (若存在)與樣本208之間的增加的分離度)。V1接著遵循為達成電極變形之所要調整所需之E1之值。V1之改變亦可引起存在此情況之控制透鏡陣列250之設定的改變。
在一實例實施中,電極503及504之間的電場E1之1%改變將根據
Figure 02_image013
為主導基本透鏡提供物鏡之焦距 f之1%改變。對於0.5 mm之典型焦距 f,所得焦點移位將為5微米。此小於樣本208上方之典型間隙(例如,樣本208與包含偵測器之中間元件555之間),其可具有大約50微米。
15 至圖 17描繪樣本208不相對於物鏡陣列241移動之配置。因此, 15 16之配置具有一個較小自由度,且可因此僅獨立地控制參數E1、Vs、 f及E2中之三個。
15之實例中,在電極變形之調整及再聚焦期間,樣本208處之電場E2經控制以保持恆定,同時允許樣本208處之著陸能量(由Vs定義)變化(亦即,不控制為恆定的)。對於操作者,保持電場E2恆定可為合乎需要,此係因為其將避免對SEM影像對比度形成之負面影響。若靜電場E1增加10%且V2增加10%以保持 f恆定,則將有必要將著陸能量(Vs)增加約V2之10%。若例如著陸能量為2.5 keV,則此將引起著陸能量之近似250 eV改變。若著陸能量為1 keV,則著陸能量之絕對改變將更小,通常約100 eV。
16之實例中,在電極變形之調整及再聚焦期間,電位Vs經控制以維持恆定的著陸能量,且允許樣本208處之電場E2變化(亦即,不控制為恆定的)。此方法避免著陸能量之非想要改變,但涉及樣本208處之電場E2之變化。在一實例實施中,在電極503與504之間的電場E1之5%改變及電極504處之光束能量之所得125 eV改變之情況下(在2.5 keV著陸能量之情況下),樣本208與最接近樣本的電極504之電位處之柱之元件(例如,中間元件555 (若存在)及/或電連接至電極504之偵測器)之間的電位差將自50 V (標稱偏移電壓)改變至175 V。175 V將在樣本208上產生3.5 kV/mm之電場E2 (
Figure 02_image015
Figure 02_image017
)。此場強度很高,且可接近於實際上將可接受之強度。在較低著陸能量處,校正之範圍將更大。舉例而言,對於上文配置中之1 keV著陸能量,對於電極503與504之間的電場E1之10%改變,偵測器與樣本208之間的電位差之改變將為自50 V至150 V。
如上文所提及,調整及再聚焦包含改變施加至物鏡陣列241之兩個電極之電位。在一些配置中,兩個電極中之一者為物鏡陣列241中之物鏡之與物鏡之其他電極相比將最強透鏡化效應施加至子光束的電極。此方法對於達成再聚焦尤其有效,此係因為施加最強透鏡化效應之電極對物鏡之總體聚焦動作將具有最大影響。在所展示之實例中,施加最強透鏡化效應之電極為最接近樣本208的物鏡陣列241之電極504 (或順流方向電極)。此類配置通常為減速物鏡。通常在加速物鏡中,最遠離樣本的物鏡241之電極503 (或逆流方向電極)為施加最強透鏡化效應之電極。
在物鏡陣列包含沿著各子光束路徑串聯的多於兩個電極之配置中,最接近樣本208之電極可能不為提供最強透鏡化效應之電極。舉例而言,在具有沿著各子光束路徑串聯的三個電極之單透鏡組態中,中間電極可施加最強透鏡化效應(此係因為光束能量在中間電極處最低)。可使用具有多於兩個電極之其他配置,包括三個或更多個電極沿著子光束路徑不對稱地配置(在不同對之鄰近電極之間具有不均勻間隔)之配置。使用多於兩個電極將為控制多光束中之子光束提供更多自由度。物鏡陣列之設置於不同場強度之區之間的任何電極將經受來自靜電壓力之力,其可引起電極之變形。在具有更多電極中之三個之配置中,可在各別對之鄰近電極之間界定兩個或更多個相異的體積。此類體積之任一側上之電極之變形可引起此等體積之形狀之改變,如 12中之實例體積所示意性地展示。體積之形狀之改變可描述為體積之任一側上之電極之間的變形,其可描述為遠離其相對未擾動狀態之變化或擾動。體積之形狀之改變將引起隨體積中之位置而變的體積中之電場的對應變化。舉例而言,與電極相隔較遠之區(例如, 12之實例中之周邊區中)相比,電場在電極更靠近之區(例如, 12中之中心區中)中將更強。隨體積中之位置而變的電場之變化可藉由引起取決於體積中之電場的基本透鏡之強度之對應變化而促成場曲。改變沿著界定基本透鏡的孔徑之子光束路徑之位置的電極之變形將亦促成場曲。不同的電極可以不同方式變形,從而引起電極之形狀及電極之間的體積之廣泛範圍的電位變化。因此,對物鏡陣列中之總體電極變形可存在許多貢獻。控制施加至經受來自靜電壓力的變形的任何電極之電位可修改彼電極之形狀,且由此有助於調整物鏡陣列中之整體電極變形及電極變形(諸如場曲)之影響。最接近樣本208之電極可以此方式變形,因此改變施加至最接近樣本208之電極的電位可用於調整電極變形。
因此,綜上所述,電位經改變以執行上文所提及之調整及再聚焦的兩個電極中之一者可為作用於子光束的物鏡陣列241中之物鏡之電極,且與物鏡之其他電極相比最接近樣本208。如上文所描述,此可進行,此係因為最接近樣本之電極提供最強基本透鏡,或因為有必要調整此電極處之光束能量以提供物鏡陣列中之電極變形之所要調整。
在一些配置中,如 17中所例示,提供另一自由度。藉由改變施加至中間元件555之電位來達成該另一自由度以在中間元件555與物鏡陣列241之間產生電場E3 (或中間場)。(因此,電場E3位於中間元件555與作用於子光束之各物鏡或順流方向電極504之間)。如 11 14 至圖 17中所例示,中間元件555設置於樣本208與物鏡陣列241之間(及因此樣本208與作用於子光束之各物鏡之間)。如 14之實例中,額外自由度使得電場E2及著陸能量(由Vs給出)兩者在電極變形之調整及再聚焦期間有可能保持恆定。此藉由在第一體積551及第二體積552中引入不同地改變電場之可能性來有效地達成。第一體積551自物鏡陣列241朝向第二體積552延伸;即,位於順流方向電極504與中間元件555之間。第二體積覆蓋樣本208;即,第二體積552位於中間元件555與樣本555之間。第一體積551中之電場E3可變化以補償施加至電極504之電位之改變(例如,維持樣本208處之著陸能量恆定),同時仍保持第二體積552中之電場E2恆定且因此在樣本208處恆定。在一實例實施中,電極503與504之間的電場E1之10%改變引起電極504處之光束能量之250 eV改變(在2.5 keV著陸能量之情況下)。此將產生電極504與中間元件555之間的250 V電位差。對於電極504與中間元件555之間的50微米之典型距離,此將在此等元件之間產生5 kV/mm之電場E3,其為可接受的。
為允許對中間元件555之電位之獨立控制,中間元件555應與物鏡陣列241及載物台電隔離。因此,中間元件555可定位於物鏡陣列241與載物台之間且與兩者電隔離。在 11之實例中,中間元件555藉由電絕緣連接部件510以機械方式附接至物鏡陣列241之最接近樣本208的電極504。
18為展示補償電極變形之影響的不同方法對解析度之經預測影響之圖式。圖式係藉由通過物鏡陣列之子光束的分析射線追蹤而導出。豎軸展示解析度之變化。水平軸展示物鏡陣列中之電場強度之變化。模式1對應於藉由允許樣本之移動而在恆定的E2及Vs處執行調整及再聚焦之情況(如上文參考 14所描述)。模式2對應於在恆定的E2及變化的Vs處執行調整及再聚焦之情況(如上文參考 15所描述)。模式3對應於在恆定的Vs及變化的E2處執行調整及再聚焦之情況(如上文參考 16所描述)。模式4對應於藉由調整中間元件555處之電位Vint而在恆定的E2及Vs處執行調整及再聚焦之情況(如上文參考 17所描述)。
在由圖式所表示的實例經模型化實施中,模式1之校正範圍限於E1,範圍在99%與101%之間。此因為模型假定偵測器將需要回應於樣本移動而移動,且此移動將限於-5微米至+5微米之移位。儘管經施加以達成所要控制之(例如,E2之)電位將不同,但偵測器之移動不改變模式1之操作原理。
歸因於期望避免樣本上之場E2落在1 kV/mm至2.7 kV/mm之範圍之外,模式3之校正範圍限於100%及103.3%之間的E1。場E2之範圍確保對於有意義的信號偵檢效率足夠高(亦即,不過低)且避免在過高場E2中可能發生的對樣本的損壞。
對於模式2及4,E1之90%至110%之整個範圍可經覆蓋。模式4比模式2更複雜,但避免變化的著陸能量。操作者將具有對著陸能量之最佳化控制及因此對操作期間的重要參數之控制。另外,儘管模式2之效能對於許多應用程式仍為可接受的,但相比於模式2,模式4對解析度具有更小影響。
如上文所描述,評估系統可包含用於控制系統之操作的控制器500。在尤其參考 11 至圖 18上文所描述之方法之情況下,控制器可經組態以使得系統藉由控制施加至電極503、504及/或中間元件555之電位及/或藉由控制載物台來執行方法中之任一者。
用於減少或避免電極變形之影響的替代性方法將使得物鏡陣列之電極更厚。更厚的電極更強且因此對於給定靜電壓力變形更少。若電極變形可減少10倍,則此將意謂電極變形將僅需要在物鏡陣列之不同製造實例之間再現至10%容差內再現,而不需要上文參考 11 至圖 18所描述之精細調諧。在一實例實施中,吾人預期將電極變形減少10倍將需要電極為至少三倍厚,例如約210%厚。200微米厚的電極將因此變為430微米厚。此將引起在2.5 keV著陸能量下約0.3 nm之解析度之增加。將電極變形減少100倍(使得甚至不需要對場曲硬體校正(藉由使孔徑大小變化))將需要電極為至少五倍厚,例如使得所選擇電極為430%厚。200微米厚的電極將因此變為730微米厚。此將引起在2.5 keV著陸能量下約0.9 nm之解析度之增加。
對於具有如 10中所描繪之電子光學設計的類型之配置(包含巨型準直器270),大量場曲來源於巨型準直器270。取決於所使用的放大率(其可藉由控制透鏡陣列250設定),樣本208處之此場曲之量值可通常在1至3微米之範圍中。歸因於巨型準直器270之場曲可因此大於歸因於物鏡陣列241中之電極變形之場曲。電極變形之變化可因此藉由最佳化放大率(使用控制透鏡陣列250)經補償。來自巨型準直器之場曲及來自電極變形之場曲具有相反符號且因此至少部分地抵消。
對與含有或使用粒子截獲器之實施例相關的上部及下部、向上及向下、上方及下方等之參考應理解為係指平行於照射於樣本208上之電子束或多光束之(通常並非始終豎直)逆流方向及順流方向的方向。因此,對逆流方向及順流方向之參考意欲係指獨立於任何當前重力場相對於光束路徑之方向。
本文中所描述之實施例可採取沿著光束或多光束路徑以陣列形式配置的一系列孔徑陣列或電子光學元件的形式。此類電光學元件可為靜電的。在一實施例中,例如在樣本之前的子光束路徑中自光束限制孔徑陣列至最後電子光學元件的所有電子光學元件可為靜電的,及/或可呈孔徑陣列或板陣列之形式。在一些配置中,將電光學元件中之一或多者製造為微機電系統(MEMS) (亦即,使用MEMS製造技術)。電子光學元件可具有磁性元件及靜電元件。舉例而言,複合陣列透鏡之特徵可在於涵蓋多光束路徑之巨型磁透鏡,其具有在磁透鏡內且沿著多光束路徑配置之上部極板及下部極板。在該等極板中可為用於多光束之光束路徑的孔徑之陣列。電極可存在於該等極板上方、下方或之間以控制及最佳化複合透鏡陣列之電磁場。
在提供可相對於彼此經設定至不同電位的電極或其他元件之情況下,應理解,此類電極/元件將彼此電隔離。若電極/元件以機械方式彼此連接,則可提供電絕緣連接器。舉例而言,在電極/元件提供為各自界定孔徑陣列的一系列導電板之情況下,例如以形成物鏡陣列或控制透鏡陣列,電絕緣板可設置於導電板之間。絕緣板可連接至導電板且藉此充當絕緣連接器。導電板可沿著子光束路徑藉由絕緣板彼此分離。
根據本發明之評估工具或評估系統可包含進行樣本之定性評估(例如,通過/失敗)之設備、進行樣本之定量量測(例如,特徵之大小)之設備或產生樣本之映圖之影像的設備。評估工具或系統之實例為檢測工具(例如,用於識別缺陷)、檢閱工具(例如,用於分類缺陷)及度量衡工具,或能夠執行與檢測工具、檢閱工具或度量衡工具(例如,度量衡檢測工具)相關聯之評估功能性之任何組合的工具。
對組件或組件或元件之系統的參考為可控制的而以某種方式操縱帶電粒子束包括:組態控制器或控制系統或控制單元以控制組件以按所描述之方式操縱帶電粒子束,並且視情況使用其他控制器或裝置(例如,電壓供應件)以控制組件從而以此方式操縱帶電粒子束。舉例而言,電壓供應件可電連接至一或多個組件,以在控制器或控制系統或控制單元之控制下將電位施加至該等組件,諸如施加至控制透鏡陣列250及物鏡陣列241之電極。諸如載物台之可致動組件可為可控制的,以使用用以控制該組件之致動之一或多個控制器、控制系統或控制單元來致動諸如光束路徑之另外組件且因此相對於該等另外組件移動。
由控制器或控制系統或控制單元提供之功能性可經電腦實施。元件之任何適合組合可用於提供所需功能性,包括例如CPU、RAM、SSD、主機板、網路連接、韌體、軟體及/或此項技術中已知的允許執行所需計算操作之其他元件。所需的計算操作可由一或多個電腦程式界定。一或多個電腦程式可以儲存電腦可讀指令之媒體、視情況非暫時性媒體的形式提供。當電腦可讀指令藉由電腦讀取時,電腦執行所需之方法步驟。電腦可由自含式單元或具有經由網路彼此連接之複數個不同電腦的分佈式計算系統組成。
術語「子光束」及「細光束」在本文中可互換使用且均理解為涵蓋藉由劃分或分裂母輻射光束而來源於母輻射光束之任何輻射光束。術語「操縱器」用於涵蓋影響子光束或細光束之路徑之任何元件,諸如透鏡或偏轉器。對沿著光束路徑或子光束路徑對準之元件的參考應理解為意謂各別元件沿著光束路徑或子光束路徑定位。對光學件之參考應理解為意謂電子光學件。
根據本發明之另一態樣,提供一種評估系統,其經組態以朝向樣本引導配置於多光束中的子光束中之帶電粒子,該系統包含:複數個電極,其界定經組態以將子光束引導至樣本上的物鏡陣列,電極沿著子光束之至少一個子光束路徑串聯地配置;載物台,其用於支撐樣本;及控制器,其經組態以控制施加至電極之電位及/或控制載物台,以使得系統執行本發明之第一態樣之方法。
根據本發明之另一態樣,提供一種評估系統,其經組態以朝向樣本引導配置於多光束中的子光束中之帶電粒子,該系統包含:複數個電極,其界定經組態以將子光束引導至樣本上的物鏡陣列,電極沿著子光束之至少一個子光束路徑串聯地配置;載物台,其用於支撐樣本;及中間元件,其定位於物鏡陣列與載物台之間,中間元件與物鏡陣列及載物台兩者電隔離。
根據本發明之另一態樣,提供一種控制評估系統之電腦實施方法,該評估系統經組態以朝向樣本引導配置於多光束中的子光束中之帶電粒子,該系統包含:複數個電極,其界定經組態以將子光束引導至樣本上的物鏡陣列,電極沿著子光束之至少一個子光束路徑串聯地配置;及載物台,其用於支撐樣本,該方法包含控制施加至電極之電位及/或控制載物台,以使得系統執行本發明之第一態樣之方法。
儘管已結合各種實施例描述本發明,但自本說明書之考量及本文中揭示之本發明之實踐,本發明之其他實施例對於熟習此項技術者將顯而易見。意欲將本說明書及實例視為僅例示性的,其中本發明之真實範疇及精神由以下申請專利範圍及條項指示。
提供以下條項。條項1:一種補償多光束帶電粒子評估系統之物鏡陣列中之電極變形之影響的方法,該方法包含:藉由使物鏡陣列中之靜電場變化來調整電極變形,調整係為了補償電極變形對照射於樣本上之多光束之子光束之影響;及回應於物鏡陣列中之靜電場之變化而再聚焦多光束之子光束,其中:調整及再聚焦包含改變施加至物鏡陣列之兩個電極之電位。
條項2:如條項1之方法,其中兩個電極中之一者為物鏡陣列中之物鏡之與物鏡之其他電極相比將最強透鏡化效應施加至子光束的電極。
條項3:如條項1或2之方法,其中兩個電極中之一者為作用於子光束的物鏡陣列中之物鏡的電極,且與物鏡之其他電極相比最接近樣本。
條項4:如任一前述條項之方法,其中在調整及再聚焦期間,樣本處之電場保持恆定。
條項5:如任一前述條項之方法,其中在調整及再聚焦期間,樣本處之電位經控制以維持恆定著陸能量。
條項6:如任一前述條項之方法,其中再聚焦包含使樣本與物鏡陣列之間的距離變化。
條項7:如任一前述條項之方法,其中調整及再聚焦包含改變施加至中間元件之電位以在中間元件與作用於子光束的物鏡之間產生電場或改變該電場,中間元件位於樣本與物鏡之間。
條項8:如條項7之方法,其中中間元件包含或支援用於偵測自樣本發射之信號電子的偵測器。
條項9:如條項4之方法,其中在調整及再聚焦期間,允許樣本處之電位變化。
條項10:如條項5之方法,其中在調整及再聚焦期間,允許樣本處之電場變化。
條項11:如任一前述條項之方法,其中調整及再聚焦包含調整至少兩個,較佳地三個或至少四個自由度。
條項12:如任一前述條項之方法,其中電極變形之至少大多數係由靜電壓力引起。
條項13:如任一前述條項之方法,其中電極變形包含物鏡陣列中之一或多個電極之形狀及/或位置之改變。
條項14:如任一前述條項之方法,其中對子光束之經補償影響包含場曲。
條項15:如任一前述條項之方法,其中:物鏡陣列包含硬體校正,該硬體校正用於補償物鏡陣列中之經預測電極變形對子光束之經預測影響;且電極變形之調整包含調整電極變形以大體上匹配經預測電極變形。
條項16:如條項15之方法,其中經預測電極變形為用於達成對多光束之子光束之電子光學特性之所要影響的目標電極變形。
條項17:如條項15或16之方法,其中硬體校正包含電極中之一或多個中所界定的隨各電極中之位置而變的孔徑之大小之變化。
條項18:如任一前述條項之方法,其中電極包含沿著子光束路徑串聯的導電板,各板界定與子光束路徑對準之孔徑。
條項19:如任一前述條項之方法,其中物鏡陣列包含多個電極,在該等電極中之各者中界定用於多光束之傳遞的複數個孔徑,電極較佳地為二維基板。
條項20:一種評估系統,其經組態以朝向樣本引導配置於多光束中的子光束中之帶電粒子,該系統包含:複數個電極,其界定經組態以將子光束引導至樣本上的物鏡陣列,電極沿著子光束之至少一個子光束路徑串聯地配置;載物台,其用於支撐樣本;及控制器,其經組態以控制施加至電極之電位及/或控制載物台,以使得系統執行如任一前述條項之方法。
條項21:一種評估系統,其經組態以朝向樣本引導配置於多光束中的子光束中之帶電粒子,該系統包含:複數個電極,其界定經組態以將子光束引導至樣本上的物鏡陣列,電極沿著子光束之至少一個子光束路徑串聯地配置;載物台,其用於支撐樣本;及中間元件,其定位於物鏡陣列與載物台之間,中間元件與物鏡陣列及載物台兩者電隔離。
條項22:如條項21之系統,其中中間元件包含或支援經組態以偵測自樣本發射之信號電子的偵測器。
條項23:如條項21或22之系統,其進一步包含控制器,該控制器經組態以將與施加至組態成最接近樣本的物鏡陣列之電極不同的靜電位施加至中間元件。
條項24:如條項23之系統,其中控制器經組態以藉由調整電極變形來補償物鏡陣列中之電極變形之影響,控制器經組態以藉由使物鏡陣列中之靜電場變化來執行電極變形之調整。
條項25:如條項24之系統,其中控制器進一步經組態以回應於物鏡陣列中之靜電場之變化而再聚焦多光束之子光束。
條項26:如條項25之系統,其中控制器經組態以藉由調整施加至物鏡陣列之電極中之兩者的電位而再聚焦子光束。
條項27:如條項26之系統,其中控制器經組態以使得調整及再聚焦包含改變施加至界定物鏡陣列的電極中之兩者及中間元件之電位。
條項28:一種控制評估系統之電腦實施方法,該評估系統經組態以朝向樣本引導配置於多光束中的子光束中之帶電粒子,該系統包含:複數個電極,其界定經組態以將子光束引導至樣本上的物鏡陣列,電極沿著子光束之至少一個子光束路徑串聯地配置;及載物台,其用於支撐樣本,該方法包含控制施加至電極之電位及/或控制載物台,以使得系統執行如條項1至19中任一項之方法。
條項29:一種電腦程式產品,其包含指令,當由電腦執行程式時,該等指令使得電腦進行如條項1至19中任一項之方法。
10:主腔室 20:裝載鎖定腔室 30:裝備前端模組 30a:第一裝載埠 30b:第二裝載埠 40:電子束工具/設備/電子光學工具 50:控制器 100:帶電粒子束檢測設備 124:光束限制孔徑 201:電子源 202:初級電子束 207:樣本固持器 208:樣本 209:機動載物台 211:子光束 212:子光束 213:子光束 221:探測光點 222:探測光點 223:探測光點 230:投影設備 231:聚光透鏡 233:中間焦點 234:物鏡 235:偏轉器 240:電子偵測裝置 241:物鏡陣列 242:光束塑形限制器 250:控制透鏡陣列 251:控制透鏡 252:上部光束限制器 256:巨型掃描偏轉器 260:掃描偏轉器 261:掃描偏轉器 265:巨型掃描偏轉器 270:巨型準直器 271:準直器元件陣列 300:物鏡 301:中間或第一電極 302:下部或第二電極 303:上部或第三電極 401:多光束物鏡 402:偵測器模組 404:基板 405:偵測器元件/捕捉電極 406:光束孔徑 407:邏輯層 408:佈線層 409:矽穿孔 500:控制器 501:控制電極 502:控制電極 503:控制電極/接物鏡電極/共同電極 504:接物鏡電極 510:子光束路徑/電絕緣連接部件 551:第一體積 552:第二體積 555:中間元件 600:控制透鏡 601:電極 602:電極 603:電極 641:物鏡陣列 E1:電場 E2:電場 f1:第一焦距 f2:第二焦距 V1:電壓源/電位 V2:電壓源/電位 V3:電壓源/物鏡 V4:電壓源/電位 V5:電位源/電位 V6:電位源/電位 V7:電位源/電位 Vint:電位 Vs:電位
本發明之上述及其他態樣自與隨附圖式結合獲取之例示性實施例之描述將變得更顯而易見。 1為說明例示性帶電粒子束檢測設備之示意圖。 2為說明作為 1之例示性帶電粒子束檢測設備之部分的例示性多光束設備之示意圖。 3為包含聚光透鏡陣列之例示性電光學柱之示意圖。 4為例示性配置之著陸能量相對於解析度之圖式。 5為物鏡及控制透鏡之放大圖。 6為例示性配置之物鏡陣列之一部分的示意性橫截面圖。 7 6之物鏡陣列之部分的仰視圖。 8 6之物鏡陣列之部分之經修改版本的仰視圖。 9為併入 6之物鏡中之偵測器的放大示意性橫截面圖。 10為包含巨型準直器及巨型掃描偏轉器之例示性電子光學柱之示意圖。 11為評估系統之控制透鏡陣列及物鏡陣列之部分的示意性橫截面圖。 12為為了說明電極變形(弓曲)的物鏡陣列中之電極之部分的示意性橫截面圖。 13為為了說明基本透鏡之操作的展示在操作期間靠近物鏡之電極之孔徑的區中之等電位線的示意性側視截面圖。 14為樣本上方之物鏡陣列中之電極之部分的示意性側視截面圖,其中載物台經移動以回應於物鏡陣列中之靜電場之變化而再聚焦子光束。 15為樣本上方之物鏡陣列中之電極之部分的示意性側視截面圖,其中物鏡陣列之最低電極處之光束能量經調整以再聚焦子光束,樣本上方之電場保持恆定,且允許著陸能量變化。 16為樣本上方之物鏡陣列中之電極之部分的示意性側視截面圖,其中物鏡陣列之最低電極處之光束能量經調整以再聚焦子光束,著陸能量保持恆定,且允許樣本上方之電場變化。 17為樣本上方之物鏡陣列中之電極之部分的示意性側視截面圖,其中物鏡陣列之最低電極處之光束能量經調整以再聚焦子光束,且中間元件之電位經調整以保持樣本處之著陸能量及電場恆定。 18為展示補償電極變形之不同方法對解析度之經預測影響之圖式。
504:接物鏡電極

Claims (15)

  1. 一種補償一多光束帶電粒子評估系統之一物鏡陣列中之電極變形之一影響的方法,該方法包含: 藉由使該物鏡陣列中之一靜電場變化來調整一電極變形,該物鏡陣列包含一硬體校正,該硬體校正用於補償該物鏡陣列中之一經預測電極變形對子光束之一經預測影響,該調整係為了補償電極變形對照射於一樣本上之該多光束之子光束之一影響;及 回應於該物鏡陣列中之靜電場之該變化而再聚焦該多光束之一子光束,其中: 該調整及該再聚焦包含改變施加至該物鏡陣列之兩個電極之電位,且該電極變形之該調整包含調整該電極變形以大體上匹配該經預測電極變形。
  2. 如請求項1之方法,其中該等兩個電極中之一者為該物鏡陣列中之物鏡之與該物鏡之其他電極相比將最強透鏡化效應施加至該子光束的一電極。
  3. 如請求項1或2之方法,其中該等兩個電極中之一者為作用於該子光束的該物鏡陣列中之該物鏡的一電極,且與該物鏡之其他電極相比最接近該樣本。
  4. 如請求項1或2之方法,其中在該調整及該再聚焦期間,該樣本處之一電場保持恆定。
  5. 如請求項1或2之方法,其中在該調整及該再聚焦期間,該樣本處之一電位經控制以維持一恆定著陸能量。
  6. 如請求項1或2之方法,其中該再聚焦包含使該樣本與該物鏡陣列之間的一距離變化。
  7. 如請求項1或2之方法,其中該調整及該再聚焦包含改變施加至一中間元件之一電位以在該中間元件與作用於該子光束的該物鏡之間產生一電場或改變該電場,該中間元件位於該樣本與該物鏡之間。
  8. 如請求項7之方法,其中該中間元件包含或支援用於偵測自該樣本發射之信號電子的一偵測器。
  9. 如請求項4之方法,其中在該調整及該再聚焦期間,允許該樣本處之一電位變化。
  10. 如請求項5之方法,其中在該調整及該再聚焦期間,允許該樣本處之一電場變化。
  11. 如請求項1或2之方法,其中該調整及該再聚焦包含調整至少兩個,較佳地三個或至少四個自由度。
  12. 如請求項1或2之方法,其中該電極變形包含該物鏡陣列中之一或多個電極之形狀及/或位置之一改變。
  13. 如請求項1或2之方法,其中對該等子光束之該經補償影響包含場曲。
  14. 如請求項1或2之方法,其中該經預測電極變形為用於達成對該多光束之該等子光束之電子光學特性之一所要影響的一目標電極變形。
  15. 如請求項1或2之方法,其中該電極變形之至少大多數係由靜電壓力引起。
TW111120159A 2021-06-10 2022-05-31 補償電極變形之影響的方法、評估系統 TW202303658A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21178810.4 2021-06-10
EP21178810.4A EP4102536A1 (en) 2021-06-10 2021-06-10 Method of compensating for an effect of electrode distortion, assessment system

Publications (1)

Publication Number Publication Date
TW202303658A true TW202303658A (zh) 2023-01-16

Family

ID=76392166

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111120159A TW202303658A (zh) 2021-06-10 2022-05-31 補償電極變形之影響的方法、評估系統

Country Status (7)

Country Link
US (1) US20240105416A1 (zh)
EP (2) EP4102536A1 (zh)
KR (1) KR20240017084A (zh)
CN (1) CN117730392A (zh)
IL (1) IL309124A (zh)
TW (1) TW202303658A (zh)
WO (1) WO2022258279A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129502B2 (en) 2003-03-10 2006-10-31 Mapper Lithography Ip B.V. Apparatus for generating a plurality of beamlets
TWI497557B (zh) 2009-04-29 2015-08-21 Mapper Lithography Ip Bv 包含靜電偏轉器的帶電粒子光學系統
NL1036912C2 (en) 2009-04-29 2010-11-01 Mapper Lithography Ip Bv Charged particle optical system comprising an electrostatic deflector.
US8294117B2 (en) * 2009-09-18 2012-10-23 Mapper Lithography Ip B.V. Multiple beam charged particle optical system
JP5643626B2 (ja) * 2010-12-07 2014-12-17 キヤノン株式会社 荷電粒子線レンズ
NL2007604C2 (en) 2011-10-14 2013-05-01 Mapper Lithography Ip Bv Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
NL2006868C2 (en) 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
DE102018124223A1 (de) * 2018-10-01 2020-04-02 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem

Also Published As

Publication number Publication date
EP4352774A1 (en) 2024-04-17
CN117730392A (zh) 2024-03-19
KR20240017084A (ko) 2024-02-06
EP4102536A1 (en) 2022-12-14
US20240105416A1 (en) 2024-03-28
WO2022258279A1 (en) 2022-12-15
IL309124A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US11798783B2 (en) Charged particle assessment tool, inspection method
US20230326715A1 (en) Charged particle system, method of processing a sample using a multi-beam of charged particles
JP2023541371A (ja) 対物レンズアレイアセンブリ、電子光学系、電子光学系アレイ、集束方法、対物レンズ構成
US20230230795A1 (en) Charged particle assessment tool, inspection method
KR20230098813A (ko) 대물 렌즈 어레이 조립체, 전자-광학 시스템, 전자-광학 시스템 어레이, 포커싱 방법
TW202338342A (zh) 帶電粒子評估工具及檢測方法
TW202303658A (zh) 補償電極變形之影響的方法、評估系統
TWI813948B (zh) 帶電粒子評估工具及檢測方法
EP4089712A1 (en) Assessment system, method of assessing
US20240079205A1 (en) Assessment system, method of assessing
EP4086933A1 (en) Charged particle system, method of processing a sample using a multi-beam of charged particles
TWI824604B (zh) 帶電粒子光學裝置、帶電粒子設備及方法
CN117296122A (zh) 评估系统和评估方法
TW202341211A (zh) 電子光學器件、補償子光束特性之變化的方法