JP5768883B2 - リチウムイオン二次電池及びリチウムイオン二次電池の製造方法 - Google Patents

リチウムイオン二次電池及びリチウムイオン二次電池の製造方法 Download PDF

Info

Publication number
JP5768883B2
JP5768883B2 JP2013522640A JP2013522640A JP5768883B2 JP 5768883 B2 JP5768883 B2 JP 5768883B2 JP 2013522640 A JP2013522640 A JP 2013522640A JP 2013522640 A JP2013522640 A JP 2013522640A JP 5768883 B2 JP5768883 B2 JP 5768883B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
facing portion
material particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013522640A
Other languages
English (en)
Other versions
JPWO2013005302A1 (ja
Inventor
浩二 高畑
浩二 高畑
佐野 秀樹
秀樹 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013522640A priority Critical patent/JP5768883B2/ja
Publication of JPWO2013005302A1 publication Critical patent/JPWO2013005302A1/ja
Application granted granted Critical
Publication of JP5768883B2 publication Critical patent/JP5768883B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電極体と電池ケースと電解液とを備えるリチウムイオン二次電池、及び、このリチウムイオン二次電池の製造方法に関する。
近年、ハイブリッド自動車、電気自動車などの車両や、ノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、充放電可能なリチウムイオン二次電池(以下、単に電池ともいう)が利用されている。このような電池として、特許文献1には、負極活物質に格子面間隔(d002)が0.38nmの低結晶性炭素を88質量%、導電剤に、その定結晶性炭素より高い導電性を有する気相成長炭素繊維を4質量%、及び、LiPFを0.8mol/lの濃度となるように溶解した電解液を用いてなる電池が開示されている。
特開2002−231316号公報
しかしながら、電池を、例えば10C以上など比較的大きな電流で放電(ハイレート放電)させると正極活物質層が、電池に比較的大きな電流で充電(ハイレート充電)すると負極活物質層がそれぞれ膨張するため、特許文献1に記載の、電解液を使用した電池では、電解液(具体的には、正極板の正極活物質層と負極板の負極活物質層との間に保持された電解液(以下、保持電解液ともいう))の一部が、電極体の外側に押し出されることがある。すると、電極体内に保持する保持電解液の液量が減少して電池反応が生じにくくなり、電池の内部抵抗が増加する場合がある。
また、上述の保持電解液のほかに、この保持電解液と相互に流通可能とされた状態で電池ケース内に貯められた貯留電解液を有する電池では、押し出される電解液におけるリチウムイオン濃度と、貯留電解液のリチウムイオン濃度との違いから、保持電解液の濃度が徐々に変化(増加或いは減少)する場合もある。そして、これにより、電極体での電池反応が生じにくくなり、電池の内部抵抗が増加する場合もある。
本発明は、かかる問題を鑑みてなされたものであって、ハイレート充放電により電極体から保持電解液が押し出されるのを抑制したリチウムイオン二次電池、及び、このようなリチウムイオン二次電池の製造方法を提供することを目的とする。
本発明の一態様は、負極金属箔、及び、上記負極金属箔上に形成され、負極活物質粒子を含む負極活物質層を有する負極板、正極金属箔、及び、上記正極金属箔上に形成される正極活物質層を有する正極板、及び、上記正極板と上記負極板との間に介在するセパレータ、を有する電極体と、上記電極体を収容してなる電池ケースと、上記電池ケース内に収容された、リチウムイオンを含有する電解液と、を備え、上記電解液は、上記電極体の上記正極板と上記負極板との間に保持された保持電解液を含み、上記負極活物質層は、上記セパレータを介して隣りあう上記正極板の上記正極活物質層と対向する対向部と、上記対向部の外側に位置し、上記正極活物質層とは対向しない非対向部とを有、上記負極活物質粒子は、球形化黒鉛粒子の表面を非晶質炭素で被覆した、平板形状で磁界による磁場配向可能な複合粒子であり、上記負極板の縦断面における100個以上の上記負極活物質粒子の各々の粒子断面を、走査型電子顕微鏡(SEM)で観察した場合において、上記粒子断面の長径の延びる方向と上記負極金属箔とがなす角をθとし、観察された上記負極活物質粒子のうち、角θが60〜90°である上記負極活物質粒子の数をMAとし、角θが0〜30°である上記負極活物質粒子の数をMBとし、数MAを数MBで除した値(=MA/MB)を、上記負極活物質粒子の配向度ALとしたとき、上記負極活物質層は、上記非対向部における上記負極活物質粒子の配向度ALである非対向部配向度AL1が1.2以上とされてなるリチウムイオン二次電池であって、前記負極活物質層の前記対向部は、上記対向部における前記配向度ALである対向部配向度AL2が0.8以下とされてなるリチウムイオン二次電池である。
上述の電池では、負極活物質層のうちでも、非対向部における負極活物質粒子の非対向部配向度AL1を1.2以上としている。つまり、非対向部では、平板形状の負極活物質粒子の多くが、負極金属箔に対して、90°に近い大きな角度を持つ、いわば立った姿勢に配置されている。このため、この非対向部の負極活物質粒子により、電池のハイレート充放電時に、電極体外に保持電解液が押し出されるのを抑制することができる。また、上述の電池では、負極活物質層の対向部における負極活物質粒子の対向部配向度AL2を0.8以下としてある。即ち、非対向部に比して、対向部では、平板形状の負極活物質粒子のうち、負極金属箔に対して0°に近い小さな角度を持つ、いわば、寝た姿勢とされた負極活物質粒子が多くなっている。このため、低温環境下におけるリチウム金属の析出を防いだ電池とすることができる。というのも、黒鉛粒子は、炭素原子が平板状に配置されたベーサル面を複数積層した(雲母状の)結晶構造を有しており、このベーサル面に平行な表裏面が主面となった平板形状の粒子形状を取ることが多い。即ち、平板形状の黒鉛粒子では、その主面(表裏面)がベーサル面と平行になっているものが多いと考えられる。従って、平板形状の負極活物質粒子を寝た姿勢にすると、正極板から見た、黒鉛のベーサル面の投影面積を広くでき、負極活物質粒子がベーサル面を通じてリチウムイオンをより多く受け取ることができる。このため、低温(−15℃)環境下で、例えば30Cなど、比較的大きな電流を短時間だけ充電した際には、リチウムイオンを適切に負極活物質粒子内に挿入でき、負極活物質層におけるリチウム金属の析出を抑制できたと考えられる。
なお、負極活物質粒子は、平板形状で磁界による磁場配向可能な粒子であり、結晶異方性が高く、反磁性磁場配向性を有し、磁界により粒子の向きを変えうる特性を有する、球形化黒鉛(平板形状の天然黒鉛あるいは人造黒鉛の縁を加工して、全体的には球形に近いが、粒子中央には平板形状が残るもの)の黒鉛粒子であるしかも、上述した黒鉛粒子の表面を非晶質炭素で被覆した、平板形状の複合粒子である
また、電極体としては、帯状の正極板及び負極板を、帯状のセパレータを介して捲回してなる捲回型の電極体や、複数の正極板及び負極板をセパレータを介して交互に積層してなる積層型の電極体が挙げられる。
また、電解液の電池ケース内への収容形態としては、例えば、電解液の一部は、保持電解液として電極体の正極板と負極板との間に保持される一方、残部が、保持電解液と相互に流通可能とされた状態で電池ケース内に貯留電解液として貯められている形態が挙げられる。また、例えば、電解液の全てが保持電解液として電極体の正極板と負極板との間に保持されている形態、電解液の一部が保持電解液とされ、残部が、電池ケース内に貯められているが、上述の貯留電解液とは異なり、保持電解液と相互に流通しない程度に少量とした形態も挙げられる。
さらに、本発明の他の態様は、負極金属箔、及び、上記負極金属箔上に形成され、負極活物質粒子を含む負極活物質層を有する負極板、正極金属箔、及び、上記正極金属箔上に形成される正極活物質層を有する正極板、及び、上記正極板と上記負極板との間に介在するセパレータ、を有する電極体と、上記電極体を収容してなる電池ケースと、上記電池ケース内に収容された、リチウムイオンを含有する電解液と、を備え、上記電解液は、上記電極体の上記正極板と上記負極板との間に保持された保持電解液を含み、上記負極活物質層は、上記セパレータを介して隣りあう上記正極板の上記正極活物質層と対向する対向部と、上記対向部の外側に位置し、上記正極活物質層とは対向しない非対向部とを有し、 上記負極活物質粒子は、球形化黒鉛粒子の表面を非晶質炭素で被覆した、平板形状で磁界による磁場配向可能な複合粒子であり、上記負極板の縦断面における100個以上の上記負極活物質粒子の各々の粒子断面を、走査型電子顕微鏡(SEM)で観察した場合において、上記粒子断面の長径の延びる方向と上記負極金属箔とがなす角をθとし、観察された上記負極活物質粒子のうち、角θが60〜90°である上記負極活物質粒子の数をMAとし、角θが0〜30°である上記負極活物質粒子の数をMBとし、数MAを数MBで除した値(=MA/MB)を、上記負極活物質粒子の配向度ALとしたとき、上記負極活物質層は、上記非対向部における上記負極活物質粒子の配向度ALである非対向部配向度AL1が1.2以上とされてなり溶媒中に上記負極活物質粒子を分散させた活物質ペーストを、上記負極金属箔の主面上に塗布して塗膜を形成する塗布工程と、上記塗膜のうち、上記負極活物質層の上記非対向部となる非対向部予定部に磁界を印加して、上記非対向部予定部に含まれる上記負極活物質粒子を磁場配向させる配向工程と、上記配向工程の後、上記塗膜を乾燥させる乾燥工程と、を備えるリチウムイオン二次電池の製造方法であって、前記負極活物質層の前記対向部は、上記対向部における前記配向度ALである対向部配向度AL2が0.8以下とされてなり、前記配向工程は、記塗膜のうち、記負極活物質層の記対向部となる対向部予定部には磁界を印加することなく、記非対向部予定部に磁界を印加するリチウムイオン二次電池の製造方法である。
上述の電池の製造方法のうち配向工程では、非対向部予定部に磁界を印加して、その非対向部予定部中の負極活物質粒子を磁場配向させ、さらに、乾燥工程で塗膜を乾燥させる。従って、負極板(負極活物質層)の非対向部における負極活物質粒子の非対向部配向度AL1を1.2以上とした電池を容易に製造することができる。また、上述の電池の製造方法のうち配向工程では、対向部予定部には磁界を印加することなく非対向部予定部に磁界を印加する。このため、対向部の配向度(前述の対向部配向度AL2)を高くせずに、非対向部の非対向部配向度AL1を高くした電池を、容易かつ確実に製造することができる。
なお、塗膜の乾燥に使用する装置としては、例えば、温風を用いるヒータや、赤外線、電磁誘導加熱(IH)、コンデンサードライヤが挙げられる。このうち、赤外線、電磁誘導加熱(IH)、コンデンサードライヤは、無風で塗膜を乾燥させることができる。従って、これら赤外線、電磁誘導加熱(IH)、コンデンサードライヤを使用して、塗膜を無風で乾燥させる乾燥工程は、負極活物質粒子の配向を崩さずに塗膜を乾燥させることができ、より好ましい。また、無風とは、熱風を塗膜に当てるなど、ファン等による強制的な雰囲気の移動を行わないことを指し、加熱等に伴う自然対流による空気の移動は許容される。
実施形態(実施例1),変形形態にかかるリチウムイオン二次電池の斜視図である。 実施形態(実施例1)にかかるリチウムイオン二次電池の断面図(図1のA−A断面)である。 実施形態(実施例1),変形形態の負極板の斜視図である。 SEMを用いて撮影した、負極板の縦断面の拡大図である。 負極板の縦断面の模式図である。 実施形態(実施例1),変形形態にかかるリチウムイオン二次電池の製造方法の説明図である。 変形形態にかかるリチウムイオン二次電池の断面図(図1のA−A断面)である。
1 電池(リチウムイオン二次電池)
10 電極体
20 負極板
21 負極活物質層
21P 活物質ペースト
21S 塗膜
21X 対向部
21XB 対向部予定部
21Y 非対向部
21YB 非対向部予定部
22 負極活物質粒子
22F 粒子断面
28 銅箔(負極金属箔)
28A 箔主面((負極金属箔の)主面)
30 正極板
31 正極活物質層
38 アルミ箔(正極金属箔)
40 セパレータ
50 電解液
51 保持電解液
80 電池ケース
θ 角
AL 配向度
AL1 非対向部配向度
AL2 対向部配向度
H 磁界
LR 長径
Q 溶媒
(実施形態)
次に、本発明の実施形態に係る電池のうち実施例1の電池について、図面を参照しつつ説明する。
まず、実施例1にかかるリチウムイオン二次電池1について、図1を参照して説明する。この電池1は、いずれも帯状の正極板30、負極板20及びセパレータ40を有し、これら正極板30と負極板20との間にセパレータ40を介在させて捲回した電極体10と、この電極体10を収容してなる電池ケース80と、この電池ケース80内に収容された電解液50とを備える(図1参照)。
このうち、電池ケース80は、共にアルミニウム製の電池ケース本体81及び封口蓋82を有する。このうち電池ケース本体81は有底矩形箱形であり、この電池ケース80と電極体10との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。また、封口蓋82は矩形板状であり、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。この封口蓋82には、電極体10と接続している正極集電部材91及び負極集電部材92のうち、それぞれ先端に位置する正極端子部91A及び負極端子部92Aが貫通しており、図1中、上方に向く蓋表面82aから突出している。これら正極端子部91A及び負極端子部92Aと封口蓋82との間には、それぞれ絶縁性の樹脂からなる絶縁部材95が介在し、互いを絶縁している。さらに、この封口蓋82には矩形板状の安全弁97も封着されている。
また、電解液50は、混合有機溶媒にLiPFを添加し、リチウムイオンを1mol/lの濃度とした非水電解液である。なお、実施例1では、この電解液50を保持される部位の違いにより分類する。即ち、電極体10において、正極板30と負極板20との間に保持されている電解液を保持電解液51ということにする。また、電極体10に保持させるよりも多くの電解液50を電池ケース80に注入したことにより、図2に示すように、保持電解液51と相互に流通可能とされた状態で、電池ケース80内(具体的には、電池ケース80内部の下部80B)に貯められている電解液を貯留電解液52ということにする。
また、電極体10は、図1に示すように、正極板30、負極板20及びセパレータ40を扁平形状に捲回されてなる捲回型電極体である。なお、この電極体10の正極板30及び負極板20はそれぞれ、クランク状に屈曲した板状の正極集電部材91又は負極集電部材92と接合している(図1参照)。このうち、ポリエチレンからなる多孔質状のセパレータ40は、上述した電解液50(保持電解液51)を自身に含浸・保持しつつ、正極板30と負極板20とを離間している。
また、正極板30は、帯状でアルミニウムからなるアルミ箔38と、このアルミ箔38の両主面上にそれぞれ帯状に形成された2つの正極活物質層31,31とを有している。このうち、正極活物質層31は、正極活物質粒子であるLiNi1/3Co1/3Mn1/3と、導電剤であるアセチレンブラック(AB)と、結着剤であるポリフッ化ビニリデン(PVDF)とを含んでいる。
また、負極板20は、図3の斜視図に示すように、長手方向DAに延びる帯状で、銅製の銅箔28と、この銅箔28の両主面28A,28Aにそれぞれ帯状に配置された2つの負極活物質層21,21とを有している。このうち、負極活物質層21は、球形化黒鉛の粒子の表面を非晶質炭素で被覆した、平板形状の複合粒子(平均粒径:10μm)からなる負極活物質粒子22のほか、カルボキシメチルセルロース(CMC)、及び、スチレンブタジエンゴム(SBR)を有している。このうち、負極活物質粒子22をなす複合粒子は、平板形状の天然黒鉛の縁を加工して、全体的には球形に近いが、粒子中央には平板形状が残る球形化黒鉛の表面を非晶質炭素で被覆した、扁平な平板形状の粒子である。
なお、負極活物質粒子22のうち、非晶質炭素は、結晶異方性が低く(等方性が高く)、磁場配向性を有していない。一方、負極活物質粒子22(複合粒子)をなす球形化黒鉛は、上述したように天然黒鉛からなるため、天然黒鉛と同様、結晶異方性が高く、反磁性磁場配向性を有し、磁界により粒子の向きを変えうる特性を有している。このため、負極活物質粒子22は、磁界による磁場配向可能な粒子となっている。
さらに、実施例1の電池1では、充電の際、負極活物質層21の幅方向端縁付近に金属リチウムが析出するのを防ぐため、正極活物質層31より負極活物質層21を大きくして、セパレータ40を介して負極活物質層21で正極活物質層31を覆うように配置している。
具体的には、図3に示すように、負極活物質層21の長手方向DA及び幅方向DWの中央に位置する矩形状の対向部21Xと、この対向部21Xの外周側(長手方向DA及び幅方向DW)にそれぞれ位置する矩形枠状の非対向部21Yとからなる。このうち、対向部21Xは、電池1の電極体10において、セパレータ40を介して隣りあう正極板30の正極活物質層31と対向し、非対向部21Yは、電極体10において正極活物質層31と対向していない。
なお、実施例1の電池1では、負極活物質層21の非対向部21Y及び対向部21Xについて、負極活物質粒子22の配向度ALを互いに異ならせている。具体的には、非対向部21Yでは、負極活物質粒子22の配向度ALである非対向部配向度AL1を1.5としている。また、対向部21Xでは、負極活物質粒子22の配向度ALである対向部配向度AL2を0.8以下(具体的には、0.6)としている。
負極活物質粒子22の配向度ALは、以下のようにして算出する。即ち、負極板20の縦断面における100個以上の負極活物質粒子22,22の各々の粒子断面22F,22FをSEMで観察する(図4参照)。観察された各々の負極活物質粒子22,22について、粒子断面22F,22Fの長径LRの延びる方向DRと銅箔28とがなす角をθを計測する。この角θが60〜90°の範囲を満たす粒子断面を有する負極活物質粒子を計数し、その数をMAとする。一方、角θが0〜30°の範囲を満たす粒子断面を有する負極活物質粒子を計数し、その数をMBとする。そして、MAをMBで除した値(=MA/MB)を配向度ALとする。
なお、角θ及びその計測について、図5に示す模式図を用いて説明する。負極活物質粒子22をなす前述した複合粒子は平板形状を有するので、負極活物質粒子22の粒子断面22Fの多くは、図5に示すような扁平形状に見え、この粒子断面22Fに長径LRが存在する。そこで、この粒子断面22Fの長径LRの延びる方向DRと銅箔28とがなす角を角θとする(図5参照)。なお、この角θを特定する手法として、図中において、観察された負極活物質粒子22の粒子断面22Fの長径LRを銅箔28側(図4中、下方)に直線を伸ばし、この直線と銅箔28とがなす角θを測定する手法を用いた。
配向度ALが1.0を越えることは、MA>MB、つまり、角θが60〜90°の範囲を満たす粒子断面を有する負極活物質粒子の数が、角θが0〜30°の範囲を満たす粒子断面を有する負極活物質粒子の数よりも多いことを示している。
実施例1の電池1は、負極活物質粒子22の非対向部配向AL1の値(=1.5)から、非対向部21Yにおいて負極活物質粒子22の多くが銅箔28に対し立った姿勢に配置されていることが判る。一方、対向部配向AL2の値(=0.6)から、対向部21Xにおいては、負極活物質粒子22の多くが銅箔28に対して平行に近い寝た姿勢とされていることが判る。
なお、負極活物質粒子22を銅箔28に塗布し、磁場配向させずに乾燥した場合には、この負極活物質層の配向度AL(AL1,AL2)が0.8以下(実施例1では0.6)になることが判っている。
ところで、本発明者らは、上述した負極板20を用いた実施例1にかかる電池1について、ハイレート放電を繰り返す試験を行い、電池1の内部抵抗の変化を調査した。
まず、電池1の内部抵抗を測定した。具体的には、予め充電状態(SOC)をSOC60%にした電池1について、25℃の温度環境下で30Cの定電流放電を行い、この定電流放電について放電開始から10秒経過時点の電圧を測定した。そして、測定した電圧を、縦軸に電圧、横軸に定電流放電の値を示すグラフにプロットして、この点と原点とを結ぶ直線の傾きから電池1の内部抵抗の値(試験前内部抵抗値R1)を算出した。
内部抵抗の測定後、充電してSOC60%に調整した電池1について、25℃の温度環境下で、30Cの電流による10秒間の放電(ハイレート放電)と、5Cの電流による分間の充電(容量調整充電)とを交互に4000回ずつ繰り返した。なお、ハイレート放電と容量調整充電との間には、10分間の休止を設けた。また、500,1000,1500回目の容量調整充電後に、充電又は放電を行い、電池1をSOC60%に調整した。その後、電池1の内部抵抗の値(試験後内部抵抗値R2)を、前述した手法で測定(算出)した。
そして、試験前内部抵抗値R1及び試験後内部抵抗値R2を用いて、試験前後における電池1の内部抵抗変化率(即ち、試験後内部抵抗値R2を、試験前内部抵抗値R1で除した値から1を引いた値)を算出した。電池1の内部抵抗変化率について、表1に記載する。

Figure 0005768883
一方、実施例2〜5,参考例,比較例1〜4の各電池を用意し、これら各電池の内部抵抗変化率を、上述した実施例1の電池1と同様にしてそれぞれ測定(算出)した。なお、表1に示すように、実施例2〜5及び比較例1,2の各電池は、非対向部配向度AL1の値がそれぞれ実施例1の電池1と異なり、他は同様の構成を有している。また、参考例の電池は、対向部配向度AL2の値が実施例1の電池1と異なり、他は同様の構成を有している。また、比較例3及び比較例4の電池は、非対向部配向度AL1の値を0.8以下とされている。
これら実施例2〜5,参考例,比較例1〜4の各電池についてハイレート放電試験を行った場合の内部抵抗変化率についても併せて表1に示す。
なお、表1では、内部抵抗変化率が0.10未満の電池、即ち、ハイレート放電を繰り返した試験前後で内部抵抗がほとんど増大していない電池に「○」を、逆に、内部抵抗変化率が0.10以上の電池に「×」を付した。
表1によれば、内部抵抗変化率に関し、比較例1〜4の各電池はいずれも「×」であるのに対し、実施例1〜5,参考例の各電池はいずれも「○」である。このことから、非対向部配向度AL1を1.2以上とした実施例1〜5,参考例の各電池は、ハイレート放電を繰り返しても、その前後で内部抵抗の増大をほとんど生じないことが判る。
これは、非対向部における非対向部配向度AL1を1.2以上とし、平板形状の負極活物質粒子22を銅箔28に対して立った姿勢とすることで、ハイレート放電を行っても保持電解液が電極体から押し出されるのを抑制できたためと考えられる。即ち、これにより、ハイレート放電に伴ってリチウムイオン濃度の高くなった保持電解液が押し出されて貯留電解液に混入する一方、押し出された保持電解液よりもリチウムイオン濃度の低い貯留電解液が保持電解液となって電極体に戻ることで、保持電解液のリチウムイオン濃度が徐々に低下するのを防止できたためであると考えられる。
このように、本実施形態に係る実施例1〜5の各電池(電池1)では、負極活物質層21のうちでも、非対向部21Yにおける負極活物質粒子22の非対向部配向度AL1を1.2以上としている。つまり、非対向部21Yにおいて、平板形状の負極活物質粒子22の多くが、銅箔28に対して、90°に近い大きな角度を持つ、いわば立った姿勢に配置されている。このため、この非対向部21Yの負極活物質粒子22により、実施例1〜5の各電池(電池1)のハイレート充放電時に、保持電解液51が電極体10の外部に押し出されるのを抑制することができる。
なお、本実施形態のように、貯留電解液を有する電池の場合には、ハイレート放電時に、リチウムイオン濃度の高い保持電解液51が電極体10から押し出されるのを抑制して、保持電解液51のリチウムイオン濃度が徐々に低下するのを防ぐことができる。このため、ハイレート放電の繰り返し行っても内部抵抗が増加するのを抑制した実施例1〜5の電池(電池1)とすることができる。
このほか、本発明者らは、前述の実施例1〜5,参考例,比較例1〜4の各電池について、低温(−15℃)環境下での比較的大きな電流による短時間の充電試験を行い、その試験による各電池の容量変化を調査した。
まず、電池1の電池容量を測定した。具体的には、予め充電状態をSOC100%にした電池1について、25℃の温度環境下で、1/3Cの電流値で3.0Vとなるまで定電流放電を行い、放電した電池容量を測定した。このときの電池容量を試験前容量C1とする。
電池容量を測定した後、充電してSOC40%に調整した電池1について、−15℃の温度環境下で、30Cの電流による0.1秒間の充電(低温短時間充電)と、0.3Cの電流による10秒間の放電(容量調整放電)とを1サイクルとし、5000サイクル繰り返した。なお、サイクル間には30秒間の休止を設けた。
その後、電池1の電池容量の値(試験後電池容量C2)を、前述した手法で測定した。そして、試験前電池容量C1及び試験後電池容量C2を用いて、試験前後における電池1の容量維持率(即ち、試験後電池容量C2を、試験前電池容量C1で除した値の百分率(%))を算出した。
前述の実施例2〜5,参考例,比較例1〜4の各電池の容量維持率を、上述した電池1と同様にしてそれぞれ測定(算出)した。実施例2〜5,参考例,比較例1〜4の各電池の容量維持率について、併せて表1に記載する。
なお、表1では、容量維持率の値が99.90%以上、即ち、低温短時間充電を繰り返した試験前後で電池容量がほとんど減少していない電池に「○」を、逆に、99.90%未満の電池に「×」を付した。
表1によれば、容量維持率について、参考例の電池は「×」となったのに対し、実施例1〜5の各電池はいずれも「○」となった。このことから、対向部配向度AL2を0.8以下とした実施例1〜5の各電池は、低温短時間充電を繰り返しても、その前後で電池容量がほとんど減少しないことが判る。
黒鉛粒子は、炭素原子が平板状に配置されたベーサル面を複数積層した(雲母状の)結晶構造を有しており、このベーサル面に平行な表裏面が主面となった平板形状の粒子形状を取ることが多い。即ち、平板形状の黒鉛粒子では、その主面(表裏面)がベーサル面と平行になっているものが多いと考えられる。従って、対向部における対向部配向度AL2を0.8以下とし、平板形状の負極活物質粒子22を銅箔28に対して寝た姿勢とすることで、正極板30から見た、黒鉛のベーサル面の投影面積を広くでき、負極活物質粒子22がベーサル面を通じてリチウムイオンをより多く受け取ることができる。このため、低温(−15℃)環境下で、大きな電流(30C)を0.1秒間充電した際には、リチウムイオンを適切に負極活物質粒子22内に挿入でき、負極活物質層21におけるリチウム金属の析出を抑制できたと考えられる。
このように、本実施形態に係る電池のうち、実施例1〜5の各電池(電池1)では、負極活物質層21の対向部21Xにおける負極活物質粒子22の対向部配向度AL2を0.8以下としてある。即ち、非対向部21Yに比して、対向部21Xでは、平板形状の負極活物質粒子22のうち、銅箔28に対して0°に近い小さな角度を持つ、いわば、寝た姿勢とされた負極活物質粒子22が多くなっている。このため、低温(−15℃)環境下におけるリチウム金属の析出を防いだ実施例1〜5の電池(電池1)とすることができる。
次に、本実施形態に係る電池のうち、実施例1の電池1の製造方法について説明する。まず、負極板20を製造する。この負極板20の製造には、図6に示す装置100を用いる。この装置100は、巻出し部101、コータ110、磁石121,122を含む磁気回路、乾燥機130、巻取り部102、及び、複数の補助ローラ140を備えている。
このうち、コータ110は、活物質ペースト21Pを内部に貯留してなる金属製のペースト保持部111と、このペースト保持部111に保持した活物質ペースト21Pを銅箔28の箔主面28Aに向かって連続的に吐出する吐出口112とを有する。
また、磁気回路は、コータ110と次述の乾燥機130との間に配置されている。この磁気回路は、銅箔28の箔主面28Aに対向しつつ、この箔主面28Aを挟んで第1磁石121及び第2磁石122を配置している。これら第1磁石121及び第2磁石122は、これらの間に第1磁石121から第2磁石122に向く(図6中、上方から下方に向く)磁界Hを発生させることができる。即ち、これらの間に位置する塗膜21Sに対し、この塗膜21Sに直交する方向に磁界Hを印加することができる。
また、乾燥機130は、既知の赤外線乾燥機であり、機内の雰囲気は、自然対流によって入れ替わる構成とされている。この乾燥機130を用いて、銅箔28、及び、この銅箔28に塗布された活物質ペースト21Pからなる塗膜21Sを加熱し、無風で乾燥させる。これにより、この乾燥機130の下方側(図6中、下側)を移動している間に、銅箔28に塗布された塗膜21Sの乾燥が徐々に進み、乾燥機130を通過し終えたときには、塗膜21Sは全乾燥、即ち、塗膜21S内の溶媒Qが全て蒸発している。
まず、溶媒Q中に、前述した負極活物質粒子22、CMC及びSBRを分散させた活物質ペースト21Pを用意した。そして、この活物質ペースト21Pをコータ110のペースト保持部111の内部に貯留させた。
巻出し部101に捲回した帯状の銅箔28を長手方向DAに移動させ、その銅箔28の一方の箔主面28A上に、コータ110により活物質ペースト21Pを塗布した。銅箔28に塗布された活物質ペースト21Pは、箔主面28A上で塗膜21Sとなって、次述する配向工程に進む。
次に、配向工程では、前述した磁気回路を用いて、塗膜21Sのうち、非対向部予定部21YBに磁界Hを印加する(図6参照)。具体的には、磁気回路をなす第1磁石121及び第2磁石122を用いて、これらの間に位置する塗膜21Sのうち、この塗膜21Sの周縁にあたる非対向部予定部21YBに磁界Hを印加して(磁束密度は50mT)、負極活物質粒子22のうち非対向部予定部21YBに位置する負極活物質粒子22を磁場配向させる。
なお、塗膜21Sのうち、この塗膜21Sの中央にあたる対向部予定部21XBに磁界Hを印加しない。これにより、負極活物質粒子22のうち対向部予定部21XBに位置する負極活物質粒子22を磁場配向させない。
上述の配向工程の後、乾燥機130を用いて、塗膜21Sを無風で乾燥させる乾燥工程を行う(図6参照)。即ち、配向工程で磁場配向させた非対向部予定部21YBの負極活物質粒子22に熱風が当たると、この磁場配向により立った姿勢とされた負極活物質粒子22が倒れるなど、塗膜21Sに風が当たることによる移動を生じることがある。そこで、塗膜21Sを無風で乾燥させることで負極活物質粒子22の移動を抑制しつつ、塗膜21Sから溶媒Qを蒸発させる。これにより、塗膜21Sにおける負極活物質粒子22の配向をそのまま保持した未圧縮活物質層21Bができあがる。その後、この未圧縮活物質層21Bを箔主面28A上に担持した片面担持銅箔28Kを、一旦、巻取り部102に巻き取る。
次に再度、装置100を用いて、上述の片面担持銅箔28K(銅箔28)の他方の箔主面28にも、活物質ペースト21Pを塗布して、箔主面28上に塗膜21Sを形成する。そして、上述した磁気回路(第1磁石121,第2磁石122)を用いて、この塗膜21Sのうち非対向部予定部21YBに磁界Hを印加して、この非対向部予定部21YBの負極活物質粒子22を磁場配向させて、その後、乾燥機130により無風で塗膜21Sを全乾燥させる。かくして、銅箔28の両方の箔主面28A,28Aに未圧縮活物質層21Bを積層配置した、プレス前の活物質積層板20Bが作製される。
その後、図示しないロールプレスを用いて、上述の活物質積層板20Bを圧縮し、前述した負極活物質層21を有する負極板20を作製した(図3参照)。なお、このとき、未圧縮活物質層21Bの負極活物質粒子22の磁場配向が崩れない程度の圧力で、活物質積層板20Bを圧縮する。
一方、結着剤(PVDF、図示しない)を溶解した溶媒中に、正極活物質粒子(LiNi1/3Co1/3Mn1/3、図示しない)及び導電剤(AB、図示しない)をそれぞれ投入し混練してなるペースト(図示しない)の塗布及び乾燥を、帯状のアルミニウム製のアルミ箔(図示しない)の両面に行った。その後、図示しないロールプレスで乾燥させたペーストを圧縮し、正極活物質層(図示しない)を有する正極板30を作製した。
上述のように作製した正極板30と負極板20との間に、セパレータ(図示しない)を介在させて捲回し、電極体10とする。さらに、正極板30及び負極板20にそれぞれ正極集電部材91及び負極集電部材92を溶接し、電池ケース本体81に挿入し、電解液50を注入後、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池1が完成する(図1,2参照)。
また、本実施形態に係る電池のうち、前述した実施例2〜5の各電池は、電池1と同様、上述した塗布工程、配向工程及び乾燥工程をそれぞれ行って製造する。但し、実施例2〜5の各電池は、配向工程における磁界Hの磁束密度を、実施例1のもの(50mT)とは異ならせて(具体的には、第1磁石121と第2磁石122との間の距離をそれぞれ変えて)製造した。また、参考例の電池は、配向工程において、非対向部予定部21YBに加え、対向部予定部21XBにも磁界Hを印加して製造する。かくして、表1に示す非対向部配向度AL1及び対向部配向度AL2である、実施例2〜5の各電池ができあがる。
以上により、実施例1〜5の各電池(電池1)の製造方法のうち配向工程では、非対向部予定部21YBに磁界Hを印加して、その非対向部予定部21YB中の負極活物質粒子22を磁場配向させ、さらに、乾燥工程で塗膜21Sを乾燥させる。従って、負極板20(負極活物質層21)の非対向部21Yにおける負極活物質粒子22の非対向部配向度AL1を1.2以上とした電池1を容易に製造することができる。
また、実施例1〜5の各電池(電池1)の配向工程では、対向部予定部21XBには磁界Hを印加することなく非対向部予定部21YBに磁界Hを印加する。このため、対向部21Xの対向部配向度AL2を高くせずに、非対向部21Yの非対向部配向度AL1を高くした電池を、容易かつ確実に製造することができる。
(変形形態)
次に、上述した実施形態の変形形態について、図面を参照しつつ説明する。なお、実施形態に係る電池(実施例1〜5の各電池(電池1))は、保持電解液のほか、貯留電解液を有していた。これに対し、本変形形態にかかるリチウムイオン二次電池は、電池ケース内に収容された電解液の全てが電極体に保持された保持電解液である(つまり、電池ケース内に貯留電解液を持たない)点で、実施形態とは異なり、他は同様である。
即ち、本変形形態にかかる電池201では、前述した実施形態に係る電池(電池1等)と同様、負極活物質層21の、非対向部21Yにおける負極活物質粒子22の非対向部配向度AL1を1.2以上としている。つまり、非対向部21Yにおいて、平板形状の負極活物質粒子22の多くが、銅箔28に対して、90°に近い大きな角度を持つ、いわば立った姿勢に配置されている。このため、この非対向部21Yの負極活物質粒子22が、ハイレート充放電時に、保持電解液51が電極体10の外部に押し出されるのを抑制して、電極体10で保持している保持電解液51の液量の減少を防ぐことができる。これにより、ハイレート充放電に伴う内部抵抗の増加を抑制した電池201とすることができる。
以上において、本発明を実施形態(実施例1〜5)及び変形形態に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、乾燥工程で赤外線を用いて加熱し、溶媒Qを蒸発させて塗膜21Sを乾燥させる手法を示したが、例えば、赤外線のほかに、電磁誘導加熱(IH)、コンデンサードライヤや、温風を用いるヒータを用いて加熱して塗膜21Sを乾燥させる手法としても良い。また、配向工程では、磁石を含む磁気回路を用いて磁界Hを印加させたが、例えば、電磁石を用いて行っても良い。

Claims (2)

  1. 負極金属箔、及び、上記負極金属箔上に形成され、負極活物質粒子を含む負極活物質層を有する負極板、
    正極金属箔、及び、上記正極金属箔上に形成される正極活物質層を有する正極板、及び、
    上記正極板と上記負極板との間に介在するセパレータ、を有する
    電極体と、
    上記電極体を収容してなる電池ケースと、
    上記電池ケース内に収容された、リチウムイオンを含有する電解液と、を備え、
    上記電解液は、
    上記電極体の上記正極板と上記負極板との間に保持された保持電解液を含み、
    上記負極活物質層は、
    上記セパレータを介して隣りあう上記正極板の上記正極活物質層と対向する対向部と、上記対向部の外側に位置し、上記正極活物質層とは対向しない非対向部とを有し、
    上記負極活物質粒子は、
    球形化黒鉛粒子の表面を非晶質炭素で被覆した、平板形状で磁界による磁場配向可能な複合粒子であり、
    上記負極板の縦断面における100個以上の上記負極活物質粒子の各々の粒子断面を、走査型電子顕微鏡(SEM)で観察した場合において、
    上記粒子断面の長径の延びる方向と上記負極金属箔とがなす角をθとし、
    観察された上記負極活物質粒子のうち、角θが60〜90°である上記負極活物質粒子の数をMAとし、
    角θが0〜30°である上記負極活物質粒子の数をMBとし、
    数MAを数MBで除した値(=MA/MB)を、上記負極活物質粒子の配向度ALとしたとき、
    上記負極活物質層は、
    上記非対向部における上記負極活物質粒子の配向度ALである非対向部配向度AL1が1.2以上とされてなる
    リチウムイオン二次電池であって、
    前記負極活物質層の前記対向部は、
    上記対向部における前記配向度ALである対向部配向度AL2が0.8以下とされてなる
    リチウムイオン二次電池。
  2. 負極金属箔、及び、上記負極金属箔上に形成され、負極活物質粒子を含む負極活物質層を有する負極板、
    正極金属箔、及び、上記正極金属箔上に形成される正極活物質層を有する正極板、及び、
    上記正極板と上記負極板との間に介在するセパレータ、を有する
    電極体と、
    上記電極体を収容してなる電池ケースと、
    上記電池ケース内に収容された、リチウムイオンを含有する電解液と、を備え、
    上記電解液は、
    上記電極体の上記正極板と上記負極板との間に保持された保持電解液を含み、
    上記負極活物質層は、
    上記セパレータを介して隣りあう上記正極板の上記正極活物質層と対向する対向部と、上記対向部の外側に位置し、上記正極活物質層とは対向しない非対向部とを有し、
    上記負極活物質粒子は、
    球形化黒鉛粒子の表面を非晶質炭素で被覆した、平板形状で磁界による磁場配向可能な複合粒子であり、
    上記負極板の縦断面における100個以上の上記負極活物質粒子の各々の粒子断面を、走査型電子顕微鏡(SEM)で観察した場合において、
    上記粒子断面の長径の延びる方向と上記負極金属箔とがなす角をθとし、
    観察された上記負極活物質粒子のうち、角θが60〜90°である上記負極活物質粒子の数をMAとし、
    角θが0〜30°である上記負極活物質粒子の数をMBとし、
    数MAを数MBで除した値(=MA/MB)を、上記負極活物質粒子の配向度ALとしたとき、
    上記負極活物質層は、
    上記非対向部における上記負極活物質粒子の配向度ALである非対向部配向度AL1が1.2以上とされてなり、
    溶媒中に上記負極活物質粒子を分散させた活物質ペーストを、上記負極金属箔の主面上に塗布して塗膜を形成する塗布工程と、
    上記塗膜のうち、上記負極活物質層の上記非対向部となる非対向部予定部に磁界を印加して、上記非対向部予定部に含まれる上記負極活物質粒子を磁場配向させる配向工程と、
    上記配向工程の後、上記塗膜を乾燥させる乾燥工程と、を備える
    リチウムイオン二次電池の製造方法であって、
    前記負極活物質層の前記対向部は、
    上記対向部における前記配向度ALである対向部配向度AL2が0.8以下とされてなり、
    前記配向工程は、
    前記塗膜のうち、前記負極活物質層の前記対向部となる対向部予定部には磁界を印加することなく、前記非対向部予定部に磁界を印加する
    リチウムイオン二次電池の製造方法。
JP2013522640A 2011-07-05 2011-07-05 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法 Active JP5768883B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522640A JP5768883B2 (ja) 2011-07-05 2011-07-05 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013522640A JP5768883B2 (ja) 2011-07-05 2011-07-05 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
PCT/JP2011/065367 WO2013005302A1 (ja) 2011-07-05 2011-07-05 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法

Publications (2)

Publication Number Publication Date
JPWO2013005302A1 JPWO2013005302A1 (ja) 2015-02-23
JP5768883B2 true JP5768883B2 (ja) 2015-08-26

Family

ID=47436675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522640A Active JP5768883B2 (ja) 2011-07-05 2011-07-05 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法

Country Status (5)

Country Link
US (1) US9509012B2 (ja)
JP (1) JP5768883B2 (ja)
KR (1) KR101517322B1 (ja)
CN (1) CN103636033B (ja)
WO (1) WO2013005302A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553299B2 (en) * 2011-07-29 2017-01-24 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
CN103700807B (zh) * 2013-11-29 2016-01-06 徐敖奎 一种高电压锂离子电池及其制备方法
CN104934235B (zh) * 2014-03-23 2019-12-31 东莞东阳光科研发有限公司 一种超级电容器用电极的制备方法
WO2018101765A1 (ko) * 2016-11-30 2018-06-07 삼성에스디아이 주식회사 이차 전지용 음극 및 이를 포함하는 이차 전지
KR102657578B1 (ko) 2016-11-30 2024-04-15 삼성에스디아이 주식회사 이차 전지용 음극 및 이를 포함하는 이차 전지

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443227B2 (ja) 1996-03-06 2003-09-02 三洋電機株式会社 非水電解液電池
WO1999026307A1 (en) * 1997-11-19 1999-05-27 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and manufacture thereof
EP1184918B1 (en) * 2000-08-28 2009-10-14 Nissan Motor Co., Ltd. Rechargeable lithium ion battery
US6803149B2 (en) * 2000-12-04 2004-10-12 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
JP4719982B2 (ja) 2001-01-30 2011-07-06 パナソニック株式会社 非水電解液二次電池とその製造方法
US7326497B2 (en) 2001-12-21 2008-02-05 Samsung Sdi Co., Ltd. Graphite-containing composition, negative electrode for a lithium secondary battery, and lithium secondary battery
JP4150516B2 (ja) 2001-12-21 2008-09-17 三星エスディアイ株式会社 リチウム二次電池の負極用の黒鉛含有組成物の製造方法並びにリチウム二次電池用の負極の製造方法及びリチウム二次電池の製造方法
JP2003197182A (ja) 2001-12-21 2003-07-11 Samsung Sdi Co Ltd 黒鉛含有組成物並びにリチウム二次電池用の負極及びリチウム二次電池
JP2004220926A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極
JP2007200862A (ja) 2005-12-28 2007-08-09 Sanyo Electric Co Ltd 非水電解質二次電池
JP4779985B2 (ja) * 2007-02-07 2011-09-28 トヨタ自動車株式会社 予備ドープ前リチウムイオン電池、およびリチウムイオン電池の製造方法
JP2009021102A (ja) * 2007-07-12 2009-01-29 Toyota Central R&D Labs Inc リチウムイオン二次電池
JP2010108716A (ja) 2008-10-29 2010-05-13 Toyota Motor Corp 電極、電池およびその処理方法
CN103081202B (zh) 2010-09-01 2015-04-22 丰田自动车株式会社 二次电池以及二次电池的制造方法
JP2013012320A (ja) 2011-06-28 2013-01-17 Toyota Motor Corp リチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2013005302A1 (ja) 2015-02-23
CN103636033B (zh) 2016-02-10
US9509012B2 (en) 2016-11-29
CN103636033A (zh) 2014-03-12
KR101517322B1 (ko) 2015-05-04
KR20140015587A (ko) 2014-02-06
WO2013005302A1 (ja) 2013-01-10
US20140141304A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
KR101556049B1 (ko) 비수전해질 2차 전지와 그 제조 방법
JP5704413B2 (ja) 非水電解質二次電池
JP5622059B2 (ja) リチウムイオン二次電池の製造方法
JP6314831B2 (ja) 負極活物質およびその製造方法、並びにリチウム二次電池
JP5818068B2 (ja) 二次電池
JP5574196B2 (ja) 非水電解液二次電池
JP5768883B2 (ja) リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP6057124B2 (ja) 二次電池
WO2012127561A1 (ja) 非水電解質電池
WO2015173623A1 (en) Method of manufacturing secondary battery
JP2015207416A (ja) 非水電解質二次電池およびその製造方法
JP2014096386A (ja) リチウムイオン二次電池
Li et al. Hydrothermal synthesis and electrochemical performance studies of Al 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 for lithium-ion batteries
WO2013094037A1 (ja) リチウム二次電池
JP6478112B2 (ja) 非水電解質二次電池の製造方法
Ma et al. Enhancement of the Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Material by Double‐Layer Coating with Graphene Oxide and SnO2 for Lithium‐Ion Batteries
JP5812336B2 (ja) 二次電池
Chen et al. Effects of a graphene nanosheet conductive additive on the high-capacity lithium-excess manganese–nickel oxide cathodes of lithium-ion batteries
JP2015228337A (ja) 非水電解液二次電池用電極の製造方法
TWI565125B (zh) 鋰離子電池電極複合材料及其製備方法以及電池
JP2017228429A (ja) 捲回型二次電池用電極板の製造方法
JP6955660B2 (ja) 蓄電素子
JP2015015084A (ja) 二次電池の製造方法
KR20170022909A (ko) 리튬 이온 2차 전지 및 그 제조 방법
JP2012129079A (ja) 負極板の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R151 Written notification of patent or utility model registration

Ref document number: 5768883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250