JP6071258B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP6071258B2
JP6071258B2 JP2012131292A JP2012131292A JP6071258B2 JP 6071258 B2 JP6071258 B2 JP 6071258B2 JP 2012131292 A JP2012131292 A JP 2012131292A JP 2012131292 A JP2012131292 A JP 2012131292A JP 6071258 B2 JP6071258 B2 JP 6071258B2
Authority
JP
Japan
Prior art keywords
light
light emitting
image
emission
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012131292A
Other languages
English (en)
Other versions
JP2013254174A (ja
Inventor
将道 飯田
英明 平澤
清人 豊泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012131292A priority Critical patent/JP6071258B2/ja
Priority to US13/912,062 priority patent/US9465312B2/en
Publication of JP2013254174A publication Critical patent/JP2013254174A/ja
Application granted granted Critical
Publication of JP6071258B2 publication Critical patent/JP6071258B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0275Arrangements for controlling the area of the photoconductor to be charged
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/045Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for charging or discharging distinct portions of the charge pattern on the recording material, e.g. for contrast enhancement or discharging non-image areas
    • G03G15/047Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for charging or discharging distinct portions of the charge pattern on the recording material, e.g. for contrast enhancement or discharging non-image areas for discharging non-image areas
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • G03G2215/0122Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt
    • G03G2215/0125Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being horizontal or slanted
    • G03G2215/0132Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being horizontal or slanted vertical medium transport path at the secondary transfer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Laser Beam Printer (AREA)

Description

本発明は、レーザープリンタ、複写機、ファクシミリ等の電子写真記録方式を利用する画像形成装置に関するものである。
従来から、カラー画像形成装置において、異なる色で隣接して形成された画像の間に、本来あるべきでない白い隙間が空いてしまう、所謂ホワイトギャップという現象が知られている。この現象は、感光ドラム上に、ドラム表面電位が急峻に変化する静電潜像、例えば画像エッジ部が形成され、この部位を現像装置で現像した際、本来よりも顕画像が細く形成されることから発生する。例えばシアン色の帯とブラック色の帯を隣接させた画像において、本来であればシアン色の帯とブラック色の帯が隣接するはずが、夫々の顕画像が夫々細く形成されてしまい、記録材上の最終画像においてシアン色とブラック色との間に隙間ができてしまう。
図11は、従来技術に係るホワイトギャップの詳細を説明する図であり、現像ローラと感光ドラムとの間の電界の様子を示す。ホワイトギャップの原因となる顕画部の顕画像の細りは、感光ドラム上に形成された静電部の静電潜像のエッジ部にて電界が巻き込んでしまうことに起因する。
この課題に対しては、印字可能領域全面における非画像部(非トナー像形成部)に、レーザースキャナの発光素子をトナー付着を起こさない程度に微小発光して、画像の細りを防止する方法が知られている。以下、この方法のことをバックグランド露光、或いは非画像部微小発光等と称する。
尚、非画像部微小発光を行う目的としては、ホワイトギャップの防止に限定されることはない。例えば、特許文献1に開示されるよう、転写電位コントラストを小さくし、転写ニップ部で発生する気中放電に伴う画像乱れの防止対策としても実施される。すなわち、非画像部微小発光は、特定の用途に限定されるものではない。
ここで非画像部微小発光の具体的手法として、例えばPWM(Pulse WidthModulation)方式と呼ばれる、パルス波のデューティー比を変化させる方法が特許文献1において提案されている。これは、固定周波数である画像用クロックに同期して、微小発光量に相当するパルス幅で非画像部においてレーザースキャナの発光素子を発光するものである。
特開2003−312050号公報
近年、カラー画像形成装置においては、益々の高画質化が要望されている。そのような中、画像部に対応する発光光量の調整に加え、上で説明した非画像部の微小発光における光量を適切に調整することが課題となってくる。
本発明は、上記要望を鑑みてなされたものであり、画像部に対応する発光光量の調整に加え、非画像部の微小発光における光量を適切に調整することを目的とする。
上記目的を達成するため、本発明は、それぞれ独立してレーザー光を発光可能な第1、第2発光部と、前記第1、第2発光部を駆動電流によって発光させる駆動手段と、感光体と、前記感光体を帯電する帯電手段と、駆動電流を調整する調整手段と、を有し、前記帯電された感光ドラムに前記第1、第2発光部の発光により潜像を形成し、前記潜像にトナーを付着させ可視化することで記録材に画像を形成する画像形成装置であって、前記駆動手段は、プリントデータの入力に応じて、前記感光体の画像形成可能領域のうちの画像部に対してプリント用の第1発光レベルの光量でパルスデューティーに従う時間で前記第1、第2発光部をそれぞれ発光させ、前記感光体の画像形成可能領域のうちの非画像部に対して微小発光の第2発光レベルの光量で前記第1、第2発光部をそれぞれ発光させ、前記駆動手段は、第1駆動電流に第2駆動電流を加えた駆動電流によって前記第1発光部を前記第1発光レベルで発光させ、且つ、前記第2駆動電流によって前記第1発光部を前記第2発光レベルで発光させ、第3駆動電流に第4駆動電流を加えた駆動電流によって前記第2発光部を前記第1発光レベルで発光させ、且つ、前記第4駆動電流によって前記第2発光部を前記第2発光レベルで発光させ、前記調整手段は、1回の水平同期信号周期の中で、前記第1、第2、第3、第4駆動電流の全てを調整することを特徴とする。
本発明によれば、安定した光量で画像部の発光及び非画像部の微小発光を行うことができ、結果、より高画質な画像を得ることが可能となる。
画像形成装置の概略断面図の一例を示す図。 光学走査装置の概略斜視図。 レーザー駆動回路を示す図。 レーザーダイオードに流れる電流と発光強度との関係を示す図。 微小発光にかかわる感光ドラムの電位変化を説明する為の図。 別のレーザー駆動回路を示す図。 レーザーダイオードに流れる電流と発光強度との関係を説明する為の図。 自動光量制御に係るタイミングチャート。 微小発光とPWM発光との関係を示す図。 自動光量制御に係る別のタイミングチャート。 ホワイトギャップに係る説明を行う為の図。
[実施例1]
以下に、図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成要素はあくまで例示であり、この発明の範囲をそれらのみに限定する趣旨のものではない。
<画像形成装置の概略断面図>
図1は、カラー画像形成装置の概略断面図である。尚、以下の説明においては、カラー画像形成装置を用いて説明を行うが、それに限定されるものではない。後述にて詳しく説明する非画像部の微小発光については、例えば、単色の画像形成装置にも適用することが出来る。また、以下においては、インライン方式のカラー画像形成装置を例に説明を行うが、例えばロータリー方式のカラー画像形成装置でも良い。以下、インライン方式のカラー画像形成装置を例に詳述する。
図1に示す如く、カラーレーザープリンタ50は、複数の第1の像担持体である感光ドラム5(5Y,5M,5C,5K)を有し、順次、第2の像担持体である中間転写ベルト3に連続的に多重転写し、フルカラープリント画像を得るプリンタである。この方式をインライン方式或いは4連ドラム方式という。
中間転写ベルト3は、無端状のエンドレスベルトであり、駆動ローラ12、テンションローラ13、アイドラローラ17、および二次転写対向ローラ18に懸架され、図中矢印の方向にプロセススピード115mm/secで回転している。駆動ローラ12、テンションローラ13、および二次転写対向ローラ18は、中間転写ベルト3を支持する支持ローラであり、駆動ローラ12、二次転写対向ローラ18はφ24、テンションローラ13はφ16の構成となっている。
感光ドラム5(5Y,5M,5C,5K)は、中間転写ベルト3の移動方向に、直列に4本配置されている。各感光ドラム5に対応して画像露光手段9(9Y,9M,9C,9K)が配置されている。イエロー現像器を有する感光ドラム5Yは、回転過程で一次帯電ローラ7Yにより、所定の極性・電位に一様に帯電処理され、次いで画像露光手段9Yによって光を照射される画像露光4Yを受ける。これにより、目的のカラー画像の第1の色(イエロー)成分像に対応した静電潜像が形成される。次いでその静電潜像に第1現像器(イエロー現像器)8Yにより第1色であるイエロートナーが付着し現像される。これにより画像の可視化が行われる。このように、画像露光によって静電潜像が形成された部分にトナーが現像される方式のことを「反転現像方式」と称する。
感光ドラム5Y上に形成されたイエロー画像は、中間転写ベルト3との一次転写ニップ部へ進入する。一次転写ニップ部では、中間転写ベルト3の裏側に電圧印加部材(一次転写ローラ)10Yを接触当接させている。電圧印加部材10Yにはバイアス印加可能とする為の不図示の一次転写バイアス電源が接続されている。中間転写ベルト3は、1色目のポートでまずイエローを転写し、次いで先述した工程を経た各色に対応する感光ドラム5M、5C、5Kより、順次マゼンタ、シアン、ブラックの各色を多重転写する。中間転写ベルト3上に転写された4色のトナー像は、中間転写ベルト3に伴って同図矢印(時計回り)方向に回転移動する。
一方、給紙カセット1内に積載収納された記録材Pは、給紙ローラ2により給送され、レジストローラ対6のニップ部へ搬送されて、一旦停止される。一旦停止された記録材Pは、中間転写ベルト3上に形成された4色のトナー像が二次転写ニップに到達するタイミングに同期してレジストローラ対6によって二次転写ニップに供給される。そして、二次転写ローラ11と二次転写対向ローラ18との間の電圧印加(+1.5kV程度)によって中間転写ベルト3上のトナー像が記録材P上に転写される。
トナー像が転写された記録材Pは、中間転写ベルト3から分離されて搬送ガイド19を経由し、定着装置14に送られ、ここで定着ローラ15、加圧ローラ16による加熱、加圧を受けて表面にトナー像が溶融固着される。これにより、4色フルカラー(複数色)の画像が得られる。その後、記録材Pは排紙ローラ対20から機外へと排出され、プリントの1サイクルが終了する。一方、二次転写部において記録材Pに転写されずに中間転写ベルト3上に残ったトナーは、二次転写部より下流側に配置されたクリーニングユニット21によって除去される。
以上が、画像形成装置の概略断面図の説明である。次に、以下においては、レーザー駆動システムに関連して、まず、光学走査装置(画像露光手段9に相当)の外観図について説明を行い、その後にレーザー駆動システムの回路構成について詳細に説明をしていく。
<光学装置概略図>
図2に光走査装置9の概略斜視図を示す。独立して発光可能な2つの発光素子(発光部)を有する2ビームのレーザーダイオード107(以下LD107と称する。なお、LD107には、2つのレーザーダイオードを内蔵しており、それぞれをLD107a(第1発光部)、LD107b(第2発光部)と称する。LD107には、レーザー駆動システム回路130の動作に基づく駆動電流が流れる。LD107は、駆動電流に応じた強度レベルでレーザー光を発光する。尚、レーザー駆動システム回路130は、後述のエンジンコントローラ122、ビデオコントローラ123に対して、電気的に接続されているLD107を駆動する為の回路である。
そして、LD107により発光されたレーザー光は、コリメータレンズ134によりビーム形状が整形され、かつ平行ビームとされたうえで回転するポリゴンミラー133により反射されて偏向走査される。偏向走査されたレーザー光は、fθレンズ132を透過して、軸転される感光ドラム5の表面上に結像されてドット状のスポットとなり、図中矢印で示した主走査方向(感光ドラム5の回転軸方向に平行)に移動することで走査線を形成し、感光ドラム5を露光する。
一方、感光ドラム5上の走査線の走査開始位置Sよりも主走査方向上流側の位置にあるレーザー光が入射する位置に反射ミラー131が設けられている。この反射ミラー131に入射したレーザー光は、BD同期検出センサ121に入射する。このBD同期検出センサ121はレーザー光が入射したことを検知し、それに応じた出力をする。このBD同期検出センサからの出力に基づいて、レーザー光の走査の開始タイミングが決定される。また、感光ドラム5を走査した後で、次に感光ドラム5を走査する前に、レーザー光量の自動光量制御であるところの、APC(Auto Power Control)が行われ、次の走査の為にレーザーダイオード107の発光レベル(発光強度)が調整される。
光走査装置9は画像形成中に、感光ドラム5表面の画像形成可能領域(感光ドラム5の有効領域)のうちの画像部に対して、トナーを付着させる程度のプリント発光レベル(強度)で、画像データに基づいて発光(通常発光)する。更に、感光ドラム5表面の画像形成可能領域(感光ドラム5の有効領域)のうちの非画像部に対しては、トナーを付着させない程度の微小発光レベル(強度)で、微小発光する。このような微小発光は、かぶりや反転かぶり等の画像不良を発生させないように、帯電後の感光ドラム5の非画像部の電位を適正化する為に行われる。
<レーザー駆動システム回路図>
図3は、非画像部において、感光ドラム上にトナー付着をさせないようにし、且つかぶりや反転かぶりを発生させないように、微小発光するうえでのLD107の適切な光量レベルを自動調整するレーザー駆動システム回路である。
以降の説明では、説明の煩雑をさけるために、LD107aの制御に係る構成を説明する。LD107bの制御に係る構成については、LD107aと同様の構成については、説明を割愛し、LD107aと異なる構成について説明する。
図3において、図2で示したレーザー駆動システム回路130は、点線枠内で囲まれた回路に相当する。101、111はコンパレータ回路であり、102、112はサンプル/ホールド回路であり、103、113はホールドコンデンサである。104、114は電流増幅回路であり、105、115は基準電流源(定電流回路)であり、106、116はスイッチング回路である。107aはレーザーダイオードであり、108は受光部としてのフォトダイオードであり、LD107a及びLD107bから発せられたレーザー光をそれぞれ受光する。109は電流電圧変換回路であり、121は同期検出信号素子(BD検出素子)である。尚、以下においては、フォトダイオード108をPD108と称する。また、後述にて詳しく説明するが、LD107aに対して、101乃至106の部分が第1光量調整手段に相当し、111乃至116の部分が第2光量調整手段に相当する。
122はエンジンコントローラであり、ASIC、CPU、RAM、及びEEPROMを内蔵している。またエンジンコントローラ122は、プリンタエンジンの制御のみならず、ビデオコントローラ123との通信制御なども行う。
124はOR回路であり、エンジンコントローラ122のLdrv1信号とビデオコントローラ123からのVIDEO1信号が入力に接続されており、出力信号DATA1は後述のスイッチング回路106へ接続されている。尚、VIDEO1信号は、外部に接続されたリーダースキャナや、ホストコンピュータ等の外部機器から送られてくるプリントデータに基づき生成される。
ビデオコントローラ123から出力されるVIDEO1信号は、イネーブル端子付きバッファ125に入力され、バッファの出力は前述のOR回路124に接続されている。このときイネーブル端子はエンジンコントローラ122からのVenb1信号と接続されている。 また、エンジンコントローラ122は、後述のSH11信号、SH12信号、BASE1信号およびLdrv1信号、Venb1信号を出力するように接続されている。
コンパレータ回路101、111の正極端子には、それぞれ第1の基準電圧Vref111、第2の基準電圧Vref121が入力されており、出力はそれぞれサンプル/ホールド回路102、112に入力されている。この基準電圧Vref111は、通常のプリント用の発光レベル(第1発光レベル)でLD107aを発光させる為の目標電圧として設定されている。また、基準電圧Vref121は、微小発用の発光レベル(第2発光レベル)の目標電圧として設定されている。サンプル/ホールド回路102、112にはそれぞれホールドコンデンサ103、113が接続されている。ホールドコンデンサ103、113の出力は、それぞれ電流増幅回路104、114の正極端子に入力されている。
電流増幅回路104、114にはそれぞれ基準電流源105、115が接続されており、その出力はスイッチング回路106、116に入力されている。他方、電流増幅回路104、114の負極端子には、それぞれ第3の基準電圧Vref112、第4の基準電圧Vref122が入力されている。ここで先に説明したサンプル/ホールド回路102、112の出力電圧と、基準電圧Vref112、基準電圧Vref122との差分に応じて電流Io11、Io12が決定される。即ち、Vref112、122は、電流を決定する為の電圧設定である。
スイッチング回路106は、パルス変調データ信号DATA1によりオン・オフ動作する。スイッチング回路116は、入力信号BASE1によりオン・オフ動作する。
スイッチング回路106、116の出力端は、LD107aのカソードに接続されており、駆動電流Idrv1(第1駆動電流)、Ib1(第2駆動電流)を供給している。LD107aのアノードは、電源Vccに接続されている。LD107aの光量をモニターするPD108のカソードは、電源Vccに接続されており、PD108のアノードは電流電圧変換回路109に接続されてモニター電流Imを電流電圧変換回路109に流すことにより、モニター電圧Vmを発生させている。このモニター電圧はコンパレータ101、111の負極端子に負帰還入力されている。
ここで、上記ではLD107aの制御に係る構成について説明したけれども、LD107bの制御に係る構成についても同様のため、説明は割愛する。
なお、図3では、エンジンコントローラ122とビデオコントローラとを別々に示しているが、その形態に限定されるわけではない。例えば、エンジンコントローラ122とビデオコントローラとの一部或いは全部を同じコントローラで構築しても良い。また、図中点線枠で囲まれたレーザー駆動回路についても、例えば、エンジンコントローラ122に一部或いは全てを内蔵させても良い。
●P(Idrv)のAPCの説明
エンジンコントローラ122は、SH12信号の指示により、サンプル/ホールド回路112をホールド状態(非サンプリング期間中)に設定するとともに、スイッチング回路116を入力信号BASE1によりオフ動作状態にする。また、エンジンコントローラ122は、SH11信号をONにして、サンプル/ホールド回路102をサンプリング状態に設定し、スイッチング回路106を入力信号DATA1によりONとする。より詳細には、このとき、エンジンコントローラ122は、Ldrv1信号をONにし、入力信号DATA1をLD107aが発光状態になるように設定している。尚、このサンプル/ホールド回路102がサンプリング状態にある期間が、APC動作中に相当する。
この状態で、LD107aが全面発光状態になると、PD108は、LD107aから発せられたレーザー光を受光し、その受光量に比例したモニター電流Im1を発生することでLD107aの発光量をモニターする。そして、モニター電流Im1を電流電圧変換回路109に流すことにより、モニター電圧Vm1を発生させる。また、このモニター電圧Vm1が、目標値である第1の基準電圧Vref111と一致するように、電流増幅回路104が基準電流源105に流れるIo11をもとに駆動電流Idrv1(第1駆動電流)を制御する。尚、基準電圧Vref111はP(Idrv1)に対応した電圧値である。このようなLD107aにおける強発光レベルのAPC動作をAPC_Paと称す。
尚、非APC動作中、すなわち通常の画像形成時には、SH11信号がOFFとなってサンプル/ホールド回路102がホールド期間中(非サンプリング期間中)になり、Ldrv1信号がOFFとなり、入力信号データDATA1に応じてスイッチング回路106がオン・オフ動作し、駆動電流Idrv1にパルス幅変調を与える。
LD107bについても上述したのと同様の制御によってAPCを行い、駆動電流Idrv2(第3駆動電流)を制御する。即ち、エンジンコントローラ122が上述したのと同様にSH21信号、Ldrv2信号を制御することによってLD107bのAPC動作を行う。このLD107bにおける強発光レベルのAPC動作をAPC_Pbと称す。
●P(Ib)のAPCの説明
一方、エンジンコントローラ122はSH11信号をOFFにして、サンプル/ホールド回路102をホールド状態(非サンプリング期間中)に設定するとともに、スイッチング回路106を入力信号DATA1によりオフ動作状態にする。この入力信号DATA1に関し、エンジンコントローラ122は、イネーブル端子付きバッファ125のイネーブル端子に接続されているVenb1信号をディセーブル状態にし、Ldrv1信号をOFFとし、入力信号DATA1をオフ状態とする。また、エンジンコントローラ122は、SH12信号をONにして、サンプル/ホールド回路112をAPC動作中に設定し、入力信号BASE1をONにしてスイッチング回路116をONとし、LD107aが微小発光状態となるように設定する。
この状態で、LD107aが光量の弱い状態での全面微小発光状態(点灯維持状態)になると、PD108は、LD107aから発せられたレーザー光を受光し、その受光量に比例したモニター電流Im2(Im1>Im2)を発生することでLD107aの発光量をモニターする。そして、モニター電流Im2を電流電圧変換回路109に流すことにより、モニター電圧Vm2を発生させる。また、このモニター電圧Vm2が、目標値である第2の基準電圧Vref121と一致するように、電流増幅回路114が基準電流源115に流れるIo12をもとに駆動電流Ib1(第2駆動電流)を制御する。尚、基準電圧Vref121はP(Ib1)に対応した電圧値である。このようなLD107aにおける微小発光レベルのAPC動作をAPC_Baと称す。
そして、非APC動作中、すなわち通常の画像形成時(画像信号が送られている時間)には、サンプル/ホールド回路112がホールド期間中(非サンプリング期間中)になり、光量が弱い状態での全面微小発光状態が維持される。
LD107bについても上述したのと同様の制御によってAPCを行い、駆動電流Ib2(第4駆動電流)を制御する。即ち、エンジンコントローラ122が上述したのと同様にSH22信号、BASE2信号を制御することによってLD107bのAPC動作を行う。このLD107bにおける微小発光レベルのAPC動作をAPC_Bbと称す。
尚、トナーのかぶりや反転かぶり等を無視すれば、微小発光におけるレーザー発光光量を、帯電電位が現像電位よりも下回らない程度に適当な強度を設定すればよいが、そのようにする訳にはいかない。即ち、トナーのかぶり/反転かぶり等を考慮した場合に、画像形成中において、常にP(Ib)の光量を安定させる必要がある。
●微小発光レベルの説明
上述の説明において、全面微小発光状態時の駆動電流Ib1は、図4に示すLD107aの閾値電流Ithを越え、微小発光レベルP(Ib1)となるように設定する。尚、微小発光レベルとは、そのレベルのレーザー照射によっても感光ドラムにトナー等の現像材が実質的に帯電付着しない(顕像化されない)発光強度レベルで、且つトナーかぶり状態を良好にする為の発光強度レベルを意味する。また発光レベルP(Ib1)はレーザー発光領域とする。仮に、このときの発光レベルP(Ib1)がレーザー発光領域に満たないLED発光領域であった場合、スペクトルの波長分布が拡がり、レーザーの定格の波長に対して広い波長分布になる。この為、感光ドラムの感度が乱れ、表面電位が不安定になってしまう。従って、発光レベルP(Ib1)は、LED発光領域以上であるレーザー発光領域であることが望ましい。
一方、通常の画像形成時は、駆動電流Idrv1を駆動電流Idrv1+Ib1を、プリントレベルP(Idrv1+Ib1)の強度となる発光レベルになるように設定する。尚、プリントレベルとは、感光ドラムへの現像材の帯電付着が飽和状態となる発光強度レベルを意味する。
ここで、微小発光レベルについて、図5を用い更に詳しく説明する。感光ドラム5に一次帯電ローラ7を介して帯電高圧電源(不図示)より印加されたVcdcは、感光ドラム5表面で帯電電位Vdとなってあらわれる。このとき、Vdは、トナー現像時の非画像部の帯電電位よりも高い電位に設定されている。
そして、微小発光レベルEbg1のレーザー発光により、帯電電位Vdを、帯電電位Vd_bgに減衰させる。これはVcdc、帯電の電圧を印加した後において、収束電位より高い電位が感光体表面上の所々に発生してしまう場合があり、これがVbackを大きくし反転かぶりを誘発してしまう。これに対して、上記微小発光レベルEbg1のレーザー発光により、帯電電位Vdを、帯電電位Vd_bgに減衰させると、そのような収束電位より高い電位が残存することを少なくし、反転かぶりを少なくとも抑制する。また、転写メモリがVdに現れることも良く知られている。これに対して、上記微小発光レベルEbg1のレーザー発光により、転写メモリを小さくでき、転写メモリに起因するゴースト画像の発生を少なくとも抑制できる。
また、上記微小発光レベルEbg1のレーザー発光は、現像電位Vdcとの電位差であるバックコントラストVbackを適正にする機能も担っている。この観点からも、トナーの正かぶり、反転かぶりの発生を抑制できる。また、現像電位Vdcと露光電位Vlの差分値である現像コントラストVcont(=Vdc−Vl)も同時に適正にできる。これにより、現像効率を悪くしてしまったり、或いは掃き寄せの発生を抑えたり、転写・再転写のマージンを確保することができる。
また上記で説明したVcdc(帯電電圧)は、環境や感光ドラムの劣化(使用状況)等によって可変に設定される。そして、目標とする微小発光レベルの光量(強度)もそれに応じて可変に設定される。例えばVdcdの値が大きくなったら、微小発光レベルEbg1の光量も大きくなり、他方、Vdcdの値が小さくなったら微小発光レベルEbg1の光量も小さくなる。
なお、具体的に帯電電位Vdは−700V〜−600V、帯電電位Vd_bgは−550V〜−400V、現像電位Vdcは−350V、露光電位Vlは−150Vに設定するのが好ましい。
●P(Ib1+Idrv1)発光の説明
通常のプリント用の発光レベルでLD107aを発光させるときには、以下のように図3の回路を動作させる。即ち、サンプル/ホールド回路112をホールド期間に設定し、スイッチング回路116をオン動作させると共に、サンプル/ホールド回路102をホールド期間に設定し、スイッチング回路106をオン動作させる。これにより駆動電流Idrv1+Ib1が供給される。また、スイッチング回路106のオフ状態で駆動電流Ib1の微小発光レベル発光強度P(Ib1)とすることが出来る。
後述にて詳しく説明するが、プリントレベルP(Idrv1+Ib1)は、微小発光レベルP(Ib1)に対して、パルス幅変調によるPWM発光レベルP(Idrv1)を重畳した発光量となる。より具体的には、SH12、SH11、BASE1信号が上述の設定状態で、且つエンジンコントローラ122は、Venb1信号をイネーブル状態にし、VIDEO1信号によるDATA1信号によりスイッチング回路106のオン・オフを動作させる。これにより駆動電流でIb1〜Idrv1+Ib1間、即ち発光強度でP(Ib1)〜P(Idrv1+Ib1)間の2水準の発光状態での発光が可能となる。更にP(Idrv1+Ib1)の光量においては、パルスデューティーに従う時間での発光が、P(Ib1)をベースに行われている。
このように図3の回路を動作させることで、エンジンコントローラ122は、LD107aを微小発光レベルでAPCを行い、また、微小発光レベルP(Ib1)で発光させることが可能となる。また、ビデオコントローラ123より送出されるVIDEO1信号によるDATA1信号により、レーザー発光領域における第1のレベルであるプリントレベルP(Idrv1+Ib1)の発光を行うことが可能となり、2水準の発光レベルを有することが可能となる。
ここで、上記ではLD107aの制御に係る構成について説明したけれども、LD107bの制御に係る構成についても同様であり、トナーを付着させない程度の微小発光レベルP(Ib2)と トナーを付着させる程度のプリントレベルP(Idrv2+Ib2)の2水準の発光レベルで発光可能である。 ここで、従来の発光方式との違いについて説明する。図9は画素毎の発光強度を示す図である。図9(a)は従来のPWM方式で微小発光する場合を示す。図9(b)は本実施例の方式で微小発光する場合を示す。
図9(a)に示すように、従来のPWM方式では、プリントレベルP(Idrv+Ib)に相当する1水準の発光レベルの発光しかできないため。微小発光では、固定周波数である画像用クロックに同期して、非画像部において1画素毎に所定の比率(微小発光量に相当する微小パルス幅)でプリントレベルの発光(図中斜線部)を行い、微小発光レベル相当の光量を実現している。
これに対して、本実施例では、図9(b)に示すように、微小発光レベルP(Ib)と プリントレベルP(Idrv+Ib)との2水準の発光レベルで発光可能で、発光常時微小発光レベルPbで発光し続けることによって、微小発光レベルの発光量としている。つまり、常時発光している微小発光レベルP(Ib)の上に画像データ(VIDEOデータ)に応じてパルス幅変調された発光レベルP(Idrv)のPWM発光(図中斜線部)を重畳する形となる。このため、従来のPWM方式で行う場合と比べ、発生する輻射ノイズを低く抑えることができる。
<別のレーザー駆動システム回路図>
図6の回路は、図3の回路に対して、バイアス電流Ibias1とIbias2を流す抵抗Rb1とRb2を追加した点が異なる。このバイアス電流Ibias1は、LD107aの閾値電流Ithより小さく設定され、レーザー発光領域でない(通常LED発光領域と呼ばれる)範囲で設定する。各レーザー発光強度と各電流値との関係を図7に示す。バイアス電流の効果に関しては、様々な文献により紹介されているようにLD107aの立ち上がり特性の改善などである。
図6の回路において、SH12信号によりサンプル/ホールド回路112をホールド状態にし、スイッチング回路116をオン動作することで、LD107aに駆動電流(Ib1+Ibias1)を供給する。図6の回路では、このときに、LD107aが、微小発光レベル発光強度P(Ib1+Ibias1)で発光する。このとき発光レベルP(Ib1+Ibias1)はレーザー発光領域とする。また、更にSH11信号によりサンプル/ホールド回路102がホールド期間に設定し、入力信号DATA1により、スイッチング回路106をオン動作させ駆動電流Idrv1を更に供給させる。これにより、合わせて駆動電流(Idrv1+Ib1+Ibias1)が供給され、通常のプリント用の発光レベルP(Idrv1+Ib1+Ibias1)の発光が行われる。
このように、LD107aは、スイッチング回路106のオン・オフ動作で、プリントレベルP(Idrv1+Ib1+Ibias1)の発光強度で発光、及び駆動電流(Ib1+Ibias1)の微小発光レベル発光強度P(Ib1+Ibias1)を切り替えて発光する。より具体的には、SH12、SH11、BASE1信号が上述の設定状態で、且つエンジンコントローラ122は、Venb1信号をイネーブル状態にし、VIDEO1信号によるDATA1信号によりスイッチング回路106のオン・オフを動作させる。これにより駆動電流で(Ib1+Ibias1)〜(Idrv1+Ib1+Ibias1)間、即ち発光強度でP(Ib1+Ibias1)〜P(Idrv1+Ib1+Ibias1)間の2水準の発光状態でPWMレーザー発光が可能となる。
以上、2ビームレーザダイオードLD107における2つのレーザーダイオードの内、LD107aについて制御方法を説明した。ここで、LD107bの制御方法についても、LD107bと同様に制御されるため、詳しい説明は割愛する。
<2水準APCシーケンス>
次に、レーザーの発光レベルを維持するAPCのタイミングについて説明する。本実施例の光走査装置9は、LD107aとLD107bという複数の発光部を備えた構成である。このため、LD107aとLD107bのそれぞれにおいて、通常のプリント用の発光レベルと微小発光用の発光レベルと調節することが好ましい。そこで、このような複数の発光部を備える構成において、適切に各発光レベルを調整する調整方法について説明する。
図8はレーザー走査に係るタイミングチャート図である。なお、本タイミングチャートは水平同期信号周期(BD周期)T毎に繰り返され、1つのプリントジョブ中に複数回行われるものである。
まず、LD107aに対する、強発光レベルのAPC(APC_Pa)を行う。タイミングt8´において、エンジンコントローラ122は、SH11信号及びLdrv1信号をONとし、スイッチング回路106をONにする。尚、タイミングt8´のような称呼について、以下では単にt8´と称する。その後、t9´において、エンジンコントローラ122は、SH11信号をOFF及びLdrv1信号をOFFとし、スイッチング回路106をOFFする。これにより、LD107aに対する強発光レベルのAPCを終了させる。
次に、LD107bに対する、強発光レベルのAPC(APC_Pb)を行う。タイミングt9´において、エンジンコントローラ122は、SH21信号及びLdrv2信号をONとし、スイッチング回路206をONにする。t0において、エンジンコントローラ122により、水平同期信号/BDが検出された後、t1において、エンジンコントローラ122は、SH21信号をOFF及びLdrv2信号をOFFとし、スイッチング回路206をOFFする。これにより、LD107bに対する強発光レベルのAPCを終了させる。
次に、LD107aに対する、微小発光レベルのAPC(APC_Ba)を行う。エンジンコントローラ122は、t1にて、SH12信号及びBASE1信号をONとし、スイッチング回路116をONする。これによりエンジンコントローラ122は、微小発光レベルのAPCを開始する。そして、エンジンコントローラ122は、t2にて、SH12信号および、BASE1信号をOFFし微小発光レベルのAPCを終了させる。
次に、LD107bに対する、微小発光レベルのAPC(APC_Bb)を行う。エンジンコントローラ122は、t2で、SH22信号及びBASE2信号をONとし、スイッチング回路216をONする。これによりエンジンコントローラ122は、微小発光レベルのAPCを開始する。そして、エンジンコントローラ122は、t4まで、SH22信号をONとする。言い換えればt4まで微小発光レベルのAPCを継続する。これにより微小発光レベルのAPC時間をより長く確保することができる。
ここで、走査されるレーザー光が感光ドラム5上の紙(記録材)の端部に対応する位置に到達するタイミングはt3であり、t1<t3<t4の関係となる。つまり、タイミングt3からt4までは紙の余白領域に対してレーザー発光する余白領域期間である。また、所謂縁無しプリントの場合には、画像形成可能領域(感光ドラムの有効領域)が紙端部からはみ出している為、紙に余白領域は無く、t1<t4<t3の関係となる。
このように、レーザーの自動光量調整は1回の水平同期信号周期(BD周期)の中の走査ライン間などの非画像領域(感光ドラムの有効領域外)で行われているが、画像形成装置や光走査装置の小型化が進むと、光走査装置における1走査(又は1BD周期中)における画像形成可能領域(感光ドラム5の有効領域)の割合が多くなり、非画像領域の時間割合は減少してしまう。そのような場合にも、図8のタイミングチャートによれば、SH12信号および、SH22信号が有効なときに実行される自動光量調整を水平同期信号/BDが出力された後に実行するので、用紙の余白部分にレーザー走査が差し掛かったタイミングでも自動光量調整を継続できる。
次に、LD107aとLD107bの画像形成用発光(以降VIDEO発光と称する)を開始する。エンジンコントローラ122は、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に、所定時間経過後のt4からVenb1信号およびVenb2信号によりバッファ125およびバッファ225のイネーブル端子にイネーブルの信号指示を入力する。また、イネーブル端子へのイネーブル信号指示に応じて、ビデオコントローラ123から、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に、所定時間経過後のt4からVIDEO1信号およびVIDEO2信号が出力される。そしてLD107は、プリント用発光レベルP(Ib+Idrv)で発光し、図2で説明した光学走査装置によりレーザー走査が行われる。そして、感光ドラムの画像領域に対してレーザー光のドットを、VIDEO信号に応じて走査する。
なお、主走査方向において、微小発光レベルの発光量で発光する微小発光領域は、このVIDEO1信号およびVIDEO2信号により走査される最大画像領域より大きい領域を持ち、且つ、紙端部タイミングt6より大きい領域内において微小発光を行う。また、VIDEO1信号およびVIDEO2信号の領域内の非画像部において微小発光を行う。
次にLD107aとLD107bの画像形成用発光(以降VIDEO発光と称する)を終了する。エンジンコントローラ122は、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に所定時間経過後のt5に、Venb1信号およびVenb2信号によりバッファ125およびバッファ225のイネーブル端子にディセーブルの信号指示を入力する。結果、画像形成用発光が終了する。
次にLD107aとLD107bの微小発光を終了する。エンジンコントローラ122は、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に、所定時間経過後のt7において、BASE1信号およびBASE2信号によりスイッチング回路116およびスイッチング回路216をOFFし、微小発光を終了する。このとき、走査されるレーザー光が感光ドラム5上の紙(記録材)の端部に対応する位置を抜ける紙端部タイミングはt6であり、t5<t6<t7の関係となる。
また、所謂縁無しプリントの場合はt6<t5<t7の関係となる。ここで、微小発光の終了t7は、図8ではポリゴン端部タイミングtPより早く終了しているが、t8まで長く設定しても良い。
以上により、画像領域(t4からt5間)より広く、且つ紙端部間(t3からt6間)より広い領域である(t1からt7)の間で微小発光レベルの自動光量調整を行うことができる。
また、エンジンコントローラ122は、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に所定時間経過後のt8から、先に説明したt8´以降として説明した処理を繰り返し実行する。これにより、外部からの印刷要求に応じて、プリントジョブを実行するときに、複数回の各種APCを効率よく行うことが出来る。
以上のように、本実施例によれば、以下の効果を得ることができる。微小発光(非画像部微小発光)レベルの発光は、上に説明した通り、レーザー照射によって感光ドラムにトナー等の現像材が帯電付着しない程度のレベルである。このため、微小発光(非画像部微小発光)レベルの発光強度設定タイミングは、感光ドラムの有効画像領域を含んだ非画像領域のタイミング(画像領域前)において行うことが可能となる。これにより、本体の小型化および光走査装置の小型化による感光ドラムの有効画像領域外である非画像領域が縮小しても2レベルのAPC時間をより長く確保することが可能となる。
そして、図8のタイミングチャートを、1ジョブ(1プリントジョブ)の中で複数回実行する。このため、2つの発光部のそれぞれにおいて、画像部への発光の光量、及び、微小発光の光量を1ジョブの中で複数回調整でき、1ジョブの中を通して、帯電電位Vdを適切に維持でき、結果、反転かぶりや正かぶりを抑制することが出来る。その結果、より高画質な画像を得ることが可能となる。
尚、図8のタイミングチャートにおいては、P(Ib)及びP(Idrv+Ib)について説明を行ってきたが、夫々をP(Ib+Ibias)、P(Idrv+Ib+Ibias)に置き換えることで、同様のことを図6の回路でも達成できる。
[実施例2]
実施例2においては、実施例1を更に発展させ、より多くの時間を2水準のAPCに割り当てる実施について説明を行う。尚、画像形成装置の構成、及び回路の構成については、基本的に実施例1と同様なので、ここでの詳しい説明を省略する。また、以下においては、図10を用いて実施例2におけるAPCのタイミングチャートを説明するが、t7のタイミングまでは実施例1と同様の処理なのでその説明も省略する。以下、差異を中心に説明を行う。
図10は第2の実施例を示す、光走査のタイミングを示すタイミング図である。本実施例の大きな特徴は、微小発光(非画像部微小発光)レベルの発光強度設定タイミングを、感光ドラムの有効画像領域を含んだ非画像領域のタイミング(画像領域後)においても行うことである。
具体的には、ビデオコントローラ123は、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に所定時間経過後のt5まで感光ドラムの画像領域に対してレーザー光のドットをVIDEO信号に応じて走査して画像走査を終了する。
同じタイミングで、エンジンコントローラ122は、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に所定時間経過後のt5からVenb1信号およびVenb2信号によりバッファ125およびバッファ225のイネーブル端子にディセーブルの信号指示を入力する。
また、エンジンコントローラ122は、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に所定時間経過後のt5において、SH12信号をONにすることにより、微小発光レベルのAPC_Baを開始する。
そして、エンジンコントローラ122は、t7になる迄、SH12信号をONとし、微小発光レベルのAPC_Baを継続する。そして、エンジンコントローラ122は、t7になると、SH12信号をOFFすると共に、BASE1信号によりスイッチング回路116をOFFし、微小発光のAPC_Baを終了する。自動光量調整の強制発光期間中に、ポリゴンミラーの面の変化タイミングtPがあることが想定されている。よって、t7からtPeでは、ポリゴンミラー133のエッジ部(反射面同士の境界の近傍部分)の反射における迷光等を避けるべくレーザーの発光を停止する(但し、tpeはポリゴンエッジ部での反射が終了する時間とする)。
また、エンジンコントローラ122は、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に所定時間経過後のtPeにおいて、BASE2信号とSH22信号をONにすることにより、微小発光レベルのAPC_Bbを開始する。そして、エンジンコントローラ122は、t8になる迄、BASE2信号とSH22信号をONとし、微小発光レベルのAPC_Bbを継続する。そして、エンジンコントローラ122は、t8になると、SH22信号をOFFにし、更にBASE2信号によりスイッチング回路216をOFFし、微小発光のAPC_Bbを終了する。
また、エンジンコントローラ122は、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に所定時間経過後のt8から、SH11信号をONにすると共に、Ldrv1信号により、スイッチング回路106をONとし、強発光レベルのAPC_Paを開始する。そして、t9のタイミングまで、APC_Paを継続する。
また、エンジンコントローラ122は、水平同期信号/BDの出力タイミング(t0或いはt1)を基準に所定時間経過後のt9から、SH21信号をONにすると共に、Ldrv2信号により、スイッチング回路206をONとし、強発光レベルのAPC_Pbを開始する。そして、t1´´のタイミングまで、APC_Paを継続する。
そして、同期検出用センサ121の出力は水平同期信号/BDとしてt0´´で出力される。エンジンコントローラ122は、t0´´において、水平同期信号/BDを検出すると、上に説明したt0以降のシーケンスを繰り返し実行する。
以上のように実施例2では実施例1と同様の効果に加えて以下の効果を得る。即ち、感光ドラムの有効画像領域を含んだ非画像領域のタイミング(画像領域後)である紙の余白部t5から、強発光レベルの発光強度設定開始t8までの期間を微小発光レベルの発光強度設定タイミングにできる。これにより、微小発光の自動光量調整の時間をより多く確保することが可能となる。
尚、図10のタイミングチャートにおいては、P(Ib)及びP(Idrv+Ib)について説明を行ってきたが、夫々をP(Ib+Ibias)、P(Idrv+Ib+Ibias)に置き換えることで、同様のことを図6の回路でも達成できる。
[実施例3]
実施例1、2では、各種APCシーケンスを、BD周期毎(1回主走査する毎)に繰り返す例について説明をした。つまり、実施例1、2で説明した各種APCシーケンスでは、以下の4種類のAPCを1回のBD周期の中で少なくとも1回ずつ実施するシーケンスであった。それぞれの内容をまとめると以下のようになる。
・APC_Ba:LD107aの微小発光用APC
・APC_Bb:LD107bの微小発光用APC
・APC_Pa:LD107aの強発光用APC
・APC_Pb:LD107bの強発光用APC
ところで、画像形成装置や光走査装置の小型化や、ポリゴンミラー133の回転スピードの高速化に伴って1回のBD周期が短くなると、APC時間を確保する事が難しくなる場合がある。即ち、1回のBD周期中に、上述した4種のAPCの全てを実施できない場合がある。
そこで、本実施例では、1回のBD周期中に、上述した4種のAPCの全てを実施せずに、微小発光用のAPC(APC_BaとAPC_Bb)については、BD周期毎にどちらか一方の微小発光用のAPCを交互に実施する。
具体的には、1ジョブ中の奇数番目のBD周期では、1回のBD周期の中で、LD107bのAPC_Bbを実行せずに、APC_BaとAPC_PaとAPC_Pbを実施する第1調整工程を行う。また、1ジョブ中の偶数番目のBD周期では、1回のBD周期の中で、LD107aのAPC_Baを実施せずに、APC_BbとAPC_PaとAPC_Pbを実施する第2調整工程を行う。
このように微小発光用APCであるAPC_Ba、APC_Bbはどちらか一方がBD周期毎で交互に間引かれる(未実施となる)。つまり、第1調整工程と第2調整工程とをBD周期毎に交互に実行する。これをまとめると、表1のようになる。
以上の様に、LD107aとLD107bの微小発光用のAPCを、BD周期毎に交互に間引くことにより、APC時間を確保することができる。
なお、本実施例では、レーザー光量の大きい強発光では、ドループによる光量ダウンの影響が大きいため、APC_PaとAPC_Pbは全BD周期毎に実施することとした。しかし、ドループによる光量ダウンの影響が許容できる場合には、強発光用APCを間引いても構わない。
Figure 0006071258
[実施例4]
実施例1、2では、LD107a、LD107bのそれぞれで、発光レベルP(Idrv)のAPCと、発光レベルP(Ib)のAPCとをそれぞれ行う構成を説明した。しかし、2水準の発光レベルで発光させる為の駆動電流Idrv及び駆動電流Ibの調整方向についてこれだけではない。そこで、本実施例では、他のAPCの方法について説明する。
<他のAPC方法(1)>
次に他のAPC方法(1)について図3を援用して説明する。他のAPC方法(1)では、発光レベルP(Ib)のAPCと発光レベルP(Ib+Idrv)のAPCを行う。
具体的には、まず、P(Ib1)のAPC(APC_Ba)をまず実行する。次に、P(Ib+Idrv)のAPCを行う。まず、エンジンコントローラ122は、SH12信号により、サンプル/ホールド回路112をホールド期間中とし、更にスイッチング回路116を入力信号BASE1によりオン状態とする。つまり、LD107aに駆動電流Ib1を供給した状態とする。それと同時にエンジンコントローラには、サンプル/ホールド回路102をサンプリング状態に設定し、スイッチング回路106を、上述の実施例と同様に入力信号DATA1によりON状態とし、駆動電流Ib1に加えて駆動電流IdrvもLD107aに供給してLD107aを発光させる。
この状態で、LD107aの発光量をPD108でモニターする。また実際のその発光量に比例したモニター電流Im1´を発生させ、それを電流電圧変換回路109に流しモニター電圧Vm1´を発生させる。
このモニター電圧Vm1´が、目標値である第1の基準電圧Vref111´と一致するように、電流増幅回路104が基準電流源105に流れるIo11´をもとに、駆動電流IdrvをIdrv1´となるよう調整する。ここで基準電圧Vref111´は、P(Ib1+Idrv1)に対応した電圧値である。またIdrv1´は、P(Ib1+Idrv1)である光量を発光させる電流とP(Ib1)である光量を発光させる電流との差分となる。この強発光レベルのAPC動作をAPC_Pa´と称す。
また、LD107bについても上述したのと同様の制御によってAPCを行い、駆動電流Idrv2´を制御する。このLD107bにおける強発光レベルのAPC動作をAPC_Pb´と称す。
上述したAPC方式の場合、P(Ib1)のAPCのタイミングは、P(Ib1+Idrv1)のAPCを行う前に実行する必要がある。このため、実施例1のシーケンスであれば、図8において、t8´からt9´、及び、t8からt9までAPC_Baを行い、t9´からt1まで、及び、t9からt1´´までAPC_Pa´を行い、t1からt2までAPC_Bbを行い、t2からt3までAPC_Pb´を行うよう変更したシーケンスにすればよい。また、図8において、t8´からt9´、及び、t8からt9までAPC_Baを行い、t9´からt0まで、及び、t9からt0´´までAPC_Bbを行い、t0からt2までAPC_Pa´を行い、t2からt3までAPC_Pb´を行うよう変更したシーケンスにしてもよい。
また、実施例2のシーケンスであれば、図10において、t8´からt9´及びt8からt9までAPC_Pa´を行い、t9´からt1まで及びt9からt1´´までAPC_Pb´を行うよう変更したシーケンスにすればよい。
また、上の説明では、P(Ib)及びP(Ib+Idrv)について説明を行ってきたが、夫々をP(Ib+Ibias)、P(Ib+Idrv+Ibias)に置き換えることで、同様のことを図6の回路でも達成できる。
<他のAPC方法(2)>
次に他のAPC方法(2)について図3を援用して説明する。他のAPC方法(2)では、発光レベルP(Idrv)のAPCと発光レベルP(Ib+Idrv)のAPCを行う。
具体的には、P(Idrv1)のAPC(APC_Pa)を実行した後、エンジンコントローラ122の指示によるSH11信号により、サンプル/ホールド回路102をホールド期間中(非サンプリング期間中)、スイッチング回路106をオン状態とし、LD107aに駆動電流Idrv1を供給する。同時にSH12信号によりサンプル/ホールド回路112をAPC動作中にし、スイッチング回路116を入力信号BASE1によりON状態とし、駆動電流Idrv1に加えて駆動電流IbもLD107aに供給し、LD107aを発光させる。
この状態で、LD107aの発光量をPD108でモニターする。そして実際の発光量に比例したモニター電流Im2´(Im1<Im2´)を発生させ、電流電圧変換回路109に流しモニター電圧Vm2´を発生させる。
このモニター電圧Vm2´が、目標値である第2の基準電圧となる電位としたVref121´と一致するように、電流増幅回路114が基準電流源115に流れるIo12´をもとに、駆動電流IbをIb1´となるよう調整する。そして、SH12信号をオフとし、サンプル/ホールド回路112をホールド状態とすると駆動電流Ib1´に相当する電圧がコンデンサ113にチャージされる。ここで、基準電圧Vref121´は、P(Ib1+Idrv1)に対応した電圧値である。またIb1´は、P(Ib1+Idrv1)である光量を発光させる電流とP(Idrv1)である光量を発光させる電流との差分となる。この微小発光レベルのAPC動作をAPC_Ba´と称す。
また、LD107bについても上述したのと同様の制御によってAPCを行い、駆動電流Ib2´を制御する。このLD107bにおける強発光レベルのAPC動作をAPC_Bb´と称す。
上述したAPC方式の場合、実施例1のシーケンスであれば、図8において、t1からt2までAPC_Ba´を行い、t2からt3までAPC_Bb´を行うようなシーケンスに変更すればよい。また、図8において、t9´からt0まで、及び、t9からt0´´までAPC_Ba´を行い、t0からt2までAPC_Paを行い、t2からt3又はt4までAPC_Bb´を行うよう変更したシーケンスにしてもよい。
また、実施例2のシーケンスであれば、図10において、t1からt2まで、及び、t6からt7までAPC_Ba´を行い、t2からt3又はt4まで、及び、tPeからt8までAPC_Bb´を行うよう変更してシーケンスにすればよい。
上述したように、図8、図10のタイミングチャートに、本実施例で説明した他のAPC方法を適用し、それのタイミングチャートを、1ジョブ(1プリントジョブ)の中で複数回実行する。このようにすることで、実施例1と同様に、2つの発光部のそれぞれにおいて、画像部への発光の光量、及び、微小発光の光量を1ジョブの中で複数回調整でき、1ジョブの中を通して、帯電電位Vdを適切に維持でき、結果、反転かぶりや正かぶりを抑制することが出来る。その結果、より高画質な画像を得ることが可能となる。
また、上の説明では、P(Ib)及びP(Idrv+Ib)について説明を行ってきたが、夫々をP(Ib+Ibias)、P(Idrv+Ib+Ibias)に置き換えることで、同様のことを図6の回路でも達成できる。
5(5Y,5M,5C,5K) 感光ドラム
9(9Y,9M,9C,9K) 光走査装置
107a,107b レーザーダイオード
108 フォトダイオード
122 エンジンコントローラ
123 ビデオコントローラ
130 レーザー駆動システム回路

Claims (14)

  1. それぞれ独立してレーザー光を発光可能な第1、第2発光部と、前記第1、第2発光部を駆動電流によって発光させる駆動手段と、感光体と、前記感光体を帯電する帯電手段と、駆動電流を調整する調整手段と、を有し、前記帯電された感光ドラムに前記第1、第2発光部の発光により潜像を形成し、前記潜像にトナーを付着させ可視化することで記録材に画像を形成する画像形成装置であって、
    前記駆動手段は、プリントデータの入力に応じて、前記感光体の画像形成可能領域のうちの画像部に対してプリント用の第1発光レベルの光量でパルスデューティーに従う時間で前記第1、第2発光部をそれぞれ発光させ、前記感光体の画像形成可能領域のうちの非画像部に対して微小発光の第2発光レベルの光量で前記第1、第2発光部をそれぞれ発光させ、
    前記駆動手段は、第1駆動電流に第2駆動電流を加えた駆動電流によって前記第1発光部を前記第1発光レベルで発光させ、且つ、前記第2駆動電流によって前記第1発光部を前記第2発光レベルで発光させ、第3駆動電流に第4駆動電流を加えた駆動電流によって前記第2発光部を前記第1発光レベルで発光させ、且つ、前記第4駆動電流によって前記第2発光部を前記第2発光レベルで発光させ、
    前記調整手段は、1回の水平同期信号周期の中で、前記第1、第2、第3、第4駆動電流の全てを調整することを特徴とする画像形成装置。
  2. 前記第2発光レベルは、前記帯電手段に帯電された前記感光ドラムの非画像部の電位を目標電位に減衰させるためのレーザー発光領域内で前記第1、第2発光部を発光させるためのものであることを特徴とする請求項1に記載の画像形成装置。
  3. 前記調整手段は、記録材の余白領域に対してレーザー発光が行われる余白領域期間において、前記第4駆動電流を調整することを特徴とする請求項1又は2に記載の画像形成装置。
  4. 前記調整手段は、1回の前記水平同期信号周期の中で、前記画像形成可能領域に対する発光期間よりも後の期間で、前記第1及び第3駆動電流を調整することを特徴とする請求項1乃至3のいずれか一項に記載の画像形成装置。
  5. 前記調整手段は、1回の前記水平同期信号周期の中で、前記画像形成可能領域に対する発光期間よりも前の期間で、前記第2及び第4駆動電流を調整することを特徴とする請求項1乃至4のいずれか一項に記載の画像形成装置。
  6. 前記調整手段は、1回の前記水平同期信号周期の中で、前記画像形成可能領域に対する発光期間よりも後で且つ前記第1及び第3駆動電流を調整するよりも前の期間で、前記第2及び第4駆動電流を調整することを特徴とする請求項1乃至5のいずれか一項に記載の画像形成装置。
  7. 前記調整手段は、前記第2駆動電流によって前記第1発光部を前記第2発光レベルで発光させて前記第2駆動電流を調整した後、前記調整された第2駆動電流に前記第1駆動電流を加えた駆動電流によって前記第1発光部を前記第1発光レベルで発光させて前記第1駆動電流を調整することを特徴とする請求項1乃至6のいずれか一項に記載の画像形成装置。
  8. 前記調整手段は、前記第1、第2、第3、第4駆動電流のそれぞれを1ジョブにおいて複数回調整することを特徴とする請求項1乃至7のいずれか一項に記載の画像形成装置。
  9. 前記調整手段は、前記第1及び第2発光部から発せられるレーザー光を受光可能な1つの受光部を備え、
    受光量に応じた前記受光部からの出力に基づいて前記第1及び第2及び第3及び第4駆動電流をそれぞれ調整することを特徴とする請求項1乃至8のいずれか一項に記載の画像形成装置。
  10. 前記第2発光レベルの光量は、前記帯電手段により印加される帯電電圧の変化に応じて変化する量であることを特徴とする請求項1乃至9のいずれか一項に記載の画像形成装置。
  11. 前記第2発光レベルの光量は、前記帯電された感光ドラムの帯電電位の変化に応じて変化する量であることを特徴とする請求項1乃至9のいずれか一項に記載の画像形成装置。
  12. 前記感光体と、前記第1、第2発光部と、前記駆動手段と、前記帯電手段と、をそれぞれ複数有し、複数色のトナー像を形成することで記録材に複数色の画像を形成することを特徴とする請求項1乃至11のいずれか一項に記載の画像形成装置。
  13. それぞれ独立してレーザー光を発光可能な第1、第2発光部と、前記第1、第2発光部を駆動電流によって発光させる駆動手段と、感光体と、前記感光体を帯電する帯電手段と、駆動電流を調整する調整手段と、を有し、前記帯電された感光ドラムに前記第1、第2発光部の発光により潜像を形成し、前記潜像にトナーを付着させ可視化することで記録材に画像を形成する画像形成装置であって、
    前記駆動手段は、プリントデータの入力に応じて、前記感光体の画像形成可能領域のうちの画像部に対してプリント用の第1発光レベルの光量でパルスデューティーに従う時間で前記第1、第2発光部をそれぞれ発光させ、前記感光体の画像形成可能領域のうちの非画像部に対して微小発光の第2発光レベルの光量で前記第1、第2発光部をそれぞれ発光させ、
    前記駆動手段は、第1駆動電流に第2駆動電流を加えた駆動電流によって前記第1発光部を前記第1発光レベルで発光させ、且つ、前記第2駆動電流によって前記第1発光部を前記第2発光レベルで発光させ、第3駆動電流に第4駆動電流を加えた駆動電流によって前記第2発光部を前記第1発光レベルで発光させ、且つ、前記第4駆動電流によって前記第2発光部を前記第2発光レベルで発光させ、
    前記調整手段は、1回の水平同期信号周期の中で、前記画像形成可能領域に対する発光期間よりも前の期間で、前記第2及び第4駆動電流を調整することを特徴とする画像形成装置。
  14. それぞれ独立してレーザー光を発光可能な第1、第2発光部と、前記第1、第2発光部を駆動電流によって発光させる駆動手段と、感光体と、前記感光体を帯電する帯電手段と、駆動電流を調整する調整手段と、を有し、前記帯電された感光ドラムに前記第1、第2発光部の発光により潜像を形成し、前記潜像にトナーを付着させ可視化することで記録材に画像を形成する画像形成装置であって、
    前記駆動手段は、プリントデータの入力に応じて、前記感光体の画像形成可能領域のうちの画像部に対してプリント用の第1発光レベルの光量でパルスデューティーに従う時間で前記第1、第2発光部をそれぞれ発光させ、前記感光体の画像形成可能領域のうちの非画像部に対して微小発光の第2発光レベルの光量で前記第1、第2発光部をそれぞれ発光させ、
    前記駆動手段は、第1駆動電流に第2駆動電流を加えた駆動電流によって前記第1発光部を前記第1発光レベルで発光させ、且つ、前記第2駆動電流によって前記第1発光部を前記第2発光レベルで発光させ、第3駆動電流に第4駆動電流を加えた駆動電流によって前記第2発光部を前記第1発光レベルで発光させ、且つ、前記第4駆動電流によって前記第2発光部を前記第2発光レベルで発光させ、
    前記調整手段は、1回の水平同期信号周期の中で、前記第4駆動電流を調整することなく前記第1、第2、第3駆動電流を調整する第1調整工程と、1回の前記水平同期信号周期の中で、前記第2駆動電流を調整することなく前記第1、第3、第4駆動電流を調整する第2調整工程と、を実行可能で、前記第1調整工程と前記第2調整工程を水平同期信号周期毎に交互に実行することを特徴とする画像形成装置。
JP2012131292A 2012-06-08 2012-06-08 画像形成装置 Active JP6071258B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012131292A JP6071258B2 (ja) 2012-06-08 2012-06-08 画像形成装置
US13/912,062 US9465312B2 (en) 2012-06-08 2013-06-06 Image forming apparatus and method for adjustment of light amount during weak light emission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012131292A JP6071258B2 (ja) 2012-06-08 2012-06-08 画像形成装置

Publications (2)

Publication Number Publication Date
JP2013254174A JP2013254174A (ja) 2013-12-19
JP6071258B2 true JP6071258B2 (ja) 2017-02-01

Family

ID=49714979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012131292A Active JP6071258B2 (ja) 2012-06-08 2012-06-08 画像形成装置

Country Status (2)

Country Link
US (1) US9465312B2 (ja)
JP (1) JP6071258B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201323456A (zh) * 2011-07-21 2013-06-16 Tokyo Ohka Kogyo Co Ltd 聚合物,光阻組成物及光阻圖型之形成方法
JP5777687B2 (ja) * 2012-11-28 2015-09-09 キヤノン株式会社 画像形成装置
JP6463112B2 (ja) 2014-12-10 2019-01-30 キヤノン株式会社 画像形成装置
JP6407033B2 (ja) * 2015-01-08 2018-10-17 キヤノン株式会社 画像形成装置
JP6914010B2 (ja) * 2016-05-25 2021-08-04 キヤノン株式会社 駆動装置
JP6682363B2 (ja) * 2016-05-31 2020-04-15 キヤノン株式会社 画像形成装置
JP6942450B2 (ja) * 2016-08-30 2021-09-29 キヤノン株式会社 画像形成装置
JP7039217B2 (ja) * 2017-08-31 2022-03-22 キヤノン株式会社 画像形成装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171260A (ja) 1994-12-15 1996-07-02 Canon Inc 電子写真装置
JPH1044504A (ja) 1996-08-06 1998-02-17 Canon Inc 画像形成装置およびその走査方法
US6259466B1 (en) * 1998-02-25 2001-07-10 Canon Kabushiki Kaisha Light source drive apparatus and image formation apparatus
JP2000330346A (ja) * 1999-05-21 2000-11-30 Hitachi Koki Co Ltd レーザ光量制御装置及び制御方法
US6917639B2 (en) * 2001-08-09 2005-07-12 Ricoh Company, Ltd. Laser driver circuit
JP2004223716A (ja) * 2002-02-08 2004-08-12 Canon Inc レーザビーム制御機構と画像形成装置
JP2003312050A (ja) 2002-04-23 2003-11-06 Canon Inc 画像形成装置
US6885685B2 (en) * 2002-06-11 2005-04-26 Sumitomo Electric Industries, Ltd. Control system for a laser diode and a method for controlling the same
JP4217490B2 (ja) * 2003-01-17 2009-02-04 株式会社リコー 半導体レーザ駆動装置、光書き込み装置、画像形成装置及び半導体レーザ駆動方法
JP4165314B2 (ja) * 2003-06-30 2008-10-15 ブラザー工業株式会社 画像形成装置
JP3938144B2 (ja) * 2004-02-17 2007-06-27 キヤノン株式会社 画像形成装置、その制御方法、及び制御プログラム
JP2006039026A (ja) 2004-07-23 2006-02-09 Canon Inc 画像形成装置
JP2007055035A (ja) * 2005-08-23 2007-03-08 Ricoh Co Ltd 画像形成装置、そのエラー処理方法、及びプログラム
JP2007192967A (ja) * 2006-01-18 2007-08-02 Pentax Corp 光走査装置
JP2007304523A (ja) * 2006-05-15 2007-11-22 Ricoh Co Ltd 画像形成装置
JP4540643B2 (ja) * 2006-07-14 2010-09-08 日本テキサス・インスツルメンツ株式会社 発光素子駆動装置
JP5354853B2 (ja) * 2006-12-19 2013-11-27 キヤノン株式会社 画像形成装置及び該画像形成装置に備えられる制御装置
JP5056225B2 (ja) * 2007-07-11 2012-10-24 コニカミノルタビジネステクノロジーズ株式会社 画像形成装置
JP2009090524A (ja) 2007-10-05 2009-04-30 Canon Inc 画像形成装置、レーザ発光装置及びそれらの制御方法
JP5097021B2 (ja) * 2008-06-06 2012-12-12 キヤノン株式会社 画像形成装置、及びその制御方法
JP5629975B2 (ja) * 2009-03-18 2014-11-26 株式会社リコー 画像形成装置及び光走査制御プログラム
KR20110012297A (ko) * 2009-07-30 2011-02-09 삼성전자주식회사 광 주사 장치 및 이를 채용한 전자 사진 방식의 화상 형성 장치
JP5864863B2 (ja) * 2010-03-09 2016-02-17 キヤノン株式会社 画像形成装置
JP5885472B2 (ja) * 2010-12-10 2016-03-15 キヤノン株式会社 カラー画像形成装置

Also Published As

Publication number Publication date
US9465312B2 (en) 2016-10-11
JP2013254174A (ja) 2013-12-19
US20130328993A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP6071258B2 (ja) 画像形成装置
US10948844B2 (en) Color image forming apparatus
JP6238560B2 (ja) 画像形成装置
JP5943592B2 (ja) カラー画像形成装置
JP6061505B2 (ja) 光学走査装置及びそれを有する画像形成装置
US9075338B2 (en) Image forming apparatus
JP2014228656A (ja) 画像形成装置
KR102312098B1 (ko) 화상 형성 장치
US9341976B2 (en) Multi-station image forming apparatus with start-up control
JP6091668B2 (ja) 画像形成装置
JP7039217B2 (ja) 画像形成装置
JP7208003B2 (ja) 画像形成装置
JP6210323B2 (ja) 画像形成装置
JP2021074957A (ja) 画像形成装置
JP2020021010A (ja) 画像形成装置
JP6942450B2 (ja) 画像形成装置
JP6573383B2 (ja) 画像形成装置
JP2014037119A (ja) レーザ制御装置,光走査装置,画像形成装置,およびレーザ制御方法
JP2007147882A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R151 Written notification of patent or utility model registration

Ref document number: 6071258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151