WO2018101765A1 - 이차 전지용 음극 및 이를 포함하는 이차 전지 - Google Patents

이차 전지용 음극 및 이를 포함하는 이차 전지 Download PDF

Info

Publication number
WO2018101765A1
WO2018101765A1 PCT/KR2017/013908 KR2017013908W WO2018101765A1 WO 2018101765 A1 WO2018101765 A1 WO 2018101765A1 KR 2017013908 W KR2017013908 W KR 2017013908W WO 2018101765 A1 WO2018101765 A1 WO 2018101765A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
layer
substrate
secondary battery
Prior art date
Application number
PCT/KR2017/013908
Other languages
English (en)
French (fr)
Inventor
권혜진
가복현
심규윤
이진헌
임대섭
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170160980A external-priority patent/KR102657578B1/ko
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to EP17876180.5A priority Critical patent/EP3550639B1/en
Priority to US16/463,935 priority patent/US11127946B2/en
Priority to CN201780073797.XA priority patent/CN110024184B/zh
Publication of WO2018101765A1 publication Critical patent/WO2018101765A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode, and more particularly, to a negative electrode for a secondary battery and a secondary battery including the same.
  • Lithium secondary batteries which are in the spotlight as power sources of recent portable small electronic devices, use organic electrolytes and exhibit a discharge voltage that is two times higher than that of a battery using an alkaline aqueous solution. As a result, the lithium secondary battery has a high energy density.
  • an oxide made of lithium and a transition metal having a structure capable of intercalating lithium ions such as LiCoO 2 , LiMn 2 O 4 , and LiNi 1 x Co x O 2 (0 ⁇ x ⁇ 1) This is mainly used.
  • the negative electrode active material various types of carbon-based materials including artificial, natural graphite, and hard carbon capable of inserting / desorbing lithium have been applied.
  • the negative electrode active material is applied onto the substrate in the form of a paste composed of a solid and a dispersion containing a graphite active material as a carbon-based material to form an active material layer.
  • the electrochemical characteristics of the secondary battery vary depending on the density and the orientation of the active material layer.
  • Embodiments of the present invention to provide a negative electrode for a secondary battery and a method of manufacturing the secondary battery can improve the electrochemical properties.
  • a negative electrode for a secondary battery includes a substrate, an active material layer formed on at least one surface of the substrate, and including an active material layer, wherein the active material layer is a surface layer relatively far from the substrate relative to an inner layer relatively adjacent to the substrate.
  • DD degree of divergence
  • I a is the sum of peak intensities at non-planar angles when measured by XRD using CuK ⁇ rays
  • I total is the sum of the peak intensities at all angles when measured by XRD using a CuK ⁇ line).
  • the active material layer may include artificial graphite or a mixture of artificial graphite and natural graphite.
  • the inner layer may be in contact with the substrate.
  • the DD value of the inner layer may be 50 to 80, and the DD value of the surface layer may be 4 to 26.
  • the thickness of the inner layer may be 30% or less of the thickness of the active material layer.
  • Secondary battery according to another embodiment of the present invention may include the negative electrode, the electrolyte and the positive electrode.
  • FIG. 1 is a schematic diagram illustrating a process of separating an active material layer according to an embodiment of the present invention.
  • FIGS. 2 and 3 are views for explaining a method for manufacturing a negative electrode according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining a method of manufacturing a negative electrode according to another embodiment of the present invention.
  • FIG. 5 is a plan view illustrating the nozzle and the guide member of the coating apparatus of FIG. 4.
  • FIG. 5 is a plan view illustrating the nozzle and the guide member of the coating apparatus of FIG. 4.
  • FIG. 6 is a schematic plan view of the guide member.
  • FIG. 7 is a plan view showing a nozzle and a guide member of the coating apparatus according to another embodiment of the present invention.
  • FIG. 8 is an exploded schematic perspective view illustrating a part of a rechargeable battery according to an exemplary embodiment of the present invention.
  • a component when referred to as being 'connected' or 'connected' to another component, the component may be directly connected to or connected to the other component, but in between It will be understood that may exist.
  • a component when referred to as 'directly connected' or 'directly connected' to another component, it should be understood that there is no other component in between.
  • the term 'comprises' or 'having' is only intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more. It is to be understood that it does not exclude in advance the possibility of the presence or addition of other features, numbers, steps, actions, components, parts or combinations thereof.
  • 'and / or' includes any combination of the plurality of listed items or any of the plurality of listed items.
  • 'A or B' may include 'A', 'B', or 'both A and B'.
  • the negative electrode for a rechargeable lithium battery includes a base material, an active material layer formed on the base material and including a carbonaceous negative electrode active material.
  • the active material layer is a negative electrode having a DD (Degree of Divergence) value of 19 or more defined by Equation 1 below.
  • I a is the sum of peak intensities at non-planar angles when measured by XRD using CuK ⁇ rays
  • I total is the sum of peak intensities at all angles when measured by XRD using a CuK ⁇ line.
  • This represents the (002) plane, the (100) plane, the (101) R plane, the (101) H plane, the (004) plane, and the (110) plane.
  • the peak intensity value may be an integrated area value of the peak.
  • the cathode DD value may be 19 or more and 19 or more and 60 or less.
  • the DD value of the negative electrode satisfying the above condition indicates that the negative electrode active material included in the negative electrode active material layer is oriented at a predetermined angle, and this value is a physical property value maintained even when charging and discharging is performed.
  • the DD value is a value obtained by measuring XRD with respect to a negative electrode obtained by discharging a battery in a fully discharged state after charging and discharging a lithium secondary battery including the negative electrode.
  • the charging and discharging conditions are carried out once or twice at 0.1C to 0.2C.
  • the DD value of the surface layer is from 6% to the DD value of the inner layer. May be 50%.
  • the DD value of the surface layer may be 4 to 26, and the DD value of the inner layer may be 50 to 80.
  • the DD value of the inner layer is 68.17, the DD value of the surface layer may be 13.35.
  • the inner layer includes one surface in contact with the surface of the substrate, and the surface layer includes a surface exposed to the outside (or electrolyte).
  • the DD values of the inner layer and the surface layer can be obtained by Equation 1 by measuring respective XRDs.
  • FIG. 1 is a schematic diagram illustrating a process of separating an active material layer according to an embodiment of the present invention.
  • the active material layer is separated into a portion attached to the tape and the remaining portion left over the substrate.
  • a portion left over the substrate 300 is the inner layer 33, and the remaining portion attached to the tape becomes the surface layer 35. Therefore, the XRD of the inner layer is measured in the separated state, and the DD value is obtained by measuring the XRD of the surface layer.
  • the thickness of the inner layer 33 may be smaller than the thickness of the surface layer 35, and the thickness of the inner layer 33 may be 30% or less of the thickness of the active material layer.
  • the cathode may have a peak intensity ratio of the (004) plane to the peak intensity of the (002) plane, that is, I (004) / I (002) of 0.04 or more, when the XRD is measured using CuK ⁇ rays, 0.04 or more, 0.07 It may be: When I (004) / I (002) of the cathode is 0.04 or more, the DC internal resistance does not increase, and the rate characteristic, in particular, the high rate characteristic may be improved, and the cycle life characteristic may be improved.
  • the BET specific surface area of the negative electrode active material layer may be less than 5.0 m 2 / g, and may also be 0.6 m 2 / g to 2.0 m 2 / g. If the BET specific surface area of the negative electrode active material layer is less than 5.0 m 2 / g may have the advantage that the electrochemical life characteristics of the cell can be improved.
  • the BET measurement is performed by charging and discharging a lithium secondary battery including the negative electrode, and then cutting the negative electrode obtained by dismantling the battery in a completely discharged state to a predetermined size to a BET sample holder. It is measured by putting.
  • the negative electrode may have a cross-sectional loading level (L / L) of 6 mg / cm 2 to 65 mg / cm 2 .
  • the carbon-based negative electrode active material may be artificial graphite or a mixture of artificial graphite and natural graphite.
  • the crystallographic properties of the particles are more developed than in the case of using the amorphous carbonaceous active material, so that the inside of the electrode plate against the external magnetic field There may be an advantage that can further improve the orientation properties of the carbon material.
  • the form of artificial graphite or natural graphite may be in any form as amorphous, plate, flake, spherical, fibrous, or a combination thereof.
  • the mixing ratio may be 70: 30% by weight to 95: 5% by weight.
  • the negative electrode active material layer further contains these, that is, when the carbon-based negative electrode active material is included as the first negative electrode active material and the negative electrode active material as the second negative electrode active material, the mixing ratio of the first negative electrode active material and the second negative electrode active material is 50:50. To 99: 1 by weight.
  • the Si-based negative electrode active material is Si, Si-C composite, SiO x (0 ⁇ x ⁇ 2), Si-Q alloy (wherein Q is alkali metal, alkaline earth metal, group 13 element, group 14 element, group 15 element, 16 An element selected from the group consisting of a group element, a transition metal, a rare earth element, and a combination thereof, and not Si), and the Sn-based negative electrode active material is Sn, SnO 2 , or Sn-R alloy (wherein R is an alkali metal or an alkaline earth metal) , Group 13 element, group 14 element, group 15 element, group 16 element, transition metal, rare earth element, and an element selected from the group consisting of these, and not Sn) and the like, and at least one of them And SiO 2 may be mixed and used.
  • the elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, One selected from the group consisting of S, Se, Te, Po, and a combination thereof can be used.
  • the content of the negative electrode active material in the negative electrode active material layer may be 95% by weight to 99% by weight with respect to the total weight of the negative electrode active material layer.
  • the negative electrode active material layer includes a binder, and optionally may further include a conductive material.
  • the content of the binder in the negative electrode active material layer may be 1% by weight to 5% by weight based on the total weight of the negative electrode active material layer.
  • 90 wt% to 98 wt% of the negative electrode active material, 1 wt% to 5 wt% of the binder, and 1 wt% to 5 wt% of the conductive material may be used.
  • the binder adheres the anode active material particles to each other well, and also serves to adhere the anode active material to the current collector well.
  • a water-insoluble binder a water-soluble binder or a combination thereof can be used.
  • a water-soluble binder it may further include a cellulose-based compound that can impart viscosity as a thickener.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery.
  • the substrate may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, polymer substrate coated with conductive metal, and combinations thereof.
  • FIGS. 2 and 3 are views for explaining a method for manufacturing a negative electrode according to an embodiment of the present invention.
  • the first unit layer U1 including the negative electrode active material is formed on one surface of the substrate 300.
  • the negative electrode active material is 97.5% by weight of artificial graphite, 1.5% by weight of styrene-butadiene rubber, 1% by weight of carboxymethyl cellulose in a water solvent, the viscosity (at this time, the temperature 25) is 2,300 cps.
  • the active material particles 11 are schematically illustrated.
  • the substrate 300 is a thin metal current collector for forming a negative electrode for a secondary battery, and may be, for example, a copper thin plate.
  • the negative active material may be formed at a loading level of 6 mg / cm 2 in the first unit layer U1.
  • the magnetic flux is then used to orient one axis of graphite to tilt in the same direction.
  • the orientation of the active material particles 11 may proceed simultaneously with the application of the negative electrode active material.
  • One axis of the particle 11 may be a long axis relatively longer than the other portion, and the magnetic field is used to orient the long axis approximately perpendicular to one surface of the substrate.
  • the magnetic field may be formed by arranging the permanent magnet 77 to be spaced apart from the other surface of the substrate.
  • magnetic flux by the magnet is formed in a direction perpendicular to the substrate.
  • the negative electrode active material for example graphite, included in the negative electrode active material composition has a constant angle with respect to the surface of the substrate. Stand up.
  • the magnetic flux may be applied to 1,000Gauss to 10,000Gauss, the time to be exposed to the magnetic flux may be 1 second to 30 seconds.
  • the negative active material on the substrate is cured to form the first unit layer U1.
  • the curing may be performed at a temperature of 90 to cure the binder in the negative electrode active material to fix the negative electrode active material.
  • a second unit layer U2 is formed on the first unit layer U1.
  • the second unit layer U2 may be formed using the same negative electrode active material as the first unit layer U1 by the same process, that is, application, magnetic field orientation, and curing process. In this case, the second unit layer U2 may be formed at the same loading level as the first unit layer U1.
  • the process of forming the first unit layer U1 and the second unit layer U2 may be repeatedly performed according to the loading level of the active material layer to be formed, and as necessary, the loading level may vary when forming each unit layer. have.
  • FIG. 4 is a view for explaining a method of manufacturing a negative electrode according to another embodiment of the present invention
  • Figure 5 is a plan view showing a nozzle and a guide member of the coating device of Figure 4
  • Figure 6 is a schematic of the guide member 7 is a plan view showing a nozzle and a guide member of the coating apparatus according to another embodiment of the present invention.
  • an anode active material is coated on one surface of the substrate 300 to form an active material layer in which a plurality of unit layers U1, U2, and U3 are stacked.
  • the negative electrode active material may be applied using the coating device 400.
  • the coating device 400 is formed at one end of each of the storage parts 41, 42, and 43 for storing the negative electrode active material slurry and nozzles 51, 52, and 53 for discharging the slurry.
  • the storage unit has three examples, but is not limited thereto, and may include only one storage unit or may include a larger number of storage units as necessary.
  • the first storage part 41, the second storage part 42, the third storage part 43, the first nozzle 51, and the second nozzle in the order of discharging the slurry adjacent to the substrate. 52 and the third nozzle 53.
  • the first guide member 82 and the second guide member 84 are provided at one side of the second nozzle 52 and the third nozzle 53, respectively.
  • the first guide member 82 may be formed long along one side of the second nozzle 52, and one side of the second nozzle 52 may be relatively adjacent to the first nozzle 51. Is the boundary of.
  • the second guide member 84 may be formed to be long along one side of the third nozzle 53, and one side of the third nozzle 53 may be relatively adjacent to the second nozzle 52. Is the boundary of.
  • the other sides of the first guide member 82 and the second guide member 84 that are not connected to the second nozzle 52 and the third nozzle 53 are located outside the nozzle and adjacent to the substrate 300.
  • the first guide member 82 and the second guide member 84 may be made of a material having flexibility and elasticity, and may have a plate shape.
  • the first guide member 82 and the second guide member 84 may have a mesh structure as shown in FIG. 6, and the mesh structure may be formed by forming a plurality of holes or weaving wires in the plate member.
  • the nozzle 54 is formed by installing a first guide member 82 and a second guide member 84 in one nozzle 54. It can be separated into a plurality of small nozzles.
  • first guide member and the second guide member provided in the nozzle can induce the orientation of the active material, such as graphite, in the slurry.
  • the arrangement form of the active materials may be different in a portion contacting the substrate (hereinafter referred to as an inner side) and a portion located relatively far from the substrate (hereinafter referred to as an outer side).
  • the active material particles on the inner side are arranged relatively vertically due to frictional force due to fine unevenness on the surface of the substrate.
  • the frictional force of the substrate is less toward the outer portion may increase the horizontal arrangement of the active material particles.
  • the active material particles are provided by the first guide member and the second guide member such that the active material particles are in direct contact with the substrate, such that the active material particles applied to the outer side also have a vertical arrangement.
  • Table 1 is a table measuring the DD value of the comparative examples and examples.
  • Comparative examples were coated with a negative electrode active material, and did not proceed with the alignment process to dry, the examples formed an active material layer by the method shown in FIG. At this time, the overall thickness is the thickness of the active material layer before separation.
  • the thickness difference in Table 1 is within the error range generated in the process and does not affect the DD measurement. And the discharge capacity retention rate of 2C to 0.2C of Comparative Examples and Examples was measured.
  • the DD values of the surface layers were 4.65, 7.4, 13.35, 17.18, 18.74, 22.22, 25.59, and the inner layers were 75.51, 62.47, 68.17, 75.81, 52.45, respectively.
  • the surface layer DD value / inner layer DD value of 50.78 and 52.79 was 6.16, 11.85, 19.58, 22.66, 35.73, 43.75 and 48.48, respectively.
  • the DD values of the surface layers in Comparative Examples 1 to 4 were 0.57, 2.45, 2.6, and 26.87, respectively, and the DD values of the inner layers were 54.69, 45.8, 46.82, and 52.79, respectively, and their surface layer DD values / inner layer DD values were 1.04. , 5.35, 5.55, and 50.9.
  • the DD value of the surface layer located on the outer side has a value of 6% to 50% with respect to the inner layer DD value. This indicates that the inner layer and the surface layer are oriented and have similar alignment forms. At this time, the active material particles of the inner layer and the surface layer may stand to have a constant angle with respect to the surface of the substrate.
  • the DD value of the comparative examples has a value of less than 6% or greater than 50%. This indicates that the surface layer and the inner layer do not have a similar orientation.
  • the discharge capacity retention rates of the comparative examples were 66.12, 66.4, 69.93, and 75.4, respectively, while the discharge capacity retention rates of the examples were 80.34, 83.89, 85.58, 86.84, and 87.1, respectively. , 88.5, 90.1 can be seen to increase compared to the comparative examples.
  • the discharge capacity retention rate may be improved by 10% or more compared with the comparative examples of the related art.
  • the decrease in the discharge capacity retention rate is due to the decrease in the lithium ion path and the excess of 50% by the decrease in contact between the active materials. This is because resistance rises.
  • the discharge capacity retention rate may increase.
  • FIG. 8 is a schematic perspective view illustrating an exploded portion of a rechargeable battery according to an exemplary embodiment of the present invention.
  • the present invention is not limited thereto, and may be applied to various types of batteries, such as a cylindrical shape and a pouch type.
  • the lithium secondary battery 1000 may include an electrode assembly 40 and an electrode assembly, which are inserted through a separator 30 between a positive electrode 10 and a negative electrode 20.
  • 40 may include a case 50 in which it is built.
  • the positive electrode 10, the negative electrode 20, and the separator 30 may be impregnated with an electrolyte (not shown).
  • the negative electrode 20 may be a negative electrode manufactured by the process of FIGS. 1 to 4 described above.
  • the positive electrode 10 includes a substrate and a positive electrode active material layer formed on the substrate.
  • a compound (lithiated intercalation compound) capable of reversible intercalation and deintercalation of lithium may be used.
  • a complex oxide of metal and lithium selected from cobalt, manganese, nickel, and a combination thereof can be used.
  • the content of the positive electrode active material may be 90% to 98% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode active material layer may further include a binder and a conductive material.
  • the content of the binder and the conductive material may be 1% by weight to 5% by weight based on the total weight of the positive electrode active material layer, respectively.
  • the binder adheres the positive electrode active material particles to each other well, and also serves to adhere the positive electrode active material to the current collector well.
  • Representative examples of the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinylchloride, polyvinyl fluoride, polymers including ethylene oxide, polyvinylpyrroli Don, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene butadiene rubber, acrylated styrene butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery.
  • Al may be used as the cathode substrate, but is not limited thereto.
  • the electrolyte includes a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode.
  • lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, for example Supporting one or more selected from the group consisting of LiCl, LiI and LiB (C 2 O 4 ) 2 (lithium bis (oxalato) borate (LiBOB)); Contains as electrolytic salts.
  • the concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M.
  • concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • a separator may exist between the positive electrode and the negative electrode.
  • the separator polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, and polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator can be used.
  • coating device 1000 secondary battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 한 실시예에 따른 이차 전지용 음극은 기재, 기재의 적어도 일면 위에 형성되어 있으며 흑연을 포함하는 활물질층을 포함하고, 활물질층은 상대적으로 상기 기재와 인접한 내부층과 상대적으로 상기 기재로부터 먼 표면층은 하기 식 1로 정의 되는 DD(degree of divergence) 값을 가지고, 표면층의 DD값은 상기 내부층의 DD값의 6% 내지 50%이다. [식 1] DD(Degree of Divergence) = (Ia/Itotal)×100 (상기 식 1에서, Ia는 CuKα선을 이용하여 XRD 측정시, 비평면 각도에서 나타나는 피크 강도 합계 값이고, Itotal은 CuKα선을 이용하여 XRD 측정시, 모든 각도에서 나타나는 피크 강도 합계 값임).

Description

이차 전지용 음극 및 이를 포함하는 이차 전지
본 발명은 음극에 관한 것으로, 더욱 상세하게는 이차 전지용 음극 및 이를 포함하는 이차 전지에 관한 것이다.
최근의 휴대용 소형 전자기기의 전원으로서 각광받고 있는 리튬 이차 전지는 유기 전해액을 사용함에 따라, 기존의 알칼리 수용액을 사용한 전지보다 2배 이상의 높은 방전 전압을 나타내며, 그 결과 높은 에너지 밀도를 나타내는 전지이다.
리튬 이차 전지의 양극 활물질로는 LiCoO2, LiMn2O4, LiNi1 xCoxO2(0 < x < 1)등과 같이 리튬 이온의 인터칼레이션이 가능한 구조를 가진 리튬과 전이 금속으로 이루어진 산화물이 주로 사용된다.
음극 활물질로는 리튬의 삽입/탈리가 가능한 인조, 천연 흑연, 하드 카본을 포함한 다양한 형태의 탄소계 재료가 적용되어 왔다.
음극 활물질은 탄소계 재료인 흑연 활물질을 포함하는 고형분과 분산액으로 이루어진 페이스트(paste) 형태로 기재 위에 도포되어 활물질층을 형성한다. 이때, 활물질층은 활물질의 밀도 및 배향 형태에 따라서 이차 전지의 전기 화학적 특성이 달라진다.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
본 발명의 실시예들은 이차 전지의 전기 화학적 특성이 향상시킬 수 있는 이차 전지용 음극 및 그의 제조방법을 제공하는 것이다.
본 발명의 일측면에 따른 이차 전지용 음극은 기재, 기재의 적어도 일면 위에 형성되어 있으며 흑연을 포함하는 활물질층을 포함하고, 활물질층은 상대적으로 상기 기재와 인접한 내부층과 상대적으로 상기 기재로부터 먼 표면층은 하기 식 1로 정의 되는 DD(degree of divergence) 값을 가지고, 표면층의 DD값은 상기 내부층의 DD값의 6% 내지 50%이다.
[식 1]
DD(Degree of Divergence) = (Ia/Itotal)×100
(상기 식 1에서,
Ia는 CuKα선을 이용하여 XRD 측정시, 비평면 각도에서 나타나는 피크 강도 합계 값이고,
Itotal은 CuKα선을 이용하여 XRD 측정시, 모든 각도에서 나타나는 피크 강도 합계 값임).
상기 활물질층은 인조 흑연 또는 인조 흑연과 천연 흑연의 혼합물을 포함할 수 있다.
상기 활물질층은 Si계, Sn계, LiMOx(M =금속)계 중 적어도 하나를 더 포함할 수 있다.
상기 내부층은 상기 기재와 접촉할 수 있다.
상기 내부층의 DD값은 50 내지 80이고, 표면층의 DD값은 4 내지 26일 수 있다.
상기 내부층의 두께는 상기 활물질층 두께의 30%이하일 수 있다.
본 발명의 다른 실시예에 따른 이차 전지는 상기한 음극, 전해질 및 양극을 포함할 수 있다.
도 1은 본 발명의 한 실시예에 따라서 활물질층을 분리하는 과정을 설명하는 개략적인 도면이다.
도 2 및 도 3은 본 발명의 한 실시예에 따른 음극을 제조하는 방법을 설명하기 위한 도면이다.
도 4는 본 발명의 다른 실시예에 따른 음극을 제조하는 방법을 설명하기 위한 도면이다.
도 5는 도 4의 도포 장치의 노즐 및 안내 부재를 도시한 평면도이다.
도 6은 안내 부재의 개략적인 평면도이다.
도 7은 본 발명의 다른 실시예에 따른 도포 장치의 노즐 및 안내 부재를 도시한 평면도이다.
도 8에 본 발명의 한 실시예에 따른 이차 전지의 일부분을 분해 도시한 개략적인 사시도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 명세서에서, 동일한 구성요소에 대해서 중복된 설명은 생략한다.
또한 본 명세서에서, 어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나 '접속되어' 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에 본 명세서에서, 어떤 구성요소가 다른 구성요소에 '직접 연결되어' 있다거나 '직접 접속되어' 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
또한, 본 명세서에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용되는 것으로써, 본 발명을 한정하려는 의도로 사용되는 것이 아니다.
또한 본 명세서에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
또한 본 명세서에서, '포함하다' 또는 '가지다' 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품, 또는 이들을 조합한 것이 존재함을 지정하려는 것일 뿐, 하나 또는 그 이상의 다른 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 할 것이다.
또한 본 명세서에서, '및/또는' 이라는 용어는 복수의 기재된 항목들의 조합 또는 복수의 기재된 항목들 중의 어느 항목을 포함한다. 본 명세서에서, 'A 또는 B'는, 'A', 'B', 또는 'A와 B 모두'를 포함할 수 있다.
본 발명의 한 실시예에 따른 리튬 이차 전지용 음극은 기재, 기재 위에 형성되어 있으며 탄소계 음극 활물질을 포함하는 활물질층을 포함한다. 활물질층은 하기 식 1로 정의되는 DD(Degree of Divergence) 값이 19 이상인 음극이다.
[식 1]
DD(Degree of Divergence) = (Ia/Itotal)×100
상기 식 1에서,
Ia는 CuKα선을 이용하여 XRD 측정시, 비평면 각도에서 나타나는 피크 강도 합계 값이고,
Itotal은 CuKα선을 이용하여 XRD 측정시, 모든 각도에서 나타나는 피크 강도 합계 값이다.
이때, 상기 비평면 각도란 CuKα선을 이용하여 XRD 측정시, 2θ=42.4±0.2°, 43.4±0.2°, 44.6±0.2°, 77.5±0.2°를 나타내며, 즉 이는 (100)면, (101)(rhombohedral, R)면, (101)(hexagonal, H)면, (110)면을 나타내는 것이다.
또한, 상기 모든 각도란 CuKα선을 이용하여 XRD 측정시, 2θ=26.5±0.2°, 42.4±0.2°, 43.4±0.2°, 44.6±0.2°, 54.7±0.2°, 77.5±0.2°를 나타내며, 즉, 이는 (002)면, (100)면, (101)R면, (101)H면, (004)면, (110)면을 나타내는 것이다. 또한, 이때 피크 강도값은 피크의 적분 면적값일 수 있다.
본 발명의 실시예에서, XRD 측정은 타겟 선으로 CuKα선을 사용하여 측정한 것이며, 피크 인텐시티(peak intensity) 해상도 향상을 위해서, 모노크로메이터(monochromator) 장치를 제거하였으며, 2θ=10° 내지 80° 및 스캔 스피드(°/S)가 0.044 내지 0.089, 스텝사이즈(step size)는 0.026의 측정 조건에서 측정한 것이다.
상기 음극의 DD값은 19 이상일 수 있고, 19 이상 60 이하일 수 있다. 상기 음극의 DD값이 상기 조건을 만족하는 것은, 음극 활물질 층에 포함되는 음극 활물질이 일정한 각도를 가지고 배향되어 있음을 나타내는 것으로서, 이 값은 충방전을 진행하더라도 유지되는 물성값이다.
본 발명의 한 실시예에 있어서, 상기 DD값은 상기 음극을 포함하는 리튬 이차 전지를 충방전한 이후, 완전 방전한 상태의 전지를 해체하여 얻은 음극에 대하여 XRD를 측정하여 얻은 값이다. 이때, 충방전 조건은 0.1C 내지 0.2C로 1회 내지 2회 실시한 것이다.
한편, 본 발명의 한 실시예에 따른 활물질층 중 상대적으로 기재와 인접한 부분을 내부층이라하고, 상대적으로 기재로부터 먼 부분을 표면층이라 하면, 표면층의 DD값은 내부층의 DD값의 6% 내지 50%일 수 있다. 이때, 표면층의 DD값은 4 내지 26이고, 내부층의 DD값은 50 내지 80일 수 있다. 예를 들어, 내부층의 DD값이 68. 17이면, 표면층의 DD값은 13.35일 수 있다.
이러한 범위는 내부층과 표면층에 포함된 음극 활물질 입자가 배향됨을 나타내며, 내부층과 표면층의 배향 형태가 유사함을 나타낸다. 이때, 내부층은 기재의 표면 접촉하는 일면을 포함하고, 표면층은 외부(또는 전해질)에 노출된 표면을 포함한다.
이러한, 내부층과 표면층의 DD값은 각각의 XRD를 측정하여 상기 식 1로 구할 수 있다.
도 1은 본 발명의 한 실시예에 따라서 활물질층을 분리하는 과정을 설명하는 개략적인 도면이다.
도 1에서와 같이 활물질층에 테이프(5)를 부착한 후 테이프(5)를 제거하면, 활물질층은 테이프에 부착된 일부분과 기재 위에 남겨진 나머지 부분으로 분리된다. 이때, 기재(300) 위에 남겨진 일부분이 내부층(33)이고, 테이프에 부착된 나머지 부분이 표면층(35)이 된다. 따라서, 분리된 상태에서 내부층의 XRD를 측정하고, 표면층의 XRD를 측정하여 DD값을 구한다. 이때, 내부층(33)의 두께는 표면층(35)의 두께보다 작을 수 있으며, 내부층(33)의 두께는 활물질층 두께의 30%이하일 수 있다.
상기 음극은 CuKα선을 이용하여 XRD 측정시, (002)면의 피크 강도에 대한 (004)면의 피크 강도비 즉, I(004)/I(002)가 0.04 이상일 수 있으며, 0.04 이상, 0.07이하일 수 있다. 상기 음극의 I(004)/I(002)이 0.04 이상일 경우에는, 직류 내부저항이 증가되지 않고, 율특성, 특히 고율 특성이 향상될 수 있으며, 사이클 수명 특성이 향상될 수 있다.
상기 음극 활물질층의 BET 비표면적은 5.0㎡/g 미만일 수 있으며, 또한 0.6㎡/g 내지 2.0㎡/g일 수 있다. 음극 활물질층의 BET 비표면적이 5.0㎡/g 미만인 경우에는 셀의 전기 화학적 수명 특성이 좋아질 수 있는 장점이 있을 수 있다. 본 발명의 한 실시예에서, 상기 BET 측정은 상기 음극을 포함하는 리튬 이차 전지를 충방전한 이후, 완전 방전한 상태의 전지를 해체하여 얻은 음극을 일정 크기로 잘라서 BET 시료 홀더(sample holder)에 넣어서 측정한 것이다.
상기 음극은 6 mg/cm2 내지 65 mg/cm2의 단면 로딩 레벨(L/L)을 갖는 것일 수 있다.
상기 탄소계 음극 활물질은 인조 흑연 또는 인조 흑연과 천연 흑연의 혼합물일 수 있다. 음극 활물질로 인조 흑연 또는 인조 흑연과 천연 흑연의 혼합물인 결정질 탄소계 물질을 사용하는 경우, 비정질 탄소계 활물질을 사용하는 경우에 비하여 입자의 결정학적 특성이 더 발달되어 있기 때문에 외부 자기장에 대한 극판 내 탄소물질의 배향특성을 더 향상시킬 수 있는 장점이 있을 수 있다. 상기 인조 흑연 또는 천연 흑연의 형태는 무정형, 판상, 린편상(flake), 구형, 섬유형, 또는 이들의 조합으로서, 어떠한 형태라도 무방하다. 또한, 상기 인조 흑연과 천연 흑연을 혼합 사용하는 경우, 혼합비는 70 : 30 중량% 내지 95 : 5 중량%일 수 있다.
또한, 상기 음극 활물질층은 Si계 음극 활물질, Sn계 음극 활물질 또는 LiMOx(M =금속)계 중 적어도 하나를 더 포함할 수 있다. 음극 활물질층이 이들을 더욱 포함하는 경우, 즉 탄소계 음극 활물질을 제1 음극 활물질로, 상기 음극 활물질을 제2 음극 활물질로 포함하는 경우, 제1 음극 활물질 및 제2 음극 활물질의 혼합비는 50:50 내지 99:1 중량비일 수 있다.
상기 LiMOx(M =금속)계 음극 활물질은 리튬 바나늄 산화물일 수 있다.
상기 Si계 음극 활물질은 Si, Si-C 복합체, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), 상기 Sn계 음극 활물질은 Sn, SnO2, Sn-R 합금(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다.
상기 원소 Q 및 R로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 음극 활물질층에서 음극 활물질의 함량은 음극 활물질층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.
본 발명의 한 실시예에 있어서, 상기 음극 활물질 층은 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 사용할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수용성 바인더, 수용성 바인더 또는 이들의 조합을 사용할 수 있다. 상기 음극 바인더로 수용성 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 증점제로 더욱 포함할 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하다.
상기 기재로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
이하에서는 기 설명한 본 발명에 따른 배향된 탄소계 활물질인 흑연을 포함하는 음극을 제조하는 방법을 도면을 참조하여 설명한다.
도 2 및 도 3은 본 발명의 한 실시예에 따른 음극을 제조하는 방법을 설명하기 위한 도면이다.
도 2에 도시한 바와 같이, 기재(300)의 일면 위에 음극 활물질을 포함하는 제1 단위층(U1)을 형성한다. 이때, 음극 활물질은 인조 흑연 97.5 중량%, 스티렌 부타디엔 러버(styrene- butadiene rubber) 1.5 중량%, 카르복시메틸셀룰로즈(carboxymethyl cellulose) 1 중량%를 물 용매 중에서 혼합하여 점도(이때, 온도는 25)가 2,300cps이다. 설명의 편의상 활물질 입자(11)를 개략적으로 도시하였다.
기재(300)는 이차 전지용 음극을 형성하기 위한 금속 박판형 전류 집전체로 예를 들어 구리 박판일 수 있다. 그리고 음극 활물질은 제1 단위층(U1)은 6 mg/cm2의 로딩 레벨로 형성할 수 있다.
이후, 자속을 이용하여 흑연의 일 축이 동일한 방향으로 기울어지도록 배향한다. 활물질 입자(11)의 배향은 음극 활물질의 도포와 동시에 진행될 수 있다.
입자(11)의 일 축은 다른 부분에 비해서 상대적으로 길이가 긴 장축일 수 있으며, 자기장을 이용하여 장축을 기재의 일면에 대해서 대략 수직하도록 배향한다.
자기장은 기재의 타면과 이격되도록 영구 자석(77)을 배치하여 형성할 수 있다. 이처럼, 기재 아래에 자석을 배치하면, 자석에 의한 자속(magnetic flux)은 기재와 수직한 방향으로 형성된다. 이때, 기재의 이동 속도에 따라서 자속이 형성되는 방향은 벡터(vector) 함수로 일정한 각도를 가지고 형성되므로, 음극 활물질 조성물에 포함되는 음극 활물질, 예를 들어 흑연은 기재의 표면에 대해서 일정한 각도를 갖도록 서게 된다.
이때, 자속은 1,000Gauss 내지 10,000Gauss로 가해질 수 있으며, 자속에 노출되는 시간은 1 초 내지 30 초 일 수 있다.
기재 위의 음극 활물질을 경화시켜 제1 단위층(U1)을 형성한다. 이때, 경화는 음극 활물질 내의 바인더를 경화시켜 음극 활물질을 고정하기 위한 것으로 90의 온도에서 진행할 수 있다.
다음, 도 3에 도시한 바와 같이, 제1 단위층(U1) 위에 제2 단위층(U2)을 형성한다. 제2 단위층(U2)은 제1 단위층(U1)과 동일한 음극 활물질을 사용하여 동일한 공정, 즉 도포, 자기장 배향 및 경화 공정으로 형성할 수 있다. 이때, 제2 단위층(U2)은 제1 단위층(U1)과 동일한 로딩 레벨로 형성할 수 있다.
제1 단위층(U1) 및 제2 단위층(U2)을 형성하는 공정은 형성하고자 하는 활물질층의 로딩 레벨에 따라서 반복적으로 진행할 수 있으며, 필요에 따라 각 단위층의 형성시 로딩 레벨 은 변동될수 있다.
도 4는 본 발명의 다른 실시예에 따른 음극을 제조하는 방법을 설명하기 위한 도면이고, 도 5는 도 4의 도포 장치의 노즐 및 안내 부재를 도시한 평면도이고, 도 6은 안내 부재의 개략적인 평면도이고, 도 7은 본 발명의 다른 실시예에 따른 도포 장치의 노즐 및 안내 부재를 도시한 평면도이다.
도 4에 도시한 바와 같이, 기재(300)의 일면 위에 음극 활물질을 도포하여 복수의 단위층(U1, U2, U3)이 적층된 활물질층을 형성한다.
구체적으로, 음극 활물질은 도포 장치(400)를 사용하여 도포될 수 있다.
도포 장치(400)는 음극 활물질 슬러리를 저장하는 저장부(41, 42, 43)와 저장부의 일단에 각각 형성되어 있으며 슬러리를 배출하는 노즐(51, 52, 53)을 포함한다. 이때, 저장부 는 3개인 것을 예로 들었으나 이에 한정되는 것은 아니며 필요에 따라서 하나의 저장부만으로 이루어지거나, 더 많은 수의 저장부를 포함할 수 있다.
이하에서는 설명의 편의상, 기재와 인접하게 슬러리를 배출하는 순으로 제1 저장부(41), 제2 저장부(42), 제3 저장부(43), 제1 노즐(51), 제2 노즐(52) 및 제3 노즐(53)이라 한다.
도 4 및 도 5를 참조하면, 제2 노즐(52) 및 제3 노즐(53)의 일측에는 각각 제1 안내 부재(82)와 제2 안내 부재(84)가 설치되어 있다.
제1 안내 부재(82)는 제2 노즐(52)의 일측을 따라 길게 형성될 수 있으며, 상기 제2 노즐(52)의 일측은 상대적으로 제1 노즐(51)과 인접한 제2 노즐(52)의 경계부이다. 그리고 제2 안내 부재(84)는 제3 노즐(53)의 일측을 따라 길게 형성될 있으며, 상기 제3 노즐(53)의 일측은 상대적으로 제2 노즐(52)과 인접한 제3 노즐(53)의 경계부이다.
제2 노즐(52) 및 제3 노즐(53)와 연결되지 않은 제1 안내 부재(82)와 제2 안내 부재(84)의 타측은 노즐 밖에 위치하며 기재(300)와 인접하게 위치한다.
제1 안내 부재(82)와 제2 안내 부재(84)는 가요성 및 탄성을 가지는 물질로 이루어질 수 있으며, 판형일 수 있다. 또한, 제1 안내 부재(82)와 제2 안내 부재(84)는 도 6에서와 같이 망형 구조를 가질 수 있으며, 망형 구조는 판형 부재에 복수의 홀을 형성하거나 와이어를 엮어 형성할 수 있다.
도 5에서는 노즐이 복수로 형성된 것을 도시하였으나, 도 7에 도시한 바와 같이 하나의 노즐(54) 내부에 제1 안내 부재(82)와 제2 안내 부재(84)를 설치하여 노즐(54)을 복수의 소 노즐로 분리할 수 있다.
한편, 본 발명의 한 실시예에서와 같이 복수의 노즐을 사용하여 슬러리를 도포하면 한 번의 도포로 복수의 단위층을 형성할 수 있다. 또한, 노즐에 설치되어 있는 제1 안내 부재 및 제2 안내 부재로 인해서 슬러리 내의 활물질, 예를 들어 흑연의 배향을 유도할 수 있다.
즉, 슬러리를 원하는 두께로 한 번에 도포하면 기재와 접촉하는 부분(이하, 내측부라 함)과 기재로부터 상대적으로 멀리 위치하는 부분(이하, 외측부라 함)의 활물질의 배열 형태가 다를 수 있다.
도포 공정은 기재를 이동시키면서 연속적으로 이루어지므로, 내측부의 활물질 입자는 기재 표면의 미세 요철에 의한 마찰력 등으로 인해서 상대적으로 수직하게 배열한다. 반면, 외측부로 갈수록 기재의 마찰력이 미치지 않아 활물질 입자의 수평 배열이 증가할 수 있다.
본 발명의 실시예에서는 제1 안내 부재 및 제2 안내 부재에 의해서 활물질 입자는 기재와 직접 접촉하는 것과 같은 표면 특성을 제공함으로써, 외측부에 도포되는 활물질 입자들도 수직한 배열을 가지도록 한다.
이는, 상기 식 1로부터 DD값을 구함으로써 확인할 수 있다.
표 1은 비교예들과 실시예들의 DD값을 측정한 표이다.
비교예들은 음극 활물질을 도포한 후, 건조한 것으로 배향 공정을 진행하지 않았으며, 실시예들은 도 3에 도시한 방법으로 활물질층을 형성하였다. 이때, 전체 두께는 분리전 활물질층의 두께이다.
표 1의 두께 차이는 공정상 발생하는 오차 범위 이내로, DD값 측정에 영향을 미치지 않는다. 그리고 비교예 및 실시예들의 0.2C에 대한 2C의 방전용량 유지율을 측정하였다.
[표1]
Figure PCTKR2017013908-appb-I000001
표 1을 참조할 때, 실시예 1 내지 실시예 7에서 표면층의 DD값은 각각 4.65, 7.4, 13.35, 17.18, 18.74, 22.22, 25.59이고, 내부층은 각각 75.51, 62.47, 68.17, 75.81, 52.45, 50.78, 52.79로 이들의 표면층DD값/내부층 DD값은 각각 6.16, 11.85, 19.58, 22.66, 35.73, 43.75, 48.48임을 알 수 있었다.
그리고 비교예 1 내지 4에서의 표면층의 DD값은 각각 0.57, 2.45, 2.6, 26.87이고, 내부층의 DD값은 각각 54.69, 45.8, 46.82, 52.79로 이들의 표면층 DD값/내부층 DD값은 1.04, 5.35, 5.55, 50.9임을 알 수 있었다.
본 발명의 실시예에 따른 음극에서, 기재의 내측부에 위치하는 내부층의 DD값에 대해서, 외측부에 위치하는 표면층의 DD값이 내부층 DD값에 대해서 6% 내지 50%의 값을 가진다. 이는, 내부층과 표면층이 배향되어 있으며, 서로 유사한 배향 형태를 가지는 것을 나타낸다. 이때, 내부층과 표면층의 활물질 입자는 기재의 표면에 대해서 일정한 각도를 가지도록 서 있을 수 있다.
반면, 비교예들의 DD값은 6% 미만 또는 50%초과의 값을 가진다. 이는 표면층과 내부층이 유사한 배향을 가지지 않는 것을 나타낸다.
또한, 비교예와 실시예들의 방전용량 유지율을 측정한 결과 비교예들의 방전 용량 유지율은 각각 66.12, 66.4, 69.93, 75.4인 반면, 실시예들의 방전 용량 유지율은 각각 80.34, 83.89, 85.58, 86.84, 87.1, 88.5, 90.1로 비교예들에 비해서 증가한 것을 알 수 있다.
이처럼, 본 발명의 실시예들에서와 같이 배향을 실시하면 방전 용량 유지율이 종래기술인 비교예들에 비해서 10%이상 향상시킬 수 있다.
비교예들에서와 같이 표면층DD값/내부층 DD값이 6%미만일 경우, 방전용량 유지율이 감소하는 것은, 리튬 이온 경로(path)가 감소하고, 50%초과일 경우 활물질간 접촉 저하에 의한 전자 저항이 상승하기 때문이다.
반면, 본 발명의 실시예들에서와 같이 음극 활물질층의 내부층과 표면층의 활물질 입자의 배향 형태가 유사하면 방전용량 유지율이 증가할 수 있다.
즉, 본 발명의 실시예들에서와 같이 활물질층의 내측부와 외측부에서의 활물질 입자 배열이 유사하면 활물질층 전체에서의 활물질 입자 배열이 균일하고 리튬 이온의 이동이 원활하여 전기, 화학적 반응이 균일하게 일어나므로 음극이 열화되는 속도를 감소시킬 수 있다.도 8에 본 발명의 한 실시예에 따른 이차 전지의 일부분을 분해 도시한 개략적인 사시도이다.
본 발명이 이에 제한되는 것은 아니며, 원통형, 파우치형 등 다양한 형태의 전지에 적용될 수 있다.
도 8을 참고하면, 본 발명의 한 실시예에 따른 리튬 이차 전지(1000)는 양극(10)과 음극(20) 사이에 세퍼레이터(30)를 개재하여 귄취된 전극 조립체(40), 전극 조립체(40)가 내장되는 케이스(50)를 포함할 수 있다. 양극(10), 음극(20) 및 세퍼레이터(30)는 전해액(미도시)에 함침되어 있을 수 있다.
음극(20)은 기 설명한 도 1 내지 도 4의 공정으로 제조한 음극일 수 있다.
양극(10)은 기재 및 이 기재 위에 형성되어 있는 양극 활물질 층을 포함한다. 상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 구체적으로는 코발트, 망간, 니켈, 및 이들의 조합으로부터 선택되는 금속과 리튬과의 복합 산화물중 1종 이상의 것을 사용할 수 있다.
상기 양극에서, 양극 활물질의 함량은 양극 활물질 층 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다.
본 발명의 한 실시예에 있어서, 상기 양극 활물질층은 바인더 및 도전재를 더욱 포함할 수 있다. 이때, 상기 바인더 및 도전재의 함량은 양극 활물질 층 전체 중량에 대하여 각각 1 중량% 내지 5 중량%일 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 바인더의 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌 부타디엔 러버, 아크릴레이티드 스티렌 부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하다.
상기 양극 기재로는 Al을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 전해질은 비수성 유기 용매 및 리튬염을 포함한다.
상기 비수성 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다.
이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI 및 LiB(C2O4)2(리튬 비스옥살레이트 보레이트(lithium bis(oxalato) borate: LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 지지(supporting) 전해염으로 포함한다.
리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
- 부호의 설명 -
5: 테이프 10: 양극
11: 입자 20: 음극
30: 세퍼레이터 33: 내부층
35: 표면층 40: 전극 조립체
41: 제1 저장부 42: 제2 저장부
43: 제3 저장부 50: 케이스
51, 52, 53, 54: 노즐 77: 영구 자석
82, 84: 안내부재 300: 기재
400: 도포 장치 1000: 이차 전지

Claims (7)

  1. 기재,
    상기 기재의 적어도 일면 위에 형성되어 있는 탄소계 음극 활물질을 포함하는 활물질층
    를 포함하고,
    상기 활물질층은 상대적으로 상기 기재와 인접한 내부층과 상대적으로 상기 기재로부터 먼 표면층은 하기 식 1로 정의 되는 DD(degree of divergence) 값을 가지고,
    상기 표면층의 DD값은 상기 내부층의 DD값의 6% 내지 50%인 이차 전지용 음극.
    [식 1]
    DD(Degree of Divergence) = (Ia/Itotal)×100
    (상기 식 1에서,
    Ia는 CuKα선을 이용하여 XRD 측정시, 비평면 각도에서 나타나는 피크 강도 합계 값이고,
    Itotal은 CuKα선을 이용하여 XRD 측정시, 모든 각도에서 나타나는 피크 강도 합계 값임).
  2. 제1항에서,
    상기 활물질층은 인조 흑연 또는 인조 흑연과 천연 흑연의 혼합물을 포함하는 이차 전지용 음극.
  3. 제2항에서,
    상기 활물질층은 Si계, Sn계, LiMOx(M =금속)계 중 적어도 하나를 더 포함하는 이차 전지용 음극.
  4. 제1항에서,
    상기 내부층은 상기 기재와 접촉하는 이차 전지용 음극.
  5. 제1항에서,
    상기 내부층의 DD값은 50 내지 80이고,
    상기 표면층의 DD값은 4 내지 26인 이차 전지용 음극.
  6. 제1항에서,
    상기 내부층의 두께는 상기 활물질층 두께의 30%이하인 이차 전지용 음극.
  7. 제1항 내지 제6항 중 어느 한 항의 음극,
    양극, 및
    전해질을 포함하는 이차 전지.
PCT/KR2017/013908 2016-11-30 2017-11-30 이차 전지용 음극 및 이를 포함하는 이차 전지 WO2018101765A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17876180.5A EP3550639B1 (en) 2016-11-30 2017-11-30 Anode for secondary battery and secondary battery comprising same
US16/463,935 US11127946B2 (en) 2016-11-30 2017-11-30 Negative electrode for rechargeable battery and rechargeable battery including the same
CN201780073797.XA CN110024184B (zh) 2016-11-30 2017-11-30 用于可再充电电池的负极和包括其的可再充电电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160162081 2016-11-30
KR10-2016-0162081 2016-11-30
KR10-2017-0160980 2017-11-28
KR1020170160980A KR102657578B1 (ko) 2016-11-30 2017-11-28 이차 전지용 음극 및 이를 포함하는 이차 전지

Publications (1)

Publication Number Publication Date
WO2018101765A1 true WO2018101765A1 (ko) 2018-06-07

Family

ID=62241632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013908 WO2018101765A1 (ko) 2016-11-30 2017-11-30 이차 전지용 음극 및 이를 포함하는 이차 전지

Country Status (2)

Country Link
CN (1) CN110024184B (ko)
WO (1) WO2018101765A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122627A (zh) * 2019-12-19 2020-05-08 东莞维科电池有限公司 一种石墨负极片最优压实密度的测试方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102527051B1 (ko) * 2020-11-02 2023-05-02 에스케이온 주식회사 리튬 이차 전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차전지
SE2250838A1 (en) * 2022-07-04 2024-01-05 Northvolt Ab Electrode for a secondary cell
SE2250839A1 (en) * 2022-07-04 2024-01-05 Northvolt Ab Electrode for a secondary cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088540A1 (ja) * 2011-12-14 2013-06-20 トヨタ自動車株式会社 非水電解質二次電池と二次電池用負極の製造方法
US20140038055A1 (en) * 2012-08-03 2014-02-06 National Institute For Materials Science Electrode body, method for producing electrode body, and battery provided with electrode body
JP2014137879A (ja) * 2013-01-16 2014-07-28 Toyota Motor Corp 二次電池
KR101517322B1 (ko) * 2011-07-05 2015-05-04 도요타지도샤가부시키가이샤 리튬 이온 2차 전지 및 리튬 이온 2차 전지의 제조 방법
US20160093872A1 (en) * 2013-04-16 2016-03-31 Eth Zurich Method for the production of electrodes and electrodes made using such a method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1118880C (zh) * 1997-05-30 2003-08-20 松下电器产业株式会社 非水电解质二次电池
JP5315665B2 (ja) * 2007-10-31 2013-10-16 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
US20120009475A1 (en) * 2010-03-15 2012-01-12 Kensuke Nakura Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery including the same
TWI533495B (zh) * 2010-08-05 2016-05-11 昭和電工股份有限公司 鋰蓄電池用負極活性物質
CN103119774B (zh) * 2010-09-22 2016-01-20 丰田自动车株式会社 非水电解质二次电池
JP5783433B2 (ja) * 2011-07-29 2015-09-24 トヨタ自動車株式会社 リチウムイオン二次電池
JP5900113B2 (ja) * 2012-03-30 2016-04-06 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517322B1 (ko) * 2011-07-05 2015-05-04 도요타지도샤가부시키가이샤 리튬 이온 2차 전지 및 리튬 이온 2차 전지의 제조 방법
WO2013088540A1 (ja) * 2011-12-14 2013-06-20 トヨタ自動車株式会社 非水電解質二次電池と二次電池用負極の製造方法
US20140038055A1 (en) * 2012-08-03 2014-02-06 National Institute For Materials Science Electrode body, method for producing electrode body, and battery provided with electrode body
JP2014137879A (ja) * 2013-01-16 2014-07-28 Toyota Motor Corp 二次電池
US20160093872A1 (en) * 2013-04-16 2016-03-31 Eth Zurich Method for the production of electrodes and electrodes made using such a method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550639A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122627A (zh) * 2019-12-19 2020-05-08 东莞维科电池有限公司 一种石墨负极片最优压实密度的测试方法

Also Published As

Publication number Publication date
CN110024184B (zh) 2022-05-13
CN110024184A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2019103465A1 (ko) 리튬 이차전지용 음극 및 이의 제조 방법
WO2018124635A1 (ko) 분리막 및 이를 포함하는 리튬-황 전지
WO2014189329A1 (ko) 다층의 활물질층을 포함하는 리튬 이차전지
WO2015102139A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2018101765A1 (ko) 이차 전지용 음극 및 이를 포함하는 이차 전지
WO2020218773A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2013180432A1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2021006704A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2015102140A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2018212481A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2020218780A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2019078544A1 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2020130434A1 (ko) 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20180062390A (ko) 이차 전지용 음극 및 이를 포함하는 이차 전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2018212446A1 (ko) 리튬 이차 전지
WO2018074684A1 (ko) 리튬 이차 전지
WO2016122196A1 (ko) 전극, 전지 및 전극의 제조 방법
WO2019088503A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2015076574A1 (ko) 분리막 및 이를 이용한 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017876180

Country of ref document: EP

Effective date: 20190701