JP5624141B2 - 有機el素子 - Google Patents

有機el素子 Download PDF

Info

Publication number
JP5624141B2
JP5624141B2 JP2012526194A JP2012526194A JP5624141B2 JP 5624141 B2 JP5624141 B2 JP 5624141B2 JP 2012526194 A JP2012526194 A JP 2012526194A JP 2012526194 A JP2012526194 A JP 2012526194A JP 5624141 B2 JP5624141 B2 JP 5624141B2
Authority
JP
Japan
Prior art keywords
organic
tungsten
peak
hole injection
injection layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012526194A
Other languages
English (en)
Other versions
JPWO2012014256A1 (ja
Inventor
慎也 藤村
慎也 藤村
大内 暁
暁 大内
小松 隆宏
隆宏 小松
藤田浩史
浩史 藤田
義朗 塚本
義朗 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2012014256A1 publication Critical patent/JPWO2012014256A1/ja
Application granted granted Critical
Publication of JP5624141B2 publication Critical patent/JP5624141B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Description

本発明は、電気的発光素子である有機電界発光素子(以下「有機EL素子」と称する)に関し、特に、ホール注入層においてホール伝導効率を向上させる技術に関する。
近年、有機半導体を用いた各種機能素子の研究開発が進められており、代表的な機能素子として有機EL素子が挙げられる。有機EL素子は、電流駆動型の発光素子であり、陽極および陰極とからなる一対の電極対の間に有機材料からなる発光層を含む機能層を設けた構成を有する。そして、電極対間に電圧を印加し、陽極から機能層に注入されるホールと陰極から機能層に注入される電子とを再結合させ、これにより発生する電界発光現象によって発光する。有機EL素子は、自己発光を行うため視認性が高くかつ固体素子であるため耐振動性に優れることから、各種表示装置における発光素子や光源としての利用が注目されている。
有機EL素子を高輝度で発光させるためには、電極から機能層へキャリア(ホールおよび電子)を効率よく注入することが重要である。一般に、キャリアを効率よく注入するためには、それぞれの電極と機能層との間に、注入の際のエネルギー障壁を低くするための注入層を設けるのが有効である。このうち機能層と陽極との間に配設されるホール注入層には、銅フタロシアニンやPEDOT(導電性高分子)などの有機物、酸化モリブデンや酸化タングステンなどの金属酸化物が用いられている。また、機能層と陰極との間に配設される電子注入層には、金属錯体やオキサジアゾールなどの有機物、バリウムなどの金属が用いられている。
中でも、酸化モリブデンや酸化タングステンなどの金属酸化物からなる金属酸化物膜をホール注入層として用いた有機EL素子に関しては、ホール伝導効率の改善や寿命の改善が報告されている(特許文献1、2、非特許文献1)。
特開2005−203339号公報 特開2007−288074号公報
Jingze Li et al.,Synthetic Metals 151,141(2005). M. Stolze et al.,Thin Solid Films 409 ,254(2002) Kaname Kanai et al.,Organic Electronics 11,188(2010). I.N.Yakovkin et al.,Surface Science 601,1481(2007).
上記の金属酸化物膜を形成する方法としては、蒸着法又は、スパッタ法が一般的に用いられている。この場合、金属酸化物膜が成膜される時点で既に基板に成膜されている層等の耐熱性を考慮して、通常、200℃以下の低温の基板温度で金属酸化物膜の成膜が行われている。
スパッタ法において低い基板温度で成膜を行った場合には、成膜ガスが成膜基板に到達した際に生じる熱エネルギーが成膜基板に早く吸収されるため、秩序性の少ないアモルファス構造の金属酸化物膜が形成され易い。さらに、低い基板温度で成膜を行った場合には、膜組成や膜厚の均一性を保持することが困難であることも報告されている(非特許文献2)。
金属酸化物膜がアモルファス構造である場合、金属酸化物膜に注入されたホールの伝導に寄与する部位、例えば、酸素欠陥に類する部位が散在しているため、ホールの伝導は主としてホッピング伝導によって行われる。ホッピング伝導では、散在したホール伝導部位同士の間をホールがホッピングするが、これを有機EL素子の駆動に利用するためには、有機EL素子に高い駆動電圧を印加する必要があり、結果として、ホール伝導効率が低くなるという問題がある。
本発明は上記の問題点を鑑みてなされたものであって、良好なホール伝導効率が得られるホール注入層を採用した有機EL素子を提供することを目的とする。
上記目的を達成するため、本発明の一態様に係る有機EL素子は、陽極と陰極との間に、有機材料を含んでなる機能層と、前記機能層にホールを注入するためのホール注入層と、を有する有機EL素子であって、前記ホール注入層は金属酸化物を含む金属酸化物膜であり、前記金属酸化物を構成する金属元素は、当該金属元素が取り得る最大価数の状態および当該最大価数よりも低い価数の状態で前記金属酸化物膜に含まれ、かつ、前記金属酸化物膜は、粒径がナノメートルオーダーの大きさである前記金属酸化物の結晶を含むことを特徴とする。
本発明の一態様に係る有機EL素子では、ホール注入層を、金属酸化物を含む金属酸化物膜で構成するとともに、当該金属酸化物を構成する金属元素を、最大価数の状態および当該最大価数よりも低い価数の状態とすることで、金属酸化物膜にホールの伝導部位となる酸素欠陥に類する構造を持たせることができる。また、金属酸化物の結晶粒径をナノメートルオーダーの大きさとすることで、それに伴って、酸素欠陥に類する構造が多く存在する結晶粒界が金属酸化物膜内に数多く形成される。これにより、金属酸化物膜の膜厚方向にホール伝導経路を張り巡らすことができるので、低い駆動電圧で効率的なホールの伝導を実現できる。よって、良好なホール伝導効率が得られるホール注入層を採用した有機EL素子を提供することができる。
(a)実施の形態に係る有機EL素子1の構成を示す模式的な断面図と、(b)ホール注入層3付近の部分拡大図である。 ホールオンリー素子1Aの構成を示す模式的な断面図である。 ホールオンリー素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 有機EL素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 酸化タングステン膜表面のXPS測定によるW5p3/2、W4f5/2、W4f7/2に帰属されるスペクトルを示す図である。 (a)図5に示すサンプルAに係るピークフィッティング解析結果を示す図と、(b)サンプルEに係るピークフィッティング解析結果を示す図である。 酸化タングステン膜表面のUPSスペクトルを示す図である。 酸化タングステン膜表面のUPSスペクトルを示す図である。 酸化タングステン膜表面の構造を説明するための図である。 酸化タングステン膜断面のTEM写真である。 図10に示すTEM写真の2次元フーリエ変換像を示す図である。 図11に示す2次元フーリエ変換像から輝度変化プロットを作成する過程を説明する図である。 サンプルA、B、Cにおけるフーリエ変換像と、輝度変化プロットを示す図である。 サンプルD、Eにおけるフーリエ変換像と、輝度変化プロットを示す図である。 サンプルA、サンプルEの輝度変化プロット((a)、(b))と、各輝度変化プロットにおける中心点から最も近くに現れる規格化輝度のピーク付近の拡大図((a1)、(b1))と、(a1)および(b1)の各プロットの1次微分を示す図((a2)、(b2))である。 酸化タングステン膜が、(a)ナノクリスタル構造である場合のホール伝導を模式的に示す図と、(b)アモルファス構造である場合のホール伝導を模式的に示す図である。
[実施の態様]
本発明の一態様である有機EL素子は、陽極と陰極との間に、有機材料を含んでなる機能層と、前記機能層にホールを注入するためのホール注入層と、を有する有機EL素子であって、前記ホール注入層は金属酸化物を含む金属酸化物膜であり、前記金属酸化物を構成する金属元素は、当該金属元素が取り得る最大価数の状態および当該最大価数よりも低い価数の状態で前記金属酸化物膜に含まれ、かつ、前記金属酸化物膜は、粒径がナノメートルオーダーの大きさである前記金属酸化物の結晶を含む構成とした。
本発明の一態様に係るホール注入層を金属酸化物の結晶で構成するとともに、当該金属酸化物を構成する金属元素を、最大価数の状態および当該最大価数よりも低い価数の状態とすることで、ホール注入層に酸素欠陥に類する構造を持たせることができる。これに加え、酸化タングステンの結晶粒径をナノメートルオーダーの大きさとすることで、それに伴って、酸素欠陥に類する構造が多く存在する結晶粒界が酸化タングステン層内に数多く形成される。ここで、「ナノメートルオーダーの大きさ」とは、3〜10nm程度の大きさを指しており、ホール注入層の膜厚よりも小さいこととする。
ここで、前記金属酸化物は酸化タングステンであり、前記最大価数の状態の前記金属元素は6価のタングステン元素であることとしてもよいし、前記最大価数よりも低い価数の前記金属元素は、5価のタングステン元素であることとしてもよい。また、前記5価のタングステン原子の数を、前記6価のタングステン原子の数で割った値であるW5+/W6+が3.2%以上であることとしてもよい。6価のタングステン原子に対し、5価のタングステン原子が3.2%以上含まれていることで、より良好なホール伝導効率を得ることができる。
さらに、前記W5+/W6+が3.2%以上7.4%以下であることとしても、より良好なホール伝導効率を得ることができる。
前記酸化タングステン膜表面の硬X線光電子分光スペクトルにおいて、6価のタングステンの4f7/2準位に対応した第1ピークよりも低い結合エネルギー領域、言い換えると浅いエネルギー準位に第2ピークが存在することとしてもよい。具体的には前記第2ピークは、前記第1ピークの結合エネルギー値よりも0.3〜1.8eV低い結合エネルギー領域に存在することとしてもよい。ここで、第1ピークは6価のタングステン原子のピークに相当し、一方の第2ピークは、5価のタングステン原子のピークに相当する。
前記第2ピークの面積強度は、前記第1ピークの面積強度に対して、3.2〜7.4%であることとしてもよい。第1ピークと第2ピークの面積の比は、6価のタングステン原子と5価のタングステン原子の存在比に対応する。すなわち、6価のタングステン原子に対し、5価のタングステン原子が3.2%以上7.4%以下の割合で含まれていることを示している。
前記最大価数よりも低いタングステン元素の存在によって、前記ホール注入層における価電子帯で最も低い結合エネルギーよりも1.8〜3.6eV低い結合エネルギー領域内に占有準位を有していることとしてもよい。この占有準位が存在することで、ホール注入層と機能層との間のホール注入障壁を小さく抑えることができる。その結果、より良好なホール注入効率を得ることができる。ここで、「価電子帯で最も低い結合エネルギー」とは、真空レベルからの価電子帯の上端の位置に相当するエネルギーを意味する。
また、前記酸化タングステン膜は、粒径が3〜10ナノメートルの大きさである前記酸化タングステンの結晶を複数個含んでおり、前記酸化タングステン膜断面の透過型電子顕微鏡観察による格子像において、1.85〜5.55Åの間隔で規則的に配列した線状構造が現れることとしてもよい。粒径が3〜10ナノメートルの大きさの結晶が含まれた酸化タングステン膜表面のTEM写真においては、部分的に明部が同方向に配列していることにより、規則的に配列した線状構造が現れる。この規則的な線状構造はナノメートルオーダーの結晶の存在を示唆している。
また、前記格子像の2次元フーリエ変換像において、当該2次元フーリエ変換像の中心点を中心とした同心円状の模様が現れることとしてもよい。ナノメートルオーダーの結晶が存在していると、それに基づいて上記のような同心円状の模様が現れる。
さらに、前記中心点からの距離と、前記距離における前記2次元フーリエ変換像の輝度を規格化した数値である規格化輝度との関係を表すプロットにおいて、前記規格化輝度のピークが1以上現れることとしてもよい。前記プロットにおける一の規格化輝度のピークが、一の同心円状の模様に対応する。
前記プロットにおける前記中心点から最も近くに現れる前記規格化輝度のピークの位置に対応する前記距離と、前記規格化輝度のピークの立ち上がり位置に対応する前記距離との差をピーク幅とし、前記中心点に対応する前記距離と、前記中心点から最も近くに現れる前記規格化輝度のピークに対応する前記距離との差を100とした時の前記ピーク幅が22よりも小さいこととしてもよい。最も中心点に近い距離に現れる規格化輝度のピークが、ナノメートルオーダーの結晶の存在に基づく同心円状の模様に対応する。また、ナノメートルオーダーの結晶の存在量が多いほど、この規格化輝度のピークの半値幅は小さく、すなわち、前記規格化輝度の幅は小さくなる。ピーク幅が所定の範囲内に収まる程度にナノメートルオーダーの結晶が存在していることで、より良好なホール伝導効率を得ることができる。
前記機能層は、アミン系材料を含んでいることとしてもよい。アミン系の有機分子においては、窒素原子の非共有電子対を中心にHOMOの電子密度が分布しているため、この部分がホールの注入サイトとなる。機能層がアミン系材料を含んでいることにより、機能層側にホールの注入サイトを形成することができるので、ホール注入層から伝導されてきたホールを機能層に効率良く注入することが可能となる。
前記機能層は、ホールを輸送するホール輸送層、注入されたホールと電子とが再結合することにより発光する発光層、光学特性の調整又は電子ブロックの用途に用いられるバッファ層のいずれかであることとしてもよい。
また、本発明に係る有機ELパネル、有機EL発光装置、有機EL表示装置は上記構成の有機EL素子を備える。これにより、上記と同様の効果が得られる有機ELパネル、有機EL発光装置、有機EL表示装置を構成することができる。
本発明の一態様に係る有機EL素子の製造方法は、陽極を準備する第1工程と、前記陽極上に酸化タングステン膜を成膜する第2工程であって、アルゴンガスと酸素ガスからなるスパッタガス、および、タングステンからなるターゲットを用い、前記スパッタガスの全圧が2.3Pa以上7.0Pa以下であるとともに、前記スパッタガスの全圧に対する前記酸素ガス分圧の割合が50%以上70%以下であり、かつ、前記ターゲットの単位面積当たりの投入電力である投入電力密度が1.5W/cm2以上6.0W/cm2以下であり、かつ、前記スパッタガスの全圧を投入電力密度で割った値である全圧/投入電力密度が0.7Pa・cm2/Wよりも大きい成膜条件下で酸化タングステン膜を成膜する第2工程と、前記成膜された酸化タングステン膜上に有機材料を含んでなる機能層を形成する第3工程と、前記機能層の上方に、陰極を形成する第4工程と、を含むこととしてもよい。また、前記第2工程において、前記酸化タングステン膜を構成するタングステン元素が、前記タングステン元素が取り得る最大価数の状態および前記最大価数よりも低い価数の状態で前記酸化タングステン膜に含まれるように、かつ、粒径がナノメートルオーダーの大きさである酸化タングステンの結晶が含まれるように、前記酸化タングステン膜を成膜することとしてもよい。さらに、前記第2工程は、前記全圧/投入電力密度が3.2Pa・cm2/Wよりも小さいこととしてもよい。このような工程を経ることで、上記と同様の効果が得られる有機EL素子を形成することができる。
[実施の形態]
〈有機EL素子の構成〉
図1(a)は、本実施の形態に係る有機EL素子1の構成を示す模式的な断面図であり、図1(b)はホール注入層3付近の部分拡大図である。
有機EL素子1は、例えば、機能層をウェットプロセスにより塗布して製造する塗布型であって、ホール注入層3と、所定の機能を有する有機材料を含んでなる各種機能層が互いに積層された状態で、陽極2および陰極6からなる電極対の間に介設された構成を有する。
具体的には図1に示すように、有機EL素子1は、基板7の片側主面に対し、陽極2、ホール注入層3、バッファ層4(機能層の一例)、発光層5(機能層の一例)、陰極6(バリウム層6aおよびアルミニウム層6bからなる)を同順に積層して構成される。
(基板7、陽極2)
基板7は有機EL素子1の基材となる部分であり、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂、またはアルミナ等の絶縁性材料のいずれかで形成することができる。
図示していないが、基板7の表面には有機EL素子1を駆動するためのTFT(薄膜トランジスタ)が形成されており、その上方には陽極2が形成されている。陽極2は、例えば、厚さ50nmのITO薄膜で構成されている。
(ホール注入層3)
ホール注入層3は、例えば、厚さ30nmの酸化タングステン膜(WOx)からなる。酸化タングステンは、その組成式WOxにおいて、xが概ね2<x<3の範囲における実数である。ホール注入層3はできるだけ酸化タングステンのみで構成されることが望ましいが、通常レベルで混入し得る程度に、微量の不純物が含まれていてもよい。
ここで、酸化タングステン膜は所定の成膜条件で成膜されている。この所定の成膜条件についての詳細は(有機EL素子1の製造方法)の項および(ホール注入層3の成膜条件について)の項で詳細に説明する。酸化タングステン膜がこの所定の成膜条件下で成膜されていることにより、図1(b)に示すように、酸化タングステン膜は、酸化タングステンの結晶9を多数含んでいる。各々の結晶9の粒径はナノメートルオーダーの大きさとなるように形成されている。例えば、ホール注入層3が厚さ30nm程度であるに対し、結晶9の粒径は3〜10nm程度である。以下、粒径がナノメートルオーダーの大きさの結晶9を「ナノクリスタル9」と称し、ナノクリスタル9からなる層の構造を「ナノクリスタル構造」と称する。なお、ホール注入層3における、ナノクリスタル構造をとっている領域以外の領域には、アモルファス構造も含まれる。
上記のようなナノクリスタル構造を有するホール注入層3において、酸化タングステンを構成するタングステン原子(W)は、タングステンが取り得る最大価数の状態および当該最大価数よりも低い価数の状態を有するように分布している。一般に、酸化タングステンの結晶構造は均一ではなく、酸素欠陥に類する構造が含まれる。このうち、酸素欠陥に類する構造を有しない結晶構造の酸化タングステンの中では、タングステンの取り得る最大価数は6価の状態である。一方、酸素欠陥に類する構造を有する結晶構造の酸化タングステンの中では、タングステンの価数は最大価数よりも低い5価の状態であることが分かっている。なお、酸化タングステンの膜中は、上記の最大価数、最大価数よりも低い価数等、様々な価数の状態のタングステン原子が集まって構成されており、膜全体で見ると、それらの様々な価数の平均の価数となっている。
ここで、酸素欠陥に類する構造をとることで、当該構造に基づく電子準位により、ホール伝導効率が向上するとの報告がある(非特許文献3)。さらに、図9で述べるように、この酸素欠陥に類する構造は結晶の表面に多く存在することが分かっている。
したがって、酸化タングステン中において、タングステンを6価または5価の状態を有するように分布させ、ホール注入層3に酸素欠陥に類する構造を持たせることにより、ホール伝導効率の向上が望める。すなわち、陽極2からホール注入層3に供給されたホールは結晶粒界に存在する酸素欠陥を伝導するので、酸化タングステン膜をナノクリスタル構造とすることで、ホールが伝導する経路を増やすことができ、ホール伝導効率の向上につながる。したがって、有機EL素子1を起動させる駆動電圧を下げることが可能となる。
また、ホール注入層3は化学的耐性が高い、すなわち、不要な化学反応を起こしにくい酸化タングステンで構成されている。したがって、ホール注入層3が、同層の形成後に行われる工程等において用いられる溶液等と触れた場合であっても、溶解、変質、分解等によるホール注入層3の損傷を抑制することができる。このように、ホール注入層3が、化学的耐性が高い材料で構成されていることにより、ホール注入層3のホール伝導性能の低下を防ぐことができる。
本実施の形態におけるホール注入層3は、ナノクリスタル構造の酸化タングステンのみから構成されている場合と、ナノクリスタル構造の酸化タングステンとアモルファス構造の酸化タングステンの両方から構成されている場合の、双方を含むものとする。また、ナノクリスタル構造は、ホール注入層3の全体に存在することが望ましいが、陽極2とホール注入層3が接する界面から、ホール注入層3とバッファ層4が接する界面との間に一箇所でも粒界が繋がっていれば、ホール注入層3の下端から上端へのホールを伝導させることができる。
なお、結晶化した酸化タングステンを含む酸化タングステン膜をホール注入層として用いる例自体は、過去にも報告されている。例えば、非特許文献1では、酸化タングステン膜を450℃のアニーリングで結晶化することによりホール伝導性が向上することが示されている。しかしながら、非特許文献1ではホール注入層が成膜される基板等の他層への影響を含めて、大型有機ELパネルを量産するに堪える実用性については示されていない。さらに、ホール注入層に積極的に酸素欠陥を有する酸化タングステンのナノクリスタルを形成することも示されていない。本発明に係るホール注入層は、化学反応を起こしにくく、安定であり、大型有機ELパネルの量産プロセスにも耐える酸化タングステン膜で構成されている。さらに、酸化タングステン膜に積極的に酸素欠陥を存在させることにより、優れたホール伝導性およびホール注入効率を実現している点で、従来技術と大きく異なるものである。
(機能層)
有機EL素子1はホール注入層3以外にも、有機EL素子1に必要な、所要機能を果たす機能層が存在する。本発明における機能層は、ホールを輸送するホール輸送層、注入されたホールと電子とが再結合することにより発光する発光層、光学特性の調整または電子ブロックの用途に用いられるバッファ層等のいずれか、もしくはこれらの層を2層以上の組み合わせた層、またはこれらの層の全てを含む層を指す。本実施の形態では、機能層として、バッファ層4および発光層5を含む例を説明する。
バッファ層4は、例えば、厚さ20nmのアミン系有機高分子であるTFB(poly(9,9−di−n−octylfluorene−alt−(1,4−phenylene−((4−sec−butylphenyl)imino)−1,4−phenylene))で構成されている。
バッファ層4をアミン系有機分子で構成することにより、ホール注入層3から伝導されてきたホールを、バッファ層4より上層に形成される機能層に効率的に注入することが可能となる。すなわち、アミン系の有機分子においては、窒素原子の非共有電子対を中心にHOMOの電子密度が分布しているため、この部分がホールの注入サイトとなる。バッファ層4がアミン系有機分子を含んでいることにより、バッファ層4側にホールの注入サイトを形成することができる。
発光層5は、例えば、厚さ70nmの有機高分子であるF8BT(poly(9,9−di−n−octylfluorene−alt−benzothiadiazole))で構成される。しかしながら、発光層5はこの材料からなる構成に限定されず、公知の有機材料を含むように構成することが可能である。たとえば特開平5−163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物およびアザキノロン化合物、ピラゾリン誘導体およびピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物、8−ヒドロキシキノリン化合物の金属錯体、2−ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質等を挙げることができる。
(陰極6)
陰極6は、例えば、厚さ5nmのバリウム層6aと、厚さ100nmのアルミニウム層6bを積層して構成される。前述した陽極2および陰極6には直流電源8が接続され、外部より有機EL素子1に給電されるようになっている。
〈有機EL素子1の製造方法の概略〉
次に、図1に基づき有機EL素子1の全体的な製造方法を例示する。
まず、基板7をスパッタ成膜装置のチャンバー内に載置する。そしてチャンバー内に所定のスパッタガスを導入し、反応性スパッタ法に基づき、厚さ50nmのITOからなる陽極2を成膜する。
次に、ホール注入層3を成膜するが、反応性スパッタ法で成膜することが好適である。具体的には、金属タングステンをターゲットとし、アルゴンガスをスパッタガスとし、酸素ガスを反応性ガスとしてチャンバー内に導入する。この状態で高電圧によりアルゴンをイオン化し、ターゲットに衝突させる。このとき、スパッタリング現象により放出された金属タングステンが酸素ガスと反応して酸化タングステンとなり、陽極2上に酸化タングステン膜が成膜される。
なお、この成膜条件の詳細については次項で述べるが、簡単に述べると、(1)アルゴンガスと酸素ガスから構成されるスパッタガスの全圧が2.3Pa以上7.0Pa以下であり、かつ、(2)スパッタガスの全圧に対する酸素ガス分圧が50%以上70%以下である。さらに(3)ターゲットの単位面積当たりの投入電力(投入電力密度)は1.5W/cm2以上6.0W/cm2以下であり、かつ、(4)スパッタガスの全圧を投入電力密度で割った値である全圧/電力密度が0.7Pa・cm2/Wより大きくなるように設定することが好適である。このような成膜条件により、ナノクリスタル構造を有する酸化タングステン膜が形成される。
前述したように、ホール注入層3を構成する酸化タングステンは化学的耐性が高い。したがって、ホール注入層3が、この後の工程で用いられる溶液等と触れた場合であっても、溶解、変質、分解等によるホール注入層3の損傷を抑制することができる。
次に、ホール注入層3の表面に、例えばスピンコート法やインクジェット法によるウェットプロセスにより、アミン系有機分子材料を含む組成物インクを滴下し、溶媒を揮発除去させる。これによりバッファ層4が形成される。
次に、バッファ層4の表面に、同様の方法で、有機発光材料を含む組成物インクを滴下し、溶媒を揮発除去させる。これにより発光層5が形成される。
なお、バッファ層4、発光層5の形成方法はこれに限定されず、スピンコート法やインクジェット法以外の方法、例えばグラビア印刷法、ディスペンサー法、ノズルコート法、凹版印刷、凸版印刷等の公知の方法によりインクを滴下・塗布しても良い。
続いて、発光層5の表面に真空蒸着法でバリウム層6a、アルミニウム層6bを成膜する。これにより陰極6が形成される。
なお、図1には図示しないが、有機EL素子1が完成後に大気曝露されるのを抑制する目的で、陰極6の表面にさらに封止層を設けるか、あるいは有機EL素子1全体を空間的に外部から隔離する封止缶を設けることができる。封止層は例えばSiN(窒化シリコン)、SiON(酸窒化シリコン)等の材料で形成でき、有機EL素子1を内部封止するように設ける。封止缶を用いる場合は、封止缶は例えば基板7と同様の材料で形成でき、水分などを吸着するゲッターを密閉空間内に設ける。
以上の工程を経ることで、有機EL素子1が完成する。
〈ホール注入層3の成膜条件に関する各種実験と考察〉
(ホール注入層3の成膜条件について)
本実施の形態では、ホール注入層3を構成する酸化タングステンを所定の成膜条件で成膜することで、ホール注入層3にナノクリスタル構造を意図的に存在させることによりホール伝導性を向上させ、有機EL素子1を低電圧駆動できるようにしている。この所定の成膜条件について詳細に説明する。
スパッタ装置としてDCマグネトロンスパッタ装置を用い、ターゲットは金属タングステンとした。基板温度の制御は行わなかった。スパッタガスはアルゴンガスで構成し、反応性ガスは酸素ガスで構成し、各々のガスを同等の流量とする反応性スパッタ法を用いる条件下で成膜することが好適であると考えられる。なお、ホール注入層3の形成方法はこれに限定されず、スパッタ法以外の方法、例えば蒸着法、CVD法等の公知の方法により成膜することもできる。
結晶性の高い酸化タングステン膜を形成する為には、原子が基板に成膜されて規則性を持って膜化する必要があり、出来る限り低い蒸着レートで成膜されることが望ましい。
ここで、スパッタ成膜における成膜レートは、上述した(1)〜(4)の条件に依存すると考えられる。そして、後述する実験を行った結果、(1)〜(4)が上記の数値範囲を取る場合、駆動電圧が低減されることを確認しており、このことにより、結晶性の高い酸化タングステン膜が得られていることになる。
なお、上記(1)に関し、後述する実験条件においては、スパッタガスの全圧は上限値が4.7Paであるが、少なくとも7.0Paまでは同様な傾向を示すことが別途、確認されている
また、上記(2)に関し、スパッタガス全圧に対する酸素ガス分圧の割合は50%に設定されているが、少なくとも50%以上70%以下において、駆動電圧の低減が確認されている。
さらに、上記(4)に関し、補足説明する。アルゴンガスと酸素ガスの流量比率が同等の場合、投入電力密度と成膜時圧力(全圧)によって決定すると考えられる。(3)の投入電力密度は、スパッタされるタングステン原子またはタングステン原子クラスターの数とエネルギーを変化させる。つまり、投入電力密度を低くすることによって、スパッタされるタングステンの数が低減し、基板に成膜されるタングステンを低エネルギーで成膜でき、低成膜レートでの膜化が期待できる。(1)の成膜時の全圧は、スパッタされ気相中に放出されたタングステン原子またはタングステン原子クラスターが成膜基板に到着するまでの平均自由行程を変化させる。つまり、全圧が高いとタングステン原子またはタングステン原子クラスターが基板に到着するまでに成膜チャンバー内のガス成分と衝突を繰返す確率が上昇して、飛来しているタングステン原子またはタングステン原子クラスターのランダム性が増すことによって、基板に成膜されるタングステンの数が低減し、タングステンを低エネルギーで成膜できると考えられる。それにより低成膜レートでの膜化が期待できる。
しかし、前記スパッタの成膜レートを変化させる前記投入電力密度、前記成膜時の全圧をそれぞれ単独で制御しデバイス特性を高めるには限界があると考えられる。そこで、成膜時の全圧(Pa)/投入電力密度(W/cm2)によって、これを新たに成膜条件(4)と規定し、タングステン原子の成膜レートを決定する指標とした。
上記成膜条件(4)が高い程、駆動電圧が低くなって、成膜レートが低く、一方、前記成膜パラメータ(4)が低い程、駆動電圧が高くなって、成膜レートが高い傾向であることが実験的に確認された。
具体的には、全圧/電力密度は後述する実験条件の通り、0.78Pa・cm2/W以上であり、0.7Pa・cm2/Wよりも大きいことが必要であると考えられ、より確実には、0.8Pa・cm2/W以上であることが好ましいと考えられる。一方、全圧/電力密度の上限値については、実験条件上、3.13Pa・cm2/W以下であり、3.2Pa・cm2/Wよりも小さければよいと考えられ、より確実には、3.1Pa・cm2/W以下であることが好ましいと考えられるが、上記の通り、成膜レートの点からすると、必ずしも上限値には制約されないと考えられる。
次に、上記成膜条件の有効性を確認するための諸実験を行った。
まず、ホール注入層3からバッファ層4へのホール伝導効率の、成膜条件依存性の評価を行うため、評価デバイスとして図2に示すようなホールオンリー素子1Aを作製した。
実際に動作する有機EL素子においては、電流を形成するキャリアはホールと電子の両方である。したがって、有機EL素子の電気特性には、ホール電流以外にも電子電流が反映されている。しかし、ホールオンリー素子では陰極からの電子の注入が阻害されるため、電子電流はほとんど流れず、全電流はほぼホール電流のみから構成されることとなる。すなわち、キャリアはホールのみと見なすことができ、ホールオンリー素子はホール伝導効率の評価に好適である。
図2に示すように、ホールオンリー素子1Aは、図1の有機EL素子1における陰極6を、金からなる陰極6Aに置換えたものである。具体的には、基板7上に、厚さ50nmのITO薄膜からなる陽極2、厚さ30nmの酸化タングステンからなるホール注入層3、厚さ20nmのTFBからなるバッファ層4、厚さ70nmのF8BTからなる発光層5、厚さ100nmの金からなる陰極6Aを順次積層した構成とした。
ホールオンリー素子1Aの作製工程において、ホール注入層3は、DCマグネトロンスパッタ装置を用い、反応性スパッタ法で成膜した。チャンバー内ガスは、アルゴンガスおよび酸素ガスの少なくともいずれかから構成し、ターゲットは金属タングステンを用いた。基板温度は制御せず、全圧は各ガスの流量で調節するものとした。表1に示すように、A〜Eの5種の成膜条件でホールオンリー素子1Aを作製した。表1に示すように、各成膜条件によって、全圧および投入電力密度を変化させた。チャンバー内のアルゴンガスおよび酸素ガスの分圧はそれぞれ50%である。
以下、成膜条件Aで成膜したホールオンリー素子1AをHOD−A、成膜条件Bで成膜したホールオンリー素子1AをHOD−B、成膜条件Cで成膜したホールオンリー素子1AをHOD−C、成膜条件Dで成膜したホールオンリー素子1AをHOD−D、成膜条件Eで成膜したホールオンリー素子1AをHOD−Eと称する。
Figure 0005624141
作製した各ホールオンリー素子を直流電源8に接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。
図3は、各ホールオンリー素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。図中縦軸は電流密度(mA/cm2)、横軸は印加電圧(V)である。
表2は、当該実験によって得られたHOD−A〜HOD−Eの各サンプルの駆動電圧の値を示したものである。表2中の「駆動電圧」とは、実用的な具体値である電流密度0.3mA/cm2のときの印加電圧である。
Figure 0005624141
この駆動電圧が小さいほど、ホール注入層3のホール伝導効率は高いと言える。なぜなら、各ホールオンリー素子において、ホール注入層3以外の各部位の作製方法は同一であるから、ホール注入層3を除く、隣接する2つの層の間のホール注入障壁は一定と考えられる。また、当該実験で用いた陽極2とホール注入層3は、オーミック接続をしていることが、別の実験で確認している。したがって、ホール注入層3の成膜条件による駆動電圧の違いは、ホール注入層3からバッファ層4へのホール伝導効率を強く反映したものであると言える。
表2、図3に示されるように、HOD−A〜HOD−Eは、成膜時の全圧を下げるとともに投入電力密度を最大にした条件で作製したHOD−Eと比較して、ホール伝導効率が優れていることがわかる。
以上、ホールオンリー素子1Aにおけるホール注入層3のホール伝導効率に関する検証について述べたが、ホールオンリー素子1Aは、陰極6A以外は実際に動作する有機EL素子1(図1)と同一の構成である。したがって、有機EL素子1においても、ホール注入層3からバッファ層4へのホール伝導効率の成膜条件依存性は、本質的にホールオンリー素子1Aと同じである。このことを確認するために、A〜Eの各成膜条件で成膜したホール注入層3を用いた有機EL素子1を作製した。以下、成膜条件Aで成膜した有機EL素子1をBPD−A、成膜条件Bで成膜した有機EL素子1をBPD−B、成膜条件Cで成膜した有機EL素子1をBPD−C、成膜条件Dで成膜した有機EL素子1をBPD−D、成膜条件Eで成膜した有機EL素子1をBPD−Eと称する。
作製した各有機EL素子は、図1に示すように、基板7上に厚さ50nmのITO薄膜からなる陽極2を形成し、さらに陽極2上に厚さ30nmの酸化タングステンからなるホール注入層3、厚さ20nmのTFBからなるバッファ層4、厚さ70nmのF8BTからなる発光層5、厚さ5nmのバリウムおよび厚さ100nmのアルミニウムからなる陰極6を順次積層した構成とした。作製した成膜条件A〜Eの各有機EL素子1を直流電源8に接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。
図4は、各有機EL素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。図中縦軸は電流密度(mA/cm2)、横軸は印加電圧(V)である。表3は、当該実験によって得られたBOD−A〜BOD−Eの各サンプルの駆動電圧の値を示したものである。表3中の「駆動電圧」とは、実用的な具体値である電流密度8mA/cm2のときの印加電圧である。
Figure 0005624141
表3、図4に示されるように、BPD−Eは他の有機EL素子と比較して、最も電流密度―印加電圧曲線の立ち上がりが遅く、高い電流密度を得る為には、最も高い印加電圧であることが確認された。これは、それぞれ同じ成膜条件のホールオンリー素子HOD−A〜HOD−Eと同様の傾向である。
以上の結果により、ホール注入層3のホール伝導効率の成膜条件依存性が、有機EL素子1においても、ホールオンリー素子1Aの場合と同様に作用していることが確認された。すなわち、成膜条件A、B、C、Dの範囲となる成膜条件下で成膜を行うことにより、ホール注入層3からバッファ層4へのホール伝導効率を向上させ、それにより低電圧駆動が実現されることが確認された。
なお、上記においては、投入電力の条件は、表1に示したように投入電力密度で表した。本実験で用いたDCマグネトロンスパッタ装置とは異なるDCマグネトロンスパッタ装置を用いる場合は、ターゲット裏面のマグネットのサイズに合わせて、投入電力密度が上記条件になるように投入電力を調節することにより、本実験と同様に、ホール伝導効率の優れた酸化タングステン膜からなるホール注入層3を得ることができる。なお、全圧、酸素分圧については、装置やターゲットサイズ及び、ターゲットマグネットサイズに依存しない。
また、ホール注入層3の反応性スパッタ法による成膜時は、室温環境下に配置されるスパッタ装置において、基板温度を意図的には設定していない。したがって、少なくとも成膜前の基板温度は室温である。ただし、成膜中に基板温度は数10℃程度上昇する可能性がある。
なお、本願発明者は別の実験により、酸素分圧を上げすぎた場合には逆に駆動電圧が上昇してしまうことを確認している。したがって、酸素分圧は50%〜70%であることが望ましい。
以上の実験結果より、低電圧駆動には成膜条件A、B、C、Dで作製したホール注入層を備える有機EL素子が好ましく、より好ましくは成膜条件A、Bで作製した有機EL素子である。以下、成膜条件A、B、C、Dで作製したホール注入層を備える有機EL素子を本願の対象とする。
(ホール注入層3におけるタングステンの化学状態について)
本実施の形態の有機EL素子1のホール注入層3を構成する酸化タングステンには、上述したナノクリスタル構造が存在している。このナノクリスタル構造は、先の実験で示した成膜条件の調整により形成されるものである。詳細を以下に述べる。
前述の成膜条件A〜Eで成膜した酸化タングステンにおける、ナノクリスタル構造の存在を確認するために、硬X線光電子分光(HAXPES)測定(以下、単に「XPS
測定」と記載する。)実験を行った。ここで、一般に硬X線光電子分光スペクトル(以
下、単に「XPSスペクトル」と記載する。)は、測定対象物の表面と、光電子を取り出す検出器において光電子を検出する方向とがなす角度によって、膜の平均価数を反映する情報深さが決まる。そこで本実験では、XPS測定における光電子検出方向と、酸化タングステン膜の表面のなす角度が40°となる条件で測定を行い、酸化タングステン膜の厚み方向の平均の価数の状態を観察するものとした。
XPS測定条件は以下の通りである。なお、測定中、チャージアップは発生しなかった。
(XPS測定条件)
使用機器 :R−4000(VG−SCIENTA社製)
光源 :シンクロトロン放射光(7856eV)
バイアス :なし
出射角 :基板表面とのなす角が40°
測定点間隔:0.05eV
表1に示すA〜Eの各成膜条件でXPS測定用のサンプルを作製した。ガラス上に成膜されたITO導電性基板の上に、厚さ30nmのホール注入層3を、前記の反応性スパッタ法により成膜することにより、XPS測定用のサンプルとした。以降、成膜条件A、B、C、D、Eで作製したXPS測定用サンプルを、それぞれサンプルA、サンプルB、サンプルC、サンプルD、サンプルEと称する。続いて、サンプルA〜Eの各ホール注入層3の表面に対してXPS測定を行った。その結果のスペクトルを図5に示す。
図5の横軸は結合エネルギーを示しており、X線を基準としたときの各準位に存在する光電子のエネルギーに相当し、左方向を正の向きとした。縦軸は光電子強度を示しており、観測された光電子の個数に相当する。図5に示すように3つのピークが観測され、各ピークは図の左から右に向かって、それぞれタングステンの5p3/2準位(W5p3/2)、4f5/2準位(W4f5/2)、4f7/2準位(W4f7/2)に対応するピークであると帰属した。
次に、サンプルAのスペクトルと比較例としてサンプルEのスペクトルのW5p3/2、W4f5/2、W4f7/2に帰属されたピークに対し、ピークフィッティング解析を行った。
ピークフィッティング解析は以下のようにして行った。
具体的には、光電子分光解析用ソフト「XPSpeak Version4.1」を用いて行った。まず、硬X線のエネルギーの7940eVの光イオン化断面積から、W4f7/2準位、W4f5/2準位、W5p3/2準位に対応するピーク面積強度の比率を、W4f7/2:W4f5/2:W5p3/2=4:3:10.5で固定し、表4に示すように、W4f7/2の6価表面欠陥準位(W6+4f7/2)に帰属されるピークトップを35.7eVのエネルギー値に合わせた。次に、W5p3/2の表面光電子ピーク(Wsur5p3/2)、6価表面欠陥準位(W6+5p3/2)、5価表面欠陥準位(W5+5p3/2)に帰属される各帰属ピークのピークエネルギー値とピーク半値幅を、表4に示す数値に設定した。同様に、W4f5/2、W4f7/2に対しても、表面光電子ピーク(Wsur4f5/2、Wsur4f7/2)、6価表面欠陥準位(W6+4f5/2)、5価表面欠陥準位(W5+4f5/2、W5+4f7/2)に帰属される各帰属ピークのピークエネルギー値とピーク半値幅の値を、表4のように設定した。ピーク強度を任意の強度に設定した後、Gaussian−Lorentzianの混合関数を用いて最大100回演算することにより、最終的なピークフィッティング解析結果を得た。上記混合関数におけるLorentzian関数の比率は表4の通りである。
Figure 0005624141
最終的なピークフィッティング解析結果を図6に示す。図6(a)は、サンプルAの解析結果、図6(b)はサンプルEの解析結果である。
両図において、破線(sample A、sample E)は実測スペクトル(図5のスペクトルに相当)、二点鎖線(surface)は表面光電子ピークWsur5p3/2、Wsur4f5/2、Wsur4f7/2に帰属されるスペクトル、点線(W6+)は6価表面欠陥準位W6+5p3/2、W6+4f7/2、(W6+4f5/2)に帰属されるスペクトル、一点鎖線(W5+)は5価表面欠陥準位W5+5p3/2、W5+4f5/2、W5+4f7/2に帰属されるスペクトルである。実線(fit)は、二点鎖線と点線と一点鎖線で示すスペクトルを足し合わせたスペクトルである。なお、両図において、一点鎖線で示した5価タングステンに帰属されるピークは、5価の状態のタングステンのみに由来するものとみなした。
図6の各図に示すように、5p3/2、4f5/2、4f7/2の各準位に帰属されるスペクトルは、ホール注入層3の表面からの光電子によるピーク(surface)と、ホール注入層3の層内で光電子が検出される深さに含まれる6価タングステンのピーク(W6+)と、同深さに含まれる5価タングステンのピーク(W5+)の足し合わせにより構成されていることが分かる。
また、図6(a)に示すように、サンプルAでは、W6+のスペクトルにおける5p3/2、4f5/2、4f7/2の各準位に帰属されるピークから、0.3〜1.8eV低い結合エネルギー領域において、各々の準位に対応するW5+のピークが存在することが見て取れる。一方、図6(b)に示すように、サンプルEでは、そのようなW5+のピークは見て取れない。分かりやすくするために、図6(a)および(b)の右側に、サンプルAおよびサンプルEのW5+のスペクトルにおける4f7/2に帰属されるピークの拡大図を示した。同図の(c)で示したように、サンプルAでははっきりとW5+のピークが存在していること確認できるが、サンプルEではW5+のピークは確認できない。
さらに、図6の各拡大図の細部に着目すると、サンプルAでは実線(fit)で示すピークフィッティンの足し合わせのスペクトルと、点線(W6+)で示すW6+のスペクトルとの間で大きく「ずれ」がある一方で、サンプルEではサンプルAほどの「ずれ」はない。すなわち、サンプルAにおけるこの「ずれ」が5価タングステンの存在を示唆するものであると推察される。
次に、サンプルA〜Eにおける、6価タングステンの元素数に対する5価タングステンの元素数の存在比率であるW5+/W6+を算出した。この存在比率は、各サンプルのピークフィッティング解析で得たスペクトルにおけるW5+(一点鎖線)のピークの面積強度を、W6+(点線)のピークの面積強度で除算することにより算出した。
なお、原理上、W4f7/2におけるW6+のピークの面積強度とW5+のピークの面積強度の比率により、6価タングステン原子の数と5価タングステン原子の数の存在比を表すことは、W5p3/2ならびにW4f5/2に帰属されるピークから前記存在比を表すことと同義である。実際、本検討において、W4f7/2におけるW5+4f7/2の面積強度とW6+4f7/2の面積強度の比率は、W5p、W4f5/2の場合でも同じ値であることを確認している。よって、以降の考察においては、W4f7/2に帰属されるピークのみを用いて検討を行うこととした。
表5にサンプルA〜EのW5+/W6+を示す。
Figure 0005624141
表5に示すW5+/W6+の値より、最も多くの5価タングステン原子が含まれるのはサンプルAであり、続いてサンプルB、サンプルC、サンプルDの順にその比率が少ないことを確認した。また、表3および表5の結果より、W5+/W6+の値が大きいほど、有機EL素子の駆動電圧が低くなることが明らかとなった。
(ホール注入層3におけるタングステンの電子状態について)
前述の成膜条件A〜Dで成膜した酸化タングステンには、その電子状態において、価電子帯の上端、すなわち価電子帯で最も低い結合エネルギーよりも、1.8〜3.6eV低い結合エネルギー領域内に占有準位が存在している。この占有準位がホール注入層3の最高占有準位に該当し、すなわち、その結合エネルギー範囲はホール注入層3のフェルミ面に最も近い。以降、この占有準位を「フェルミ面近傍の占有準位」と称する。
このフェルミ面近傍の占有準位が存在することで、ホール注入層3とバッファ層4との積層界面では、いわゆる界面準位接続がなされ、バッファ層4の最高被占軌道の結合エネルギーが、ホール注入層3の前記フェルミ面近傍の占有準位の結合エネルギーと、ほぼ等しくなる。すなわち、この占有準位が存在することで、ホール注入層3とバッファ層4との間のホール注入障壁を小さく抑えることができる。その結果、より良好なホール伝導効率を得ることができ、低電圧で駆動が可能となる。
なお、ここで言う「ほぼ等しくなる」および「界面準位接続がなされた」とは、ホール注入層3とバッファ層4との界面において、フェルミ面近傍の占有準位で最も低い結合エネルギーと、最高被占軌道で最も低い結合エネルギーとの差が、±0.3eV以内の範囲にあることを意味している。
さらに、ここで言う「界面」とは、ホール注入層3の表面と、当該表面から0.3nm以内の距離におけるバッファ層4とを含む領域を指す。
また、前記フェルミ面近傍の占有準位は、ホール注入層3の全体に存在することが望ましいが、少なくともバッファ層4との界面に存在すればよい。
次に、前述のサンプルAおよびサンプルEのホール注入層3に対し、フェルミ面近傍の占有準位の存在を確認する実験を、紫外光電子分光(UPS)測定を用いて行った。
サンプルA、Eはいずれも、スパッタ装置内においてホール注入層3を成膜した後、当該スパッタ装置に連結され窒素ガスが充填されたグローブボックス内に移送し、大気曝露しない状態を保った。そして、当該グローブボックス内でトランスファーベッセルに封入し、光電子分光装置に装着した。これにより、ホール注入層3を成膜後に大気曝露することなく、UPS測定を実施した。
ここで、一般にUPSスペクトルは、測定対象物の表面から深さ数nmまでにおける、価電子帯などの占有準位の状態を反映したものになる。そこで本実験では、UPS測定を用いてホール注入層3の表層における占有準位の状態を観察するものとした。
UPS測定条件は以下の通りである。なお、測定中チャージアップは発生しなかった。
(UPS測定条件)
使用機器 :走査型X線光電子分光分析装置 PHI5000 VersaPro
be(アルバック・ファイ社製)
光源 :He I線
バイアス:なし
出射角 :基板法線方向
測定点間隔:0.05eV
図7に、サンプルAにおけるホール注入層3表面のUPSスペクトルを示す。横軸の結合エネルギーの原点は基板7のフェルミ面とし、左方向を正の向きとした。以下、図7を用いて、ホール注入層3の各占有準位について説明する。
一般に酸化タングステンが示すUPSスペクトルにおいて、最も大きく急峻な立ち上がりは一意に定まる。この立ち上がりの変曲点を通る接線を線(i)、その横軸との交点を点(iii)とする。これにより、酸化タングステンのUPSスペクトルは、点(iii)から高結合エネルギー側に位置する領域(ア)と、低結合エネルギー側(すなわちフェルミ面側)に位置する領域(イ)に分けられる。
ここで、先の同様のXPS測定を用いて、サンプルA、Eとも、タングステン原子と酸素原子の数の比率がほぼ1:3であること確認した。具体的には、ホール注入層3の表面から深さ数nmまでにおけるタングステンと酸素の組成比を見積もることにより行った。
この比率より、サンプルサンプルA、Eのいずれにおいても、ホール注入層3は少なくとも表面から深さ数nm以内の範囲において、三酸化タングステンを基本とする原子配置を基本構造(詳細は次項で述べる)に持つと考えられる。したがって、図7における領域(ア)は、上記基本構造に由来する占有準位であり、いわゆる価電子帯に対応する領域である。なお、本願発明者はホール注入層3のX線吸収微細構造(XAFS)測定を行い、サンプルA、Eのいずれにおいても、上記基本構造が形成されていることを確認した。
したがって、図7における領域(イ)は、価電子帯と伝導帯の間のバンドギャップに対応するが、本UPSスペクトルが示すように、酸化タングステンにはこの領域にも、価電子帯とは別の占有準位が存在することがあることが知られている。これは上記基本構造とは異なる別の構造に由来する準位であり、いわゆるバンドギャップ間準位(in−gap
stateあるいはgap state)である。
続いて図8に、サンプルA、Eにおける各ホール注入層3の、領域(イ)におけるUPSスペクトルを示す。図8に示すスペクトルの強度は、図7における点(iii)よりも3〜4eVほど高結合エネルギー側に位置するピーク(ii)のピークトップの値で規格化した。図8にも図7の点(iii)と同じ横軸位置に点(iii)を示している。横軸は点(iii)を基準とした相対値(相対結合エネルギー)として表し、左から右(フェルミ面側)に向かって結合エネルギーが低くなるように示している。
図8に示されるように、サンプルAのホール注入層3では、点(iii)からおおよそ3.6eV低い結合エネルギーの位置から、点(iii)からおおよそ1.8eV低い結合エネルギーの位置までの領域に、ピークの存在が確認できる。このピークの明瞭な立ち上がり位置を図中に点(iv)で示した。このようなピークは、サンプルEでは確認できない。
このように、UPSスペクトルにおいて点(iii)から1.8〜3.6eV程度低い結合エネルギーの領域内に隆起(ピークとは限らない)した構造を持つ酸化タングステンを、ホール注入層として用いることにより、有機EL素子において優れたホール伝導効率が発揮できるようになっている。
ここで、当該隆起の程度が急峻であるほど、ホール注入効率が高くなることが分かっている。したがって、図8に示すように、点(iii)から2.0〜3.2eV程度低い結合エネルギーの領域は、比較的当該隆起構造を確認しやすく、かつ、その隆起が比較的急峻である領域として、特に重要であると言える。
(W5+/W6+の値と駆動電圧の関係)
図9は酸化タングステン膜表面の構造を説明するための図である。ここでは酸化タングステンとして三酸化タングステン(WO3)を例に挙げて説明する。図9に示すように、酸化タングステンの単結晶は、酸素原子がタングステン原子に対し8面体配位で結合したルチル構造を基本構造に持つ。なお、図9では、単純化のために三酸化タングステン単結晶をルチル構造で示しているが、実際は歪んだルチル構造である。
図9に示すように、結晶内部においてタングステン原子が酸素原子で終端されているが、結晶粒界においては終端酸素原子(b)とそれに囲まれた終端されていないタングステン原子(a)が存在すると考えられる。非特許文献4では、第一原理計算により、結晶粒界の全てのタングステン原子が酸素原子で終端されるよりも、図9のように周期的に一部のタングステン原子(a)が終端されない構造の方がエネルギー的に安定すると開示されている。この理由として、結晶粒界の全てのタングステン原子が酸素原子で終端されると終端酸素原子同士の電気的な斥力が大きくなり、かえって不安定化するからであると報告している。つまり、結晶粒界においては、表面に酸素欠陥に類する構造(a)がある方が安定するのである。
ここでは、酸素原子で終端されているタングステン原子、すなわち、酸素欠陥に類する構造(a)を有しないタングステン原子が6価タングステン原子に対応している。一方、酸素原子で終端されていないタングステン原子、すなわち、酸素欠陥に類する構造(a)を有するタングステン原子が5価タングステン原子(5価以上6価未満も含む)に対応している。
5価タングステン原子は、8面体配位している酸素原子の1つがなくなることによって非共有電子対を有する構造を有していると思われる。つまり、5価タングステン原子は自身が持つ非共有電子対をホールに供与し、それにより当該電子を供与した5価タングステン原子はホールを有することになると考えられる。ホール注入層に印加されたバイアス電圧によって、5価タングステン原子に存在する非共有電子対の供与が連続的に生じることで、ホールは低い電位方向に、電子は高い電位方向に移動し、ホール伝導が生じると考えられる。よって、サンプルAのようにW5+/W6+の値が高い、すなわち、5価タングステン原子の比率が高いホール注入層3ではホール伝導経路が多く、低電圧でのホール伝導により低電圧駆動が実現し、結果として有機EL素子において優れたホール伝導効率が発揮できるようになっている。
また、サンプルC、Dにおいては、W5+/W6+の値がサンプルAほど高くはないが、3.2%程度であっても良好なホール伝導が生じていることも確認された。
(ホール注入層3におけるタングステンの微細構造について)
ホール注入層3を構成する酸化タングステン膜には、ナノクリスタル構造が存在している。このナノクリスタル構造は、成膜条件の調整により形成されるものである。詳細を以下に述べる。
表1で示した成膜条件A、B、C、D、Eで成膜した酸化タングステン膜における、ナノクリスタル構造の存在を確認するために、透過電子顕微鏡(TEM)観察実験を行った。
TEM観察用のサンプルにおける酸化タングステン層は、表1に示す条件にてDCマグネトロンスパッタ装置を用い、反応性スパッタ法で成膜した。当該サンプルの構成としては、ガラス上に成膜されたITO導電性基板の上に、厚さ30nmのホール注入層3を前記の反応性スパッタ法により成膜した。以降、成膜条件A、B、C、D、Eで作製したTEM観察用サンプルを、それぞれサンプルA、サンプルB、サンプルC、サンプルD、サンプルEと称する。なお、TEM観察は、先のXPS測定により、サンプルA、B、C、Dに5価タングステン原子が含まれていることを確認した上で行っている。
ここで、一般にTEM観察は、観察する面に対する厚みを薄片化し観察を行う。本実施の形態での薄片化は、酸化タングステン膜における断面からの深さ方向の厚みを、収束イオンビーム(FIB)装置を用いてサンプル加工し、100nm程度の薄片化とした。FIB加工とTEM観察の条件は以下の通りである。
(FIB加工条件)
使用機器:Quanta200(FEI社製)
加速電圧:30kV(最終仕上げ5kV)
薄片膜厚:〜50nm
(TEM観察条件)
使用機器:トプコンEM−002B(トプコンテクノハウス社製)
観察方法:高分解能電子顕微鏡法
加速電圧:200kV
図10に、サンプルA、B、C、D、Eのホール注入層3断面のTEM観察写真を示す。写真のスケールは、写真内に記載したスケールバーに従い、TEM写真の表示サイズは560×560ピクセルで表示している。また、図10で示すTEM観察写真は、黒暗部から薄明部までを256階調に平均分割し表示している。
図10に示すTEM写真から、サンプルA、B、C、Dにおいては部分的に明部が同方向に配列していることにより、規則的に配列した線状構造が確認される。この線状構造は、TEM写真中の縮尺より、おおよそ1.85〜5.55Åの間隔で配列していることがわかった。
一方で、サンプルEにおいては明部が不規則に分散しており、規則的に配列した線状構造は確認されなかった。TEM写真において、上記の線状構造がある領域は、酸化タングステンの一つのナノクリスタルを表しており、TEM写真より、サンプルA、B、C、Dでは酸化タングステンのナノクリスタル構造の形成が確認された。一方、サンプルEにおいてはナノクリスタル構造の形成は確認されなかった。
図10のサンプルAのTEM写真において、ナノクリスタルの任意の1つを白線枠にて図示した。なお、この輪郭線は正確なものではなく、あくまで例示である。というのは、実際には、TEM写真に写っているのは最表面だけではなく、下層の様子も写り込んでいるため、正確な輪郭を特定することが困難であるからである。サンプルAにおいて白線枠にて図示している一のナノクリスタルの大きさは、おおよそ3〜10nm程度である。
図11に、図10で示したTEM観察写真を2次元フーリエ変換した結果を2次元フーリエ変換像として示す。図11に示す2次元フーリエ変換像は、図10に示すTEM観察写真の逆格子空間を示す分布である。具体的には、図11に示す2次元フーリエ変換像は、図10に示すTEM写真を画像処理ソフト「LAview Version #1.77」を用い、フーリエ変換を行った。図11に示すフーリエ変化像から、サンプルA、B、C、Dではフーリエ変換像の中心点を中心とした3本ないしは2本の同心円状の明部が確認される。また、サンプルA、B、C、Dで確認されたフーリエ変換像の同心円状明部は、サンプルEでは不明瞭な円を有していることが確認できる。この同心円状明部の「不明瞭さ」は、定性的に図10で示すホール注入層3における構造の秩序性の崩れを示している。つまり、円状明部が明瞭に確認できるサンプルA、B、C、Dでは、高い秩序性を有しており、サンプルEでは秩序性が崩れていることを示している。
次に、図11で示した2次元フーリエ変換像から、その像の中心点から外周部に向かう距離に対する輝度の変化を示すグラフを作成した。図12は、その作成方法の概要を示す図であり、サンプルAを例として示している。
図12(a)に示すように、フーリエ変換像の中心点を軸として1°ずつ回転させて、フーリエ変換像の中心点からX軸方向の写真外周部までの距離に対する輝度を測定する。0°から359°回転させ各1°刻みの回転時のフーリエ変換像の中心点からの距離(横軸)と、フーリエ変換像の輝度を規格化した数値である規格化輝度(縦軸)を積算し、360で割ることによって、図12(b)に示すグラフを描画した。なお、画像の回転には、「Microsoft Office Picture Manager」を用い、フーリエ変換像の中心からの距離と輝度の測定には、画像処理ソフト「ImageNos」を用いた。以下、図12で説明した手法に基づいて描画したプロットを「輝度変化プロット」と称する。
図13、14に、サンプルA、B、C、D、Eについての輝度変化プロットを示す。サンプルA、B、C、D、Eにおける輝度変化プロットにおいて、各サンプルとも中心点の高輝度部とは別にP1で示すピークを有することが分かる。以下、この輝度変化プロットにおける中心点から最も近くに現れる規格化輝度のピークを「ピークP1」と称する。また、サンプルEにおけるピークP1に比べて、サンプルA、B、C、DにおけるピークP1は鋭い凸形状を持っていることが確認された。
次に、サンプルA、B、C、D、EにおけるピークP1の鋭さについて評価した。図15はその評価方法の概要を示す図であり、サンプルAおよびサンプルEを例として示している。
図15(a)、(b)はそれぞれ、サンプルAおよびサンプルEの輝度変化プロットであり、図15(a1)、(b1)は各々のサンプルのピークP1付近の拡大図である。図15(a1)、(b1)中のLで示した「ピークP1のピーク幅L」を、ピークP1の「鋭さ」を示す指標として用いることとする。
この「ピークP1のピーク幅L」をより正確に決定するために、図15(a1)、(b1)で示すプロットを一次微分し、それを図15(a2)、(b2)に示した。図15(a2)、(b2)において、ピークP1のピークトップに対応する横軸の値と、当該ピークトップから中心点に向かって初めに微分強度が0となる位置に対応する横軸の値との差をピーク幅Lとする。フーリエ変換画像の中心点とピークP1のピークトップに対応する横軸の値を100として規格化したときの、サンプルA、B、C、D、Eにおけるピーク幅Lの値を表6に示す。
Figure 0005624141
表6に示すように、サンプルAでは最もピーク幅Lが小さく、サンプルB、C、Dの順でピーク幅Lが大きくなり、サンプルEのピーク幅Lが最大となったことを確認した。また、サンプルC、Dにおいては、ピーク幅Lの値がサンプルAほど小さくはないが、21.9程度であっても良好なホール伝導が生じていることも確認された。
表6に示すピーク幅Lの値は、図11で示すフーリエ変換像の中心値から最も近い同心円状の明部の明瞭さを示しており、ピーク幅Lの値が小さい程、同心円状明部の広がりが少なく、すなわち、図10で示すホール注入層3のTEM写真における規則性の高いことを示している。反対に、ピーク幅Lの値が大きくなるにつれて、図11で示すフーリエ変換像の中心から最も近い同心円状の明部が広がりを有していることを示しており、すなわち、図10で示すホール注入層3のTEM写真における微細構造の規則性が崩れていることを示している。
図9で述べたように、酸化タングステンの単結晶は、酸素原子がタングステン原子に対し8面体配位した、歪んだルチル構造を基本構造に持つと考えられている。また、ナノクリスタル構造は、このような単結晶、すなわちナノクリスタルが多数集合して構成されるものである。つまり、ナノクリスタル構造の内部は、単結晶の内部と同じく歪んだルチル構造であり、規則性の高い構造であると考えられる。よって、5価タングステン原子はナノクリスタル内部ではなく、ナノクリスタル同士の表面に存在していると考えるべきである。
表5、表6の結果より、酸化タングステン膜が規則性の低い膜構造であるほど、5価タングステン原子の比率は低下することが明らかになった。この理由については、次のように考えられる。
成膜条件Eで作製した酸化タングステン膜は、一部においては前述のルチル構造が秩序性を持って存在しているが、膜中の大部分においては、ルチル構造が秩序性を持たないアモルファス構造となっていると考えられる。アモルファス構造となっている部分では、ルチル構造が秩序性を有していないものの、ルチル構造が膜全体でつながりを持っており、ルチル構造の配列を切っている断絶部分が少ない。そのため、酸素欠陥が多く存在する粒界は少なく、結果として、5価タングステン原子の比率が低くなる。このため、ホール伝導経路となる部位が少なく、低電圧駆動が実現しにくいものと考えられる
一方、成膜条件A〜Dで作製した酸化タングステン膜においては、膜全体においてルチル構造が秩序性を持って存在している。その秩序性を持った部分がナノクリスタルに由来するものと考えられる。ナノクリスタルが存在する部分では、ルチル構造が秩序性を有しているものの、ルチル構造の断絶部分が多く存在する。この断絶部分がナノクリスタルの結晶粒界に相当する。結晶粒界では酸素の不足、つまり酸素欠陥が生じ、それに伴って5価のタングステン原子の量が多くなる。結果として、ホール伝導経路となる部位が増え、低電圧駆動が実現されるものと考えられる。
(注入されたホールのホール伝導に関する考察)
上述しているように、酸化タングステンの単結晶は酸素原子がタングステン原子に対し8面体配位で結合した、歪んだルチル構造を基本構造としていると考えられる。このルチル構造が秩序性を持たずに膜化した場合はアモルファス構造となり、ルチル構造が秩序性を持って膜化した場合はナノクリスタル構造になると考えられる。
酸化タングステン膜に5価タングステン原子が存在している場合、タングステン原子に対して8面体配位している酸素原子の1つがなくなることによって、タングステン原子は非共有電子対を有する構造をしていると思われる。つまり、5価タングステン原子は自身が持つ非共有電子対をホールを有するタングステン原子に供与し、非共有電子対を供与した5価タングステン原子はホールを有することになると考えられる。ホール注入層に印加されたバイアス電圧によって、5価タングステン原子に存在する非共有電子対の供与が連続的に生じることで、ホールは低い電位方向に、電子は高い電位方向に移動し、ホール伝導が生じると考えられる。よって、5価タングステン原子が多く含まれるほど、ホール伝導に寄与するタングステン原子が多く存在することになり、ホール伝導効率は向上する。しかし、5価タングステン原子を多く含んでいることが、ホール伝導性が向上する必要十分条件とはならない。この理由について図16を用いて説明する。
図16(b)は、ホッピング伝導によりホール10が伝導される様子の概念図であり、アモルファス構造の場合におけるホール10の伝導を示す図である。アモルファス構造では、同図において、11で示した部分はルチル構造が秩序性を持つ結晶質の部分(偏析した結晶11)であり、偏析した結晶11の表面には5価タングステン原子が多く存在する。一方、偏析した結晶11以外の領域12においてはルチル構造が秩序性を持たず、アモルファス部分となっており、5価タングステン原子は偏析した結晶11の表面ほど多くは存在しない。アモルファス構造においては、偏析した結晶11の表面に5価タングステン原子が存在しているものの、5価タングステン原子と近接する他の5価タングステン原子の間は各々のタングステン原子の軌道の重なりがない為に、各々の5価タングステン原子間をホール10がホッピングすることによってホールが伝導すると思われる。つまり、アモルファス構造の場合、5価タングステン原子間の距離が長く、ホール伝導部位となり得る5価タングステン原子間でのホールの授受には、5価タングステン原子間に非常に高い電圧を印加する必要が生じ素子としての駆動電圧も高電圧化する。
一方、図16(a)は、ナノクリスタルの表面を介してホール10が伝導される様子の概念図であり、ナノクリスタル構造の場合におけるホール10の伝導を示す図である。ナノクリスタル構造では、同図に示すように、ルチル構造が秩序性を持って存在しているため、膜全体が微細な結晶質となっており、ホール伝導様式はアモルファス膜の場合とは異なる。前述したように、5価タングステン原子が存在するのはナノクリスタル9同士の表面部分であり、この表面部分がホール伝導部となる。ナノクリスタル構造では、このホール伝導部となる表面部分がつながりを有していることによって低い電圧でホール10が伝導できると考えられる。
以上説明したように、良好なホール伝導性をもつ金属酸化物膜の構造としては、(1)ホール伝導部となる部分が存在すること、および、(2)結晶粒界となる部分を増やすことにより、ホール伝導に寄与する電子軌道の重なりを形成することが必要であると考えられる。すなわち、(1)金属元素が自身が取り得る最大価数より低い価数の状態の金属元素が存在し、(2)ナノクリスタル構造となるような金属酸化物膜が、ホール伝導に好適な構造と言える。
次に、低価数を含むナノクリスタルの結晶性の酸化タングステンが低電圧駆動を実現することの要因がホール伝導性の向上による効果が支配的である点について述べる。ホール注入層3は、陽極2とホール注入層3の界面で形成されるホール注入障壁及び、ホール注入層3とバッファ層4の界面で形成されるホール注入障壁の低減によっても駆動電圧の低減を図ることが可能である。本検討においては、ホール注入特性の異なる表3に示すBPD−D、BPD−Eと同じホール注入層3で作製した酸化タングステン膜についてUPS測定を用いてホール伝導エネルギー値の解析を行った。BPD−D、BPD−Eは図4に示すように電流密度10mA/cm2においては、おおよそ2V程度の駆動電圧の違いが確認されたが、UPSによるホール伝導エネルギー値に違いはなかった。すなわち、BPD−D、BPD−Eのホール注入電圧の違いは、陽極2とホール注入層3の界面で形成されるホール注入障壁及び、ホール注入層3とバッファ層4の界面で形成されるホール注入障壁の違いによって形成されるのではなく、前述のホール注入層の膜構造に起因するものであることを確認した。
[変形例]
(1)上記実施の形態においては、ホール注入層としてDCスパッタで成膜した酸化タングステン膜を例として示したが、成膜方法および酸化物金属種はそれに限定されない。他の成膜方法としては例えば蒸着法、CVD法等が挙げられる。また、上記実施の形態においては、ホール注入層を酸化タングステンで構成する例を説明したが、酸化タングステン以外にも、例えば、酸化モリブデン(MoOx)、モリブデン−タングステン酸化物(MoxWyOz)等の金属酸化物、金属窒化物又は金属酸窒化物で構成することもできる。
(2)本発明の一態様に係る有機EL素子は、素子を単一で用いる構成に限定されない。複数の有機EL素子を画素として基板上に集積することにより、有機EL発光装置を構成することもできる。このような有機EL発光装置は、各々の素子における各層の膜厚を適切に設定することにより実施可能であり、例えば、照明装置等として利用することが可能である。
(3)赤色、緑色、青色の各画素に対応する有機EL素子1を複数個配置して有機ELパネルを構成することも可能である。各画素に対応する発光層をインクジェット法等の塗布工程により形成する場合には、ホール注入層の上に各画素を区画するバンクを設けることが望ましい。バンクを設けることにより、塗布工程において各色に対応する発光層材料からなるインク同士が互いに混ざり合うことを防止することができる。バンク形成工程としては、例えば、ホール注入層表面に、感光性のレジスト材料からなるバンク材料を塗布し、プリベークした後、パターンマスクを用いて感光させ、未硬化の余分なバンク材料を現像液で洗い出し、最後に純水で洗浄する方法がある。本発明は、このようなバンク形成工程を経た金属酸化物からなるホール注入層にも適用可能である。また、有機ELパネル
を、有機EL表示装置に適用することもできる。有機EL表示装置は、例えば、有機ELディスプレイ等に利用することが可能である。
(4)上記の実施の形態では、図15において、ピークP1の立ち上がり位置を、図15(a2)、(b2)におけるピークP1のピークトップから中心点に向かって初めに微分強度が0となる点とした。ピークP1の立ち上がり位置の決定方法はこれに限られない。例えば、図15のグラフ(a1)を例に説明すると、ピークP1の立ち上がり位置付近の規格化輝度の平均値をベースラインとし、当該ベースラインとピークP1との交点をP1の立ち上がり位置とすることもできる。
(5)本発明の一態様に係る有機EL素子は、いわゆるボトムエミッション型の構成でもよく、いわゆるトップエミッション型の構成でもよい。
本発明の有機EL素子は、例えば、家庭用もしくは公共施設、あるいは業務用の各種表示装置、テレビジョン装置、携帯型電子機器用ディスプレイ等に用いられる有機EL装置に好適に利用可能である。
1 有機EL素子
1A ホールオンリー素子
2 陽極
3 ホール注入層
4 バッファ層(機能層)
5 発光層(機能層)
6 陰極
6a バリウム層
6b アルミニウム層
6A 陰極(金層)
7 基板
8 直流電源
9 ナノクリタル
10 ホール
11 偏析した結晶
12 アモルファス部分

Claims (22)

  1. 陽極と陰極との間に、有機材料を含んでなる機能層と、前記機能層にホールを注入するためのホール注入層と、を有する有機EL素子であって、
    前記ホール注入層は金属酸化物膜であり、
    前記金属酸化物を構成する金属元素は、当該金属元素が取り得る最大価数の状態および当該最大価数よりも低い価数の状態で前記金属酸化物膜に含まれ、かつ、
    前記金属酸化物膜は、粒径がナノメートルオーダーの大きさである前記金属酸化物の結晶を複数み、
    前記金属酸化物膜の膜厚方向における一方の面から他方の面に亘って、少なくとも1箇所で、前記複数の結晶の粒界が繋がっている
    ことを特徴とする有機EL素子。
  2. 前記金属酸化物は酸化タングステンであり、
    前記最大価数の状態の前記金属元素は6価のタングステン元素である、
    ことを特徴とする請求項1に記載の有機EL素子。
  3. 前記最大価数よりも低い価数の前記金属元素は、5価のタングステン元素である
    ことを特徴とする請求項2に記載の有機EL素子。
  4. 前記5価のタングステン元素の原子数を、前記6価のタングステン元素の原子数で割った値であるW5+/W6+が3.2%以上である
    ことを特徴とする請求項3に記載の有機EL素子。
  5. 前記W5+/W6+が3.2%以上7.4%以下である
    ことを特徴とする請求項4に記載の有機EL素子。
  6. 前記酸化タングステン膜表面の硬X線光電子分光スペクトルにおいて、6価のタングステンの4f7/2準位に対応した第1ピークよりも低い結合エネルギー領域に第2ピークが存在する
    ことを特徴とする請求項2に記載の有機EL素子。
  7. 前記第2ピークは、前記第1ピークの結合エネルギー値よりも0.3〜1.8eV低い結合エネルギー領域に存在する
    ことを特徴とする請求項6に記載の有機EL素子。
  8. 前記第2ピークの面積強度は、前記第1ピークの面積強度に対して、3.2〜7.4%である
    ことを特徴とする請求項6、7のいずれか一項に記載の有機EL素子。
  9. 前記最大価数よりも低い価数の状態のタングステン元素の存在によって、前記ホール注入層のバンド構造には、価電子帯で最も低い結合エネルギーよりも1.8〜3.6eV低い結合エネルギー領域内に占有準位を有している
    ことを特徴とする請求項2〜8のいずれか一項に記載の有機EL素子。
  10. 前記酸化タングステン膜は、粒径が3〜10ナノメートルの大きさである前記酸化タングステンの結晶を複数個含む
    ことを特徴とする請求項2〜9のいずれか一項に記載の有機EL素子。
  11. 前記酸化タングステン膜断面の透過型電子顕微鏡観察による格子像において、1.85〜5.55Åの間隔で規則的に配列した線状構造が現れる
    ことを特徴とする請求項2〜10のいずれか一項に記載の有機EL素子。
  12. 前記格子像の2次元フーリエ変換像において、当該2次元フーリエ変換像の中心点を中心とした同心円状の模様が現れる
    ことを特徴とする請求項11に記載の有機EL素子。
  13. 前記中心点からの距離と、前記距離における前記2次元フーリエ変換像の輝度を規格化した数値である規格化輝度との関係を表すプロットにおいて、前記規格化輝度のピークが1以上現れる
    ことを特徴とする請求項12に記載の有機EL素子。
  14. 前記プロットにおける前記中心点から最も近くに現れる前記規格化輝度のピークの位置に対応する前記距離と、前記規格化輝度のピークの立ち上がり位置に対応する前記距離との差をピーク幅とし、
    前記中心点に対応する前記距離と、前記中心点から最も近くに現れる前記規格化輝度のピークに対応する前記距離との差を100とした時の前記ピーク幅が22よりも小さい
    ことを特徴とする請求項13に記載の有機EL素子。
  15. 前記機能層は、アミン系材料を含んでいることを特徴とする請求項1〜14のいずれか一項に記載の有機EL素子。
  16. 前記機能層は、ホールを輸送するホール輸送層、注入されたホールと電子とが再結合することにより発光する発光層、光学特性の調整又は電子ブロックの用途に用いられるバッファ層のいずれかである
    ことを特徴とする請求項1〜15のいずれか一項に記載の有機EL素子。
  17. 前記ホール注入層は、前記一方の面が前記陽極に接触し、前記他方の面が前記機能層に接触し、
    前記陽極に接する前記一方の面から前記機能層に接する前記他方の面に亘って、少なくとも1箇所で、前記複数の結晶の粒界が繋がっている
    ことを特徴とする請求項1に記載の有機EL素子。
  18. 請求項1〜17のいずれか一項に記載の有機EL素子を備える有機ELパネル。
  19. 請求項1〜17のいずれか一項に記載の有機EL素子を備える有機EL発光装置。
  20. 請求項1〜17のいずれか一項に記載の有機EL素子を備える有機EL表示装置。
  21. 陽極を準備する第1工程と、
    前記陽極上に酸化タングステン膜を成膜する第2工程であって、アルゴンガスと酸素ガスからなるスパッタガス、および、タングステンからなるターゲットを用い、前記スパッタガスの全圧が2.3Pa以上7.0Pa以下であるとともに、前記スパッタガスの全圧に対する前記酸素ガス分圧の割合が50%以上70%以下であり、かつ、前記ターゲットの単位面積当たりの投入電力である投入電力密度が1.5W/cm 2 以上6.0W/cm 2 以下であり、かつ、前記スパッタガスの全圧を投入電力密度で割った値である全圧/投入電力密度が0.7Pa・cm 2 /Wよりも大きい成膜条件により、タングステン元素が、当該タングステン元素が取り得る最大価数の状態および前記最大価数よりも低い価数の状態で含まれ、かつ、粒径がナノメートルオーダーの大きさである酸化タングステンの結晶が含まれる酸化タングステン膜を成膜する第2工程と、
    前記成膜された酸化タングステン膜上に有機材料を含んでなる機能層を形成する第3工程と、
    前記機能層の上方に、陰極を形成する第4工程と、
    を含むことを特徴とする有機EL素子の製造方法。
  22. 前記第2工程は、前記全圧/投入電力密度が3.2Pa・cm2/Wよりも小さい
    ことを特徴とする請求項21に記載の有機EL素子の製造方法。
JP2012526194A 2010-07-30 2010-07-30 有機el素子 Active JP5624141B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004833 WO2012014256A1 (ja) 2010-07-30 2010-07-30 有機el素子

Publications (2)

Publication Number Publication Date
JPWO2012014256A1 JPWO2012014256A1 (ja) 2013-09-09
JP5624141B2 true JP5624141B2 (ja) 2014-11-12

Family

ID=45529508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012526194A Active JP5624141B2 (ja) 2010-07-30 2010-07-30 有機el素子

Country Status (4)

Country Link
US (1) US9490445B2 (ja)
JP (1) JP5624141B2 (ja)
CN (1) CN103026523B (ja)
WO (1) WO2012014256A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699119B1 (ko) 2011-07-15 2017-01-23 가부시키가이샤 제이올레드 유기 발광 소자의 제조 방법
US9112189B2 (en) 2011-07-15 2015-08-18 Joled Inc. Method for producing organic light-emitting element
KR20140035405A (ko) 2011-07-15 2014-03-21 파나소닉 주식회사 유기 발광 소자
WO2013128504A1 (ja) 2012-03-02 2013-09-06 パナソニック株式会社 有機el素子とその製造方法、および金属酸化物膜の成膜方法
US9035293B2 (en) * 2012-04-18 2015-05-19 Joled Inc. Organic el device including a mixed hole injection layer
JP6168410B2 (ja) 2012-04-27 2017-07-26 株式会社Joled 有機el素子、およびそれを備える有機elパネル、有機el発光装置、有機el表示装置
WO2013161166A1 (ja) 2012-04-27 2013-10-31 パナソニック株式会社 有機el素子、およびそれを備える有機elパネル、有機el発光装置、有機el表示装置
TWI657586B (zh) * 2018-03-06 2019-04-21 日商旭化成股份有限公司 半導體膜,及使用該半導體膜之半導體元件,以及分散液
KR20220023918A (ko) * 2020-08-21 2022-03-03 삼성디스플레이 주식회사 유기발광 다이오드 및 그 제조방법
WO2023060375A1 (zh) * 2021-10-11 2023-04-20 京东方科技集团股份有限公司 量子点发光器件及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177557A (ja) * 2006-12-21 2008-07-31 Semiconductor Energy Lab Co Ltd 発光素子及び発光装置
JP2008270731A (ja) * 2007-03-23 2008-11-06 Toppan Printing Co Ltd 有機el素子およびそれを備えた表示装置
JP2009277788A (ja) * 2008-05-13 2009-11-26 Panasonic Corp 有機エレクトロルミネッセント素子およびその製造方法
JP2010021138A (ja) * 2008-06-09 2010-01-28 Panasonic Corp 有機エレクトロルミネッセント装置およびその製造方法
JP2010021162A (ja) * 2007-12-10 2010-01-28 Panasonic Corp 有機elデバイスおよびelディスプレイパネル、ならびにそれらの製造方法

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
US5294869A (en) 1991-12-30 1994-03-15 Eastman Kodak Company Organic electroluminescent multicolor image display device
US5688551A (en) 1995-11-13 1997-11-18 Eastman Kodak Company Method of forming an organic electroluminescent display panel
JPH10162959A (ja) 1996-11-29 1998-06-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
EP1119222B1 (en) 1996-11-29 2004-06-02 Idemitsu Kosan Company Limited Organic electroluminescent device
JP3782245B2 (ja) 1998-10-28 2006-06-07 Tdk株式会社 有機el表示装置の製造装置及び製造方法
US6309801B1 (en) 1998-11-18 2001-10-30 U.S. Philips Corporation Method of manufacturing an electronic device comprising two layers of organic-containing material
JP4198253B2 (ja) 1999-02-02 2008-12-17 出光興産株式会社 有機エレクトロルミネッセンス素子およびその製造方法
US7153592B2 (en) 2000-08-31 2006-12-26 Fujitsu Limited Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material
JP2002075661A (ja) 2000-08-31 2002-03-15 Fujitsu Ltd 有機el素子及び有機el表示装置
JP2002318556A (ja) 2001-04-20 2002-10-31 Toshiba Corp アクティブマトリクス型平面表示装置およびその製造方法
US6900470B2 (en) 2001-04-20 2005-05-31 Kabushiki Kaisha Toshiba Display device and method of manufacturing the same
US8058797B2 (en) 2001-05-18 2011-11-15 Cambridge University Technical Services Limited Electroluminescent device
JP2003007460A (ja) 2001-06-22 2003-01-10 Sony Corp 表示装置の製造方法および表示装置
JP3823916B2 (ja) 2001-12-18 2006-09-20 セイコーエプソン株式会社 表示装置及び電子機器並びに表示装置の製造方法
JP2003264083A (ja) 2002-03-08 2003-09-19 Sharp Corp 有機led素子とその製造方法
US7086917B2 (en) 2002-08-12 2006-08-08 National Research Council Of Canada Photoresist mask/smoothing layer ensuring the field homogeneity and better step-coverage in OLED displays
JP4165173B2 (ja) 2002-10-15 2008-10-15 株式会社デンソー 有機el素子の製造方法
TWI330269B (en) * 2002-12-27 2010-09-11 Semiconductor Energy Lab Separating method
JP2004228355A (ja) 2003-01-23 2004-08-12 Seiko Epson Corp 絶縁膜基板の製造方法、絶縁膜基板の製造装置及び絶縁膜基板並びに電気光学装置の製造方法及び電気光学装置
JP2004234901A (ja) 2003-01-28 2004-08-19 Seiko Epson Corp ディスプレイ基板、有機el表示装置、ディスプレイ基板の製造方法および電子機器
ATE401672T1 (de) 2003-05-12 2008-08-15 Cambridge Entpr Ltd Herstellung einer polymeren vorrichtung
US7884355B2 (en) 2003-05-12 2011-02-08 Cambridge Enterprise Ltd Polymer transistor
JP2005012173A (ja) 2003-05-28 2005-01-13 Seiko Epson Corp 膜パターン形成方法、デバイス及びデバイスの製造方法、電気光学装置、並びに電子機器
JP2004363170A (ja) 2003-06-02 2004-12-24 Seiko Epson Corp 導電パターンの形成方法、電気光学装置、電気光学装置の製造方法および電子機器
JP2005203339A (ja) 2003-12-16 2005-07-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
US7785718B2 (en) 2003-12-16 2010-08-31 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
JP2005203340A (ja) 2003-12-16 2005-07-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子
US20090160325A1 (en) 2003-12-16 2009-06-25 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
JP4857521B2 (ja) 2004-01-09 2012-01-18 セイコーエプソン株式会社 電気光学装置の製造方法、電気光学装置、及び電子機器
JP4002949B2 (ja) 2004-03-17 2007-11-07 独立行政法人科学技術振興機構 両面発光有機elパネル
JP2005268099A (ja) 2004-03-19 2005-09-29 Mitsubishi Electric Corp 有機el表示パネル、有機el表示装置、および有機el表示パネルの製造方法
JP4645064B2 (ja) 2004-05-19 2011-03-09 セイコーエプソン株式会社 電気光学装置の製造方法
CN100490213C (zh) 2004-05-27 2009-05-20 精工爱普生株式会社 滤色片基板的制造方法、电光学装置及其制造方法、电子设备
JP4161956B2 (ja) * 2004-05-27 2008-10-08 セイコーエプソン株式会社 カラーフィルタ基板の製造方法、電気光学装置の製造方法、電気光学装置、電子機器
US7211456B2 (en) 2004-07-09 2007-05-01 Au Optronics Corporation Method for electro-luminescent display fabrication
JP2006185869A (ja) 2004-12-28 2006-07-13 Asahi Glass Co Ltd 有機電界発光素子及びその製造方法
JP2006253443A (ja) 2005-03-11 2006-09-21 Seiko Epson Corp 有機el装置、その製造方法および電子機器
JP2006294261A (ja) 2005-04-05 2006-10-26 Fuji Electric Holdings Co Ltd 有機el発光素子およびその製造方法
JP2006344459A (ja) 2005-06-08 2006-12-21 Sony Corp 転写方法および転写装置
TWI307612B (en) 2005-04-27 2009-03-11 Sony Corp Transfer method and transfer apparatus
US7994711B2 (en) 2005-08-08 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
JP2007073499A (ja) 2005-08-08 2007-03-22 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
GB0517195D0 (en) 2005-08-23 2005-09-28 Cambridge Display Tech Ltd Molecular electronic device structures and fabrication methods
JP2007095606A (ja) 2005-09-30 2007-04-12 Seiko Epson Corp 有機el装置、その製造方法、及び電子機器
JP4318689B2 (ja) 2005-12-09 2009-08-26 出光興産株式会社 n型無機半導体、n型無機半導体薄膜及びその製造方法
JP2007214066A (ja) 2006-02-13 2007-08-23 Seiko Epson Corp 有機エレクトロルミネセンス装置の製造方法
JP2007288074A (ja) 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP2007287353A (ja) 2006-04-12 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子の製造方法およびそれを用いて作成された有機エレクトロルミネッセント素子
US20070241665A1 (en) 2006-04-12 2007-10-18 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent element, and manufacturing method thereof, as well as display device and exposure apparatus using the same
JP2007288071A (ja) 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法、それを用いた表示装置、露光装置
JP2008041747A (ja) 2006-08-02 2008-02-21 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント発光装置およびその製造方法
US20070290604A1 (en) 2006-06-16 2007-12-20 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device and method of producing the same
KR101252005B1 (ko) * 2006-06-22 2013-04-08 삼성전자주식회사 나노결정 입자를 함유하는 박막 및 그의 제조방법
JP4915650B2 (ja) 2006-08-25 2012-04-11 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP2008091072A (ja) 2006-09-29 2008-04-17 Seiko Epson Corp 電気光学装置、およびその製造方法
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
JP4915913B2 (ja) 2006-11-13 2012-04-11 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP2008140724A (ja) 2006-12-05 2008-06-19 Toppan Printing Co Ltd 有機el素子の製造方法および有機el素子
EP1953840A3 (en) * 2007-01-31 2012-04-11 Panasonic Corporation Piezoelectric thin film device and piezoelectric thin film device manufacturing method and inkjet head and inkjet recording apparatus
JP5333211B2 (ja) 2007-03-29 2013-11-06 大日本印刷株式会社 有機エレクトロルミネッセンス素子及びその製造方法
JP2009004347A (ja) 2007-05-18 2009-01-08 Toppan Printing Co Ltd 有機el表示素子の製造方法及び有機el表示素子
WO2008149499A1 (ja) 2007-05-30 2008-12-11 Panasonic Corporation 有機elディスプレイパネルおよびその製造方法
ATE523897T1 (de) 2007-05-31 2011-09-15 Panasonic Corp Organisches el-element und herstellungsverfahren dafür
WO2009017026A1 (ja) 2007-07-31 2009-02-05 Sumitomo Chemical Company, Limited 有機エレクトロルミネッセンス素子およびその製造方法
JP5001745B2 (ja) 2007-08-10 2012-08-15 住友化学株式会社 有機エレクトロルミネッセンス素子及び製造方法
JP2009048960A (ja) 2007-08-23 2009-03-05 Canon Inc 電極洗浄処理方法
JP2009058897A (ja) 2007-09-03 2009-03-19 Hitachi Displays Ltd 表示装置
WO2009084209A1 (ja) 2007-12-28 2009-07-09 Panasonic Corporation 有機elデバイスおよび有機elディスプレイパネル、ならびにそれらの製造方法
JP4418525B2 (ja) 2008-02-28 2010-02-17 パナソニック株式会社 有機elディスプレイパネル
JP2009218156A (ja) 2008-03-12 2009-09-24 Casio Comput Co Ltd Elパネル及びelパネルの製造方法
JP5267246B2 (ja) 2008-03-26 2013-08-21 凸版印刷株式会社 有機エレクトロルミネッセンス素子及びその製造方法並びに有機エレクトロルミネッセンス表示装置
JP2009239180A (ja) 2008-03-28 2009-10-15 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
EP2276086B1 (en) * 2008-04-28 2015-01-21 Dai Nippon Printing Co., Ltd. Device having hole injection/transport layer, method for manufacturing the same, and ink for forming hole injection/transport layer
JP4678421B2 (ja) 2008-05-16 2011-04-27 ソニー株式会社 表示装置
JP4975064B2 (ja) 2008-05-28 2012-07-11 パナソニック株式会社 発光装置及びその製造方法
JP2008241238A (ja) 2008-05-28 2008-10-09 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調装置の制御方法
GB0811199D0 (en) * 2008-06-18 2008-07-23 Cambridge Entpr Ltd Electro-optic diode devices
JP5199773B2 (ja) 2008-07-30 2013-05-15 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
CN101904220B (zh) 2008-09-19 2013-05-15 松下电器产业株式会社 有机电致发光元件及其制造方法
JP5138542B2 (ja) 2008-10-24 2013-02-06 パナソニック株式会社 有機エレクトロルミネッセンス素子及びその製造方法
JP2011040167A (ja) 2008-11-12 2011-02-24 Panasonic Corp 表示装置およびその製造方法
JP2010123716A (ja) 2008-11-19 2010-06-03 Fujifilm Corp 有機電界発光素子
JP4856753B2 (ja) 2008-12-10 2012-01-18 パナソニック株式会社 光学素子および光学素子を具備する表示装置の製造方法
JP4852660B2 (ja) 2008-12-18 2012-01-11 パナソニック株式会社 有機エレクトロルミネッセンス表示装置及びその製造方法
JP2010161185A (ja) 2009-01-08 2010-07-22 Ulvac Japan Ltd 有機el表示装置、有機el表示装置の製造方法
EP2398083B1 (en) 2009-02-10 2018-06-13 Joled Inc. Light-emitting element, display device, and method for manufacturing light-emitting element
WO2010092796A1 (ja) 2009-02-10 2010-08-19 パナソニック株式会社 発光素子、発光素子を備えた発光装置および発光素子の製造方法
WO2011013523A1 (en) 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5437736B2 (ja) 2009-08-19 2014-03-12 パナソニック株式会社 有機el素子
WO2012017501A1 (ja) * 2010-08-06 2012-02-09 パナソニック株式会社 有機el素子およびその製造方法
CN103053041B (zh) 2010-08-06 2015-11-25 株式会社日本有机雷特显示器 有机el元件
CN103053042B (zh) 2010-08-06 2016-02-24 株式会社日本有机雷特显示器 有机el元件及其制造方法
WO2012017495A1 (ja) 2010-08-06 2012-02-09 パナソニック株式会社 有機el素子およびその製造方法
WO2012098587A1 (ja) * 2011-01-21 2012-07-26 パナソニック株式会社 有機el素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177557A (ja) * 2006-12-21 2008-07-31 Semiconductor Energy Lab Co Ltd 発光素子及び発光装置
JP2008270731A (ja) * 2007-03-23 2008-11-06 Toppan Printing Co Ltd 有機el素子およびそれを備えた表示装置
JP2010021162A (ja) * 2007-12-10 2010-01-28 Panasonic Corp 有機elデバイスおよびelディスプレイパネル、ならびにそれらの製造方法
JP2009277788A (ja) * 2008-05-13 2009-11-26 Panasonic Corp 有機エレクトロルミネッセント素子およびその製造方法
JP2010021138A (ja) * 2008-06-09 2010-01-28 Panasonic Corp 有機エレクトロルミネッセント装置およびその製造方法

Also Published As

Publication number Publication date
JPWO2012014256A1 (ja) 2013-09-09
WO2012014256A1 (ja) 2012-02-02
CN103026523B (zh) 2015-12-09
US20130126840A1 (en) 2013-05-23
CN103026523A (zh) 2013-04-03
US9490445B2 (en) 2016-11-08

Similar Documents

Publication Publication Date Title
JP5612691B2 (ja) 有機el素子およびその製造方法
JP5624141B2 (ja) 有機el素子
JP5612693B2 (ja) 有機el素子およびその製造方法
JP5676652B2 (ja) 有機el素子
JP5437736B2 (ja) 有機el素子
JP5612692B2 (ja) 有機el素子およびその製造方法
WO2012153445A1 (ja) 有機el表示パネルおよび有機el表示装置
WO2012114403A1 (ja) 有機el表示パネルおよび有機el表示装置
JPWO2012073269A1 (ja) 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置
JP5861210B2 (ja) 有機発光素子
JP5793569B2 (ja) 有機発光素子の製造方法
JP6142323B2 (ja) 有機el素子、およびそれを備える有機elパネル、有機el発光装置、有機el表示装置
JP5612503B2 (ja) 有機発光装置
JP5793570B2 (ja) 有機発光素子の製造方法
JP2012174712A (ja) 有機発光素子
JP2012174346A (ja) 有機発光装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R151 Written notification of patent or utility model registration

Ref document number: 5624141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250