WO2023060375A1 - 量子点发光器件及制备方法 - Google Patents

量子点发光器件及制备方法 Download PDF

Info

Publication number
WO2023060375A1
WO2023060375A1 PCT/CN2021/123006 CN2021123006W WO2023060375A1 WO 2023060375 A1 WO2023060375 A1 WO 2023060375A1 CN 2021123006 W CN2021123006 W CN 2021123006W WO 2023060375 A1 WO2023060375 A1 WO 2023060375A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal oxide
metal
sublayer
display panel
Prior art date
Application number
PCT/CN2021/123006
Other languages
English (en)
French (fr)
Inventor
卢志高
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/123006 priority Critical patent/WO2023060375A1/zh
Priority to CN202180002860.7A priority patent/CN116264872A/zh
Priority to CN202280002817.5A priority patent/CN116264873A/zh
Priority to PCT/CN2022/114545 priority patent/WO2023061059A1/zh
Publication of WO2023060375A1 publication Critical patent/WO2023060375A1/zh

Links

Images

Definitions

  • the present application relates to the field of display technology, in particular to a display panel and a display device.
  • Quantum Dot Light Emitting Diodes have shown great potential in the display field due to their advantages of high color gamut, high color purity, wide viewing angle, long service life, and high luminous efficiency, and have become the next generation display technology competitor.
  • One of the main problems facing quantum dot light-emitting diodes at present is the unbalanced carrier injection of the device.
  • a typical QLED device structure includes a stacked cathode, an electron transport layer, a quantum dot light-emitting layer, a hole transport layer, a hole injection layer, and an anode.
  • the interface energy level barrier between the commonly used hole injection layer material and the anode It is too high, so it still faces the problem of low hole injection rate.
  • Embodiments of the present disclosure provide a hole injection layer material and structure, a display panel and a display device, so as to improve the interface contact between the hole injection layer and the anode, and improve the display performance of the QLED device.
  • a display panel is provided.
  • the display panel includes:
  • the first electrode layer, the electron transport layer, the light-emitting layer, the hole transport layer, the hole injection layer and the second electrode layer are stacked in sequence, and it is characterized in that the material of the hole injection layer includes the first metal oxide and For the second metal oxide, the first metal oxide and the second metal oxide contain the same metal element, but the number of electrons in the outermost shell of the metal element is different.
  • the material of the hole injection layer further includes a metal M and a third metal oxide MOy, 0 ⁇ y ⁇ 3, and y is a natural number or a decimal.
  • the sum of the mass of the metal M and the third metal oxide MOy is smaller than the sum of the mass of the first metal oxide and the second metal oxide.
  • the mass ratio of the metal M to the third metal oxide MOy is 3:1-5:1.
  • the mass percentage of the metal M in the hole injection layer is 5-10%, and the mass percentage of the third metal oxide MOy in the hole injection layer is 1-5%.
  • the hole injection layer is a multi-layer structure, along the first direction, the first sublayer and the second sublayer are arranged in sequence, and the hole injection layer is arranged between the first sublayer and the second sublayer
  • the hole injection layer further includes n sublayers and (n+1) reaction layers disposed between the second sublayer and the second electrode layer, the sublayers and The reaction layers are sequentially arranged at intervals and contain different materials, the reaction layer is located on a side close to the second sublayer, n ⁇ 0 and is an integer.
  • the material of the sublayer comprises metal and metal oxide, but is different from the material contained in the first sublayer and the second sublayer, and the material of the reaction layer comprises metal oxide, but different from the material comprised by the first reactive layer.
  • each of the sublayers contains different materials
  • each of the reaction layers contains different materials
  • the roughness of the first reactive layer is smaller than that of the first sublayer, and the roughness of the reactive layer is smaller than that of the sublayer.
  • the chemical activity of the metal element included in the first metal oxide is lower than that of the metal M.
  • the first reaction layer is formed by a redox reaction occurring between the first sublayer and the second sublayer, and the reaction layer is formed by a redox reaction occurring adjacent to the sublayer.
  • the metal element contained in the first metal oxide includes at least one of molybdenum, vanadium, and tungsten
  • the metal M includes at least one of magnesium, aluminum, copper, and silver.
  • the first electrode layer can be a cathode or an anode
  • the second electrode layer can be an anode or a cathode
  • the materials of the first electrode layer and the second electrode layer include silver , aluminum, indium tin oxide, and carbon nanotubes.
  • the film thickness ratio of the first sublayer and the second sublayer is in a range of 2:1-10:1.
  • the thickness of the first sublayer is 5-10 nm
  • the thickness of the second sublayer is 1-5 nm
  • the thickness of the first reaction layer is 1-2 nm
  • the hole injection The thickness of the layer is 5-31 nm.
  • the carrier mobility of the first reaction layer is greater than the carrier mobility of the first sublayer.
  • a display device includes the above-mentioned display panel.
  • a method for manufacturing a display panel including the steps of:
  • a substrate is provided, and a first electrode layer, an electron transport layer, a light-emitting layer, a hole transport layer, a hole injection layer and a second electrode layer are sequentially prepared on the substrate;
  • the material of the hole injection layer includes a first metal oxide and a metal M;
  • the first metal oxide and the metal M undergo a redox reaction to generate a second metal oxide and a third metal oxide, the The second metal oxide and the third metal oxide are located in the hole injection layer, and the voltage is the working voltage of the display panel.
  • the display panel is then subjected to UV irradiation treatment, the UV power range is 1-100mW, and the treatment time range is 1-20min, To further promote the redox reaction between the first metal oxide and the metal M.
  • forming the hole injection layer also includes the following steps:
  • the first metal oxide and the metal M are deposited on the hole transport layer by co-evaporation;
  • the metal M, the second metal oxide and the third metal oxide are uniformly distributed in the first metal oxide.
  • forming the hole injection layer also includes the following steps:
  • the metal M is a metal nanowire, which is deposited on the hole transport layer by spin coating;
  • the first metal oxide is deposited on the side of the metal M away from the hole transport layer by spin coating.
  • the hole injection layer provided by the embodiments of the present disclosure contains a variety of components.
  • the hole injection layer undergoes a redox reaction to improve the interface contact between the hole injection layer and the anode, thereby improving the interfacial contact between the hole injection layer and the anode. carrier transport rate.
  • the lateral current of the hole injection layer can be made larger, that is, the conduction and heat conduction of the device can be made more uniform, thereby improving the luminous efficiency of the device and reducing power consumption. Improve service life.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an exemplary embodiment of the present disclosure.
  • FIG. 2 is a schematic structural view of the hole injection layer in the embodiment of FIG. 1 .
  • Fig. 3 is a schematic structural diagram of a display panel provided by another exemplary embodiment of the present disclosure.
  • FIG. 4 is a schematic structural view of the first reaction layer in the embodiment of FIG. 3 .
  • Fig. 5 is a schematic structural diagram of a display panel provided by yet another exemplary embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an exemplary embodiment when the hole injection layer in the embodiment of FIG. 5 includes multiple sublayers and multiple reactive layers.
  • Fig. 7 is a schematic structural diagram of a display panel provided by yet another exemplary embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an exemplary embodiment when the hole injection layer in the embodiment of FIG. 7 includes a plurality of sublayers and a plurality of reaction layers.
  • Fig. 9 is a schematic structural diagram of a display panel provided by yet another exemplary embodiment of the present disclosure.
  • Fig. 10 is a schematic structural diagram of a display panel provided by yet another exemplary embodiment of the present disclosure.
  • Fig. 11 is a flowchart of a method for manufacturing a display panel provided by an exemplary embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a method for manufacturing a display panel provided by another exemplary embodiment of the present disclosure.
  • FIG. 13 is a flow chart of a method for manufacturing a display panel provided by yet another exemplary embodiment of the present disclosure.
  • Fig. 14 is a flow chart of a method for manufacturing a display panel provided by yet another exemplary embodiment of the present disclosure.
  • Fig. 15a is a comparison graph of the relationship between the current and the device efficiency of the display panel before and after UV irradiation treatment according to an exemplary embodiment of the present disclosure.
  • Fig. 15b is a graph comparing the relationship between current and luminance of a display panel before and after UV irradiation treatment according to an exemplary embodiment of the present disclosure.
  • Fig. 15c is a comparative graph of the relationship between current density and device efficiency of the display panel before and after UV irradiation treatment when different metal materials are used as the first or second electrode layer according to an exemplary embodiment of the present disclosure.
  • Fig. 16 is an impedance spectrum diagram of a display panel prepared when different metal materials are used as the first or second electrode layer according to an exemplary embodiment of the present disclosure.
  • Fig. 17a is a graph comparing the relationship between the thickness of the second sublayer and the device efficiency when the material of the second sublayer of the hole injection layer is Mg according to some embodiments of the present disclosure.
  • Fig. 17b is a graph comparing the relationship between the thickness of the second sublayer and the device efficiency when the material of the second sublayer of the hole injection layer is Al according to some embodiments of the present disclosure.
  • Fig. 17c is a graph comparing the relationship between the thickness of the second sublayer and the device efficiency when the material of the second sublayer of the hole injection layer is Ag according to some embodiments of the present disclosure.
  • Fig. 17d is a comparison graph of the relationship between the material type of the second sublayer and the device efficiency when the thickness of the second sublayer of the hole injection layer provided by some embodiments of the present disclosure is 1 nm.
  • Fig. 17e is a graph comparing the relationship between the thickness of the hole injection layer and the device efficiency provided by some embodiments of the present disclosure.
  • Fig. 18 is a display device provided by an exemplary embodiment of the present disclosure.
  • FIG. 19 is a display device provided by another exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • Embodiments of the present disclosure provide a display panel, a display device, and a corresponding manufacturing method.
  • the display panel and the display device in the embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. In the case of no conflict, the features in the following embodiments may complement each other or be combined with each other.
  • an embodiment of the present disclosure provides a QLED display panel 100, including a substrate 1, a first electrode layer 2, an electron transport layer 3, a light emitting layer 4, a hole transport layer 5, and a hole stacked in sequence.
  • the material of the hole injection layer 6 includes a first metal oxide and a second metal oxide, wherein the first metal oxide and the second metal oxide contain the same metal element, but the number of outermost electrons of the two is different, That is, the valence states of the metal elements contained in the first metal oxide and the second metal oxide are different.
  • the valence states of the metal elements are two or more of the valence states of +2, +3, +4, +5, and +6.
  • the metal element may be molybdenum (Mo), tungsten (W), vanadium (V), and correspondingly, the first metal oxide may be molybdenum oxide, tungsten oxide, or vanadium oxide.
  • Mo molybdenum
  • W tungsten
  • V vanadium
  • the first metal oxide may be molybdenum oxide, tungsten oxide, or vanadium oxide.
  • the metal element molybdenum can be +4, +6 valence, that is, in the hole injection layer 6, the first metal oxide can be molybdenum trioxide (MoO 3 ), the second metal oxide may be molybdenum dioxide (MoO 2 ).
  • MoO 3 molybdenum trioxide
  • MoO 2 molybdenum dioxide
  • the mass of the first metal oxide contained in the hole injection layer 6 is greater than that of the second metal oxide.
  • the material of the hole injection layer 6 also includes a metal M and a third metal oxide MOy (0 ⁇ y ⁇ 3, y is a natural number or a decimal).
  • the sum of the mass of the metal M and the third metal oxide MOy is smaller than the sum of the mass of the first metal oxide and the second metal oxide.
  • the mass ratio of the metal M to the third metal oxide MOy is 3:1-5:1.
  • the mass percentage of the metal M in the hole injection layer is 5-10%, and the mass percentage of the third metal oxide MOy in the hole injection layer is 1-5%.
  • the metal M, the third metal oxide MOy and the second metal oxide can be uniformly distributed in the first metal oxide, and the four together constitute the hole injection layer 6, wherein the metal
  • the valence of M is one or more of +1, +2, +3 valence.
  • the chemical activity of the metal M is higher than that of the metal elements in the first metal oxide, that is, the metal M is more likely to react with oxygen, or in other words, under certain conditions, the metal M and the first metal oxide Oxidation-reduction reactions can occur between them, the metal M loses electrons and undergoes an oxidation reaction to generate the third metal oxide MOy, while the first metal oxide gains electrons and undergoes a reduction reaction to generate the second metal oxide. That is to say, the second metal oxide and the third metal oxide MOy contained in the hole injection layer 6 are products produced by redox reaction between the metal M and the first metal oxide.
  • the metal M may include magnesium, aluminum, and silver
  • the third metal oxide MOy may include magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), and silver oxide (MgO).
  • MgO magnesium oxide
  • Al 2 O 3 aluminum oxide
  • MgO silver oxide
  • the corresponding redox reaction formula is: Al+MoO 3 ⁇ Al 2 O 3 +MoOy (y ⁇ 3).
  • the material of the hole injection layer 6 includes MoO 3 , but the Fermi level of MoO 3 is -5.48eV, which is much lower than the energy level of the second electrode layer 7 (such as -4.2eV).
  • the interface energy level barrier between the hole injection layer 6 and the second electrode layer 7 is too high, resulting in difficulty in hole injection in the QLED device, and the hole transport rate is too low.
  • metal M is added to the hole injection layer 6, and under certain conditions, metal M and MoO3 undergo a redox reaction to generate a third metal oxide MOy and molybdenum dioxide in a low-valence or reduced state MoO 2 , which can reduce the work function of the molybdenum oxide in the hole injection layer 6, and the reduction of the work function means the rise of the Fermi level, which will reduce the hole injection layer 6 and the second electrode.
  • the interface between layers 7 contacts the barrier, bringing the interface closer to an ohmic contact.
  • the reduction of the valence state of the Mo element in MoO 3 means the improvement of its own conductivity, so the electrons extracted from the hole transport layer 5 can be more easily transported to the second electrode layer through the hole injection layer 6 7 and is collected by it, correspondingly manifested as the improvement of hole injection ability.
  • one of the first electrode layer 2 and the second electrode layer 7 can be an anode or a cathode, and the other can be a cathode or an anode respectively, which can be performed according to the type of QLED device. Adjust and choose. Specifically, when the QLED device is an inverted structure, the first electrode layer 2 is a cathode, and the second electrode layer 7 is an anode; when the QLED device is an upright structure, the first electrode layer 2 is an anode, and the second electrode layer 7 is an anode. cathode.
  • the first electrode layer 2 and the second electrode layer 7 can be transparent electrodes or opaque electrodes (reflective electrodes), and optional materials include: metal materials, such as aluminum, silver, gold, copper, etc.; transparent electrode materials, such as indium tin oxide (ITO), fluorine-doped tin oxide (FTO), graphene, carbon nanotube film, etc.
  • metal materials such as aluminum, silver, gold, copper, etc.
  • transparent electrode materials such as indium tin oxide (ITO), fluorine-doped tin oxide (FTO), graphene, carbon nanotube film, etc.
  • the substrate 1 is a rigid substrate, and the material of the rigid substrate may be glass, metal or the like.
  • the substrate 1 can be a flexible substrate, and the material of the flexible substrate can include PI (polyimide), PET (polyethylene terephthalate) and PC (polycarbonate). one or more of .
  • the hole injection layer 6 is a multi-layer structure.
  • the first sublayer 601 and the second sublayer 603 are sequentially arranged, and the first sublayer 601 and the second sublayer 603 are arranged in sequence.
  • the first reaction layer 602 between the two sub-layers 603 .
  • the material of the first sub-layer 601 includes the first metal oxide
  • the material of the second sub-layer 603 includes metal M
  • the material of the first reaction layer 602 includes the second metal oxide and the third metal oxide MOy.
  • the first direction is a direction along the first electrode layer 2 to the second electrode layer 7 .
  • the hole injection layer 6 further includes n sublayers and n reaction layers arranged between the second sublayer 603 and the second electrode layer 7, and the sublayers and the reaction layers are sequentially arranged at intervals And the materials included are different, and the reaction layer is located on the side close to the second sublayer 603, n ⁇ 0 and is an integer.
  • the material of the sub-layer contains metal and metal oxide, but it is different from the metal element contained in the first sub-layer 601 and the metal element contained in the second sub-layer 603; the material of the reaction layer contains metal oxide material, but the material contained in the first reaction layer 602 is also different.
  • the materials contained in two adjacent sub-layers may also be different, and the materials contained in two adjacent reaction layers may also be different, and specific materials may be selected according to different embodiments.
  • the chemical activity of the metal element contained in the first metal oxide is lower than that of the metal M.
  • a redox reaction can occur at the interface between the first sub-layer 601 and the second sub-layer 603 to form the first reaction layer 602 .
  • the reaction layer is formed by the oxidation-reduction reaction of two adjacent sublayers at the contact interface.
  • the film thickness ratio of the first sub-layer 601 and the second sub-layer 603 ranges from 2:1 to 10:1. Specifically, the thickness of the first sublayer 601 is 5-10 nm, and the thickness of the second sublayer 603 is 1-5 nm.
  • the redox reaction occurs at the interface between the first sublayer 601 and the second sublayer 603, and the thickness of the generated first reaction layer 603 is 1-2 nm.
  • the hole injection layer 6 can be a single layer or a multilayer structure, and the thickness range is 5-31nm.
  • the roughness of the first reactive layer 602 is smaller than that of the first sublayer 601 , and the roughness of the reactive layer is smaller than that of the sublayers.
  • the carrier mobility of the first reaction layer 602 is greater than the carrier mobility of the first sublayer 601 .
  • An embodiment of the present disclosure also provides a display device, which may include the above-mentioned display panel.
  • An embodiment of the present disclosure also provides a method for manufacturing an inverted QLED display panel, including the following steps:
  • a substrate 1 is provided, and a first electrode layer 2, an electron transport layer 3, a light-emitting layer 4, a hole transport layer 5, a hole injection layer 6 and a second electrode layer 7 are sequentially prepared on the substrate 1, wherein the first electrode layer 2 as the cathode, and the second electrode layer 7 as the anode;
  • the material of the hole injection layer 6 includes a first metal oxide and a metal M;
  • the first metal oxide in the hole injection layer 6 undergoes a redox reaction with the metal M to generate the second metal oxide and the third metal oxide.
  • Oxide MOy Oxide MOy.
  • first metal oxide and metal M various methods can be adopted, such as: co-evaporation of the first metal oxide and metal M, layered evaporation of the first metal oxide and metal M in sequence, first metal oxide Oxide and metal M are spin-coated sequentially.
  • the hole injection layer 6 provided by the embodiment of the present disclosure contains a variety of components, and the interface contact between the hole injection layer 6 and the second electrode layer 7 is improved by redox reaction, thereby improving the interfacial contact. carrier transport rate.
  • the lateral current of the hole injection layer 6 can be made larger, which can make the conduction and heat conduction of the device more uniform, thereby improving the luminous efficiency of the device and reducing power consumption. , improve service life.
  • the first metal oxide is molybdenum trioxide (MoO 3 , the element Mo is +6 valence)
  • the second metal oxide is molybdenum dioxide (MoO 2 , the element Mo is +4 valence)
  • the metal M is magnesium (Mg ) or aluminum (Al)
  • the corresponding third metal oxide is magnesium oxide (MgO) or aluminum oxide (Al 2 O 3 )
  • the material of the second electrode layer 7 is aluminum (Al) as an example, for the specific embodiment of the present disclosure Be explained.
  • this embodiment adopts an inverted QLED device, which includes in turn: a substrate 1, a first electrode layer 2, an electron transport layer 3, a light emitting layer 4, a hole transport layer 5, a hole injection layer 6 and a second electrode Layer 7.
  • the material of the hole injection layer 6 includes the first metal oxide MoO 3 and the second metal oxide MoO 2 , that is, the metal elements contained in the two are the same, both being Mo, but the valence state of Mo in the two is different, They are +6 and +4 respectively.
  • the material of the hole injection layer 6 also includes a small amount of metal Al and the third metal oxide Al 2 O 3 .
  • the sum of the mass of the metal Al and the third metal oxide Al2O3 is less than the sum of the mass of the first metal oxide MoO3 and the second metal oxide MoO2 , specifically, the sum of the mass of Al and Al2O3 in the air
  • the proportion of the total mass of the hole injection layer 6 is 1-5%.
  • the hole injection layer 6 in this embodiment has a single-layer structure, and its main material is the first metal oxide MoO 3 84, while the metal Al 81, the third metal oxide Al 2 O 3 82 and the second metal oxide MoO 2 83 are evenly distributed in the first metal oxide, and the four together constitute the hole injection layer 6 .
  • the metal Al and the first metal oxide MoO 3 can be co-deposited on the side of the hole transport layer 5 away from the light-emitting layer 4 by means of co-evaporation.
  • a redox reaction can occur between metal Al and the first metal oxide MoO 3 , that is, Al loses electrons and undergoes an oxidation reaction to form the third metal oxide Al 2 O 3 , And the first metal oxide MoO 3 gets electrons to undergo a reduction reaction to generate the second metal oxide MoO 2 , that is, the third metal oxide Al 2 O 3 contained in the hole injection layer 6 and the second metal oxide
  • the compound MoO 2 is produced by a chemical reaction between the first metal oxide MoO 3 and metal Al.
  • the hole injection layer 6 can also be prepared by co-evaporating metal Al, the first metal oxide MoO 3 and the second metal oxide MoO 2 , the principle of which is the same as the former, and will not be repeated here.
  • the material of the second electrode layer 7 is Al, it may also react with the first metal oxide MoO3 , so the S1 interface on the side of the hole injection layer 6 close to the second electrode layer 7, as shown in Fig. 2a, the concentration of the second metal oxide MoO 2 83 is higher.
  • the metal M in the hole injection layer 6 is magnesium (Mg), which undergoes a redox reaction with the first metal oxide MoO 3 to form a third metal
  • the oxide MgO and the second metal oxide MoO 2 that is, the material of the hole injection layer 6 includes the first metal oxide MoO 3 , the second metal oxide MoO 2 , the metal Mg and the third metal oxide MgO.
  • a second reaction layer 61 is further included between the hole injection layer 6 and the second electrode layer 7 , and the material of the second reaction layer 61 includes Al 2 O 3 83 and a second metal oxide MoO 2 82 .
  • the material of the second electrode layer 7 is Al, and a redox reaction can also occur between the first metal oxide MoO 3 , so if the hole injection layer 6 is close to the interface of the second electrode layer The unreacted first metal oxide MoO 3 can undergo a redox reaction with the second electrode layer 7 to generate Al 2 O 3 83 and the second metal oxide MoO 2 82 to form the second reaction layer 61 .
  • the thickness of the second reaction layer 61 is 1-2 nm, preferably 1 nm.
  • the hole injection layer 6 is a multi-layer structure.
  • a first sublayer 601 and a second sublayer 603 are arranged in sequence, and between the first sublayer 601 and the second sublayer 603
  • the material of the first sub-layer 601 is the first metal oxide MoO 3
  • the material of the second sub-layer 603 is metal Al
  • the material of the first reaction layer 602 includes the second metal oxide MoO 2 and the third Metal oxide Al 2 O 3 .
  • the first direction is a direction along the first electrode layer 2 to the second electrode layer 7 .
  • the material of the sub-layer 605 is the same as that of the first sub-layer 602 , both being MoO 3 .
  • the material of the reaction layers 604 and 606 is the same as that of the first reaction layer 602, and both include the second metal oxide MoO 2 and the third metal oxide Al 2 O 3 .
  • this embodiment may further include a plurality of sublayers and reaction layers arranged at intervals in sequence, each reaction layer 604 is made of the same material, and the materials of adjacent sublayers are MoO 3 and Al in sequence.
  • the difference between this embodiment and the third embodiment is that the materials of the adjacent two sub-layers every interval of a sub-layer are not completely the same, and the materials of the adjacent two sub-layers every interval of a reaction layer The materials of the layers are not all the same.
  • the material of the sub-layer 605 may be WO 3 , and correspondingly, the material of the formed reaction layers 604 and 606 is different from that of the first reaction layer 602 .
  • this embodiment adopts a positive QLED device structure, mainly including a substrate 1, a second electrode layer 7, a hole injection layer 6, a hole transport layer 5, an electron transport layer 3 and a first electrode layer stacked in sequence.
  • the hole injection layer 6 is a multi-layer structure, including a second sublayer 602 , a first reaction layer 603 and a first sublayer 601 in sequence in a direction away from the substrate 1 .
  • the material of the second sublayer 602 is metal Al
  • the material of the first sublayer 601 is MoO 3
  • the materials of the first reaction layer 603 are MoO 2 and Al 2 O 3 .
  • the second sublayer 602 and the first sublayer 601 are sequentially prepared by spin coating.
  • the hole injection layer 6 further includes multiple sublayers and multiple reaction layers disposed between the first sublayer 601 and the first electrode layer 2 .
  • the materials of each sub-layer may not be completely the same, for example, the materials of the sub-layer 604 may be V 2 O 5 , WO 3 , and MoO 3 in sequence.
  • this embodiment provides a method for preparing the inverted QLED display panel described in Embodiment 1, including the following steps:
  • S1 providing a substrate 1, and sequentially preparing a first electrode layer 2, an electron transport layer 3, and a light emitting layer 4 on the substrate 1;
  • the hole transport layer 5 is prepared on the light-emitting layer 4 by vacuum evaporation, the experimental conditions are: vacuum degree ⁇ 10 -4 Pa, and the evaporation rate is at between.
  • the hole transport layer 5 can be an organic hole transport material, for example, PVK (polyvinyl carbazole), TFM (poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl) diphenylamine) )) and TPD(N,N'-diphenyl-N,N'-Mis(3-methyllphenyl)-(1,1'-Miphenyl)-4,4-diamine) and its derivatives, or inorganic hole transport materials , such as nickel oxide (NiOy) and vanadium oxide (VOy).
  • the thickness range of the hole transport layer 5 is 10-60nm;
  • the hole injection layer 6 is prepared by vacuum evaporation. Specifically, the first metal oxide MoO 3 and metal Al are deposited on the hole transport layer 5 by co-evaporation.
  • the experimental conditions are: vacuum degree ⁇ 10 -4 Pa, the evaporation rate is at between.
  • the hole injection layer 6 is a single-layer structure, wherein the mass percentage of metal Al is 5-10%;
  • the hole injection layer 6 of this embodiment has a multi-layer structure.
  • the preparation process further includes the following steps:
  • the first metal oxide MoO 3 is vapor-deposited on the hole transport layer 5 with a thickness of 1-30 nm.
  • the experimental conditions are: vacuum degree ⁇ 10 -4 Pa, vapor deposition rate at between;
  • the metal oxides deposited in steps S2 and S4 are different, for example, MoO 3 is deposited in step S2, and WO 3 is deposited in step S4.
  • the materials contained in the first reaction layer and the reaction layer are different.
  • this embodiment provides a preparation method for the upright QLED device described in the third embodiment. Including the following steps:
  • this embodiment is directed to the preparation method in any one of Embodiments 7 to 9, and the preparation step further includes: after applying a certain voltage between the first electrode layer and the second electrode layer, and then applying a voltage to the display panel UV irradiation treatment is carried out, the UV power range is 1-100mW, and the treatment time range is 1-20min, so as to further promote the redox reaction between the first metal oxide MoO 3 and metal Al.
  • this embodiment adopts the QLED device structure described in Embodiment 1 or Embodiment 2, specifically, the hole injection layer 6 is a single-layer structure; Oxidation-reduction reaction forms the second reaction layer 61, wherein the second electrode layer 7 is a metal electrode, and the metal material used can be one or more of Al, Ag, Mg:Ag.
  • Figure 15a and Figure 15b respectively show the comparison diagrams of the relationship curves of current and device efficiency, current and brightness of the display panel before and after UV irradiation treatment. Increase, the brightness under the same current increases.
  • FIG. 15c shows a comparison graph of the relationship between the current density and the device efficiency of the display panel prepared when the second electrode layer is made of different metal materials before and after UV irradiation treatment. It can be seen from the figure that after UV After 2 minutes of irradiation, the device efficiency has been improved to a certain extent.
  • Figure 16 shows the impedance spectrum of the display panel prepared when the second electrode layer is made of different metal materials. It can be seen that under the same voltage, the resistance when using the Mg:Ag electrode is the smallest, and the resistance when using the Ag electrode is the largest , indicating that different metal electrodes have different effects on the current and device efficiency.
  • the hole injection layer 6 is a multilayer structure, including: a first sublayer 601, a first reaction layer 602.
  • the thickness of the second sublayer 603 is 1-10 nm, specifically, the thickness may be 1 nm, 3 nm, or 5 nm.
  • Figures 17a-17c respectively show the relationship graphs of the device efficiency changing with the thickness when the second sublayer 603 is made of different materials
  • the abscissa is the voltage (unit: volt, V)
  • the ordinate is the device efficiency of the display panel ( Units: candela/ampere, cd/A).
  • the experimental results show that when the voltage increases from 2V to 6V, the device efficiency shows a trend of first increasing and then decreasing.
  • the device efficiency is inversely proportional to the thickness of the second sublayer 603, that is, as the thickness of the second sublayer 603 When the thickness of the second sublayer 603 is 1 nm, the efficiency of the device decreases.
  • the efficiency of the device is the highest.
  • the device efficiency is relatively higher when the second sublayer 603 is Mg.
  • Figure 17e shows the relationship graph of the device efficiency with the thickness of the first sublayer MoO3 , the abscissa is the thickness (unit: nanometer, nm), and the ordinate is the device efficiency (unit: candela/ampere, cd/A ).
  • Experimental results show that when the thickness of the first sublayer is 5-7nm, the efficiency of the device is relatively high.
  • an inverted QLED device includes a first light emitting element 110 , a second light emitting element 120 , and a third light emitting element 130 , and the three light emitting elements can be used to emit light of different colors.
  • the first light emitting element 110 can emit red light
  • the second light emitting element 120 can emit green light
  • the third light emitting element 130 can emit blue light.
  • the first light-emitting element 110 includes a first light-emitting layer 411, a first electron transport layer 311, and a first electrode layer 211; , the first electrode layer 211 is used to provide electrons.
  • the first light-emitting layer 411 can be a red quantum dot light-emitting layer, and the material of the first light-emitting layer 411 can include cadmium selenide (CdSe), CdSe/ZnS core-shell quantum dot materials; it can also include cadmium-free quantum dots Materials, such as indium phosphide (InP), InP/ZnS core-shell quantum dot materials, thereby reducing environmental pollution.
  • CdSe cadmium selenide
  • CdSe/ZnS core-shell quantum dot materials can also include cadmium-free quantum dots Materials, such as indium phosphide (InP), InP/ZnS core-shell quantum dot materials, thereby reducing environmental pollution.
  • the display device can be any product or component with a display function such as a smart phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供一种显示面板及显示装置,包括依次层叠设置的第一电极层、电子传输层、发光层、空穴传输层、空穴注入层和第二电极层,其中,所述空穴注入层的材料包括第一金属氧化物和第二金属氧化物,所述第一金属氧化物和所述第二金属氧化物包含的金属元素相同,但所述金属元素的最外层电子数不同。另外,空穴注入层还包括金属M和第三金属氧化物MOy,其中第三金属氧化物MOy为金属M与第一金属氧化物之间发生氧化还原反应得到。空穴注入层可为单层或多层结构。

Description

量子点发光器件及制备方法 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)因其具有高色域、高色纯度、广视角、使用寿命长、发光效率高等优势,在显示领域展现出巨大的潜力,成为下一代显示技术的有利竞争者。目前量子点发光二极管面临的主要问题之一是器件的载流子注入不平衡。
典型的QLED器件结构包括层叠设置的阴极、电子传输层、量子点发光层、空穴传输层、空穴注入层和阳极,目前常用的空穴注入层材料与阳极之间的界面能级势垒过高,因此仍面临空穴注入速率较低的问题。
发明内容
本公开实施例提供一种空穴注入层材料和结构、及显示面板和显示装置,以实现改善空穴注入层与阳极之间的界面接触,提高QLED器件的显示性能的目的。根据本公开实施例的第一方面,提供了一种显示面板。所述显示面板包括:
依次层叠设置的第一电极层、电子传输层、发光层、空穴传输层、空穴注入层和第二电极层,其特征在于,所述空穴注入层的材料包括第一金属氧化物和第二金属氧化物,所述第一金属氧化物和所述第二金属氧化物包含的金属元素相同,但所述金属元素的最外层电子数不同。
所述空穴注入层的材料还包括金属M和第三金属氧化物MOy,0<y≤3,y为自然数或小数。
所述金属M和所述第三金属氧化物MOy的质量总和小于所述第一金属氧化物和所述第二金属氧化物的质量总和。
在一些实施例中,所述金属M与所述第三金属氧化物MOy的质量比值为3:1-5:1。所述金属M在所述空穴注入层中的质量百分比为5-10%,所述第三金属氧化物MOy在所述空穴注入层中的质量百分比为1-5%。
在一些实施例中,所述空穴注入层为多层结构,沿着第一方向,依次设置第一子层和第二子层、以及设置在所述第一子层和所述第二子层之间的第一反应层,所述第一子层的材料包含所述第一金属氧化物,所述第二子层的材料包括所述金属M,所述第一反应层的材料包括所述第二金属氧化物和所述第三金属氧化物MOy。
在一些实施例中,所述空穴注入层还包括设置在所述第二子层和所述第二电极层之间的n个子层和(n+1)个反应层,所述子层和所述反应层依次间隔设置且所包含的材料不同,所述反应层位于靠近所述第二子层的一侧,n≥0且为整数。
在一些实施例中,所述子层的材料包含金属和金属氧化物,但与所述第一子层和所述第二子层所包含的材料均不相同,所述反应层的材料包含金属氧化物,但与所述第一反应层所包含的材料不同。
在一些实施例中,每个所述子层包含的材料不同,每个所述反应层包含的材料不同。
在一些实施例中,所述第一反应层的粗糙度小于所述第一子层,所述反应层的粗糙度小于所述子层。
在一些实施例中,所述第一金属氧化物中包含的金属元素的化学活性低于所述金属M。
在一些实施例中,所述第一反应层由所述第一子层和所述第二子层发生氧化还原反应生成,所述反应层由相邻所述子层发生氧化还原反应生成。
在一些实施例中,所述第一金属氧化物中包含的金属元素包括钼、钒、 钨中的至少一种,所述金属M包括镁、铝、铜、银中的至少一种。
在一些实施例中,所述第一电极层可为阴极或阳极,相应的,所述第二电极层可为阳极或阴极,所述第一电极层和所述第二电极层的材料包括银、铝、氧化铟锡、碳纳米管中的至少一种。
在一些实施例中,所述第一子层和第二子层的膜厚比值范围为2:1-10:1。
在一些实施例中,所述第一子层的厚度为5-10nm,所述第二子层的厚度为1-5nm,所述第一反应层的厚度为1-2nm,所述空穴注入层的厚度为5-31nm。
在一些实施例中,所述第一反应层的载流子迁移率大于所述第一子层的载流子迁移率。
根据本公开实施例的第二方面,提供了一种显示装置,所述显示装置包括上述的显示面板。
根据本公开实施例的第三方面,还提供了一种显示面板的制备方法,包括步骤:
提供一衬底,在衬底上依次制备第一电极层、电子传输层、发光层、空穴传输层、空穴注入层和第二电极层;
所述空穴注入层的材料包含第一金属氧化物和金属M;
通过在第一电极层和第二电极层之间施加一定电压,使得所述第一金属氧化物与所述金属M发生氧化还原反应,生成第二金属氧化物和第三金属氧化物,所述第二金属氧化物和所述第三金属氧化物位于所述空穴注入层中,所述电压为所述显示面板的工作电压。
在一些实施例中,在所述第一电极层和第二电极层之间施加一定电压 后,接着对显示面板进行UV照射处理,UV功率范围为1-100mW,处理时间范围为1-20min,以进一步促进第一金属氧化物与所述金属M发生氧化还原反应。
在一些实施例中,形成所述空穴注入层的还包括以下步骤:
所述第一金属氧化物与所述金属M通过共蒸镀的方式沉积在所述空穴传输层上;
所述金属M、所述第二金属氧化物和所述第三金属氧化物均匀分布在所述第一金属氧化物中。
在另一些实施例中,形成所述空穴注入层的还包括以下步骤:
所述金属M为金属纳米线,通过旋涂的方式沉积在所述空穴传输层上;
所述第一金属氧化物通过旋涂的方式沉积在所述金属M远离所述空穴传输层的一侧。
本公开实施例所达到的主要技术效果是:
本公开实施例所提供的空穴注入层包含多种组分,通过施加一定条件,使得空穴注入层发生氧化还原反应,来改善空穴注入层与阳极之间的界面接触,从而提高界面处的载流子传输速率。另一方面,由于在空穴注入层中加入了金属,可使得空穴注入层的横向电流更大,即,可使器件的导电和导热更均匀,从而提高器件的发光效率,降低功耗,改善使用寿命。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是本公开一示例性实施例提供的显示面板的结构示意图。
图2是图1实施例中所述空穴注入层的一种结构示意图。
图3是本公开另一示例性实施例提供的显示面板的结构示意图。
图4是图3实施例中第一反应层的一种结构示意图。
图5是本公开又一示例性实施例提供的显示面板的结构示意图。
图6是图5实施例中空穴注入层包括多个子层和多个反应层时的一示例性实施例的示意图。
图7是本公开又一示例性实施例提供的显示面板的结构示意图。
图8是图7实施例中空穴注入层包括多个子层和多个反应层时的一示例性实施例的示意图。
图9是本公开又一示例性实施例提供的显示面板的结构示意图。
图10是本公开又一示例性实施例提供的显示面板的结构示意图。
图11是本公开一示例性实施例提供的显示面板的制备方法流程图。
图12是本公开另一示例性实施例提供的显示面板的制备方法流程图。
图13是本公开又一示例性实施例提供的显示面板的制备方法流程图。
图14是本公开又一示例性实施例提供的显示面板的制备方法流程图。
图15a是本公开一示例性实施例提供的采用UV照射处理前后的显示面板的电流与器件效率的关系曲线对比图。
图15b是本公开一示例性实施例提供的采用UV照射处理前后的显示面板的电流与亮度的关系曲线对比图。
图15c是本公开一示例性实施例提供的采用不同金属材料作为第一或第二电极层时,UV照射处理前后的显示面板的电流密度与器件效率的关系曲线对比图。
图16是本公开一示例性实施例提供的采用不同金属材料作为第一或第 二电极层时,所制备的显示面板的阻抗谱图。
图17a是本公开一些实施例提供的空穴注入层的第二子层材料为Mg时,第二子层的厚度与器件效率的关系曲线对比图。
图17b是本公开一些实施例提供的空穴注入层的第二子层材料为Al时,第二子层的厚度与器件效率的关系曲线对比图。
图17c是本公开一些实施例提供的空穴注入层的第二子层材料为Ag时,第二子层的厚度与器件效率的关系曲线对比图。
图17d是本公开一些实施例提供的空穴注入层的第二子层的厚度为1nm时,第二子层的材料种类与器件效率的关系曲线对比图。
图17e是本公开一些实施例提供的空穴注入层的厚度与器件效率的关系曲线对比图。
图18是本公开一示例性实施例提供的显示装置。
图19是本公开另一示例性实施例提供的显示装置。
图中:100-显示面板;1-衬底;2-第一电极层;3-电子传输层;4-发光层;5-空穴传输层;6-空穴注入层;7-第二电极层;9-间隔部(bank);61-第二反应层;81-金属M;82-第三金属氧化物;83-第二金属氧化物;84-第一金属氧化物;601-第一子层;602-第一反应层;603-第二子层;604-反应层;605-子层;110-第一发光结构;120-第二发光结构;130-第三发光结构;211-第一发光结构的第一电极层;212-第二发光结构的第一电极层;213-第三发光结构的第一电极层;311-第一发光结构的电子传输层;312-第二发光结构的电子传输层;313-第三发光结构的电子传输层;411-第一发光结构的发光层;412-第二发光结构的发光层;413-第三发光结构的发光层;511-第一发光结构的空穴传输层;512-第二发光结构的空穴传输层;513-第三发光结构的空穴传输层;611-第一发光结构的空穴注入层;612-第二发光结构的 空穴注入层;613-第三发光结构的空穴注入层;711-第一发光结构的第二电极层;712-第二发光结构的第二电极层;713-第三发光结构的第二电极层。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施例并不代表与本公开相一致的所有实施例。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开实施例提供了一种显示面板、显示装置、以及相应的制备方法。下面结合附图,对本公开实施例中的显示面板及显示装置进行详细说明。在不冲突的情况下,下述的实施例中的特征可以相互补充或相互组合。
参见图1图8,本公开实施例提供了一种QLED显示面板100,包括依次层叠设置的衬底1、第一电极层2、电子传输层3、发光层4、空穴传输层5、空穴注入层6和第二电极层7。空穴注入层6的材料包括第一金属氧 化物和第二金属氧化物,其中,第一金属氧化物和第二金属氧化物包含的金属元素相同,但两者的最外层电子数不同,即第一金属氧化物和第二金属氧化物所包含的金属元素的价态不同。可选的,金属元素的价态为+2、+3、+4、+5、+6价中的两种或多种。具体地,金属元素可为钼(Mo)、钨(W)、钒(V),相应的,第一金属氧化物可为氧化钼、氧化钨、氧化钒。需要特别说明的是,上述氧化物仅为统称,以氧化钼为例,金属元素钼可为+4、+6价,即在空穴注入层6中,第一金属氧化物可为三氧化钼(MoO 3)、第二金属氧化物可为二氧化钼(MoO 2)。在一些实施例中,空穴注入层6中所包含的第一金属氧化物的质量大于第二金属氧化物。
空穴注入层6的材料还包括金属M和第三金属氧化物MOy(0<y≤3,y为自然数或小数)。金属M和第三金属氧化物MOy的质量总和小于第一金属氧化物和第二金属氧化物的质量总和。在一些实施例中,金属M与第三金属氧化物MOy的质量比值为3:1-5:1。金属M在空穴注入层中的质量百分比为5-10%,第三金属氧化物MOy在空穴注入层中的质量百分比为1-5%。
在一些实施例中,参见图1,金属M、第三金属氧化物MOy和第二金属氧化物可均匀分布在第一金属氧化物中,四者共同组成了空穴注入层6,其中,金属M的价态为+1、+2、+3价中的一种或多种。
在一些实施例中,金属M的化学活性高于第一金属氧化物中的金属元素,即金属M更容易与氧元素发生反应,或者说,在一定条件下,金属M与第一金属氧化物之间可发生氧化还原反应,金属M失去电子发生氧化反应,生成第三金属氧化物MOy,而第一金属氧化物得到电子发生还原反应,生成第二金属氧化物。也就是说,空穴注入层6中包含的第二金属氧化物和第三金属氧化物MOy为金属M与第一金属氧化物发生氧化还原反应生成的产物。其中,金属M可包括镁、铝、银,相应的,第三金属氧化物 MOy可包括氧化镁(MgO)、氧化铝(Al 2O 3)、氧化银(MgO)。具体地,以第一金属氧化物为MoO 3,金属为Al为例,相应的氧化还原反应式为:Al+MoO 3→Al 2O 3+MoOy(y<3)。
相关技术中,空穴注入层6的材料包括MoO 3,但MoO 3的费米能级为-5.48eV,这一数值远低于第二电极层7的能级(如-4.2eV),空穴注入层6与第二电极层7之间的界面能级势垒过高,导致QLED器件中空穴注入困难,及空穴传输速率过低。本公开通过在空穴注入层6中加入金属M,并设置在一定条件下,金属M与MoO 3发生氧化还原反应,可生成第三金属氧化物MOy和低价态或还原态的二氧化钼MoO 2,由此可减小空穴注入层6中的氧化钼的功函数,而功函数的减小意味着费米能级的升高,这会减小空穴注入层6与第二电极层7之间的界面接触势垒,使界面更接近欧姆接触。此外,MoO 3中Mo元素价态的降低意味着其自身导电性的提高,因此从空穴传输层5中提取来的电子可以更容易地通过空穴注入层6,被输送到第二电极层7并被其所收集,相应地表现为空穴注入能力提升。
在一些实施例中,参见图1和图5,第一电极层2和第二电极层7中的一者可为阳极或阴极,另一者相应为阴极或阳极,可根据QLED器件的类型进行调整和选择。具体地,当QLED器件为倒置结构时,第一电极层2为阴极,第二电极层7为阳极;当QLED器件为正置结构时,第一电极层2为阳极,第二电极层7为阴极。第一电极层2和第二电极层7可为透明电极或不透明电极(反射电极),可选择的材料包括:金属材料,如铝、银、金、铜等;透明电极材料,如氧化铟锡(ITO)、氟掺氧化锡(FTO)、石墨烯、碳纳米管膜材等。
在一些实施例中,衬底1为刚性衬底,刚性衬底的材料可以是玻璃、金属等。在其他实施例中,衬底1可以是柔性衬底,柔性衬底的材料可以包括PI(聚酰亚胺)、PET(聚对苯二甲酸乙二醇酯)及PC(聚碳酸酯)中 的一种或多种。
在一些实施例中,参见图5,空穴注入层6为多层结构,沿着第一方向,依次设置第一子层601和第二子层603、以及设置在第一子层601和第二子层603之间的第一反应层602。其中,第一子层601的材料包含第一金属氧化物,第二子层603的材料包括金属M,第一反应层602的材料包括第二金属氧化物和第三金属氧化物MOy。所述第一方向为沿着第一电极层2至第二电极层7的方向。
在一些实施例中,空穴注入层6还包括设置在第二子层603和第二电极层7之间的n个子层和n个反应层,所述子层和所述反应层依次间隔设置且包含的材料不同,且反应层位于靠近第二子层603的一侧,n≥0且为整数。
在一些实施例中,子层的材料包含金属和金属氧化物,但与第一子层601包含的金属氧化物和第二子层603包含的金属元素均不相同;反应层的材料包含金属氧化物,但与第一反应层602所包含的材料也不相同。
在一些实施例中,相邻两个子层所包含的材料也可不同,相邻两个反应层所包含的材料与可不同,具体的材料可根据不同实施例作相应选择。
本公开实施例中,第一金属氧化物中包含的金属元素的化学活性低于金属M。第一子层601与第二子层603在界面处可发生氧化还原反应,形成第一反应层602。同理,反应层由相邻两个子层在接触界面处发生氧化还原反应生成。
在一些实施例中,第一子层601和第二子层603的膜厚比值范围为2:1-10:1。具体地,第一子层601的厚度为5-10nm,第二子层603的厚度为1-5nm。第一子层601与第二子层603在界面处发生氧化还原反应,生成的第一反应层603的厚度为1-2nm。空穴注入层6可为单层或多层结构,厚度 范围为5-31nm。
在一些实施例中,第一反应层602的粗糙度小于第一子层601,反应层的粗糙度小于子层。第一反应层602的载流子迁移率大于第一子层601的载流子迁移率。
本公开实施例还提供了一种显示装置,可包括上述的显示面板。
本公开实施例还提供了一种倒置型QLED显示面板的制备方法,包括如下步骤:
提供衬底1,在衬底1上依次制备第一电极层2、电子传输层3、发光层4、空穴传输层5、空穴注入层6和第二电极层7,其中第一电极层2作为阴极,第二电极层7作为阳极;
空穴注入层6的材料包含第一金属氧化物和金属M;
通过在第一电极层2和第二电极层7之间施加一定电压,使得空穴注入层6中的第一金属氧化物与金属M发生氧化还原反应,生成第二金属氧化物和第三金属氧化物MOy。
关于第一金属氧化物和金属M的制备方法,可采用多种方式,如:第一金属氧化物和金属M共蒸镀、第一金属氧化物和金属M依次分层蒸镀、第一金属氧化物和金属M依次旋涂。
如上所述,本公开实施例所提供的空穴注入层6包含多种组分,通过发生氧化还原反应来改善空穴注入层6与第二电极层7之间的界面接触,从而提高界面处的载流子传输速率。另一方面,由于在空穴注入层6中加入了金属,可使得空穴注入层6的横向电流更大,即可使器件的导电和导热更均匀,从而提高器件的发光效率,降低功耗,改善使用寿命。下面以第一金属氧化物为三氧化钼(MoO 3,元素Mo为+6价),第二金属氧化物为二氧化钼(MoO 2,元素Mo为+4价),金属M为镁(Mg)或铝(Al), 相应的第三金属氧化物为氧化镁(MgO)或氧化铝(Al 2O 3),第二电极层7的材料为铝(Al)为例,对本公开具体实施例进行说明。
实施例一
参见图1,本实施例采用倒置型QLED器件,依次包括:衬底1、第一电极层2、电子传输层3、发光层4、空穴传输层5、空穴注入层6和第二电极层7。空穴注入层6的材料包括第一金属氧化物MoO 3和第二金属氧化物MoO 2,即:两者所包含的金属元素相同,均为Mo,但Mo在两者中的价态不同,分别为+6、+4价。空穴注入层6的材料还包括少量的金属Al和第三金属氧化物Al 2O 3。金属Al和第三金属氧化物Al 2O 3的质量总和小于第一金属氧化物MoO 3和第二金属氧化物MoO 2的质量总和,具体地,Al和Al 2O 3的质量之和在空穴注入层6总质量中的占比为1-5%。
参见图1和图2,本实施例中的空穴注入层6为单层结构,其主体材料为第一金属氧化物MoO 3 84,而金属Al 81、第三金属氧化物Al 2O 3 82和第二金属氧化物MoO 2 83均匀分布在第一金属氧化物中,四者共同组成了空穴注入层6。其中,金属Al和第一金属氧化物MoO 3可通过共蒸镀的方式,共同沉积在空穴传输层5远离发光层4的一侧。在一定条件下,参考图2a和图2b,金属Al与第一金属氧化物MoO 3之间可发生氧化还原反应,即:Al失去电子发生氧化反应,生成第三金属氧化物Al 2O 3,而第一金属氧化物MoO 3得到电子发生还原反应,生成第二金属氧化物MoO 2,也就是说,空穴注入层6中所包含的第三金属氧化物Al 2O 3和第二金属氧化物MoO 2是通过第一金属氧化物MoO 3和金属Al之间发生化学反应生成的。此外,也可采用金属Al、第一金属氧化物MoO 3和第二金属氧化物MoO 2三者共蒸镀的方式制备空穴注入层6,其原理与前者相同,在此不做赘述。
本实施例中,由于第二电极层7的材料为Al,也可能与第一金属氧化物MoO 3发生反应,因此在空穴注入层6靠近第二电极层7一侧的S1界面, 如图2a所示,第二金属氧化物MoO 2 83的浓度较高。
实施例二
参见图3和图4,本实施例与实施例一相比,空穴注入层6中的金属M为镁(Mg),其与第一金属氧化物MoO 3发生氧化还原反应,生成第三金属氧化物MgO和第二金属氧化物MoO 2,即:空穴注入层6的材料包括第一金属氧化物MoO 3、第二金属氧化物MoO 2、金属Mg和第三金属氧化物MgO。进一步地,空穴注入层6与第二电极层7之间还包括第二反应层61,第二反应层61的材料包括Al 2O 3 83和第二金属氧化物MoO 2 82。这是由于第二电极层7的材料为Al,与第一金属氧化物MoO 3之间也可发生氧化还原反应,因此若空穴注入层6靠近第二电极层7的界面处若存在剩余的未发生反应的第一金属氧化物MoO 3,则可与第二电极层7发生氧化还原反应,相应生成Al 2O 3 83和第二金属氧化物MoO 2 82,从而构成第二反应层61。第二反应层61的厚度为1-2nm,优选为1nm。
实施例三
参见图5,空穴注入层6为多层结构,沿着第一方向,依次设置第一子层601和第二子层603、以及设置在第一子层601和第二子层603之间的第一反应层602。其中,第一子层601的材料为第一金属氧化物MoO 3,第二子层603的材料为金属Al,相应的,第一反应层602的材料包括第二金属氧化物MoO 2和第三金属氧化物Al 2O 3。所述第一方向为沿着第一电极层2至第二电极层7的方向。
进一步的,空穴注入层6还包括设置在第二子层603和第二电极层7之间的n个子层和n个反应层,所述子层和所述反应层依次间隔设置且包含的材料不同,且反应层位于靠近第二子层603的一侧,n≥0且为整数。参照图5,当n=1时,空穴注入层6包括1个子层和1个反应层。
本实施例中,子层605的材料与第一子层602的材料相同,均为MoO 3。相应地,反应层604和606的材料与第一反应层602的材料相同,均包括第二金属氧化物MoO 2和第三金属氧化物Al 2O 3
参见图6,本实施例还可包括多个依次间隔设置的子层和反应层,每个反应层604的材料相同,相邻子层的材料依次为MoO 3和Al。
实施例四
参见图7和图8,本实施例与实施例三相比,不同之处在于,每间隔一个子层的相邻两个子层的材料不完全相同,每间隔一个反应层的相邻两个反应层的材料不完全相同。在本实施例中,子层605的材料可为WO 3,相应的,所形成的反应层604和606中的材料与第一反应层602的材料不同。
实施例五
参见图9,本实施例采用正置型QLED器件结构,主要包括依次层叠的衬底1,第二电极层7、空穴注入层6、空穴传输层5、电子传输层3和第一电极层2。其中,空穴注入层6为多层结构,在远离衬底1的方向上,依次包括第二子层602、第一反应层603和第一子层601。具体地,第二子层602的材料为金属Al,第一子层601的材料为MoO 3第一反应层603的材料为MoO 2和Al 2O 3。第二子层602和第一子层601通过旋涂方式依次制备。
实施例六
参见图10,相比于实施例五,进一步的,空穴注入层6还包括设置在第一子层601和第一电极层2之间的多个子层和多个反应层。其中,每个子层的材料可不完全相同,例如子层604的材料可依次为V 2O 5、WO 3、MoO 3
实施例七
参见图11,本实施例提供了一种针对实施例一所述倒置型QLED显示 面板的制备方法,包括如下步骤:
S1:提供衬底1,在衬底1上依次制备第一电极层2、电子传输层3、发光层4;
S2:空穴传输层5通过真空蒸镀方式制备在发光层4上,实验条件为:真空度≤10 -4Pa,蒸镀速率在
Figure PCTCN2021123006-appb-000001
之间。空穴传输层5可为有机空穴传输材料,例如,PVK(聚乙烯咔唑)、TFM(聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺))和TPD(N,N’-diphenyl-N,N’-Mis(3-methyllphenyl)-(1,1’-Miphenyl)-4,4-diamine)及其衍生物,或者无机空穴传输材料,例如氧化镍(NiOy)和氧化钒(VOy)。空穴传输层5的厚度范围为10-60nm;
S3:空穴注入层6通过真空蒸镀方式制备,具体地,将第一金属氧化物MoO 3和金属Al通过共蒸镀的方式沉积在空穴传输层5上方,实验条件为:真空度≤10 -4Pa,蒸镀速率在
Figure PCTCN2021123006-appb-000002
之间。空穴注入层6为单层结构,其中,金属Al的质量百分比为5-10%;
S4:接着,在空穴注入层6上方制备第二电极层7。通过在第一电极层2和第二电极层7之间施加一定电压(例如2-6V),促使空穴注入层6中的第一金属氧化物MoO 3和金属Al之间发生氧化还原反应,生成第二金属氧化物MoO 2和第三金属氧化物Al 2O 3。其中,Al 2O 3的质量百分比为1-5%。
实施例八
参照图12,本实施例相比于实施例七,空穴注入层6为多层结构,相应地,制备工艺还包括以下步骤:
S31:在制备空穴传输层5后,在空穴传输层5上蒸镀1-30nm厚的第一金属氧化物MoO 3,实验条件为:真空度≤10 -4Pa,蒸镀速率在
Figure PCTCN2021123006-appb-000003
之间;
S32:接着在第一金属氧化物MoO 3上蒸镀1-30nm厚的金属Al,实验 条件为:真空度≤10 -4Pa,蒸镀速率在
Figure PCTCN2021123006-appb-000004
之间;
S33:接着在金属Al上蒸镀1-30nm厚的第一金属氧化物MoO 3
S4:制备第二电极层7;
S5:在第一电极层2和第二电极层7之间施加一定电压(例如2-6V),促使空穴注入层6中的相邻的第一金属氧化物MoO 3和金属Al之间发生氧化还原反应,生成第二金属氧化物MoO 2和第三金属氧化物Al 2O 3,构成第一反应层。
在其他实施例中,步骤S2和S4所沉积的金属氧化物不同,例如:步骤S2中沉积MoO 3,步骤S4中沉积WO 3,相应地,第一反应层和反应层所包含的材料不同。
实施例九
参照图13,本实施例提供一种针对实施例三所述正置型QLED器件的制备方法。包括如下步骤:
S1:在衬底上制备第二电极层7;
S2:在第二电极层上旋涂金属纳米线溶液,实验条件为:转速3000r/min,时间40s,制备得到金属纳米线薄膜,其厚度为5-10nm;
S3:在金属纳米线薄膜上旋涂第一金属氧化物溶液(例如氧化钼溶液),实验条件为:转速2000-3000r/min,时间40s,制备得到第一金属氧化物薄膜,其厚度为5-10nm;
S4:在第一金属氧化物薄膜上旋涂量子点溶液,制备得到厚度为20-40nm的发光层;
S5:在发光层上旋涂制备电子传输层,厚度为10-60nm;
S6:在电子传输层上蒸镀第一电极层,厚度为80-120nm。
实施例十
参照图14,本实施例针对实施例七至实施例九任一实施例中的制备方法,制备步骤还包括:在第一电极层和第二电极层之间施加一定电压后,接着对显示面板进行UV照射处理,UV功率范围为1-100mW,处理时间范围为1-20min,以进一步促进第一金属氧化物MoO 3与金属Al发生氧化还原反应。
实施例十一
参照图1和图3,本实施例采用了实施例一或实施例二所描述的QLED器件结构,具体的,空穴注入层6为单层结构;或者可与第二电极层7之间发生氧化还原反应,形成第二反应层61,其中,第二电极层7为金属电极,采用的金属材料可为Al、Ag、Mg:Ag中的一种或多种。图15a和图15b分别示出了采用UV照射处理前后,显示面板的电流与器件效率、电流与亮度的关系曲线的对比图,从图中可看出,显示面板经UV照射1min后,器件效率提高,相同电流下的亮度增大。另一方面,图15c示出了使用UV照射处理前后,第二电极层采用不同金属材料时所制备的显示面板的电流密度与器件效率的关系曲线对比图,从图中可看出,经过UV照射2min后,器件效率均有一定程度的提升。图16示出了第二电极层采用不同金属材料时所制备的显示面板的阻抗谱图,可看出,在相同电压下,采用Mg:Ag电极时的电阻最小,采用Ag电极时的电阻最大,说明了不同金属电极对电流和器件效率的影响不同。
实施例十二
参照图5和图8,本实施例采用了实施例三或实施例五所描述的QLED器件结构,具体的,空穴注入层6为多层结构,包括:第一子层601、第一反应层602、第二子层603,其中,第一子层601的材料为MoO 3,第二子层603的材料为Mg、Al、Mg中的任意一种,第一子层601的厚度为1-10nm, 优选为5nm。第二子层603的厚度为1-10nm,具体的,厚度可为1nm,3nm,5nm。图17a-17c分别示出了第二子层603为不同材料时,器件效率随着厚度变化的关系曲线图,横坐标为电压(单位:伏特,V),纵坐标为显示面板的器件效率(单位:坎德拉/安培,cd/A)。实验结果表明,当电压从2V升至6V时,器件效率均表现出先升高后下降的趋势,此外,器件效率与第二子层603的厚度成反比,即随着第二子层603的厚度增大,器件效率降低,因此当第二子层603厚度为1nm时,器件效率最高。参照图17d,在厚度均为1nm时,第二子层603为Mg时的器件效率相对更高。图17e示出了器件效率随着第一子层MoO 3的厚度变化的关系曲线图,横坐标为厚度(单位:纳米,nm),纵坐标为器件效率(单位:坎德拉/安培,cd/A)。实验结果表明,第一子层的厚度为5-7nm时,器件的效率相对较高。实施例十三
参见图18和图19,分别为倒置型、正置型QLED器件的整体结构图。参见图18,倒置型QLED器件包括第一发光元件110、第二发光元件120、第三发光元件130,三个发光元件可用于发出不同颜色的光。在一些实施例中,第一发光元件110可发出红光,第二发光元件120可发出绿光、第三发光元件130可发出蓝光。其中,第一发光元件110包括第一发光层411、第一电子传输层311和第一电极层211;第一电极层211与第一电子传输层311接触设置,在第一发光元件110进行发光时,第一电极层211用于提供电子。
在一些示例中,第一发光层411可为红色量子点发光层,第一发光层411的材料可包括硒化镉(CdSe)、CdSe/ZnS核壳量子点材料;也可包括无镉量子点材料,例如磷化铟(InP)、InP/ZnS核壳量子点材料,从而降低对环境的污染。
在一些示例中,该显示装置可以为智能手机、平板电脑、电视机、显 示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种显示面板,包括依次层叠设置的第一电极层、电子传输层、发光层、空穴传输层、空穴注入层和第二电极层,其中,所述空穴注入层的材料包括第一金属氧化物和第二金属氧化物,所述第一金属氧化物和所述第二金属氧化物包含的金属元素相同,但所述金属元素的最外层电子数不同。
  2. 根据权利要求1所述的显示面板,其中,所述空穴注入层的材料还包括金属M和第三金属氧化物MOy,0<y≤3,y为自然数或小数。
  3. 根据权利要求2所述的显示面板,其中,所述金属M和所述第三金属氧化物MOy的质量总和小于所述第一金属氧化物和所述第二金属氧化物的质量总和。
  4. 根据权利要求3所述的显示面板,其中,所述金属M与所述第三金属氧化物MOy的质量比值范围为3:1-5:1。
  5. 根据权利要求4所述的显示面板,其中,所述金属M在所述空穴注入层中的质量百分比为5-10%,所述第三金属氧化物MOy在所述空穴注入层中的质量百分比为1-5%。
  6. 根据权利要求4所述的显示面板,其中,所述空穴注入层为多层结构,沿着第一方向,依次设置第一子层和第二子层、以及设置在所述第一子层和所述第二子层之间的第一反应层,所述第一子层的材料包含所述第一金属氧化物,所述第二子层的材料包括所述金属M, 所述第一反应层的材料包括所述第二金属氧化物和所述第三金属氧化物MOy。
  7. 根据权利要求6所述的显示面板,其中,所述空穴注入层还包括设置在所述第二子层和所述第二电极层之间的n个子层和n个反应层,所述子层和所述反应层依次交替间隔设置且所包含的材料不同,所述反应层相较于所述子层,位于更靠近所述第二子层的一侧,n≥0且为整数。
  8. 根据权利要求7所述的显示面板,其中,所述子层的材料包含金属和金属氧化物,但与所述第一子层和所述第二子层所包含的材料均不相同;所述反应层的材料包含金属氧化物,但与所述第一反应层所包含的材料不同。
  9. 根据权利要求8所述的显示面板,其中,每个所述子层包含的材料不同,每个所述反应层包含的材料不同。
  10. 根据权利要求7所述的显示面板,其中,所述第一反应层的粗糙度小于所述第一子层,所述反应层的粗糙度小于所述子层。
  11. 根据权利要求7所述的显示面板,其中,所述第一金属氧化物中包含的金属元素的化学活性低于所述金属M。
  12. 根据权利要求11所述的显示面板,其中,所述第一反应层由所述第一子层和所述第二子层发生氧化还原反应生成,所述反应层由相邻所述子层发生氧化还原反应生成。
  13. 根据权利要求2所述的显示面板,其中,所述第一金属氧化物中包含的金属元素包括钼、钒、钨中的至少一种。
  14. 根据权利要求2所述的显示面板,其中,所述金属M包括镁、铝、铜、银中的至少一种。
  15. 根据权利要求2所述的显示面板,其中,所述第一电极层可为阴极或阳极,相应的,所述第二电极层可为阳极或阴极,所述第一电极层和所述第二电极层的材料包括银、铝、氧化铟锡、碳纳米管中的至少一种。
  16. 根据权利要求6所述的显示面板,其中,所述第一子层和第二子层的膜厚比值范围为2:1-10:1。
  17. 根据权利要求16所述的显示面板,其特征在于,所述第一子层的厚度为5-10nm,所述第二子层的厚度为1-5nm,所述第一反应层的厚度为1-2nm。
  18. 根据权利要求2所述的显示面板,其中,所述空穴注入层的厚度为5-31nm。
  19. 根据权利要求6所述的显示面板,其中,所述第一反应层的载流子迁移率大于所述第一子层的载流子迁移率。
  20. 一种显示装置,其中,包括权利要求1-19任一项所述的显示面板。
  21. 一种显示面板的制备方法,其中,包括步骤:
    提供一衬底,在衬底上依次制备第一电极层、电子传输层、发光层、空穴传输层、空穴注入层和第二电极层;
    所述空穴注入层的材料包含第一金属氧化物,或第一金属氧化物和金属M的混合物;
    在第一电极层和第二电极层之间施加一定电压,使得所述第一金属氧化物与所述金属M发生氧化还原反应,生成第二金属氧化物和第三金属氧化物,所述第二金属氧化物和所述第三金属氧化物位于所述空穴注入层中,所述电压为所述显示面板的工作电压。
  22. 根据权利要求21所述的显示面板的制备方法,其中,还包括步骤:
    在所述第一电极层和第二电极层之间施加一定电压后,对所述显示面板进行UV照射处理,UV功率范围为1-100mW,处理时间范围为1-20min。
  23. 根据权利要求21所述的显示面板的制备方法,其中,还包括步骤:
    所述第一金属氧化物与所述金属M通过共蒸镀的方式沉积在所述空穴传输层上;
    所述金属M、所述第二金属氧化物和所述第三金属氧化物均匀分布在所述第一金属氧化物中。
  24. 根据权利要求21所述的显示面板的制备方法,其中,还包括步骤:
    所述金属M的形式为金属纳米线,通过旋涂的方式沉积在所述空穴传输层上;
    所述第一金属氧化物通过旋涂的方式沉积在所述金属M远离所述空穴传输层的一侧。
PCT/CN2021/123006 2021-10-11 2021-10-11 量子点发光器件及制备方法 WO2023060375A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/123006 WO2023060375A1 (zh) 2021-10-11 2021-10-11 量子点发光器件及制备方法
CN202180002860.7A CN116264872A (zh) 2021-10-11 2021-10-11 量子点发光器件及制备方法
CN202280002817.5A CN116264873A (zh) 2021-10-11 2022-08-24 显示面板及其制备方法、显示装置
PCT/CN2022/114545 WO2023061059A1 (zh) 2021-10-11 2022-08-24 显示面板及其制备方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123006 WO2023060375A1 (zh) 2021-10-11 2021-10-11 量子点发光器件及制备方法

Publications (1)

Publication Number Publication Date
WO2023060375A1 true WO2023060375A1 (zh) 2023-04-20

Family

ID=85987131

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/123006 WO2023060375A1 (zh) 2021-10-11 2021-10-11 量子点发光器件及制备方法
PCT/CN2022/114545 WO2023061059A1 (zh) 2021-10-11 2022-08-24 显示面板及其制备方法、显示装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114545 WO2023061059A1 (zh) 2021-10-11 2022-08-24 显示面板及其制备方法、显示装置

Country Status (2)

Country Link
CN (2) CN116264872A (zh)
WO (2) WO2023060375A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129192A1 (en) * 2006-12-01 2008-06-05 Canon Kabushiki Kaisha Organic light emitting device
CN110838551A (zh) * 2018-08-15 2020-02-25 Tcl集团股份有限公司 复合材料和量子点发光二极管及其制备方法
CN111063811A (zh) * 2018-10-17 2020-04-24 湖畔光电科技(江苏)有限公司 氧化过的铝上的多个空穴注入结构及其在有机发光装置中的应用
CN113130835A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5760334B2 (ja) * 2009-06-19 2015-08-05 大日本印刷株式会社 有機電子デバイス及びその製造方法
JP5624141B2 (ja) * 2010-07-30 2014-11-12 パナソニック株式会社 有機el素子
JP5612693B2 (ja) * 2010-08-06 2014-10-22 パナソニック株式会社 有機el素子およびその製造方法
CN102110783A (zh) * 2010-12-22 2011-06-29 西安文景光电科技有限公司 低电压驱动的空穴注入层作为发光调节层的oled器件
JPWO2012153445A1 (ja) * 2011-05-11 2014-07-28 パナソニック株式会社 有機el表示パネルおよび有機el表示装置
US9035293B2 (en) * 2012-04-18 2015-05-19 Joled Inc. Organic el device including a mixed hole injection layer
WO2013161166A1 (ja) * 2012-04-27 2013-10-31 パナソニック株式会社 有機el素子、およびそれを備える有機elパネル、有機el発光装置、有機el表示装置
CN104009161B (zh) * 2013-02-26 2017-02-08 珠海光合作用光电设计有限公司 一种有机电致发光器件
JP6685675B2 (ja) * 2015-09-07 2020-04-22 株式会社Joled 有機el素子、それを用いた有機el表示パネル、及び有機el表示パネルの製造方法
CN106252521B (zh) * 2016-08-29 2019-12-10 Tcl集团股份有限公司 一种基于金属/金属氧化物的qled器件及其制备方法
CN110224071B (zh) * 2018-03-02 2020-12-11 昆山工研院新型平板显示技术中心有限公司 发光器件及其制备方法、显示装置
CN111697150A (zh) * 2020-08-11 2020-09-22 河南大学 一种基于MoOx空穴注入层的QLED器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129192A1 (en) * 2006-12-01 2008-06-05 Canon Kabushiki Kaisha Organic light emitting device
CN110838551A (zh) * 2018-08-15 2020-02-25 Tcl集团股份有限公司 复合材料和量子点发光二极管及其制备方法
CN111063811A (zh) * 2018-10-17 2020-04-24 湖畔光电科技(江苏)有限公司 氧化过的铝上的多个空穴注入结构及其在有机发光装置中的应用
CN113130835A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法

Also Published As

Publication number Publication date
CN116264872A (zh) 2023-06-16
CN116264873A (zh) 2023-06-16
WO2023061059A1 (zh) 2023-04-20

Similar Documents

Publication Publication Date Title
CN110224071B (zh) 发光器件及其制备方法、显示装置
CN111384273B (zh) 一种量子点发光二极管及其制备方法
WO2020134162A1 (zh) 量子点发光二极管及其制备方法
WO2020143404A1 (zh) 一种量子点发光器件及其制备方法
CN111540837B (zh) 量子点发光器件和显示装置
WO2020108071A1 (zh) 一种量子点发光二极管及其制备方法
CN112151648B (zh) 一种量子点发光二极管及其制备方法
WO2023060375A1 (zh) 量子点发光器件及制备方法
US20180269421A1 (en) Flexible display device and method of manufacturing the same
US20240243234A1 (en) Display panel and method for manufacturing the same, display apparatus
CN111883681B (zh) 发光器件及其制备方法和显示装置
CN115477944A (zh) 量子点材料、量子点发光二极管及其制备方法
WO2022120655A1 (zh) 量子点、其制备方法、量子点发光器件及显示装置
US20240186463A1 (en) Quantum dot light-emitting device, manufacturing method thereof and display device
WO2022143830A1 (zh) 光电器件
WO2023083098A1 (zh) 一种发光二极管及其制备方法
WO2022143567A1 (zh) 光电器件
WO2022143556A1 (zh) 光电器件
WO2023082970A1 (zh) 复合材料及制备方法、电致发光器件
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
WO2022143823A1 (zh) 光电器件
WO2023040829A1 (zh) 量子点发光器件及其制备方法、显示装置
WO2022143831A1 (zh) 光电器件
WO2022143827A1 (zh) 光电器件
WO2022143826A1 (zh) 光电器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960129

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273300

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE